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Preface

These proceedings are based on papers presented at the international conference
Approximation Theory XIV, which was held April 7-10, 2013 in San Antonio,
Texas. The conference was the fourteenth in a series of meetings in Approximation
Theory held at various locations in the United States, and was attended by 133
participants. Previous conferences in the series were held in Austin, Texas (1973,
1976, 1980, 1992), College Station, Texas (1983, 1986, 1989, 1995), Nashville,
Tennessee (1998), St. Louis, Missouri (2001), Gatlinburg, Tennessee (2004), and
San Antonio, Texas (2007, 2010).

We are particularly indebted to our plenary speakers: Peter Binev (South
Carolina), Annalisa Buffa (Pavia), Michael Floater (Oslo), Kai Hormann (Lugano),
Gitta Kutyniok (Berlin), Grady Wright (Boise), and Yuan Xu (Oregon) for their
very fine expository talks outlining new research areas. The seventh Vasil
A. Popov Prize in Approximation Theory was awarded to Andriy Bondarenko
(Kiev), who also presented a plenary lecture. Thanks are also due to the presenters
of contributed papers, as well as everyone who attended for making the conference
a success.

We are especially grateful to the National Science Foundation for financial
support, and also to the Department of Mathematics at Vanderbilt University for
its logistical support.

We would also like to express our sincere gratitude to the reviewers who helped
select articles for inclusion in this proceedings volume, and also for their sug-
gestions to the authors for improving their papers.

Gregory E. Fasshauer
Larry L. Schumaker
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Isogeometric Method for the Elliptic
Monge-Ampere Equation

Gerard Awanou

Abstract We discuss the application of isogeometric analysis to the fully nonlinear
elliptic Monge-Ampere equation, an equation nonlinear in the highest order deriv-
atives. The construction of smooth discrete spaces renders isogeometric analysis a
natural choice for the discretization of the equation.

Keywords Vanishing viscosity - Monge-Ampere functional - Isogeometric analysis

1 Introduction

We are interested in the numerical resolution of the nonlinear elliptic Monge-Ampere
equation

det D’u = f in2
u=0 onas2, (D)

where D?v denotes the Hessian of a smooth function v, i.e., D?v is the matrix with
(@, j)thentry 92v/(9x;0x ;7). Here £2 is a smooth uniformly convex bounded domain
of R? which is at least C!! and fecC (£2) with f = co > 0 for a constant cq. If
f e CcO® 0 <<, (1) has a classical convex solution in C2(£2) N C(2) and its
numerical resolution assuming more regularity on u is understood, e.g., [6, 7, 11].
In the nonsmooth case, various approaches have been proposed, e.g., [16, 17]. For
various reasons, it is desirable to use standard discretization techniques, which are
valid for both the smooth and the nonsmooth cases. We propose to solve numerically
(1) by the discrete version of the sequence of iterates
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2 G. Awanou

(cof (D*uf + 1)) : D*u*T! = det D*u* + f, in2
uktt =, on 982, )

where ¢ > 0, I is the 2 x 2 identity matrix and we use the notation cof A to denote
the matrix of cofactors of A, i.e., for all i, j, (—1)i+j (cof A);j is the determinant
of the matrix obtained from A by deleting its ith row and its jth column. For two
n x n matrices A, B, we recall the Frobenius inner product A : B = Zl” j=1 AijBij,
where A;; and B;; refer to the entries of the corresponding matrices.

Our recent results [1] indicate that an appropriate space to study a natural vari-
ational formulation of (1) is a finite dimensional space of piecewise smooth C'!
functions. For the numerical experiments, we will let Vj, be a finite dimensional
space of piecewise smooth C! functions constructed with the isogeometric analysis
paradigm. Numerical results indicate that the proposed iterative regularization (2) is
effective for nonsmooth solutions. Formally, the sequence defined by (2) converges
to a limit u,, and u, converges uniformly on compact subsets of £2 to the solution u
of (1)ase — 0.

For ¢ = 0, (2) gives the sequence of Newton’s method iterates applied to (1).
Surprisingly, for the two-dimensional problem, the formal limit u, of the sequence
u’s”‘l solves the vanishing viscosity approximation of (1)

eAuy +det D*u; — f =0 in 2
u, =0 onasf. 3)

However, discrete versions of Newton’s method applied to (3) do not in general
perform well for nonsmooth solutions. This led to the development of alternative
methods, e.g., the vanishing moment methodology [11]. The key feature in (2) is
that the perturbation ¢/ is included to prevent the matrix Dzuif + el from being
singular.

The difficulty of constructing piecewise polynomial C! functions is often cited
as a motivation to seek alternative approaches to C! conforming approximations
of the Monge-Ampere equation. In [1] Lagrange multipliers are used to enforce
the C! continuity, but the extent to which this constraint is enforced in the compu-
tations is comparable to the accuracy of the discretization. With the isogeometric
method, the basis functions are also C! at the computational level. On the other
hand, another advantage of the isogeometric method is the exact representation of a
wide range of geometries which we believe would prove useful in applications of the
Monge-Ampere equation to geometric optics. Finally, the isogeometric method is
widely reported to have better convergence properties than the standard finite element
method.

The main difficulty of the numerical resolution of (1) is that Newton’s method
fails to capture the correct numerical solution when the solution of (1) is not smooth.
We proposed in [1] to use a time marching method for solving the discrete equa-
tions resulting from a discretization of (1). Moreover in [3] we argued that the
correct solution is approximated if one first regularizes the data. However, numerical
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experiments reported in [1] and in this paper indicate that regularization of the data
may not be necessary.

It is known that the convex solution « of (1) is the unique minimizer of a certain
functional J in a set of convex functions S. It is reasonable to expect, although not
very easy to make rigorous, that the set S can be approximated by a set of smooth
convex functions S, and minimizers of J in S, would approximate the minimizer
of J in S. We prove that the functional J has a unique minimizer in a ball of C!
functions centered at a natural interpolant of a smooth solution u. With a sufficiently
close initial guess, a minimization algorithm can be used for the computation of
the numerical solution. The difficulty of choosing a suitable initial guess may be
circumvented by using a global minimization strategy as in [14]. Netherveless our
result can be considered a first step toward clarifying whether regularization of the
data is necessary for a proven convergence theory of C'! approximations of (1) in
the nonsmooth case.

In this paper the numerical solution uj, is computed as the limit of the sequence
u’; ;» Which solve the discrete variational problem associated with (2). For the case
of smooth solutions we use ¢ = 0 in the resulting discrete problem. See Remark 2.
Since (1) is not approximated directly there is a loss of accuracy. Netherveless our
algorithm can be considered a step toward the development of fast iterative methods
capable of retrieving the correct numerical approximation to (1) in the context of
C! conforming approximations. Let u, j, denote the solution of the discrete problem
associated to (3). The existence of u, ; and u’; 5» the convergence of the sequence

(u’;h)k as k — oo as well as the behavior of u, , as ¢ — 0 will be addressed in a
subsequent paper. These results parallel our recent proof of the convergence of the
discrete vanishing moment methodology [2].

This paper falls in the category of papers which do not prove convergence of the
discretization of (1) to weak solutions, but give numerical evidence of convergence
as well results in the smooth case and/or in particular cases, e.g., [10, 12, 13]. We
organize the paper as follows: in the next section we describe the notation used and
some preliminaries. In Sect. 3 we prove minimization results at the discrete level.
We also derive in Sect. 3 the vanishing viscosity approximation (3) from (2) as well
as the discrete variational formulation used in the numerical experiments. In Sect. 4,
we recall the isogeometric concept and give numerical results in Sect. 5.

2 Notation and Preliminaries

We denote by C*(£2) the set of all functions having all derivatives of order < k
continuous on £2 where k is a nonnegative integer or infinity and by C%($2), the
set of all functions continuous on £2. A function u is said to be uniformly Holder
continuous with exponent «, 0 < o < 1 in £2 if the quantity

|u(x) —u(y)l

SUPy sty Ix — y|o
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is finite. The space CX%(£2) consists of functions whose kth order derivatives are
uniformly Holder continuous with exponent « in 2.

We use the standard notation of Sobolev spaces WK-P(£2) with norms ||.|| k,p and
semi-norm |.|¢ p. In particular, H k(£2) = W52(£2) and in this case, the norm and
seminorms will be denoted, respectively, by ||.||x and semi-norm |.|. For a function
u, we denote by Du its gradient vector and recall that D?u denotes its Hessian. For
a matrix field A, we denote by div A the vector obtained by taking the divergence of
each row.

Using the product rule one obtains for sufficiently smooth vector fields v and
matrix fields A

div(Av) = (divAT) -v+ A : (DW)T. (4)

Moreover, by [8, p. 440]
div cof D*v = 0. (%)

For computation with determinants, the following results are needed.

Lemma 1 We have
2 1 2 2 [ 2
det D*v = E(cofD v): D*v = 3 div ((cof D*v)Dv), (6)

and for F(v) = det D?%v we have
F'(v)(w) = (cof D*v) : D*w = div ((cof D*v)Dw),
for v, w sufficiently smooth.

Proof For a2 x 2 matrix A, one easily verifies that 2det A = (cof A) : A. It follows
that det D?v = 1/2(cof D?v) : D?v. Using (4) and (5) we obtain (cof D) :
D?v = div ((cof D*v)Dv) and (cof D?*v) : D*>w = div ((cof D*v) Dw). Finally
the expression of the Fréchet derivative is obtained from the definition of Fréchet
derivative and the expression det D?v = 1/2(cof D?v) : D?v. ]

Lemma2 Letv,w € W>*(22) and y € H*(2) N H} (£2), then

’/ (det D?v — det D*w)¥r dx| < C(vr.co + [Wlaoo) IV —whi¥ . (7)
22

The above lemma is a simple consequence of the mean value theorem and Cauchy-
Schwarz inequalities. For additional details, we refer to [1].

We require our approximation spaces V), to satisfy the following properties: There
exists an interpolation operator Q; mapping W/*1-7(£2) into the space Vj, for 1 <
p < 00,0 <[ < d with d a constant that depends on V}, and such that

I+1—k
[lv — QhV”k,p = Caph + ||V||l+l,p7 (8)
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forO <k </ and
I—s+min(0, 2 -2
Vlls,p < Comh' =MD 11y, Wy €V, ©)

forO0 <l <s,1<p,q <.

The discussion in [1] is for a space V), of piecewise polynomials. However, the
results quoted here are valid for spaces of piecewise smooth C! functions.

We consider the following discretization of (1): find u, € V; N H& (£2) such that

/ (det D?up)v dx =/ fvdx, Vv e V,NHi (). (10
2 2

It can be shown that for u;, € H2(2), the left hand side of the above equa_tion is
well defined [1]. We recall from [1] that under the assumption that u € C4(Q) isa
strictly convex function, there exists § > 0 such that if we define

8h?
Xp = [Vh € Vi,vi =0 onds2,|[lvy — Quulli < T]

then for & sufficiently small and v, € Xy, ||vi, — Qpu|l1 < 5h2/2, vy, 1s convex with
smallest eigenvalue bounded a.e. below by m’/2 and above by 3M’/2. Here m’ and
M’ are respectively lower and upper bounds of the smallest and largest eigenvalues
of D?u in £2. The idea of the proof is to use the continuity of the eigenvalues of a
matrix as a function of its entries. Thus using (8) with k =2, p = co and/ = d one
obtains that D% Qju(x) is also positive definite element by element for 4 sufficiently
small. The same argument shows that a C! function close to D* Qj,u is also piecewise
convex and hence convex due to the C! continuity. The power of # which appears in
the definition of X}, arises from the use of the inverse estimate (9).
We note that by an inverse estimate, for v;, € Xy,

-2
[lvp — QhM”Z,oo < Cimvh™“|lvy — Qpulli < Cind.

3 Minimization Results
‘We first note

Lemma 3 Let vy, v, w, and w € W22 (£2) N H(} (£2) such that ||v, — v|]2,00 = 0
and |lwp, —w||2,006 = 0. Then

/ (det D?*v,)wy, dx — / (det D*v)w dx (11)
22 2

/fvndx—>/fvdx. (12)
2 Q
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Proof Puta = [,,(det D?v,)wy dx — [, (det D?v)w dx. We have
o= / (det D?v, — det D*v)w, dx + / (det D*v)(wy, — w) dx.
2 Q

Using (7) we obtain
la| < C(Ivnl2,00 + VI2,00) Ve = vIiIwnli + Cvlz,eolvItIwg — wii.

Since |v, —v|1 < C||v, —V||2,00 and convergent sequences are bounded, (11) follows.

We have
'3/ fvp —v)dx
Q

and so (12) holds. (Il

= Cllfllolva = vllo.

We consider the functional J defined by

J(v):—/ vdetD2vdx+3/ fvdx.
2 2

‘We have
Lemmad Forv,w e W>>®(2) N H}(2)

J () =3 / (f — det D*v)wdx.
2

Proof Note that for v, w smooth, vanishing on 952 and by Lemma 1

J () (w) =3/ fwdx—/ wdet Dzvdx—/ vdiv[(cof D?>v)Dw]dx.
2 2 2

But by integration by parts, the symmetry of D?v and Lemma 1

[ vdivi(cof D?v)Dw]dx = — [, [(cof D*>)Dw] - Dvdx = — [, [(cof D*v)Dv] - Dwdx
= [, wdiv[(cof D*v)Dv]dx = 2 [ wdet D%vdx.

Thus
J ()(w) = 3/ (f — det D*v)wdx.
2

We have proved that for v, w smooth, vanishing on 952

Jw+w)—JW) = 3/ (f —det D*v)wdx + O(jw|?).
2
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Since the space of infinitely differentiable functions with compact support is dense
in W2%°(2) N H} (£2), the result holds for v, w € W>°(£2) N H} (£2) by a density
argument and using Lemma 3. (]

The Euler-Lagrange equation for J is therefore (10).

Remark 1 1t has been shown in [4, 19] that a generalized solution of (1) is the
unique minimizer of the functional J on the set of convex functions vanishing on the
boundary.

Theorem 1 Let u € C*(2) be the unique strictly convex solution of (1). Then for
h sufficiently small, the functional J has a unique minimizer iy, in Xj. Moreover,
[lu —ip|lt — 0ash — 0.

Proof We first note that by (7), the functional J is sequentially continuous in
W22°(2) N H} (£2). For v, v € W2%°(£2) N H} (2) we have

J(vp) — J(v) =3/ f(Vn —v)dx+/ (vdet D?v — v, det D*v,) dx.
2 2

We conclude from Lemma 3 that J(v,) — J(v) as ||[v, — V||2,.0 = 0. Moreover,
using the expression of J’(v)(w) given in Lemma 4, we obtain

J M w)(z) = =3 / wdiv[(cof D*v)Dz]dx =3 / [(cof D*v)Dz] - Dwdx.
2 2
We conclude that
J ) (w)(w) =3 / [(cof D*v)Dw] - Dw dx.
2

That is, J is strictly convex in X, by definition of Xj. A minimizer, if it exists, is
therefore unique.

The argument to prove that J has a minimizer follows the lines of Theorem 5.1
in [9]. We have for some 6 € [0, 1]

1

JW) =J(0)+ J 0)(») + EJ"(HV)(V)(V)
3

=0+ 3/ fvdx + —9/ [(cof Dzv)Dv] -Dvdx. (13)
Q 2 Ja
We claim that for v € X, v # 0, we have 6 # 0. Assume otherwise. Then
2 1 . 2
0=-— vdet D“vdx = —— vdiv(cof D“v)Dvdx
I?) )

1
= E/Q[(cof D*v)Dv] - Dvdx > %Ivl?, (14)
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where m is a lower bound on the smallest eigenvalue of cof D?v. By the assumption
onv € X5 we have m > 0. We obtain the contradiction v = 0 and conclude that
0 € (0, 1].

Next, note that

‘/Q fvdx

By (13), we obtain using Poincare’s inequality

= lIfNolvllo = [1f1lolvl]1. Thus /Q fvdx ==l fllolvll1.

\%

3
JW)_—SHfWMWh—%E&MW?z—SHﬂMHWh+CWWﬁ
VI (=311 fllo + ClIvII), (15)

%

for a constant C > 0. Let now R > 0 such that
XpN{veVyinH ), |l <R} #0.

Since J is continuous, J is bounded below on the above set. Moreover for ||v||{ > R,
we have
J(v) = R(=3[Ifllo + CR).

We conclude that the functional J is bounded below. We show that its infimum is
given by some i, in Xj,. Letv, € X, such thatlim,,_, o J (v,) = infyex, J (v) which
has just been proved to be finite. Then the sequence J (v,,) is bounded and by (15), the
sequence v, is also necessary bounded. Let v, be a weakly convergent subsequence
with limit #;,. We have

lim J' (i) (vi,) = J' () (up,).
n—oo
Since J is strictly convex in Xj,
Ji,) = J(@p) + I (n) (v, — in),

and so at the limit inf,cx, J(v) > J (i13,). This proves that it minimizes J in Xj,.
We now prove that |[u — ||y — 0 as h — 0. Note that since up, € Xj,
iy, — Qnull; < 8h?/4. By (8) and triangle inequality, we obtain the result. O

Remark 2 From the approach taken in [1], we may conclude that (10) has a unique
convex solution uy, in Xj which therefore solves the Euler-Lagrange equation for the
functional J. Since X} is open and convex and J convex on X, by Theorem 3.9.1
of [15] we have

JO) = J(up) + I (up) (v — up), Vv e Xp.
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Since uy, is a critical point of J in X, we get

JW) = J(uy), YveXy.
We conclude that both uj, and &, are minimizers of J in Xj. By the strict convexity

of J in X}, they are equal. Therefore the unique minimizer of J in X}, solves (10).

We now turn to the regularized problems (2) and (3). The formal limit of u’s‘ as
k — oo solves

(cof (D?u + €1)) : D*u, = det D*u, + f in 2
u, =0 onds2.

But since I and D?u, are 2 x 2 matrices, we have cof(Dzug + el) = cof D%u, +
cof eI = cof D?u, + eI and we obtain

(cof D%u,) : D*u, + ¢I : D*u, = det D’u, + f.

Since ¢I : D?u, = ¢Au, and by (6) we have (cof Dzug) : D%u, = 2det D%u,, we
obtain (3).

Next we present the discrete variational formulation used in the numerical exper-
iments. To avoid large errors, we used a damped version of (2). Let v > 0. We
consider the problem

1
(cof (D*u + 1)) : D*u**! = 2 det D*u* + ~(— det DXk + f) inQ

uktl =0 onds. (16)
We note that for v = 1, (16) reduces to (2). Also the formal limit, as ¢ — 0 and
k — oo, of uls‘ solving (16) is a solution of 1/v(f — det D*u) = 0.

Let |x| denote the Euclidean norm of x € R2. Note that that D?(|x|2/2) = I and
thus for ulg smooth, Cof(Dzuf; +el) = cof Dz(ulg +¢/2|x|?) and thus using (4) and
(5) we obtain

1
div ((cof(D2u’g + el))Du’g+‘) =2det D?uk + —(—det D*u* + f) in Q2
v

uk+t1' =0 onag.

This leads to the following discretization: find u];'zl e VN HO1 (£2) such that
Vv e Vi N HY (2)

— [, ((cof(Dzu’;h + 81))Du];‘;1) -Dvdx = [, (2 det D*uk,

1
+-(= det D?uf , + f))vdx.
(17)
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For the initial guess ug , When ¢ > 0, we take the discrete approximation of the
solution of the problem

A

u = 2/f inQ

u?=0 onds.

While this does not assure that ug » € Xp the above choice appears to work in all
our numerical experiments.

Remark 3 For a possible extension of the minimization result in Theorem 1 to the
case of nonsmooth solutions, the homogeneous boundary condition is necessary.

4 Isogeometric Analysis

We refer to [20] for a short introduction to isogeometric analysis. Here we give a
shorter overview suitable for our needs. Precisely, we are interested in the ability of
this approach to generate finite dimensional spaces of piecewise smooth C! functions
which can be used in the Galerkin method for approximating partial differential
equations.

A univariate NURBS of degree p is given by

wi N p ()
2je g WiNjp)’

u € [0, 1],

with B-splines N; ,, weights w; and an index set _# which encodes its smoothness.
The parameter / refers to the maximum distance between the knots u;,i € 7.
A bivariate NURBS is given by

Wit N (W) Ny (v)

SRS Yies Lje g WiNiN;(v)’

u,vel0,1],

with index sets .# and _# . In the above expression, we omit the degrees pU and pV
of the NURBS Ry; in the u and v directions.

The domain §2 is described parametrically by a mapping F : [0,1]> —
Q,Fu,v) =2 ey Zje/ R;j(u,v)c;j with NURBS R;; and control points ¢;;.
We take equally spaced knots u;, v; and hence h refers to the size of an element in
the parametric domain.

We say that a NURBS Ry, has degree p if the univariate NURBS Ny and N; all
have degree p. The NURBS considered in this paper are all of a fixed degree p and C!.

The basis functions R;; used in the description of the domain are also used in the
definition of the finite dimensional space Vj, C span{R;; o F ~1}. Thus the numerical
solution takes the form
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control points. physical domain

08 08 |

0.6 06 |
04 04 |

0.2 02 |

-0.2 0.2

-04 04 |

-0.6 -0.6 |

-0.8 08 |

-1 -0.5 - 0 - 05 1 -1 -0.5 U 0Ss 1

Fig. 1 Circle represented exactly. pU = 2, pV =2

Th(x,y) = Z Z Rij(F~ ' (x, y)qij,
ied je g

with unknowns ¢;;.

It can be shown [18] that there exists an interpolation operator Qj mapping
H" (£2),r > p+ linto Vj suchthatif0 </ < p+1,0<Il<r < p+1,
we have

lu = Quuly < CH"Jull.

with C independent of /. Thus the approximation property (8) holds for spaces
constructed with the isogeometric analysis concept. For the inverse estimates (9), we
refer to [5].

5 Numerical Results

The implementation was done by modifying the companion code to [20]. The com-
putational domain is taken as the unit circle: x> + y> — 1 = 0 with an initial
triangulation depicted in Fig. 1. The numerical solutions are obtained by computing
ulg‘ ; defined by (17). We consider the following test cases.

Test 1 (smooth solution): u(x, y) = (x2 4y — 1)e* ™ with f(x, y) = 4e26° %)
(x2 + y5)2(2x2 + 3 + 2y?). Numerical results are given in Table 1. Since pU =
2,pV = 2, the approximation space in the parametric domain contains piecewise
polynomials of degree p = 2. The analysisin [1] suggests that the rate of convergence
for smooth solutions is O (h?) in the H' norm, O (h?*!) and O (h?~ ") in the L? and
H? norms respectively. No regularization or damping was necessary for this case.

Test 2 (No known exact solution): f = ex2+y2, g = 0. As expected the numerical
solution displayed in Fig. 2 appears to be a convex function.

Test 3 (solution notin H'(£2)): u(x, y) = —/1 — x2 — y2 with f(x, y) = 1/(x2+

y2 — 1)2. With regularization and damping, we were able to avoid the divergence
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Table 1 Smooth solution u(x, y) = (x> + y* — 1)e*"+’
h nit L% Norm Rate H'! norm Rate H? norm Rate
1/20 3 4.5620 107! 1.5565 1070 1.1877 10*!
1/27 6 8.4903 1073 5.75 1.6442 107! 3.24 5.0963 1070 1.2
1/28 4 7.7160 10~4 3.46 3.9573 1072 2.05 2.5880 10~ 0.97
1/2° 4 9.0321 107 3.09 9.81221073 2.01 1.3019 107 0.99
1/210 4 1.1077 103 3.03 244621073 2.00 6.5184 107! 0.99
. \“‘\\ssigi;;;lllllll L
AT i
i \\\\\\\\\\\\ NSRS Sosoop il
o ¢
\\{\\\\\\ \ ] b ‘/’
-0.1 Ul iy
iy i
\\\\\\\\\\\\\\\\%}{ss:gz;qllllllllllllll i
0.2 -\ W,[Hl bt
-0.3 NN

-1.5

-1.5

Fig. 2 Convex solution with data f = ¥ ™’ g = 0 with v = 2.5, = 0.01,h = 1/32. No

known analytical formula

Table 2 Solution not in
H' (2)u(x,y) =

—/1—x2 — y2 with

v=25¢=00I

h nit L? norm Rate
1/2° 42 4.0261 107!

1/26 2 1.7529 107! 1.20
1727 5 1.3612 107! 0.36
1/28 3 1.0609 107! 0.36
1/2° 2 9.6321 1072 0.14
1/210 4 7.8179 102 0.30

of the discretization. These results should be compared with the ones in [1] where
iterative methods with only a linear convergence rate were proposed for nonsmooth
solutions of (1). Note that « in this case is highly singular as f vanishes on 952.

In the tables n;; refers to the number of iterations for Newton’s method (Table 2).
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Dual Compatible Splines on Nontensor
Product Meshes

L. Beirao da Veiga, A. Buffa, G. Sangalli and R. Vazquez

Abstract In this paper we introduce the concept of dual compatible (DC) splines
on nontensor product meshes, study the properties of this class, and discuss their
possible use within the isogeometric framework. We show that DC splines are linear
independent and that they also enjoy good approximation properties.

Keywords Isogeometric analysis - Spline theory - T-splines - Numerical methods
for partial differential equations

1 Introduction

Tensor product multivariate spline spaces are easy to construct and their mathematical
properties directly extend from the univariate case. However, the tensor product
construction restricts the possibility of local refinement which is a severe limitation
for their use within the isogeometric framework, i.e., as discretization spaces for
the numerical solution of partial differential equations. This is particularly true in
problems that exhibit solutions with layers or singularities. In this paper, we discuss an
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extension of splines spaces that go beyond the tensor product structure, and therefore
allow local mesh refinement.

Three approaches have emerged in the isogeometric community: T-splines,
Locally refinable (LR) splines, and hierarchical splines. T-splines have been proposed
in [1] for applications to CAGD and have been adopted for isogeometric methods
since [2]. Nowadays, they are likely the most popular approach among engineers:
for example, they have been used for shell problems [3], fluid—structure interaction
problems [4], and contact mechanics simulation [5]. The algorithm for local refine-
ment has evolved since its introduction (in [6]) and while the first approach was
not efficient in isogeometric methods (see for example [7]) the more recent devel-
opments (e.g., [8]) overcome the initial limitations. The mathematical literature on
T-splines is very recent and mainly restricted to the two-dimensional case. It is based
on the notion of Analysis-Suitable (AS) T-splines: these are a subset of T-splines,
introduced in [9] and extended to arbitrary degree in [10], for which fundamental
properties hold. LR-splines [11] and Hierarchical splines [12] have been proposed
more recently in the isogeometric literature and represent a valid alternative to T-
splines. However, for reasons of space and because of our expertise, we restrict the
presentation to T-splines.

This paper is organized as follows. First, we set up our main notation of Sect. 2.
Then, we introduce the notion of Dual-Compatible (DC) set of B-splines. This is a
set of multivariate B-splines without a global tensor product structure but endowed
with a weaker structure that still guarantees some key properties. The main one is that
their linear combination spans a space (named DC space) that can be associated with
a dual space by a construction of a dual basis. The existence of a “good” dual space
implies other mathematical properties that are needed in isogeometric methods: for
example, (local) linear independence and partition of unity of the DC set of B-spline
functions, and optimal approximation properties of the DC space. The framework
we propose here is an extension of the one introduced in [10], and covers arbitrary
space dimension.

2 Preliminaries

Given two positive integers p and n, we say that & := {&, ..., &,4 41} is a p-open
knot vector if

El= =61 <Epp < <& <& = =& pr1,

where repeated knots are allowed. Without loss of generality, we assume in the
following that &y = 0 and &,y 41 = 1.

We introduce also the vector Z = {1, ..., ¢y} of knots without repetitions, also
called breakpoints, and denote by m ;, the multiplicity of the breakpoint ¢, such that

E={Cly.--,CI,Q,---»@2,-~,§N’~-~,CN}, (1)
—_— — —_—

m times mo times my times
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with ZlN:] m; =n+p+1. Weassumem; < p+ 1, for all internal knots. Note that
the points in Z form a partition of the unit interval I = (0, 1), i.e., a mesh, and
the local mesh size of the element I; = (&, ¢i4+1) is called h; = &i41 — ¢, for
i=1,...,N—1.

From the knot vector E, B-spline functions of degree p are defined following
the well-known Cox-DeBoor recursive formula; we start with piecewise constants
(p=0):

= U ifE <¢ <&,
Bio(8) = HO otherwise, 2)
and for p > 1 the B-spline functions are defined by the recursion
= —& = §itpt1 — & =
By == B+ B 0. 6
Sivp — & Eitpr1 —&it1

where it is here formally assumed that 0/0 = 0.
This gives a set of n B-splines that, among many other properties, are non-negative
and form a partition of unity. They also form a basis of the space of splines, that is,

piecewise polynomials of degree p with k; := p — m; continuous derivatives at
the points ¢;, for j = 1,..., N. Therefore, —1 < k; < p — 1, and the maximum
multiplicity allowed, m; = p + 1, gives k; = —1 which stands for a discontinuity
at g;.

We denote the univariate spline space spanned by the B-splines by
Sy(8) =span{B; p, i=1,...,n}. )

Note that the definition of each B-spline E, p depends only on p + 2 knots, which
are collected in the local knot vector

EBipi=1H&, ..., &i1py1)
When needed, we will stress this fact by adopting the notation
B; »(¢) = BIEi p)(©). (5)

Similarly, the support of each basis function is exactly supp(l/?\i, p) =&, &ivprl
Moreover, given aninterval I; = (¢}, ¢;41) of the partition, which can also be written
as (&;, &41) for a certain (unique) 7, we associate the support extension I; defined as

[ = Ei—p, Eitpt1), (6)

that is the interior of the union of the supports of basis functions whose support
intersects /;.
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We concentrate now on the construction of interpolation and projection operators
onto the space of splines §,(8). There are several ways to define projections for
splines, and here we only describe the one that will be used in this paper.

We will often make use of the following local quasi-uniformity condition on
the knot vector, which is a classical assumption in the mathematical isogeometric
literature.

Assumption 1 The partition defined by the knots ¢1, {2, ..., ¢y is locally quasi-
uniform, that is, there exists a constant 6 > 1 such that the mesh sizes h; = 41— &
satisfy the relation o1 < hi/hiy <6,fori=1,...,N —2.

Since splines are not in general interpolatory, a common way to define projections
is by giving a dual basis, i.e.,
n
Mpz:C®(0.1]) — Sp(B),  Mpa(f) =D rjp(HBjp. (D
j=1
where A ; , are a set of dual functionals verifying

A p(Br.p) = 8k, (8)

djk being the standard Kronecker symbol. It is trivial to prove that, thanks to this
property, the quasi-interpolant IT, g preserves splines, that is,

My e(f)=f, VfeSy(&). )
Here, we adopt the dual basis defined in [13, Sect. 4.6]

Ejtp+1
Aop(f) = / F$)DPH5(s) ds, (10)
&j

where ¥ (¢) = G (§)¢;(¢), with
& —=&i41) - —&j1p)

¢i(¢) = p
and 5
G ) =g( ¢ —&; —E]+p+1)7
Ejtp+r1 — &

where g is the transition function defined in [13, Theorem 4.37]. In the same
reference, it is proved that the functionals A; ,(-) are dual to B-splines in the sense
of (8) and stable (see [13, Theorem 4.41]), that is
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%0 (D] < CEjapt —ED 21 2, i) (11)

where the constant C grows exponentially with respect to the polynomial degree p
with the upperbound
C = (2p+3)97, 12)

slightly improved in the literature after the results reported in [13]. Note that these
dual functionals are locally defined and only depend on the corresponding local knot
vector, that is, adopting a notation as in (5), we can write, when needed:

Aip(f) = ALEipl(f). 13)

The reasons for this choice of the dual basis are mainly historical (in the first
paper on the numerical analysis of isogeometric methods [14] the authors used this
projection), but also because it verifies the following important stability property:

Proposition 1 For any non-empty knot span I; = (¢;, {i+1) it holds that
M. ez = CIF N2 (14)

where the constant C depends only on the degree p, and I; is the support extension
defined in (6). Moreover, if Assumption 1 holds, we also have

Iy 2(Olaray < Clf g (15)

with the constant C depending only on p and 0, and where H' denotes the Sobolev
space of order one, endowed with the standard norm and seminorm.

Proof We first show (14). There exists a unique index j such that I; = (¢;, {i41) =
(§j,&j+1), and using the definition of B-splines at the beginning of Sect.2, and in
particular their support, it immediately follows that

{tel,2,...on) :suppBep) NI £ 0} ={j—p.j—p+1....j) (16

Let h; denotes the length of I; and Z,- indicates the length of fl First by definition
(7), then recalling that the B-spline basis is positive and a partition of unity, we get

J
IMp2Dllzay = | X *ep(HBey

J
= max fap (DI X Bey
P

- L2(I;) — j-pst<j - L2(I;)
l=j—p l=j—
1/2
=n? max_|ie, ().
Jj—p=t=j

We now apply bound (11) and obtain
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12 —12
Iy, 2Oz = Ch; j_r,?é‘?fj@”’”‘ &)V 1226 g pin)

1/2 _eN—12 B
= Chl jir;lg?sj(éf+p+1 &) ||f||L2(I,-)’

that yields (14) since clearly h; < (§¢4p+1 — &), forall£in{j — p,..., j}.
We now show (15). For any real constant c, since the operator I, z preserves
constant functions and using a standard inverse estimate for polynomials on /;, we get

M2 (Dl = Mp.z() = el = Mpa(f — gy
< Ch[llll'lp,s(f = Oll2-

We now apply (14) and a standard approximation estimate for constant functions,
yielding

M 2Ol < Ch7 I =cllaggy < Ch il Fly gy

Using Assumption 1, it is immediate to check that Z,- < Ch; with C = C(p, 0) so
that (15) follows.

The operator IT), g can be modified in order to match boundary conditions. We can

define, for all f € C*°([0, 1]):

Mpa(f) =D %jp(f)Bj, with (17)

J=1

()= O, A p(f) =), Ajp(f) =hjp(f)s j=2,...,n—1.

3 Dual Compatible B-Splines

Consider a set of multivariate B-splines
{Bap, AcA}, (18)

where A is a set of indices. This is a generalization of the tensor product set of
multivariate splines where the functions in (18) have the structure

Bap(¢) = BIEa1p1(¢1) - - BIEA.d. p,1(La) (19)

and have in general uncorrelated local knot vectors, that is, two different local knot
vectors Ear ¢, p, and Epr ¢, 5, in the £-direction are not in general sub-vectors of a
global knot vector. This is equivalent to the definition of point-based splines in [1].
We assume that there is a one-to-one correspondence between A € A and I/B\A,p.
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Fig. 1 Overlapping (left) and il 41 # ;1 21
. A 12 1 iy g
nonoverlapping (right) local 00 = O—0)
knot vectors in one dimension
o O O 0
i i3 2 i i2
i} i i i il
o0 o O—
a! O—= O =
i i3 i i
We say that the two p-degree local knot vectors &' = {£], ..., 51/7+2} and B =
g/, ..., El’; 4o} overlap if they are subvectors of the same knot vector (that depends
on B’ and E”), that is there is a knot vector & = {&1, ..., &} and k’ and k" such that
Vi=1,..., 2, & =¢&
p+ El ik (20)

Vi=1,...,p+2, & =&,

see Fig. 1.
We now define for multivariate B-splines, the notions of overlap and partial
overlap are as follows.

Definition 1 Two B-splines §A/,p EA/LP in (18) overlap if the local knot vectors in
each direction overlap. Two B-splines Bas , Ba~ p in (18) partially overlap if, when
A’ # A", there exists a direction £ such that the local knot vectors Ea' ¢, and
EA7.¢,p, are different and overlap.

From the previous Definition, overlap implies partial overlap. Examples of
B-splines overlapping, only partially overlapping, and not partially overlapping are
depicted in Fig. 2.

Definition 2 The set (18) is a DC set of B-splines if each pair of B-splines in it
partially overlaps. Its span

Sp(A) = span {§A,p, Ae A}, 1)

is denoted as DC spline space.

Note that the partially overlapping condition in Definition 2 needs to be checked
only for those B-spline pairs that have nondisjoint support. Indeed, by Definition 1,
any two B-splines with disjoint supports are clearly partially overlapping.

A tensor product space is clearly a DC spline space, since every pair of its
multivariate B-splines always overlaps by construction. The next proposition shows
how the notion of partial overlap is related with the construction of dual basis.
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Fig. 2 Example of
overlapping, partially
overlapping, and not partially
overlapping B-splines; knot
lines are drawn in blue a
Overlapping

B-splines, b partially
overlapping B-splines, ¢
not partially overlapping
B-splines

Proposition 2 Assume that (18) is a DC set where each Ba p is defined as in (19),
i.e., on the local knot vectors Ba 1 p,, ..., BA,d,p,- Consider an associated set of

functionals
{rap. AcA}, (22)

where each A p is
Ap =ALBA1Lp 1 ® - @ ALEA 4, pyls (23)
and A EA ¢, p,] denotes a univariate functional defined in (10). Then (22) is a dual

basis for (18).

Remark 1 The set of dual functionals (10) can be replaced by other choices, see,
e.g., [15].

Proof Consider any EA/,p and Ao» p, with A’, A” € A. We then need to show that

1 ifA"=A,

Aar p(Barp) = lo otherwise. 9

Clearly, if A’ = A”, then we have A Au,p(EA/’p) = 1 from the definition of dual basis.
If A’ # A”, thanks to the partial overlap assumption, there is a direction £ such that
the local knot vectors Eas ¢, », and Er ¢ p, differ and overlap, and then

MEar..p,)(BIEa 1., ]) = 0,
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and from (23),

d

arp(Barp) = [ [ MEare.p J(BIEa e, p,]) = 0.
=1

The existence of dual functionals implies important properties for a DC set (18)
and the related space Sp(A) in (21). We list such properties in the following propo-
sitions and remarks.

The first result is the linear independence of set (18), therefore forming a basis;
they are also a partition of unity.

Proposition 3 The B-splines in a DC set (18) are linearly independent. Moreover,
if the constant function belongs to Sy(A), they form a partition of unity.

Proof Assume

Z CAEA,p =0
AcA

for some coefficients Ca. Then for any A" € A, applying Aa’ p to the sum, using
linearity and (24), we get

CA/ = )\,A/’p(z CAEA,,p) = 0
AcA

Similarly, let

Z CAgAyp =1

AecA

for some coefficients C. For any A" € A, applying Aa , as above, we get

Cy = )”A”P(Z CAB\A,p) =1.

AcA

To a B-spline set (18), we can associate a parametric domain

Q2= U SUPP(§A,p)
AeA

Moreover, we give the following extension of the notion of Bézier mesh.

Definition 3 A parametric Bézier mesh in the parametric domain, denoted by . M,
is the collection of the the maximal open sets Q C 2 such that for all A € A, BA P
is a polynomial in Q; these Q are denoted (Bézier) elements.
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Proposition 4 In a DC set (18) there are at most (p1 + 1) - -+ (pa + 1) B-splines
that are non-null in each element Q € M.

Proof Given any point & = ({1, ...,8q) € 22, denote by A(¢) the subset of A € A
such that EA,I,(;) > 0. It can be easily checked that A(¢) only depends on Q, for all
¢ € Q. Recalling (19) and introducing the notation Ea ¢, p, = {&¢,1, ..., 8¢ po12}s
to each A € A(¢) we can associate a multi-index (ia.1, ..., iA.q4) such that

Ve=1,....d, 1<ixn¢=<pe+land&,, <l <&uiy,+1- (25)

From the DC assumption, any two EA/,p and §Au,p with A’ #£ A" partially overlap,
that is, there are different and overlapping Ea ¢, 5, and Ear ¢, p,; then the indices in
(25) fulfill

VA A" € A(Z), A #A” = 3¢ suchthatiy g # irry. (26)

The conclusion follows from (26), since by (25) there are atmost (p1+1) - - - (pg+1)

distinct multi-indices (iA 1, ..., iA.d)-

Assume that each A4 p is defined on LZ(.Q) An important consequence of
Proposition 2 is that we can build a projection operator IT, : L2(2) —> Sp(A) by

Mp(/)@) =D rap(f)Bap) VfeLl’@2), ¥ el @7

AeA

This allows us to prove the approximation propertles of Sp(A). The following result

will make use of the notion of support extension Q associated to an element Q C 2
(or a generic open subset Q C .Q) and to the B-spline set (18):

0= |J  supp(Bap).
AcA
supp(BA p)NQ#0

Furtherrr~10re, we will denote by Q the smallest d-dimensional rectangle in Q con-
taining Q. Then the following result holds.

Proposition 5 Let (18) be a DC set of B-splines, then the projection operator Ty
in (27) is (locally) h-uniformly L*-continuous, that is, there exists a constant C only
dependent on p such that

ITp(Hllz2e0) < Cllfll 2@ YO C 2, Vf e LX().
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Proof Let Q be an element in the parametric domain. Since Proposition 4 and since
each Bp p < 1 we have that, for any § € Q,

> [Bas)| =c.
AcA

Therefore, given any point { € Q, denote by A(¢) the subset of A € A such that
BA ,p(&) > 0, and denote by Q4 the common support of BA ,pand Aa p, by [Q4l its
d-dimensional measure, using (11) it follows that

M@ =] X rapHBap@)] =€ Jmax (D)’
AcA(¢)

< C max -1 2 28
= AE.A({)lQAl ||f||L2(QA) ( )
< CIOIIIAIIZx 5):

where we have used in the last step that YA € A(¢), O C Qa (and therefore
|Q| < |QAl) and that QAo C Q. Since the bound above holds for any ¢ € Q,
integrating over Q and applying (28) yields

ITTp(NII72g) = ClIf 125

The continuity of I}, implies the following approximation result in the L%-norm:

Proposition 6 Assume that the space of global polynomials of degree p = minj <¢<q
{pe} is included into the space Sy(A) and that Q= [0, 119. Then there exists a
constant C only dependent on p such that for0 <s < p+1

1f = Tp(Pllr2cg) < Chp) | flysg) YO C 2, Vf € H (),

where h { represents the diameter of Q.
Proof Let w be any p-degree polynomial. Since 7 € Sp(.A) and ITj, is a projection

operator, using Proposition 5 it follows that

1f = Hp(Ollr2oy = If =7 + Hp(r = Hllr2o)
<IIf = 7l + T — Pllz2c)
<Q +C)||f_77||L2(Q) <{A+O0lf —7T||L2(Q).

The result finally follows by a standard polynomial approximation result.

We conclude this section with a final observation: the notion and construction
of Greville sites are easily extended to DC sets of B-splines, and the following
representation formula holds:
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Proposition 7 Assume that the linear polynomials belong to the space Sp(A). Then
we have that

to= > v[EacplBap), Ve, 1<t<d, (29)
AeA

where y[EA ¢, p, ] denotes the average of the py internal knots of Ea ¢, p,.

Proof The identity (29) easily follows from the expansion of IT,(&¢) and the
definition of dual functionals which is the same as in the tensor product case, yielding

*ap(Ce) = Y[EA e p ]
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Multivariate Anisotropic Interpolation
on the Torus

Ronny Bergmann and Jiirgen Prestin

Abstract We investigate the error of periodic interpolation, when sampling a
function on an arbitrary pattern on the torus. We generalize the periodic Strang-
Fix conditions to an anisotropic setting and provide an upper bound for the error
of interpolation. These conditions and the investigation of the error especially take
different levels of smoothness along certain directions into account.

Keywords Anisotropic periodic interpolation - Shift invariant spaces - Lattices -
Interpolation error bounds

1 Introduction

Approximation by equidistant translates of a periodic function was first investigated
in the univariate case [6, 15]. The multivariate case was developed in [21-23], where
the introduction of the periodic Strang-Fix conditions enabled a unified way to the
error estimates [16, 17].

Recently, many approaches such as contourlets [7], curvelets [8] or shearlets [10],
analyze and decompose multivariate data by focusing on certain anisotropic features.
A more general approach are wavelets with composite dilations [11, 13], which
inherit an MRA structure similar to the classical wavelets. For periodic functions
the multivariate periodic wavelet analysis [1, 9, 14, 18, 19] is a periodic approach
to such an anisotropic decomposition. The pattern &?(M) as a basic ingredient to
these scaling and wavelet functions models equidistant points with preference of
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direction, i.e., fixing one direction v € R?, ||v| = I, we obtain equidistant points
along this direction in the pattern &?(M), though other directions might have other
point distances.

This paper presents the interpolation on such patterns &2(M), where M € Z4*,
d € N, is aregular integer matrix. In order to derive an upper bound for the interpo-
lation error, we introduce function spaces Aﬁ,[’ o where each function is of different
directional smoothness due to decay properties of the Fourier coefficients imposed.
The periodic Strang-Fix conditions can be generalized to this anisotropic setting,
characterizing and quantifying the reproduction capabilities of a fundamental inter-
polant with respect to a certain set of trigonometric polynomials. Such a fundamental
interpolant can then be used for approximation, where the error can be bounded for
the functions having certain directional smoothness, i.e., the space Ay

The rest of the paper is organized as follows: In Sect. 2 we 1ntr0duce the basic pre-
liminary notations of the pattern &(M), the corresponding discrete Fourier transform
# (M), and the spaces A}, . Section 3 is devoted to the interpolation problem on the
pattern (M) and the elhpsmdal periodic Strang-Fix conditions, which generalize
the periodic Strang-Fix conditions to an anisotropic setting. For this interpolation,
we derive an upper bound with respect to Ay, M, g in Sect. 4. Finally, in Sect. 5 we
provide an example that the ellipsoidal Strang- -Fix conditions are fulfilled by certain
periodized three-directional box splines and their higher dimensional analogs.

2 Preliminaries

2.1 Patterns

Letd € N. For a regular integral matrix M € Z<* < and two vectors h, k e 74
we write h = k mod M if there exists a vector z € Z? such that h = k + Mz. The
set of congruence classes

[him:={k € ZY; k=hmod M}, h € Z¢,

forms a partition of 74 and using the addition [h]y + [klm:=[h + k]m, we
obtain the generating group (% M), +), where the generating set ¢ (M) is any set
of congruence class representatives. If we apply the congruence with respect to the
unit matrix

1 ifi = j,
0 else,

d

E; = (55,/-).

e Rix4 whereéii::[
i,j=1 .

denotes the Kronecker delta, to the lattice Ay := M-174 ¢ Qd, we also get congru-
ence classes. Let further e; := (8,; ./)?:1 denote the jth unit vector. We obtain the
pattern group (ﬂ(M), +) on the corresponding congruence classes [ylg,,y € Awm,
where the pattern £2(M) is again any set of congruence class representatives of the
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Fig. 1 The pattern %s(M) (left) and the generating set %s(M") (right), where M = (§ 3)

congruence classes on the lattice Apg. For any pattern &#(M) we obtain a gener-
ating set by (M) = MZ(M). Using a geometrical argument [4, Lemma I1.7],
we get |[ZM)| = |Y(M)| = |detM| =: m. A special pattern Zs(M) and its
corresponding generating set s (M) are given by

PsM) := [—l, 1)" NAm and %(M) := M[—l, l)d nze.
2°2 22
We will apply the usual addition, when performing an addition on the set of
representatives, i.e., for x,y € £?(M) the expression x + y is an abbreviation for
choosing the unique element of [x + ylg, N &?(M). In fact, for any discrete group
¢ = (S,+ mod 1) with respect to addition modulo 1, there exists a matrix M,
whose pattern (M) coincides with the set S [2, Theorem 1.8]. Figure 1 gives an
example of a pattern Z2(M) of a matrix M and a generating set ¢(MT), where the
matrix is an upper triangular matrix. By scaling and shearing, the points of the pattern
lie dense along a certain direction.
The discrete Fourier transform is defined by applying the Fourier matrix

1 T
FM) = — (efzmh y)
M) Jm heM"),ye 2 (M)

toavectora = (ay) € C™ having the same order of elements as the columns

yeZM)
of .#(M). We write for the Fourier transform a:= (&h)heg(MT) = J/mFM)a,
where the vector a is ordered in the same way as the rows of the Fourier matrix
Z (M). Further investigations of patterns and generating sets, especially concerning
subpatterns and shift invariant spaces, can be found in [14], which is extended in [1]
with respect to bases and certain orderings of the elements of both sets to obtain a
fast Fourier transform.

Finally, we denote by A (M), ..., Ag(M) the eigenvalues of M including their
multiplicities in increasing order, i.e., fori < j we get [A; M)| < |A; (M)].

For the rest of this paper, let |A;(M)| > 2. To emphasize this fact, we call a
matrix M that fulfills [A4(M)| > 2 an expanding matrix.
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2.2 Function Spaces

For functions f : T¢ — C on the torus T := R /27 Z¢ consider the Banach spaces
Lp(Td), 1 < p < oo, with norm

1
If T Ly (TP = @yl /Td | f ()17 dx

and the usual modification for p = oo, that || f| Loo(T9)|| = ess Supy e | f(X)].
Analogously, for sequences ¢ := {cz},c 27, Z C 74, the Banach spaces Zq(% ),
1 < g < o0, are defined with norm

q

)

lel (2N = D |ex
ke Z

again with the usual modification for ¢ = co. For f € L;(T%) the Fourier coeffi-
cients are given by

1

ck(f) = W

/f(x)e_ikTde, k e 7.
Td

For B > 0, we define the ellipsoidal weight function oM, which was similarly
introduced in [2, Sect. 1.2],

_ B/2
o) = (1+ IMIBIMTKIZ) L ke 2,
to define for ¢ > 1 the spaces

Ay, i={ f e Lim);

£l A | <o),
where

|7 1A%, | = o e Pl e ze [6ZD].

A special case is given by A(TY) := AOMﬁ 1(Td), which is the Wiener algebra
of all functions with absolutely convergent Fourier series. We see that ||MT||§ =
Ad (MTM) > 1. For any diagonal matrix M = diag(N, ..., N), N € N, the weight
function simplifies to (I + ||k||%)5/ 2 and these spaces resemble the spaces used
in [23] to derive error bounds for interpolation by translates. Even more, if we fix
o € Rand g > 1, due to the inequalities

Yo
2 —T._ . 2\«/2 )\d(MTM) * 2\a/2
(1 + IM3]IM Z”z) < (m (1 + ||Z||2)
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and

(1 + 112137 = (1 + IM™ TZ)3)*/? < (1 + MM~ Tz 3)*/?

we have, that all spaces Ag, M. g of regular integer matrices M are equal to A“ , which
is the same as A"‘ in [23]. However each of the different norms prov1des a dlfferent
quantification of the functions f € A“ We keep the matrix M in the notation of the
space in order to distinguish the speciﬁc norm that we will use.

For the weight 0}3\4 we finally have the following lemma.

Lemma 1 For a regular expanding matrix M € 74>d e [Ag(M)| > 2, and an
ellipsoidal weight function oM, where B > 0 we have

Mk +M'z) < Mo} ko)) fork, z e Z°. (1)

Proof We have 2 < |[M|2 = v/A¢(MTM). For z = 0 or k = 0 the assertion holds.
For k,z # 0 we apply the triangle inequality and the submultiplicativity of the
spectral norm to obtain

o'k +MTz) = (1 + MM~ (k + M"2)[3)7/
< IMJE A+ MK |3 + 21M Tk 1212 + 1213)72.

Using [[M[2[M~Tk|> > 1, |lz]> > 1 and |[M]|, > 2, we further get
op'(k + M'z)
< IMJIE A+ MRS + IMIBIM TR 311213 + IMT™MTz)3)7/2
< IMJIE 1+ IMIZIM T3P (1 + M3 M TZ)13)8/
= Mo} o} @. 0

Remark 1 Inthe same way one would obtain 0}3"[ (k+MTz) <28 ||M||§U}3VI (k)o};’[ (z)

for all regular integral matrices with [|[M||» > 1 with slightly bigger constant 2. For
the matrices of interest, this slight difference is not very important and we focus on
the former one for simplicity.

3 Interpolation and the Strang-Fix Condition

This section is devoted to interpolation on a pattern (M) and its correspond-
ing periodic Strang-Fix conditions. The periodic Strang-Fix conditions were intro-
duced in [5, 16] for tensor product grids as a counterpart to the strong Strang-Fix
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conditions on the Euclidean space R and generalized in [21, 23]. We generalize
them to arbitrary patterns on the torus.

A space of functions V is called M-invariant, if for ally € £(M) and all
functions ¢ € V the translates Ty := ¢(o — 2my) € V. Especially the space

Vai = span{Typ:; y € Z2(M)}

of translates of ¢ is M-invariant. A function § € Vl\‘fl is of the form & =
Zy c2m) dy Typ. Forg € Ly (T?) an easy calculation on the Fourier coefficients
using the unique decomposition ofk € 74 intok = h+MTz h € %(MT),Z e 74,
yields, that § € Vl\"fI holds if and only if

ChmTz(E) = Gncpamt, (@) forallh € ¥MY),z € 79, )

is fulfilled, where & = (an)
transform of a € C™.

Further, the space of trigonometric polynomials on the generating set %s(M7) is
denoted by

hegMT) = Jm.Z (M)a denotes the discrete Fourier

yM = {(p; 0= Z aheihTo, an € (C}.
h e % (MT)

For any function ¢ € L (T¢) the Fourier partial sum Sy € Z3 given by

hT
Sme = D cn(g)e™®
h e % MT)

is such a trigonometric polynomial.
The discrete Fourier coefficients of a pointwise given ¢ are defined by

1 T
@) i=— > ¢Quye ™Y, hegM), 3)
ye ZM)

which are related to the Fourier coefficients for ¢ € A(T?) by the following aliasing
formula.

Lemma2 Let ¢ € A(TY) and the regular matrix M e 74 % 4 pe given. Then the
discrete Fourier coefficients cﬁ’l (@) are given by

A@ = D acrmmle). ke Z (4)

zeZd

Proof Writing each point evaluation of ¢ in (3) as its Fourier series, we obtain due
to the absolute convergence of the series
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1 . .
Fo=1 3 [ 3 awem| e

ye M) \heZd

l Z h(®) Z efZJTi(kfh)Ty
m

heZd ye ZM)
= D amm().
zeZ4

The last equality is valid because the sum over y simplifies to m if k = h mod M7,
and vanishes otherwise, cf. [20, Lemma 2.7]. 0O

Definition 1 Let M € Z?* ¢ be a regular matrix. A function Iy € Vh‘f[ is called
fundamental interpolant or Lagrange function of Vh‘f[ if

IMQry) = 553, y € ZM), where sy, =

1 ify=xmod M,
0 else.

The following lemma characterizes the existence of such a fundamental interpolant.

Lemma 3 Given a regular matrix M € 74 and a function ¢ € A(T?), the
Sfundamental interpolant Iy € Vﬁ exists if and only if

> cnpmra(9) £0. forallh € 9. (5)

ze74

If the fundamental interpolant Iy € Vl\(f[ exists, it is uniquely determined.

Proof Assume the fundamental interpolant Iny € Vl\(f)[ exists. Hence, there exists a
vector a = (an)p ¢ vy such that for its Fourier transform a = \/m.7 (M)a it holds
due to (2) that

chamrz(IM) = Gncp v, (9), h € 9MD), z € 79

Applying this equality to the discrete Fourier coefficients of Iy yields

e (y) = D cpymr () =an D chpmry(9) = ancy' (). (6)

ze74 zeZ4

The discrete Fourier coefficients are known by Definition 1 and [20, Lemma 2.7] as
cll:/l (Im) = %, h € ¥(MP"), which is nonzero for all h and hence (5) follows.
On the other hand, if (5) is fulfilled, then the function &, which is defined by

ck (@)

—= ke 7 (7)
mcM(p)

k() =
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is in the space Vl\gf[ having the coefficients a, = (mcﬁ/[((p))_l, h € YM7T). The
discrete Fourier coefficients also fulfill ca/[ &) = ”ll Hence, again by Definition 1
and [20, Lemma 2.7], £ is a fundamental interpolant with respect to the pattern
Z(M). If the fundamental interpolant Iyy exists, (7) also provides uniqueness. O

The associated interpolation operator Ly f is given by

Luf:= > fenTyn=m > MPHadwe  ®)

yeZM keZ4

The following definition introduces the periodic Strang-Fix conditions, which require
the Fourier coefficients ck (Iny) of the fundamental interpolant to decay in a certain
ellipsoidal way. The condition number «y; of M is given by

o [ OM) M
T TR

Definition 2 Given a regular expanding matrix M e Z<¢*?, a fundamental inter-
polant Iy € L;(T¢) fulfills the ellipsoidal (periodic) Strang-Fix conditions of
order s > 0 forg > 1 and an o € RT, if there exists a nonnegative sequence
b = {b,},c7¢ C RY, suchthatforallh € (MT"),z € Z7\{0} we have

L 1= men(v)| < boky’ M Th3,
2. Imep e mrp ()| < baieyg” M7 IMThl3
with
. M d
VSE ‘= ” {o, (z)bz}zezd|ﬁq(Z )” < o0.
For both properties we enforce a stronger decay than by the ellipse defined by the
level curves of [M~To||5, i.e., we have an upper bound by

—s/2

(g IMThIS < ey IMCT SIS = (g VTMD) ™ ).

The second one enforces a further stronger decay with respect to «, i.e.,
(epg M5 [IMTThS < (g MTMD)) @ F /2 3).

For the one-dimensional case or the tensor product case,i.e., M = diag(N, ..., N)
we have kp = 1, A (MTM) = A;(MTM) = N, and this simplifies to the already
known case N~%*||h||». Looking at the level curves of the map [[M~T o ||, we see
they produce ellipsoids, where |14;(M)| is the length of the longest axis. Hence the
decay is normalized with respect to the longest axis of the ellipsoid.
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4 Error Bounds for Interpolation

In order to investigate the error of interpolation || f — Ly f||, where Ly is the inter-
polation operator into Vh‘fl for certaing € A(T¢), we use the triangle inequality with
respect to any norm

If =Lm fIl = ISm f —LmSm fIl + ILf —Sm f Il + ILm(f — Sm f)l

and look at these three terms separately.

Theorem 1 For an expanding regular matrix M € 74> ¢, a trigonometric polyno-
mial f € i and a fundamental interpolant Iy € A(T?) fulfilling the ellipsoidal
Strang-Fix conditions for fixed values s > 0, @ > 0, and g > 1 we have

Hf_LMf‘Agiq” = (||M||2) vsE Hf‘ Ay

Proof The proof is given for ¢ < co. For ¢ = oo the same arguments apply with
the usual modifications with respect to the norm. Looking at the Fourier coefficients
of Ly f in (8) for f € i yields

€))

cn(Lym ) = meM (fen(m) = men(f)en(Im), h € M),

and hence we have

F=Luf= D (elf) —m(feedm)e™ .

keZd

Using the unique decomposition of k € Z? into k = h+ MTz, h ¢ ¥MD"),
z € 74, yields

f-Lmf= D el f)e“‘TO((l—mch(IM) > mey g pr,(e™ Z0)

hegMT) z e 74\{0}

Applying the definition of the norm in Ay 4 (T?), we obtain

7=t ||

= >t (|1 = menayod®| "+ 3 ey 4y, Gyodt + MTn)|%).
he¥MT) z e 74\{0}

Using the Strang-Fix conditions of the fundamental interpolant Iy and Lemma 1
we get the following upper bound



36 R. Bergmann and J. Prestin

=L s

q —
M = X |ch<f)|‘1(bq||M Thils oM ey

he¥MT)
+ D by IMI;* MY o M(h+MTz>)

2 Z4\{0}

S( D e IM T ey o (h)>

he ¥ MT)

( > <o}3‘<z>bz)q)

zeZ4

= yselMIL™ | flARC [

O

Theorem 2 Let M € Z9*9 be regular If f € Ajy q(’ﬂ‘d), g>lLu=a=0,

then N
|7 =sw sl = (i)

Proof This proof is given for ¢ < o0o. For ¢ = oo the same arguments apply with
the usual modifications with respect to the norm. We examine the left-hand side of
the inequality, apply aM(k) (k)oM(k) and obtain

1Al

17 = sm £ [ A% 4| = oM ek(H ez | & (2 \Fs M) |
M I
= ke Z{}{%}S{(MT) a-n W[/ | An

The decomposition of k € Z\%M") intok = h+MTz h € %M7), yields
that 0 # z € Z9 and hence none of these integral points lies inside the parallelotope
MT[—%, %)d. Hence, M~ Tk lies outside [—%, %)d and we have

a—u
M 2T 2 2
max o, (k)= max (1 + [IM])5IM™K]| )
kezZd\GsmT) *H k € Z4\%s (MT) ? ?

IA

( IIMIIZ)
max 1+
jell,...d} 4

a—p
_(IMIB\
-\ 4
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Indeed, Theorem 2 does hold for any regular matrix M. It is not required that the
matrix has to be expanding. For the following theorem, let |z| := (|zl [.nn, |zd|)T
denote the vector of the absolute values of the elements of the vector z € Z¢.

Theorem 3 For an expanding regular matrix M € 72> % let Iy; be a fundamental
interpolant such that

1/q
max )(|ch<IM)|q+||M||§“f > |o§“<z>ch+MTzaM)|’1)

hegst zeZd\{O}
for g < oo,
YIP :=m
max  sup}len ()|, [IM||€|oM(z)c TIM;zeZd()}
p I p{lennl. IMIglod @)ey  yrry ()] \(0)

for g = o0

is finite. Then we get for f € AK,Lq(']I‘d), g>lL,u>a>0,andpu >d(l —1/q)

>

i = s pfase | < movso (=) 171k

where

1/p
( > ||2|Z|—1||2_pﬂ) forq > 1,%-{—%:1,
Ysm == (1 +d)*/?271 1 \aez\(0)
sup  [12]z] — 1], forq = 1.
2e Z4\(0}

Proof This proof is given for ¢ < o0o. For ¢ = oo the same arguments apply with
the usual modifications with respect to the norm. We write the norm on the left-hand
side of the inequality as

Lt =S N4, Y = | 3 oM moa s —swelag,, |
keZd
= > [eMaomf - sm f)ck(IM)‘q.

keZd

By decomposing k = h + MTz, h € %M"),z € Z%, and using Lemma 1 we
obtain
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o q
M, q

= 2

he % MT)
x(|ch(IM)|q+||M||‘;“f > |o§)“<z>ch+MTz<IM>|q)
z e 74\ {0}

<vb D oM (f —Sm ).

h e % (MT)

[Ln(f = Su )

M mmal(f - su )|’

In the remaining sum we first apply the aliasing formula (4). Then, the Holder
inequality yields

q
> ettt f=SmH = D] o%(h)( > |ch+MTz(f>|)
h e %5 (MT) h e %s(MT) z€ 74\ (0}

q/p
= Z 001(\3 (h)( Z (’Mﬂp(h + MTZ))
h e % MT) z e 74\{0}

X ( Z |c7}>/l(h + MTZ)Ch+MTZ(f)|q).
z e Z4\ {0}

The first sum over z converges due to pu > d, i.e., analogously to the proof of
Theorem 2, we get forh € %(MT)

S oM+ M7= > (14 MBIM h 4 z3)

z € 74\ {0} z € 74\ {0}
2\ — 2
< D (T IMI3] 1z - 5"
z € 74\ {0}
—pu/2
M]3 i
< > ( L1212l = 113
z € 74\ {0}
= M, 7277 > 20z — 1),

2 74\{0}

Using fora > 0
max_ oM(h) < (1 + ||M||§|\M—TMT%1”§)°'/2
h e %5 (MT)
= (1 + 4mp3)*”
< (1L +d)** M, (10)
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the upper bound for the last factor can be given as

> o) e (f — Sm )1

he¥dsMT)
a/p
S DL agM2MIH [ ST f2a) - 1P
h e % (MT) z e 74\{0}
< D 1ot + M z)cy (I
z € Z4\{0}
a/p

<27M|M "‘1( max oM h) 2z) — 1) 7P+
< 2HMIG" || max oge(h) EZZNO} 122 — 1]
z

<[ D2 D ottt + M 2)cy, i, ()19

he % MT) z e Z4\{0}
< IMIS Ty 11 1 ARy, 1. o

Remark 2 Tt is easy to see that for a fundamental interpolant Iy satisfying the ellip-
soidal periodic Strang-Fix conditions of order s for ¢ and o we have

yip < C - ysF
where the constant C depends on M, «, s and g but is especially independent of f.

We summarize our treatment of the interpolation error in the following theorem.

Theorem 4 Let an expanding regular matrix M € 7 * ¢ and a fundamental inter-
polant Iy fulfilling the periodic ellipsoidal Strang-Fix conditions of order s forq > 1,
and a > 0 be given. Then for [ € AK,I q(’]I‘d), uw>a>0andu >d(1—1/q), we
have

1 4
—Lm fIAY N < Co | AR L
1f —Laa f1AS oIl < p(”MHZ) IF1AY |
where p := min{s, u — o} and

s+ 2% + yipysm forp =s,
P+ d)y T Pygp + 247 4 s forp = pu— a.

Proof For p = s Theorems 1-3 can be applied directly due to || f |A§E;|| <

If |A{\L,L p II. If p = u — a, we have to replace Theorem 1 by an upper bound with
respect to p. Using this theorem and the inequality in (10), we get
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I'Sm f —LmSm flAy ,|
< yse M3 [ {o0y s()en ()} cgum) [€g (Gs M) |

M —s|[( M T
< ysp, max Ta 45— MM [0 )en ()} e g uy | € Gs M) |

< ysr(1+d)" PO HIMIS T T IMISE L f AR - o

Remark 3 The factor KI\_/IS in both constraints of the Strang-Fix conditions, cf. Def-
inition 2, enforces a strong decay on the Fourier coefficients of the fundamental
interpolant Iny. Omitting this factor in both constraints, i.e., leaving just [|[M|[5;* in
the second one, weakens to a less restrictive constraint on the fundamental interpolant
Inm. This changes the decay rate from

(nl\;n)s N (m)

to

(”mz)‘ = (M) = (W)

which is then also the rate of decay in Theorem 4. Hence, while this formulation
eases the constraints with respect to the decay by restricting it just to the shortest axis
of the ellipsoid given by [M~T o ||, = 1, the rate of convergence is also relaxed. On
the other hand, the stronger formulation in Theorems 1—4 requires the fundamental
interpolant to fulfill stronger constraints.

When increasing the number of sampling points, i.e., the determinant | det M|, for
both variations there are cases where the bound is not decreased. Namely, in the first
one if the value |M]||2 is not increased, in the second version if the value |[M~T||5 is
not decreased.

Again, for the tensor product case M = diag(QN, ..., N) and the one-dimensional
setting, both formulations of the Strang-Fix conditions and the resulting error bounds
are equal.

5 The Three-Directional Box Splines

For a function g € L;(R?) on the Euclidean space R? the Fourier transform is given
by

2() = / gx)ef Xdx, £ e RY,

Rd
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and we introduce the periodization with respect to a regular matrix M € Z¢* 4 for
a function g : RY — C having compact support

M1, M= Z g(%M(o - 27‘[2)).

zeZ4

Its Fourier coefficients ci(gM), k e Z%, can be obtained from g by using the

substitution y = %Mx, ie., dy = (2n)dm dx. Hence

c(g™) = = )d/ Z an(X 2nz))e elk'x gy
Td z€Z4
(27[)‘1 Z/ (=M(x — 272))e k"X gy
zeZde
_ 1 k" (2rMly)
— - [ewe dy
Rd
L. T
=Eg(2nM k).

The same applied to the Lagrange interpolation symbol g(§) := >, 74 g(z)et Tz
yields cM(g™M) = 1 z27M~Th),h € ¥MD).

We look at an example for the case d = 2. The three-directional box splines Bp,
P = (p1, p2, p3) € N3, pj =1, j=1,2,3, are given by their Fourier transform

Bp (&) := (sinc 1&1)"" (sinc $&)"* (sinc 1 (&) + £))"

Applying the periodization, we obtain the function By : T2 — C by its Fourier
coefficients

ck(Bll}/[) = - (sinc k™™ le))”! (sinc k™M ley)?? (sinc k™ (e, + e))”

1
m
Due to positivity of By(£),& € [—, 7], cf. [3, Sect. 4], we know that ch(Bg’I) £0
forh € 4(MT). Hence by [14, Corollary 3.5] the translates TyBg/[, y € M),

BM
form a basis of V" .

Theorem 5 Let M € 72?2 be a regular matrix, p € N>, pi=>1j=123a
vector, s := min{p| + p2, p1 + p3, p2+p3}anda >0,qg > 1, suchthats —a > 2.

The fundamental interpolant Iny € Vi B! of the periodized 3-directional box

spline BS/I fulfills the periodic ellipsoidal Strang-Fix conditions of order s — « for o
and q, which depends on p.
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Proof We first examine the case @« = 0. Taking a look at the second Strang-Fix
condition, we obtain forh € %(M") andz € Z7\{0}, following the same steps as
in the proof of Theorem 1.10 in [16], the inequality

M
|mc T,(v)| = 7Ch+MTZ(Bp )
h+M -
M M)
1 IsinthTM~!(e; +ep)|P3 13[ |sinhT™M~Te;|Pi
MBM) [rM~Th+2)T(e; + ep)[P3 i |7 M~Th+2)Te;|Pi
1 hTM-! N D
| (e] +e)|F? H i1
|

epl (B IM™Th+2)T ey + )5 [ (M~ Th+2)Te; (P

Forzy # 0,22 # 0,21+22 # 0,and |z1 +22| # litholds using |(M~Th +z)Te;| >
(Izjl — %), j =1,2,and (M Th + 2)T(e; + e2]) > (|z1 + 22| — 1) that

2
ey ¢ it (YOI < (WM e + WM ea)) :
h+MTz(Pp (|z1+22|—1)1’ l;[ (12l = 5)Pi

where applying the Cauchy-Schwarz inequality |A1| 4 |h2| < V2|h2 yields

2s/2
(Iz1] = HP1z2l = D2 (|21 + 22| = DP3’

mep  mr (BRIl < [IMTh|3

Defining

-1
A::( min mcﬁ“(B},}‘))
he%MT)

we can use the last inequality to obtain that the fundamental interpolant Iy corre-
sponding to Bg/[ fulfills the Strang-Fix conditions of order s with « = 0, where the
series for ysF is given by

0 2524
~(zl = HPr(zel = Hr(zy 2l — 1P

at least for z = (z1,22)T with 21 # 0,220 # 0, 21 + 22 # 0 and |21 + 22| #
1. An upper bound for the remaining indices z can be established using similar
arguments as for this case. These estimates can be directly transcribed from the
already mentioned proof, cf. [16, pp. 51-57], including the bound for the first of the
Strang-Fix conditions, i.e., bg . This concludes the proof for the case o« = 0.

For o > 0 we define the series b, := 2_"‘/2||M_T||2_“bg, z € 72, and obtain for
the first Strang-Fix condition with h € %(M?") and using M|l > 1 that
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11— men(Im)| < iy, IM~Thl3
< i 27 b IM Thy S

< bory "~ IMhy
For the second condition we get

Imen v, ()| < by IM™Th iy, IM~Thy 5~
< IM™T 792720 IM |5 %y M Thy S
< by IM |y %M TRy,

where the first inequality in both cases is mentioned for completeness. The series
that is used to define ysF is given by

vée = D0 10+ IMIZIM " 2]3)*/ )b, |1,

zeZ?

which converges for s —« > 2 by applying again the same inequalities that were used
for the case of a diagonal matrix M = diag(N, ..., N),q = 2,anda = 0in Theorem
1.10 of [16]. O

This can also be applied to the d-variate case, d > 2, using the W—directional
; dd+1) . S .
box spline By, p € N2, consisting of the directions ¢;, j = 1,...,d, and

e;+e,i,j=1,...,d,i # j, the corresponding four-directional box spline [16,
Theorem. 1.11], and its multivariate version, the d?-directional box spline, which
can be generated analogously to the @-directional box spline, i.e., using the
directions e;, e; + e; and e; — e;. Nevertheless, for the periodized d°-directional
box spline Bg[, q € Ndz, the fundamental interpolant In; does not exist. This can
be seen by looking at Bg’l in the Fourier domain, where it does contain at least
one two-dimensional four-directional box spline as a factor. Hence the non-normal
interpolation of the four-directional box spline, which was investigated in [ 12] carries
over to the higher dimensional case. In order to apply the above-mentioned theorems,

we have to use the so-called incorrect interpolation, i.e., we set cp(In) = m~! for
h € G(MT), where cy'(BY!) = 0.

Acknowledgments We thank both the anonymous reviewers for their valuable remarks which
improved the presentation of this paper.
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A Generalized Class of Hard Thresholding
Algorithms for Sparse Signal Recovery

Jean-Luc Bouchot

Abstract We introduce a whole family of hard thresholding algorithms for the
recovery of sparse signals x € CV from a limited number of linear measurements
y = Ax € C", with m < N. Our results generalize previous ones on hard thresh-
olding pursuit algorithms. We show that uniform recovery of all s-sparse vectors x
can be achieved under a certain restricted isometry condition. While these conditions
might be unrealistic in some cases, it is shown that with high probability, our algo-
rithms select a correct set of indices at each iteration, as long as the active support is
smaller than the actual support of the vector to be recovered, with a proviso on the
shape of the vector. Our theoretical findings are illustrated by numerical examples.

Keywords Compressive sensing - Sparse recovery - Hard thresholding - Sparse
approximation

1 Compressive Sensing and Sparse Signal Recovery

This paper is concerned with the standard compressive sensing problem, i.e., we
analyze the reconstruction of sparse signals x € C" based only on a few number of
(linear) measurements y € C™ where m < N. It is known from the compressive
sensing literature that recovery of s-sparse signals x is ensured when the sensing
(or measurement) matrix is random (Gaussian or sub-Gaussian for instance) and
when the number of measurements scales linearly with the sparsity of the signal
up to a log factor. Known methods arise mainly from optimization theory such as
the £; minimization [3, 14], reweighted norm minimizations [5, 13], primal-dual
optimization [6], or from iterative solvers (see for instance [1, 10-12]).
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We investigate in particular some variations of the Hard Thresholding
Pursuit (HTP) algorithm [7], an iterative thresholding-based method, and its graded
approach, a recent variation that does not require prior knowledge of the sparsity [2].
We analyze the reconstruction abilities of these algorithms in both idealized and
realistic settings. In particular we introduce a generalization that improve the speed
performance of (GHTP).

The idealized setting is characterized by the fact that the signal to be recovered x is
exactly s-sparse and that the measurements occur in an error-free manner. In this case
exact recovery is ensured by all such algorithms provided that a certain restricted
isometry condition (RIC) is met by the sensing matrix [4, 8]. In comparison, we may
consider a more realistic setting in which the vector x may suffer a sparsity defect
and the measurements through the matrix A may be inaccurate. In this case, we have
y = Ax+ e where e € C™ represents the error induced by the measurement process.
The sparsity defect can be integrated into this error term by considering X = Xg + X3
where xg corresponds to the s most important components (i.e., the largest absolute
entries) of x. Thus, we may incorporate the remaining components into the noise as
y = Ax + e = AXg + (Axg + e) = Axg + ¢ where ¢’ = Axg + e € C” contains
both the sparsity defect and the measurement noise.

The remainder of this article is organized as follows. We start in Sect.2 by
reviewing some previous work regarding the (HTP) and (GHTP) algorithms
(Sect.2.1). This leads to introduce a family of algorithms that generalizes the two
previous ones in Sect.2.2. These algorithms are studied theoretically in the follow-
ing sections in both uniform (see Sect.3) and nonuniform settings (Sect. 4). Finally,
Sect.5 compares and validates numerically our findings. Throughout this paper we
use the following notations:

e X* represents the nonincreasing rearrangement of a vector x:
Xf=x5>--=xy >0

and there exists a permutation  of {1, ..., N} such that x; =[xzl

e S is the support of an s-sparse vector x or the set of indices of its s largest absolute
entries.

e x7 corresponds to the vector x either restricted to the set 7" or such that x7; = x;
fori € T and O elsewhere, depending on the context.

e The complement of a set 7 in {1, ..., N} is denoted by T

e [-] and |-] denote respectively the ceil and floor functions.

e J; corresponds to the restricted isometry constant of order s of a given matrix A
and is defined as the smallest § such that

(1—8) I3 < IAx]13 < (1 +8) [Ix[|3

holds for any s-sparse vector X.
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2 (HTP), (GHTP), and their Generalizations

2.1 Previous Results

The Hard Thresholding Pursuit [7] and its graded variant [2] can be summarized by
the following steps:

S = {indices of k largest entries of |X"_1 + A*(y — AX”‘I)
Xn

}. (GHTPy)
: = argmin{||y — Az||2, supp(z) C S"}, (GHTP;)

with k = s for (HTP) and k = n for (GHTP).
It was shown that robust and stable recovery is achieved under some RIC:

Theorem 1 [f the restricted isometry constant of the matrix A € C™*N obeys

1 1
835 < §f0r (HTP), and 6§95 < gfor (GHTP),
then the sequences (X") produced by (HTP) or (GHTP) withy = Ax + e € C" for
some s-sparse x € CN and some e € C" with ||e|l, < y x; satisfy

[x —x"[2 <dllel2, 7 <cs.

The constants ¢ < 3 for (HTP) and ¢ < 4 for (GHTP), d < 2.45, and y > 0.079
depend only on 8§35 or dog.

It is worth mentioning that reshuffling the index set in the (GHTP) algorithm
adds robustness to (GHTP) (as seen in the numerical experiments in Sect.5) over
Orthogonal Matching Pursuit (OMP) at the cost that its implementation cannot be
done using QR updates.

2.2 Generalizations

We investigate here some generalizations of the Graded Hard Thresholding
Pursuit that improve the speed of the algorithm while only slightly deteriorating
its reconstruction capability. In order to speed up the convergence we need to lower
the number of iterations. Following an index selection process similar to the (HTP)
and (GHTP) algorithms, we introduce ( f-HTP) that relies on a different number of
indices selected per iteration (note that Generalized HTP would be a confusing name
with regard to the (GHTP) algorithm).

Let f : N — N be a nondecreasing function such that there exists ng > 0 with
f(m) > s for any n > ng. The (f-HTP) algorithm is defined by the following
sequence of operations:
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" : = {indices of f (n)largest entries of [x"~! +A*(y — Ax"~1)|}, (f-HTP))
x" : = argmin{|ly — Az|,, supp(z) C S"}. (f-HTP,)

Observe that the constant function f(n) = s yields the original (HTP) algorithm
while f(n) = n corresponds to (GHTP). Particularly interesting in terms of speed
and number of iterations is the case f (n) = 2"~ ! which shall be refer to as (GHTP?).

2.3 First Results

We first provide some preliminary results as we did for the original graded algorithm
(GHTP) in [2]. We show that a similar geometric decay of the error at each iteration
|Ix — x" |2 holds for the generalization ( f-HTP), see (3). It also ensures that a certain
number of indices of largest entries may be included in the support after a given
number of iterations (see Lemma 1). These results will allow us to prove the main
result for uniform recovery (as stated in Theorem 2) by induction.

2.3.1 Geometric Decay
In the remainder of this article, we will define n¢ as the smallest integer such that

f(n) = s,foralln > ng.In particular, ng = 0 for (HTP), s for (GHTP) and [log,(s) |
for (GHTPZ). Using the results from [2, 7] we have the following estimates, for

n > no:
n+1 1 n+1
x|, = S | )
2 1 - 8f(n+1)+s sreiiiz
1
EE—— PN D 1
+ 1—- 8f(n+l)+s ”( )S ! } 2 ( )

(=)
sn+l

Combining these two estimates yields the geometric decay

L = V2w smins [X = x|+ V2 [ (A%€) 5 9], @)

2682
1 S+ f(n+D+s
X" XHz = |92 K =xlhrreinaslel, @)
IR ECERE
. 148 rn s .
With T/ (ut1)45 = \/ s 2 7 + “{_ Sf'(f (+1+)ll+ . These results are the same as in
’ O f(n+1)+s “ s

our previous paper up to the RIC that needs to be adapted. In a more concise way
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we can write, where the multiplicative coefficient can be written depending only on
82 f (n+1)+s:

1
‘ - XH2 = Pafeeits X = X[y + T lellz
. 253
with P2 (u41)+s = 1—6]2;(;1::;: '
Jn s

2.3.2 Preparatory Lemma

As for the original (GHTP) algorithm [2] we can show that, if the p largest absolute
entries are contained in the support at iteration n, then & further iterations of ( f-HTP)
are sufficient to recover the g following largest entries, as stated in the following
lemma.

Lemmal Let x € CVN be s-sparse and let (S") be the sequence of index sets
produced by ( f-HTP) withy = AX + e for some e € C". For integers p > 0 and
n > no, suppose that S" contains the indices of p largest absolute entries of X. Then,
for integers k, q > 1, S"** contains the indices of p + q largest absolute entries of
X, provided

* k *

Xptq = )OAY+2f'(n+k)||X{p+1 ,,,,, 5}”2 + kntk—1llell2, 4)

V28t fnsk-1)A/T = S5t fin—1)
1 =054 f(n-2)

V2 dfetkoh 5 TS, depending only on the restricted isometry

I =054 fnt) 1= Puti—1
constant 8y f(n+k)-

with the constants pp+k—1 as defined above and Kk +x—1 =

Remark I The proof of Lemma 1 is not provided here. It follows directly from the
proof of Lemma 3 and 4 from [2] with changes imposed on the current iteration
number and the number of indices selected, which is replaced by f(n) everywhere.

Remark 2 Lemma 1 is not ideal in the sense that the number of iterations needed
for the recovery of the next g largest entries, does not depend on the actual index
selection method and whether we select exponentially many new indices at each
iteration or just a linear number of new candidates. This leads to overestimate the
number of iterations needed. As we see in the following section, it creates RIC
that are not always realistic, as they yield RIP of order up to s* (in the worst, but
fastest, scenario). It shows however, that there exist conditions under which the
convergence of the algorithm is guaranteed. We also see that in particular cases
(namely when dealing with power or flat vectors) the conditions from Theorem 2
can be drastically improved. Moreover, as suggested by the numerical experiments in
Sect. 5, these results are only a rough over estimation of the actual number of iterations
needed.
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Table 1 Examples of RIC that a sensing matrix should fulfill for uniform recovery, according to
Theorem 2

f s n 2n nn+1)/2 on—1
RIC 352 9s 5/2+ 165 2s + 852 s+s°
Name (HTP) (GHTP) (GHTP?)

4 This result actually coincides with the one from the original paper about (HTP) [7]

3 Uniform Recovery via ( f-HTP)

3.1 General Results

This section is dedicated to the problem of uniform recovery of all s-sparse vectors
X given a certain sensing matrix. While this gives some ideas of why the (f-HTP)
algorithms may converge, our proof yields, for certain choices of f, unrealistic and
unapplicable conditions. Such considerations are detailed in Table 1.

(meN

Theorem 2 [f the restricted isometry constant of the matrix A € obeys

82 @ytng =< 3

then the sequence (X") produced by (f-HTP) withy = Ax + e € C™ for some
s-sparse x € CV and some e € C™ with |e|, < y x; satisfies

Ix —x"[2 <dllell2, 7n=<cs.

The constants ¢ < 4, d < 2.45, and y > 0.079 depend only on 8517 7 ).

This theorem generalizes the one obtained first for (HTP) and (GHTP) to more
general index selection schemes. It is purely an adaptation of our previous results
and does not depend on the index selection function f. Therefore, as stated above it
generates unrealistic restricted isometry conditions. For instance, when considering
the case of f(n) = 2"~! we would need to ensure an RIC of order £2(s*). Table 1
gives some examples of RIC for different choices of f.

While the two last conditions are unrealistic, the first cases still yield reasonable
RIC. For instance the case f = 2n yields an RIC at the order 16s which is still
in a comparable range as for (OMP) (see [15] for a stable recovery under RIC of
order 13s).

Fortunately these strong conditions can be improved in the particular cases of
power vector or almost flat vectors. The recovery of power vectors is analyzed in the
following section where we show in the case of (GHTP?) that the matrix only needs
to obey an RIC of order £2(sPY1°2()) (Other examples are given in Table 2.)
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Table 2 Examples of RIC-orders that the measurement matrix needs to obey for different ( f-HTP)
algorithms (these are just order of magnitude)

f s n 2n n(n+1)12 on—1
RIC 3s 3s + 4Cpolylog(s) 3s + 8Cpolylog(s) 3s + 4Cpolylog?(s) s + 2sPolylog)
Name (HTP) (GHTP) (GHTP?)

3.2 The Case of Power Vectors

We investigate the convergence of the family of generalized algorithms when facing
particular power vectors. Our results rely on the following lemma used for decom-
posing the support:

Lemma 2 Any set S C {1,..., N} of size s < N can be decomposed in r subsets
S1, ..., S, such that

1. r=|logy(s)] +1

2. S=Ui_ Si

3. NS =g, forj#i
4. 181 < [s/2].

Proof We show this result by induction on the set size s. For s = 1, §1 = S fulfills
all the criteria. Assume now that Lemma 2 holds for all 1 < n < s — 1. Without
loss of generality, we can consider the set S = {1, ..., s}. Writing § = S; U T with
St ={l,...,[s/2]}and T = S\S1, we have |T| = s — [s/2] < s and therefore,
applying the induction hypothesis yields 7 = U;Tzl T; with rp = [logy(IT)) | + 1
and |T;| < [IT1/2/]. We now define S; := T;_; fori > 1 and therefore the partition
S1, ..., S, fulfills the three first criteria of the lemma. To verify the last statement of
the lemma we consider two separated cases:

If s is even, then there exists a k € N such that s = 2k and |S|| = |T| = k.
The induction hypothesis implies, for j > 1

7] < yrk/zj—‘ and [S; ] < "s/zjﬂ—‘

which proves the last point of the lemma.
If 5 is odd, then there exists a k € N such thats = 2k + 1 and |S1| = kK + 1 and
|T'| = k. The induction hypothesis implies, for j > 1

IT;| < (k/zf'] and |Sj41| < [s/zf”rl — 1/2J'+ﬂ < [s/zﬂﬂ

which finishes the proof of the lemma. O

Consider vectors x such that forall 1 < j <'s, x;‘ = 1/j* for some o > 1/2
(other cases will be considered later). We have
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S 1 1 1 1 1
= ) =5 pla—1 " 2a- Sza_]p%zfl'

With this, it is sufficient to find k and g such that

1 w1 1
20 =P 20 — 1 2a—1"
(r+q) o P

for condition (4) from Lemma 1 to be valid.
This condition is equivalent to

1 20
> ———log b 1+ 4 .
log(1/0%) 200 — 1 P

In conclusion, {1,..., p} € 8" = {1,..., p+ g} C §"** holds provided that

2a log (p (1 + %)) _log Qo — 1)
log(1/p?) log(1/p%)

If we now consider r subsets S, ..., S, r = |logy(s)| + 1 as suggested by
Lemma 2, then we can successively apply Lemma 1 to each r subsets ;. Defining
So = 9, qi = |5, fori >0, k the number of iterations needed to add subset S;,
using ko = ng, and p; = Z = 1 qj, we finally get that the number of iterations for
uniform recovery is bounded by

g log(a — 1)
" <Z P = 1og<1/p2>zl°g( ( ))_ log(1/p9)

i=0

i

_ 2 Zrll Z log(Ra — 1) N
< — 0 qg; | - r————+n
log(1/p?) & S\ & | 7 Togt/pn T

=1
2 d . log(2a — 1)
- J _ o 7

< 10g(1/,02)§10g j;(s/z +1) oe(1/oh T (5)

d o log(2a — 1)
J = @7
S1og<1/p2>Z g | s 212 1) = T

2a i log(2a — 1)
< Slog2s) —r—="" L 4y,
log(1/0?) ; ¢ log(1/p?)
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where we have used the fact that ¢; < [s/2/] < 5/2/ + 1 in inequality (5).
With such a partition we have that r = |_10g2(s)J + 1 < log,(s) + 1 and hence
7 can be bounded by

7 < (logs(s) + 1) (10g(2s) 2a log@“—l)) 0

log(1/p)  log(1/p?)

Using this, we only need to ensure the RIC to the order 2" which is £2 (s - s'°¢¢))
when using the (GHTP?). This is not yet acceptable for real-world applications but
much less critical then what Theorem 2 suggests. Moreover, it corresponds also to
the worst case scenario for ( f-HTP) algorithms.

If we now consider the case @ = 1/2, a similar analysis yields

N

1
”XTIH-I ,,,,,, s }”% =< / ;d_x = log(s _ p)’
P

and condition (4) reads ﬁ > p log(s — p). Therefore, Lemma 1 holds for

- log(log(s)) + log(p + q)
log(1/p?)

Using a partition as given in Lemma 2 gives a sufficient number of iterations

L _ log(log(s)) + log (3, q;)
=2k log(1/0%) o
log(log(s)) + log(2s)

log(1/?)

< (logy(s) + 1)

Again, in this case, the RIC has to be valid at the order £2 (s - sP°Y1°¢()) for (GHTP?).
The case 0 < o < 1/2 can be treated in the exact same way by approximating
the 2-norm with an integral. This yields, using the same support decomposition,

(I —2a)log(s) | 2alog(2s) log(l — 201))

n < (logy(s) +1) ( log(1/p2) log(1/p2) log(1/p?)

Consider an almost flat s-sparse vector x such that there exists an & > 0 with

1l—¢ < x;’f < 1,for j = 1,...,s (this corresponds to ¢ = 0). In this case, we
have that
(1=)? (s = p) < IX{pp1oslz <5 —p

2ks—p

= and is fulfilled whenever

Hence condition (4) now reads 1 > p
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log (%)
> S ——

log(1/p%)"

Using the decomposition given in Lemma 2, we get that

log (s/ (1 — &))?
log(1/p%)

n =<

iterations are sufficient to recover the signal x. This gives a RIC in the order of
(5924 when considering (GHTP?) for the power vector case. All of the previous
results can be summarized in the following corollary:

Corollary 1 Let x be an s-sparse vector such that its nondecreasing rearrangement

canbewrittenasx;‘ =1/j% forall1 < j <s, forsomea >0o0r1 —¢ gx;’f <1,

for some & > 0. Then for any matrix A € C"*N, x can be recovered fromy = AX in
atmostn = C ﬁ’ggllo/i(;)) + ng iterations of ( f -HTP) provided that the RIP conditions
are satisfied at the order $2(s +2 f (polylog(s))). The constant C and the polynomial

involved depend only on o and p

As a consequence, (GHTP?) requires a RIC in the order of §2(s 4 2s'°2)),
Similarly, considering f(n) = 2n yields a RIC in the order of §2(3s + polylog(s))
which is tractable and still provides a strong speed improvement over the original
(GHTP) (even if the complexity remains in the same order, the constant in front is
much lower). Some examples are summarized in Table 2.

4 Nonuniform Recovery via ( f-HTP)

We consider here the problem of recovering a particular fixed vector x instead of
recovering any vector for a given matrix A.

4.1 Useful Inequalities

We recall here some results regarding the tail distribution of some random
variables and the probability distribution of the smallest singular value of a sub-
gaussian matrix [9]. These results play an important role in proving the nonuniform
recovery of vectors via ( f-HTP).

Lemma 3 ([9]) Let A € R™*N be a subgaussian matrix, the following inequalities
hold
P(|A%As —T[2—2 > 8) < 2exp(—c'8°m) (0)

P(lae, )| > tIV) < 4exp (—c"i?m) ™

where ¢’ depends only on the distribution.
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4.2 Recovery

Following [2, Prop. 9], we can see that with high probability the algorithms make
no mistakes when selecting the indices. This statement is true while the size of the
index set selected at a given iteration is strictly smaller than the actual sparsity of
the signal under a condition on the shape of the vector to be recovered. This result is
summarized in the following proposition:

Proposition 1 Let ) > 1 andletx € CN be an s-sparse vector such that x| < Axj.
If A € R™N is a sub-Gaussian matrix with

m > Csln(N),

then with high probability (> 1 — 2N ~¢) and for any error vector e € C™ such that
llell2 < yx; the sequences S and X" produced by ( f-HTP) withy = AX + e satisfy,
at iteration noy — 1 (where ng denotes the smallest integer such that f(n) > s):

sl g (8)

where the constant y depends only on A and the constant C on A and c.

Remark 3 It is worth mentioning that the proof of this Proposition does not apply
to the (HTP) algorithm. Indeed, the result holds only while the number of indices is
strictly smaller than the actual sparsity. This condition is never met with f(n) = s.

Proof The proof follows from our previous results. We show that, with high
probability, $” € S forall 1 <n < ng — 1. For this we need to show that x, > ¢,
where we define

=[x ae) ]
L= [(x”*1 +A*(y — Ax"il))g]*

.
Literally, with 2" := x" — A* (y — AX") ¥, is the f(n)"" largest absolute entry of z"
on the support S of x while ¢, is the largest absolute entry of z"* on its complement.
Now yx, > ¢, forall 1 <n < ng — 1 is true with failure probability P, and we have
P:=P@Enefl,....no—1}:¢ = xn and (Xn—1 > Ca—1, .-, X1 > £1)) ©)
P = P (1A Asui— a2 > 6 for some € € E) (10)

no—1

+ D PG = X Gt > Gomts o x1 > ), (1A% Asuig— T2 <8
n=1

forall £ € 5)), (11)
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Defining 7~/ =D as the set of indices corresponding to the s — f (n— 1) smallest
absolute entries of z" on S we can easily verify that

1
N (T

Similarly, we have

(Ixremsio-nlls = 8lix = X"l = VT + Bllell2) .

¢n < max [{ag, AX — X" D) + 1+ 5lel.
Les

Finally, with I’ (E) denoting the probability of an event E intersected with the

event (G-t > Gut s 31 > 80, (A3 Asui— Tlo < 8 forall € € 5))
inequality (11) reads

1
P (6 = o) = P'(max|(ar, Ax—x""))| >
LesS

Vs — fn—=1)
X (IXps-ru-vllz = 8% = X"~ l2) = 24T+ Sllell2)
1)
< P’(max |(a@, A (x — x"_]))‘ > —|x —x""! ||2)
tes Vs — f(n—1)
(12)
where the last inequality follows from the fact that
1
e (IIXps-sa-nll2 = 8lIx = X" ") = 23T+ 8]le]2
s—fn—1)
1)
> |x —x""! 13
> | (3
whenever
A V1446
121468y =28 . 14
+oy = (m+l_5y) (14)
Indeed, inequality (13) is equivalent to
r——L———H 2 =2v1+dllef2 = P—Ei———ﬂ i
—— || Xps S -2 —|x—X .
ENACES)) Ts—fa-nll2 2> = =T 2

15)
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The left-hand side can be estimated by
xF =21+ dyxf = x (1 N 5) :

and the right-hand side is estimated by

1
— (A*e)sn,l |2, using estimate (1),

1
ﬁ"xs”i“””'pa
- Ms—=fn—=1) . V1496

-1
x —x""l2 <

R R llell2,
\/ﬁ
- s— f(n 1)A*+ 1+56 o

T2 T Ti—s Ve

A V1446
gx/s—f(n—l)(m-k 1_‘2 y)xs*'

Hence, condition (14) is verified by choosing § then y (depending on 1) small enough.
Finally, using the fact that ||A (x — x”_l) l2 < V/T+38|x — x" 1|2, the failure
probability from (12), can be further approximated by

1)
P& > x) <P (max ‘(ag, A (x - x"_l))) > IIA (x — x"_l) ||2)
roa tes JT+6
(16)
Combining these results with (7) and (6), we finally get that
//32
P <2(N —s)exp (—c’Szm) F4(N —s)(ng — 1) exp (—(i +gs) .
This leads to
s (e
P <2N-exp| ——
s
with an appropriate choice of ¢§’. O

4.3 Hybrid Algorithms

We may ask ourselves whether Proposition 1 is of interest or not as it does not lead
to the complete recovery of x. However, Proposition 1 ensures us that we can create
hybrid algorithm with the ( f-HTP) framework where we can make large steps first
until a certain criterion is met, and then adaptively reduce the increase of the index
set’s size until it gets to the sparsity of the signal.

The following gives an example of such a hybrid algorithm.
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Algorithm 1. Example of an hybrid algorithm for sparse signal recovery.

Data: A matrix A € R”*" a measurement vector y € C™, a switching step
neN, n<nyg

Result: an s sparse signal x

Set SY = @, x0 = 0, nlter = 0;

while niter < n do

Do an iteration of (GHTP?);

nlter = nlter + 1;

end

while Convergence is not done do

Do an iteration of (GHTP);

nlter = nlter + 1;

end

The only important thing to be careful of is that we stay below the sparsity when
we start reducing the number of indices added at each iteration. Moreover, even
if Proposition 1 does not ensure convergence of the algorithm until the very last
important index, it was shown in [2] that (GHTP) does converge in s iterations. This
ensures us that such an hybrid algorithm can be used for nonuniform recovery and
that it converges in a number of iterations 7 < s.

5 Numerical Results

This section validates our theoretical findings with some numerical experiments.
Note that all the necessary Matlab files can be found on the author’s webpage.!
Validation is being made with some (f-HTP) examples compared to the (HTP),
(GHTP), and (OMP) algorithms. The following particular index selection functions
f are used:

e f(n)=s: (HTP),

e f(n) =n: (GHTP),

e f(n) =2n: (GHTP2n),

e f(n) =n(n+1)/2: (GHTPn?),
e f(n) =2""1:(GHTP?).

Moreover we will denote by (Hybl) and (Hyb2) the two algorithms such that the
functions f are defined, respectively by

on—1, if n < ng,

S = [ 2m0=2 4y no+ 1, otherwise, (Hybl)
| n(n—=1)/2, if n < ng,
fn) = [ (ng — Dnog/2 +n —ng+ 1, otherwise. (Hyb2)

! http://www.math.drexel.edu/~jb3455/publi.html
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The algorithms were tested using 100 randomly generated Gaussian matrices A €
[R200x1000 each of which were used to recover 10 vectors with randomly generated
supports (which represents a total of 1,000 random tests for each vector kind and
sparsity level). The tests were carried out on three different kinds of vectors to assess
the dependence of the algorithms on the decay of the vector x; “flat” vectors with
x;‘ =lIforje{l,..., s},“linear”vectorswithx;‘ =(s+1—j)/sforje{l,...,s},
and Gaussian vectors whose s nonzero entries are independent standard normal
random variables.

5.1 Successful Recovery and Area of Convergence

We first want to assess the recovery ability of our algorithms by recording the
frequency of success as a function of the sparsity. As stopping criterion here we have
used the natural one for (HTP) (§” = ") and [S € §" or [[x—x"|2/|x]l2 < 107%]
for (f-HTP) and (OMP).2 A recovered x is recorded as a success whenever the rel-
ative error is smaller than 10™%.

As expected, the steeper the index selection function the harder it is for the
algorithm to converge. As a consequence (see Fig. 1) (GHTP?) performs the worst.
However, for reasonable functions f (up to quadratic functions) the range of conver-
gence of the algorithm is similar to the original one. Moreover, due to the reshuffling
of the index set, our family of functions tend to perform better than a classical
(OMP).

5.2 Number of Iterations for Successful Recovery

One important reason for introducing this generalized family of functions is to lower
the number of iterations needed for convergence. Indeed, while the reshuffling of
the active set can be seen as an advantage in terms of recovery capability of our
algorithms, it takes away any chance of faster implementation, using for instance Q R
updates in the inner loop. The following set of graphs (depicted in Fig.2) analyzes
the maximum number of iterations needed for recovery.

Three things are worth mentioning. First, as already stated in Remark 2, the
maximum number of iterations suggested by Theorem 2 is a very rough overestima-
tion of the actual number of iterations. This is mainly due to the fact that the proof
of Theorem 2 relies on the geometric decay of ||x" — x|, that can only be proven
for n > ng. However, as we describe in the next Section, the algorithm picks correct
indices much earlier than the ngth iteration. This also shows that the proof Theorem
2 is not optimal as clearly, for most of these algorithms, the RIP suggested is not
respected.

2 Compared to real applications, we have access here to the true sparsity and the true support of the
signal x. This stopping criterion needs to be adapted for real-world examples.
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Fig. 2 Maximum number of iterations for exact recovery for the different algorithms when
considering Gaussian (top plot), linear (bottom left), or flat (bottom right) vectors. a Gaussian
vectors, b Linear vectors, ¢ Flat vectors

Second, when the algorithms converge, their number of iterations scale according
to the underlying function f. The number of iterations behaves like a logarithm
for (GHTPZ), like a square root for (GHTPnz) and linearly for both (GHTP2n) and
(GHTP). Again, (OMP) needs a few more iterations, mainly to compensate the wrong
indices that have been picked at an earlier stage of the algorithm.

Finally, it is reasonable to think that the analysis carried out in Corollary 1 can be
extended to more general vector shapes. However, to improve the estimation of the
number of iterations we would need to adapt the proof to earlier iterations, instead
of starting counting at n.

5.3 Indices Correctly Captured

We investigate now the ability of our family of algorithms to pick correct indices at
each iteration. Figure 3 shows these quantities for the three kinds of vectors (Gaussian
to the left, linear in the middle and flat on the right) when dealing with different
sparsities and index selection functions (see legend for more details).
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to (GHTP2). a Gaussian vectors, b Linear vectors, ¢ Flat vectors

As expected most of the algorithms made no mistakes when picking a current
active set. This suggests that Proposition 1 can be improved to more general vector
shapes.

6 Conclusion

This article introduced a class of algorithms that generalizes the Hard Thresholding
Pursuit. It allows to overcome both the lack of a priori knowledge regarding the
sparsity of the signal to recover and the convergence issue noticed in an earlier
extension. We have shown that uniform and nonuniform convergence is possible
for all algorithms of this type, but sometimes under unrealistic restricted isometrty
conditions.

Fortunately, our numerical results tend to show that the number of iterations
implied by our results may be a really rough overestimates. This will drive our future
research which would also imply some improved restricted isometry conditions.
Moreover, by using a combination of index selecting functions, we are able to produce
hybrid algorithms that are both reliable and fast, at least in a nonuniform setting. For
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such algorithms, a selection of an adequate turning point is needed which is also left
for further study.
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approximation of manifold-valued data has been to give necessary and sufficient

conditions for a manifold-valued subdivision scheme, based on a linear subdivision
scheme, to share the same regularity as the linear scheme. This is called the smooth-

ness equivalence problem. In a companion paper, the authors introduced a differential

proximity condition that solves the smoothness equivalence problem. In this paper,
we review this condition, comment on a few of its unanticipated features, and as an
application, show that the single basepoint log-exp scheme suffers from an intricate
breakdown of smoothness equivalence. We also show that the differential proximity
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1 Introduction

In recent years, manifold-valued data has become ubiquitous; the configuration
spaces of robots and space of anisotropic diffusion tensors are but two examples.
Although manifolds, by definition, can be locally parameterized by points in Euclid-
ean space, such a local parametric representation is insufficient when the topology
of the underlying space is nontrivial (e.g., configuration space), and even in the case
of trivial topology (anisotropic diffusion) it is desirable to respect the natural sym-
metry and metric structure of the underlying manifold. For these reasons, genuinely
nonlinear, differential geometric, and approximation methods have come to play an
important role.

Recently, several research groups [3-8, 11-14, 16-21] have studied subdivision
methods for manifold-valued data. Roughly speaking, a subdivision method takes as
input coarse scale data and recursively generates data at successively finer scales with
the hope that in the limit a function with desired regularity properties is obtained.
Such algorithms have attracted the interest of applied analysts not only because of
their intrinsic beauty, but also because of their connection with wavelet-like repre-
sentations. In this context, various approximation-theoretic questions come to mind,
such as: How much regularity does the limit function possess? At what rate does it
approximate the underlying function from which the coarse data originates?

A number of different subdivision schemes for manifold-valued data were intro-
duced in the above references: some exploit the exponential map, others a retraction
map, and some the Karcher mean, yet others are based on an embedding of the man-
ifold into Euclidean space. But in all cases, the subdivision method is modeled on an
underlying linear subdivision scheme. It is therefore natural to seek conditions under
which the limit function of a manifold-valued subdivision method enjoys the same
limit properties as the limit function of underlying linear subdivision scheme. This
is called the smoothness equivalence problem. We and others [3-6, 12, 13, 1618,
21], have introduced various proximity conditions that are sufficient for a manifold-
valued scheme to have the smoothness equivalence property. Although numerical
evidence for the necessity of these proximity conditions were given in [2, 17, 21],
necessity has remained an open problem.

In a companion paper [2], we present a complete solution of the smoothness
equivalence problem in terms of a new proximity condition, which we call the dif-
ferential proximity condition. Here, we review this condition, comment on a few of
its unanticipated features, and as an application, we show why the single basepoint
log-exp scheme suffers from an intricate breakdown of smoothness equivalence. We
also prove that the differential proximity condition is coordinate independent. The
coordinate independence result established in Sect.4 is stronger than what would
follow immediately from the main result in [2].
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2 Smooth Compatibility and the Differential Proximity
Condition

Let M be a differentiable manifold of dimensionn. Amap S : £(Z - M) — ¢(Z —
M) is called a subdivision scheme on M if it is of the form

(SX)21+O' = qg(xi—ma’ ) ‘xi_m0+L0)’ o = 07 15 i € Za (1)
where Ly, my € Z, Ly > 1, and g, are continuous maps

go - Mx---xM—>M, o0=0,1, 2)
——— ————

L& +1copies

defined in a neighborhood of the hyper-diagonal of M x - -- x M and satisfying the
condition

go (X, ..., x) =x. 3)

The maps qo, g1 are usually referred to as the even and odd rules of the subdivision
scheme S. In general, g, are only defined in a neighborhood of the hyper-diagonal,
and therefore S is only defined for locally sufficiently dense sequences. We call L
the locality factors and m the phase factors of the subdivision scheme S. The above
definition was used, for example, in [15, 20].

We now impose additional conditions on S.

Definition 1 Let S be a subdivision scheme on M. Let Sj;, be a linear subdivision
scheme with the same phase and locality factors as S and let gjin o, 0 = 0, 1, be the
(linear) maps associated with Sy, as in (1). We say that S is smoothly compatible'
with Siin if

(a) go and g; are (C°°) smooth maps, and

(b) foranyx € M,dqs|(x,..x) : Tx M x --- x TyM — Ty M satisfies the condition

dqs|ix,..)Xo, ..., X1,) = Glin,o Xo, ..., X1,), 0=0,1.

Remark 1 The maps giin,o, 0 = 0, 1, are the even and odd rules of Sj;,. The compati-
bility condition in Definition 1 is satisfied by all the manifold-valued data subdivision
schemes seen in the literature [4-6, 9, 12, 13, 16-18, 21].

Assume that S satisfies the compatibility condition in Definition 1. Our differ-
ential proximity condition is defined in terms of a finite-dimensional map Q. From
Egs. (1) and (2), it follows that there is a unique integer K such that any K + 1 con-
secutive entries in any (dense enough) sequence x determines exactly K + 1, and no
more, consecutive entries in Sx. We may call K + 1 the size of a minimal invariant
neighborhood of S. For any linear Ck subdivision scheme,

!'In [7, Definition 3.5], Grohs gives a similar compatibility condition.
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k=1=K k=2=K
— _ [ N B ]

— — [ ] [ [ ]
[ ] [ ] [ ]
q1(x0,x1)

X0,X
O(xg,x1) = B:}Exg xi } O(x0,x1,x2) = | qo(x0,X1,X2)
' q1(x1,x2)
k

O(x0,x1,X2,x3) =

Fig.1 If S is the symmetric C¥ (degree k + 1) B-spline subdivision scheme, the corresponding map
Q has a minimal invariant neighborhood of size K + 1 = k + 1. The figure shows two subdivision
steps starting from k + 1 entries of the initial sequence (Dots and intervals are used only because
of the primal and dual symmetries in the B-spline subdivision schemes for odd and even k. The
symmetry properties, however, play no role here)

K >k,

with equality attained by the C*, degree k + 1, B-spline subdivision scheme (see
Fig. 1). It follows that there is a map

Q:U—UCMx-—-xM, 4)
—_—
K+lcopies

for U a sufficiently small open neighborhood of the hyper-diagonal, such that if
y = SX, then
Q([Xia '-'7Xi+K]) = [Y2l'+s7'-~’YZi+s+K]7 (5)

for all i. The integer s, called a shift factor, is a constant independent of i but
dependent on the phase factors of S. A basic property of S is that when the input
sequence X is shifted by one entry, then the subdivided sequence y is shifted by two
entries. This property is also reflected in Eq. (5).

The compatibility condition implies that

dQl(x,...,x) = Qlin, YXEM, (6)

where Qtin : TyM X -+ - X TyM — TyM x --- x T, M is the corresponding linear
self-map defined by the maps giin,» in the compatibility condition.

We shall define our new order k proximity condition based on the higher order
behavior of the map Q. At this point, we work in local coordinates on M. Let Q
be the map Q(xo, x1, ..., Xk ) expressed in local coordinates around xo € M, and
define ¢: R"” x --- x R" (K + 1 copies) - R"” x --- x R” by
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Y. =VoQoX, @)

where V, X = V71 i R? x ... x R" — R” x --- x R" are the linear maps defined
by the correspondence

v
(x0, X1, ..., xk) = (80 = x0, 681, ..., 0kK), ®)
p)
where §; := k-th order difference of xg, x1, ..., Xk, SO
K k Ly
8 = Z;(—UH ( E)xe, and x; = ; (E)(Se- ©)

Note that ¥ is only defined in a neighborhood of (xq, 0, ..., 0). (Here, by abuse
of notation, we identify points in M with the corresponding points in R” under the
given coordinate chart.) We write

U =Wy¥,...,%), ¥ :R'x .. xR"—> R",

when referring to the different components of ¥.
We remark that Eq. (6), together with linearity of £ and V, implies the identity

d¥x.0,...00 = Wiin ;= Vo Qino X, Vux. (10

Definition 2 Let S be a subdivision scheme on M smoothly compatible with Sy;j.
Let k > 1. We say that S and Sj;, satisfy an order k differential proximity condition
if for any xo € M,

D"¥|(xy.0...0) = 0. when [v] > 2, weight(v) := > jv; <€, Ve=1.. .k (1)

where D"W, denotes the derivative of ¥, with respect to the multi-index v =
1, ..., vK).

Remark 2 Above, v = (vy, ..., vg) does not have a 0-th component, so D" does
not differentiate with respect to the 0-th argument. But since (11) has to hold for
arbitrary xo, then under the smooth compatibility assumption, condition (11) would
be unaltered if we interpret v as (vo, vi, ..., Vk).

Remark 3 In fact, the above condition is equivalent to the following seemingly
stronger condition:

£, 1<t<k

k, €>k 12)

D ") (xp.0....00 =0, when |[v| >2, weight(v) < [

The proof, however, is rather technical as it relies on a major algebraic structure found
in the proof of the sufficiency part of the following main result. See the sufficiency
section of [2].
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In Sect. 4, we need the following property of linear subdivision schemes:

Lemma 1 If Sjiy reproduces Ty (= the space of polynomials of degree not exceeding
k), then Wiy has the block upper triangular form:

280+ D p_py UneSp, £=0,... .k

, 13
Zf’:k-q—l Uevde, L=k+1,...,K (13)

Wiin, (80, 01, ..., 0k) = [

where U, ¢ are scalars-dependent only on the mask of Siin. Moreover, if Siin is ck
smooth, the spectral radius of the lower right block [Uy ¢'1¢ ¢=k+1....x 1S Strictly
smaller than 1/2F.

.....

Remark 4 We may combine Lemma 1 with (11) to restate the differential proximity
condition as:

srid, [v] = 1 and weight(v) = ¢,
[v] = 1 and weight(v) < £, or (14)
[v] > 2 and weight(v) < ¢,

D"l (x.0,...0) = 0.

fort =1,...,k.
In [2], we establish the following:

Theorem 1 Let S be a subdivision scheme on a manifold smoothly compatible with
a stable C* smooth linear scheme Siiy. Then S is C* smooth if and only if it satisfies
the order k differential proximity condition.

Unlike the compatibility condition, the differential proximity condition is
expressed in local coordinates. A natural question is whether the latter condition
is invariant under change of coordinates. For the original proximity conditions, the
invariance question was answered in the affirmative in [20]. Armed with Theorem 1,
we know that the order k differential proximity condition, being equivalent to the C*
smoothness of §, cannot be satisfied in one chart but not another, as the notion of
smoothness is coordinate independent. In summary, we have:

Corollary 1 IfS is smoothly compatible with a stable C* linear subdivision scheme
Stin, then the order k differential proximity condition is invariant under change of
coordinates.

3 What’s New?

The original proximity condition, used in our previous work, reads as

||A]_1SX - Aj_lslinX”oo = CQ](X)v J = 1’ e ’k’ (15)
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where

J J
2j0 = > [[1a%I%, Fj=3y=0.vp)|veZt, Dlivi=j+1t.
yelji=1 i=1

It is well known that this condition is a sufficient condition for the C*-equivalence
property ([17, Theorem 2.4].) Moreover, years of usage of this condition (15) and
numerical evidence suggests that it is also necessary.

This original proximity condition does not explicitly assume a compatibility con-
dition between S and Sjip, making it difficult to formulate a precise necessary condi-
tion. In our new formulation, we explicitly impose the smooth compatibility condition
in Definition 1, which enables us to address the problem of necessity.

Our new formulation also addresses a perplexing aspect of condition (15). A
careful inspection of the proof of [17, Theorem 2.4], shows that only the following
proximity condition is needed:

1A7Sx — Al SinX[loo < C2;(x), j=1,...,k (16)

provided that we have already established C° regularity of S. We are thus faced with
a dilemma: Despite the strong empirical evidence for the necessity of the proximity
condition (15), it appears that it is unnecessarily strong!

A moment’s thought suggests that the new proximity condition (11) is merely
a differential version of the weaker condition (16). In fact, in all previous work a
proximity condition is always established by a local Taylor expansion of Sx — Sjipx
(recall that subdivision schemes act locally). Consequently, the differential aspect of
(11) is hardly anything new. But once the differential proximity condition is written
in the form (11) (or in the equivalent form (14)), we see a natural interpretation:
Viewing the map

O:U—-U

as a discrete dynamical system, the proximity conditions can be interpreted in terms
of the rate of approach of points in U to the hyper-diagonal, which is the fixed-point
set of Q:

e Condition (14) then suggests that the linear term 2-tid is the dominant term, so,

generically, the k-th order differences of the subdivision data within any invariant
neighborhood (Fig. 1) decays like O (277%).
If k is the first order at which the differential proximity condition fails, then there
is a weight k term in the Taylor expansion of ¥, such a nonlinear term is called
a resonance term in the dynamical system literature, and the dynamical system
interpretation would suggest that the k-th order differences of the subdivision data
decays slower than O(27/%). More precisely, the presence of resonance slows
down the decay to O (j277/%).

2 Use || AXloo < 2||X]l00 to see that (15) implies (16).
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e This in turn suggests the necessity result. However, proving the lower bound result
needed and tackling the lack of stability condition in the nonlinear subdivision
theory are technically difficult. The former requires us to come up with a delicate
argument to show that the initial data exists so that the effect of resonance terms
would not dissipate away in the course of iteration. The latter requires us to exploit
a subtle superconvergence property.

e The same dynamical system interpretation suggests that our differential proximity
condition may be too weak. For, unlike (15) or (16), it involves a fixed, although
arbitrary, invariant neighborhood, and therefore does not appear to capture the
expanding nature of a subdivision scheme.> Worse, the sufficiency part of the
theorem concerns establishing the C¥-smoothness of the limiting function, and
that would require one to analyze the decay rate of order k + 1, not k, differences.
If one examines Fig. 1, one sees that a minimal invariant neighborhood may very
well be too small to allow for the computation of any k + 1 order difference.
Fortunately, an unexpected algebraic structure we discovered in [2] not only makes
the seemingly impossible mission of proving sufficiency possible, but also explains
simultaneously why the apparent stronger than necessary proximity condition (15)
always holds true whenever C¥ equivalence holds.

4 Coordinate Independence

Corollary 1 suggests that there is an intrinsic, coordinate-free, reformulation of the
differential proximity condition waiting to be discovered. With this in mind, we
establish here the following coordinate independence result.

Theorem 2 If S is smoothly compatible with a T1j reproducing linear subdivision
scheme Sy, then the order k differential proximity condition is invariant under
change of coordinates.

Note that this result is stronger than Corollary 1, because a stable C* linear subdivi-
sion scheme must reproduce I, but the converse is far from being true.

Let x (x) = X be the change of coordinate map on M, and let Q(xg, x1, ..., Xg)
and @(70, X1,...,xg) denote the expressions for map Q in these two coordinate
systems. Writing

Xvee (X0, X1, ..., XK) 1= (x(x0), x(x1), ..., x(xK)),

shows that Q(xg, x1, ..., xg) and E(Tco, X1, ..., xg) are related by the formula

0 = Xvee © 0 0 Yuar- (17)

3 For instance, it is well known from the linear theory that the spectral property of Wi, alone is
insufficient for characterizing the regularity property Siin.
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The map ¥, by the definition (7), then takes the following forms in the two coordinate
systems:

¥ (%o, 81,...,0k) =V o QoX(d,b1,...,0k),
W (80,81,...,0k) =V oQoX(0,81,...,5k).

It then follows that a change of coordinates induces the following transformation
rule for ¥:

@=Vo§oE=VoX\,ecoQoX\feéoZ =VoxveCoZoVoQoEoVoX‘;éoZ.
—_—

=5 =y =5-1
(18)
Proof The proof proceeds in two steps:

Step 1. Note the following structure of the Taylor expansion of Z¢ (8¢, d1, - . ., 6k)
around a point (69 = x9, 0, ..., 0). Note also that Zy(do, 1, ..., 5x) = x(xp). For
£ > 1, compute as follows:

K .
By(8) = ZH)“ () x e
= Z( D) | x o) + %/ (o) — x0) + Z x® (o) (xi — x0)*
k>2
= x (xo)Z( D ()i + Z( D Z x® o) (i — x0)
k>2
i
—i b [ k
= x'(x0)3¢ + Z(—l)‘ it L X (k)(XO)[Z (9)s)]
i=0 k>2 j=l1
| < .[ R
=x'G0de + 2 5 2 DTRG0 850
k>2 " i=0 Jlse i1
—X(X0)5e+z > Z( DO () [ x P00 850,
k>2 D jleenk=1

where we have repeatedly used the multilinearity of x ® (x).

Note that, for fixed ji, ..., ji, (j’l) (jk) is apolynomial ini of degree j; +- - -+
Jk- Then, by (9), Zfzo(—l)e’i (le) (]'1) . (jk) is an £-th order difference of uniform
samples of a degree ji +- - -+ jx polynomial, which vanishes when ji +- - -+ ji < €.

Consequently, the £-th component of & has no (linear or nonlinear) terms of
weight less than ¢, thus

D" E¢|(xp.0....00 =0, weight(v) < £.
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The same conditions hold with & replaced by Z~!—simply replace x with x ~! in
the derivation above.

We now know that the £-th component of both & and Z~! do not have terms of
weight strictly less than £, the proximity condition of ¥ says that its £-th component
Y, does not have terms of weight ¢ and lower. These facts alone only guarantee that
¥, does not have terms of weight £ — 1 and lower. (The second part of the proof
explains this along the way.)

Step 2. To complete the proof, we now show that all weight £ terms in ¥, vanish.
Assume that ¥ satisfies the order k differential proximity condition. By Remark 4
and Step 1, we have for £ = 2, ...k,

(6) = E¢(¥ o E7(E))

z 1 o .
= ;DVEK|(X070,...7O)(W1(E 1(8))U1,.~',WZ(D 1(8))‘)5) (19)
weight(v)=¢

+ (weight > ¢ terms).

Foreachi =1, ..., £, again by Remark 4 and Step 1,

1 1 1 o = . .
v (B 1(8)) == z —'D”ai ]|(;0’0 ,,,,, 0)5” + (weight > i terms). (20)

weight(n)=i

An inspection then reveals that the only weight £ terms in ¥ (8) are

Vi

1 v 1 1 —1<n
— = - —_Dh=
> SDVE | (2 > aDIECE
weight(v)=¢ weight(n)=1
Ve
1 _
—L n =137
27> DIES
weight(n)=¢
V]

1 1 —
_ —L . Vo . ﬂg—l n
=27ty D8 > GDIETE )
weight(v)=¢ weight(n)=1
)
1 _
> —'D"Ei—ls" . @D
weight(n)=¢ -

By yet another inspection, we see that by virtue of the chain rule the weight ¢ terms
in the Taylor expansion of (5 o Z~!), are given by the summation after the 2~
factor in (21). But & o £~ = identity, so any nonlinear term in its Taylor expansion
must vanish. In other words, all the nonlinear (i.e., degree > 1) terms in (21) vanish.

This implies that the Taylor expansion of ¥, (8) has the linear term 275, as its only
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weight £ term, and all other terms, linear or nonlinear, are of weight strictly greater
than £. In other words, ¥ satisfies the same differential proximity condition as ¥. O

It is worth stressing the role of the I1; reproduction property of Sy, in the coor-
dinate independence proof above: it induces a kind of “upper-triangular” structure
in ¥, (Lemma 1) and enters the proof in Step 2 above. In particular, the dyadic
eigenvalues in ¥, are the key to the derivation of (21). Indeed, (21) implies that as
far as the lowest weight terms (i.e., weight ¢) in the £-th component are concerned,

o —1

the map & o ¥ o &~ !is the same as 27¢5 o &

5 The Log-exp Scheme on Surfaces

As an application of Theorem 1, we show that the single basepoint log-exp scheme
introduced in [9] does not satisfy the differential proximity condition. Consequently,
thanks to Theorem 1, we can conclude a breakdown of smoothness equivalence in
the single basepoint scheme.

The paper [3] studies the proximity condition for the single basepoint schemes
defined by general retraction maps. Since [3] predates the development of Theo-
rem 1, the results therein were derived from the original proximity condition. As the
discussion in Sect. 3 hinted, the breakdown results based on the original proximity
condition from [3] easily imply corresponding breakdown results based on our dif-
ferential proximity condition. Therefore, the anticipated breakdown of smoothness
equivalence in the more general setting once again follows from Theorem 1.

As the computations in [3] are rather involved, we present here the special case
of the single basepoint log-exp scheme based on the C, symmetric B-spline, whose
subdivision mask is

1
(a—3,a_2,a_1,ap, ai, az, as, as) = a(l, 7,21,35,35,21,7,1), (22)

and in the simple case where M is a two-dimensional Riemannian manifold. In this
case,

qo(x0, X1, X2, X3) =exp,, (aslog,, (x0) + azlog,, (x1) +a_zlog, (x3)), (23a)
q1(x0, X1, X2, x3) =exp,, (a3log, (x0) +a_1log, (x2) +a_3log, (x3)), (23b)

q1(x0, x1, X2, X3)
qo(xo, x1, X2, x3)
q1(x1, x2, X3, X4) (24
qo(x1, x2, X3, X4)
q1(x2, X3, X4, X5)
qo(x2, x3, X4, X5)

0(x0, x1, X2, X3, X4, X5) =
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Fig. 2 Minimal invariant neighborhood of the C> B-spline subdivision scheme

and ¥ = (¥, ¥, ¥r, W3, Yy, Us) is defined according to (7) (Fig. 2).

Theorem 3 The nonlinear scheme S defined by (23) satisfies the C?-equivalence
property if and only if the manifold M has vanishing curvature.

One direction is clear, suppose M has vanishing curvature, we may then choose
local coordinates about any point in M in which the Riemannian metric is the Euclid-
ean metric. Butin these coordinates, S coincides with the (linear) C 5 B-spline scheme.

Now assume that M has nonzero curvature at the point xg. Then by Theorems 1
and 2, it suffices to choose coordinates centered at xg in which the derivative

0. for v =(1,2,0,0,0) 25)

does not vanish.

Notice that, although v has weight 5, it has degree 3. Consequently, to compute
this derivative, we need to only compute the Taylor expansion of ¥s up to order 3
and weight 5 in some coordinate system.

The computations are vastly simplified if we perform them in Riemann normal
coordinates centered at xo. We merely summarize the results from Riemannian geom-
etry we need. (A detailed treatment of normal coordinates is given in Chap. 4 of [10]
as well as in [1], particularly pages 41-42).

Let x = (u,v) denote normal coordinates on R? centered at the origin. Let
(u, v, U, V) denote the corresponding coordinates on the tangent bundle 7M, where
(U, V) are the components of the tangent vector based at (u, v). Riemann’s Theorem
then states that in these coordinates the coefficients of the Riemannian metric are

given by
grig12) _ (10Y _ Ko (v’ uy
g1 82) \01 3 \wvu?)’
where K¢ denotes the Gauss curvature at (0, 0). A standard computation using this

formula and the differential equations for geodesics yields the following Taylor
expansion for the exponential map about (0, 0, 0, 0) up to degree 3 in (u, v, U, V):

uv
u v

2
expn WU, V) = (u,v) + (U, V)+§K0det( ) (V,=U).

From this, one finds that up to degree 3 in (ug, vo, u, v), the Taylor expansion of log
is given by

2 up vo
1084, v9) (4, V)  (u,v) — (o, vo) — ZKodet {7 1) - (=(v = v0), (u — uo)).
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Setting §¢ = (8¢,u. 8¢,v), substituting the expansions for exp and log into the definition
of g, yields the Taylor expansion of g, up to degree 3. Substituting these Taylor
expansions into ¥s, and dropping all terms in 8, of degree larger than 3 and weight
larger than 5 yields (after a straightforward, but lengthy computation) the formula

1 7 Sud
W5(6) ~ 35 (35 850) + 1 Ko{ det (5;: 3;:) (=820, 82.4)
det (g ) (a1, 510
53,14 63,\)

The weight 5 terms are nonzero exactly when Ko # 0, so Theorem 3 is proved. This
formally disproves the smoothness equivalence conjecture first posted in [9].

While Theorem 3 says that nonvanishing curvature is the root cause of the C3-
breakdown in the nonlinear scheme defined by (22)—(23), one can show by a similar
computation that the same scheme satisfies C*-equivalence regardless of the curva-
ture of M. In 3, 21], such a C*-equivalence property was found to be attributable to
both a special property of the exponential map and the dual time-symmetry property
of the scheme (22)—(23). More precisely,

e If one replaces the exponential map by an arbitrary retraction map, then the result-
ing scheme will satisfy the C2-equivalence property but suffer a C3-breakdown
on a general manifold.

e If one replaces the underlying linear scheme by a stable C* linear subdivision
scheme without a dual time-symmetry, then the resulting scheme will satisfy a
C3-equivalence property but suffer a C*-breakdown on a general manifold.

To illustrate the latter point, we next consider the single basepoint log-exp scheme
based on the C° B-spline, whose subdivision mask is

1
(a—4a a-j3,a-3,da-i,dp,da,dz,ds, a4) = m(la 87 287 56’ 705 563 285 8’ 1) (26)

In this case,

qo(x0, X1, X2, X3, X4) =exp,, (a4 log,, (xo) + azlog,, (x1)

+a_zlog, (xa) +a—glog,, (xs)),
(27a)

q1(x0, X1, X2, x3) =exp,, (a3log, (x0) +a_ilog, (x2) +a_3log, (x3)),
(27b)
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Fig. 3 Minimal invariant k=6=K
neighborhood of the C° e0 000900
. e L] ] [ ] L] [ ] [ ] L]
B-spline subdivision scheme ° ° ° ° ° ° °

q1(xo, x1, X2, X3)
qo(x0, X1, X2, X3, X4)
q1(x1, x2, X3, X4)

O (xo, x1, X2, X3, X4, X5, X6) = | qo(x1, X2, X3, X4, X5) | , (28)
q1(x2, X3, X4, X5)
qo(x2, X3, X4, X5, X5)
q1(x3, x5, X6, X6)

and ¥ = (Y, Y1, ¥, U3, Wy, Us, Wp) is defined according to (7) (Fig. 3).

Note that the underlying scheme in this case is even smoother than before
(C instead of C>), and it has a primal symmetry. However, the resulting nonlin-
ear scheme, based on the single basepoint strategy, fails to inherit such a primal
symmetry.

Theorem 4 The nonlinear scheme S defined by (27) satisfies the C*-equivalence
property if and only if the manifold M has vanishing curvature.

One direction is clear, for suppose M has vanishing curvature, we may then
choose local coordinates about any point in M in which the Riemannian metric is the
Euclidean metric. But in these coordinates, S coincides with the (linear) C 6 B-spline
scheme.

Now assume that M has nonzero curvature at the point xo. Then by Theorems 1
and 2 it suffices to choose coordinates centered at x¢ in which the derivative

DUW4|(X0,O,..A,O)7 for V= (27 17 07 05 0) (29)

does not vanish.

Notice that, although v has weight 4, it has degree 3. Consequently, to compute
this derivative, we need to only compute the Taylor expansion of ¥4 up to order 3
and weight 4. We proceed as before, we substitute the Taylor expansions for gg and
q1 into Yy, and drop all terms in §; of degree larger than 3 and weight larger than 4
to arrive at the expansion

1 1 S1ud
V4(8) ~ 23 (Bau dav) + 7 Ko det (5;‘; 51’:) (81,01 81.0)-

The weight 4 terms are nonzero exactly when K¢ # 0, so Theorem 4 is proved.
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Wachspress and Mean Value Coordinates

Michael S. Floater

Abstract This paper gives a brief survey of two kinds of generalized barycentric
coordinates, Wachspress and mean value coordinates, and their applications. Appli-
cations include surface parameterization in geometric modeling, curve and surface
deformation in computer graphics, and their use as nodal shape functions for polyg-
onal and polyhedral finite element methods.

Keywords Barycentric coordinates -+ Wachspress coordinates -+ Mean value coor-
dinates

1 Introduction

There is no unique way to generalize barycentric coordinates to polygons and poly-
hedra. However, two specific choices have turned out to be useful in several appli-
cations: Wachspress and mean value coordinates, and the purpose of this paper is to
survey their main properties, applications, and generalizations.

For convex polygons, the coordinates of Wachspress and their generalizations due
to Warren and others [15, 22, 30-33] are arguably the simplest since they are rational
functions (quotients of bivariate polynomials), and it is relatively simple to evaluate
them and their derivatives. Some simple bounds on their gradients have been found
recently in [6], justifying their use as shape functions for polygonal finite elements.

For star-shaped polygons, and arbitrary polygons, Wachspress coordinates are not
well-defined, and mean value coordinates are perhaps the most popular choice, due
to their generality and surprising robustness over complex geometric shapes [1, 2, 4,
8, 13, 16], even though they are no longer positive if the polygon is not star-shaped.
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V4

v3

Vs

Vi \P)

Fig. 1 Vertex ordering for a polygon

They have been employed in various tasks in geometric modeling, such as surface
parameterization and plane and space deformation, as well as shading and animation
in computer graphics.

While most of this paper surveys previous results, we add two new ones. The
first is a new formula for the gradients of mean value coordinates, which could be
used in finite element methods. The second is an alternative formula for the mean
value coordinates themselves, which is valid on the boundary of the polygon. Though
it may not be of practical value, it offers an alternative way of showing that these
coordinates extend continuously to the polygon boundary.

2 Barycentric Coordinates on Polygons

Let P C R? be a convex polygon, viewed as an open set, with vertices vi, va, ..., Vy,
n > 3, in some anticlockwise ordering. Figure 1 shows an example with n = 5. We
call any functions ¢; : P — R, i =1, ..., n, (generalized) barycentric coordinates

if, forx € P, ¢;(x) >0,i =1,...,n,and

i@(x) =1, iqs,-(x)vi =x. (1)

i=1 i=l1

Forn = 3, the functions ¢, ¢», ¢3 are uniquely determined and are the usual triangu-
lar barycentric coordinates w.r.t. the triangle with vertices vy, v2, v3. For n > 4, the
choice of ¢1, ..., ¢, is no longer unique. However, they share some basic properties,
derived in [7]:

e The functions ¢; have a unique continuous extension to d P, the boundary of P.
e Lagrange property: ¢; (v;) = d;;.
e Piecewise linearity on d P:

$i((M = wv; +uvip) = A = wdi(vj) + pndi(vir), wel0,1l. (2
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Vi Vi

Fig. 2 Partitions for L; and ¢;

(Here and throughout, vertices are indexed cyclically, i.e., v,41 := vj etc.)
e Interpolation: if

gx) =D ¢i(x)f(vi), x€P, 3)

i=1

then g(v;) = f(v;). We call g a barycentric interpolant to f.

e Linear precision: if f is linear then g = f.

e {; <¢; < L;whereL;, ¢; : P — Rarethe continuous, piecewise linear functions
over the partitions of P shown in Fig. 2 satisfying L;(v;) = £;(vj) = §;;.

3 Wachspress Coordinates

Wachspress coordinates were developed by Wachspress [30], and Warren [32]. They
can be defined by the formula

w; (X)

P =S

“4)

where
A(Vi_1, Vi, Vig1)

. ’
M) = Vi VDA Vi Vie))

and A(x1, X2, x3) denotes the signed area of the triangle with vertices X1, X3, X3,

1 11
A(X1, X2, X3) := = [X] X2 X3,
y1y2y3

where x; = (xx, yx); see Fig. 3. The original proof that these coordinates are barycen-
tric was based on the so-called adjoint of P; see Wachspress [30], and Warren [32].
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Vitl

Fig. 3 Triangles defining Wachspress coordinates

The following proof is due to Meyer et al. [22]. Due to (4), it is sufficient to show
that

n
> wix)(vi —x) =0. (5)
i=1
Fix x € P and let
A =A;(X) = AX, Vi, vip1) and B = A(Vi_1, Vi, Vig1).
Then we can express X as a barycentric combination of v;_1, v;, Vi41:

A; (Bi —Ai-1—A) Ay
X=—Vi-1+ i
B; B: B:

Vitt,

regardless of whether x lies inside or outside the triangle formed by v;_1, v;, vi41.
This equation can be rearranged in the form

i

1
Vi —X) = Vi —Vi—1) — —(Vig1 — Vi).
A[—lAi( i ) Ai—l( i i 1) Ai( i+1 i)
Summing both sides of this over i, and observing that the right hand side then cancels

to zero, gives
n

> B Vi —x) =0
Al A -

i=1

which proves (5).
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3.1 Rational Functions

Another way of expressing these coordinates is in the form

Wi (X) .
iX) = —=————» i(X) = B; | | Aj(x), 6
P 2o W) i) kil i ©

and since each area A ; (x) is linear in x, we see from this that ¢; is arational (bivariate)
function, with total degree < n — 2 in the numerator and denominator. In fact, the
denominator, W = 27:1 W, has total degree < n — 3 due to linear precision: since
(5) holds with w; replaced by w;, it implies that

Z Wi (x)V; = W(X)X.
i=1

The left hand side is a (vector-valued) polynomial of degree < n — 2 in x and since
x has degree 1, the degree of W must be at most n — 3.

The degrees, n — 2 and n — 3, of the numerator and denominator of ¢; agree with
the triangular case where n = 3 and the coordinates are linear functions.

We note that the ‘global’ form of ¢; (x) in (6) is also valid for x € d P, unlike the
‘local’ form (4), though it requires more computation for large 7.

3.2 Perpendicular Distances to Edges

An alternative way of expressing Wachspress coordinates is in terms of the perpen-
dicular distances of x to the edges of P. This is the form used by Warren et al. [33],
and it generalizes in a natural way to higher dimension.

For each i, let n; € R? be the outward unit normal to the edge e; = [vi, Viy1],
and for any x € P let h; (x) be the perpendicular distance of x to the edge ¢;, so that

hi(X) = (v; —x) -m; = (Vig1 —X) -,

see Fig.4. Then the coordinates in (4) can be expressed as

w; (X)
i =< = 7
50 =S (7)
where
~ n,_1 Xn
wi(X) 1= (®)

hi—1(X)hi(x)’
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Fig. 4 Perpendicular distances

and
X1 X
X] X Xp 1= A2 .
Y1 Y2
for Xy = (xk, yx). To see this, observe that with L; = |v;jy1 — v;| (and | - | the

Euclidean norm) and §; the interior angle of the polygon at v;,
1.
A(Vi—1, Vi, Vig1) = 5 sin BiLi-1Li,

and ] ]
AX,Vi—1,V;) = Ehifl(X)Lifl, A(X, Vi, Viq1) = Ehi(X)Li»

so that

w;i (x) = 2w; (x).

3.3 Gradients

The gradient of a Wachspress coordinate can be found quite easily from the perpen-
dicular form (7 and 8). Since Vh;(x) = —n;, the gradient of w; is [6]

- - n;_| n;
Vw; (X) = w;(x) m + h_(x) . 9

Thus the (vector-valued) ratio R; := Vw; /w; is simply
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Fig. 5 Barycentric mapping

Fig. 6 Curve deformation

Using the formula [6]
Vo = ¢i(Ri — > ¢;R;) (10)

for any function ¢; of the form (7), we thus obtain V¢; (x) for x € P.

3.4 Curve Deformation

While Wachspress’s motivation for these coordinates was finite element methods over
polygonal partitions, Warren suggested their use in deforming curves. The coordi-
nates can be used to define a barycentric mapping of one polygon to another, and
such a mapping will then map, or deform, a curve embedded in the first polygon into
a new one, with the vertices of the polygon acting as control points, with an effect
similar to those of Bézier and spline curves and surfaces.

Assuming the second polygon is P’ with vertices v/, ..., v,, the barycentric
mapping g : P — P’ is defined as follows. Given x € P,

1. express x in Wachspress coordinates, X = Z?:l ¢i (X)v;,
2. setg(x) = ' pi(X)V..

Figure 5 shows such a mapping. Figure 6 shows the effect of using the mapping to
deform a curve (a circle in this case).

It is now known that Wachspress mappings between convex polygons are always
injective; as shown in [9]. The basic idea of the proof is to show that g has a positive
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Vitl

aV,

Fig. 7 Notation for mean value coordinates

Jacobian determinant J(g). To do this one first shows that J(g) can be expressed as

o bj Pk
J@=2 D |0 higj hee| AV, V. vp).
I<i<j<k<n |020; 0260 D2¢i

By the convexity of P’, the signed areas A(v;, v/, v;) in the sum are all positive, and
so J(g) > 0if all the 3 x 3 determinants in the sum are positive, and this turns out
to be the case for Wachspress coordinates ¢; .

4 Mean Value Coordinates

As we have seen, Wachspress coordinates are relatively simple functions, and lead to
well-behaved barycentric mappings. They are, however, limited to convex polygons.
For a nonconvex polygon they are not well-defined, since the denominator in the
rational expression becomes zero at certain points in the polygon. An alternative set
of coordinates for convex polygons is the mean value coordinates [4], which have
a simple generalization to nonconvex polygons, though positivity is in general lost.
Suppose initially that P is convex as before, then the mean value (MV) coordinates
are defined by (4) and

Wi (x) = tan(aj—1/2) + tan(ai/Z)’ (11
lvi — x|

with the angles a; = «;(x), with 0 < «a; < 7, as shown in Fig.7. To show that
these coordinates are barycentric, it is sufficient, as in the Wachspress case, to show
that the w; in (11) satisfy (5). This can be done in four steps:

1. Express the unit vectors e; := (v; — X)/|v; — X| in polar coordinates:

e; = (cosb;,sin6;),
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Fig. 8 Wachspress (left). Mean value (right)

and note that o; = 0;1 — 6;.
2. Use the fact that the integral of the unit normals n(6) = (cos 8, sin @) on a circle

18 zero:
2

/ n@)do = 0.

0

3. Split this integral according to the 6;:

2 n b
/n(e)de => / n(9) de. (12)
0 i=1 g
4. Show by trigonometry that
Oi+1 |
— COS &
/ n(0)do = - %% (e 1 er,1) = tan(e;/2)(e; + ei1).
sin «;
0;

Substituting this into the sum in (12) and rearranging gives (5).
We can compute tan(c; /2) from the formulas

coso; =¢€; - €41, sina,- =€ X €41. (13)

Figure 8 compares the contour lines of a Wachspress coordinate, on the left, with the
corresponding MV coordinate, on the right.

4.1 Gradients

Similar to the Wachspress case, the gradient V¢; of the MV coordinate ¢; can be
computed from the formula (10) if we can find the ratio R; := Vw; /w;, with w; in
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(11). Letr; = |v; — x| and t; = tan(w; /2) so that

ti—1+1
W = —.
T
Further, define
€; €itl1
¢ =———",
ri  Titl

and for a vector a = (a1, ap) € R2, letal := (—ap, ay).

Theorem 1 For the MV coordinates,

1 1
li—1 ¢ li ¢; e;
R; = — + —— 4+ —.
ti-1+1t ) sino;—1 ti—1+1t ) sing; T

We will show this using two lemmas.

Lemmal Foru e R? lete = (e1,e3) = (u—X)/|u — x| and r = |u — x|. Then

ezeL eleJ-

Ve = s Ve, = —
r r

Proof Ifd = (dy, d») = u — x, then using the fact that
Vd; = (—-1,0), Vdy=(0,—-1), and Vr=—-d/r,

the result follows from the quotient rule:

v v di rVd, — diVr =12
er = —_— =, = , .
k r r2 O
Lemma 2 Suppose u, v € R?, and let

e=(u—X)/|ll—X|, r=|u_xlv

f=(wv-x)/lv—x| s = |v—Xx]|.
Then

Ve -f)=—(exfet and Viexf)=(e-fet,

where



Wachspress and Mean Value Coordinates
Proof Withe = (e, e3) and f = (f1, f>),

V(e -f) = fiVer +e1Vfi+ faVes + eV f2,
V(e xf) = foVe; +e1Vfo— fiVes — eV fi,

and applying Lemma 1 to Vey and V fi, k = 1, 2, gives the result.

We now prove Theorem 1. Recalling (13), Lemma 2 shows that

V(cos ;) = —(sin al-)cf, V(sina;) = (cos a,')cil.

From this it follows that

Since, Vr; = —e;, this means that

€L

t; t: C e; . . .
viL)="L{2L-+2), j=i-1,i

ri ri SIn ¢ ri

1 1

ti—1 C_ t; C; €;
sz:’—( ! )+—’( — )+wl-—’,
ri SN o 1 ri S1n o ri

which, after dividing by w;, proves Theorem 1.

Therefore,
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(14)

Incidentally, though we did not use it, we note that both equations in (14) imply

that
VO[,' = Cij'.

Another derivative formula for MV coordinates can be found in [28].

4.2 Alternative Formula

We saw that Wachspress coordinates can be expressed in the “global form” (6) in
which ¢; (x) is well-defined for x € d P as well as for x € P. It turns out that MV
coordinates also have a global form with the same property, though for large n, the
resulting expression requires more computation, and involves more square roots,

than the local form based on (11). Letd; =v; — x,i = 1,...,n.

Theorem 2 The MV coordinates in (4) can be expressed as

Wi (X)

AN )

15)
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where

Wi = (ricirigr — dig - dig)'/? H (rjrjr1+d;-djep'2 (16)
JA—Li

Proof From the addition formula for sines, we have

1 (Sin(ai1/2) Sin(oti/Z)) _ sin((oi—1 + i) /2)

Wi:r_i cos(ai—1/2)  cos(e;i/2))  ricos(ei—1/2)cos(a;/2)

Then, to get rid of the half-angles we use the identities

sin(A/2) = /(1 —cos A)/2,
cos(A/2) =+/(1 +cosA)/2,

to obtain

w; = —
ri

1/ 2(1—cos(i_1 +a)) \'/?
(1 4+ cosaj—1)(1 4+ cosa;) '

Now we substitute in the scalar product formula,

di—1-digg

ri—1Ti+1

cos(aj—1 + ;) =

and similarly for cos ;1 and cos «;, and the 1/r; term cancels out:

w; = ( 2(ri—1rig1r —di—y - diyy) )1/2
' (ri—1ri +di—1 - d)(ririt1 +d; - diy1) '

which gives 15 and 16. ]

One can easily check that this formula gives the correct values (2) for x € 9 P.

4.3 Star-Shaped Polygons

The original motivation for these coordinates was for parameterizing triangular
meshes [3, 5, 29]. In this application, the point X is a vertex in a planar triangu-
lation, with v, ..., v, its neighbouring vertices. Thus, in this case, the polygon P
(with vertices vy, . . ., v,,) is not necessarily convex, but always star-shaped, with x a
point in its kernel, i.e., every vertex v; is “visible” from x; see Fig.9. In this case the
angles «; in (11) are again positive, and the weight w; (x) is again positive. Thus the
MYV coordinates of x remain positive in this star-shaped case. The advantage ofthis is
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Fig. 9 A star-shaped polygon and its kernel

that when these coordinates are applied to the parameterization of triangular meshes,
the piecewise linear mapping is guaranteed to be injective, i.e., none of the triangles
“fold over,” when the boundary of the mesh is mapped to a convex polygon.

4.4 Arbitrary Polygons

It was later observed, in [13], that the coordinates are still well-defined, though not
necessarily positive, when P is an arbitrary polygon, provided that the angles «; are
treated as signed angles: i.e., we take «; in (11) to have the same sign as e; X €;41,
which will be the case if we use the formulas (13). The reason for this is that even
though w;(x) in (11) may be negative for some i, when P is arbitrary, the sum
Z?: | wi(x) is nevertheless positive for any x in P. This was shown in [13], where
it was also shown that these more general MV coordinates have the Lagrange and
piecewise linearity properties on d P.

This generalization of MV coordinates allows the curve deformation method to be
extended to arbitrary polygons. It was further observed in [13] that MV coordinates
even have a natural generalization to any set of polygons, as long as the polygons do
not intersect one another. The polygons may or may not be nested. These generalized
MYV coordinates were applied to image warping in [13].

5 Polygonal Finite Elements

There has been steadily growing interest in using generalized barycentric coordinates
for finite element methods on polygonal (and polyhedral) meshes [6, 11, 23, 26, 27,
34]. In order to establish the convergence of the finite element method, one would
need to derive a bound on the gradients of the coordinates in terms of the geometry
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of the polygon P. Various bounds on

sup |V (x)]

xeP

were derived in [11] for Wachspress (and other) coordinates, and in [23] for MV
coordinates. For the Wachspress coordinates, a simpler bound was derived in [6].
If we define, forx € P,

rx) =D Vi), (17)

i=1

then A plays a role similar to the Lebesgue function in the theory of polynomial
interpolation because for g in (3),

IVg(x)| < ; Vi X)) f(vi)] < )»(X)iznllffin | f(vi)l.
It was shown in [6] that with
A = sup A(x) (18)

xeP

the corresponding ‘Lebesgue constant’, and with ¢; the Wachspress coordinates,

A<

3

S

where

hy = min min h;(v;).
i=1,..n j#ii+1

6 Curved Domains

Consider again the barycentric interpolant g in (3). Since g is piecewise linear on the
boundary d P, it interpolates f on d P if f itself is piecewise linear on d P. Warren
et al. [33] proposed a method of interpolating any continuous function f defined
on the boundary of any convex domain, by, roughly speaking, taking a continuous
“limit” of the polygonal interpolants g in (3). Specifically, suppose that the bound-
ary of some convex domain P C R? is represented as a closed, parametric curve
¢ : [a,b] — R2, with c¢(b) = c(a). Then any sequence of parameter values,
t,....thg, Wwitha <t] <th <--- <t, < b, with mesh size h = max;(tj+1 — t;),
defines a convex polygon P, with vertices v; = c¢(#;); see Fig. 10. The barycentric
interpolant g in (3) with respect to this polygon is then
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¢ (tis)

c(tp)

Fig. 10 From polygons to curved domains

gn(x) = D ¢i(x) f (e(t)). (19)

i=1

Taking the limit g = limj_,o g5 over a sequence of such polygons, and letting the
¢; be the Wachspress coordinates, gives

b b
g(x) = /w(x, t)f(c(t))dt//w(x, t)dt, xe P, (20)
where , B
) = €O x e

T () —x) x (1)

It was shown in [33] that the barycentric property also holds for this g: if f : R> — R
is linear, i.e., f(X) = ax + by + c, then g = f. However, it also follows from the
fact that if f is linear, g, = f for all A.

There is an analogous continuous MV interpolant, with g also given by (20), but
with the weight function w(Xx, t) replaced by

(e() =% x )

WD = T =X

21

One can also derive the barycentric property of this continuous interpolant by apply-
ing the unit circle construction of Sect. 4 directly to the curved domain P. Figure 11
shows the MV interpolant to the function cos(20), 0 < 6 < 2w, on the boundary of
the unit circle.

Similar to the generalization of MV coordinates to nonconvex polygons, the con-
tinuous MV interpolant also extends to arbitrarily shaped curve domains: one simply
applies the same formula (21). Even though the cross product,

(e(t) —x) x €'(1)
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Fig. 11 An MV interpolant on a circle

may be negative for some values of ¢, the integral fab w(x, t) dt of win (21) remains
positive [2].

6.1 Hermite Interpolation

If the normal derivative of f is also known on the boundary of the domain, we
could consider matching both the values and normal derivatives of f.In [2, 10] two
distinct approaches were used to construct such a Hermite interpolant, both based on
the construction of MV interpolants. To motivate this, let 7, denote the linear space
of polynomials of degree < n in one real variable. Suppose that f : [0, 1] — R
has a first derivative at x = 0 and x = 1. Then there is a unique cubic polynomial,
p € w3, such that

PP =6, i=01, k=01
There are various ways of expressing p. One is as
p =lo(x) + w(x)li(x),
where
lo(x) =0 =x)fO)+xf(1), wkx)=x(1-x), Li(x)=1-x)mg+xm,

and

mo = f'(0) = (f() = f(O), mi=(f(1)— fO)— f'(D.
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The basic idea of the Hermite interpolant in [2] is to generalize this construction to a
general planar domain, replacing the linear interpolants /o and /1 by MV interpolants,
and replacing the weight function @ by an MV “weight” function. This gives a
Hermite interpolant in 2D, but it does not in general have cubic precision. Another
way of expressing p above is as the minimizer of a functional. For a fixed x € (0, 1),
p(x) is the value s(x) of the spline s that minimizes the functional

1
E(s) = / (" (1)) dy,
0

in the spline space
S ={s € C'0,1]: sl Slpx.17 € 73},
subject to the boundary conditions
sOGy =06, i=0,1, k=0,1.

A generalization of this minimization was used in [10] to generate a function on
a curved domain that appears, numerically, to interpolate the boundary data, but a
mathematical proof of this is still missing. The cubic construction in [10] was recently
derived independently through certain mean value properties of biharmonic functions
by Li et al. [19]. They also give a closed-form expression for the coordinates on a
polygonal domain when a suitable definition of the boundary data is used along the
edges.

7 Coordinates in Higher Dimensions

So far we have only considered coordinates for points in R?, but there are applications
of barycentric coordinates for points in a polyhedron in R3, such as in Fig. 12, or
more generally for points in a polytope in R?. Both Wachspress and MV coordinates
have been generalized to higher dimensions.

7.1 Wachspress Coordinates in 3D

Warren [32] generalized the coordinates of Wachspress to simple convex polyhedra:
convex polyhedra in which all vertices have three incident faces. In [33], Warren et
al. derived the same coordinates in a different way (avoiding the so-called “adjoint™),
generalizing (7) as follows. Let P C R be a simple convex polyhedron, with faces
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Fig. 12 Simple, convex polyhedron

F and vertices V. For each face f € F,letny € R3 denote its unit outward normal,
and for any x € P, let h s (x) denote the perpendicular distance of x to f, which can
be expressed as the scalar product

hy(x) =(v—x)-ng,

for any vertex v € V belonging to f. For each vertex v € V, let f1, f2, f3 be the
three faces incident to v, and for x € P, let

det(llf1 , g, nf3)
hf (), (Oh £, (%)

wy(X) = (22)

where it is understood that fi, f», f3 are ordered such that the determinant in the
numerator is positive. Here, for vectors a, b, ¢ € R3,

ay by ¢
det(a, b, ¢) := |ay by 2.
az b3 c3

Thus the ordering of fi, f>, f3 must be anticlockwise around v, seen from outside P.
In this way, wy(x) > 0, and it was shown in [33] that the functions

wy (X)
X)) = (23)
' Zue v Wu (X)
are barycentric coordinates for x € P in the sense that
D=1 > $p®v=x (24)

veV veV

To deal with nonsimple polyhedra, it was suggested in [33] that one might decom-
pose a nonsimple vertex into simple ones by perturbing its adjacent facets. Later, Ju
etal. [15] found a cleaner solution, using properties of the so-called polar dual. With
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respect to each x in a general convex polyhedron P C R3, there is a dual polyhedron,
Py = {yeR3:y-(z—X) <1,z e P}.

It contains the origin y = 0, and its vertices are the endpoints of the vectors

when placed at the origin. Suppose that a vertex v € V has k incident faces,
fi,-.., fx, for some k > 3, where we again assume they are ordered in some
anticlockwise fashion around v, as seen from outside P. The endpoints of the k
vectors p s, (x), ... ps (x) form a k-sided polygon. This polygon is the face of Py,
dual to the vertex v of P. This face and the origin in R? form a polygonal pyramid,
Oy C Py. It was shown in [15] that if we define

wy (x) = vol(Qv),

then the functions ¢y in (23) are again barycentric coordinates. In practice, we could
triangulate the face dual to v by connecting the endpoint of p 7, (x) to the endpoints
of all the other p £, (x), and so compute vol(Qy) as a sum of volumes of tetrahedra.
Thus, we could let

k—1

wy(x) = D det(p; (X), p; (%), P, (X)) (25)
i=2

Some matlab code for evaluating these coordinates and their gradients can be found
in [6].

7.2 MYV Coordinates in 3D

MYV coordinates were generalized to three dimensions in [8, 16], the basic idea being
to replace integration over the unit circle, as in Sect. 4, by integration over the unit
sphere.

Consider first the case that P C R is a convex polyhedron with triangular faces
(though it does not need to be simple). Fix x € P and consider the radial projection
of the boundary of P onto the unit sphere centered at x. A vertex v € V is projected
to the point (unit vector) ey := (v — x)/|v — X|. A face f € F is projected to a
spherical triangle fx whose vertices are ey, v € V¢, where V¢ C V denotes the set
of (three) vertices of f. LetI; denote the (vector-valued) integral of its unit normals,
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Iy ::/n(y)dy.
fx

Since the three vectors ey, v € Vy, are linearly independent, there are three unique
weights wy ¢ > 0 such that

Ir= > wyrey. (26)
veVy

The weights can be found as ratios of 3 x 3 determinants from Cramer’s rule. Since
the integral of all unit normals of the unit sphere is zero, and letting Fy C F denote
the set of faces that are incident on the vertex v, we find, by switching summations,

that
0=D Tr=2 > wwye=2 > wyser,
feF feFveVy veV feFy
and so the functions Wy, f
v,
Wy (= Z m, (27)
feFy

satisfy
Z wy(X)(v — X) = 0.

veV

It follows that the functions ¢y given by (23) with wy given by (27) are barycentric
coordinates, i.e., they are positive in P and satisfy (24).

It remains to find the integral I in terms of the points v € V¢ and x. We follow
the observation made in [8]. The spherical triangle fx and the point x form a wedge
of the solid unit sphere centered at x. Since the integral of all unit normals over this
wedge is zero, the integral I is minus the sum of the integrals over the three planar
faces of the wedge. Suppose vi, v2, v3 are the vertices of f in anticlockwise order,
and let e; = ey,. Fori = 1, 2, 3, the ith side of the wedge is the sector of the unit
circle formed by the two unit vectors e; and e; |, with the cyclic notation v; 3 := v;.
If B; € (0, ) is the angle between e; and e; | then the area of the sector is §;/2,
and hence

3
1
Iy =5 2 pmi, (28)
i=1
where
€ X €]
-

| = .
le; X €11]
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Equating this with (26) gives
m; -m;; ml+1
Wvi. f Z I e migy

These 3D MV coordinates were used for surface deformation in [ 16] when the surface
is represented as a dense triangular mesh. Some contour plots of the coordinate
functions can be found in [8].

For a polyhedron with faces having arbitrary numbers of vertices, the same
approach can be applied, but there is no longer uniqueness. Suppose f € F is a
face with k > 3 vertices. The integral I 1 is again well-defined, and can be computed
as the sum of k terms, generalizing (28). However, there is no unique choice of the
local weights wy, ¢ in (26) for k > 3, since there are k of these. Langer et al. [17]
proposed using a certain type of spherical polygonal MV coordinates to determine
the wy, ¢, but other choices are possible.

8 Final Remarks

We have not covered here other kinds of generalized barycentric coordinates,
and related coordinates, which include Sibson’s natural neighbor coordinates [24],
Sukumar’s maximum entropy coordinates [25], Gordon and Wixom coordinates [12],
spherical barycentric coordinates [17], harmonic coordinates [14], Green coordinates
[21], Poisson coordinates [ 18], Positive MV coordinates [20] and others. A more gen-
eral survey paper is being planned in which some of these other coordinates will be
included.
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Hermite and Bernstein Style Basis Functions
for Cubic Serendipity Spaces on Squares
and Cubes

Andrew Gillette

Abstract We introduce new Hermite style and Bernstein style geometric decompo-
sitions of the cubic serendipity finite element spaces S3(/ 2y and S3(13), as defined
in the recent work of Arnold and Awanou [Found. Comput. Math. 11 (2011), 337-
344]. The serendipity spaces are substantially smaller in dimension than the more
commonly used bicubic and tricubic Hermite tensor product spaces—12 instead of
16 for the square and 32 instead of 64 for the cube—yet are still guaranteed to obtain
cubic order a priori error estimates in H'! norm when used in finite element methods.
The basis functions we define have a canonical relationship both to the finite element
degrees of freedom as well as to the geometry of their graphs; this means the bases
may be suitable for applications employing isogeometric analysis where domain
geometry and functions supported on the domain are described by the same basis
functions. Moreover, the basis functions are linear combinations of the commonly
used bicubic and tricubic polynomial Bernstein or Hermite basis functions, allowing
their rapid incorporation into existing finite element codes.

Keywords Finite elements - Serendipity elements - Multivariate polynomial inter-
polation + Tensor product interpolation + Hermite interpolation

1 Introduction

Serendipity spaces offer a rigorous means to reduce the degrees of freedom asso-
ciated to a finite element method while still ensuring optimal order convergence.
The “serendipity” moniker came from the observation of this phenomenon among
finite element practitioners before its mathematical justification was fully under-
stood; see e.g., [6, 11, 12, 15]. Recent work by Arnold and Awanou [1, 2] classifies
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Fig. 1 Cubic serendipity functions on /2 from [16]. The left function is associated to the vertex
below the peak. The middle and right functions are associated to the edge y = —1 but do not
correspond to the domain points (:I:%, —1) in any canonical or symmetric fashion, making them
less useful for geometric modeling or isogeometric analysis

serendipity spaces on cubical meshes in n > 2 dimensions by giving a simple and
precise definition of a space of polynomials S, (/") that must be spanned, as well as
a unisolvent set of degrees of freedom for them. Crucially, the space S, (I") contains
all polynomials in n variables of total degree at most r, a property shared by the space
of polynomials Q, (I™) spanned by the standard order r tensor product method. This
property allows the derivation of an a priori error estimate for serendipity methods
of the same order (with respect to the width of a mesh element) as their standard
tensor product counterparts.

In this paper, we provide two coordinate-independent geometric decompositions
for both S3(1?) and S3(I3), the cubic serendipity spaces in two and three dimensions,
respectively. More precisely, we present sets of polynomial basis functions, prove that
they provide a basis for the corresponding cubic serendipity space, and relate them
canonically to the domain geometry. Each basis is designated as either Bernstein or
Hermite style, as each function restricts to one of these common basis function types
on each edge of the square or cube. The standard pictures for S3(7%) and S3(1°3)
serendipity elements, shown on the right of Figs.2 and 4, have one dot for each
vertex and two dots for each edge of the square or cube. We refer to these as domain
points and will present a canonical relationship between the defined bases and the
domain points.

To the author’s knowledge, the only basis functions previously available for cubic
serendipity finite element purposes employ Legendre polynomials, which lack a clear
relationship to the domain points. Definitions of these basis functions can be found in
Szab6 and Babuska [16, Sect. 6.1 and 13.3]; the two functions from [16] associated
to the edge y = —1 of 12, are shown in Fig.1 (middle and right). The restriction
of these functions to the edge gives an even polynomial in one case and an odd
polynomial in the other, forcing an ad hoc choice of how to associate the functions
to the corresponding domain points (:I:%, —1). The functions presented in this paper
do have a natural correspondence to the domain points of the geometry.

Maintaining a concrete and canonical relationship between domain points and
basis functions is an essential component of the growing field of isogeometric
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analysis (IGA). One of the main goals of IGA is to employ basis functions that
can be used both for geometry modeling and finite element analysis, exactly as we
provide here for cubic serendipity spaces. Each function is a linear combination of
bicubic or tricubic Bernstein or Hermite polynomials; the specific coefficients of the
combination are given in the proofs of the theorems. This makes the incorporation
of the functions into a variety of existing application contexts relatively easy. Note
that tensor product bases in two and three dimensions are commonly available in
finite element software packages (e.g., deal.Il [4]) and cubic tensor products in par-
ticular are commonly used both in modern theory (e.g., isogeometric analysis [9])
and applications (e.g., cardiac electrophysiology models [17]). Hence, a variety of
areas of computational science could directly employ the new cubic serendipity basis
functions presented here.

The benefit of serendipity finite element methods is a significant reduction in the
computational effort required for optimal order (in this case, cubic) convergence.
Cubic serendipity methods on meshes of squares requires 12 functions per element,
an improvement over the 16 functions per element required for bicubic tensor product
methods. On meshes of cubes, the cubic serendipity method requires 32 functions per
element instead of the 64 functions per element required for tricubic tensor product
methods. Using fewer basis functions per element reduces the size of the overall
linear system that must be solved, thereby saving computational time and effort. An
additional computational advantage occurs when the functions presented here are
used in an isogeometric fashion. The process of converting between computational
geometry bases and finite element bases is a well-known computational bottleneck
in engineering applications [8] but is easily avoided when basis functions suited to
both purposes are employed.

The outline of the paper is as follows: In Sect. 2, we fix notation and summarize
relevant background on Bernstein and Hermite basis functions as well as serendipity
spaces. In Sect. 3, we present polynomial Bernstein and Hermite style basis functions
for S3(I?) that agree with the standard bicubics on edges of % and provide a novel
geometric decomposition of the space. In Sect.4, we present polynomial Bernstein
and Hermite style basis functions for S3(13) that agree with the standard tricubics on
edges of I3, reduce to our bases for 2 on faces of I, and provide a novel geometric
decomposition of the space. Finally, we state our conclusions and discuss future
directions in Sect. 5.

2 Background and Notation

2.1 Serendipity Elements

We first review the definition of serendipity spaces and their accompanying notation
from the work of Arnold and Awanou [1, 2].
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Definition 1 The superlinear degree of amonomial inn variables, denoted sldeg(-),
is given by
n
sldeg(xy'x5% - - - xi") 1= (Z ei) —#{e; 1 e =1}). (1)
i=1

In words, sldeg(q) is the ordinary degree of g, ignoring variables that enter linearly.
For instance, the superlinear degree of xy?z> is 5.

Definition 2 Define the following spaces of polynomials, each of which is restricted
to the domain 1" = [—1, 1]" C R"™:

P, (I"") := spanp {monomials in n variables with total degree at most r}
S, (I") := spanp {monomials in n variables with superlinear degree at most r}
Q,(I") := spanp {monomials in n variables of degree at most r in each variable} .

Note that P,(I") C S,(I") C Q,(I"), with proper containments when r, n > 1.
The space S, (") is called the degree r serendipity space on the n-dimensional cube
I"". In the notation of the recent paper by Arnold and Awanou [2], the serendipity
spaces discussed in this work would be denoted S, A°(I"), indicating that they are
differential O-form spaces. The space O, (I") is associated with standard tensor
product finite element methods; the fact that S, (1) satisfies the containments above
is one of the key features allowing it to retain an O (h") a priori error estimate in H !
norm, where / denotes the width of a mesh element [5]. The spaces have dimension
given by the following formulas (cf. [1]).

dim P, (I") = (” + r),
n
min(n,|r/2])

dms, (M= > 2"—”’(2)(;‘1),

d=0
dim O, (I") = (r + D).

We write out standard bases for these spaces more precisely in the cubic cases of
concern here.

P3(1%) = span{l, x, y,x%, ¥, xy, x°, y3, 22y, xy?}, 2
—_—— ——— ———
linear  quadratic cubic
S3(1%) = P31 U span{ x3y, xy3 1, 3)
——
superlinear cubic
Q3(I%) = S3(1%) Uspan{x’y®, x*y?, x%y%, x*y*}. €

Observe that the dimensions of the three spaces are 10, 12, and 16, respectively.
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P3(13) = spanf{l, x, y, z, x, y%, 22, xy, xz, yz, x>, ¥, 23, %y, x%2, xy%, y?z, x2%, y22, xyz)
——

linear quadratic cubic
&)

S3(I*) = Ps(I*) Uspan{x®y, x%z, y3z, xy? x2%, vz, x?yz, xy?2, 0y, yz, xyPz, xy2®)

superlinear cubic
(6)
Q3(I%) = S3(I) Uspan(x’y?, ...,y 2} @)
Observe that the dimensions of the three spaces are 20, 32, and 64, respectively.
The serendipity spaces are associated to specific degrees of freedom in the clas-

sical finite element sense. For a face f of 1" of dimension d > 0, the degrees of
freedom associated to f for S, (1) are (cf. [1])

u'—>/fuq, g €Prsalf).

For the cases considered in this work, n = 2 or 3 and r = 3, so the only nonzero
degrees of freedom are when f is a vertex (d = 0) or an edge (d = 1). Thus, the
degrees of freedom for our cases are the values

u(v), /u dt, and /ut dt, (8)
e e

for each vertex v and each edge e of the square or cube.

2.2 Cubic Bernstein and Hermite Bases

For cubic order approximation on square or cubical grids, tensor product bases are
typically built from one of two alternative bases for P3([0, 1]):

Bi (1- x); ¥ 1— 3x2 + z,§3
B | d=x)x v [ x—2xF+x
(Bl = 8y | = | (1 — o2 [¥]= P T
Ba x3 L 3x2 — 2x3

The set {1, 362, 383, B4} is the cubic Bernstein basis and the set [1] is the cubic
Hermite basis. Bernstein functions have been used recently to provide a geomet-
ric decomposition of finite element spaces over simplices [3]. Hermite functions,
while more common in geometric modeling contexts [13] have also been studied in
finite element contexts for some time [7]. The Hermite functions have the following
important property relating them to the geometry of the graph of their associated
interpolant:
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u=u©)y1 +u' 02 —u'(HY3 +u()ys,  Vu € P3(0, 1]). €))

We have chosen these sign and basis ordering conventions so that both bases have
the same symmetry property:

Bl —x) = Bs_(x),  Yu(l —x) =s5_4(x). (10)

The bases [S] and [¢/] are related by [8] = V[v] and [¢] = V‘l[ﬂ] where

1-300 1300

o1 00 1 _|o100

V=1loo 10" ¥ =loo1o0 (1
00 31 0031

Let [8"] denote the tensor product of n copies of [8]. Denote ; (x)B;(y) € [,32]

by Bij and B; (x) B (y)Bi(z) € [B*]by Bijk. In general, [8"]is a basis for Q3([0, 1]"),
but we will make use of the specific linear combination used to prove this, as stated
in the following proposition.

Proposition 1 For 0 < r,s,t < 3, the reproduction properties of [B], [,82], and
(B3] take on the respective forms

, 4 3—r
x 22(4_i)ﬂ;, (12)

i=1

s i 3—r\[(3—=5
n 222(4—i)(4—j)ﬁ"” 4

i=1 j=1

4 4 4
- 3—r\(3—-s\(3—1
xySZt2222(4—1')(4—1')(4—]{)/3”]{. (14)
i=1 j=1k=1

The proof is elementary. We have a similar property for tensor products of the
Hermite basis [{/], using analogous notation. The proof'is a simple matter of swapping
the order of summation.

Proposition 2 Let
4
3—r
eri 1= Z; (4 _ a)va,- (15)
a=

where vg; denotes the (a, i) entry (row, column) of V from (11). For0 <r,s,t <3,
the reproduction properties of [V, (2], and [ take on the respective forms
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X =" e, (16)
i=1

4 4
Xy =" ik Vi A7)

i=1 j=1

4 4 4
X"y = ZZZSr,iSS,jSt,k%jk~ (18)

i=1 j=1k=1

Transforming the bases [8] and [¢] to domains other than [0, 1] is straightfor-
ward. If T : [a, b] — [0, 1] is linear, then replacing x with 7'(x) in each basis
function expression for [8] and [vr] gives bases for P3([a, b]). Note, however, that
the derivative interpolation property for [¢] must be adjusted to account for the
scaling:

u(x) = u(@) i (T (x)) + (b — a)u’ (@) (T (x))
— (b —a)u' (D)Y3(T (x)) + ub)Ya(T (x)), Yu € P3([a,b]).  (19)

In geometric modeling applications, the coefficient (b — a) is sometimes left as an
adjustable parameter, usually denoted s for scale factor [10], however, (b —a) is the
only choice of scale factor that allows the representation of u given in (19). For all
the Hermite and Hermite style functions, we will use derivative-preserving scaling
which will include scale factors on those functions related to derivatives; this will be
made explicit in the various contexts where it is relevant.

Remark 1 Both [B] and [¢] are Lagrange-like at the endpoints of [0, 1], i.e., at an
endpoint, the only basis function with nonzero value is the function associated to
that endpoint (81 or y| for 0, B4 or Y4 for 1). This means the two remaining basis
functions of each type (82, B3 or ¥, ¥3) are naturally associated to the two edge
degrees of freedom (8). We will refer to these associations between basis functions
and geometrical objects as the standard geometrical decompositions of [] and [v].

3 Local Bases for S3(1?)

Before defining local bases on the square, we fix notation for the domain points to
which they are associated. For [0, 112, define the set of ordered pairs

X:={{i,j} | i,jefl,...,4}}.

Then X is the disjoint union V U E U D where
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14 24 34 44 4 24 34 44
[ ] [ ] ® [ ] D [ ]
13 23 33 43 13 43
o (] o [ ] ] o
120 22 32 42 12 42
1T 21 31 41 1T 21 31 41

Fig. 2 On the left, ordered pairs from X are shown next to the domain point of [0, 1]? to which
they correspond. On the right, only those ordered pairs used for the serendipity basis are shown.
The correspondences V <> vertices, E <> edge points, and D <> domain interior points are evident

Vie={{i,jteX | i,je{l,4}}; (20)
E :={{i, j} € X | exactly one of 7, j is an element of {1, 4}} ; 21
D:={{i,jleX |ije{23}}. (22)

The V indices are associated with vertices of [0, 1]%, the E indices to edges of [0, 113,
and the D vertices to the domain interior to [0, 1]2. The relation between indices and
domain points of the square is shown in Fig. 2. We will frequently denote an index
set {7, j} as ij to reduce notational clutter.

3.1 A Local Bernstein Style Basis for S3(1 2)

We now establish a local Bernstein style basis for S3(7°) where I := [—1, 1]. Define
the following set of 12 functions, indexed by V U E; note the scaling by 1/16.

Cen ] [ =00 —y)(=2—2x +x2 =2y + y))]
£14 1=y 4+ D(=2 —2x +x2 +2y + y?)
£41 (x+ DA —y)(—24+2x +x> =2y +y?)
Eaa x+ DO+ D(=24+2x +x2+2y+y?)
£ (1-x)1 =+ D 1
2 &13 I-x)T =+
E= g, | = o+ D= 92+ 1) ‘6 B
£ (x+ D1 =y (y+1?
&1 (1—x)?@x+D(1—y)
&1 (1 —x)(x+D>(1 —y)
&4 A=x)2x+Dy+1)
| &4 | | (A=—x)x+D2(y+1) ]

Fix the basis orderings
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(6%) = &11. 614 Ea1. Eaa, €12, E13. 640, 643, £21. 631, £04. £34 1, (24)
indices in V indices in E
(B%1:=[ Pi1. B4 Bar. Bas.  B12. Bi3. Pao. Ba3. Bat. B31. Boa. Baa. B2. Bo3. P32, B33 |
indices in V indices in E indices in D
(25)

The following theorem will show that [£ 2isa geometric decomposition of Sz (1 2y,
by which we mean that each function in [Sz] has a natural association to a specific
degree of freedom, i.e., to a specific domain point of the element.

Theorem 1 Let ﬂl{m denote the scaling of Bem to 12, i.e.

Bl = Be((x + 1)/2)Bn((y + 1)/2).

The set [£%] has the following properties:

() [£2]is a basis for S3(I%).
(i) Foranytm € VUE, &gy, isidentical to ﬂ;m on the edges of 1.
(iii) [£2] is a geometric decomposition of S3(I?).

Proof For (i), we scale [§ 21to0 [0, 1] to take advantage of a simple characterization
of the reproduction properties. Let [£2](-1] denote the set of scaled basis functions
01 (x, y) == & (2x — 1,2y — 1). Given the basis orderings in (24) and (25), it
can be confirmed directly that [52][0*” is related to [,32] by

(€219 = B[?] (26)
where B is the 12 x 16 matrix with the structure
B:=[I|B ], (27)

where I is the 12 x 12 identity matrix and B’ is the 12 x 4 matrix

[—4 -2 -2 —1]
—2—4-1-2
2 —1-4-2
—1-2-2-4

0
B/

(28)

S = O MNO = O
SO~ = OoOMN

— O NO OO —
N O = OO —=O
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Using ij € X to denote an index for B;; and {m € V U E to denote an index for
Ee[gi 1], the entries of B can be denoted by bf;" so that

11 11 11
bii -+ bl} - bl

B:= | b - b b . (29)

bé4 . bé4 ' b§4
IS 7 A ]
We now observe that for each ij € X,

3o 3= = 3-r 3—s m
(4—i)(4—j)_ 2. (4—z)(4—m)bii’ (30)

tmeVUE

for all (r, s) pairs such that sldeg(x”y*) < 3 (recall Definition 1). Note that this
claim holds trivially for the first 12 columns of B, i.e., for those ij € VU E C X.
Forij € D C X, (30) defines an invertible linear system of 12 equations with 12
unknowns whose solution is the ij column of B'; the 12 (r, s) pairs correspond to the
exponents of x and y in the basis ordering of S3(I?) given in (2) and (3). Substituting
(30) into (13) yields:

3—r\[(3—s

rys __ tm ..

0 —z( > (4_E)(4_m)b,~j)ﬂu-
ijeX \tmeVUE

Swapping the order of summation and regrouping yields

r.s 3— 3- m
D S A | A | D2

tmeVUE ijeX

(011 4y (26), implying that

tm

s 3—r 3—S [0,1]
=2 (4—5)(4—;11)%’ Gl

tmeVUE

The inner summation is exactly &

for all (r, s) pairs with sldeg(x"y*) < 3. Since [éz][o’” has 12 elements which span
the 12-dimensional space S3([0, 11%), it is a basis for S3([0, 11?). By scaling, [52] is
a basis for S3(12).

For (ii), note that an edge of [0, 1]* is described by an equation of the form
{x or y} = {0 or 1}. Since B>(¢) and B3(¢) areequal to Oatt =0andt =1, 8;; =0
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on the edges of [0, 1]> for any ij € D. By the structure of B from (27), we see that
forany fm € VUE,

ot = B + D by (32)

ijeD

Thus, on the edges of [0, 113, ég&’” and By, are identical. After scaling back, we
have &, and ﬂém identical on the edges of 12, as desired.

For (iii), the geometric decomposition is given by the indices of the basis functions,
i.e., the function &, is associated to the domain point for £m € V U E. This follows
immediately from (ii), the fact that [,82] is a tensor product basis, and Remark 1 O

Remark 2 Tt is worth noting that the basis [£2] was derived by essentially the reverse
order of the proof of part (i) of the theorem. More precisely, the 12 coefficients in
each column of B define an invertible linear system given by (30). After solving for
the coefficients, we can immediately derive the basis functions via (26). By the nature
of this approach, the edge agreement property (ii) is guaranteed by the symmetry
properties of the basis [B]. This technique was inspired by a previous work for
Lagrange-like quadratic serendipity elements on convex polygons [14].

3.2 A Local Hermite Style Basis for S3(I?)

We now establish a local Hermite style basis [92] for Sz(I?) using the bicubic
Hermite basis [1//2] for Q3([0, 1]2). Define the following set of 12 functions, indexed
by V U E; note the scaling by 1/8.

o1 [0 =)0 = (=24 x+x2+y+yH)]
D14 —1=0)O+D(2+x+x2—y+y?)
P41 —x+ DA =y(2—x4+x2+y+y?H)
o —@xH+ DG+ D2 —x+x2—y+y?)
D12 (1=x)(1 =0+ 13 1
2 13 IT-x)A=y»+1D
D=1y, = x4+ D=+ 1) 5 G
V43 x4+ DA =y +1)?
V21 (1—x)2x+ DA —y)
V31 (1—x)x+ D31 —y)
g A=x)2x+Dy+1D
| 934 | | A=x)x+D>(y+1 ]

Fix the basis orderings
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[92] := [ D11, D14, Da1, Daa, D12, D13, D, D3, D21, D31, D2a, O34 1, (34)
indices in V indices in E
W21 = [ Vi1, Yia, Yar, Yaa,  Yio, Vi3, Yao, Ya3, Y1, Y31, Yoa, ¥aa,
indices in V indices in E
V2, Y23, Y32, ¥33 | (35)

indices in D

Theorem 2 Let szlm denote the derivative-preserving scaling of Yrom to 12, i.e.

Uy = e((x + D/ 2) Y (4 1)/2), tmeV,
Yl =20 (x4 1D/2) Y (v + 1)/2), tm € E.

The set [92] has the following properties:

() [92]is a basis for S3(1?).

(i) Foranytm € V UE, &g, is identical to W@Im on the edges of 1.
(i) [02] is a geometric decomposition of S3(1?).
Proof The proof follows that of Theorem 1 so we abbreviate proof details that are
similar. For (i), let [92]10-11 denote the derivative-preserving scaling of [92]to [0, 11%;

the scale factor is 1/2 for functions with indices in E. Given the basis orderings in
(34) and (35), we have

(9211 = H{y?] (36)
where H is the 12 x 16 matrix with the structure
H::[H|H/], 37

where I is the 12 x 12 identity matrix and H' is the 12 x 4 matrix with

1 1 1-17
1-1-1 1
1-1-1 1
-1 1 1-1
-1.0 1 0
SRR e
0 1 0-1
-1 1.0 0
0 0-1 1
1-1 0 0
L 0 0 1-1
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Denote the entries of H by hfj’" (cf.(29)). Recalling (15), observe thatforeachij € X,

4
Eri€s,j = Z Sr,ﬁgs,mhi]ms (39)
ItmeVUE

for all (r, s) pairs such that sldeg(x”y*) < 3. Similar to the Bernstein case, we
substitute (39) into (17), swap the order of summation and regroup, yielding

y 4
xrys = Z ErtEs.m Z h,-}"%‘j

tmeVUE ijex

The inner summation is exactly 19([?,;1] by (36), implying that

0,1
xrys = Z Er,ng,mﬁém J, (40)
tmeVUE

for all (r,s) pairs with sldeg(x”y*) < 3, proving that [#%]1>1] is a basis for
S3([0, 11%). By derivative-preserving scaling, [#2] is a basis for S3(12).

For (ii), observe that for any ij € D, ¥;; = 0 on the edges of [0, 112 by virtue of
the bicubic Hermite basis functions’ definition. By the structure of H from (37), we
see that for any ¢m € VU E,

I = Yo + D By @1
ijeD
Thus, on the edges of [0, 1]2, 19&1] and Yy, are identical. After scaling back, we
have ¥y, and Wlm identical on the edges of / 2 as desired.

For (iii), the geometric decomposition is given by the indices of the basis functions,
i.e., the function 9, is associated to the domain point for {m € V U E. This follows
immediately from (ii), the fact that [1//2] is a tensor product basis, and Remark 1 at
the end of Sect.2. See also Fig. 3. O

4 Local Bases for S3(I3)

Before defining local bases on the cube, we fix notation for the domain points to
which they are associated. For [0, 1]3, define the set of ordered triplets

Y ={i,jk}|ijke{l, ....,4}}.

Then Y is the disjoint union V U E U F U M where
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Fig. 3 The top row shows 3 of the 16 bicubic Hermite functions on 12 while the bottom row shows
3 of the 12 cubic Hermite style serendipity functions. The visual differences are subtle, although
some changes in concavity can be observed. Note that functions in the same column have the same
values on the edges of 12

V.={{ijkleY |ij ke{l, 4}}; (42)
E:={{i,j,k} € Y | exactly two of i, j, k are elements of {1, 4}}; 43)
F:={{i, j,k} € Y | exactly one of i, j, k is an element of {1, 4}} ; 44)
M:={i, jkleY | ij ke{23}}. (45)

The V indices are associated with vertices of [0, 1]3, the E indices to edges of
[0, 1]3, the F indices to face interior points of [0, 1]3, and the M vertices to the
domain interior of [0, 1]3. The relation between indices and domain points of the
cube is shown in Fig. 4.

4.1 A Local Bernstein Style Basis for S3(I°)

Under the notation and conventions established in Sect. 2, we are ready to establish
a local Bernstein style basis for 83(13) where [ := [—1, 1]. In Fig.5, we define a
set of 32 functions, indexed by V U E C Y; note the scaling by 1/32. We fix the
following basis orderings, with omitted basis functions ordered lexicographically by
index.
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244 344 444 244 344 444
144 230 33N\ g4 144 444
134 224 324\ g4 134 444
(F5) B L 143 124 L
133" 114 214 314 414 114] 214 314 414
142 123 142
® @ (] @ @ @ L ]
132 113 2137 313" 413 113 413
141 122 141
[ ] (] [ ] [ ] L ] [ ]
131 2] 212 312 412 131 112 412
121 L 121 L
111 211 311 411 111 211 311 411

Fig. 4 On the left, ordered triplets from Y are shown next to the domain point of [0, 1] to which
they correspond. Points hidden by the perspective are not shown. The origin is at the point labeled
111; the positive x, y, and z axes go right, back, and up, respectively. On the right, only those
indices used for the serendipity basis are shown. The correspondences V < vertices, E <> edge
points, ' <> face interior points, and M <> domain interior points are evident

(€3] =1 &1y ..o, Eaaay En12s .., Eaa3 |, (46)
indices in V indices in E
(Bl :=1[ Bi11s---, Bada, Pi12,-.-, Baaz, P22, ..., P43z, Baxz, ..., B333, |
indices in V indices in E indices in F indices in M
47)

Theorem 3 Let ﬂ;mn denote the scaling of Bemn to I3, i.e.

Blmn = Be((x + 1)/2)Bn((y + 1)/2)Ba((z + 1)/2).

The set [€3] has the following properties:

() [£3]is a basis for S3(I3).

(i) [£3] reduces to [£] on faces of I°.
(iii) For any tmn € VU E, &g,y is identical to ﬁglmn on edges of 3.
(v) [£3]is a geometric decomposition of S3(I3).

The proof is similar to that of Theorem 1. Note that for (ii), the claim can
be confirmed directly by calculation, for instance, &111(x, y, —1) = &11(x, y) or
E140(x, 1, 2) = &€12(x, z). A complete proof can be found in a longer version of this
paper appearing online at arXiv:1208.5973 [math.NA].

4.2 A Local Hermite Style Basis for Sz(1 3

We now establish a local Hermite style basis [93] for S3(I3) using the tricubic
Hermite basis [¢3] for Q3([0, 11°). In Fig. 6, we define a set of 32 functions, indexed
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ey [0 =)0 =2 (=5 =202 —2yy7 204 2)]

Al |00y (=5 - 20422 =2y 4P 4204 2)

Ean| | (T=00+ D1 =2)(=5 = 20422 +2y+)2 =224 22)

Era| |00+ 1D)@+H1)(=5 20422 +2y+)% 422+ 22)

Eni| |G D=y =2)(=5+20+27 =2y +y> —20+2)

Eana (x+ 1D (1 =) (z+ 1)(=5+2x+x2 =2y +y* +2z+7%)

Eann (F D+ 11 =2)(=5+2x+x7 +2y+)* —2z+7°)
x+ D)5+ D(z+ 1) (=5+2x+x> + 2y +y* + 2z +22)

e (1=2)(1—y)(1— >2(+1> 2 2

112 - z

13 (lfx)(lfy)( 2)(z+1)?

gm (1-x)(1=y)?*(y+1)(1—2)

g (90 sk

5131 1—x)(1—-y y+1 1-z

SEN (1-x)(1=y)(r+1)*(z+1)

Eia (1=-x)y+1)(1 - )(Z+1)

€3] = Sz | _ (I-x)y+ D1 —2)(z+1)? o

& (1—x)2(x+1)(1—y)(1—2) 32
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Fig. 5 Bernstein style basis functions for S3(I®) with properties given by Theorem 3

by V U E C Y; note the scaling by 1/16. We fix the following basis orderings, with
omitted basis functions ordered lexicographically by index.

[°]:=[ 1. ..., Vaas, D112, ..., V443 1, (48)
indices in V indices in E
Bl=14vnr, ..., Vaas, Y112, .., Va43, V122, ..., V433, ¥222,..., V333, |
indices in V indices in E indices in F indices in M
(49)

Theorem 4 Let wllmn denote the derivative-preserving scaling of Yomn to I°, i.e

Wl = (x4 1D/2) Y (v + 1D/ + 1)/2), tmn eV,
Yl = 20 4 1D/ (3 + D/2D¥n((z 4+ 1)/2),  tmn € E.
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Fig. 6 Hermite style basis functions for S3(I) with properties given by Theorem 4

The set [93] has the following properties:
() [93]is a basis for S3(I3).
(i) [93] reduces to [9%] on faces 0fI3.
(iil) Forany ¢mn € VUE, Uy, is identical to I/IZImn on edges of I°.
(iv) [#3]isa geometric decomposition of Sz (I .

The proof is similar to that of Theorem 1. A complete proof can be found in a
longer version of this paper appearing online at arXiv:1208.5973 [math.NA].
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5 Conclusions and Future Directions

The basic functions presented in this work are well-suited for use in finite element
applications, as discussed in the introduction. For geometric modeling purposes,
some adaptation of traditional techniques will be required as the bases do not have the
classical properties of positivity and do not form a partition of unity. Nevertheless,
we are already witnessing the successful implementation of the basis [¢°] in the
geometric modeling and finite element analysis package Continuity developed by
the Cardiac Mechanics Research Group at UC San Diego. In that context, the close
similarities of [+3] and [3] has allowed a straightforward implementation procedure
with only minor adjustments to the geometric modeling subroutines.

Additionally, the proof techniques used for the theorems suggest a number of
promising extensions. Similar techniques should be able to produce Bernstein style
bases for higher polynomial order serendipity spaces, although the introduction of
interior degrees of freedom that occurs when r > 3 requires some additional care
to resolve. Some higher order Hermite style bases may also be available, although
the association of directional derivative values to vertices is somewhat unique to the
r = 3 case. Preconditioners for finite element methods employing our bases are
still needed, as is a thorough analysis of the tradeoffs between the approach outlined
here and alternative approaches to basis reduction, such as static condensation. The
fact that all the functions defined here are fixed linear combinations of standard
bicubic or tricubic basis functions suggests that appropriate preconditioners will
have a straightforward and computationally advantageous construction.

Acknowledgments Support for this work was provided in part by NSF Award 0715146 and the
National Biomedical Computation Resource while the author was at the University of California,
San Diego.
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Suitability of Parametric Shepard Interpolation
for Nonrigid Image Registration

A. Ardeshir Goshtasby

Abstract Shepard interpolation is known to produce flat horizontal spots at and
around data points. The phenomenon is caused by Shepard’s use of rational inverse-
distance weight functions, producing similar values around data points. In this paper,
a parametric version of Shepard interpolation is introduced that avoids flat horizontal
spots. Because Shepard interpolation or its parametric version does not require the
solution of a system of equations, the interpolation is stable under varying density and
organization of data points as well as under highly varying data values. The suitability
of parametric Shepard interpolation in nonrigid image registration is investigated and
its speed and accuracy are compared with those of multiquadric, thin-plate spline,
and moving least-squares.

Keywords Shepard interpolation + Parametric Shepard interpolation + Image reg-
istration

1 Introduction

Image registration is the process of finding correspondence between all points in two
images of a scene. This correspondence is needed to fuse information in the images,
to detect changes occurring in the scene between the times the images are obtained,
and to recover the scene’s geometry [1].

Image registration is generally achieved in three steps: (1) a set of points is detected
in one image, (2) the corresponding points are located in the second image, and (3)
from the coordinates of corresponding points in the images, a transformation function
is determined to warp the geometry of the second image to resemble that of the first.
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This transformation function makes it possible to spatially align the images and
establish correspondence between all scene points appearing in both images. When
one image is simply a translated and/or rotated version of the other, the process is
known as rigid registration. Otherwise, the process is called nonrigid registration.
The problem of finding a transformation function for registration of two images
can be described as follows: Given the coordinates of n corresponding points in the
images:
{(xi, yi), (X3, Y ii=1,...,n}, (D

we would like to determine two functions f and g that satisfy

Xi = fxi,y), .
i=1,...,n. 2
Y = g(xi, yi), @

f can be considered a single-valued surface interpolating 3-D points
{(xisvi, Xi)ri=1,...,n}, 3)
and g can be considered another single-valued surface interpolating 3-D points
{(xi,yi, Yi):i=1,...,n}. (@)

Coordinates (x;, y;) represent the column and row numbers of the ith point in the first
image and coordinates (X;, Y;) represent the column and row numbers of the i th point
in the second image. Coordinate x increases from left to right and varies between
0 and n, — 1 and coordinate y increases from top to bottom and varies between 0
and n, — 1. The integers n. and n, are, respectively, the number of columns and the
number of rows in the first image. Similarly, coordinate X increases from left to right
and varies between 0 and N, — 1 and coordinate Y increases from top to bottom and
varies between N, — 1. N, and N, are, respectively, the number of columns and the
number of rows in the second image.

Throughout this paper, the first image will be referred to as the reference image
and the second image will be referred to as the sensed image. Also, the points given
in the images will be referred to as the control points. Therefore, (x;, y;) and (X;, Y;)
represent the coordinates of the ith corresponding control points in the images.

Functions f and g are the components of the transformation, relating coordinates
of points in the sensed image to the coordinates of the corresponding points in the
reference image. By knowing the coordinates of n corresponding control points in
two images of a scene, we would like to find a transformation with components f
and g that will map the sensed image point-by-point to the reference image. This
mapping, in effect, transforms the geometry of the sensed image to resemble that of
the reference image.

A component of a transformation function is a single-valued function that takes
a point (x, y) in the reference image and determines the X- or the Y-coordinate of
the corresponding point in the sensed image. Many interpolation functions exist in
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the literature that can be used for this purpose. We are interested in a function that is
locally sensitive and stable.

Local sensitivity is required to keep an error in the location of a control point local.
Due to noise and other factors, some point correspondences may be inaccurate. Such
inaccuracies should not be propagated over the entire interpolation (registration) do-
main. Rather, the influence of an inaccurate control point location should be kept
local to the point. For this reason, it is necessary to define a component of a trans-
formation function in terms of monotonically decreasing rather than monotonically
increasing basis functions.

Stability in solution is required to ensure that two images can always be registered
independent of the geometric difference between them. Methods that require the
solution of systems of equations are generally not desired because the equations to
be solved may become ill-conditioned and impossible to solve.

In this paper, a component of a transformation function is defined by a para-
metric version of the Shepard interpolation [16]. Registration speed and accuracy
of parametric Shepard interpolation (PSI) are measured and compared with those of
multiquadric (MQ) [4, 5], thin-plate spline (TPS) [2, 3, 12], and moving least-squares
(MLS) [8, 9].

2 Parametric Shepard Interpolation

One of the earliest methods for interpolation of scattered data was proposed by
Shepard [16]. Shepard interpolation is a weighted mean method that uses rational
inverse-distance weights. Given data points {(x;, y;) : i = 1, ..., n} with associating
data values {F; : i = 1, ..., n}, Shepard interpolation estimates the value at point
(x, y) in the interpolation domain from

foey) =D Wix, )F, (5)
i=1

where Ri( )

ilX,y
Wi(x,y) = =, 6
(. %) 2o Ri(x,y) ©

and 1

Ri(x,y) ={(x —x)* + (y — y)*}) 2. (7)

Function f(x, y) interpolates the data without solving a system of equations. The
interpolation value at (x, y) is obtained by simply evaluating the right side of Eq. (5).
Function f(x,y) can be considered a single-valued surface interpolating 3-D

points
{Geisyi, F) ci=1,...,n}. ®)
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Ta.ble 1 Coordinatgs of.9 i 123456789
uniformly spaced points in the

xy domain with associating x 012012012
height (data) values sampled v 000111222
from the plane in Fig. la F012012012

Fig. 1 a The planar surface from which the points in Table 1 are sampled, and b the surface
interpolating the points in Table 1 by Shepard interpolation

The 3-D points listed in Table 1 represent uniformly spaced samples from the plane
depicted in Fig. 1a. The surface interpolating the points as computed by the Shepard’s
method is depicted in Fig. 1b.

The reason for the flat horizontal spots at and around the data points is the nonlinear
relation between xy and f. Flat horizontal spots result because similar interpolation
values are obtained at and in the vicinity of each data point. This artifact can be
removed by subjecting x and y to the same nonlinearity that f is subjected to.
Representing x, y, and f as functions of new parameters # and v using Shepard’s
Eq. (5), we have

x(u,v) = Zn:wz-(u, V)Xi, ©)

i=1
y(u,v) = iw,-(u, V)i, (10)

i=1
h(u,v) = Zn:wi(u, V) F;, (11

i=1

where

Wi, v) = ) (12)

Dl riu, )
Fiov) = {(u — up)? + (v — v)?) 2. (13)
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Fig. 2 Density of (x, y, f)
points in PSI obtained at
uniformly spaced parameters
u and v

The ith data point has parameter coordinates (u;, v;), where u; = x;/(n. — 1) and
vi = y;i/(n, — 1). The integers n. and n, are, respectively, the number of columns
and the number of rows in the reference image. As x is varied between 0 and n, — 1,
u varies between 0 and 1, and as y is varied between 0 and n, — 1, v varies between
0 and 1.

An example of a parametric Shepard surface representing a component of a trans-
formation function is given in Fig. 2. Parameters u and v are varied from O to 1 with
increments 0.02 in both u and v to obtain the surface points shown in the figure. Uni-
formly spaced (u, v) coordinates produce surface points that have higher densities
near the interpolation points and also near edges connecting the points. Although the
highly varying density of surface points in Fig. 2 suggests a surface with a nearly
polyhedral shape, the surface is actually very smooth and represents the height val-
ues shown in Fig. 11c. We would like to determine parameter coordinates (u, v) that
correspond to (x, y) pixel coordinates in the reference image, and by using those
parameter coordinates estimate & (u, v) and use it as f(x, y).

To find the interpolation value at (x, y), PSI requires the solution of two nonlin-
ear equations to find the corresponding parameter coordinates (u, v). The obtained
parameter coordinates are then used to find & (u, v), which is considered the same
as the value for f(x, y). For image registration purposes, however, solution of non-
linear equations is not necessary. Surface coordinates that are within half a pixel of
the actual coordinates are sufficient to resample the sensed image to the geometry
of the reference image by the nearest-neighbor resampling method. Therefore, gaps
between estimated surface points can be filled with required accuracy by bilinear
interpolation of points obtained at uniformly spaced u and v if increments in «# and
v are sufficiently small.

The algorithm for calculating a component of a transformation function by PSI
is described below. By notation “if a ¢ [b £ 0.5],” it is implied “ifa < b — 0.5 or
a>b+05".

Algorithm PSI: Given 3-D points {(x;, y;, F;) : i = 1, ..., n}, calculate entries of
array F[x, y] the size of the reference image with entry [x, y] showing the X- or the
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Y-component of the point in the sensed image corresponding to point (x, y) in the
reference image, depending on whether F; represents X; or ;.

1. Letu; = x;j/(nc — 1) and v; = y; /(n, — 1). This will map control points in the
reference image to parameter coordinates in the range O to 1.

2. Initially, let increments in # and v be Au = 0.5 and Av = 0.5.

3. For u = 0 to 1 with increment Au and for v = 0 to 1 with increment Av:

If [x(u,v) +x(u+ Au,v)]/2 ¢ [x(u+ Au/2,v) £0.5] orif [y(u,v) + y(u+
Au,v)1/2 ¢ [y(u+Au/2,v)£0.5]orif [A(u, v)+h(u+ Au,v)]/2 ¢ [h(u+
Au/2,v) £0.5] or,

if [x(u, v) +x(u, v+ Av)]/2 ¢ [x(u,v+ Av/2)£0.5]orif [y(u, v)+y(u, v+
AV)]/2 ¢ [y(u,v+ Av/2)£0.5] orif [A(u, v) +h(u, v+ Av)]/2 ¢ [h(u,v+
Av/2) £0.5] or,

if [x(u,v) +x(u+ Au,v) + x(u, v+ Av) + x(u + Au, v+ Av)]/4 ¢ [x(u +
Au/2,v + Av/2) £ 0.5] orif [y(u,v) + y(u + Au,v) + y(u,v + Av) +
y(u + Au,v + Av)]/4 ¢ [y(u + Au/2,v + Av/2) £0.5] or if [A(u,v) +
h(u + Au,v) + h(u,v + Av) + h(u + Au,v + Av)]/4 ¢ [h(u + Au/2,v +
Av/2) £0.5],

reduce Au and Av by a factor of 2 and go back to Step 3. Otherwise, continue.
(This step determines the largest increment in # and v that can produce an
accuracy of half a pixel or better in image resampling.)

4. For u = 0 to 1 with increment Au and for v = 0 to 1 with increment Av:
Calculate [x (u, v), y(u, v), h(u, v)], [x(u+Au, v), y(u+Au, v), h(u+ Au, v)],
[x(u + Au,v + Av), y(u + Au,v + Av), h(u + Au,v + AV)], [x(u,v +
Av), y(u, v+ Av), h(u, v + Av)]. Then estimate values within each local patch
defined by parameters [u, u + Au] x [v,v + Av] by bilinear interpolation of
values at the four corners of the patch, saving the estimated surface value for
h(u,v) at Flx(u,v), y(u, v)].

5. Fori=1,...,n:

If F; ¢ [h(u;,vi) £0.5], reduce Au and Av by a factor of 2 and go back to Step
4.
6. Return array F'.

Analysis of Algorithm PSI: Step 3 of the algorithm recursively subdivides each
surface patch into 4 smaller patches until the distance between the center of each patch
to the center of its base and the distances between midpoints of its bounding curves
to the corresponding base edges fall below half a pixel. When the approximation
error for all patches falls below half a pixel, each patch is replaced with its base,
which is the bilinear interpolation of the four corners of the patch. This will be the
speed-up achieved by not calculating the surface value at all pixels in the reference
image directly and instead estimating some of the values by bilinear interpolation.
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Computation of Step 3 of the algorithm is depicted in Fig. 3a. For a patch with
corner points at (u, v), (u + Au,v), (u,v + Av), and (v + Au, v + Av), distances
of the midpoints of the bounding curves of the patch to the midpoint of the line
connecting the corresponding bounding curve endpoints are computed. When all
such distances fall below half a pixel, and also when the distance of the center of
the patch at (u + A/2u, v + Av/2) to the center of the base of the patch obtained
from the average of its four corners becomes smaller than half a pixel in x, y, and F
directions, subdivision is stopped.

Note that since two adjacent patches share a bounding curve, for each patch there
is a need to carry out the computations at only two of the bounding curves. The
bounding curves at opposing sides of the patch are considered when processing the
opposing patches. By computing the errors at midpoints of two bounding curves for
each patch, the bounding curves of patches with parameter u = 1 or parameterv = 1
will remain. After computing errors at all patches, errors are computed at patches
with boundary parameters u = 1 or v = 1, and if all such errors become smaller than
half a pixel, subdivision of Step 3 is stopped. If the smaller side of an image contains
M pixels and m is the largest number such that 2" < M, Step 3 needs to be repeated
m or fewer times. For instance, when the reference image is of size 1200 x 1600
pixels, Step 3 will be repeated a maximum of 10 times.

After estimating the largest increment in u# and v to obtain desired accuracy at
the center of each patch as well as at midpoints of its bounding curves, the patch is
approximated in Step 4 by bilinear interpolation of its four corners.

To ensure that the employed bilinear interpolation creates an overall surface that
is within half a pixel of the points it is supposed to interpolate, in Step 5, the surface
values estimated in Step 4 are compared with the given F; values, which are, in
effect, X; or ¥;. If the difference between any such values is larger than half a pixel,
Au and Av are reduced by a factor or 2 and Steps 4 and 5 are repeated until the
approximating surface falls within half a pixel of the required values. Note that in
Step 3 the patches are not generated; only values at bounding curve midpoints and
patch centers are calculated. In most situations, this finds the required increment in
u and v to produce the required accuracy in interpolation. In rare cases, the process
may not produce a surface sufficiently close to the interpolation points. Step 5 is
included to ensure that the obtained surface does, in fact, pass within half a pixel of
the points it is supposed to interpolate (Fig. 3b).

It should be mentioned that due to the nonlinear relation between (x, y) and (u, v),
by varying u and v from O to 1, the computed x and y values may not completely cover
the image domain. To cover the image domain in its entirety, it may be necessary to
start # and v from values slightly below 0 and continue to values slightly past 1 to
cover all pixels in the image domain. This requires decrementing u from 0 by Au
and v from 0 by Av in Step 4 of the algorithm until values for pixels along the lower
and left sides of the reference image are obtained. Also, it is required to increment u
from 1 by Au and v from 1 by Av in Step 4 of the algorithm until values for pixels
along the right and upper sides of the reference image are obtained.

Algorithm PST uses the same Au and Av everywhere when calculating the surface
points. Since density of points vary across the interpolation domain, Au and Av can
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(a) (b)
h(u Au2,v Av)
huy - Av) hu Auy Av) )
h(u Au2,y Av2) E
h(u,y Av2) /. hu Auyv Av2)
h(u Au2,v)
h(u,v) i Auv) (x,,yi)/

Fig. 3 a The subdivision method used in Step 3 of Algorithm PSI. b Ensuring the approximating
surface passes within half a pixel of the point it is supposed to interpolate in Step 5 of the algorithm

be made local so that after each subdivision those patches that are within half a pixel
of their base are not subdivided, and only patches that are farther from their bases
by more than half a pixel are subdivided. This requires keeping track of each patch
individually. The bookkeeping time involved in doing so is usually higher than the
time saved by not subdividing some patches.

If the reference image contains N pixels and n corresponding points are available,
the worst case requires using Egs. (9)—(11) to calculate the X- and the Y-component
of the transformation at all pixels. In that case, the computational complexity of the
algorithm will be of order Nn. If Au and Av are relatively large so that interpolation
values at many pixels are calculated from bilinear interpolation of known values,
computation time reduces and, at best, the computational complexity of the algorithm
will be of order N. Therefore, the computational complexity of the algorithm when
the reference image contains N pixels and n correspondences are available will be
between N and Nn depending on whether the geometry to be estimated is simple,
such as a plane, or very complex, such as the geometric difference between images
showing different views of an urban scene.

3 Evaluation

Various interpolation functions may be used as the components of a transformation
function in image registration. Properties desired of a transformation function and
generally of an interpolation function are:

1. Monotonicity, convexity, and nonnegativity preserving: These properties en-
sure that a chosen transformation function is well behaved and does not pro-
duce high fluctuations and overshoots in estimated values. Such properties are
generally achieved by implicitly or explicitly imposing geometric gradients
at the control points, making the interpolating surface take desired shapes at
the control points. Lu and Schumaker [11] and Li [10] derive monotonicity-
preserving conditions, Lai [7], Renka [13], and Schumaker and Speleers [15]
derive convexity-preserving conditions, and Schumaker and Speleers [14] and
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Hussain and Hussain [6] derive nonnegativity preserving conditions for piece-
wise smooth interpolation of data at irregularly spaced points.

2. Linearity preserving: If data values in the image domain vary linearly, the func-
tion interpolating the data should also vary linearly. This property ensures that
a transformation function does not introduce nonlinearity into the resampled
image when reference and sensed images are related linearly.

3. Adaptive to irregular spacing of the control points: Since control points in an
image are rarely uniformly spaced, a transformation function should have the
ability to adapt to the local density and organization of the control points. Spacing
between the control points across the image domain can vary greatly. If the
transformation function is defined by rational basis functions, the shapes of the
functions adapt well to the spacing between the points.

From Egs. (9)-(11), we see that at the vicinity of the ith data site,

A F;
a= M — (14)

Ax(u,v) X;

and Ah F,
p= Ay F (15)

Ay(u,v)  yi

Therefore, the surface at the vicinity of the ith data point takes slopes (F;/x;, F;/y;).
Note that in the traditional Shepard interpolation the slopes of the interpolating
surface at each data site are 0, resulting in a flat horizontal spot. In parametric Shepard,
the slopes of the interpolating surface at an interpolation point are no longer 0 and
represent slopes of plane

a(x —x;) +b(y —yi) + (F — F;) = 0. (16)

Since x monotonically increases with # and y monotonically increases with v, and
x and y are single-valued functions of u and v, for any unique (u, v) aunique (x, y) is
obtained. Therefore, the obtained interpolating surface does not contain folds and for
any unique (x, y) a single interpolation value is obtained. This property is required
of a component of a transformation function in an image registration.

The interpolating surface is defined by a convex combination of tangent planes of
the form given by Eq. (16). Since the tangent planes extend beyond the convex-hull
of the interpolation points, the interpolating surface covers the entire image domain.
This makes it possible to find for each point in the reference image, the corresponding
point in the sensed image, making it possible to establish correspondence between all
points in the images. Note that a convex combination of the tangent planes passing
through the interpolation points is not the same as the convex combination of the
interpolating points. Therefore, like TPS, PSI may produce overshoots away from
the interpolation points depending on the arrangement of the data points (the control
points in the reference image) and the highly varying nature of the data values.
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Fig. 4 The face image set, showing a facial stone carving captured from different distances and
views of the scene. Corresponding control points in the image are also shown. The control points
marked with a black ‘+’ are used to determine the transformation function and the control points
marked with a white ‘+’ are used to determine the registration accuracy

To determine the suitability of PSIin image registration, experiments were carried
out using the image sets shown in Figs. 4, 5, 6, 7, 8, and 9. These image sets ex-
hibit varying degrees of geometric differences. The control points used to obtain the
transformation function in each case are also shown. Methods to find corresponding
control points in images of a scene can be found in [1]. The control points marked
with a black ‘+ are used to determine a transformation function and the control
points marked with a white ‘+” are used to determine the registration accuracy using
the obtained transformation function.

The images in Fig. 4 are captured from different views of a facial stone carving.
The geometric difference between the images varies locally. We will refer to these
images as Face images. There are 80 control points in each image. Forty of the
control points are used to estimate the components of the transformation function,
and the remaining 40 are used to evaluate the registration accuracy with the obtained
transformation function.

The images in Fig. 5 represent aerial images taken from different views and
distances of a few buildings. The images contain small local and global geometric
differences. We will refer to these as the Aerial images. There are 31 corresponding
control points in the images, of which 16 are used to estimate the transformation
function and the remaining 15 are used to evaluate the registration accuracy with the
obtained transformation.

The images in Fig. 6 represent two views of a terrain scene. There is depth dis-
continuity near the center of the images. We will call this the Terrain image set.
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Fig. 5 The aerial image set, representing two aerial images captured from different views and
distances of a few buildings

Fig. 6 The terrain image set, representing two views of a terrain scene

There are 46 corresponding control points in the images, of which half are used to
determine the transformation function and the remaining half are used to evaluate
the registration accuracy.

The images in Fig. 7 show close-up views of a small area in the terrain scene.
The images in this set will be referred to as the Rock images. The geometric dif-
ference between the images varies greatly across the image domain. There are 58
corresponding control points in the images, of which half are used to estimate the
transformation function and the remaining half are used to evaluate the registration
accuracy.

The images in Fig. 8 show two views of a partially snow-covered rocky mountain.
We will refer to these as Mountain images. The geometric difference between the
images varies considerably across the image domain. There are 165 corresponding
control points in the images, of which 83 are used to determine the transformation
function and the remaining 82 are used to evaluate the registration accuracy.

The images in Fig. 9 show a parking lot taken from the same viewpoint but with
different views. These images are related by a homography. We will refer to these
images as the Parking images. The images contain 32 corresponding control points,
of which half are used to find the components of the transformation function and the
remaining half are used to determine the registration accuracy.
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Fig. 8 The mountain image set, representing two views of a snowy mountain with sharp peaks and
valleys

We will compare the speed and accuracy of PSI with those obtained by MQ, TPS,
and MLS in the registration of these six sets of images. For each method, the time to
determine the transformation function plus the time to resample the sensed image to
the geometry of the reference image is determined. Since the true geometric relation
between the images is not known, half of the control points are used to determine the
transformation parameters and the remaining half are used to measure the accuracy
of the transformation in mapping the remaining control points in the sensed image
to the corresponding control points in the reference image. Points marked in black
‘+’ in Figs. 4, 5, 6, 7, 8 and 9 are used to determine a transformation function and
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Fig. 9 The parking image set, captured from the same viewpoint of a parking lot but with slightly
different view angles

points marked in white ‘+° are used to determine the registration accuracy with the
obtained transformation function.

The components of a transformation function are calculated by (1) MQ, (2) TPS,
(3) MLS, and (4) PSI. Then, root-mean-squared

n/

1
RMS = WZ(Xj—f(x,-,yj))2+(Yj—g(x,-,yj))2 17)
j=1

and maximum

MAX=I}1’E§ [\/(Xj —f(xj,yj))2+(Yj _8(xj’)’j))2] (18)

errors in finding known corresponding points are calculated and used to evaluate
the registration accuracy. Here, n’ represents the number of control-point corre-
spondences not used to estimate the transformation parameters but are only used to
determine the registration accuracy. Errors obtained by the four methods on the six
image sets are shown in Table 2. These results show that thin-plate spline has the
highest speed in spite of the fact that it solves a system of equations to find each
component of a transformation function. This happens to be the case when there are
up to a few hundred corresponding control points in the images.

A single method could not produce the best RMS or MAX error for all images and
methods vary in accuracy depending on the organization of the points and the severity
of the geometric difference between the images. Most frequently, best accuracy is
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Table 2 Performance measures of multiquadric (MQ), thin-plate spline (TPS), moving least-
squares (MLS), and parametric Shepard interpolation (PSI) in registration of the Face, Aerial,
Terrain, Rock, Mountain, and Parking image sets

Method Measure  Face Aerial Terrain Rock Mountain Parking
TIME 1.34 0.19 0.73 0.70  2.48 0.39
MQ RMS 4.05 6.80 10.28 4.08 4.62 5.89
MAX 9.00  13.89 26.38 9.10  30.62 14.33
TIME 1.09 0.14 0.58 0.61 1.93 0.31
TPS RMS 3.85 1.34 2.16 1.51 4.47 0.98
MAX 10.68 2.43 4.26 3.34 32.18 1.79
TIME 1.98 041 1.15 1.06 335 0.67
MLS RMS 3.96 1.16 1.62 1.52 5.46 0.95
MAX 9.32 2.13 3.40 3.69 33.17 145
TIME 1.93 0.27 1.05 1.05 2.98 0.69
PSI RMS 4.32 1.38 1.79 1.59 4.91 1.13
MAX 11.64 2.35 5.10 3.04 3397 1.70

Performance measures are: computation time in seconds (TIME), root-mean-squared (RMS) error
in pixels, and maximum (MAX) error, also in pixels. The transformation functions are determined
using half of the corresponding control points in each image set, and registration errors are computed
using the remaining half. The best and the worst performances obtained for each image set are shown
in bold and underlined, respectively

achieved by MLS while worst accuracy is achieved by MQ. TPS is the fastest in all
cases while MLS is the slowest in most cases.

To view the quality of registration achieved by the four methods, registration of
the Mountain image set by the four methods is shown in Fig. 10. MQ is accurate
within the convex-hull of the control points. But errors are very large outside the
convex-hull of the control points, contributing to high MAX errors in all except one
of the datasets.

Considering both speed and accuracy, we see that the overall best results are
obtained by TPS on the image sets tested. PSI has been a stable method with a per-
formance that has been close to the best method in each case. It does not require
the solution of a system of equations, giving it a great advantage over TPS and MQ,
which require the solution of large systems of equations when a large set of corre-
spondences is given. When thousands of control points are available, solving large
systems of equations not only slows the computation, depending on the organization
of the points, the systems of equations to be solved may become ill-conditioned and
unsolvable.

A transformation function is required to be locally sensitive. This is needed so
that an error in the location of a control point does not influence registration of the
entire image. Among the methods tested, PSI and MLS are locally sensitive and are
suitable for the registration of images containing some inaccurate correspondences.
An example to demonstrate this is given below. The components of the transforma-
tion obtained from the 82 corresponding points in the Mountain image set (Fig. 8)
by TPS and PSI are shown in Fig. 11. Intensity at (x, y) in a component of a trans-
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Fig. 10 Resampling of the sensed image and overlaying with the reference image in the Mountain
image set using a MQ, b TPS, ¢ MLS, and d PSI. The dark spots appearing in these images are
areas where registration is poor. Areas near the image borders in the reference image that do not

appear in the sensed image are shown darker

Fig. 11 a X-component and b Y-component of the transformation function obtained by TPS using
the control-point correspondences depicted in Fig. 8. ¢ X-component and d Y-component of the
transformation obtained by PSI. The intensity at (x, y) in these images is set proportional to the

X-coordinate and the Y-coordinate of the point in the sensed image corresponding to point (x, y)
in the reference image
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Fig.12 a, b These images are the same as those shown in Fig. 8 except for moving one control point
in the sensed image, introducing an incorrect correspondence. The incorrect corresponding points
are encircled in these images. ¢ X-component and d Y-component of the transformation function
obtained by TPS using the control-point correspondences shown in (a) and (b). e X-component and
f Y-component of the transformation function obtained by PSI

formation is proportional to the X- or the Y-component of the point in the sensed
image corresponding to point (x, y) in the reference image. When correspondences
are accurate, the components of transformation obtained by the two methods are very
similar.

By moving one of the control points in the sensed image, we create a pair of
points that do not correspond to each other. The incorrect correspondence pair are
encircled in Fig. 12a, b. The components of the transformation obtained by TPS are
shown in Fig. 12c, d and those obtained by PSI are shown in Fig. 12e, f. The bright
spot in a component of a transformation shows the location of the error and can be
used as a guide to identify the incorrect correspondence. While PSI keeps such errors
local, TPS spreads the errors to a wider area, affecting the registration of more pixels.
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Sharper details are obtained in the components of the transformation obtained by PSI
when compared to those obtained by TPS. This shows that PSI can accommodate
sharper geometric differences between the images than TPS.

4 Concluding Remarks

To register two images, not only is a set of corresponding control points from the
images required, a transformation function is required that can use information about
the correspondences to estimate correspondence between the remaining points in the
images. A transformation function fills in the gaps between corresponding control
points, establishing correspondence between all points in the images.

Comparing the performances of MQ, TPS, MLS, and PSI using six sets of im-
ages with varying degrees of local and global geometric differences, it is found that
although none of the transformation functions can outperform all others on all image
sets, some transformation functions generally perform better than others. Among
the transformation functions tested, MLS and PSI are found to be the most stable,
producing consistent accuracies on all image sets. With the six image sets tested,
TPS is found to produce the lowest RMS error for most cases while requiring the
least computation time.

Both MQ and TPS are global methods, and so an inaccurate correspondence can
influence registration accuracy of a large area in the image domain. MLS is a lo-
cally sensitive method in the sense that an inaccurate correspondence affects the
registration of pixels mostly in the neighborhood of the inaccurate correspondence.
Although PSl is defined globally, but since its weight functions are monotonically de-
creasing, an inaccurate correspondence affects registration accuracy of points mostly
in its neighborhood. The influence of an inaccurate correspondence on registration
of distant points becomes negligible and vanishes beyond a certain point due to the
quantization step involved in image resampling.

The main contribution of this work is considered to be parametric formulation
of the Shepard interpolation, removing its weakness of creating flat horizontal spots
at the data points while maintaining its strength of not requiring the solution of a
system of equations to find the coefficients of the function. Experimental results show
that although the speed and accuracy of PSI do not surpass those of top performing
interpolation methods in the literature, its speed and accuracy are close to those of
top performing methods.

Overall, if up to a few hundred correspondences is available and the correspon-
dences are known to be accurate, TPS is the method of choice. If more than a few
hundred correspondences are available or if some correspondences are known to be
inaccurate, MLS is the method of choice. The proposed PSI is faster than MLS,
but its accuracy falls short of MLS. PSI is the only method that does not require
the solution of a system of equations; therefore, it is the most stable method among
those tested, always producing a result independent of the severity of the geometric
difference between the images.
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Parabolic Molecules: Curvelets, Shearlets,
and Beyond
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Abstract Anisotropic representation systems such as curvelets and shearlets have
had a significant impact on applied mathematics in the last decade. The main reason
for their success is their superior ability to optimally resolve anisotropic structures
such as singularities concentrated on lower dimensional embedded manifolds, for
instance, edges in images or shock fronts in solutions of transport dominated equa-
tions. By now, a large variety of such anisotropic systems have been introduced,
for instance, second-generation curvelets, bandlimited shearlets, and compactly sup-
ported shearlets, all based on a parabolic dilation operation. These systems share
similar approximation properties, which are usually proven on a case-by-case basis
for each different construction. The novel concept of parabolic molecules, which was
recently introduced by two of the authors, allows for a unified framework encompass-
ing all known anisotropic frame constructions based on parabolic scaling. The main
result essentially states that all such systems share similar approximation properties.
One main consequence is that at once all the desirable approximation properties of
one system within this framework can be deduced virtually for any other system
based on parabolic scaling. This paper motivates and surveys recent results in this
direction.
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1 Introduction

Wavelets have had a tremendous impact on applications requiring an efficient
representation system such as image compression or PDE solvers. However, mul-
tivariate data does typically exhibit the distinct property of being governed by
anisotropic features, whose wavelets—as an isotropic system—are not capable of
resolving optimally in the sense of optimal approximation rates. In imaging sci-
ences, this fact is even backed up by neurophysiology, since it is generally accepted
today that neurons are highly directional-based, thereby reacting most strongly to
curvelike structures.

This observation has led to the introduction of various novel representation sys-
tems, which are designed to accommodate the anisotropic nature of most multivari-
ate data. The considered model situation are functions with singularities along lower
dimensional embedded manifolds such as edges or rays in imaging applications, with
the goal to provide optimally sparse approximations of these objects. Some of the
most well-known termed directional representation systems nowadays are ridgelets
[4], curvelets [5], and shearlets [19, 28]. With the introduction of such a variety
of systems, the appeal has grown to extract the underlying principles of these new
constructions and build an abstract common framework that can unite many of these
systems "under one roof." The framework should be general enough to include as
many constructions as possible, while on the other hand, it should also be specific
enough to still capture their main features and properties. Such a framework would
help to gain deeper insights into the properties of such systems. Moreover, it bears
an obvious economical advantage. Up to now the properties of each new system,
e.g., their approximation rates of anisotropic features, have been proven more or
less from scratch, although the proofs often resemble one another in many ways.
From the higher level viewpoint provided by such a framework, it becomes possible
to provide proofs which build upon abstract properties, and are therefore indepen-
dent of the specific constructions. Thus, results can be established for many systems
simultaneously.

The introduction of parabolic molecules in 2011 by two of the authors [17] was the
first step in this direction. A system of parabolic molecules can be regarded as being
generated from a set of functions via parabolic dilations, rotations, and translations.
Each element in a system of parabolic molecules is therefore naturally associated
with a certain scale, orientation, and spatial location. The central conceptual idea is
now to allow the generators to vary, as long as they obey a prescribed time-frequency
localization, which also explains the terminology “molecules.”

At the heart of this is the fundamental observation that it is the foremost time-
frequency localizations of the functions in a system that determines its properties
and performance. This concept of variable generators, where in the extreme case
every element is allowed to have its own individual generator, is a key feature of
the framework and gives it a great amount of flexibility. Additional flexibility is
achieved by parameterizations to allow generic indexing of the elements. Another
fruitful idea is the relaxation of the rigid vanishing moment conditions imposed
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on the generators of most classical constructions by requiring the moments to only
vanish asymptotically at high scales without changing the asymptotic behavior of
the approximation.

It was shown in [17] that the concept of parabolic molecules can unify shear-based
and rotation-based constructions under one roof. In particular, it enables to treat the
classical shearlets and curvelets simultaneously, although these specific constructions
are based on different construction principles: For curvelets the scaling is done by a
dilation with respect to polar coordinates and the orientation is enforced by rotations.
Shearlets, on the other hand, are based on affine scaling of a single generator and the
directionality is generated by the action of shear matrices. As an example application,
in [17] parabolic molecules were used to show that these systems feature a similar
approximation behavior, thereby not only unifying the approximation results for
curvelets [5] and shearlets [20, 27], but proving optimal sparse approximations for
a much larger class of systems belonging to the class of parabolic molecules.

Our exposition is organized as follows: We begin with a general introduction to
the problem of sparsely representing multivariate data in Sect.2. The main issue
with such data is the possible occurrence of anisotropic phenomena, which other-
wise impairs the good performance of classical wavelet systems. This motivates the
need for so-called directional representation systems, some classical constructions
of which we present in Sect. 3, namely classical curvelets and shearlets. Here we
emphasize their similar approximation performance, which is almost optimal for
cartoon-like images.

After this exposition we turn to parabolic molecules as a unifying framework. We
first establish the basic concepts in Sect. 4 and state one main result, namely the cross-
Gramian of two systems of parabolic molecules exhibits a strong off-diagonal decay.
This property will become essential in Sect. 6, where we discuss the approximation
behavior of parabolic molecules. Before moving there, however, we pause for a while
in Sect.5 to illustrate the versatility of the framework by giving some examples.
After we have convinced the reader of their applicability, we then turn to the section
on approximation, where we essentially prove that any two systems of parabolic
molecules, which are consistent and have sufficiently high order, exhibit the same
approximation behavior.

2 Representation of Multivariate Data

Most applications require efficient encoding of multivariate data in the sense of
optimal (sparse) approximation rates by a suitable representation system. This is
typically phrased as a problem of best N-term approximation (see Sect.2.1). The
performance of an approximation scheme is then usually analyzed with respect to
certain subclasses of the Hilbert space LZ(R"), which is the standard continuum
domain model for d-dimensional data, in particular, inimaging science. As elaborated
upon before, the key feature of most multivariate data is the appearance of anisotropic
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phenomena. Hence, such a subclass of L2(RY)is required to provide a suitable model
for this fact, which, for d = 2, is fulfilled by the subclass of so-called cartoon-like
images as introduced in Sect.2.2. It can then be easily seen that wavelets do not
deliver optimal approximation rates (Sect.2.3), which then naturally leads to the
theory of directional representation systems.

In the sequel, we will use the “analyst’s brackets” (x) := +/1 4+ x2, for x € R.
Also, for two quantities A, B € R, which may depend on several parameters we
shall write A < B, if there exists a constant C > 0 such that A < C B, uniformly
in the parameters. If the converse inequality holds true, we write A > B and if both
inequalities hold, we shall write A < B.

2.1 Sparse Approximation

We start by briefly discussing some aspects of approximation theory. From a practical
standpoint, a function f € L?(R?) is a rather intractable object. In order to analyze
f, the most common approach is to represent it with respect to some representation
system (m)yen Lz(Rz), i.e., to expand f as

f= ZCA"% (D

reA

and then consider the coefficients ¢, € R. In practice we have to account for noise,
hence it is necessary to ensure the robustness of such a representation. This leads to
the notion of a frame (cf. [8, 9]).

A frame is a generalization of the notion of an orthonormal basis to include
redundant systems while still ensuring stability. More precisely, a system (71 ),ea C
L%(R?) forms a frame for L?(R?), if there exist constants 0 < A < B < oo such
that

AlFIE < D 1Am)* < BIfFI5 forall fe L*(R?).
reA

A frame is called fight, if A = B is possible, and Parseval, if A = B = 1. Since
the frame operator S : L*(R?) — L%*(R?) defined by Sf = >, 5 (f, my)m; is
invertible, it follows that one sequence of coefficients in (1)—note that for aredundant
system this sequence is not unique anymore—can be computed as

= (f, S 'my), AeA,

where (S~1my); is usually referred to as the canonical dual frame. This particular
coefficient sequence has the distinct property that it minimizes the £,-norm.

When representing f with respect to a frame (m;), < L?(R?), we are con-
fronted with yet another problem. Since in real-world applications infinitely many
coefficients are infeasible, the function f has to be approximated by a finite subset of
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this system. Letting N be the number of elements allowed in this approximation, we
obtain what is called an N-term approximation for f with respect to (m, ). The best
N-term approximation, typically denoted by fy, is optimal among those in terms of
a minimal approximation error and is defined by

fn = argmin | f — D" c;m; |3 subjectto #Ay < N.

(CA)AEAN AEAN

An appropriate measure for the approximation behavior of a system (m,); for a
subclass €, say, of L*(R?) is the decay of the L>-error of the best N-term approxi-
mation || f — fnll2 as N — o0, thus the asymptotic approximation rate. As discussed
before, the representation system might not form an orthonormal basis in which case
the computation of the best N-term approximation is far from being understood. The
delicacy of this problem can, for instance, be seen in [13]. A typical approach to
circumvent this problem is to consider instead the N-term approximation by the N
largest coefficients (cy )y - It is evident that this error also provides a bound for the
error of best N-term approximation.

There indeed exists a close relation between the N-term approximation rate
achieved by a frame and the decay rate of the corresponding frame coefficients.
By measuring this decay rate in terms of the £,-(quasi)-norms for p > 0, the fol-
lowing lemma shows that membership of the coefficient sequence to an £ ,-space
for small p implies “good” N-term approximation rates. For the proof, we refer to
[10, 27].

Lemmal Let f = > cum) be an expansion of f € L?(R?) with respect to a
frame (m))jen. Further, assume that the coefficients satisfy (c;), € 02/ @kt for
some k > 0. Then the best N-term approximation rate is at least of order N7¥, i.e.

If— fall, S N7F.

2.2 Image Data and Anisotropic Phenomena

To model the fact that multivariate data appearing in applications is typically governed
by anisotropic features—in the two-dimensional case curvilinear structures—the so-
called cartoon-like functions were introduced in [11]. This class is by now widely
used as a standard model, in particular, for natural images. It mimics the fact that
natural images often consist of nearly smooth parts separated by discontinuities as
illustrated in Fig. 2.

The first rigorous mathematical definition was given in [11] and extensively
employed starting from the work in [5]. It postulates that images consist of C%(R?)-
regions separated by smooth C?(R)-curves. This leads to the next definition (see also
Fig.2).



146 P. Grohs et al.

Fig.1 [ Illustration of the appearance of “cartoon-like parts” in natural images. 2 Illustration of the
fact that the human brain is able to deduce the image (2a) just from its “cartoon-like” ingredients
(2b)

Fig. 2 Example of a cartoon-like function

Definition 1 The class &*(R?) of cartoon-like functions is the set of functions
fR? — C of the form

f=fo+ fixs,

where B C [0, 1]? is a set with 3B being a continuous and piecewise C>-curve
with bounded curvature and f; € C2(IR?) are functions with supp fo C [0, 1]? and
| fillc2 <1, foreachi =0, 1.

We remark that by now several extensions of this model have been introduced
and studied, starting with the extended model in [26].
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Having agreed on a suitable subclass of functions, one might now ask whether
there exists a maximal asymptotic approximation rate leading to a notion of optimal-
ity. Indeed, such a benchmark result was derived by Donoho in [11].

Theorem 1 [11] Let (m))sen < L2(R2). Under the assumption of polynomial

depth search for the representation coefficients used in the N-term approximation,
the associated asymptotic approximation rate of some f € &> (R?) satisfies at best

If— fnls < N72 as N — oo.

It is in this sense that a system satisfying this approximation rate is said to deliver
optimally sparse approximations.

2.3 2D Wavelet Systems

Nowadays, wavelet systems are widely utilized representation systems both for the-
oretical purposes as well as for engineering applications, for instance, for the decom-
position of elliptic operators or for the detection of anomalies in signals. Their success
stems from the fact that wavelets deliver optimal sparse approximations for data being
governed by isotropic features—which is in particular the case for elliptic operator
equations whose solutions may exhibit point singularities (for instance if re-entrant
corners are present in the computational domain) as well as in the one-dimensional
setting—and from the fast numerical realization of the wavelet transform.

Let us first recall a certain type of wavelet system in L?(R?), obtained by the
following tensor product construction, see example [30] for details. Starting with
a given multiresolution analysis of L?(R) with scaling function #° € L?(R) and
wavelet ¢>] € Lz(R), for every index e = (e, e2) € E, E = {0, 1}2, the generators
V¢ e L?(R?) are defined as the tensor products

we — ¢el ®¢62.

Definition 2 Let ¢°, ¢! € L*(R) and ¢ € L%(R?), e € E, be defined as above.
For fixed sampling parameters T > 1, ¢ > 0, we define the discrete wavelet system

W@ o) = [w®OC—ch) : kez?]
U {tjl/;e(tj —ck) : e E\{(0,0)}, j €N, k e ZZ}.
The associated index set is given by

AY ={((0,0),0,k) : ke Z*} U{(e, j k) : e € E\{(0,0)}, j € Ny, k € Z*}.
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Next, we recall the definition of vanishing moments for univariate wavelets, which
says that the associated wavelet system annihilates polynomials up to some degree.

Definition 3 A function g € L%(R) is said to possess M vanishing moments, if

/gmﬁm:u forall k=0,...,M—1.
R

It is well known that this property can be characterized by polynomial decay
near zero of the associated Fourier transform. For the convenience of the reader, we
provide the short proof.

Lemma 2 Suppose that g € L>(R) N C(R) is compactly supported and possesses
M vanishing moments. Then

12(&)] < min (1, E)M .

Proof First, note that, since g is continuous and compactly supported, g € L' (R)
and hence g is bounded. This shows that the claimed inequality holds for |£| > 1.
Let now & € R satisfy |&| < 1. For this, observe that, up to a constant,

d k
/ g()xkdx = (5) £(0).
R

Since g possesses M vanishing moments, it follows that all derivatives of order
k < M of g vanish at 0. Furthermore, since g is compactly supported, its Fourier
transform is analytic. Thus

12 < 1&1M,

which proves the claim. O

We now assume that ¢°, ¢! € L*(R) satisfy 50 (’51 € C°(R) and there are
0 <aand 0 < a; < ap such that

supp@” C [—a,a]l and supp@' C [—az, axl\[—ai, a1].

These conditions are fulfilled, for instance, if ¢0, ¢1 € L2(R) are the generators
of a Lemarié-Meyer wavelet system. In this case, it is well known that the associ-
ated tensor product wavelets are indeed suboptimal for approximation of anisotropic
features modeled by cartoon-like functions.

Theorem 2 For [ € 52(}&2), the wavelet system W(¢O, qbl; T, c) provides an
asymptotic L*-error of best N-term approximation given by

If—fyls =< N~' as N — oo.
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()] ®)

Fig. 3 Approximation of a curve by isotropic-shaped (/) and anisotropic-shaped (2) elements

3 Directional Representation Systems

The reason for the failure of wavelets to provide optimally sparse approximations of
cartoon-like functions is the fact that wavelets are inherently isotropic objects and
thus not optimally suited for approximating anisotropic objects. To overcome this
problem, in recent years various directional representation systems were introduced,
among which are ridgelets, curvelets, and shearlets, to name just a few. Their main
advantage lies in their anisotropic support, which is much better suited to align with
curvilinear structures (see Fig. 3), thereby already intuitively promoting a fast error
decay of the best N-term approximation.

In this section, we now first introduce the second-generation curvelet system,
which was in fact also the first system to provide (almost) optimally sparse approxi-
mations of cartoon-like functions (cf. Sect.3.1). This is followed by a discussion of
different versions of shearlets in Sect. 3.2.

3.1 Second-Generation Curvelets

Second-generation curvelets were introduced in 2004 by Candes and Donoho in
the seminal work [5]. It is this curvelet system which is today referred to when
curvelets are mentioned. The anisotropy of these systems is induced into this system
by enforcing a parabolic scaling so that the shape of the support essentially follows
the parabolic scaling law “length® ~ width”. Intuitively, this seems a compromise
between the isotropic scaling, as utilized for wavelets, and scaling in only one coor-
dinate direction, as utilized for ridgelets. However, the reason is much deeper, since
this law is particularly suited for approximating C2-singularity curves, which is the
type of curves our model is based on.

‘We now describe the original construction. For this, let W and V be two window

functions that are both real, nonnegative, C°°, and supported in (%, 2) andin (—1, 1),
respectively. We further require that these windows satisfy

2 11
Zw(zfr) =1 forall reRy and > V(@ —0>=1 forall te(—i,i).
JEZ Lel
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For every scale j > 0, we now define the functions y;, 0,0y in polar coordinates by
76,00/ @) =274W (27 ) v (2472 w).

For j € Z and 6 € T, the parabolic scaling matrix A ; and the rotation matrix Ry are

defined by
(20 _ (cos(8) —sin(0)
Aji= (o 2]/2) and Ry = (sin(e) cos(0) )

The definition of curvelets then reads as follows:
VG () = v(.0.0) (Roj, - —Xjk) »

where 0; ¢ = 022y, Xjk = A;lk, and (7, 4, k) € A9 with the set of curvelet
indices given by

A= {(j, Gk ez >0, 6= 2R 2U/2J—1} . )

With appropriate modifications for the low-frequency case j = 0, for details we
refer to [7], the system

ro.= {yA:AeAO}

constitutes a Parseval frame for LZ(R2), which is customarily referred to as the
frame of second generation curvelets. When identifying frame elements oriented in
antipodal directions, this system becomes a frame with real-valued elements.

Let us next discuss the approximation properties of I'’ proved in [5]. Ignoring log-
like factors, this frame indeed attains the optimal achievable approximation rate for
the class of cartoon-like functions &2 (R?). Moreover, this rate is achieved by simple
thresholding, which is even more surprising, since this approximation scheme is
intrinsically nonadaptive.

Theorem 3 [5] The second generation curvelet frame T'° provides (almost) optimal
sparse approximations of cartoon-like functions f € &2(R?), i.e.,

If— fvls S N 2(ogN)? as N — oo, (3)

where fy is the nonlinear N -term approximation obtained by choosing the N largest
curvelet coefficients of f.

The implicit constant in (3) only depends on the maximal curvature of the singularity
curve of f,the number of corner points, and the minimal opening angle in the corners.
In particular, the approximation rate is uniform over all functions whose singularity
curve has maximal curvature bounded by a fixed constant.



Parabolic Molecules: Curvelets, Shearlets, and Beyond 151

Fig. 4 Frequency tiling
induced by a curvelet
system (/) and a shearlet

system (2) \

i

NN\
—
—1]

)] (@3

Finally, we remark that due to the construction the frame elements of I'° are band-
limited functions. Up to now no constructions of compactly supported curvelets are
known.

3.2 Shearlet Systems

Shearlets were introduced in 2006 [19] as the first directional representation system
which not only satisfies the same celebrated properties of curvelets, but is also more
adapted to the digital realm. In fact, shearlets enable a unified treatment of the con-
tinuum and digital setting, which allows implementations faithful to the continuum
domain theory. This key property is achieved through utilization of a shearing matrix
instead of rotations as a means to parameterize orientation, thereby preserving the
structure of the integer grid. The resulting different tilings of frequency domain are
illustrated in Fig. 4.

We next introduce a selection of the variety of available shearlet systems, namely
bandlimited shearlets (Sect. 3.2.1), the so-called smooth Parseval frames of shearlets
(Sect.3.2.3), and compactly supported shearlets (Sect.3.2.2). For a more detailed
exposition of shearlets than given below, we refer to the book [28].

3.2.1 Bandlimited Shearlets

We first present the classical cone-adapted shearlet construction of bandlimited shear-
lets presented in [19]. It is worth emphasizing that due to the shearing operator, the
frequency domain needs to be split into four cones to ensure an almost uniform
treatment of the different directions, which comes naturally for rotation as a means
to change the orientation (compare Fig.4).

First, let ¥y, ¥n € LZ(R) be chosen such that

1 1

o 1 1 ~
—— ——|u|—=, = —1,1
supp%C[ 2 16] [16,2] supp Y2 C [—1, 1],

R SN2 1
Z‘wl (2‘%0)‘ =1 for |w|z§,

j=0
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and
2Li/2)

A~ . 2
D ‘wz(zlf/%w)‘ —1 for Jo| <.
t=—2Li/2]

Then the classical mother shearlet ¥ is defined by

¥ (&) = Y1 EDY2 (%) :

For j, £ € Z let now the parabolic scaling matrix A; and the shearing matrix S,

be defined by '
270 17
Aj = (0 2j/2) and Sy := (01).

Further, for a domain © C R? let us define the space
L2(Q)Y = {f € L2(R?) : suppf C sz} .
It was then shown in [19] that the system
0. {231/4¢ (SeAj - —k): j =0, e=—2U/2 2l ke Zz}

constitutes a Parseval frame for the Hilbert space L> (¢)" on the frequency cone

1 |&]
€ = : - == <1y.
[E 1&1] > 8 T < ]

By reversing the coordinate axes, also a Parseval frame »! for L? (%/ )v, where

/ 1 |'§1|
¢ = : - =— <1y,
[E 1&2] > 8 &l < ]

can be constructed. Finally, we can consider a Parseval frame
® = {¢(- —k): ke ZZ}

\
for the Hilbert space L? ([—%, %]2) . Combining those systems, we obtain the

bandlimited shearlet frame
r=3x'uzs'vae.



Parabolic Molecules: Curvelets, Shearlets, and Beyond 153

In [20], it was shown that bandlimited shearlet frames achieve (almost) optimal
sparse approximations for elements of &2 (R?), similar to curvelets and in fact even
with the same log-like factor.

Theorem 4 [20] The bandlimited shearlet frame X provides (almost) optimal sparse
approximations of cartoon-like functions f € &*(R?), i.e.,

||f—fN||% < N72(logN)® as N — oo,

where fy is the nonlinear N -term approximation obtained by choosing the N largest
shearlet coefficients of f.

3.2.2 Smooth Parseval Frames of Shearlets

Following [22], a slight modification of the bandlimited shearlet construction, namely
by carefully glueing together boundary elements along the seamlines with angle 7 /4,
yields a Parseval frame with smooth and well-localized elements.

3.2.3 Compactly Supported Shearlets

In 2011, compactly supported shearlets were introduced by one of the authors and
her collaborators in [27]. Currently known constructions of compactly supported
shearlets involve separable generators, i.e.,

Y(x, x2) == Y1(x)Pa(x2), ¥xr, x2) = ¥(xz, x1). 4

with a wavelet ¥ and a scaling function . Following [27], the cone-adapted
discrete shearlet system is then defined as follows, where A := diag(2/,27/?) as
before and A ; := diag(2//2, 2).

Definition 4 For some fixed sampling parameter ¢ > 0, the cone-adapted discrete
shearlet system SH (¢, ¥, ¥; ¢) generated by ¢, ¥, ¥ € L*(R?) is defined by

SH(¢. v, 5 ¢) = ®(¢; 0) UW (Y 0) U (Y5 0),
where

D(¢; ¢) = {or = ¢p(- — k) : k € cZ?},
V(s o) = {ojex =224 (SeA; - —k) : j = 0,1€] < [2//7], k € 2%},
U(ic) = {G.ox =2 (ST Aj - —k): j = 0, 1€] < [2/7].k e cZ?}.

Under certain assumptions on c, v, J this shearlet system forms a frame with
controllable frame bounds [24].
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In [27], it was shown that compactly supported shearlet frames, under assumptions
on the separable behavior and the directional vanishing moments of the generators,
also achieve (almost) optimal sparse approximations for elements of &2 (R?).

Theorem 5 [27] Let ¢ > 0 and let ¢, ¥, ¥ € L:(R2) be compactly supported.
Suppose that, in addition, for all € = (£1, &) € R?, the shearlet \ satisfies

) [ (&) < Cimin(1, |&[%) min(1, [£|77) min(1, |&]| ) and
o v
i) [ 0®| <meni(1+2) 7,

where @ > 5,y > 4, h € L'(R), and Cy is a constant, and suppose that
the shearlet 1// satisfies ( i) and (ii) with the roles of &1 and & reversed. Further,
suppose that SH (¢, ¥, w ¢) forms a frame for L>(R?). Then the shearlet frame
SH(p, ¥, w ¢) provides (almost) optimal sparse approximations of cartoon-like
functions f € &2(R?), i.e.,

If— fN||%<N 2(IOgN)3 as N — oo,

where fy is the nonlinear N -term approximation obtained by choosing the N largest
shearlet coefficients of f.

With this theorem we end our presentation of directional representation systems,
although there do exist more constructions. It is a striking fact that the three pre-
sented examples all exhibit the same approximation behavior, although they are
construction-wise quite different. The framework of parabolic molecules, which we
will present in the subsequent sections, will reveal the fundamental common ingre-
dients in these systems which ensure (almost) optimal sparse approximations of
cartoon-like functions.

4 Parabolic Molecules

The concept of parabolic molecules took shape by distilling the essential principles
which underly many of the newly constructed directional representation systems, in
particular, curvelets and shearlets. It provides a framework which comprises many
of these classic systems, and allows the design of new constructions with predefined
approximation properties.

Moreover, the approximation properties of some new system are usually proven
more or less from scratch. By adopting the higher level viewpoint of time-frequency
localization, the parabolic molecule framework is very general and independent of
specific constructions. This has the advantage that it enables a unified treatment for
many systems. In particular, it can be used to establish approximation results for
many systems simultaneously.

A system of parabolic molecules consists of functions obtained from a set of
generators via parabolic dilations, rotations, and translations. Similar to curvelets,
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each function in a system of parabolic molecules is therefore naturally associated
with a certain scale, orientation, and spatial location.

A central feature of the framework, which explains the terminology “molecules,”
is the concept of variable generators: In order to gain flexibility the generators are
allowed to vary, as long as they obey a prescribed time-frequency localization. At
the heart of this is the fundamental observation that it is foremost the time-frequency
localization which determines the approximation properties and performance of a
system.

A nice side effect of this less rigid construction principle is the fact that the strict
vanishing moment conditions, usually imposed on the generators of classical con-
structions, can be relaxed without changing the asymptotic approximation behavior
of the system. It suffices to require the moments to vanish asymptotically at high
scales.

4.1 Definition of Parabolic Molecules

Let us now delve into the details of the framework of parabolic molecules. A system
of parabolic molecules is a family of functions (m,),eca obtained from a set of
generators via parabolic dilations, rotations, and translations. Each function m;, is
therefore associated with a unique point in the parameter space P, sometimes also
referred to as phase space, given by

P::R+XTXR2,

where a point p = (s, 8, x) € P specifies a scale 2° € R, an orientation & € T, and
a location x € R?.

The relation between the index A of a molecule m and its location (s;, 6;, x;) in
the parameter space IP is described via so-called parameterizations.

Definition 5 A parameterization consists of a pair (A, ®,), where A is a discrete
index set and ® 4 is a mapping

dDA:A_)]:P)’ )LH(SA,G)\‘,X)‘,),

which associates with each A € A a scale s, a direction 0, and a location x; € R2.

By using parameterizations, the actual indices of the molecules can be decoupled
from their associated locations in IP. This gives the freedom to assign generic indices
to the molecules, a feature that is essential to include systems into the framework,
whose constructions are based on different principles, for example shearlet-like and
curvelet-like systems. Another benefit of this approach is that a parameterization
does not have to sample phase space in a regular fashion. The only property it needs
to satisfy for our results to be applicable is consistency as defined below in Sect. 6.2.
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Before defining parabolic molecules we fix the following notation. As defined
in Sect. 3, let Ry denotes the rotation matrix by an angle 6, and A; is the parabolic
scaling matrix associated with j > 0.

Definition 6 Let A be a parameterization. A family (m)),ca of functions m; €
L2(R?) is called a family of parabolic molecules of order (R, M, N1, N») if it can
be written as

my.(x) = 224 (A, Ry, (x — x2))

such that
~(h . 2 /2 M N N
[07a® )| < min (1,279 + Ja| +27gl) (6) ™ @)™ )

for all |B| < R. The implicit constants shall be uniform over A € A.

Remark 1 To simplify notation we did not explicitly refer to the utilized parameter-
ization ® 4.

Note that a system of parabolic molecules (1, ),cn is generated by parabolically
scaling, rotating, and translating a set of generators (a*)); 4. In contrast to many
classical constructions, where the set of generators is usually small, each molecule
is allowed to have its own individual generator. We only require these generators to
uniformly obey a prescribed time-frequency localization.

Recall that for convenience the time-frequency conditions in the definition are
formulated on the Fourier side. Thus, the number R actually describes the spatial
localization, M the number of directional (almost) vanishing moments, and N1, N
describe the smoothness of an element m1;,.

According to the definition, the frequency support of a parabolic molecule is
concentrated in a parabolic wedge associated to a certain orientation, and in the
spatial domain its essential support lies in a rectangle with parabolic aspect ratio. For
illustration purposes, the approximate frequency support of two parabolic molecules
at different scales and orientations is depicted in Fig. 5.

Changing into polar coordinates, we obtain the representation

1. (r, ) = 27344 (2750 cos (¢ + 6,), 27421 sin(p + 6,)) exp 27i (x;., £)) ,
which directly implies the estimate

i &)| < 2724 min (1,27 (1 + m) Y (27 (27921 sinp + 6,)) N2,

4.2 Index Distance

An essential ingredient for the theory is the fact that the parameter space P can be
equipped with a natural (pseudo-)metric. It was first introduced by Smith [29], albeit
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1
-8 6 4 2 0 2 4 6 810 -8 64 -2 0 2 46 8 I0

(D (2)
Fig. 5 I The weight function min (1,27% + |&| + 2*~Yx/2|52|)M (NN (£)~N2 for 5, = 3,
M = 3, Ny = N, = 2. 2 Approximate frequency support of a corresponding molecule 7, with
0, =m/4

in a different context, and is therefore sometimes termed as the Hart-Smith pseudo
metric. Later it was also used in [3].

Definition 7 Following [3, 29], we define for two indices A, u the index distance
o (o, p) o= 21075l (14 2%0d (1, ) |

and
d (hy ) =165 — 0,12 + 1x — x|* + e, xa — x01-

where Ay = argmin(sy, s,) and e) = (cos(6},), sin(@x))T.

Remark 2 The notation w (A, w) is a slight abuse of notation, since w is acting on P.
Therefore it should read as

 (Pa(A), Pa(p)

forindices A € A, u € A with associated parameterizations ® 5, ® . In order not to
overload the notation, we stick with the shorter but slightly less accurate definition.

Remark 3 We also mention that there is a slight inaccuracy in the above definition.
Real-valued curvelets or shearlets are not associated with an angle but with a ray,
i.e., 0 and 0 + 7 need to be identified. This is not reflected in the above definition.
The “correct” definition should assume that |6, | < % e P!, the projective line.
Therefore, it should read as

d(h, 1) = 16 — 0,17 + 150 — x, 12 4+ 105, x5 — x,0)
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with {¢} being the projection of ¢ onto P! = (—x/2, 7r/2]. However, for our results
it will make no difference which definition is used. Thus we employ Definition 7,
which avoids additional technicalities.

Note that the Hart-Smith pseudo metric is not a distance in the strict sense, e.g., we
have w (A, A) = 1 # 0. As we shall see later, it somehow measures the correlation of a
pair of parabolic molecules associated to the corresponding points in P. The following
proposition, whose proof can be found in [3], collects some of its properties.

Proposition 1 [3] For indices A, 1, v we have

(1) Symmetry: w(h, 1) <X o (U, A).
(1) Triangle Inequality: d(,,u) < C(w(Xx,v)+ w(v, 1)) for some constant
C > 0.
(iii) Composition: For every integer N > 0 and some positive constant Cy it holds

2 ot Mo W™ < CyoG =

v

4.3 Decay of the Cross-Gramian

Given two systems (m)yea and (py)uea of parabolic molecules; we are interested
in the magnitudes of the cross-correlations |(m;, p,)|. A fast decay will be the key
to, for instance, transferring sparse approximation properties from one system of
parabolic molecules to another.

The following theorem establishes a relation to the index distance on PP. It states
that a high distance of two indices can be interpreted as a low cross-correlation of
the associated molecules. The proof is quite technical and we refer to [17] for the
details.

Theorem 6 [17] Let (m;)en, (Py)uea be two systems of parabolic molecules of
order (R, M, N1, N») with

5 3
R > 2N, M>3N—Z, N12N+Z, N> > 2N.

Then N
‘(m)u Pu)‘ ,S(l)((s)ue)uxk)a(su.ae/uxu,))_ N

This result shows that the Gramian matrix between two systems of parabolic
molecules satisfies a strong off-diagonal decay property and is in that sense very
close to a diagonal matrix. In Sect. 6 we will present several immediate applications
of this result, most notably for the approximation properties of parabolic molecules.
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5 Examples of Parabolic Molecules

Before going deeper into the theory of parabolic molecules and further exploring
their properties, we pause for a while and give some examples for illustration. This
will give evidence about the versatility of the concept. In particular, we show that
both rotation-based and shear-based constructions fit well into the framework. It will
also be proven that earlier constructions, which also employ the “molecule” concept,
can be viewed as subclasses of the more general parabolic molecules.

5.1 Curvelet-Like Systems

We begin with the review of curvelet-like systems, i.e., constructions based on rota-
tion. Due to their similar construction principles, it may not come as a surprise that
second-generation curvelets are instances of parabolic molecules. It is also easily
verified that curvelet molecules as defined in [3] fall into this framework.

5.1.1 Second-Generation Curvelets

We start by specifying the parameterization, which we utilize for fitting second-
generation curvelets into the framework of parabolic molecules.

Definition 8 Let

A= {ek ezt j 20, 0= 22U ol

be the curvelet index from (2) and define ®° : A® — P by
0(j, €, k) := (j, €27/ x, R_g, A_ k).

Then (A, ®°) is called the canonical parameterization.

We next prove that the frame '’ of second-generation curvelets as defined in
Sect.3.1 forms a system of parabolic molecules of arbitrary order.

Proposition 2 [17] The second-generation curvelet frame T'° constitutes a system
of parabolic molecules of arbitrary order associated with the canonical parameter-
ization.

Proof Let A € AL. Due to rotation invariance, we may restrict ourselves to the case
0. = 0. Therefore, denoting y; := y(; 0,0), it is sufficient to prove that the function

a® () 1= 273904y, (A—l.)

S
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satisfies (5) for (R, M, N1, N») arbitrary. For this, first note that
aM () =224 (A1)

The function @», together with all its derivatives, has compact support in a rectangle
away from the &-axis. Therefore, it only remains to show that, on its support, the
function 8™ has bounded derivatives, with a bound independent of j. But this follows

from elementary arguments, using r = ,/ 512 + 522, w = arctan (&2 /&1), which yields

aM &) = ;.00 (AjE) = W (a;(®) V (B;(©)),

;) =2" ]\/m and B;(&) := 27/ arctan (2 5251)

By a straightforward calculation, all derivatives of «; and B; are bounded on the
support of @ and uniformly in j. The proposition is proved. O

5.1.2 Hart Smith’s Parabolic Frame

Historically, the first instance of a decomposition into parabolic molecules can be
found in Hart Smith’s work on Fourier Integral Operators and Wave Equations [29].
This frame, as well as its dual, again forms a system of parabolic molecules of arbi-
trary order associated with the canonical parameterization. We refer to [1, 29] for the
details of the construction which is essentially identical to the curvelet construction,
with primal and dual frame being allowed to differ. The same discussion as above
for curvelets also shows that this system is a special instance of the framework of
parabolic molecules.

5.1.3 Borup and Nielsen’s Construction

Another very similar construction has been given in [2]. In this paper, the focus
has been on the study of associated function spaces. Again, it is straightforward to
prove that this system constitutes a system of parabolic molecules of arbitrary order
associated with the canonical parameterization.

5.1.4 Curvelet Molecules

The final concept of parabolic molecules had many predecessors. In [3] the authors
also employed the idea of molecules and introduced the notion of curvelet molecules.
It proved to be a useful concept for showing sparsity properties of wave propagators.
Let us first give their exact definition.
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Definition 9 Let A” be the canonical parameterization. A family (m;); c 40 is called
a family of curvelet molecules of regularity R if it can be written as

my.(x) = 224%™ (A, Ry, (x — x3))
such that, for all || < Randeach N =0,1,2,...,
19PaM ()] < ()N

and, forallM =0,1,2, ...,

M
a™ (€)] < min (1, 27% 16|+ 2_”/2|52|) :

This definition is similar to our definition of parabolic molecules, however, with
two crucial differences: First, (5) allows for arbitrary rotation angles and is there-
fore more general. Curvelet molecules, on the other hand, are only defined for the
canonical parameterization A” (which, in contrast to our definition, is not sufficiently
general to also cover shearlet-type systems). Second, the decay conditions analogous
to our condition (5) are more restrictive in the sense that it requires infinitely many
nearly vanishing moments.

In fact, the following result can be proven using similar arguments as for Propo-
sition 2.

Proposition 3 [17] A system of curvelet molecules of regularity R constitutes a
system of parabolic molecules of order (oo, 00, R/2, R/2).

5.2 Shearlet-Like Systems

It is perhaps not surprising that curvelets and their relatives described above fall into
the framework of parabolic molecules. However, we next show that even shearlets as a
very different directional representation system are examples of parabolic molecules.
In this regard, we draw the reader’s attention to the parameterization chosen for fitting
shearlets into this framework.

5.2.1 Shearlet Molecules
Shearlet molecules as introduced in [17] provide a framework for shearlet-like sys-
tems in the spirit of curvelet molecules. For their definition, we require the index

set

AC — {(8, Gl k)eZyx 7 e € {0,1), j =0, £ = _ZU/ZJ""’ZU/ZJ} ©
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and generating functions ¢, ¥; ¢ «, Jj,g‘k € L2(R?), for (j, 2, k) € A°. The associ-
ated shearlet system
z :={O’)L:)\EAU},

is then defined by setting o'¢,0,0,4)(-) = ¢ (- — k) and for j > 1:

00,7600 () = 224 0k (A Sej - k)
o1j.ei () =205 04 (XjSZj : —k) .

Here, S¢ ; denotes the shearing matrix

1 ¢2-Li/2]
Sg,j = (O 1 .

We proceed to define shearlet molecules of order (R, M, N1, N»), which is a
generalization of shearlets adapted to parabolic molecules, in particular including
the classical shearlet molecules introduced in [21], see Sect.5.2.5.

Definition 10 We call £, a system of shearlet molecules of order (R, M, N1, N»),
if the functions v; ¢ x satisfy

, | o
070006 821 S min (1,27 1] +27Pll) (e E) o)

and

10Pp (&1, £2)] < (g Ni(g) N (8)

for every B € N? with | 8| < R, and if the functions J .0k satisfy (7) with the roles
of & and &; reversed.

Remark 4 In our proofs, it is nowhere required that the directional parameter £ runs
between —2L7/2) and —2L//2)  Indeed, ¢ running in any discrete interval —C2L//2],
..., C2Li72) would yield the exact same results, as a careful inspection of our argu-
ments shows. Likewise, in certain shearlet constructions, the translational sampling
runs not through k € 72, but through tZ? with ¢ > 0 a sampling constant. Our
results are also valid for this case with similar proofs. The same remark applies to
all curvelet-type constructions.

Now we can show the main result of this section, namely that shearlet systems
with generators satisfying (7) and (8) are actually instances of parabolic molecules
associated with a specific shearlet-adapted parametrization (A%, ®?). This result
shows that the concept of parabolic molecules is indeed a unification of in particular
curvelet and shearlet systems.

Proposition 4 [17] Assume that the shearlet system X constitutes a system of
shearlet molecules of order (R, M, N1, N2). Then X forms a system of parabolic
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molecules of order (R, M, N /1, N»), associated to the parameterization (A°, ®7),
where with A? =Aj, A; =Aj, ng =S¢} Sel’j = SKT,j the map ®° is given by

o ; —Lj/2] e Y 4\
D7(A) = (55,04, x) ;= | J, e /2 + arctan(—£27 /1), (SZ,j) (Aj) k).

Proof We confine the discussion to ¢ = 0, the other case being the same. Further,
we suppress the subscripts j, £, k in our notation. We need to show that

a® () i= (A, St RE A=)
satisfies (5). We first observe that the Fourier transform of ¢ is given by
aP () = (A STTREA).

and the matrix S . TTA RQTA has the form

¢ TR — cos(8,) sin(6y) _. fuv
b5, 70 0 —£275/2) 5in(6;) +cos(@) )~ \Ow ) -

We next claim that the quantities # and w are uniformly bounded from above and
below, independent of j, £. To prove this claim, consider the functions

T(x) := cos(arctan(x)) and p(x) := x sin(arctan(x)) + cos(arctan(x)),

which are bounded from above and below on [—1, 1], as elementary arguments show.
In fact, this boundedness holds on any compact interval. We have

u=rt (—EZLS*/ZJ) and w=p (—EZL”/N) )

Since we are only considering indices with & = 0, we have |—€2!%/2)| < 1, which
now implies uniform upper and lower boundedness of the quantities u, w. Hence,
there exist constants 0 < §, < A, < oo and 0 < §,, < A, < oo such that for all
J, £ it holds

Sy <u<A, and 5, Sw < Ay.

T
Sh

u 2=5/2y
0w ’

Observing that the matrix A_j, RQT,\ S, s Ag, has the form
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and by using the upper boundedness of u, v, w, and the chain rule, for any |8| < R,

we obtain
A 2=51/2y . M
0 ((g . )s)‘ < (161427 21g1)

For the last estimate we utilized the moment estimate for v, which is given by (7).
This proves the moment property required in (5).

Finally, we need to show the decay of 8#a™ for large frequencies £. Again, due
to the fact that u, v, w are bounded from above and u, w from below, and utilizing
the large frequency decay estimate in (7), we can estimate

—Sx/z
(57
ly|<R 1/f((ow :

—51/2 M
<5 e

S gD M (&) M.

198a™ ()] < sup
lyI<R

19Pa™ )] < sup

The statement is proven. |

In the remainder of this section, we examine the main shearlet constructions
which are known today and show that they indeed fit into the framework of parabolic
molecules.

5.2.2 Classical Shearlets

For the bandlimited shearlet system X defined in Sect.3.2.1, the following results
can be shown using Proposition 4.

Proposition 5 [17] The system ¥ := X% U X! U ® constitutes a shearlet frame
which is a system of parabolic molecules of arbitrary order.

It is also straightforward to check that the related Parseval frame constructed in
[22] constitutes a system of parabolic molecules of arbitrary order.

5.2.3 Bandlimited Shearlets with Nice Duals

The bandlimited shearlet frame X as described above suffers from the fact that its
dual frames are unknown. In particular, it is not known whether, in general, there
exists a dual frame which also forms a system of parabolic molecules. In particular
for applications, such a construction is however required. For general frames X of
parabolic molecules, it can be shown that the canonical dual frame X’ constitutes a
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system of parabolic molecules of lower order [16]. However, the result of that paper
is mostly of a qualitative nature and in particular it is difficult to compute the order
of the dual frame for a given construction. In [15], this problem was successfully
resolved by carefully gluing together the two bandlimited frames associated with
the two frequency cones. The result in this paper in fact provides a construction of
shearlet frames X with a dual frame ¥’ such that both ¥ and X’ form systems of
parabolic molecules of arbitrary order.

5.2.4 Compactly Supported Shearlets

Again by using the general result Proposition 4, it can be shown that the compactly
supported shearlets as introduced in Sect. 3.2.3 also constitute a system of parabolic
molecules, this time with the order being dependent in a more delicate way on the
chosen generators.

Proposition 6 [17] Assume that Yy € C™' is a compactly supported wavelet with
M + R vanishing moments, and Y, € CN*N2 is also compactly supported. Then,
with ¥ and 1/7 defined by (4), the associated shearlet system X constitutes a system
of parabolic molecules of order (R, M, N1, N3).

We remark that several assumptions on the generators v, 1} could be weakened,
for instance, the separability of the shearlet generators is not crucial for the arguments
of the associated proof. More precisely, neither compact support nor bandlimitedness
is necessary.

5.2.5 Shearlet Molecules of Guo and Labate [21]
In [21] the results of [3] are established for shearlets instead of curvelets. A crucial
tool in the proof is the introduction of a certain type of shearlet molecules that are

similar to curvelet molecules discussed above, but tailored to the shearing operation
rather than rotations.

Definition 11 Let A° be the shearlet index set as in (6) and A‘8 S‘e be defined
as in Proposition 4. A family (m; ),cac is called a family of shearlet molecules of
regularity R, if it can be written as

my (x) = 23914 (Aj.sgjx - k) ,
such that, for all || < Randeach N =0,1,2,...,
107 (x)] < (x)~"

and, foral M =0,1,2,...,
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M
1a® ()| < min (1, 27 4+ 1&1 + 2_“/2|§2|) .

By the results in [21], the shearlet molecules defined therein satisfy the inequality
(7) with the choice of parameters (R, M, N1, N2) = (00, 00, R/2, R/2). Therefore,
in view of Proposition 4, shearlet molecules of regularity R as defined in [21] form
systems of parabolic molecules of order (oo, oo, R/2, R/2).

Proposition 7 [17] A system of shearlet molecules of regularity R constitutes a
system of parabolic molecules of order (00, 00, R/2, R/2).

6 Sparse Approximation with Parabolic Molecules

This section is devoted to one prominent application of the framework of parabolic
molecules, and, in particular, the result of the decay of the cross-Gramian (Theorem
6), namely to sparse approximation behavior. This result also shows that the viewpoint
of time-frequency localization as adopted by the framework of parabolic molecules
provides the right angle to view questions of approximation behavior.

After introducing a measure for determining similar sparsity behavior, two main
results are presented: First, it is shown that any two systems of parabolic molecules
that are consistent, in a certain sense made precise later of sufficiently high order,
exhibit the same approximation behavior. Second, by linking an arbitrary system
to the curvelet frame, we obtain a “stand-alone result” in the sense of sufficient
conditions on the order of a system of parabolic molecules for providing (almost)
optimally sparse approximations of cartoon-like functions.

6.1 Sparsity Equivalence

Inlight of Lemma 1, two frames should possess similar sparse approximation behav-
ior, provided that the corresponding coefficient sequences have the same sparsity.
This gave rise to the notion of sparsity equivalence from Grohs and Kutyniok [17],
which is a useful tool to compare such behavior. It is based on the close connection
between the best N-term approximation rate of a frame and the £,-(quasi-)norm of
the associated coefficient sequence.

Definition 12 Let (1 );ca and (p,) e be systems of parabolic molecules and let

0 < p < 1. Then (my))ea and (py) e are sparsity equivalent in £, if

H((m)\, Pu>)AeA,M€AH€p—>ZP -
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Intuitively, systems of parabolic molecules being in the same sparsity equivalence
class have similar approximation properties. This will subsequently be elaborated
more deeply.

6.2 Consistency of Parameterizations

The next goal will be to find conditions that ensure that two systems of parabolic
molecules are sparsity equivalent. It seems clear from an intuitive viewpoint that this
requires some “consistency” of the associated parameterizations. The next definition
provides the correct notion for making this mathematically precise.

Definition 13 Two parameterizations (A, ® ) and (A, ® A) are called k-consistent,
fork > 0, if

sup Z w (X, /L)_k < oo and sup Za)(k, /L)_k < Q.
)LeAHEA “EAAGA

In combination with Theorem 6, consistency is the essential tool to decide whether
two frames of parabolic molecules are sparsity equivalent. We emphasize that
although the original definition of systems of parabolic molecules does not require
those systems to form a frame in the context of approximation theory, however, the
frame property becomes important.

The following result states a sufficient condition for sparsity equivalence.

Theorem 7 [17] Two frames (m;)rea and (py) uen of parabolic molecules of order
(R, M, N1, Np) with k-consistent parameterizations for some k > 0, are sparsity
equivalentin £y, 0 < p < 1, if

k 5 k 3 k
R>2—, M>3———-, Ni>—+—-, and Ny >2—.
p p 4 p 4 P

Proof By Schur’s test, a well-known result from operator theory, we have

1/p

<max | sup D [(my, pu)l”, sup D [(my, pudl?

H ((’”A Pu)))L H
’ eA,nEA
HeA rEA )‘E“MGA

Lp—>Lp

By Theorem 6, this implies that

1/p

< max | sup Z w(X, u)fk, sup Z w(X, /,L)ik

H((mx,lm))x A AH ~
SAMERNE, 0, HEA 5 A )"EA,LLGA
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But the term on the right-hand side is finite, due to the k-consistency of the
parameterizations (A, ®5) and (A, ®,). This proves that (m;),eca and (py)pea
are sparsity equivalent in £,. O

Thus, as long as the parameterizations are consistent, the sparsity equivalence can
be controlled by the order of the molecules.

In the remainder, we fix the frame of second-generation curvelets 0 from Sect. 3.1
as a reference frame. Recall that with respect to the canonical parameterization
(A°, @ ,0), this frame constitutes a system of parabolic molecules justifying the
following definition.

Definition 14 A parameterization (A, ® ) is called k-admissible, for k > 0, if it is
k-consistent with the canonical parameterization (A0, @ A0).

Before stating our main results, it seems natural to ask whether the curvelet and
shearlet parameterizations are k-admissible. This is the content of the next two lem-
mata.

Lemma 3 [17] The canonical parameterization (AY, @ A0) is k-admissible for all
k > 2.

Proof Writing s, = j' in the definition of w (i1, 1), we need to prove that
ki) min(j.j") -
>3 2 (1+2 3 d(u,/\)) < . 9)
JEZL4 1eAO 55 =]

By [3, Eq. (A.2)], for any g, we have

D, (A +2d(u, )72 £ 22070 (10)
AEA0 53=j
Hence, for each k > 2, (9) can be estimated by
S o M= 192i-11 < o,
=0
which finishes the proof. O
Lemma 4 [17] The shearlet parameterization (A°, ®°) is k-admissible for k > 2.

Proof The proof follows the same arguments as the proof of Lemma 3, except deriv-
ing the analog to (10), i.e.,

Z (1 +29d(u, 1)) "2 <2209+ forany g and u € A°, (11)
AEAT 53 =)

requires a bit more work.
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Without loss of generality, we assume that 6, = 0 and x, = 0. Also, we only
restrict ourselves to the case & = 0, the other case being exactly the same. In the case
q > j, the term on the left-hand side of (11) can be bounded by a uniform constant.

Thus, it remains to deal with the j > ¢g. Now we use the fact that, whenever
l€] < 27772, we have

Jarctan (—e27U/21) | 2 27U and 1571 Ak 2 1A K,

to estimate (11) by
o2 . 2 . . . —2
ZZ(qu (‘ez—umﬂ + || +‘2—1k1—ez—U/Zszz—U/zJ’)) .
¢ &

This can be interpreted as a Riemann sum and is bounded (up to a constant) by the
corresponding integral

dx dy -2
/m/m(ljtﬂ(yz—i-x%—i-lxl—x2y|)) ,
R2 R

compare [3, Eq. (A.3)]. This integral is bounded by C x 22U~%) as can be seen by
the substitution x; — 29xy, xo — 29/%x,, y — 29/2y. This yields (11), which
completes the proof. O

6.3 Sparse Approximations

The next theorem now states the central fact that any system of parabolic molecules
of sufficiently high order, whose parameterization is k-admissible, is sparsity equiv-
alent to the second-generation curvelet frame from Sect.3.1. This theorem can be
interpreted as a means to transfer sparse approximation results from one system of
parabolic molecules to another, which is also the key to Theorem 9.

Theorem 8 [17] Assume that 0 < p < 1, (A, ®p) is a k-admissible parame-
trization, and TO = (y,) a0 the tight frame of bandlimited curvelets. Further,
assume that (m))yea is a system of parabolic molecules associated with A of order
(R, M, Ny, N>) such that

Al

k k kK 3
R>2—, M>3——>, Nj>—+>, N,>2
P P p 4

Then (my).en is sparsity equivalent in £, to ro.
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Recall that it was shown by Donoho in [11] (cf. Theorem 1) that (under natural
conditions) the optimally achievable decay rate of the approximation error for the
class &2(R?) is given by

If— fvll3 < N2 asN — oo.

As discussed before, in [5, 20, 24] rotation-based as well as shear-based systems
were constructed, which attain this rate up to a log factor. Since these systems are
instances of parabolic molecules with consistent parameterizations, their similar
approximation behavior is no coincidence, as we will see in the next result.

Theorem 9 [17] Assume that (m;),cn is a system of parabolic molecules of order
(R, M, N1, N>) with respect to the parameterization (A, @A) such that

(i) (my)yen constitutes a frame for L%(R?),
(i) (A, D) is k-admissible for every k > 2,
(iii) it holds that

5 3
R >0, M>9_Z’ N123+Z, N> > 6.

Then the frame (m;),cp possesses an almost best N-term approximation rate of
order N~'F¢ & > 0 arbitrary, for the cartoon image class &*(R?).

We remark that condition (ii) holds in particular for the shearlet parameterization.
Hence this result allows a simple derivation of the results in [20, 24] from Candes [5].
In fact, Theorem 9 provides a systematic way to, in particular, prove results on sparse
approximation of cartoon-like functions. It moreover enables us to provide a very
general class of systems of parabolic molecules that optimally sparsely approximate
cartoon-like functions by using the known result for curvelets.

7 Outlook and Further Generalizations

Finally, we discuss some possible extensions and directions for future research.

e Higher Dimensional Setting. A general framework such as parabolic molecules
would also be of benefit for higher dimensional functions, in particular for the
three-dimensional setting which then includes videos with time as third dimension.
The model of cartoon-like functions was already extended to this situation in [26].
Then, in [12], a general framework of parabolic molecules for functions in L? (RS)
was introduced allowing, in particular, a similar result on the cross-Gramian of
two systems of 3D parabolic molecules. We expect that the 3D framework now
indicates a natural extension to higher dimensional settings.
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General Scaling Matrix. Another key question concerns the inclusion of other types
of scaling laws: Can the framework of parabolic molecules be extended to also
include, in particular, wavelets and ridgelets as well as newer hybrid constructions
such as [26] or [23]? In the parabolic molecule framework the degree of anisotropic
scaling is confined to parabolic scaling, but one approach to cover more scaling
laws consists in the introduction of a parameter « € [0, 1], which measures the
degree of anisotropy. More precisely, one then considers scaling matrices of the
type diag(a, a®) for @ € [0, 1], « = 0 corresponding to ridgelets, « = % to
curvelets and shearlets, and @ = 1 to wavelets. First results using this approach
to introduce an extension of parabolic molecules coined a-molecules have been
derived in [18].

Continuum Setting. It would be highly desirable to also introduce such a framework
for the continuum setting, i.e., with continuous parameter sets, adapted to the
continuous shearlet and curvelet transform [6, 14, 25]. This would, for instance,
allow the transfer of characterization results of microlocal smoothness spaces
between different representation systems.
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the emergence of a new generation of multiscale representations has extended the
classical wavelet approach leading to the introduction of a class of generalized
wavelet transforms—most notably the shearlet transform—which offers a much more
powerful framework for microlocal analysis. In this paper, we show that the shearlet
transform enables a precise geometric characterization of the set of singularities of
a large class of multidimensional functions and distributions, going far beyond the
capabilities of the classical wavelet transform. This paper generalizes and extends
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1 Introduction

How do you detect the location of a jump discontinuity in a function? One possible
approach consists in using as probes a collection of well-localized functions of the
form v, ,(x) = a ?Y(a" (x —=1)),a > 0,1 € R", where € L*>(R"). We assume
that v is chosen such that ¢ € C°(R™), with 0 ¢ supp 1/} Since ¢ has rapid decay
in space domain, the functions v, ; are mostly concentrated around ¢, with the size
of the essential support controlled by the scaling parameter a. We can then analyze
the local regularity of a function or distribution f via the mapping

f—= {f ¥as), a>0,reR"

To illustrate this approach, let us consider as a prototype of a jump discontinuity
the one-dimensional Heaviside function f(x) = 1 if x > 0 and f(x) = 0 otherwise.
Using the Plancherel theorem and the distributional Fourier transform of f, a direct
calculation using the analyzing functions v, ; with n = 1 shows that!

<fv wa,t) = (]?‘s &a,l‘>
_ Ja / F&) 9 (ag) 27 d

—a [ et e e
—va | ﬁ(n)e*2”""%dn,

where y(n) = 27”" 1,0(77) If t = 0, the calculation above shows that |{f, ¥, )| ~

Ja, provided that [ 7(n)dn # 0. On the other hand, if ¢ # 0, an application of
the Inverse Fourier Transform theorem yields that (f, ¥,,) = «/ay(—t/a). Since
7 € CX(R), y has rapid decay in space domain, implying that (f, ¥, ;) decays
rapidly to 0, as a — 0; that is, for any N € N, there is a constant Cy > 0 such that
I{f, Yar)| < Cna, asa — 0.

In summary, the elements(f, V¥, ;) exhibit rapid asymptotic decay, as a — 0, for
all t € R except at the location of the singularity t = 0, where (f, ¥,.;) behaves as
0(Ja).

The mapping f — (f, ¥a,:) is the classical continuous wavelet transform and
this simple example illustrates its ability to detect local regularity information about
functions and distributions through its asymptotic decay at fine scales (cf. [16-18,
22]).

I Note that the distributional Fourier transform of fis f &) = 1s &)+ 2 TiP-V-g , but the term 5 8 &)

gives no contribution in the computation for (f, v, ;) since 1//(0) =0.
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The generalization of the example above to higher dimensions is straightforward.
Let us consider the two-dimensional Heaviside function H (x1, x2) = X{x;>0} (X1, X2)
and let us proceed as in the example above. Using the analyzing functions v, ; with
n = 2 and denoting t = (t1, 1) € R? we have:

<I/:I’ &a,t)

a | A2 @k, agy) e TIENTE) di dy

<H7 wa,t)

. / OE) U (g1, agy) e IENTRN) gy gE,
R2 27‘[151

1l — .
=a / — y(a&1, 0) e 2T g
R 2mi&;

_ A —Zm'nLl
=a i y(me «dn,

where 7 () = ﬁ 1&(7}, 0). A similar argument to the one above shows that the

elements (H, ¥, ) exhibit rapid asymptotic decay, as a — 0, at all # € R? except
at the location of the singularity #{ = 0, where (H, ¥, ;) behaves as O(a), provided
that [ 7 (n)dn # 0.

However, even though the continuous wavelet transform is able to identify the
location of the singularities also in this case, the result of this second example is
not completely satisfactory since it provides no information about the orientation of
the singularity line. In dimensions larger than one, when the singularity points are
supported on a curve or on a higher dimensional manifold, it is useful not only to
detect the singularity location but also to capture its geometry, such as the orientation
of a discontinuity curve or boundary.

As a matter of fact, it is possible to overcome this limitation by introducing gener-
alized versions of the continuous wavelet transform that are more capable of dealing
with directional information. The idea of considering generalized (discrete or contin-
uous) wavelet transforms with improved directional capabilities has a long history,
going back to the steerable filters [8, 23] introduced for the analysis of discrete
data and to the notion of directional wavelets [1]. More recently, starting with the
introduction of ridgelets [2] and curvelets [3, 4], a new generation of more flexible
and powerful multiscale transforms has emerged, which has led to several success-
ful discrete applications in signal and image processing. Among such more recent
generalizations of the wavelet transform, the shearlet transform [9, 20] is especially
remarkable since it combines a simple mathematical structure that is derived from
the general framework of affine systems together with a special ability to capture
the geometry of the singularity sets of multidimensional functions and distributions.
For example, in the case of the two-dimensional Heaviside function, the continu-
ous shearlet transform is able to determine both the location and the orientation of
the discontinuity line. More generally, by extending and generalizing several results
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derived previously by two of the authors, in this paper we show that the continuous
shearlet transform provides a precise geometric description of the set of discontinu-
ities of a large class of multivariate functions and distributions. These results provide
the theoretical underpinning for improved algorithms for image analysis and feature
extraction, cf. [25].

The rest of the paper is organized as follows. In Sect. 2, we recall the definition
of the continuous shearlet transform; in Sect. 3, we present the shearlet analysis
of jump discontinuities in the two-dimensional case; in Sect. 4, we illustrate the
generalization of the shearlet approach to other types of singularities.

2 The Continuous Shearlet Transform

To define the continuous shearlet transform, we recall first the definition of the
“generalized” continuous wavelet transform associated with the affine group on R".

2.1 Wavelet Transforms

The affine group </ on R" consists of the pairs (M, t) € GL,(R) x R", with group
operation (M, 1) - (M', ') = (MM, t + Mt'). The affine systems generated by ¢ €
L?(R™) are obtained from the action of the quasi-regular representation of .« on ¥
and are the collections of functions of the form

[ () = | det M| 2y (M~ (x — 1) : (M, 1) € 7).

Let A={(M,1): M € G,t € R"} C &/, where G is a subset of GL,(R). If there is
an admissible function ¥ € L2(R") such that any f € L*(R") can be recovered via
the reproducing formula

f=/ /(f, Vi) Ym, dA(M) dr,
R JG

where A is a measure on G, then such v is a continuous wavelet associated with A
and the mapping

f=Wyf M 0) =(f,yms), M, 1) €A,

is the continuous wavelet transform with respect to A. Depending on the choice of
G and v, there is a variety of continuous wavelet transforms [21, 24]. The simplest
caseis G = {al : a > 0}, where [ is the identity matrix. In this situation, we obtain
the classical continuous wavelet transform
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W@ty = a / Fa Y@ T —10) d,
Rn

which was used in Sect. 1 for n = 1, 2. Note that, in this case, the dilation group G
is an isotropic since the dilation factor a acts in the same way for each coordinate
direction. It is reasonable to expect that, by choosing more general dilation groups
G, one obtains wavelet transforms with more interesting geometric properties.

2.2 The Shearlet Transform

The continuous shearlet transform is the continuous wavelet transform associated
with a special subgroup <7 of .o called the shearlet group (cf. [6, 7, 19, 20]). For
afixed 8 = (Bi,...,Bn-1), where 0 < B; < 1,1 < i < n — 1, @/ consists of the
elements (M, t), where

a —aP ST ... —aPn-1 Sn—1
0 o ... 0
Mas = s
0 0 ... aP
a>0,5s=(s1,...,5-1) € R"! and r € R". Note that each matrix My, is the

product of the matrices By A,, where

a0 ... 0 L=t =sne
Bi
Oa’ ... O 0 1 0
Aa= 5 sz P
,anl
00 ...a 00 . |

where A, is an anisotropic dilation matrix and By is a nonexpanding matrix called
a shear matrix. Hence, for an appropriate admissible function ¥ € L?(R") and
B = (B1,...,Bn—1), where 0 < B; < 1, the continuous shearlet transform is the
mapping

= M), Mg, 1) € s,

The analyzing elements vy, ; are called shearlets and are the affine functions

Yntes () = | det M| 29 (M7 (x — 1)).
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In the following we will show that, thanks to the geometric and analytic properties
of shearlets, the continuous shearlet transform enables a very precise description
of jump discontinuities of functions of several variables. For example, if f = xs,
where S C R"*, n = 2,3, is a bounded region with piecewise smooth boundary,
the continuous shearlet transform provides a characterization of the location and
orientation of the boundary set through its asymptotic decay at fine scales.

2.3 The Shearlet Transform (n = 2)

Before applying the shearlet framework in dimensions n = 2, we need to specify the
definition of the continuous shearlet transform that will be needed for our analysis.
For appropriate admissible functions ™, v e L>(R?), a fixed 0 < 8 < 1,
and matrices
a —aPs a0
M5 = s Nas = s
0 af —aPs a

we define the horizontal and vertical (continuous) shearlets by
Y () = [det Mys| 2y D (M (x — 1)), a>0,5€R, 1R

and
W) () = | det Nog| 2y (NG (x = ), a> 0,5 € R, 1 € R,

respectively. To ensure a more uniform covering of the range of directions through
the shearing variable s, rather than using a single shearlet system where s ranges over
R, it will be convenient to use the two systems of shearlets defined above and let s
range over a bounded interval.

To define our admissible functions ™, ¥, for & = (&, &) € R? let

PP EL &) =dniENTR), PG &) =T1E) YD), (1)

where

oo N d ~
/ 191 @) P2 = 1, forae. w € R, and suppyr C [-2,—31U[3.21;  (2)
0 a

lall2 = 1 and supp s C [—¥2, ¥2].

Observe that, in the frequency domain, a shearlet wéhs) ; has the form:

1+8
2

IO 618 = a2 P ja@ (& —5) e 3)
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Fig. 1 Supports of the &

shearlets 1%}?’,) (in the
frequency domain) for dif- .
ferent values of ¢ and s (a,8)=(7,0)

\ \(a,s>:<§,1>
- . &

!

(a,5)=( 15.0)

This shows each function &;hv) , has support:

~ h —
supp i, < @& 161 € [-2 - LU [4. 2] 18 -5l =a'F).

That is, its frequency support is a pair of trapezoids, symmetric with respect to the
origin, oriented along a line of slope s. The support becomes increasingly thin as

a — 0. This is illustrated in Fig. 1. The shearlets ")

a,s,t
. . 1
frequency supports oriented along lines of slopes .

have similar properties, with

For0 <a < % and |s| < 3, each system of continuous shearlets spans a subspace
of L?(R?) consisting of functions having frequency supports in one of the horizontal
or vertical cones defined in the frequency domain by

W = {1, 8) eR”: || = 2and | E| < 1},

PV = {(E1,&) e R? : |g1] = 2and | 2] > 1.
More precisely, the following proposition, which is a generalization of aresultin [19],
shows that the horizontal and vertical shearlets form a continuous reproducing system

for the spaces of L? functions whose frequency support is contained in 2 and
PMW respectively.

Proposition 1 Let " and ) be given by (1) with 1/}1 and 1/}2 satisfying (2) and
(3), respectively. Let

L* (2P = {f € L*R?) : suppf Cc M),

with a similar definition for L>(2"))V. We have the following:
() Forallf e L*(M)V,



180 K. Guo et al.

=L [t Sasa

(i) Forallf € L2(22™)Y,

da
f= /Rz//vw?t 0 S asan

The equalities are understood in the L? sense.

Note that % o < ds dt is the left Haar measure of the shearlet group <7s.
Using the horizontal and vertical shearlets, we define the (fine-scale) continuous
shearlet transform on L>(R?) as the mapping

feLP®\[-2,21)Y — S Hyf(a,s,1), ae(0,1],se[—00,00]1teR?,
given by

(h) (h) :
S5t = l SHY @50 = (Vg s < 1
A fa oy = (). iflsl > 1.
In this expression, it is understood that the limit value s = 400 is defined and that
S Hf (a, £00,1) = S A f(a,0.1).

The term fine-scale refers to the fact that this shearlet transform is only defined
for the scale variable a € (0, 1/4], corresponding to “fine scales”. In fact, as it
is clear from Proposition 1, the shearlet transform .77 f defines an isometry on
L2(R? \ [—2,2]%)Y, the subspace of L?>(R?) of functions with frequency support
away from [—2, 2]2, but not on Lz(Rz). This is not a limitation since our method
for the geometric characterization of singularities will require to derive asymptotic
estimates as a approaches 0.

3 Shearlet Analysis of Jump Discontinuities in Dimension n = 2

To introduce the main ideas associated with the shearlet-based analysis of singulari-
ties, let us examine first the two-dimensional Heaviside function which was consid-
ered in Sect. 1. Using the Plancherel theorem and denoting r = (¢, t2) € R2, when
|s| < 1 we have

S HyH(a,s,t) = (H, Wa(f?,,)
N /R A 8) D061 &) dé dis
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8 (&1,
=/ 82(81, 62) =y v (&1, &) dE d&s
R2 271l§

\/Rzﬂ'f %n(&,o)dél

1+8
= d 2

p—1 ) 2mwiE ty dsl

s
+B —
a7 wz(aﬂ Is) / P(m) 2% dn,

where y(n) = ﬁlﬁl (). Hence, using the same argument from the introduction,

under the assumption that 1}1 € C(R) we have that .7.7¢), H (a, s, t) exhibits rapid
asymptotiidecay, asa — 0, forall (11, 1) € R? when £ #0.Ift; =0and s # 0,

the term 12/2 (aP~1s) will vanish as a — 0, due to the support assumptions on 1/}2.
Finally, if #{ = 0 and s = 0, we have that

148 —
S HyH(a,0,(0,1n) =a 2 ¥(0) R)?(ﬂ)dw

Hence, provided that 1/72(0) # 0 and fR y(n) dn # 0, we have the estimate

148
SHyH(a,0,(0,6)) =0(@ 2 ).

A similar computation shows that .7, H (a, s, t) exhibits rapid asymptotic decay,
asa — 0, for all |s| > 1. In summary, under appropriate assumptions on ¥; and v,
the continuous shearlet transform of H decays rapidly, asymptotically for a — 0,
for all # and s, unless ¢ is on the discontinuous line and s corresponds to the normal
direction of the discontinuous line at 7.

The same properties of the continuous shearlet transform observed on the two-
dimensional Heaviside function can be extended to any function of the form f' = xg
where S C R? is a compact region whose boundary, denoted by 95, is a simple
piecewise smooth curve, of finite length L. To define the normal orientation to the
boundary curve 95, let «(¢), 0 < ¢ < L be a parameterization of 3S. Let pg = «(ty)
and let so = tan(6p) with 6y € (=75, 5). We say that so corresponds to the normal
direction of 9§ at pg if (cos 6y, sin 6y) = £n (¢y).

The following theorem generalizes a result proved originally in [ 10] for the special
case f = 5

Theorem 1 Let V1, Yy be chosen such that
° }[A/l € CX(R), supp 1&1 C[-2, —%] U [%, 2], is odd, nonnegative

o0

A d

on [%, 2] and it satisﬁes/ |1//1(a$)|2 ;a =1, forae & € R; 4)
0
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° 1}2 € CX(R), supp 1&2 C [—“/TE, %], is even, nonnegative,

decreasing in [0, ¥2), and | Y]l = 1. (5)

Let % < B < 1. For B = xs, where S C R? is a compact set whose boundary 35 is
a simple piecewise smooth curve, the following holds:

(1) Ifp ¢ 0S then, forall s € R,

lim+ aN SHyB(a,s,p) =0, forallN > 0.

a—0

(i1) If po € 9S8 is a regular point, so corresponds to the normal direction of 39S at
po and s # so, then

lim a N SHyB(a, s, po) =0, forallN > 0.

a—0t

(iii) If po € 9S is a regular point, so corresponds to the normal direction of 39S at
po and s = s, then

1+
oo > lim a 2 2 B(a, so, po) #0.

a—0t

That is, if pg € 35S, the continuous shearlet transform decays rapidly, asymptotically

for a — 0, unless s = sg corresponds to the normal direction of 95 at pg, in which

case

148
2

Sy B(a, so, po) = O(a ), asa — 0.

Theorem 1 generalizes to the case of functions of the form f = yg where § C R?
and the boundary curve 95 contains corner points. In this case, if pg is a corner point

and s corresponds to one of the normal directions of 95 at pg, then the continuous
148
shearlet transform has a decay rate of order O(a 2 ), as a — 0, similar to the

situation of regular points. For other values of s, however, the asymptotic decay rate
depends both on the tangent and the curvature at pg (cf. [10]).

Theorem 1 was originally proved in [10] for the case § = 1/2 and its proof was
successively simplified and streamlined in [13]. In the following section, we sketch
the main ideas of the proof, highlighting how to extend the proof from [13] to the

case f # 1/2.
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3.1 Proof of Theorem 1 (Sketch)

The argument used for the two-dimensional Heaviside function cannot be extended
to this case directly since this would require an explicit expression of the Fourier
transform of the function B = xg. Instead, we can apply the divergence theorem that
allows us to express the Fourier transform of B as a line integral over 9S:

BE) = 756) = /S 2R g ©)

1

— —2mi(§.x) & . d
2illE |2 /ase o,

for all £ # 0, where 9§ is the boundary of S, n is the unit outward normal to S, and
o is one-dimensional Hausdorff measure on RZ.
Hence, using (6), we have that

yf,/,B(a, S, P) = (B’ wa(fis),[)

= (B. ¥4,
= / B&) 99, &) de (7)

@ e
_ _L 1//11 vp(éf) e—Zm'E»xE -n (x)do(x) d&,

i Jre NEIR Jos

where the superscript in I//a s,piseitherd = h,when |s| < 1,ord = v, when |s| > 1.

One can observe that the asymptotic decay of the shearlet transform .77,
B(a, s, p), as a — 0, is only determined by the values of the boundary 95 which are
“close” to p. Hence, for ¢ > 0, let D(e, p) be the ball in R2 of radius ¢ and center p,
and D¢(¢e, p) = R?\ D(g, p). Using (7), we can write the shearlet transform of B as

S HyB(a,s,p) =1(a,s,p)+hia,s,p),

where

@) ey
11((1,s,p)=—L va(é) e Y s n(x)do(x)dE,  (8)

2mi Jre IEIP ASND(e.p)

1 w“?p(s)

—2mi&-x
— e -n(x)do(x)déE. 9)
i Jre IEI? 9SNDE (s,p) : (e

h(a,s,p) = —

The Localization Lemma below (whose assumptions are satisfied by the shearlet
generator function in Theorem 1) shows that I has rapid asymptotic decay at fine
scales. For its proof, we need the following “repeated integration by parts” lemma
whose proof follows easily from induction and the standard integration by parts
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result. Note that this version of the Localization Lemma is more general than the one

that appeared in [10, 13], since it does not assume a special form of the function .

Lemmal Let N € ZT = {1,2,3,...} and let f, g € CN(R) be such that

fWgWN=1=1 yanishes at oo, foralln = 0,...,N — 1, and fMg™N=" ¢ LY(R),
foralln =0, ...,N. Then,

/fmﬁWmW=c4W/ﬂmmgmw.
R R

Lemma 2 (Localization Lemma) Fix p € R? and let N € 7. Suppose that
() Y@ e CVR?), ford = h,v;

(i) Y@ e LY(R?) NL®(R?), forall0 < |w| <N — 1 and d = h, v;

(i) 02y @ /ATl e LUR2), forall 0 < |w| < N and d = h, v, where

_[1gl ira=n
'“Q_L&L#d=u

Then, there exists a constant 0 < C < oo such that

\L(a, s, p)| < CaVPTI=P)/2,

forall a and s.

Proof Fix 0 < a < 1/4 and s € R. We may assume that s

< landd = h.
Substituting for w,ﬁﬁ?,p and using (9), the change of variable n; = a4 and 1, =
aP & — af s&1, and some algebraic manipulation, we have
D(a, s, p)

_g(+B/2 G By — ab )
_ e / Yy (agy, a 522 aPs&p) ~2TECD) £ n (o) d o) dE
2mi R2 &N 3SNDe (e,p)
_ —q~(1+P)/2 / ¥ ™ () / o—2mi@ m,a P ppta snn)-(x—p)
2mi ®2 a= 2y} + (@ P+ a=Lsni)? Joasnpe(e,p)

x (a 'y, a P+ a tsny) -n @ dow) dy

1-B)/2 O
_ —q1=8/ / W( )(77) / e—271ia_1nl[(xl—p1)+5(x2—[72)]
2wi Jr2 p} + @ P+ sn1)? Jasnpece,p