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Preface
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Theory held at various locations in the United States, and was attended by 133
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1976, 1980, 1992), College Station, Texas (1983, 1986, 1989, 1995), Nashville,
Tennessee (1998), St. Louis, Missouri (2001), Gatlinburg, Tennessee (2004), and
San Antonio, Texas (2007, 2010).

We are particularly indebted to our plenary speakers: Peter Binev (South
Carolina), Annalisa Buffa (Pavia), Michael Floater (Oslo), Kai Hormann (Lugano),
Gitta Kutyniok (Berlin), Grady Wright (Boise), and Yuan Xu (Oregon) for their
very fine expository talks outlining new research areas. The seventh Vasil
A. Popov Prize in Approximation Theory was awarded to Andriy Bondarenko
(Kiev), who also presented a plenary lecture. Thanks are also due to the presenters
of contributed papers, as well as everyone who attended for making the conference
a success.

We are especially grateful to the National Science Foundation for financial
support, and also to the Department of Mathematics at Vanderbilt University for
its logistical support.
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Isogeometric Method for the Elliptic
Monge-Ampère Equation

Gerard Awanou

Abstract We discuss the application of isogeometric analysis to the fully nonlinear
elliptic Monge-Ampère equation, an equation nonlinear in the highest order deriv-
atives. The construction of smooth discrete spaces renders isogeometric analysis a
natural choice for the discretization of the equation.

Keywords Vanishing viscosity ·Monge-Ampère functional · Isogeometric analysis

1 Introduction

We are interested in the numerical resolution of the nonlinear elliptic Monge-Ampère
equation

det D2u = f in Ω

u = 0 on ∂Ω, (1)

where D2v denotes the Hessian of a smooth function v, i.e., D2v is the matrix with
(i, j)th entry ∂2v/(∂xi∂x j ). Here Ω is a smooth uniformly convex bounded domain
of R2 which is at least C1,1 and f ∈ C(Ω) with f ≥ c0 > 0 for a constant c0. If
f ∈ C0,α, 0 < α < 1, (1) has a classical convex solution in C2(Ω) ∩ C(Ω) and its
numerical resolution assuming more regularity on u is understood, e.g., [6, 7, 11].
In the nonsmooth case, various approaches have been proposed, e.g., [16, 17]. For
various reasons, it is desirable to use standard discretization techniques, which are
valid for both the smooth and the nonsmooth cases. We propose to solve numerically
(1) by the discrete version of the sequence of iterates

G. Awanou (B)

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,
M/C 249, 851 S. Morgan Street, Chicago, IL 60607-7045, USA
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2 G. Awanou

(cof(D2uk
ε + ε I )) : D2uk+1

ε = det D2uk
ε + f, in Ω

uk+1
ε = 0, on ∂Ω, (2)

where ε > 0, I is the 2 × 2 identity matrix and we use the notation cof A to denote
the matrix of cofactors of A, i.e., for all i, j , (−1)i+ j (cof A)i j is the determinant
of the matrix obtained from A by deleting its i th row and its j th column. For two
n × n matrices A, B, we recall the Frobenius inner product A : B = ∑n

i, j=1 Ai j Bi j ,
where Ai j and Bi j refer to the entries of the corresponding matrices.

Our recent results [1] indicate that an appropriate space to study a natural vari-
ational formulation of (1) is a finite dimensional space of piecewise smooth C1

functions. For the numerical experiments, we will let Vh be a finite dimensional
space of piecewise smooth C1 functions constructed with the isogeometric analysis
paradigm. Numerical results indicate that the proposed iterative regularization (2) is
effective for nonsmooth solutions. Formally, the sequence defined by (2) converges
to a limit uε, and uε converges uniformly on compact subsets of Ω to the solution u
of (1) as ε → 0.

For ε = 0, (2) gives the sequence of Newton’s method iterates applied to (1).
Surprisingly, for the two-dimensional problem, the formal limit uε of the sequence
uk+1

ε solves the vanishing viscosity approximation of (1)

εΔuε + det D2uε − f = 0 in Ω

uε = 0 on ∂Ω. (3)

However, discrete versions of Newton’s method applied to (3) do not in general
perform well for nonsmooth solutions. This led to the development of alternative
methods, e.g., the vanishing moment methodology [11]. The key feature in (2) is
that the perturbation ε I is included to prevent the matrix D2uk

ε + ε I from being
singular.

The difficulty of constructing piecewise polynomial C1 functions is often cited
as a motivation to seek alternative approaches to C1 conforming approximations
of the Monge-Ampère equation. In [1] Lagrange multipliers are used to enforce
the C1 continuity, but the extent to which this constraint is enforced in the compu-
tations is comparable to the accuracy of the discretization. With the isogeometric
method, the basis functions are also C1 at the computational level. On the other
hand, another advantage of the isogeometric method is the exact representation of a
wide range of geometries which we believe would prove useful in applications of the
Monge-Ampère equation to geometric optics. Finally, the isogeometric method is
widely reported to have better convergence properties than the standard finite element
method.

The main difficulty of the numerical resolution of (1) is that Newton’s method
fails to capture the correct numerical solution when the solution of (1) is not smooth.
We proposed in [1] to use a time marching method for solving the discrete equa-
tions resulting from a discretization of (1). Moreover in [3] we argued that the
correct solution is approximated if one first regularizes the data. However, numerical
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experiments reported in [1] and in this paper indicate that regularization of the data
may not be necessary.

It is known that the convex solution u of (1) is the unique minimizer of a certain
functional J in a set of convex functions S. It is reasonable to expect, although not
very easy to make rigorous, that the set S can be approximated by a set of smooth
convex functions Sm and minimizers of J in Sm would approximate the minimizer
of J in S. We prove that the functional J has a unique minimizer in a ball of C1

functions centered at a natural interpolant of a smooth solution u. With a sufficiently
close initial guess, a minimization algorithm can be used for the computation of
the numerical solution. The difficulty of choosing a suitable initial guess may be
circumvented by using a global minimization strategy as in [14]. Netherveless our
result can be considered a first step toward clarifying whether regularization of the
data is necessary for a proven convergence theory of C1 approximations of (1) in
the nonsmooth case.

In this paper the numerical solution uh is computed as the limit of the sequence
uk

ε,h which solve the discrete variational problem associated with (2). For the case
of smooth solutions we use ε = 0 in the resulting discrete problem. See Remark 2.
Since (1) is not approximated directly there is a loss of accuracy. Netherveless our
algorithm can be considered a step toward the development of fast iterative methods
capable of retrieving the correct numerical approximation to (1) in the context of
C1 conforming approximations. Let uε,h denote the solution of the discrete problem
associated to (3). The existence of uε,h and uk

ε,h , the convergence of the sequence

(uk
ε,h)k as k → ∞ as well as the behavior of uε,h as ε → 0 will be addressed in a

subsequent paper. These results parallel our recent proof of the convergence of the
discrete vanishing moment methodology [2].

This paper falls in the category of papers which do not prove convergence of the
discretization of (1) to weak solutions, but give numerical evidence of convergence
as well results in the smooth case and/or in particular cases, e.g., [10, 12, 13]. We
organize the paper as follows: in the next section we describe the notation used and
some preliminaries. In Sect. 3 we prove minimization results at the discrete level.
We also derive in Sect. 3 the vanishing viscosity approximation (3) from (2) as well
as the discrete variational formulation used in the numerical experiments. In Sect. 4,
we recall the isogeometric concept and give numerical results in Sect. 5.

2 Notation and Preliminaries

We denote by Ck(Ω) the set of all functions having all derivatives of order ≤ k
continuous on Ω where k is a nonnegative integer or infinity and by C0(Ω), the
set of all functions continuous on Ω . A function u is said to be uniformly Hölder
continuous with exponent α, 0 < α ≤ 1 in Ω if the quantity

supx ∇=y
|u(x) − u(y)|

|x − y|α
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is finite. The space Ck,α(Ω) consists of functions whose kth order derivatives are
uniformly Hölder continuous with exponent α in Ω .

We use the standard notation of Sobolev spaces W k,p(Ω) with norms ||.||k,p and
semi-norm |.|k,p. In particular, Hk(Ω) = W k,2(Ω) and in this case, the norm and
seminorms will be denoted, respectively, by ||.||k and semi-norm |.|k . For a function
u, we denote by Du its gradient vector and recall that D2u denotes its Hessian. For
a matrix field A, we denote by div A the vector obtained by taking the divergence of
each row.

Using the product rule one obtains for sufficiently smooth vector fields v and
matrix fields A

div(Av) = (div AT ) · v + A : (Dv)T . (4)

Moreover, by [8, p. 440]
div cof D2v = 0. (5)

For computation with determinants, the following results are needed.

Lemma 1 We have

det D2v = 1

2
(cof D2v) : D2v = 1

2
div

(
(cof D2v)Dv

)
, (6)

and for F(v) = det D2v we have

F ′(v)(w) = (cof D2v) : D2w = div
(
(cof D2v)Dw

)
,

for v, w sufficiently smooth.

Proof For a 2 ×2 matrix A, one easily verifies that 2 det A = (cof A) : A. It follows
that det D2v = 1/2(cof D2v) : D2v. Using (4) and (5) we obtain (cof D2v) :
D2v = div

(
(cof D2v)Dv

)
and (cof D2v) : D2w = div

(
(cof D2v) Dw

)
. Finally

the expression of the Fréchet derivative is obtained from the definition of Fréchet
derivative and the expression det D2v = 1/2(cof D2v) : D2v. �

Lemma 2 Let v, w ∈ W 2,∞(Ω) and ψ ∈ H2(Ω) ∩ H1
0 (Ω), then

∣
∣
∣
∣

∫

Ω

(det D2v − det D2w)ψ dx

∣
∣
∣
∣ ≤ C(|v|2,∞ + |w|2,∞)|v − w|1|ψ |1. (7)

The above lemma is a simple consequence of the mean value theorem and Cauchy-
Schwarz inequalities. For additional details, we refer to [1].

We require our approximation spaces Vh to satisfy the following properties: There
exists an interpolation operator Qh mapping W l+1,p(Ω) into the space Vh for 1 ≤
p ≤ ∞, 0 ≤ l ≤ d with d a constant that depends on Vh and such that

||v − Qhv||k,p ≤ Caphl+1−k ||v||l+1,p, (8)
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for 0 ≤ k ≤ l and

||v||s,p ≤ Cinvhl−s+min(0, n
p − n

q )||v||l,q , ∀v ∈ Vh, (9)

for 0 ≤ l ≤ s, 1 ≤ p, q ≤ ∞.
The discussion in [1] is for a space Vh of piecewise polynomials. However, the

results quoted here are valid for spaces of piecewise smooth C1 functions.
We consider the following discretization of (1): find uh ∈ Vh ∩ H1

0 (Ω) such that

∫

Ω

(det D2uh)v dx =
∫

Ω

f v dx, ∀v ∈ Vh ∩ H1
0 (Ω). (10)

It can be shown that for uh ∈ H2(Ω), the left hand side of the above equation is
well defined [1]. We recall from [1] that under the assumption that u ∈ C4(Ω) is a
strictly convex function, there exists δ > 0 such that if we define

Xh =
{

vh ∈ Vh, vh = 0 on ∂Ω, ||vh − Qhu||1 <
δh2

4

}

,

then for h sufficiently small and vh ∈ Xh, ||vh − Qhu||1 < δh2/2, vh is convex with
smallest eigenvalue bounded a.e. below by m′/2 and above by 3M ′/2. Here m′ and
M ′ are respectively lower and upper bounds of the smallest and largest eigenvalues
of D2u in Ω . The idea of the proof is to use the continuity of the eigenvalues of a
matrix as a function of its entries. Thus using (8) with k = 2, p = ∞ and l = d one
obtains that D2 Qhu(x) is also positive definite element by element for h sufficiently
small. The same argument shows that a C1 function close to D2 Qhu is also piecewise
convex and hence convex due to the C1 continuity. The power of h which appears in
the definition of Xh arises from the use of the inverse estimate (9).

We note that by an inverse estimate, for vh ∈ Xh ,

||vh − Qhu||2,∞ ≤ Cinvh−2||vh − Qhu||1 ≤ Cinvδ.

3 Minimization Results

We first note

Lemma 3 Let vn, v, wn and w ∈ W 2,∞(Ω) ∩ H1
0 (Ω) such that ||vn − v||2,∞ → 0

and ||wn − w||2,∞ → 0. Then

∫

Ω

(det D2vn)wn dx →
∫

Ω

(det D2v)w dx (11)
∫

Ω

f vn dx →
∫

Ω

f v dx . (12)
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Proof Put α = ∫
Ω

(det D2vn)wn dx − ∫
Ω

(det D2v)w dx . We have

α =
∫

Ω

(det D2vn − det D2v)wn dx +
∫

Ω

(det D2v)(wn − w) dx .

Using (7) we obtain

|α| ≤ C(|vn|2,∞ + |v|2,∞)|vn − v|1|wn|1 + C |v|2,∞|v|1|wn − w|1.

Since |vn−v|1 ≤ C ||vn−v||2,∞ and convergent sequences are bounded, (11) follows.
We have ∣

∣
∣
∣3

∫

Ω

f (vn − v) dx

∣
∣
∣
∣ ≤ C || f ||0||vn − v||0,

and so (12) holds. �

We consider the functional J defined by

J (v) = −
∫

Ω

v det D2v dx + 3
∫

Ω

f v dx .

We have

Lemma 4 For v, w ∈ W 2,∞(Ω) ∩ H1
0 (Ω)

J ′(v)(w) = 3
∫

Ω

( f − det D2v)w dx .

Proof Note that for v, w smooth, vanishing on ∂Ω and by Lemma 1

J ′(v)(w) = 3
∫

Ω

f w dx −
∫

Ω

w det D2v dx −
∫

Ω

v div[(cof D2v)Dw] dx .

But by integration by parts, the symmetry of D2v and Lemma 1

∫
Ω

v div[(cof D2v)Dw] dx = − ∫
Ω

[(cof D2v)Dw] · Dv dx = − ∫
Ω

[(cof D2v)Dv] · Dw dx
= ∫

Ω
w div[(cof D2v)Dv] dx = 2

∫
Ω

w det D2v dx .

Thus

J ′(v)(w) = 3
∫

Ω

( f − det D2v)w dx .

We have proved that for v, w smooth, vanishing on ∂Ω

J (v + w) − J (v) = 3
∫

Ω

( f − det D2v)w dx + O(|w|21).
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Since the space of infinitely differentiable functions with compact support is dense
in W 2,∞(Ω) ∩ H1

0 (Ω), the result holds for v, w ∈ W 2,∞(Ω) ∩ H1
0 (Ω) by a density

argument and using Lemma 3. �

The Euler-Lagrange equation for J is therefore (10).

Remark 1 It has been shown in [4, 19] that a generalized solution of (1) is the
unique minimizer of the functional J on the set of convex functions vanishing on the
boundary.

Theorem 1 Let u ∈ C4(Ω) be the unique strictly convex solution of (1). Then for
h sufficiently small, the functional J has a unique minimizer ûh in Xh. Moreover,
||u − ûh ||1 → 0 as h → 0.

Proof We first note that by (7), the functional J is sequentially continuous in
W 2,∞(Ω) ∩ H1

0 (Ω). For vn, v ∈ W 2,∞(Ω) ∩ H1
0 (Ω) we have

J (vn) − J (v) = 3
∫

Ω

f (vn − v) dx +
∫

Ω

(v det D2v − vn det D2vn) dx .

We conclude from Lemma 3 that J (vn) → J (v) as ||vn − v||2,∞ → 0. Moreover,
using the expression of J ′(v)(w) given in Lemma 4, we obtain

J ′′(v)(w)(z) = −3
∫

Ω

w div[(cof D2v)Dz] dx = 3
∫

Ω

[(cof D2v)Dz] · Dw dx .

We conclude that

J ′′(v)(w)(w) = 3
∫

Ω

[(cof D2v)Dw] · Dw dx .

That is, J is strictly convex in Xh by definition of Xh . A minimizer, if it exists, is
therefore unique.

The argument to prove that J has a minimizer follows the lines of Theorem 5.1
in [9]. We have for some θ ∈ [0, 1]

J (v) = J (0) + J ′(0)(v) + 1

2
J ′′(θv)(v)(v)

= 0 + 3
∫

Ω

f v dx + 3

2
θ

∫

Ω

[(cof D2v)Dv] · Dv dx . (13)

We claim that for v ∈ Xh, v ∇= 0, we have θ ∇= 0. Assume otherwise. Then

0 = −
∫

Ω

v det D2v dx = −1

2

∫

Ω

v div(cof D2v)Dv dx

= 1

2

∫

Ω

[(cof D2v)Dv] · Dv dx ≥ m

2
|v|21, (14)
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where m is a lower bound on the smallest eigenvalue of cof D2v. By the assumption
on v ∈ Xh we have m > 0 . We obtain the contradiction v = 0 and conclude that
θ ∈ (0, 1].

Next, note that

∣
∣
∣
∣

∫

Ω

f v dx

∣
∣
∣
∣ ≤ || f ||0||v||0 ≤ || f ||0||v||1. Thus

∫

Ω

f v dx ≥ −|| f ||0||v||1.

By (13), we obtain using Poincare’s inequality

J (v) ≥ −3|| f ||0||v||1 + 3

2
θm|v|21 ≥ −3|| f ||0||v||1 + C ||v||21

≥ ||v||1(−3|| f ||0 + C ||v||1), (15)

for a constant C > 0. Let now R > 0 such that

Xh ∩ { v ∈ Vh ∩ H1
0 (Ω), ||v||1 ≤ R } ∇= ∅.

Since J is continuous, J is bounded below on the above set. Moreover for ||v||1 ≥ R,
we have

J (v) ≥ R(−3|| f ||0 + C R).

We conclude that the functional J is bounded below. We show that its infimum is
given by some ûh in Xh . Let vn ∈ Xh such that limn→∞ J (vn) = infv∈Xh J (v) which
has just been proved to be finite. Then the sequence J (vn) is bounded and by (15), the
sequence vn is also necessary bounded. Let vkn be a weakly convergent subsequence
with limit ûh . We have

lim
n→∞ J ′(ûh)(vkn ) = J ′(ûh)(uh).

Since J is strictly convex in Xh ,

J (vkn ) ≥ J (ûh) + J ′(ûh)(vkn − ûh),

and so at the limit infv∈Xh J (v) ≥ J (ûh). This proves that ûh minimizes J in Xh .
We now prove that ||u − ûh ||1 → 0 as h → 0. Note that since uh ∈ Xh ,

||ûh − Qhu||1 ≤ δh2/4. By (8) and triangle inequality, we obtain the result. �

Remark 2 From the approach taken in [1], we may conclude that (10) has a unique
convex solution uh in Xh which therefore solves the Euler-Lagrange equation for the
functional J . Since Xh is open and convex and J convex on Xh , by Theorem 3.9.1
of [15] we have

J (v) ≥ J (uh) + J ′(uh)(v − uh), ∀v ∈ Xh .
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Since uh is a critical point of J in Xh , we get

J (v) ≥ J (uh), ∀v ∈ Xh .

We conclude that both uh and ûh are minimizers of J in Xh . By the strict convexity
of J in Xh , they are equal. Therefore the unique minimizer of J in Xh solves (10).

We now turn to the regularized problems (2) and (3). The formal limit of uk
ε as

k → ∞ solves

(cof(D2uε + ε I )) : D2uε = det D2uε + f in Ω

uε = 0 on ∂Ω.

But since I and D2uε are 2 × 2 matrices, we have cof(D2uε + ε I ) = cof D2uε +
cof ε I = cof D2uε + ε I and we obtain

(cof D2uε) : D2uε + ε I : D2uε = det D2uε + f.

Since ε I : D2uε = εΔuε and by (6) we have (cof D2uε) : D2uε = 2 det D2uε, we
obtain (3).

Next we present the discrete variational formulation used in the numerical exper-
iments. To avoid large errors, we used a damped version of (2). Let ν > 0. We
consider the problem

(cof(D2uk
ε + ε I )) : D2uk+1

ε = 2 det D2uk
ε + 1

ν
(− det D2uk

ε + f ) in Ω

uk+1
ε = 0 on ∂Ω. (16)

We note that for ν = 1, (16) reduces to (2). Also the formal limit, as ε → 0 and
k → ∞, of uk

ε solving (16) is a solution of 1/ν( f − det D2u) = 0.
Let |x | denote the Euclidean norm of x ∈ R

2. Note that that D2(|x |2/2) = I and
thus for uk

ε smooth, cof(D2uk
ε + ε I ) = cof D2(uk

ε + ε/2|x |2) and thus using (4) and
(5) we obtain

div

(

(cof(D2uk
ε + ε I ))Duk+1

ε

)

= 2 det D2uk
ε + 1

ν
(− det D2uk

ε + f ) in Ω

uk+1
ε = 0 on ∂Ω.

This leads to the following discretization: find uk+1
ε,h ∈ Vh ∩ H1

0 (Ω) such that

∀v ∈ Vh ∩ H1
0 (Ω)

− ∫
Ω

(

(cof(D2uk
ε,h + ε I ))Duk+1

ε,h

)

· Dv dx = ∫
Ω

(

2 det D2uk
ε,h

+ 1

ν
(− det D2uk

ε,h + f )

)

v dx .

(17)



10 G. Awanou

For the initial guess u0
ε,h when ε ≥ 0, we take the discrete approximation of the

solution of the problem

Δu0
ε = 2

√
f in Ω

u0
ε = 0 on ∂Ω.

While this does not assure that u0
ε,h ∈ Xh the above choice appears to work in all

our numerical experiments.

Remark 3 For a possible extension of the minimization result in Theorem 1 to the
case of nonsmooth solutions, the homogeneous boundary condition is necessary.

4 Isogeometric Analysis

We refer to [20] for a short introduction to isogeometric analysis. Here we give a
shorter overview suitable for our needs. Precisely, we are interested in the ability of
this approach to generate finite dimensional spaces of piecewise smooth C1 functions
which can be used in the Galerkin method for approximating partial differential
equations.

A univariate NURBS of degree p is given by

wi Ni,p(u)
∑

j∈J w j N j,p(u)
, u ∈ [0, 1],

with B-splines Ni,p, weights wi and an index set J which encodes its smoothness.
The parameter h refers to the maximum distance between the knots ui , i ∈ J .

A bivariate NURBS is given by

Rkl(u, v) = wkl Nk(u)Nl(v)
∑

i∈I
∑

j∈J w j Ni (u)N j (v)
, u, v ∈ [0, 1],

with index sets I and J . In the above expression, we omit the degrees pU and pV
of the NURBS Rkl in the u and v directions.

The domain Ω is described parametrically by a mapping F : [0, 1]2 →
Ω, F(u, v) = ∑

i∈I
∑

j∈J Ri j (u, v)ci j with NURBS Ri j and control points ci j .
We take equally spaced knots ui , v j and hence h refers to the size of an element in
the parametric domain.

We say that a NURBS Rkl has degree p if the univariate NURBS Nk and Nl all
have degree p. The NURBS considered in this paper are all of a fixed degree p and C1.

The basis functions Ri j used in the description of the domain are also used in the
definition of the finite dimensional space Vh ⊂ span{Ri j ◦ F−1}. Thus the numerical
solution takes the form
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Fig. 1 Circle represented exactly. pU = 2, pV = 2

Th(x, y) =
∑

i∈I

∑

j∈J
Ri j (F−1(x, y))qi j ,

with unknowns qi j .
It can be shown [18] that there exists an interpolation operator Qh mapping

Hr (Ω), r ≥ p + 1 into Vh such that if 0 ≤ l ≤ p + 1, 0 ≤ l ≤ r ≤ p + 1,
we have

|u − Qhu|l ≤ Chr−l ||u||r ,

with C independent of h. Thus the approximation property (8) holds for spaces
constructed with the isogeometric analysis concept. For the inverse estimates (9), we
refer to [5].

5 Numerical Results

The implementation was done by modifying the companion code to [20]. The com-
putational domain is taken as the unit circle: x2 + y2 − 1 = 0 with an initial
triangulation depicted in Fig. 1. The numerical solutions are obtained by computing
uk

ε,h defined by (17). We consider the following test cases.

Test 1 (smooth solution): u(x, y) = (x2 + y2 − 1)ex2+y2
with f (x, y) = 4e2(x2+y2)

(x2 + y2)2(2x2 + 3 + 2y2). Numerical results are given in Table 1. Since pU =
2, pV = 2, the approximation space in the parametric domain contains piecewise
polynomials of degree p = 2. The analysis in [1] suggests that the rate of convergence
for smooth solutions is O(h p) in the H1 norm, O(h p+1) and O(h p−1) in the L2 and
H2 norms respectively. No regularization or damping was necessary for this case.

Test 2 (No known exact solution): f = ex2+y2
, g = 0. As expected the numerical

solution displayed in Fig. 2 appears to be a convex function.

Test 3 (solution not in H1(Ω)): u(x, y) = −√
1 − x2 − y2 with f (x, y) = 1/(x2 +

y2 − 1)2. With regularization and damping, we were able to avoid the divergence
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Table 1 Smooth solution u(x, y) = (x2 + y2 − 1)ex2+y2

h nit L2 Norm Rate H1 norm Rate H2 norm Rate

1/26 3 4.5620 10−1 1.5565 10−0 1.1877 10+1

1/27 6 8.4903 10−3 5.75 1.6442 10−1 3.24 5.0963 10−0 1.2
1/28 4 7.7160 10−4 3.46 3.9573 10−2 2.05 2.5880 10−0 0.97
1/29 4 9.0321 10−5 3.09 9.8122 10−3 2.01 1.3019 10−0 0.99
1/210 4 1.1077 10−5 3.03 2.4462 10−3 2.00 6.5184 10−1 0.99

−1.5
−1

−0.5
0

0.5
1

−1.5
−1

−0.5
0

0.5
1

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 2 Convex solution with data f = ex2+y2
, g = 0 with ν = 2.5, ε = 0.01, h = 1/32. No

known analytical formula

Table 2 Solution not in
H1(Ω) u(x, y) =
−√

1 − x2 − y2 with
ν = 2.5, ε = 0.01

h nit L2 norm Rate

1/25 42 4.0261 10−1

1/26 2 1.7529 10−1 1.20
1/27 5 1.3612 10−1 0.36
1/28 3 1.0609 10−1 0.36
1/29 2 9.6321 10−2 0.14
1/210 4 7.8179 10−2 0.30

of the discretization. These results should be compared with the ones in [1] where
iterative methods with only a linear convergence rate were proposed for nonsmooth
solutions of (1). Note that u in this case is highly singular as f vanishes on ∂Ω .

In the tables nit refers to the number of iterations for Newton’s method (Table 2).
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Dual Compatible Splines on Nontensor
Product Meshes

L. Beirão da Veiga, A. Buffa, G. Sangalli and R. Vázquez

Abstract In this paper we introduce the concept of dual compatible (DC) splines
on nontensor product meshes, study the properties of this class, and discuss their
possible use within the isogeometric framework. We show that DC splines are linear
independent and that they also enjoy good approximation properties.

Keywords Isogeometric analysis · Spline theory · T-splines · Numerical methods
for partial differential equations

1 Introduction

Tensor product multivariate spline spaces are easy to construct and their mathematical
properties directly extend from the univariate case. However, the tensor product
construction restricts the possibility of local refinement which is a severe limitation
for their use within the isogeometric framework, i.e., as discretization spaces for
the numerical solution of partial differential equations. This is particularly true in
problems that exhibit solutions with layers or singularities. In this paper, we discuss an
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extension of splines spaces that go beyond the tensor product structure, and therefore
allow local mesh refinement.

Three approaches have emerged in the isogeometric community: T-splines,
Locally refinable (LR) splines, and hierarchical splines. T-splines have been proposed
in [1] for applications to CAGD and have been adopted for isogeometric methods
since [2]. Nowadays, they are likely the most popular approach among engineers:
for example, they have been used for shell problems [3], fluid–structure interaction
problems [4], and contact mechanics simulation [5]. The algorithm for local refine-
ment has evolved since its introduction (in [6]) and while the first approach was
not efficient in isogeometric methods (see for example [7]) the more recent devel-
opments (e.g., [8]) overcome the initial limitations. The mathematical literature on
T-splines is very recent and mainly restricted to the two-dimensional case. It is based
on the notion of Analysis-Suitable (AS) T-splines: these are a subset of T-splines,
introduced in [9] and extended to arbitrary degree in [10], for which fundamental
properties hold. LR-splines [11] and Hierarchical splines [12] have been proposed
more recently in the isogeometric literature and represent a valid alternative to T-
splines. However, for reasons of space and because of our expertise, we restrict the
presentation to T-splines.

This paper is organized as follows. First, we set up our main notation of Sect. 2.
Then, we introduce the notion of Dual-Compatible (DC) set of B-splines. This is a
set of multivariate B-splines without a global tensor product structure but endowed
with a weaker structure that still guarantees some key properties. The main one is that
their linear combination spans a space (named DC space) that can be associated with
a dual space by a construction of a dual basis. The existence of a “good” dual space
implies other mathematical properties that are needed in isogeometric methods: for
example, (local) linear independence and partition of unity of the DC set of B-spline
functions, and optimal approximation properties of the DC space. The framework
we propose here is an extension of the one introduced in [10], and covers arbitrary
space dimension.

2 Preliminaries

Given two positive integers p and n, we say that Ω := {∂1, . . . , ∂n+p+1} is a p-open
knot vector if

∂1 = · · · = ∂p+1 < ∂p+2 ∈ · · · ∈ ∂n < ∂n+1 = · · · = ∂n+p+1,

where repeated knots are allowed. Without loss of generality, we assume in the
following that ∂1 = 0 and ∂n+p+1 = 1.

We introduce also the vector Z = {α1, . . . , αN } of knots without repetitions, also
called breakpoints, and denote by m j , the multiplicity of the breakpoint α j , such that

Ω = {α1, . . . , α1︸ ︷︷ ︸
m1 times

, α2, . . . , α2︸ ︷︷ ︸
m2 times

, . . . , αN , . . . , αN︸ ︷︷ ︸
m N times

}, (1)
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with
∑N

i=1 mi = n + p +1. We assume m j ∈ p +1, for all internal knots. Note that
the points in Z form a partition of the unit interval I = (0, 1), i.e., a mesh, and
the local mesh size of the element Ii = (αi , αi+1) is called hi = αi+1 − αi , for
i = 1, . . . , N − 1.

From the knot vector Ω, B-spline functions of degree p are defined following
the well-known Cox-DeBoor recursive formula; we start with piecewise constants
(p = 0):

B̂i,0(α ) =
{

1 if ∂i ∈ α < ∂i+1,

0 otherwise,
(2)

and for p ≥ 1 the B-spline functions are defined by the recursion

B̂i,p(α ) = α − ∂i

∂i+p − ∂i
B̂i,p−1(α ) + ∂i+p+1 − α

∂i+p+1 − ∂i+1
B̂i+1,p−1(α ), (3)

where it is here formally assumed that 0/0 = 0.
This gives a set of n B-splines that, among many other properties, are non-negative

and form a partition of unity. They also form a basis of the space of splines, that is,
piecewise polynomials of degree p with k j := p − m j continuous derivatives at
the points α j , for j = 1, . . . , N . Therefore, −1 ∈ k j ∈ p − 1, and the maximum
multiplicity allowed, m j = p + 1, gives k j = −1 which stands for a discontinuity
at α j .

We denote the univariate spline space spanned by the B-splines by

Sp(Ω) = span{B̂i,p, i = 1, . . . , n}. (4)

Note that the definition of each B-spline B̂i,p depends only on p +2 knots, which
are collected in the local knot vector

Ωi,p := {∂i , . . . , ∂i+p+1}.

When needed, we will stress this fact by adopting the notation

B̂i,p(α ) = B̂[Ωi,p](α ). (5)

Similarly, the support of each basis function is exactly supp(B̂i,p) = [∂i , ∂i+p+1].
Moreover, given an interval I j = (α j , α j+1) of the partition, which can also be written
as (∂i , ∂i+1) for a certain (unique) i , we associate the support extension Ĩ j defined as

Ĩ j := (∂i−p, ∂i+p+1), (6)

that is the interior of the union of the supports of basis functions whose support
intersects I j .
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We concentrate now on the construction of interpolation and projection operators
onto the space of splines Sp(Ω). There are several ways to define projections for
splines, and here we only describe the one that will be used in this paper.

We will often make use of the following local quasi-uniformity condition on
the knot vector, which is a classical assumption in the mathematical isogeometric
literature.

Assumption 1 The partition defined by the knots α1, α2, . . . , αN is locally quasi-
uniform, that is, there exists a constant ε ≥ 1 such that the mesh sizes hi = αi+1 −αi

satisfy the relation ε−1 ∈ hi/hi+1 ∈ ε , for i = 1, . . . , N − 2.

Since splines are not in general interpolatory, a common way to define projections
is by giving a dual basis, i.e.,

Δp,Ω : C∩([0, 1]) → Sp(Ω), Δp,Ω( f ) =
n∑

j=1

ψ j,p( f )B̂ j,p, (7)

where ψ j,p are a set of dual functionals verifying

ψ j,p(B̂k,p) = δ jk, (8)

δ jk being the standard Kronecker symbol. It is trivial to prove that, thanks to this
property, the quasi-interpolant Δp,Ω preserves splines, that is,

Δp,Ω( f ) = f, ∞ f ≤ Sp(Ω). (9)

Here, we adopt the dual basis defined in [13, Sect. 4.6]

ψ j,p( f ) =
∂ j+p+1∫

∂ j

f (s)D p+1θ j (s) ds, (10)

where θ j (α ) = G j (α )ν j (α ), with

ν j (α ) = (α − ∂ j+1) · · · (α − ∂ j+p)

p! ,

and

G j (α ) = g

(
2α − ∂ j − ∂ j+p+1

∂ j+p+1 − ∂ j

)

,

where g is the transition function defined in [13, Theorem 4.37]. In the same
reference, it is proved that the functionals ψ j,p(·) are dual to B-splines in the sense
of (8) and stable (see [13, Theorem 4.41]), that is
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|ψ j,p( f )| ∈ C(∂ j+p+1 − ∂ j )
−1/2∇ f ∇L2(∂ j ,∂ j+p+1)

, (11)

where the constant C grows exponentially with respect to the polynomial degree p
with the upperbound

C ∈ (2p + 3)9p, (12)

slightly improved in the literature after the results reported in [13]. Note that these
dual functionals are locally defined and only depend on the corresponding local knot
vector, that is, adopting a notation as in (5), we can write, when needed:

ψi,p( f ) = ψ[Ωi,p]( f ). (13)

The reasons for this choice of the dual basis are mainly historical (in the first
paper on the numerical analysis of isogeometric methods [14] the authors used this
projection), but also because it verifies the following important stability property:

Proposition 1 For any non-empty knot span Ii = (αi , αi+1) it holds that

∇Δp,Ω( f )∇L2(Ii )
∈ C∇ f ∇L2( Ĩi )

, (14)

where the constant C depends only on the degree p, and Ĩi is the support extension
defined in (6). Moreover, if Assumption 1 holds, we also have

|Δp,Ω( f )|H1(Ii )
∈ C | f |H1( Ĩi )

, (15)

with the constant C depending only on p and ε , and where H1 denotes the Sobolev
space of order one, endowed with the standard norm and seminorm.

Proof We first show (14). There exists a unique index j such that Ii = (αi , αi+1) =
(∂ j , ∂ j+1), and using the definition of B-splines at the beginning of Sect. 2, and in
particular their support, it immediately follows that

{
� ≤ {1, 2, . . . , n} : supp(B̂�,p) ∩ Ii ∀= ∅} = { j − p, j − p + 1, . . . , j}. (16)

Let hi denotes the length of Ii and h̃i indicates the length of Ĩi . First by definition
(7), then recalling that the B-spline basis is positive and a partition of unity, we get

∇Δp,Ω( f )∇L2(Ii )
=

∥
∥
∥

j∑

�= j−p

ψ�,p( f )B̂�,p

∥
∥
∥

L2(Ii )
∈ max

j−p∈�∈ j
|ψ�,p( f )|

∥
∥
∥

j∑

�= j−p

B̂�,p

∥
∥
∥

L2(Ii )

= h1/2
i max

j−p∈�∈ j
|ψ�,p( f )|.

We now apply bound (11) and obtain
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∇Δp,Ω( f )∇L2(Ii )
∈ Ch1/2

i max
j−p∈�∈ j

(∂�+p+1 − ∂�)
−1/2∇ f ∇L2(∂�,∂�+p+1)

∈ Ch1/2
i max

j−p∈�∈ j
(∂�+p+1 − ∂�)

−1/2∇ f ∇L2( Ĩi )
,

that yields (14) since clearly hi ∈ (∂�+p+1 − ∂�), for all � in { j − p, . . . , j}.
We now show (15). For any real constant c, since the operator Δp,Ω preserves

constant functions and using a standard inverse estimate for polynomials on Ii , we get

|Δp,Ω( f )|H1(Ii )
= |Δp,Ω( f ) − c|H1(Ii )

= |Δp,Ω( f − c)|H1(Ii )

∈ Ch−1
i ∇Δp,Ω( f − c)∇L2(Ii )

.

We now apply (14) and a standard approximation estimate for constant functions,
yielding

|Δp,Ω( f )|H1(Ii )
∈ Ch−1

i ∇ f − c∇L2( Ĩi )
∈ Ch−1

i h̃i | f |H1( Ĩi )
.

Using Assumption 1, it is immediate to check that h̃i ∈ Chi with C = C(p, ε) so
that (15) follows.

The operator Δp,Ω can be modified in order to match boundary conditions. We can
define, for all f ≤ C∩([0, 1]):

Δ̃p,Ω( f ) =
n∑

j=1

ψ̃ j,p( f )B̂ j,p with (17)

ψ̃1,p( f ) = f (0), ψ̃n,p( f ) = f (1), ψ̃ j,p( f ) = ψ j,p( f ), j = 2, . . . , n − 1.

3 Dual Compatible B-Splines

Consider a set of multivariate B-splines

{
B̂A,p, A ≤ A}

, (18)

where A is a set of indices. This is a generalization of the tensor product set of
multivariate splines where the functions in (18) have the structure

B̂A,p(ζ ) = B̂[ΩA,1,p1 ](α1) · · · B̂[ΩA,d,pd ](αd) (19)

and have in general uncorrelated local knot vectors, that is, two different local knot
vectors ΩA⊂,�,p�

and ΩA⊂⊂,�,p�
in the �-direction are not in general sub-vectors of a

global knot vector. This is equivalent to the definition of point-based splines in [1].
We assume that there is a one-to-one correspondence between A ≤ A and B̂A,p.
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Fig. 1 Overlapping (left) and
nonoverlapping (right) local
knot vectors in one dimension

We say that the two p-degree local knot vectors Ω⊂ = {∂ ⊂
1, . . . , ∂

⊂
p+2} and Ω⊂⊂ =

{∂ ⊂⊂
1 , . . . , ∂ ⊂⊂

p+2} overlap if they are subvectors of the same knot vector (that depends
on Ω⊂ and Ω⊂⊂), that is there is a knot vector Ω = {∂1, . . . , ∂k} and k⊂ and k⊂⊂ such that

∞i = 1, . . . , p + 2, ∂ ⊂
i = ∂i+k⊂

∞i = 1, . . . , p + 2, ∂ ⊂⊂
i = ∂i+k⊂⊂ ,

(20)

see Fig. 1.
We now define for multivariate B-splines, the notions of overlap and partial

overlap are as follows.

Definition 1 Two B-splines B̂A⊂,p B̂A⊂⊂,p in (18) overlap if the local knot vectors in
each direction overlap. Two B-splines B̂A⊂,p B̂A⊂⊂,p in (18) partially overlap if, when
A⊂ ∀= A⊂⊂, there exists a direction � such that the local knot vectors ΩA⊂,�,p�

and
ΩA⊂⊂,�,p�

are different and overlap.

From the previous Definition, overlap implies partial overlap. Examples of
B-splines overlapping, only partially overlapping, and not partially overlapping are
depicted in Fig. 2.

Definition 2 The set (18) is a DC set of B-splines if each pair of B-splines in it
partially overlaps. Its span

Sp(A) = span
{

B̂A,p, A ≤ A}
, (21)

is denoted as DC spline space.

Note that the partially overlapping condition in Definition 2 needs to be checked
only for those B-spline pairs that have nondisjoint support. Indeed, by Definition 1,
any two B-splines with disjoint supports are clearly partially overlapping.

A tensor product space is clearly a DC spline space, since every pair of its
multivariate B-splines always overlaps by construction. The next proposition shows
how the notion of partial overlap is related with the construction of dual basis.
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Fig. 2 Example of
overlapping, partially
overlapping, and not partially
overlapping B-splines; knot
lines are drawn in blue a
Overlapping
B-splines, b partially
overlapping B-splines, c
not partially overlapping
B-splines

(a) (b)

(c)

Proposition 2 Assume that (18) is a DC set where each B̂A,p is defined as in (19),
i.e., on the local knot vectors ΩA,1,p1 , . . . , ΩA,d,pd . Consider an associated set of
functionals {

ψA,p, A ≤ A}
, (22)

where each ψA,p is

ψA,p = ψ[ΩA,1,p1] ◦ · · · ◦ ψ[ΩA,d,pd ], (23)

and ψ[ΩA,�,p�
] denotes a univariate functional defined in (10). Then (22) is a dual

basis for (18).

Remark 1 The set of dual functionals (10) can be replaced by other choices, see,
e.g., [15].

Proof Consider any B̂A⊂,p and ψA⊂⊂,p, with A⊂, A⊂⊂ ≤ A. We then need to show that

ψA⊂⊂,p(B̂A⊂,p) =
{

1 if A⊂⊂ = A⊂,
0 otherwise.

(24)

Clearly, if A⊂ = A⊂⊂, then we have ψA⊂⊂,p(B̂A⊂,p) = 1 from the definition of dual basis.
If A⊂ ∀= A⊂⊂, thanks to the partial overlap assumption, there is a direction �̄ such that
the local knot vectors ΩA⊂,�,p�

and ΩA⊂⊂,�,p�
differ and overlap, and then

ψ[ΩA⊂⊂,�,p�
](B̂[ΩA⊂,�,p�

]) = 0,
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and from (23),

ψA⊂⊂,p(B̂A⊂,p) =
d∏

�=1

ψ[ΩA⊂⊂,�,p�
](B̂[ΩA⊂,�,p�

]) = 0.

The existence of dual functionals implies important properties for a DC set (18)
and the related space Sp(A) in (21). We list such properties in the following propo-
sitions and remarks.

The first result is the linear independence of set (18), therefore forming a basis;
they are also a partition of unity.

Proposition 3 The B-splines in a DC set (18) are linearly independent. Moreover,
if the constant function belongs to Sp(A), they form a partition of unity.

Proof Assume ∑

A≤A
CA B̂A,p = 0

for some coefficients CA. Then for any A⊂ ≤ A, applying ψA⊂,p to the sum, using
linearity and (24), we get

CA⊂ = ψA⊂,p

(
∑

A≤A
CA B̂A⊂,p

)

= 0.

Similarly, let ∑

A≤A
CA B̂A,p = 1

for some coefficients CA. For any A⊂ ≤ A, applying ψA⊂,p as above, we get

CA⊂ = ψA⊂,p

(
∑

A≤A
CA B̂A,p

)

= 1.

To a B-spline set (18), we can associate a parametric domain

κ̂ =
⋃

A≤A
supp(B̂A,p)

Moreover, we give the following extension of the notion of Bézier mesh.

Definition 3 A parametric Bézier mesh in the parametric domain, denoted by M̂,
is the collection of the the maximal open sets Q ⊂ κ̂ such that for all A ≤ A, B̂A,p
is a polynomial in Q; these Q are denoted (Bézier) elements.
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Proposition 4 In a DC set (18) there are at most (p1 + 1) · · · (pd + 1) B-splines
that are non-null in each element Q ≤ M̂.

Proof Given any point ζ = (α1, . . . , αd) ≤ κ̂ , denote by A(ζ ) the subset of A ≤ A
such that B̂A,p(ζ ) > 0. It can be easily checked that A(ζ ) only depends on Q, for all
ζ ≤ Q. Recalling (19) and introducing the notation ΩA,�,p�

= {∂�,1, . . . , ∂�,p�+2},
to each A ≤ A(ζ ) we can associate a multi-index (iA,1, . . . , iA,d) such that

∞� = 1, . . . , d, 1 ∈ iA,� ∈ p� + 1 and ∂�,iA,�
∈ α� < ∂�,iA,�+1. (25)

From the DC assumption, any two B̂A⊂,p and B̂A⊂⊂,p with A⊂ ∀= A⊂⊂ partially overlap,
that is, there are different and overlapping ΩA⊂,�,p�

and ΩA⊂⊂,�,p�
; then the indices in

(25) fulfill

∞A⊂, A⊂⊂ ≤ A(ζ ), A⊂ ∀= A⊂⊂ ⇒ ∃� such that iA⊂,� ∀= iA⊂⊂,�. (26)

The conclusion follows from (26), since by (25) there are at most (p1+1) · · · (pd +1)

distinct multi-indices (iA,1, . . . , iA,d).

Assume that each ψA,p is defined on L2(κ̂). An important consequence of
Proposition 2 is that we can build a projection operator Δp : L2(κ̂) → Sp(A) by

Δp( f )(ζ ) =
∑

A≤A
ψA,p( f )B̂A,p(ζ ) ∞ f ≤ L2(κ̂), ∞ζ ≤ κ̂. (27)

This allows us to prove the approximation properties of Sp(A). The following result
will make use of the notion of support extension Q̃ associated to an element Q ⊂ κ̂

(or a generic open subset Q ⊂ κ̂) and to the B-spline set (18):

Q̃ =
⋃

A≤A
supp(B̂A,p)∩Q ∀=∅

supp(B̂A,p).

Furthermore, we will denote by Q̄, the smallest d-dimensional rectangle in κ̂ con-
taining Q̃. Then the following result holds.

Proposition 5 Let (18) be a DC set of B-splines, then the projection operator Δp
in (27) is (locally) h-uniformly L2-continuous, that is, there exists a constant C only
dependent on p such that

||Δp( f )||L2(Q) ∈ C || f ||L2(Q̃) ∞Q ⊂ κ̂, ∞ f ≤ L2(κ̂).



Dual Compatible Splines on Nontensor Product Meshes 25

Proof Let Q be an element in the parametric domain. Since Proposition 4 and since
each BA,p ∈ 1 we have that, for any ζ ≤ Q,

∑

A≤A

∣
∣
∣B̂A,p(ζ )

∣
∣
∣ ∈ C.

Therefore, given any point ζ ≤ Q, denote by A(ζ ) the subset of A ≤ A such that
B̂A,p(ζ ) > 0, and denote by QA the common support of B̂A,p and ψA,p, by |QA| its
d-dimensional measure, using (11) it follows that

∣
∣Δp( f )(ζ )

∣
∣2 =

∣
∣
∣

∑

A≤A(ζ )

ψA,p( f )B̂A,p(ζ )

∣
∣
∣
2 ∈ C max

A≤A(ζ )

∣
∣ψA,p( f )

∣
∣2

∈ C max
A≤A(ζ )

|QA|−1|| f ||2L2(QA)
(28)

∈ C |Q|−1|| f ||2
L2(Q̃)

,

where we have used in the last step that ∞A ≤ A(ζ ), Q ⊂ QA (and therefore
|Q| ∈ |QA|) and that QA ⊂ Q̃. Since the bound above holds for any ζ ≤ Q,
integrating over Q and applying (28) yields

||Δp( f )||2L2(Q)
∈ C || f ||2

L2(Q̃)
.

The continuity of Δp implies the following approximation result in the L2-norm:

Proposition 6 Assume that the space of global polynomials of degree p = min1∈�∈d

{p�} is included into the space Sp(A) and that κ̂ = [0, 1]d . Then there exists a
constant C only dependent on p such that for 0 ∈ s ∈ p + 1

|| f − Δp( f )||L2(Q) ∈ C(hQ̄)s | f |Hs (Q̄) ∞Q ⊂ κ̂, ∞ f ≤ Hs(κ̂),

where hQ̄ represents the diameter of Q̄.

Proof Let π be any p-degree polynomial. Since π ≤ Sp(A) and Δp is a projection
operator, using Proposition 5 it follows that

|| f − Δp( f )||L2(Q) = || f − π + Δp(π − f )||L2(Q)

∈ || f − π ||L2(Q) + ||Δp(π − f )||L2(Q)

∈ (1 + C)|| f − π ||L2(Q̃) ∈ (1 + C)|| f − π ||L2(Q̄).

The result finally follows by a standard polynomial approximation result.

We conclude this section with a final observation: the notion and construction
of Greville sites are easily extended to DC sets of B-splines, and the following
representation formula holds:
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Proposition 7 Assume that the linear polynomials belong to the space Sp(A). Then
we have that

α� =
∑

A≤A
γ [ΩA,�,p�

]B̂A,p(ζ ), ∞ζ ≤ κ̂, 1 ∈ � ∈ d, (29)

where γ [ΩA,�,p�
] denotes the average of the p� internal knots of ΩA,�,p�

.

Proof The identity (29) easily follows from the expansion of Δp(α�) and the
definition of dual functionals which is the same as in the tensor product case, yielding
ψA,p(α�) = γ [ΩA,�,p�

].
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Multivariate Anisotropic Interpolation
on the Torus

Ronny Bergmann and Jürgen Prestin

Abstract We investigate the error of periodic interpolation, when sampling a
function on an arbitrary pattern on the torus. We generalize the periodic Strang-
Fix conditions to an anisotropic setting and provide an upper bound for the error
of interpolation. These conditions and the investigation of the error especially take
different levels of smoothness along certain directions into account.

Keywords Anisotropic periodic interpolation · Shift invariant spaces · Lattices ·
Interpolation error bounds

1 Introduction

Approximation by equidistant translates of a periodic function was first investigated
in the univariate case [6, 15]. The multivariate case was developed in [21–23], where
the introduction of the periodic Strang-Fix conditions enabled a unified way to the
error estimates [16, 17].

Recently, many approaches such as contourlets [7], curvelets [8] or shearlets [10],
analyze and decompose multivariate data by focusing on certain anisotropic features.
A more general approach are wavelets with composite dilations [11, 13], which
inherit an MRA structure similar to the classical wavelets. For periodic functions
the multivariate periodic wavelet analysis [1, 9, 14, 18, 19] is a periodic approach
to such an anisotropic decomposition. The pattern P(M) as a basic ingredient to
these scaling and wavelet functions models equidistant points with preference of
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direction, i.e., fixing one direction v ∈ R
d , ≥v≥ = 1, we obtain equidistant points

along this direction in the pattern P(M), though other directions might have other
point distances.

This paper presents the interpolation on such patterns P(M), where M ∈ Z
d×d,

d ∈ N, is a regular integer matrix. In order to derive an upper bound for the interpo-
lation error, we introduce function spaces AΩ

M,q , where each function is of different
directional smoothness due to decay properties of the Fourier coefficients imposed.
The periodic Strang-Fix conditions can be generalized to this anisotropic setting,
characterizing and quantifying the reproduction capabilities of a fundamental inter-
polant with respect to a certain set of trigonometric polynomials. Such a fundamental
interpolant can then be used for approximation, where the error can be bounded for
the functions having certain directional smoothness, i.e., the space AΩ

M, q .
The rest of the paper is organized as follows: In Sect. 2 we introduce the basic pre-

liminary notations of the patternP(M), the corresponding discrete Fourier transform
F (M), and the spaces AΩ

M, q . Section 3 is devoted to the interpolation problem on the
pattern P(M) and the ellipsoidal periodic Strang-Fix conditions, which generalize
the periodic Strang-Fix conditions to an anisotropic setting. For this interpolation,
we derive an upper bound with respect to AΩ

M, q in Sect. 4. Finally, in Sect. 5 we
provide an example that the ellipsoidal Strang-Fix conditions are fulfilled by certain
periodized three-directional box splines and their higher dimensional analogs.

2 Preliminaries

2.1 Patterns

Let d ∈ N. For a regular integral matrix M ∈ Z
d × d and two vectors h, k ∈ Z

d

we write h ∩ k mod M if there exists a vector z ∈ Z
d such that h = k + Mz. The

set of congruence classes

[h]M := {
k ∈ Z

d ; k ∩ h mod M
}
, h ∈ Z

d ,

forms a partition of Z
d and using the addition [h]M + [k]M := [h + k]M, we

obtain the generating group
(
G (M),+)

, where the generating set G (M) is any set
of congruence class representatives. If we apply the congruence with respect to the
unit matrix

Ed := (
∂i, j

)d
i, j = 1 ∈ R

d × d , where ∂i, j :=
{

1 if i = j,

0 else,

denotes the Kronecker delta, to the lattice αM := M−1
Z

d → Q
d , we also get congru-

ence classes. Let further e j := (
∂i, j )

d
i = 1 denote the j th unit vector. We obtain the

pattern group
(
P(M),+) on the corresponding congruence classes [y]Ed , y ∈ αM,

where the pattern P(M) is again any set of congruence class representatives of the
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Fig. 1 The pattern PS(M) (left) and the generating set GS(MT) (right), where M = (8 3
0 8

)

congruence classes on the lattice αM. For any pattern P(M) we obtain a gener-
ating set by G (M) = MP(M). Using a geometrical argument [4, Lemma II.7],
we get |P(M)| = |G (M)| = | det M| =: m. A special pattern PS(M) and its
corresponding generating set GS(M) are given by

PS(M) := [−1

2
,

1

2

)d ∞ αM and GS(M) := M
[−1

2
,

1

2

)d ∞ Z
d .

We will apply the usual addition, when performing an addition on the set of
representatives, i.e., for x, y ∈ P(M) the expression x + y is an abbreviation for
choosing the unique element of [x + y]Ed ∞ P(M). In fact, for any discrete group
G = (S,+ mod 1) with respect to addition modulo 1, there exists a matrix M,
whose pattern P(M) coincides with the set S [2, Theorem 1.8]. Figure 1 gives an
example of a pattern P(M) of a matrix M and a generating set G (MT), where the
matrix is an upper triangular matrix. By scaling and shearing, the points of the pattern
lie dense along a certain direction.

The discrete Fourier transform is defined by applying the Fourier matrix

F (M) := 1≤
m

(
e−2ε ihTy

)

h∈G (MT),y∈P(M)

to a vector a = (
ay

)
y∈P(M)

∈ C
m having the same order of elements as the columns

of F (M). We write for the Fourier transform â := (
âh

)
h∈G (MT)

= ≤
mF (M)a,

where the vector â is ordered in the same way as the rows of the Fourier matrix
F (M). Further investigations of patterns and generating sets, especially concerning
subpatterns and shift invariant spaces, can be found in [14], which is extended in [1]
with respect to bases and certain orderings of the elements of both sets to obtain a
fast Fourier transform.

Finally, we denote by Δ1(M), . . . , Δd(M) the eigenvalues of M including their
multiplicities in increasing order, i.e., for i < j we get |Δi (M)| ∇ |Δ j (M)|.

For the rest of this paper, let |Δd(M)| ≥ 2. To emphasize this fact, we call a
matrix M that fulfills |Δd(M)| ≥ 2 an expanding matrix.
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2.2 Function Spaces

For functions f : Td ∀ C on the torus Td := R
d/2εZd consider the Banach spaces

Lp(T
d), 1 ∇ p ∇ ∅, with norm

≥ f | Lp(T
d)≥p := 1

(2ε)d

∫

Td
| f (x)|p dx

and the usual modification for p = ∅, that ≥ f | L∅(Td)≥ = ess supx ∈Td | f (x)|.
Analogously, for sequences c := {cz}z ∈X , X ⊂ Z

d , the Banach spaces ψq(X ),
1 ∇ q ∇ ∅, are defined with norm

≥c | ψq(X )≥q :=
∑

k ∈X

∣
∣ck

∣
∣q ,

again with the usual modification for q = ∅. For f ∈ L1(T
d) the Fourier coeffi-

cients are given by

ck( f ) := 1

(2ε)d

∫

Td

f (x)e−ikTx dx, k ∈ Z
d .

For δ ≥ 0, we define the ellipsoidal weight function θM
δ , which was similarly

introduced in [2, Sect. 1.2],

θM
δ (k) :=

(
1 + ≥M≥2

2≥M−Tk≥2
2

)δ/2
, k ∈ Z

d ,

to define for q ≥ 1 the spaces

Aδ
M, q(Td) :=

⎢
f ∈ L1(T

d);
∥
∥
∥ f

∣
∣ Aδ

M, q

∥
∥ < ∅

}
,

where

∥
∥ f

∣
∣ Aδ

M, q

∥
∥ := ∥

∥{θM
δ (k)ck( f )}k ∈Zd

∣
∣ψq(Zd)

∥
∥.

A special case is given by A(Td) := A0
M, 1(T

d), which is the Wiener algebra

of all functions with absolutely convergent Fourier series. We see that ≥MT≥2
2 =

Δd(MTM) > 1. For any diagonal matrix M = diag(N , . . . , N ), N ∈ N, the weight
function simplifies to (1 + ≥k≥2

2)
δ/2 and these spaces resemble the spaces used

in [23] to derive error bounds for interpolation by translates. Even more, if we fix
Ω ∈ R and q ≥ 1, due to the inequalities

(
1 + ≥M≥2

2≥M−Tz≥2
2

)Ω/2 ∇
⎥

Δd(MTM)

Δ1(MTM)

⎫Ω/2(
1 + ≥z≥2

2

)Ω/2
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and

(1 + ≥z≥2
2)

Ω/2 = (1 + ≥MTM−Tz≥2
2)

Ω/2 ∇ (1 + ≥M≥2
2≥M−Tz≥2

2)
Ω/2

we have, that all spaces AΩ
M, q of regular integer matrices M are equal to AΩ

Ed ,q , which
is the same as AΩ

q in [23]. However, each of the different norms provides a different
quantification of the functions f ∈ AΩ

q . We keep the matrix M in the notation of the
space in order to distinguish the specific norm that we will use.

For the weight θM
δ we finally have the following lemma.

Lemma 1 For a regular expanding matrix M ∈ Z
d × d , i.e., |Δd(M)| ≥ 2, and an

ellipsoidal weight function θM
δ , where δ > 0 we have

θM
δ (k + MTz) ∇ ≥M≥δ

2 θM
δ (k)θM

δ (z) for k, z ∈ Z
d . (1)

Proof We have 2 ∇ ≥M≥2 = ⎬
Δd(MTM). For z = 0 or k = 0 the assertion holds.

For k, z ◦= 0 we apply the triangle inequality and the submultiplicativity of the
spectral norm to obtain

θM
δ (k + MTz) = (1 + ≥M≥2

2≥M−T(k + MTz)≥2
2)

δ/2

∇ ≥M≥δ
2 (1 + ≥M−Tk≥2

2 + 2≥M−Tk≥2≥z≥2 + ≥z≥2
2)

δ/2.

Using ≥M≥2≥M−Tk≥2 ≥ 1, ≥z≥2 ≥ 1 and ≥M≥2 ≥ 2, we further get

θM
δ (k + MTz)

∇ ≥M≥δ
2 (1 + ≥M−Tk≥2

2 + ≥M≥2
2≥M−Tk≥2

2≥z≥2
2 + ≥MTM−Tz≥2

2)
δ/2

∇ ≥M≥δ
2 (1 + ≥M≥2

2≥M−Tk≥2
2)

δ/2(1 + ≥M≥2
2≥M−Tz≥2

2)
δ/2

= ≥M≥δ
2 θM

δ (k)θM
δ (z). �⇒

Remark 1 In the same way one would obtainθM
δ (k + MTz) ∇ 2δ≥M≥δ

2 θM
δ (k)θM

δ (z)
for all regular integral matrices with ≥M≥2 ≥ 1 with slightly bigger constant 2δ . For
the matrices of interest, this slight difference is not very important and we focus on
the former one for simplicity.

3 Interpolation and the Strang-Fix Condition

This section is devoted to interpolation on a pattern P(M) and its correspond-
ing periodic Strang-Fix conditions. The periodic Strang-Fix conditions were intro-
duced in [5, 16] for tensor product grids as a counterpart to the strong Strang-Fix
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conditions on the Euclidean space R
d and generalized in [21, 23]. We generalize

them to arbitrary patterns on the torus.
A space of functions V is called M-invariant, if for all y ∈ P(M) and all

functions ν ∈ V the translates Tyν := ν(∃ − 2εy) ∈ V . Especially the space

V ν
M := span

{
Tyν ; y ∈ P(M)

}

of translates of ν is M-invariant. A function ξ ∈ V ν
M is of the form ξ =

⎭
y ∈P(M) ay Tyν. For ν ∈ L1(T

d) an easy calculation on the Fourier coefficients

using the unique decomposition of k ∈ Z
d into k = h+MTz, h ∈ G (MT), z ∈ Z

d ,
yields, that ξ ∈ V ν

M holds if and only if

ch+MTz(ξ) = âhch+MTz(ν) for all h ∈ G (MT), z ∈ Z
d , (2)

is fulfilled, where â = (
âh

)
h ∈G (MT)

= ≤
mF (M)a denotes the discrete Fourier

transform of a ∈ C
m .

Further, the space of trigonometric polynomials on the generating set GS(MT) is
denoted by

TM :=
⎢
ν ; ν =

∑

h ∈GS(MT)

aheihT∃, ah ∈ C

}
.

For any function ν ∈ L1(T
d) the Fourier partial sum SMν ∈ TM given by

SMν :=
∑

h ∈GS(MT)

ch(ν)eihT∃

is such a trigonometric polynomial.
The discrete Fourier coefficients of a pointwise given ν are defined by

cM
h (ν) := 1

m

∑

y ∈P(M)

ν(2εy)e−2ε ihTy, h ∈ G (MT), (3)

which are related to the Fourier coefficients for ν ∈ A(Td) by the following aliasing
formula.

Lemma 2 Let ν ∈ A(Td) and the regular matrix M ∈ Z
d × d be given. Then the

discrete Fourier coefficients cM
h (ν) are given by

cM
k (ν) =

∑

z ∈Zd

ck + MTz(ν), k ∈ Z
d . (4)

Proof Writing each point evaluation of ν in (3) as its Fourier series, we obtain due
to the absolute convergence of the series
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cM
k (ν) = 1

m

∑

y ∈P(M)

⎛

⎝
∑

h ∈Zd

ch(ν)e2ε ihTy

⎞

⎠ e−2ε ikTy

= 1

m

∑

h ∈Zd

ch(ν)
∑

y ∈P(M)

e−2ε i(k−h)Ty

=
∑

z ∈Zd

ck + MTz( f ).

The last equality is valid because the sum over y simplifies to m if k ∩ h mod MT,
and vanishes otherwise, cf. [20, Lemma 2.7]. �⇒
Definition 1 Let M ∈ Z

d × d be a regular matrix. A function IM ∈ V ν
M is called

fundamental interpolant or Lagrange function of V ν
M if

IM(2εy) := ∂
Ed
0, y, y ∈ P(M), where ∂M

x, y :=
{

1 if y ∩ x mod M,

0 else.

The following lemma characterizes the existence of such a fundamental interpolant.

Lemma 3 Given a regular matrix M ∈ Z
d × d and a function ν ∈ A(Td), the

fundamental interpolant IM ∈ V ν
M exists if and only if

∑

z ∈Zd

ch + MTz(ν) ◦= 0, for all h ∈ G (MT). (5)

If the fundamental interpolant IM ∈ V ν
M exists, it is uniquely determined.

Proof Assume the fundamental interpolant IM ∈ V ν
M exists. Hence, there exists a

vector a = (ah)h ∈G (MT) such that for its Fourier transform â = ≤
mF (M)a it holds

due to (2) that

ch + MTz(IM) = âhch + MTz(ν), h ∈ G (MT), z ∈ Z
d .

Applying this equality to the discrete Fourier coefficients of IM yields

cM
h (IM) =

∑

z ∈Zd

ch + MTz(IM) = âh

∑

z ∈Zd

ch + MTz(ν) = âhcM
h (ν). (6)

The discrete Fourier coefficients are known by Definition 1 and [20, Lemma 2.7] as
cM

h (IM) = 1
m , h ∈ G (MT), which is nonzero for all h and hence (5) follows.

On the other hand, if (5) is fulfilled, then the function ξ , which is defined by

ck(ξ) = ck(ν)

mcM
k (ν)

, k ∈ Z
d , (7)



34 R. Bergmann and J. Prestin

is in the space V ν
M having the coefficients âh = (mcM

h (ν))−1, h ∈ G (MT). The
discrete Fourier coefficients also fulfill cM

h (ξ) = 1
m . Hence, again by Definition 1

and [20, Lemma 2.7], ξ is a fundamental interpolant with respect to the pattern
P(M). If the fundamental interpolant IM exists, (7) also provides uniqueness. �⇒
The associated interpolation operator LM f is given by

LM f :=
∑

y ∈P(M)

f (2εy) Ty IM = m
∑

k ∈Zd

cM
k ( f )ck(IM)eikT∃. (8)

The following definition introduces the periodic Strang-Fix conditions, which require
the Fourier coefficients ck(IM) of the fundamental interpolant to decay in a certain
ellipsoidal way. The condition number κM of M is given by

κM :=
⎤

Δd(MTM)

Δ1(MTM)
= ≥M≥2≥M−1≥2.

Definition 2 Given a regular expanding matrix M ∈ Z
d × d , a fundamental inter-

polant IM ∈ L1(T
d) fulfills the ellipsoidal (periodic) Strang-Fix conditions of

order s > 0 for q ≥ 1 and an Ω ∈ R
+, if there exists a nonnegative sequence

b = {bz}z ∈Zd → R
+
0 , such that for all h ∈ G (MT), z ∈ Z

d\{0} we have

1. |1 − mch(IM)| ∇ b0κ
−s
M ≥M−Th≥s

2,

2. |mch + MTz(IM)| ∇ bzκ
−s
M ≥M≥−Ω

2 ≥M−Th≥s
2

with
πSF :=

∥
∥
∥{θM

Ω (z)bz}z ∈Zd

∣
∣ψq(Zd)

∥
∥
∥ < ∅.

For both properties we enforce a stronger decay than by the ellipse defined by the
level curves of ≥M−T∃≥2, i.e., we have an upper bound by

(κ−s
M ≥M−Th≥s

2 ∇ κ−s
M ≥M−T≥s

2≥h≥s
2 = (

Δd(MTM)
)−s/2≥h≥s).

The second one enforces a further stronger decay with respect to Ω, i.e.,

(κ−s
M ≥M≥−Ω

2 ≥M−Th≥s
2 ∇ (Δd(MTM))−(Ω + s)/2≥h≥s

2).

For the one-dimensional case or the tensor product case, i.e., M = diag(N , . . . , N )

we have κM = 1, Δ1(MTM) = Δd(MTM) = N , and this simplifies to the already
known case N−Ω−s≥h≥2. Looking at the level curves of the map ≥M−T ∃ ≥, we see
they produce ellipsoids, where |Δd(M)| is the length of the longest axis. Hence the
decay is normalized with respect to the longest axis of the ellipsoid.
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4 Error Bounds for Interpolation

In order to investigate the error of interpolation ≥ f − LM f ≥, where LM is the inter-
polation operator into V ν

M for certain ν ∈ A(Td), we use the triangle inequality with
respect to any norm

≥ f − LM f ≥ ∇ ≥ SM f − LM SM f ≥ + ≥ f − SM f ≥ + ≥ LM( f − SM f )≥

and look at these three terms separately.

Theorem 1 For an expanding regular matrix M ∈ Z
d × d , a trigonometric polyno-

mial f ∈ TM and a fundamental interpolant IM ∈ A(Td) fulfilling the ellipsoidal
Strang-Fix conditions for fixed values s ≥ 0, Ω > 0, and q ≥ 1 we have

∥
∥
∥ f − LM f

∣
∣
∣AΩ

M, q

∥
∥
∥ ∇

⎥
1

≥M≥2

⎫s

πSF

∥
∥
∥ f

∣
∣
∣AΩ + s

M, q

∥
∥
∥ . (9)

Proof The proof is given for q < ∅. For q = ∅ the same arguments apply with
the usual modifications with respect to the norm. Looking at the Fourier coefficients
of LM f in (8) for f ∈ TM yields

ch(LM f ) = mcM
h ( f )ch(IM) = mch( f )ch(IM), h ∈ G (MT),

and hence we have

f − LM f =
∑

k ∈Zd

(
ck( f ) − mcM

k ( f )ck(IM)
)
eikT∃.

Using the unique decomposition of k ∈ Z
d into k = h + MTz, h ∈ G (MT),

z ∈ Z
d , yields

f −LM f =
∑

h ∈G (MT)

ch( f )eihT∃((1−mch(IM)
)−

∑

z ∈Zd\{0}
mch + MTz(IM)eiMTz∃).

Applying the definition of the norm in AΩ
M, q(Td), we obtain

∥
∥
∥ f − LM f

∣
∣
∣AΩ

M, q

∥
∥
∥

q

=
∑

h ∈G (MT)

|ch( f )|q
(∣
∣
∣(1 − mch(IM))θM

Ω (h)

∣
∣
∣
q+

∑

z ∈Zd\{0}

∣
∣
∣mch + MTz(IM)θM

Ω (h + MTz)
∣
∣
∣
q)

.

Using the Strang-Fix conditions of the fundamental interpolant IM and Lemma 1
we get the following upper bound
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∥
∥
∥ f − LM f

∣
∣
∣AΩ

M, q

∥
∥
∥

q ∇
∑

h ∈G (MT)

|ch( f )|q
⎥

bq
0≥M−Th≥sq

2 θM
Ωq(h)κ

−sq
M

+
∑

z ∈Zd\{0}
bq

z κ
−sq
M ≥M≥−Ωq

2 ≥M−Th≥sq
2 θM

Ωq(h + MTz)
⎫

∇
⎥ ∑

h ∈G (MT)

|ch( f )|q≥M−T≥sq
2 κ

−sq
M ≥h≥sq

2 θM
Ωq(h)

⎫

⎥ ∑

z ∈Zd

(θM
Ω (z)bz)

q
⎫

∇ π
q
SF≥M≥−sq

2

∥
∥ f

∣
∣AΩ + s

M, q

∥
∥q .

�⇒
Theorem 2 Let M ∈ Z

d × d be regular. If f ∈ Aμ
M, q(Td), q ≥ 1, μ ≥ Ω ≥ 0,

then
∥
∥
∥ f − SM f

∣
∣
∣AΩ

M, q

∥
∥
∥ ∇

⎥
2

≥M≥2

⎫μ−Ω ∥
∥
∥ f

∣
∣
∣Aμ

M, q

∥
∥
∥ .

Proof This proof is given for q < ∅. For q = ∅ the same arguments apply with
the usual modifications with respect to the norm. We examine the left-hand side of
the inequality, apply θM

Ω (k) = θM
Ω −μ(k)θM

μ (k), and obtain

∥
∥ f − SM f

∣
∣ AΩ

M, q

∥
∥ = ∥

∥{θM
Ω (k)ck( f )}k ∈Zd\GS(MT)

∣
∣ ψq

(
Z

d\GS(MT)
)∥
∥

∇ max
k ∈Zd\GS(MT)

θM
Ω −μ(k)

∥
∥ f

∣
∣ Aμ

M, q

∥
∥.

The decomposition of k ∈ Z
d\GS(MT) into k = h + MTz, h ∈ GS(MT), yields

that 0 ◦= z ∈ Z
d and hence none of these integral points lies inside the parallelotope

MT
[− 1

2 , 1
2

)d . Hence, M−Tk lies outside
[− 1

2 , 1
2

)d and we have

max
k ∈Zd\GS(MT)

θM
Ω −μ(k) = max

k ∈Zd\GS(MT)

(
1 + ≥M≥2

2≥M−Tk≥2
2

) Ω − μ
2

∇ max
j ∈ {1,...,d}

⎥

1 + ≥M≥2
2

4

⎫ Ω − μ
2

∇
⎥≥M≥2

2

4

⎫ Ω − μ
2

.

�⇒
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Indeed, Theorem 2 does hold for any regular matrix M. It is not required that the
matrix has to be expanding. For the following theorem, let |z| := (|z1|, . . . , |zd |)T

denote the vector of the absolute values of the elements of the vector z ∈ Z
d .

Theorem 3 For an expanding regular matrix M ∈ Z
d × d let IM be a fundamental

interpolant such that

πIP := m

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
h ∈GS(MT)

⎥

|ch(IM)|q + ≥M≥Ωq
2

∑

z ∈Zd\{0}
|θM

Ω (z)ch + MTz(IM)|q
⎫1/q

for q < ∅,

max
h ∈GS(MT)

sup
⎢
|ch(IM)|, ≥M≥Ω

2 |θM
Ω (z)ch + MTz(IM)|; z ∈ Z

d\{0}
}

for q = ∅

is finite. Then we get for f ∈ Aμ
M, q(Td), q ≥ 1, μ ≥ Ω ≥ 0, and μ > d(1 − 1/q)

∥
∥
∥LM( f − SM f )

∣
∣
∣AΩ

M, q

∥
∥
∥ ∇ πIPπSm

⎥
1

≥M≥2

⎫μ−Ω ∥
∥ f

∣
∣Aμ

M, q

∥
∥,

where

πSm := (1 + d)Ω/22−μ

⎧
⎪⎪⎨

⎪⎪⎩

⎥
⎭

z ∈Zd\{0}
≥2|z| − 1≥−pμ

2

⎫1/p

for q > 1, 1
p + 1

q = 1,

sup
z ∈Zd\{0}

≥2|z| − 1≥−μ
2 for q = 1.

Proof This proof is given for q < ∅. For q = ∅ the same arguments apply with
the usual modifications with respect to the norm. We write the norm on the left-hand
side of the inequality as

∥
∥LM( f − SM f )

∣
∣AΩ

M, q

∥
∥q =

∥
∥
∥

∑

k ∈Zd

θM
Ω (k)ck (LM( f − SM f )) eikT∃

∣
∣
∣AΩ

M, q

∥
∥
∥

q

=
∑

k ∈Zd

∣
∣
∣θM

Ω (k)mcM
k ( f − SM f )ck(IM)

∣
∣
∣
q

.

By decomposing k = h + MTz, h ∈ GS(MT), z ∈ Z
d , and using Lemma 1 we

obtain



38 R. Bergmann and J. Prestin

∥
∥
∥LM( f − SM f )

∣
∣
∣AΩ

M, q

∥
∥
∥

q

∇
∑

h ∈GS(MT)

∣
∣
∣θM

Ω (h)mcM
h ( f − SM f )

∣
∣
∣
q

×
⎥

|ch(IM)|q + ≥M≥Ωq
2

∑

z ∈Zd\{0}
|θM

Ω (z)ch + MTz(IM)|q
⎫

∇ π
q
IP

∑

h ∈GS(MT)

|θM
Ω (h)cM

h ( f − SM f )|q .

In the remaining sum we first apply the aliasing formula (4). Then, the Hölder
inequality yields

∑

h ∈GS(MT)

|θM
Ω (h)cM

h ( f − SM f )|q =
∑

h ∈GS(MT)

θM
Ωq (h)

⎥ ∑

z ∈Zd\{0}
|ch + MTz( f )|

⎫q

∇
∑

h ∈GS(MT)

θM
Ωq (h)

⎥ ∑

z ∈Zd\{0}
θM−μp(h + MTz)

⎫q/p

×
⎥ ∑

z ∈Zd\{0}
|θM

μ (h + MTz)ch + MTz( f )|q
⎫

.

The first sum over z converges due to pμ > d, i.e., analogously to the proof of
Theorem 2, we get for h ∈ GS(MT)

∑

z ∈Zd\{0}
θM−μp(h + MTz) =

∑

z ∈Zd\{0}

(
1 + ≥M≥2

2≥M−Th + z≥2
2

)−pμ/2

∇
∑

z ∈Zd\{0}

(
1 + ≥M≥2

2

∥
∥|z| − 1

2 1
∥
∥2

2

)−pμ/2

∇
∑

z ∈Zd\{0}

⎥≥M≥2
2

4
≥2|z| − 1≥2

2

⎫−pμ/2

= ≥M≥−pμ
2 2−pμ

∑

z ∈Zd\{0}
≥2|z| − 1≥−pμ

2 .

Using for Ω ≥ 0

max
h ∈GS(MT)

θM
Ω (h) ∇

(
1 + ≥M≥2

2

∥
∥M−TMT 1

2 1
∥
∥2

2

)Ω/2

= (
1 + d

4 ≥M≥2
2

)Ω/2

∇ (1 + d)Ω/2≥M≥Ω
2 , (10)
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the upper bound for the last factor can be given as

∑

h ∈GS(MT)

|θM
Ω (h)cM

h ( f − SM f )|q

∇
∑

h ∈GS(MT)

θM
Ωq(h)2−μq≥M≥−μq

2

⎛

⎝
∑

z ∈Zd\{0}
≥|2z| − 1≥−pμ

⎞

⎠

q/p

×
⎛

⎝
∑

z ∈Zd\{0}
|θM

μ (h + MTz)ch + MTz( f )|q
⎞

⎠

∇ 2−μq≥M≥−μq
2

⎥

max
h ∈GS(MT)

θM
qΩ(h)

⎫
⎛

⎝
∑

z ∈Zd\{0}
≥|2z| − 1≥−pμ

⎞

⎠

q/p

×
⎛

⎝
∑

h ∈GS(MT)

∑

z ∈Zd\{0}
|θM

μ (h + MTz)ch + MTz( f )|q
⎞

⎠

∇ ≥M≥(Ω−μ)q
2 π

q
Sm≥ f |Aμ

M, q≥q . �⇒
Remark 2 It is easy to see that for a fundamental interpolant IM satisfying the ellip-
soidal periodic Strang-Fix conditions of order s for q and Ω we have

πIP ∇ C · πSF

where the constant C depends on M, Ω, s and q but is especially independent of f .

We summarize our treatment of the interpolation error in the following theorem.

Theorem 4 Let an expanding regular matrix M ∈ Z
d × d and a fundamental inter-

polant IM fulfilling the periodic ellipsoidal Strang-Fix conditions of order s for q ≥ 1,
and Ω ≥ 0 be given. Then for f ∈ Aμ

M, q(Td), μ ≥ Ω ≥ 0 and μ > d(1 − 1/q), we
have

≥ f − LM f |AΩ
M, q≥ ∇ Cγ

⎥
1

≥M≥2

⎫γ

≥ f |Aμ
M, q≥,

where γ := min{s, μ − Ω} and

Cγ :=
{

πSF + 2μ−Ω + πIPπSm for γ = s,

(1 + d)s +Ω −μπSF + 2μ−Ω + πIPπSm for γ = μ − Ω.

Proof For γ = s Theorems 1–3 can be applied directly due to ≥ f |AΩ + s
M, q ≥ ∇

≥ f |Aμ
M, q≥. If γ = μ − Ω, we have to replace Theorem 1 by an upper bound with

respect to μ. Using this theorem and the inequality in (10), we get
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≥ SM f − LM SM f |AΩ
M, q≥

∇ πSF≥M≥−s
2

∥
∥{θM

Ω + s(h)ch( f )}∈GS(MT)

∣
∣ψq(GS(MT))

∥
∥

∇ πSF max
h ∈GS(MT)

θM
Ω + s−μ(h)≥M≥−s

2

∥
∥{θM

μ (h)ch( f )}∈GS(MT)

∣
∣ψq(GS(MT))

∥
∥

∇ πSF(1 + d)s +Ω −μ≥M≥s +Ω −μ
2 ≥M≥−s

2 ≥ f |Aμ
M, q≥. �⇒

Remark 3 The factor κ−s
M in both constraints of the Strang-Fix conditions, cf. Def-

inition 2, enforces a strong decay on the Fourier coefficients of the fundamental
interpolant IM. Omitting this factor in both constraints, i.e., leaving just ≥M≥−Ω

2 in
the second one, weakens to a less restrictive constraint on the fundamental interpolant
IM. This changes the decay rate from

⎥
1

≥M≥2

⎫s

=
⎥

1
⎬

Δd(MTM)

⎫s

to

⎥
κM

≥M≥2

⎫s

= (≥M−T≥2
)s =

⎥
1

⎬
Δ1(MTM)

⎫s

,

which is then also the rate of decay in Theorem 4. Hence, while this formulation
eases the constraints with respect to the decay by restricting it just to the shortest axis
of the ellipsoid given by ≥M−T ∃ ≥2 = 1, the rate of convergence is also relaxed. On
the other hand, the stronger formulation in Theorems 1–4 requires the fundamental
interpolant to fulfill stronger constraints.

When increasing the number of sampling points, i.e., the determinant | det M|, for
both variations there are cases where the bound is not decreased. Namely, in the first
one if the value ≥M≥2 is not increased, in the second version if the value ≥M−T≥2 is
not decreased.

Again, for the tensor product case M = diag(N , . . . , N ) and the one-dimensional
setting, both formulations of the Strang-Fix conditions and the resulting error bounds
are equal.

5 The Three-Directional Box Splines

For a function g ∈ L1(R
d) on the Euclidean space Rd the Fourier transform is given

by

ĝ(ξ) :=
∫

Rd

g(x)eiξTx dx, ξ ∈ R
d ,
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and we introduce the periodization with respect to a regular matrix M ∈ Z
d × d for

a function g : Rd ∀ C having compact support

gM : Td ∀ C, gM :=
∑

z ∈Zd

g
( 1

2ε
M(∃ − 2εz)

)
.

Its Fourier coefficients ck(gM), k ∈ Z
d , can be obtained from ĝ by using the

substitution y = 1
2ε

Mx, i.e., dy = 1
(2ε)d m dx. Hence

ck(gM) = 1

(2ε)d

∫

Td

∑

z ∈Zd

g
( 1

2ε
M(x − 2εz)

)
eikTx dx

= 1

(2ε)d

∑

z ∈Zd

∫

Td

g
( 1

2ε
M(x − 2εz)

)
eikTx dx

= 1

m

∫

Rd

g(y)eikT
(

2εM−1y
)

dy

= 1

m
ĝ
(
2εM−Tk

)
.

The same applied to the Lagrange interpolation symbol g̃(ξ) := ⎭
z ∈Zd g(z)eiξTz

yields cM
h (g̃M) = 1

m g̃(2εM−Th), h ∈ G (MT).
We look at an example for the case d = 2. The three-directional box splines Bp,

p = (p1, p2, p3) ∈ N
3, p j ≥ 1, j = 1, 2, 3, are given by their Fourier transform

B̂p(ξ) := (
sinc 1

2ξ1
)p1

(
sinc 1

2ξ2
)p2

(
sinc 1

2 (ξ1 + ξ2)
)p3 .

Applying the periodization, we obtain the function BM
p : T2 ∀ C by its Fourier

coefficients

ck(BM
p ) = 1

m

(
sinc εkTM−1e1)

p1
(
sinc εkTM−1e2)

p2
(
sinc εkTM−1(e1 + e2)

)p3 .

Due to positivity of B̂p(ξ), ξ ∈ [−ε, ε ]2, cf. [3, Sect. 4], we know that ch(BM
p ) ◦= 0

for h ∈ G (MT). Hence by [14, Corollary 3.5] the translates Ty BM
p , y ∈ P(M),

form a basis of V
BM

p
M .

Theorem 5 Let M ∈ Z
2 × 2 be a regular matrix, p ∈ N

3, p j ≥ 1, j = 1, 2, 3 a
vector, s := min{p1 + p2, p1 + p3, p2 + p3} and Ω ≥ 0, q ≥ 1, such that s −Ω > 2.

The fundamental interpolant IM ∈ V
BM

p
M of the periodized 3-directional box

spline BM
p fulfills the periodic ellipsoidal Strang-Fix conditions of order s − Ω for Ω

and q, which depends on p.
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Proof We first examine the case Ω = 0. Taking a look at the second Strang-Fix
condition, we obtain for h ∈ GS(MT) and z ∈ Z

d\{0}, following the same steps as
in the proof of Theorem 1.10 in [16], the inequality

|mch + MTz(IM)| =
∣
∣
∣
∣
ch + MTz(BM

p )

cM
h (BM

p )

∣
∣
∣
∣

∇ 1

cM
h (BM

p )

| sin εhTM−1(e1 + e2)|p3

|ε(M−Th + z)T(e1 + e2)|p3

2∏

j=1

| sin εhTM−1e j |p j

|ε(M−Th + z)Te j |p j

∇ 1

cM
h (BM

p )

|hTM−1(e1 + e2)|p3

|(M−Th + z)T(e1 + e2)|p3

2∏

j=1

|hTM−1e j |p j

|(M−Th + z)Te j |p j
.

For z1 ◦= 0, z2 ◦= 0, z1+z2 ◦= 0, and |z1+z2| ◦= 1 it holds using |(M−Th + z)Te j | ≥
(|z j | − 1

2 ), j = 1, 2, and |(M−Th + z)T(e1 + e2|) ≥ (|z1 + z2| − 1) that

|mch + MTz(BM
p )| ∇

(
|hTM−1e1| + |hTM−1e2|

)s 1

(|z1 + z2| − 1)p3

2∏

j=1

1

(|z j | − 1
2 )p j

,

where applying the Cauchy-Schwarz inequality |h1| + |h2| ∇ ≤
2≥h≥2 yields

|mch + MTz(BM
p )| ∇ ≥M−Th≥s

2
2s/2

(|z1| − 1
2 )p1(|z2| − 1

2 )p2(|z1 + z2| − 1)p3
.

Defining

A :=
⎥

min
h ∈GS(MT)

mcM
h (BM

p )

⎫−1

we can use the last inequality to obtain that the fundamental interpolant IM corre-
sponding to BM

p fulfills the Strang-Fix conditions of order s with Ω = 0, where the
series for πSF is given by

bz = b0
z = 2s/2 A

(|z1| − 1
2 )p1(|z2| − 1

2 )p2(|z1 + z2| − 1)p3
,

at least for z = (z1, z2)
T with z1 ◦= 0, z2 ◦= 0, z1 + z2 ◦= 0 and |z1 + z2| ◦=

1. An upper bound for the remaining indices z can be established using similar
arguments as for this case. These estimates can be directly transcribed from the
already mentioned proof, cf. [16, pp. 51–57], including the bound for the first of the
Strang-Fix conditions, i.e., b0

0 . This concludes the proof for the case Ω = 0.
For Ω ≥ 0 we define the series bz := 2−Ω/2≥M−T≥−Ω

2 b0
z , z ∈ Z

2, and obtain for
the first Strang-Fix condition with h ∈ GS(MT) and using ≥M≥Ω

2 ≥ 1 that
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|1 − mch(IM)| ∇ b0
0κ

−s
M ≥M−Th≥s

2

∇ κ−Ω
M 2−Ω/2b0

0κ
−(s−Ω)
M ≥M−Th≥s−Ω

2

∇ b0κ
−(s−Ω)
M ≥M−Th≥s−Ω

2 .

For the second condition we get

|mch + MTz(IM)| ∇ b0
zκ

−Ω
M ≥M−Th≥Ω

2 κ
−(s−Ω)
M ≥M−Th≥s−Ω

2

∇ ≥M−T≥−Ω
2 2−Ω/2b0

z≥M≥−Ω
2 κ

−(s−Ω)
M ≥M−Th≥s−Ω

2

∇ bz≥M≥−Ω
2 κ

−(s−Ω)
M ≥M−Th≥s−Ω

2 ,

where the first inequality in both cases is mentioned for completeness. The series
that is used to define πSF is given by

π
q
SF =

∑

z ∈Z2

|(1 + ≥M≥2
2≥M−Tz≥2

2)
Ω/2)bz|q ,

which converges for s−Ω > 2 by applying again the same inequalities that were used
for the case of a diagonal matrix M = diag(N , . . . , N ), q = 2, and Ω = 0 in Theorem
1.10 of [16]. �⇒
This can also be applied to the d-variate case, d > 2, using the d(d+1)

2 -directional

box spline Bp, p ∈ N
d(d+1)

2 , consisting of the directions e j , j = 1, . . . , d, and
e j + ei , i, j = 1, . . . , d, i ◦= j , the corresponding four-directional box spline [16,
Theorem. 1.11], and its multivariate version, the d2-directional box spline, which
can be generated analogously to the d(d+1)

2 -directional box spline, i.e., using the
directions e j , ei + e j and ei − e j . Nevertheless, for the periodized d2-directional

box spline BM
q , q ∈ N

d2
, the fundamental interpolant IM does not exist. This can

be seen by looking at BM
q in the Fourier domain, where it does contain at least

one two-dimensional four-directional box spline as a factor. Hence the non-normal
interpolation of the four-directional box spline, which was investigated in [12] carries
over to the higher dimensional case. In order to apply the above-mentioned theorems,
we have to use the so-called incorrect interpolation, i.e., we set ch(IM) = m−1 for
h ∈ GS(MT), where cM

h (BM
q ) = 0.

Acknowledgments We thank both the anonymous reviewers for their valuable remarks which
improved the presentation of this paper.
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A Generalized Class of Hard Thresholding
Algorithms for Sparse Signal Recovery

Jean-Luc Bouchot

Abstract We introduce a whole family of hard thresholding algorithms for the
recovery of sparse signals x ∈ C

N from a limited number of linear measurements
y = Ax ∈ C

m , with m ≥ N . Our results generalize previous ones on hard thresh-
olding pursuit algorithms. We show that uniform recovery of all s-sparse vectors x
can be achieved under a certain restricted isometry condition. While these conditions
might be unrealistic in some cases, it is shown that with high probability, our algo-
rithms select a correct set of indices at each iteration, as long as the active support is
smaller than the actual support of the vector to be recovered, with a proviso on the
shape of the vector. Our theoretical findings are illustrated by numerical examples.

Keywords Compressive sensing · Sparse recovery · Hard thresholding · Sparse
approximation

1 Compressive Sensing and Sparse Signal Recovery

This paper is concerned with the standard compressive sensing problem, i.e., we
analyze the reconstruction of sparse signals x ∈ C

N based only on a few number of
(linear) measurements y ∈ C

m where m ≥ N . It is known from the compressive
sensing literature that recovery of s-sparse signals x is ensured when the sensing
(or measurement) matrix is random (Gaussian or sub-Gaussian for instance) and
when the number of measurements scales linearly with the sparsity of the signal
up to a log factor. Known methods arise mainly from optimization theory such as
the Ω1 minimization [3, 14], reweighted norm minimizations [5, 13], primal-dual
optimization [6], or from iterative solvers (see for instance [1, 10–12]).
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We investigate in particular some variations of the Hard Thresholding
Pursuit (HTP) algorithm [7], an iterative thresholding-based method, and its graded
approach, a recent variation that does not require prior knowledge of the sparsity [2].
We analyze the reconstruction abilities of these algorithms in both idealized and
realistic settings. In particular we introduce a generalization that improve the speed
performance of (GHTP).

The idealized setting is characterized by the fact that the signal to be recovered x is
exactly s-sparse and that the measurements occur in an error-free manner. In this case
exact recovery is ensured by all such algorithms provided that a certain restricted
isometry condition (RIC) is met by the sensing matrix [4, 8]. In comparison, we may
consider a more realistic setting in which the vector x may suffer a sparsity defect
and the measurements through the matrix A may be inaccurate. In this case, we have
y = Ax + e where e ∈ C

m represents the error induced by the measurement process.
The sparsity defect can be integrated into this error term by considering x = xS +xS
where xS corresponds to the s most important components (i.e., the largest absolute
entries) of x. Thus, we may incorporate the remaining components into the noise as
y = Ax + e = AxS + (AxS + e) = AxS + e∩ where e∩ = AxS + e ∈ C

m contains
both the sparsity defect and the measurement noise.

The remainder of this article is organized as follows. We start in Sect. 2 by
reviewing some previous work regarding the (HTP) and (GHTP) algorithms
(Sect. 2.1). This leads to introduce a family of algorithms that generalizes the two
previous ones in Sect. 2.2. These algorithms are studied theoretically in the follow-
ing sections in both uniform (see Sect. 3) and nonuniform settings (Sect. 4). Finally,
Sect. 5 compares and validates numerically our findings. Throughout this paper we
use the following notations:

• x→ represents the nonincreasing rearrangement of a vector x:

x→
1 ∞ x→

2 ∞ · · · ∞ x→
N ∞ 0

and there exists a permutation ∂ of {1, . . . , N } such that x→
j = |x∂( j)|.

• S is the support of an s-sparse vector x or the set of indices of its s largest absolute
entries.

• xT corresponds to the vector x either restricted to the set T or such that xT i = xi

for i ∈ T and 0 elsewhere, depending on the context.
• The complement of a set T in {1, . . . , N } is denoted by T
• ≤·∇ and 	·∀ denote respectively the ceil and floor functions.
• αs corresponds to the restricted isometry constant of order s of a given matrix A

and is defined as the smallest α such that

(1 − α) ∅x∅2
2 ⊂ ∅Ax∅2

2 ⊂ (1 + α) ∅x∅2
2

holds for any s-sparse vector x.
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2 (HTP), (GHTP), and their Generalizations

2.1 Previous Results

The Hard Thresholding Pursuit [7] and its graded variant [2] can be summarized by
the following steps:

Sn : = {indices of k largest entries of
∣
∣xn−1 + A→(y − Axn−1)

∣
∣
}
, (GHTP1)

xn : = argmin{∅y − Az∅2, supp(z) ◦ Sn}, (GHTP2)

with k = s for (HTP) and k = n for (GHTP).
It was shown that robust and stable recovery is achieved under some RIC:

Theorem 1 If the restricted isometry constant of the matrix A ∈ C
m×N obeys

α3s ⊂ 1

3
for (HTP), and α9s ⊂ 1

3
for (GHTP),

then the sequences (xn) produced by (HTP) or (GHTP) with y = Ax + e ∈ C
m for

some s-sparse x ∈ C
N and some e ∈ C

m with ∅e∅2 ⊂ ε x→
s satisfy

∅x − xn∅2 ⊂ d∅e∅2, n ⊂ c s.

The constants c ⊂ 3 for (HTP) and c ⊂ 4 for (GHTP), d ⊂ 2.45, and ε ∞ 0.079
depend only on α3s or α9s .

It is worth mentioning that reshuffling the index set in the (GHTP) algorithm
adds robustness to (GHTP) (as seen in the numerical experiments in Sect. 5) over
Orthogonal Matching Pursuit (OMP) at the cost that its implementation cannot be
done using QR updates.

2.2 Generalizations

We investigate here some generalizations of the Graded Hard Thresholding
Pursuit that improve the speed of the algorithm while only slightly deteriorating
its reconstruction capability. In order to speed up the convergence we need to lower
the number of iterations. Following an index selection process similar to the (HTP)
and (GHTP) algorithms, we introduce ( f -HTP) that relies on a different number of
indices selected per iteration (note that Generalized HTP would be a confusing name
with regard to the (GHTP) algorithm).

Let f : N → N be a nondecreasing function such that there exists n0 ∞ 0 with
f (n) ∞ s for any n ∞ n0. The ( f -HTP) algorithm is defined by the following
sequence of operations:



48 J.-L. Bouchot

Sn : = {indices of f (n)largest entries of
∣
∣xn−1 + A→(y − Axn−1)

∣
∣
}
, ( f -HTP1)

xn : = argmin{∅y − Az∅2, supp(z) ◦ Sn}. ( f -HTP2)

Observe that the constant function f (n) = s yields the original (HTP) algorithm
while f (n) = n corresponds to (GHTP). Particularly interesting in terms of speed
and number of iterations is the case f (n) = 2n−1 which shall be refer to as (GHTP2).

2.3 First Results

We first provide some preliminary results as we did for the original graded algorithm
(GHTP) in [2]. We show that a similar geometric decay of the error at each iteration
∅x −xn∅2 holds for the generalization ( f -HTP), see (3). It also ensures that a certain
number of indices of largest entries may be included in the support after a given
number of iterations (see Lemma 1). These results will allow us to prove the main
result for uniform recovery (as stated in Theorem 2) by induction.

2.3.1 Geometric Decay

In the remainder of this article, we will define n0 as the smallest integer such that
f (n) ∞ s, for all n ∞ n0. In particular, n0 = 0 for (HTP), s for (GHTP) and

⌈
log2(s)

⌉

for (GHTP2). Using the results from [2, 7] we have the following estimates, for
n ∞ n0:

∥
∥
∥xn+1 − x

∥
∥
∥

2
⊂
√

1

1 − α2
f (n+1)+s

∥
∥
∥
(

xn+1 − x
)

Sn+1

∥
∥
∥

2

+ 1

1 − α f (n+1)+s

∥
∥
(
A→e

)
Sn+1

∥
∥

2
, (1)

∥
∥
∥
(

xn+1 − x
)

Sn+1

∥
∥
∥

2
⊂ ⇒

2α f (n)+ f (n+1)+s
∥
∥xn − x

∥
∥+ ⇒

2
∥
∥
(
A→e

)
SΔSn+1

∥
∥

2
. (2)

Combining these two estimates yields the geometric decay

∥
∥
∥xn+1 − x

∥
∥
∥

2
⊂
⎢
√
√
√

2α2
f (n)+ f (n+1)+s

1 − α2
f (n+1)+s

∥
∥xn − x

∥
∥

2 + ψ f (n+1)+s ∅e∅2 (3)

with ψ f (n+1)+s =
⎥

2

(1−α f (n+1)+s)
2 +

⇒
1+α f (n+1)+s

1−α f (n+1)+s
. These results are the same as in

our previous paper up to the RIC that needs to be adapted. In a more concise way
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we can write, where the multiplicative coefficient can be written depending only on
α2 f (n+1)+s :

∥
∥
∥xn+1 − x

∥
∥
∥

2
⊂ δ2 f (n+1)+s

∥
∥xn − x

∥
∥

2 + ψ f (n+1)+s ∅e∅2

with δ2 f (n+1)+s =
⎥

2α2
2 f (n+1)+s

1 − α2
2 f (n+1)+s

.

2.3.2 Preparatory Lemma

As for the original (GHTP) algorithm [2] we can show that, if the p largest absolute
entries are contained in the support at iteration n, then k further iterations of ( f -HTP)
are sufficient to recover the q following largest entries, as stated in the following
lemma.

Lemma 1 Let x ∈ C
N be s-sparse and let (Sn) be the sequence of index sets

produced by ( f -HTP) with y = Ax + e for some e ∈ C
m. For integers p ∞ 0 and

n ∞ n0, suppose that Sn contains the indices of p largest absolute entries of x. Then,
for integers k, q ∞ 1, Sn+k contains the indices of p + q largest absolute entries of
x, provided

x→
p+q > δk

s+2 f (n+k)∅x→{p+1,...,s}∅2 + θn+k−1∅e∅2, (4)

with the constants δn+k−1 as defined above and θn+k−1 =
⇒

2αs+ f (n+k−1)

⇒
1 − αs+ f (n−1)

1 − αs+ f (n−2)

+
⇒

2
1 − αs+ f (n+1)

αs+ f (n+k−1)

1 − δn+k−1
+ ⇒

2
⇒

1 + α2 depending only on the restricted isometry

constant αs+ f (n+k).

Remark 1 The proof of Lemma 1 is not provided here. It follows directly from the
proof of Lemma 3 and 4 from [2] with changes imposed on the current iteration
number and the number of indices selected, which is replaced by f (n) everywhere.

Remark 2 Lemma 1 is not ideal in the sense that the number of iterations needed
for the recovery of the next q largest entries, does not depend on the actual index
selection method and whether we select exponentially many new indices at each
iteration or just a linear number of new candidates. This leads to overestimate the
number of iterations needed. As we see in the following section, it creates RIC
that are not always realistic, as they yield RIP of order up to ss (in the worst, but
fastest, scenario). It shows however, that there exist conditions under which the
convergence of the algorithm is guaranteed. We also see that in particular cases
(namely when dealing with power or flat vectors) the conditions from Theorem 2
can be drastically improved. Moreover, as suggested by the numerical experiments in
Sect. 5, these results are only a rough over estimation of the actual number of iterations
needed.
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Table 1 Examples of RIC that a sensing matrix should fulfill for uniform recovery, according to
Theorem 2

f s n 2n n(n + 1)/2 2n−1

RIC 3sa 9s s/2 + 16s
⇒

2s + 8s2 s + ss

Name (HTP) (GHTP) (GHTP2)
a This result actually coincides with the one from the original paper about (HTP) [7]

3 Uniform Recovery via ( f -HTP)

3.1 General Results

This section is dedicated to the problem of uniform recovery of all s-sparse vectors
x given a certain sensing matrix. While this gives some ideas of why the ( f -HTP)
algorithms may converge, our proof yields, for certain choices of f , unrealistic and
unapplicable conditions. Such considerations are detailed in Table 1.

Theorem 2 If the restricted isometry constant of the matrix A ∈ C
m×N obeys

α2 f (n)+n0 ⊂ 1

3
,

then the sequence (xn) produced by ( f -HTP) with y = Ax + e ∈ C
m for some

s-sparse x ∈ C
N and some e ∈ C

m with ∅e∅2 ⊂ ε x→
s satisfies

∅x − xn∅2 ⊂ d∅e∅2, n ⊂ c s.

The constants c ⊂ 4, d ⊂ 2.45, and ε ∞ 0.079 depend only on αs+2 f (n).

This theorem generalizes the one obtained first for (HTP) and (GHTP) to more
general index selection schemes. It is purely an adaptation of our previous results
and does not depend on the index selection function f . Therefore, as stated above it
generates unrealistic restricted isometry conditions. For instance, when considering
the case of f (n) = 2n−1 we would need to ensure an RIC of order ν(ss). Table 1
gives some examples of RIC for different choices of f .

While the two last conditions are unrealistic, the first cases still yield reasonable
RIC. For instance the case f = 2n yields an RIC at the order 16s which is still
in a comparable range as for (OMP) (see [15] for a stable recovery under RIC of
order 13s).

Fortunately these strong conditions can be improved in the particular cases of
power vector or almost flat vectors. The recovery of power vectors is analyzed in the
following section where we show in the case of (GHTP2) that the matrix only needs
to obey an RIC of order ν(spolylog(s)). (Other examples are given in Table 2.)
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Table 2 Examples of RIC-orders that the measurement matrix needs to obey for different ( f -HTP)
algorithms (these are just order of magnitude)

f s n 2n n(n+1)/2 2n−1

RIC 3s 3s + 4Cpolylog(s) 3s + 8Cpolylog(s) 3s + 4Cpolylog2(s) s + 2spolylog(s)

Name (HTP) (GHTP) (GHTP2)

3.2 The Case of Power Vectors

We investigate the convergence of the family of generalized algorithms when facing
particular power vectors. Our results rely on the following lemma used for decom-
posing the support:

Lemma 2 Any set S ∃ {1, . . . , N } of size s ⊂ N can be decomposed in r subsets
S1, . . . , Sr such that

1. r = ⎫log2(s)
⎬+ 1

2. S =⎭r
i=1 Si

3. Si ∩ S j = ∅, for j �= i
4. |Si | ⊂ ⌈s/2i

⌉
.

Proof We show this result by induction on the set size s. For s = 1, S1 = S fulfills
all the criteria. Assume now that Lemma 2 holds for all 1 ⊂ n ⊂ s − 1. Without
loss of generality, we can consider the set S = {1, . . . , s}. Writing S = S1 ∪ T with
S1 = {1, . . . , ≤s/2∇} and T = S\S1, we have |T | = s − ≤s/2∇ < s and therefore,
applying the induction hypothesis yields T = ⎭rT

j=1 Tj with rT = ⎫log2(|T |)⎬+ 1

and |Tj | ⊂ ⌈|T |/2 j
⌉

. We now define Si := Ti−1 for i > 1 and therefore the partition
S1, . . . , Sr fulfills the three first criteria of the lemma. To verify the last statement of
the lemma we consider two separated cases:

If s is even, then there exists a k ∈ N such that s = 2k and |S1| = |T | = k.
The induction hypothesis implies, for j ∞ 1

|Tj | ⊂
⎛

k/2 j
⎝

and |S j+1| ⊂
⎛

s/2 j+1
⎝

which proves the last point of the lemma.
If s is odd, then there exists a k ∈ N such that s = 2k + 1 and |S1| = k + 1 and

|T | = k. The induction hypothesis implies, for j ∞ 1

|Tj | ⊂
⎛

k/2 j
⎝

and |S j+1| ⊂
⎛

s/2 j+1 − 1/2 j+1
⎝

⊂
⎛

s/2 j+1
⎝

which finishes the proof of the lemma. ��
Consider vectors x such that for all 1 ⊂ j ⊂ s, x→

j = 1/jα for some α > 1/2
(other cases will be considered later). We have
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∅x→{p+1,...,s}∅2
2 = 1

(p + 1)2α
+ · · · + 1

s2α

⊂
⎞ s

p

1

x2α
dx = 1

2α − 1

⎠
1

p2α−1 − 1

s2α−1

⎤

⊂ 1

2α − 1

1

p2α−1 .

With this, it is sufficient to find k and q such that

1

(p + q)2α
> δ2k 1

2α − 1

1

p2α−1 ,

for condition (4) from Lemma 1 to be valid.
This condition is equivalent to

k >
1

log(1/δ2)
log

⎧
p

2α − 1

⎠

1 + q

p

⎤2α
⎪

.

In conclusion, {1, . . . , p} ◦ Sn ∨ {1, . . . , p + q} ◦ Sn+k holds provided that

k >
2α log

(
p
(

1 + q
p

))

log(1/δ2)
− log (2α − 1)

log(1/δ2)
.

If we now consider r subsets S1, . . . , Sr , r = ⎫
log2(s)

⎬ + 1 as suggested by
Lemma 2, then we can successively apply Lemma 1 to each r subsets Si . Defining
S0 = ∅, qi = |Si |, for i ∞ 0, ki the number of iterations needed to add subset Si ,
using k0 = n0, and pi = ⎨i−1

j=1 q j , we finally get that the number of iterations for
uniform recovery is bounded by

n ⊂
r⎩

i=0

ki ⊂ 2α

log(1/δ2)

r⎩

i=1

log

⎠

pi

⎠

1 + qi

pi

⎤⎤

− r
log(2α − 1)

log(1/δ2)
+ n0

⊂ 2α

log(1/δ2)

r⎩

i=1

log




i⎩

j=1

q j



− r
log(2α − 1)

log(1/δ2)
+ n0

⊂ 2α

log(1/δ2)

r⎩

i=1

log




i⎩

j=1

(
s/2 j + 1

)


− r
log(2α − 1)

log(1/δ2)
+ n0 (5)

⊂ 2α

log(1/δ2)

r⎩

i=1

log



s
i⎩

j=1

1/2 j + i



− r
log(2α − 1)

log(1/δ2)
+ n0

⊂ 2α

log(1/δ2)

r⎩

i=1

log (2s) − r
log(2α − 1)

log(1/δ2)
+ n0,
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where we have used the fact that q j ⊂ ⌈
s/2 j

⌉ ⊂ s/2 j + 1 in inequality (5).
With such a partition we have that r = ⎫

log2(s)
⎬ + 1 ⊂ log2(s) + 1 and hence

n can be bounded by

n ⊂ (log2(s) + 1
)
⎠

log(2s)
2α

log(1/δ2)
− log(2α − 1)

log(1/δ2)

⎤

+ n0.

Using this, we only need to ensure the RIC to the order 2n which is ν(s · slog(s))

when using the (GHTP2). This is not yet acceptable for real-world applications but
much less critical then what Theorem 2 suggests. Moreover, it corresponds also to
the worst case scenario for ( f -HTP) algorithms.

If we now consider the case α = 1/2, a similar analysis yields

∅x→{p+1,...,s}∅2
2 ⊂

s⎞

p

1

x
dx = log(s − p),

and condition (4) reads 1
p + q > δ2k log(s − p). Therefore, Lemma 1 holds for

k >
log(log(s)) + log(p + q)

log(1/δ2)
.

Using a partition as given in Lemma 2 gives a sufficient number of iterations

n =
r⎩

i=0

ki =
r⎩

i=1

log(log(s)) + log(
⎨i

j=1 q j )

log(1/δ2)
+ n0

⊂ (log2(s) + 1
) log(log(s)) + log(2s)

log(1/δ2)
+ n0.

Again, in this case, the RIC has to be valid at the order ν(s · spolylog(s)) for (GHTP2).
The case 0 < α < 1/2 can be treated in the exact same way by approximating

the 2-norm with an integral. This yields, using the same support decomposition,

n ⊂ (log2(s) + 1
)
⎠

(1 − 2α) log(s)

log(1/δ2)
+ 2α log(2s)

log(1/δ2)
− log(1 − 2α)

log(1/δ2)

⎤

.

Consider an almost flat s-sparse vector x such that there exists an κ ∞ 0 with

1 − κ ⊂ x→
j ⊂ 1, for j = 1, . . . , s (this corresponds to α = 0). In this case, we

have that
(1 − κ)2 (s − p) ⊂ ∅x{p+1,...,s}→∅2

2 ⊂ s − p

Hence condition (4) now reads 1 > δ2k s−p
1−κ

and is fulfilled whenever
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k >
log
(

s−p
1−κ

)

log(1/δ2)
.

Using the decomposition given in Lemma 2, we get that

n ⊂ log (s/ (1 − κ))2

log(1/δ2)
+ n0

iterations are sufficient to recover the signal x. This gives a RIC in the order of
ν(slog(s)) when considering (GHTP2) for the power vector case. All of the previous
results can be summarized in the following corollary:

Corollary 1 Let x be an s-sparse vector such that its nondecreasing rearrangement
can be written as x→

j = 1/jα , for all 1 ⊂ j ⊂ s, for some α ∞ 0 or 1 − κ ⊂ x→
j ⊂ 1,

for some κ ∞ 0. Then for any matrix A ∈ C
m×N , x can be recovered from y = Ax in

at most n = C polylog(s)
log(1/δ2)

+ n0 iterations of ( f -HTP) provided that the RIP conditions

are satisfied at the order ν(s +2 f (polylog(s))). The constant C and the polynomial
involved depend only on α and δ

As a consequence, (GHTP2) requires a RIC in the order of ν(s + 2slog(s)).
Similarly, considering f (n) = 2n yields a RIC in the order of ν(3s + polylog(s))
which is tractable and still provides a strong speed improvement over the original
(GHTP) (even if the complexity remains in the same order, the constant in front is
much lower). Some examples are summarized in Table 2.

4 Nonuniform Recovery via ( f -HTP)

We consider here the problem of recovering a particular fixed vector x instead of
recovering any vector for a given matrix A.

4.1 Useful Inequalities

We recall here some results regarding the tail distribution of some random
variables and the probability distribution of the smallest singular value of a sub-
gaussian matrix [9]. These results play an important role in proving the nonuniform
recovery of vectors via ( f -HTP).

Lemma 3 ([9]) Let A ∈ R
m×N be a subgaussian matrix, the following inequalities

hold
P(∅A→

SAS − I∅2→2 > α) ⊂ 2 exp(−c∩α2m) (6)

P (|〈aΩ, v〉| > t∅v∅2) ⊂ 4 exp
(
−c∩∩t2m

)
, (7)

where c∩∩ depends only on the distribution.
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4.2 Recovery

Following [2, Prop. 9], we can see that with high probability the algorithms make
no mistakes when selecting the indices. This statement is true while the size of the
index set selected at a given iteration is strictly smaller than the actual sparsity of
the signal under a condition on the shape of the vector to be recovered. This result is
summarized in the following proposition:

Proposition 1 Let π ∞ 1 and let x ∈ C
N be an s-sparse vector such that x→

1 ⊂ πx→
s .

If A ∈ R
m×N is a sub-Gaussian matrix with

m ∞ Cs ln (N ) ,

then with high probability (∞ 1 − 2N−c) and for any error vector e ∈ C
m such that

∅e∅2 ⊂ ε x→
s the sequences Sn and xn produced by ( f -HTP) with y = Ax + e satisfy,

at iteration n0 − 1 (where n0 denotes the smallest integer such that f (n) ∞ s):

Sn0−1 ◦ S (8)

where the constant ε depends only on π and the constant C on π and c.

Remark 3 It is worth mentioning that the proof of this Proposition does not apply
to the (HTP) algorithm. Indeed, the result holds only while the number of indices is
strictly smaller than the actual sparsity. This condition is never met with f (n) = s.

Proof The proof follows from our previous results. We show that, with high
probability, Sn ∃ S for all 1 ⊂ n ⊂ n0 − 1. For this we need to show that γn > ηn

where we define

γn : =
[(

xn−1 + A→(y − Axn−1)
)

S

⎜→
f (n)

,

ηn : =
[(

xn−1 + A→(y − Axn−1)
)

S

⎜→
1
.

Literally, with zn := xn −A→ (y − Axn) γn is the f (n)th largest absolute entry of zn

on the support S of x while ηn is the largest absolute entry of zn on its complement.
Now γn > ηn for all 1 ⊂ n ⊂ n0 − 1 is true with failure probability P , and we have

P := P (∃n ∈ {1, . . . , n0 − 1}: ηn ∞ γn and (γn−1 > ηn−1, . . . , γ1 > η1)) (9)

P ⊂ P

(
∅A→

S∪{Ω}AS∪{Ω}− I∅2→2 > α for some Ω ∈ S
)

(10)

+
n0−1⎩

n=1

P
(
ηn ∞ γn, (γn−1 > ηn−1, . . . , γ1 > η1), (∅A→

S∪{Ω}AS∪{Ω}− I∅2→2 ⊂ α

for all Ω ∈ S)
)
, (11)
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Defining T s− f (n−1) as the set of indices corresponding to the s− f (n−1) smallest
absolute entries of zn on S we can easily verify that

γn ∞ 1⇒
s − f (n − 1)

(
∅xT s− f (n−1)∅2 − α∅x − xn−1∅2 − ⇒

1 + α∅e∅2

)
.

Similarly, we have

ηn ⊂ max
Ω∈S

|〈aΩ, A(x − xn−1)〉| + ⇒
1 + α∅e∅2.

Finally, with P
∩(E) denoting the probability of an event E intersected with the

event
(
(γn−1 > ηn−1, . . . , γ1 > η1), (∅A→

S∪{Ω}AS∪{Ω}− I∅2→2 ⊂ α for all Ω ∈ S)
)

inequality (11) reads

P
∩(ηn ∞ γn

) ⊂ P
∩(max

Ω∈S
|〈aΩ, A(x − xn−1)〉| >

1⇒
s − f (n − 1)

× (∅xT s− f (n−1)∅2 − α∅x − xn−1∅2
)− 2

⇒
1 + α∅e∅2

)

⊂ P
∩(max

Ω∈S

∣
∣
∣〈aΩ, A

(
x − xn−1

)
〉
∣
∣
∣ >

α⇒
s − f (n − 1)

∅x − xn−1∅2

)

(12)

where the last inequality follows from the fact that

1⇒
s − f (n − 1)

(∅xT s− f (n−1)∅2 − α∅x − xn−1∅2) − 2
⇒

1 + α∅e∅2

∞ α⇒
s − f (n − 1)

∅x − xn−1∅2 (13)

whenever

1 − 2
⇒

1 + αε ∞ 2α

⎧
π⇒

1 − α2
+

⇒
1 + α

1 − α
ε

⎪

. (14)

Indeed, inequality (13) is equivalent to

1⇒
s − f (n − 1)

∅xT s− f (n−1)∅2 − 2
⇒

1 + α∅e∅2 ∞ 2α⇒
s − f (n − 1)

∅x − xn−1∅2.

(15)
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The left-hand side can be estimated by

x→
s − 2

⇒
1 + αε x→

s = x→
s

(
1 − 2

⇒
1 + α

)
,

and the right-hand side is estimated by

∅x − xn−1∅2 ⊂ 1⇒
1 − α2

∅x
Sn−1∅2 + 1

1 − α
∅ (A→e

)
Sn−1 ∅2, using estimate (1),

⊂
⇒

s − f (n − 1)⇒
1 − α2

x→
1 +

⇒
1 + α

1 − α
∅e∅2,

⊂
⇒

s − f (n − 1)⇒
1 − α2

πx→
s +

⇒
1 + α

1 − α
ε x→

s ,

⊂ ⎟s − f (n − 1)

⎧
π⇒

1 − α2
+

⇒
1 + α

1 − α
ε

⎪

x→
s .

Hence, condition (14) is verified by choosing α then ε (depending on π) small enough.
Finally, using the fact that ∅A

(
x − xn−1

) ∅2 ⊂ ⇒
1 + α∅x − xn−1∅2, the failure

probability from (12), can be further approximated by

P
∩ (ηn > γn) ⊂ P

∩
⎠

max
Ω∈S

∣
∣
∣〈aΩ, A

(
x − xn−1

)
〉
∣
∣
∣ >

α⇒
1 + α

∅A
(

x − xn−1
)

∅2

⎤

(16)
Combining these results with (7) and (6), we finally get that

P ⊂ 2 (N − s) exp
(
−c∩α2m

)
+ 4 (N − s) (n0 − 1) exp

⎠

− c∩∩α2m

(1 + α)s

⎤

.

This leads to

P ⊂ 2N 2 exp

⎠

−c∩∩∩
α m

s

⎤

with an appropriate choice of c∩∩∩
α . ��

4.3 Hybrid Algorithms

We may ask ourselves whether Proposition 1 is of interest or not as it does not lead
to the complete recovery of x. However, Proposition 1 ensures us that we can create
hybrid algorithm with the ( f -HTP) framework where we can make large steps first
until a certain criterion is met, and then adaptively reduce the increase of the index
set’s size until it gets to the sparsity of the signal.

The following gives an example of such a hybrid algorithm.
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Algorithm 1. Example of an hybrid algorithm for sparse signal recovery.

Data: A matrix A ∈ R
m×N , a measurement vector y ∈ C

m , a switching step
n ∈ N, n ⊂ n0

Result: an s sparse signal x
Set S0 = ∅, x0 = 0, nIter = 0;
while nIter ⊂ n do

Do an iteration of (GHTP2);
nIter = nIter + 1;

end
while Convergence is not done do

Do an iteration of (GHTP);
nIter = nIter + 1;

end

The only important thing to be careful of is that we stay below the sparsity when
we start reducing the number of indices added at each iteration. Moreover, even
if Proposition 1 does not ensure convergence of the algorithm until the very last
important index, it was shown in [2] that (GHTP) does converge in s iterations. This
ensures us that such an hybrid algorithm can be used for nonuniform recovery and
that it converges in a number of iterations n ⊂ s.

5 Numerical Results

This section validates our theoretical findings with some numerical experiments.
Note that all the necessary Matlab files can be found on the author’s webpage.1

Validation is being made with some ( f -HTP) examples compared to the (HTP),
(GHTP), and (OMP) algorithms. The following particular index selection functions
f are used:

• f (n) = s: (HTP),
• f (n) = n: (GHTP),
• f (n) = 2n: (GHTP2n),
• f (n) = n(n + 1)/2: (GHTPn2),
• f (n) = 2n−1: (GHTP2).

Moreover we will denote by (Hyb1) and (Hyb2) the two algorithms such that the
functions f are defined, respectively by

f (n) =
{

2n−1, if n < n0,

2n0−2 + n − n0 + 1, otherwise,
(Hyb1)

f (n) =
{

n(n − 1)/2, if n < n0,

(n0 − 1)n0/2 + n − n0 + 1, otherwise.
(Hyb2)

1 http://www.math.drexel.edu/~jb3455/publi.html

http://www.math.drexel.edu/~jb3455/publi.html
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The algorithms were tested using 100 randomly generated Gaussian matrices A ∈
R

200×1000 each of which were used to recover 10 vectors with randomly generated
supports (which represents a total of 1,000 random tests for each vector kind and
sparsity level). The tests were carried out on three different kinds of vectors to assess
the dependence of the algorithms on the decay of the vector x; “flat” vectors with
x→

j = 1 for j ∈ {1, . . . , s}, “linear” vectors with x→
j = (s+1− j)/s for j ∈ {1, . . . , s},

and Gaussian vectors whose s nonzero entries are independent standard normal
random variables.

5.1 Successful Recovery and Area of Convergence

We first want to assess the recovery ability of our algorithms by recording the
frequency of success as a function of the sparsity. As stopping criterion here we have
used the natural one for (HTP) (Sn = Sn−1) and [S ∃ Sn or ∅x−xn∅2/∅x∅2 < 10−4]
for ( f -HTP) and (OMP).2 A recovered x is recorded as a success whenever the rel-
ative error is smaller than 10−4.

As expected, the steeper the index selection function the harder it is for the
algorithm to converge. As a consequence (see Fig. 1) (GHTP2) performs the worst.
However, for reasonable functions f (up to quadratic functions) the range of conver-
gence of the algorithm is similar to the original one. Moreover, due to the reshuffling
of the index set, our family of functions tend to perform better than a classical
(OMP).

5.2 Number of Iterations for Successful Recovery

One important reason for introducing this generalized family of functions is to lower
the number of iterations needed for convergence. Indeed, while the reshuffling of
the active set can be seen as an advantage in terms of recovery capability of our
algorithms, it takes away any chance of faster implementation, using for instance Q R
updates in the inner loop. The following set of graphs (depicted in Fig. 2) analyzes
the maximum number of iterations needed for recovery.

Three things are worth mentioning. First, as already stated in Remark 2, the
maximum number of iterations suggested by Theorem 2 is a very rough overestima-
tion of the actual number of iterations. This is mainly due to the fact that the proof
of Theorem 2 relies on the geometric decay of ∅xn − x∅2 that can only be proven
for n ∞ n0. However, as we describe in the next Section, the algorithm picks correct
indices much earlier than the n0th iteration. This also shows that the proof Theorem
2 is not optimal as clearly, for most of these algorithms, the RIP suggested is not
respected.

2 Compared to real applications, we have access here to the true sparsity and the true support of the
signal x. This stopping criterion needs to be adapted for real-world examples.
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Fig. 1 Frequency of success for the original algorithms [(HTP), (GHTP2), (GHTP), and (OMP),
two firsts row] and the new generalized approach [(GHTP2n), (GHTPn2), (Hyb1) and (Hyb2),
bottom rows] when the original vector is Gaussian (first and third rows), linear (left column) or flat
(right column). a Gaussian vectors—original algorithms, b Linear vectors—original algorithms,
c Flat vectors—original algorithms, d Gaussian vectors—generalized algorithms, e Linear vectors—
generalized algorithms, f Flat vectors—generalized algorithms
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Fig. 2 Maximum number of iterations for exact recovery for the different algorithms when
considering Gaussian (top plot), linear (bottom left), or flat (bottom right) vectors. a Gaussian
vectors, b Linear vectors, c Flat vectors

Second, when the algorithms converge, their number of iterations scale according
to the underlying function f . The number of iterations behaves like a logarithm
for (GHTP2), like a square root for (GHTPn2) and linearly for both (GHTP2n) and
(GHTP). Again, (OMP) needs a few more iterations, mainly to compensate the wrong
indices that have been picked at an earlier stage of the algorithm.

Finally, it is reasonable to think that the analysis carried out in Corollary 1 can be
extended to more general vector shapes. However, to improve the estimation of the
number of iterations we would need to adapt the proof to earlier iterations, instead
of starting counting at n0.

5.3 Indices Correctly Captured

We investigate now the ability of our family of algorithms to pick correct indices at
each iteration. Figure 3 shows these quantities for the three kinds of vectors (Gaussian
to the left, linear in the middle and flat on the right) when dealing with different
sparsities and index selection functions (see legend for more details).
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Fig. 3 Minimum number of correct indices picked at each iteration for different sparsity levels.
Continuous lines correspond to (OMP), circles to (GHTP2n), dashed lines to (GHTPn2), and crosses
to (GHTP2). a Gaussian vectors, b Linear vectors, c Flat vectors

As expected most of the algorithms made no mistakes when picking a current
active set. This suggests that Proposition 1 can be improved to more general vector
shapes.

6 Conclusion

This article introduced a class of algorithms that generalizes the Hard Thresholding
Pursuit. It allows to overcome both the lack of a priori knowledge regarding the
sparsity of the signal to recover and the convergence issue noticed in an earlier
extension. We have shown that uniform and nonuniform convergence is possible
for all algorithms of this type, but sometimes under unrealistic restricted isometrty
conditions.

Fortunately, our numerical results tend to show that the number of iterations
implied by our results may be a really rough overestimates. This will drive our future
research which would also imply some improved restricted isometry conditions.
Moreover, by using a combination of index selecting functions, we are able to produce
hybrid algorithms that are both reliable and fast, at least in a nonuniform setting. For
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such algorithms, a selection of an adequate turning point is needed which is also left
for further study.
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Abstract An open theoretical problem in the study of subdivision algorithms for
approximation of manifold-valued data has been to give necessary and sufficient
conditions for a manifold-valued subdivision scheme, based on a linear subdivision
scheme, to share the same regularity as the linear scheme. This is called the smooth-
ness equivalence problem. In a companion paper, the authors introduced a differential
proximity condition that solves the smoothness equivalence problem. In this paper,
we review this condition, comment on a few of its unanticipated features, and as an
application, show that the single basepoint log-exp scheme suffers from an intricate
breakdown of smoothness equivalence. We also show that the differential proximity
condition is coordinate independent, even when the linear scheme is not assumed to
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1 Introduction

In recent years, manifold-valued data has become ubiquitous; the configuration
spaces of robots and space of anisotropic diffusion tensors are but two examples.
Although manifolds, by definition, can be locally parameterized by points in Euclid-
ean space, such a local parametric representation is insufficient when the topology
of the underlying space is nontrivial (e.g., configuration space), and even in the case
of trivial topology (anisotropic diffusion) it is desirable to respect the natural sym-
metry and metric structure of the underlying manifold. For these reasons, genuinely
nonlinear, differential geometric, and approximation methods have come to play an
important role.

Recently, several research groups [3–8, 11–14, 16–21] have studied subdivision
methods for manifold-valued data. Roughly speaking, a subdivision method takes as
input coarse scale data and recursively generates data at successively finer scales with
the hope that in the limit a function with desired regularity properties is obtained.
Such algorithms have attracted the interest of applied analysts not only because of
their intrinsic beauty, but also because of their connection with wavelet-like repre-
sentations. In this context, various approximation-theoretic questions come to mind,
such as: How much regularity does the limit function possess? At what rate does it
approximate the underlying function from which the coarse data originates?

A number of different subdivision schemes for manifold-valued data were intro-
duced in the above references: some exploit the exponential map, others a retraction
map, and some the Karcher mean, yet others are based on an embedding of the man-
ifold into Euclidean space. But in all cases, the subdivision method is modeled on an
underlying linear subdivision scheme. It is therefore natural to seek conditions under
which the limit function of a manifold-valued subdivision method enjoys the same
limit properties as the limit function of underlying linear subdivision scheme. This
is called the smoothness equivalence problem. We and others [3–6, 12, 13, 16–18,
21], have introduced various proximity conditions that are sufficient for a manifold-
valued scheme to have the smoothness equivalence property. Although numerical
evidence for the necessity of these proximity conditions were given in [2, 17, 21],
necessity has remained an open problem.

In a companion paper [2], we present a complete solution of the smoothness
equivalence problem in terms of a new proximity condition, which we call the dif-
ferential proximity condition. Here, we review this condition, comment on a few of
its unanticipated features, and as an application, we show why the single basepoint
log-exp scheme suffers from an intricate breakdown of smoothness equivalence. We
also prove that the differential proximity condition is coordinate independent. The
coordinate independence result established in Sect. 4 is stronger than what would
follow immediately from the main result in [2].
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2 Smooth Compatibility and the Differential Proximity
Condition

Let M be a differentiable manifold of dimension n. A map S : Ω(Z ∈ M) ∈ Ω(Z ∈
M) is called a subdivision scheme on M if it is of the form

(Sx)2i+∂ = q∂ (xi−m∂ , · · · , xi−m∂ +L∂ ), ∂ = 0, 1, i ≥ Z, (1)

where L∂ , m∂ ≥ Z, L∂ > 1, and q∂ are continuous maps

q∂ : M × · · · × M︸ ︷︷ ︸
L∂ +1copies

∈ M, ∂ = 0, 1, (2)

defined in a neighborhood of the hyper-diagonal of M × · · · × M and satisfying the
condition

q∂ (x, . . . , x) = x . (3)

The maps q0, q1 are usually referred to as the even and odd rules of the subdivision
scheme S. In general, q∂ are only defined in a neighborhood of the hyper-diagonal,
and therefore S is only defined for locally sufficiently dense sequences. We call L∂

the locality factors and m∂ the phase factors of the subdivision scheme S. The above
definition was used, for example, in [15, 20].

We now impose additional conditions on S.

Definition 1 Let S be a subdivision scheme on M . Let Slin be a linear subdivision
scheme with the same phase and locality factors as S and let qlin,∂ , ∂ = 0, 1, be the
(linear) maps associated with Slin, as in (1). We say that S is smoothly compatible1

with Slin if

(a) q0 and q1 are (C∩) smooth maps, and
(b) for any x ≥ M , dq∂ |(x,...,x) : Tx M × · · · × Tx M ∈ Tx M satisfies the condition

dq∂ |(x,...,x)(X0, . . . , X L∂ ) = qlin,∂ (X0, . . . , X L∂ ), ∂ = 0, 1.

Remark 1 The maps qlin,∂ , ∂ = 0, 1, are the even and odd rules of Slin. The compati-
bility condition in Definition 1 is satisfied by all the manifold-valued data subdivision
schemes seen in the literature [4–6, 9, 12, 13, 16–18, 21].

Assume that S satisfies the compatibility condition in Definition 1. Our differ-
ential proximity condition is defined in terms of a finite-dimensional map Q. From
Eqs. (1) and (2), it follows that there is a unique integer K such that any K + 1 con-
secutive entries in any (dense enough) sequence x determines exactly K + 1, and no
more, consecutive entries in Sx. We may call K + 1 the size of a minimal invariant
neighborhood of S. For any linear Ck subdivision scheme,

1 In [7, Definition 3.5], Grohs gives a similar compatibility condition.
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Fig. 1 If S is the symmetric Ck (degree k +1) B-spline subdivision scheme, the corresponding map
Q has a minimal invariant neighborhood of size K + 1 = k + 1. The figure shows two subdivision
steps starting from k + 1 entries of the initial sequence (Dots and intervals are used only because
of the primal and dual symmetries in the B-spline subdivision schemes for odd and even k. The
symmetry properties, however, play no role here)

K → k,

with equality attained by the Ck , degree k + 1, B-spline subdivision scheme (see
Fig. 1). It follows that there is a map

Q : U −∈ U ∞ M × · · · × M︸ ︷︷ ︸
K+1copies

, (4)

for U a sufficiently small open neighborhood of the hyper-diagonal, such that if
y = Sx, then

Q([xi , . . . , xi+K ]) = [y2i+s, . . . , y2i+s+K ], (5)

for all i . The integer s, called a shift factor, is a constant independent of i but
dependent on the phase factors of S. A basic property of S is that when the input
sequence x is shifted by one entry, then the subdivided sequence y is shifted by two
entries. This property is also reflected in Eq. (5).

The compatibility condition implies that

d Q|(x,...,x) = Qlin, ≤ x ≥ M, (6)

where Qlin : Tx M × · · · × Tx M ∈ Tx M × · · · × Tx M is the corresponding linear
self-map defined by the maps qlin,∂ in the compatibility condition.

We shall define our new order k proximity condition based on the higher order
behavior of the map Q. At this point, we work in local coordinates on M . Let Q
be the map Q(x0, x1, . . . , xK ) expressed in local coordinates around x0 ≥ M , and
define α : Rn × · · · × R

n (K + 1 copies) ∈ R
n × · · · × R

n by
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α := ∇ ◦ Q ◦ ε, (7)

where ∇, ε = ∇−1 : Rn × · · · × R
n ∈ R

n × · · · × R
n are the linear maps defined

by the correspondence

(x0, x1, . . . , xK )
∇
�
ε

(Δ0 = x0, Δ1, . . . , ΔK ), (8)

where Δk := k-th order difference of x0, x1, . . . , xk , so

Δk =
k∑

Ω=0

(−1)k−Ω

(
k

Ω

)

xΩ, and xk =
k∑

Ω=0

(
k

Ω

)

ΔΩ. (9)

Note that α is only defined in a neighborhood of (x0, 0, . . . , 0). (Here, by abuse
of notation, we identify points in M with the corresponding points in R

n under the
given coordinate chart.) We write

α = (α0, α1, . . . , αK ), αΩ : Rn × · · · × R
n ∈ R

n,

when referring to the different components of α .
We remark that Eq. (6), together with linearity of ε and ∇, implies the identity

dα |(x,0,...,0) = αlin := ∇ ◦ Qlin ◦ ε, ≤ x . (10)

Definition 2 Let S be a subdivision scheme on M smoothly compatible with Slin.
Let k → 1. We say that S and Slin satisfy an order k differential proximity condition
if for any x0 ≥ M ,

DψαΩ|(x0,0,...,0) = 0, when |ψ| → 2, weight(ψ) :=
∑

jψ j ∀ Ω, ≤ Ω = 1, . . . , k, (11)

where DψαΩ denotes the derivative of αΩ with respect to the multi-index ψ =
(ψ1, . . . , ψK ).

Remark 2 Above, ψ = (ψ1, . . . , ψK ) does not have a 0-th component, so Dψ does
not differentiate with respect to the 0-th argument. But since (11) has to hold for
arbitrary x0, then under the smooth compatibility assumption, condition (11) would
be unaltered if we interpret ψ as (ψ0, ψ1, . . . , ψK ).

Remark 3 In fact, the above condition is equivalent to the following seemingly
stronger condition:

DψαΩ|(x0,0,...,0) = 0, when |ψ| → 2, weight(ψ) ∀
{

Ω, 1 ∀ Ω ∀ k
k, Ω > k

. (12)

The proof, however, is rather technical as it relies on a major algebraic structure found
in the proof of the sufficiency part of the following main result. See the sufficiency
section of [2].
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In Sect. 4, we need the following property of linear subdivision schemes:

Lemma 1 If Slin reproduces δk (= the space of polynomials of degree not exceeding
k), then αlin has the block upper triangular form:

αlin,Ω(Δ0, Δ1, . . . , ΔK ) =
{

1
2Ω ΔΩ +∑K

Ω∅=Ω+1 UΩ,Ω∅ΔΩ∅ , Ω = 0, . . . , k
∑K

Ω∅=k+1 UΩ,Ω∅ΔΩ∅ , Ω = k + 1, . . . , K
, (13)

where UΩ,Ω∅ are scalars-dependent only on the mask of Slin. Moreover, if Slin is Ck

smooth, the spectral radius of the lower right block [UΩ,Ω∅ ]Ω,Ω∅=k+1,...,K is strictly
smaller than 1/2k .

Remark 4 We may combine Lemma 1 with (11) to restate the differential proximity
condition as:

DψαΩ|(x0,0,...,0) =

⎢



1
2Ω id, |ψ| = 1 and weight(ψ) = Ω,

0,
|ψ| = 1 and weight(ψ) < Ω, or
|ψ| → 2 and weight(ψ) ∀ Ω,

(14)

for Ω = 1, . . . , k.

In [2], we establish the following:

Theorem 1 Let S be a subdivision scheme on a manifold smoothly compatible with
a stable Ck smooth linear scheme Slin. Then S is Ck smooth if and only if it satisfies
the order k differential proximity condition.

Unlike the compatibility condition, the differential proximity condition is
expressed in local coordinates. A natural question is whether the latter condition
is invariant under change of coordinates. For the original proximity conditions, the
invariance question was answered in the affirmative in [20]. Armed with Theorem 1,
we know that the order k differential proximity condition, being equivalent to the Ck

smoothness of S, cannot be satisfied in one chart but not another, as the notion of
smoothness is coordinate independent. In summary, we have:

Corollary 1 If S is smoothly compatible with a stable Ck linear subdivision scheme
Slin, then the order k differential proximity condition is invariant under change of
coordinates.

3 What’s New?

The original proximity condition, used in our previous work, reads as

⊂θ j−1Sx − θ j−1Slinx⊂∩ ∀ C ν j (x), j = 1, . . . , k, (15)
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where

ν j (x) :=
∑

γ≥κ j

j∏

i=1

⊂θi x⊂γi∩, κ j :=

⎢


γ = (γ1, · · · , γ j )

⎥
⎥
⎥ γi ≥ Z

+,

j∑

i=1

i γi = j + 1

⎫
⎬

⎭
.

It is well known that this condition is a sufficient condition for the Ck-equivalence
property ([17, Theorem 2.4].) Moreover, years of usage of this condition (15) and
numerical evidence suggests that it is also necessary.

This original proximity condition does not explicitly assume a compatibility con-
dition between S and Slin, making it difficult to formulate a precise necessary condi-
tion. In our new formulation, we explicitly impose the smooth compatibility condition
in Definition 1, which enables us to address the problem of necessity.

Our new formulation also addresses a perplexing aspect of condition (15). A
careful inspection of the proof of [17, Theorem 2.4], shows that only the following
proximity condition is needed2:

⊂θ j Sx − θ j Slinx⊂∩ ∀ C ν j (x), j = 1, . . . , k, (16)

provided that we have already established C0 regularity of S. We are thus faced with
a dilemma: Despite the strong empirical evidence for the necessity of the proximity
condition (15), it appears that it is unnecessarily strong!

A moment’s thought suggests that the new proximity condition (11) is merely
a differential version of the weaker condition (16). In fact, in all previous work a
proximity condition is always established by a local Taylor expansion of Sx − Slinx
(recall that subdivision schemes act locally). Consequently, the differential aspect of
(11) is hardly anything new. But once the differential proximity condition is written
in the form (11) (or in the equivalent form (14)), we see a natural interpretation:
Viewing the map

Q : U ∈ U

as a discrete dynamical system, the proximity conditions can be interpreted in terms
of the rate of approach of points in U to the hyper-diagonal, which is the fixed-point
set of Q:

• Condition (14) then suggests that the linear term 2−Ωid is the dominant term, so,
generically, the k-th order differences of the subdivision data within any invariant
neighborhood (Fig. 1) decays like O(2− jk).
If k is the first order at which the differential proximity condition fails, then there
is a weight k term in the Taylor expansion of αk , such a nonlinear term is called
a resonance term in the dynamical system literature, and the dynamical system
interpretation would suggest that the k-th order differences of the subdivision data
decays slower than O(2− jk). More precisely, the presence of resonance slows
down the decay to O( j2− jk).

2 Use ⊂θx⊂∩ ∀ 2⊂x⊂∩ to see that (15) implies (16).
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• This in turn suggests the necessity result. However, proving the lower bound result
needed and tackling the lack of stability condition in the nonlinear subdivision
theory are technically difficult. The former requires us to come up with a delicate
argument to show that the initial data exists so that the effect of resonance terms
would not dissipate away in the course of iteration. The latter requires us to exploit
a subtle superconvergence property.

• The same dynamical system interpretation suggests that our differential proximity
condition may be too weak. For, unlike (15) or (16), it involves a fixed, although
arbitrary, invariant neighborhood, and therefore does not appear to capture the
expanding nature of a subdivision scheme.3 Worse, the sufficiency part of the
theorem concerns establishing the Ck-smoothness of the limiting function, and
that would require one to analyze the decay rate of order k + 1, not k, differences.
If one examines Fig. 1, one sees that a minimal invariant neighborhood may very
well be too small to allow for the computation of any k + 1 order difference.
Fortunately, an unexpected algebraic structure we discovered in [2] not only makes
the seemingly impossible mission of proving sufficiency possible, but also explains
simultaneously why the apparent stronger than necessary proximity condition (15)
always holds true whenever Ck equivalence holds.

4 Coordinate Independence

Corollary 1 suggests that there is an intrinsic, coordinate-free, reformulation of the
differential proximity condition waiting to be discovered. With this in mind, we
establish here the following coordinate independence result.

Theorem 2 If S is smoothly compatible with a δk reproducing linear subdivision
scheme Slin, then the order k differential proximity condition is invariant under
change of coordinates.

Note that this result is stronger than Corollary 1, because a stable Ck linear subdivi-
sion scheme must reproduce δk , but the converse is far from being true.

Let π(x) = x be the change of coordinate map on M , and let Q(x0, x1, . . . , xK )

and Q(x0, x1, . . . , x K ) denote the expressions for map Q in these two coordinate
systems. Writing

πvec(x0, x1, . . . , xK ) := (π(x0), π(x1), . . . , π(xK )),

shows that Q(x0, x1, . . . , xK ) and Q(x0, x1, . . . , x K ) are related by the formula

Q = πvec ◦ Q ◦ π−1
vec. (17)

3 For instance, it is well known from the linear theory that the spectral property of αlin alone is
insufficient for characterizing the regularity property Slin.
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The map α , by the definition (7), then takes the following forms in the two coordinate
systems:

α (Δ0, Δ1, . . . , ΔK ) = ∇ ◦ Q ◦ ε(Δ0, Δ1, . . . , ΔK ),

α (Δ0, Δ1, . . . , ΔK ) = ∇ ◦ Q ◦ ε(Δ0, Δ1, . . . , ΔK ).

It then follows that a change of coordinates induces the following transformation
rule for α :

α = ∇◦Q◦ε = ∇◦πvec◦Q◦π−1
vec◦ε = ∇ ◦ πvec ◦ ε

︸ ︷︷ ︸
=:γ

◦∇ ◦ Q ◦ ε
︸ ︷︷ ︸

=α

◦∇ ◦ π−1
vec ◦ ε

︸ ︷︷ ︸
=γ−1

.

(18)

Proof The proof proceeds in two steps:
Step 1. Note the following structure of the Taylor expansion of γΩ(Δ0, Δ1, . . . , ΔK )

around a point (Δ0 = x0, 0, . . . , 0). Note also that γ0(Δ0, Δ1, . . . , ΔK ) = π(x0). For
Ω → 1, compute as follows:

γΩ(Δ) =
Ω∑

i=0

(−1)Ω−i ⎛Ω
i
⎝
π(xi )

=
Ω∑

i=0

(−1)Ω−i ⎛Ω
i
⎝
⎞

⎠π(x0) + π ∅(x0)(xi − x0) +
∑

k→2

1

k!π
(k)(x0)(xi − x0)k

⎤

⎧

= π ∅(x0)

Ω∑

i=0

(−1)Ω−i ⎛Ω
i
⎝
xi +

Ω∑

i=0

(−1)Ω−i ⎛Ω
i
⎝∑

k→2

1

k!π
(k)(x0)(xi − x0)k

= π ∅(x0)ΔΩ +
Ω∑

i=0

(−1)Ω−i ⎛Ω
i
⎝∑

k→2

1

k!π
(k)(x0)

⎪ i∑

j=1

⎛i
j
⎝
Δ j

⎨k

= π ∅(x0)ΔΩ +
∑

k→2

1

k!
Ω∑

i=0

(−1)Ω−i ⎛Ω
i
⎝ ∑

j1,..., jk→1

⎛ i
j1

⎝ · · · ⎛ i
jk

⎝
π(k)(x0)(Δ j1 , . . . , Δ jk )

= π ∅(x0)ΔΩ +
∑

k→2

1

k!
∑

j1,..., jk→1

⎞

⎠
Ω∑

i=0

(−1)Ω−i ⎛Ω
i
⎝⎛ i

j1

⎝ · · · ⎛ i
jk

⎝
⎤

⎧π(k)(x0)(Δ j1 , . . . , Δ jk ),

where we have repeatedly used the multilinearity of π(k)(x0).
Note that, for fixed j1, . . . , jk ,

⎛ i
j1

⎝ · · · ⎛ i
jk

⎝
is a polynomial in i of degree j1 +· · ·+

jk . Then, by (9),
∑Ω

i=0(−1)Ω−i
⎛
Ω
i

⎝⎛ i
j1

⎝ · · · ⎛ i
jk

⎝
is an Ω-th order difference of uniform

samples of a degree j1 +· · ·+ jk polynomial, which vanishes when j1 +· · ·+ jk < Ω.
Consequently, the Ω-th component of γ has no (linear or nonlinear) terms of

weight less than Ω, thus

DψγΩ|(x0,0,...,0) = 0, weight(ψ) < Ω.
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The same conditions hold with γ replaced by γ−1—simply replace π with π−1 in
the derivation above.

We now know that the Ω-th component of both γ and γ−1 do not have terms of
weight strictly less than Ω, the proximity condition of α says that its Ω-th component
αΩ does not have terms of weight Ω and lower. These facts alone only guarantee that
α Ω does not have terms of weight Ω − 1 and lower. (The second part of the proof
explains this along the way.)

Step 2. To complete the proof, we now show that all weight Ω terms in α Ω vanish.
Assume that α satisfies the order k differential proximity condition. By Remark 4
and Step 1, we have for Ω = 2, . . . , k,

α Ω(Δ) = γΩ(α ◦ γ−1(Δ))

=
∑

weight(ψ)=Ω

1

ψ! DψγΩ|(x0,0,...,0)

⎩
α1(γ

−1(Δ))ψ1 , . . . , αΩ(γ
−1(Δ))ψΩ

)
(19)

+ (weight > Ω terms).

For each i = 1, . . . , Ω, again by Remark 4 and Step 1,

αi (γ
−1(Δ)) = 1

2i

∑

weight(η)=i

1

η! Dηγ−1
i |(x0,0,...,0)Δ

η + (weight > i terms). (20)

An inspection then reveals that the only weight Ω terms in α Ω(Δ) are

∑

weight(ψ)=Ω

1

ψ! DψγΩ







2−1
∑

weight(η)=1

1

η! Dηγ−1
i Δ

η





ψ1

, . . . ,



2−Ω
∑

weight(η)=Ω

1

η! Dηγ−1
i Δ

η





ψΩ




= 2−Ω
∑

weight(ψ)=Ω

1

ψ! DψγΩ








∑

weight(η)=1

1

η! Dηγ−1
i Δ

η





ψ1

, . . . ,




∑

weight(η)=Ω

1

η! Dηγ−1
i Δ

η





ψΩ


 . (21)

By yet another inspection, we see that by virtue of the chain rule the weight Ω terms
in the Taylor expansion of (γ ◦ γ−1)Ω are given by the summation after the 2−Ω

factor in (21). But γ ◦γ−1 = identity, so any nonlinear term in its Taylor expansion
must vanish. In other words, all the nonlinear (i.e., degree > 1) terms in (21) vanish.
This implies that the Taylor expansion of α Ω(Δ) has the linear term 2−ΩΔΩ as its only
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weight Ω term, and all other terms, linear or nonlinear, are of weight strictly greater
than Ω. In other words, α satisfies the same differential proximity condition as α . ◦�

It is worth stressing the role of the δk reproduction property of Slin in the coor-
dinate independence proof above: it induces a kind of “upper-triangular” structure
in αlin (Lemma 1) and enters the proof in Step 2 above. In particular, the dyadic
eigenvalues in αlin are the key to the derivation of (21). Indeed, (21) implies that as
far as the lowest weight terms (i.e., weight Ω) in the Ω-th component are concerned,
the map γ ◦ α ◦ γ−1 is the same as 2−Ωγ ◦ γ−1.

5 The Log-exp Scheme on Surfaces

As an application of Theorem 1, we show that the single basepoint log-exp scheme
introduced in [9] does not satisfy the differential proximity condition. Consequently,
thanks to Theorem 1, we can conclude a breakdown of smoothness equivalence in
the single basepoint scheme.

The paper [3] studies the proximity condition for the single basepoint schemes
defined by general retraction maps. Since [3] predates the development of Theo-
rem 1, the results therein were derived from the original proximity condition. As the
discussion in Sect. 3 hinted, the breakdown results based on the original proximity
condition from [3] easily imply corresponding breakdown results based on our dif-
ferential proximity condition. Therefore, the anticipated breakdown of smoothness
equivalence in the more general setting once again follows from Theorem 1.

As the computations in [3] are rather involved, we present here the special case
of the single basepoint log-exp scheme based on the C5, symmetric B-spline, whose
subdivision mask is

(a−3, a−2, a−1, a0, a1, a2, a3, a4) = 1

64
(1, 7, 21, 35, 35, 21, 7, 1) , (22)

and in the simple case where M is a two-dimensional Riemannian manifold. In this
case,

q0(x0, x1, x2, x3) = expx2

⎛
a4 logx2

(x0) + a2 logx2
(x1) + a−2 logx2

(x3)
⎝
, (23a)

q1(x0, x1, x2, x3) = expx1

⎛
a3 logx1

(x0) + a−1 logx1
(x2) + a−3 logx1

(x3)
⎝
, (23b)

Q(x0, x1, x2, x3, x4, x5) =



⎜
⎜
⎜
⎜
⎜
⎜


q1(x0, x1, x2, x3)

q0(x0, x1, x2, x3)

q1(x1, x2, x3, x4)

q0(x1, x2, x3, x4)

q1(x2, x3, x4, x5)

q0(x2, x3, x4, x5)



⎟
⎟
⎟
⎟
⎟
⎟


, (24)
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Fig. 2 Minimal invariant neighborhood of the C5 B-spline subdivision scheme

and α = (α0, α1, α2, α3, α4, α5) is defined according to (7) (Fig. 2).

Theorem 3 The nonlinear scheme S defined by (23) satisfies the C5-equivalence
property if and only if the manifold M has vanishing curvature.

One direction is clear, suppose M has vanishing curvature, we may then choose
local coordinates about any point in M in which the Riemannian metric is the Euclid-
ean metric. But in these coordinates, S coincides with the (linear) C5 B-spline scheme.

Now assume that M has nonzero curvature at the point x0. Then by Theorems 1
and 2, it suffices to choose coordinates centered at x0 in which the derivative

Dψα5|(x0,0,...,0) , for ψ = (1, 2, 0, 0, 0) (25)

does not vanish.
Notice that, although ψ has weight 5, it has degree 3. Consequently, to compute

this derivative, we need to only compute the Taylor expansion of α5 up to order 3
and weight 5 in some coordinate system.

The computations are vastly simplified if we perform them in Riemann normal
coordinates centered at x0. We merely summarize the results from Riemannian geom-
etry we need. (A detailed treatment of normal coordinates is given in Chap. 4 of [10]
as well as in [1], particularly pages 41–42).

Let x = (u, v) denote normal coordinates on R
2 centered at the origin. Let

(u, v, U, V ) denote the corresponding coordinates on the tangent bundle TM, where
(U, V ) are the components of the tangent vector based at (u, v). Riemann’s Theorem
then states that in these coordinates the coefficients of the Riemannian metric are
given by (

g1,1 g1,2
g2,1 g2,2

)

=
(

1 0
0 1

)

− K0

3

(
v2 uv
uv u2

)

,

where K0 denotes the Gauss curvature at (0, 0). A standard computation using this
formula and the differential equations for geodesics yields the following Taylor
expansion for the exponential map about (0, 0, 0, 0) up to degree 3 in (u, v, U, V ):

exp(u,v)(U, V ) ⇒ (u, v) + (U, V ) + 2

3
K0 det

(
U V
u v

)

· (V,−U ) .

From this, one finds that up to degree 3 in (u0, v0, u, v), the Taylor expansion of log
is given by

log(u0,v0)(u, v) ⇒ (u, v) − (u0, v0) − 2

3
K0 det

(
u0 v0
u v

)

· (−(v − v0), (u − u0)) .



On a New Proximity Condition for Manifold-Valued Subdivision Schemes 77

Setting ΔΩ = (ΔΩ,u, ΔΩ,v), substituting the expansions for exp and log into the definition
of q∂ yields the Taylor expansion of q∂ up to degree 3. Substituting these Taylor
expansions into α5, and dropping all terms in ΔΩ of degree larger than 3 and weight
larger than 5 yields (after a straightforward, but lengthy computation) the formula

α5(Δ) ⇒ 1

25
(Δ5,u, Δ5,v) + 7

16
K0

{
det

(
Δ1,u Δ1,v

Δ2,u Δ2,v

)

(−Δ2,v, Δ2,u)

+ det

(
Δ1,u Δ1,v

Δ3,u Δ3,v

)

(−Δ1,v, Δ1,u)
}
.

The weight 5 terms are nonzero exactly when K0 ∃= 0, so Theorem 3 is proved. This
formally disproves the smoothness equivalence conjecture first posted in [9].

While Theorem 3 says that nonvanishing curvature is the root cause of the C5-
breakdown in the nonlinear scheme defined by (22)–(23), one can show by a similar
computation that the same scheme satisfies C4-equivalence regardless of the curva-
ture of M . In [3, 21], such a C4-equivalence property was found to be attributable to
both a special property of the exponential map and the dual time-symmetry property
of the scheme (22)–(23). More precisely,

• If one replaces the exponential map by an arbitrary retraction map, then the result-
ing scheme will satisfy the C2-equivalence property but suffer a C3-breakdown
on a general manifold.

• If one replaces the underlying linear scheme by a stable C4 linear subdivision
scheme without a dual time-symmetry, then the resulting scheme will satisfy a
C3-equivalence property but suffer a C4-breakdown on a general manifold.

To illustrate the latter point, we next consider the single basepoint log-exp scheme
based on the C6 B-spline, whose subdivision mask is

(a−4, a−3, a−2, a−1, a0, a1, a2, a3, a4) = 1

128
(1, 8, 28, 56, 70, 56, 28, 8, 1). (26)

In this case,

q0(x0, x1, x2, x3, x4) = expx2

⎛
a4 logx2

(x0) + a2 logx2
(x1)

+ a−2 logx2
(x4) + a−4 logx2

(x5)
⎝
,

(27a)

q1(x0, x1, x2, x3) = expx1

⎛
a3 logx1

(x0) + a−1 logx1
(x2) + a−3 logx1

(x3)
⎝
,

(27b)
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Fig. 3 Minimal invariant
neighborhood of the C6

B-spline subdivision scheme

Q(x0, x1, x2, x3, x4, x5, x6) =



⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜


q1(x0, x1, x2, x3)

q0(x0, x1, x2, x3, x4)

q1(x1, x2, x3, x4)

q0(x1, x2, x3, x4, x5)

q1(x2, x3, x4, x5)

q0(x2, x3, x4, x5, x5)

q1(x3, x5, x6, x6)



⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


, (28)

and α = (α0, α1, α2, α3, α4, α5, α6) is defined according to (7) (Fig. 3).
Note that the underlying scheme in this case is even smoother than before

(C6 instead of C5), and it has a primal symmetry. However, the resulting nonlin-
ear scheme, based on the single basepoint strategy, fails to inherit such a primal
symmetry.

Theorem 4 The nonlinear scheme S defined by (27) satisfies the C4-equivalence
property if and only if the manifold M has vanishing curvature.

One direction is clear, for suppose M has vanishing curvature, we may then
choose local coordinates about any point in M in which the Riemannian metric is the
Euclidean metric. But in these coordinates, S coincides with the (linear) C6 B-spline
scheme.

Now assume that M has nonzero curvature at the point x0. Then by Theorems 1
and 2 it suffices to choose coordinates centered at x0 in which the derivative

Dψα4|(x0,0,...,0), for ψ = (2, 1, 0, 0, 0) (29)

does not vanish.
Notice that, although ψ has weight 4, it has degree 3. Consequently, to compute

this derivative, we need to only compute the Taylor expansion of α4 up to order 3
and weight 4. We proceed as before, we substitute the Taylor expansions for q0 and
q1 into α4, and drop all terms in ΔΩ of degree larger than 3 and weight larger than 4
to arrive at the expansion

α4(Δ) ⇒ 1

24 (Δ4,u, Δ4,v) + 1

3
K0 det

(
Δ1,u Δ1,v

Δ2,u Δ2,v

)

(−Δ1,v, Δ1,u).

The weight 4 terms are nonzero exactly when K0 ∃= 0, so Theorem 4 is proved.
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Wachspress and Mean Value Coordinates

Michael S. Floater

Abstract This paper gives a brief survey of two kinds of generalized barycentric
coordinates, Wachspress and mean value coordinates, and their applications. Appli-
cations include surface parameterization in geometric modeling, curve and surface
deformation in computer graphics, and their use as nodal shape functions for polyg-
onal and polyhedral finite element methods.

Keywords Barycentric coordinates · Wachspress coordinates · Mean value coor-
dinates

1 Introduction

There is no unique way to generalize barycentric coordinates to polygons and poly-
hedra. However, two specific choices have turned out to be useful in several appli-
cations: Wachspress and mean value coordinates, and the purpose of this paper is to
survey their main properties, applications, and generalizations.

For convex polygons, the coordinates of Wachspress and their generalizations due
to Warren and others [15, 22, 30–33] are arguably the simplest since they are rational
functions (quotients of bivariate polynomials), and it is relatively simple to evaluate
them and their derivatives. Some simple bounds on their gradients have been found
recently in [6], justifying their use as shape functions for polygonal finite elements.

For star-shaped polygons, and arbitrary polygons, Wachspress coordinates are not
well-defined, and mean value coordinates are perhaps the most popular choice, due
to their generality and surprising robustness over complex geometric shapes [1, 2, 4,
8, 13, 16], even though they are no longer positive if the polygon is not star-shaped.
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Fig. 1 Vertex ordering for a polygon

They have been employed in various tasks in geometric modeling, such as surface
parameterization and plane and space deformation, as well as shading and animation
in computer graphics.

While most of this paper surveys previous results, we add two new ones. The
first is a new formula for the gradients of mean value coordinates, which could be
used in finite element methods. The second is an alternative formula for the mean
value coordinates themselves, which is valid on the boundary of the polygon. Though
it may not be of practical value, it offers an alternative way of showing that these
coordinates extend continuously to the polygon boundary.

2 Barycentric Coordinates on Polygons

Let P ∈ R
2 be a convex polygon, viewed as an open set, with vertices v1, v2, . . . , vn ,

n ≥ 3, in some anticlockwise ordering. Figure 1 shows an example with n = 5. We
call any functions Ωi : P ∩ R, i = 1, . . . , n, (generalized) barycentric coordinates
if, for x → P , Ωi (x) ≥ 0, i = 1, . . . , n, and

n∑

i=1

Ωi (x) = 1,

n∑

i=1

Ωi (x)vi = x. (1)

For n = 3, the functions Ω1, Ω2, Ω3 are uniquely determined and are the usual triangu-
lar barycentric coordinates w.r.t. the triangle with vertices v1, v2, v3. For n ≥ 4, the
choice of Ω1, . . . , Ωn is no longer unique. However, they share some basic properties,
derived in [7]:

• The functions Ωi have a unique continuous extension to ∂ P , the boundary of P .
• Lagrange property: Ωi (v j ) = αi j .
• Piecewise linearity on ∂ P:

Ωi ((1 − μ)v j + μv j+1) = (1 − μ)Ωi (v j ) + μΩi (v j+1), μ → [0, 1]. (2)
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iv iv

Fig. 2 Partitions for Li and εi

(Here and throughout, vertices are indexed cyclically, i.e., vn+1 := v1 etc.)
• Interpolation: if

g(x) =
n∑

i=1

Ωi (x) f (vi ), x → P, (3)

then g(vi ) = f (vi ). We call g a barycentric interpolant to f .
• Linear precision: if f is linear then g = f .
• εi ∞ Ωi ∞ Li where Li , εi : P ∩ R are the continuous, piecewise linear functions

over the partitions of P shown in Fig. 2 satisfying Li (v j ) = εi (v j ) = αi j .

3 Wachspress Coordinates

Wachspress coordinates were developed by Wachspress [30], and Warren [32]. They
can be defined by the formula

Ωi (x) = wi (x)
∑n

j=1 w j (x)
, (4)

where

wi (x) = A(vi−1, vi , vi+1)

A(x, vi−1, vi )A(x, vi , vi+1)
,

and A(x1, x2, x3) denotes the signed area of the triangle with vertices x1, x2, x3,

A(x1, x2, x3) := 1

2

∣
∣
∣
∣
∣
∣

1 1 1
x1 x2 x3
y1 y2 y3

∣
∣
∣
∣
∣
∣
,

where xk = (xk, yk); see Fig. 3. The original proof that these coordinates are barycen-
tric was based on the so-called adjoint of P; see Wachspress [30], and Warren [32].
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Fig. 3 Triangles defining Wachspress coordinates

The following proof is due to Meyer et al. [22]. Due to (4), it is sufficient to show
that

n∑

i=1

wi (x)(vi − x) = 0. (5)

Fix x → P and let

Ai = Ai (x) = A(x, vi , vi+1) and Bi = A(vi−1, vi , vi+1).

Then we can express x as a barycentric combination of vi−1, vi , vi+1:

x = Ai

Bi
vi−1 + (Bi − Ai−1 − Ai )

Bi
vi + Ai−1

Bi
vi+1,

regardless of whether x lies inside or outside the triangle formed by vi−1, vi , vi+1.
This equation can be rearranged in the form

Bi

Ai−1 Ai
(vi − x) = 1

Ai−1
(vi − vi−1) − 1

Ai
(vi+1 − vi ).

Summing both sides of this over i , and observing that the right hand side then cancels
to zero, gives

n∑

i=1

Bi

Ai−1 Ai
(vi − x) = 0,

which proves (5).
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3.1 Rational Functions

Another way of expressing these coordinates is in the form

Ωi (x) = ŵi (x)
∑n

j=1 ŵ j (x)
, ŵi (x) = Bi

∏

j ≤=i−1,i

A j (x), (6)

and since each area A j (x) is linear in x, we see from this that Ωi is a rational (bivariate)
function, with total degree ∞ n − 2 in the numerator and denominator. In fact, the
denominator, W = ∑n

j=1 ŵ j , has total degree ∞ n − 3 due to linear precision: since
(5) holds with wi replaced by ŵi , it implies that

n∑

i=1

ŵi (x)vi = W (x)x.

The left hand side is a (vector-valued) polynomial of degree ∞ n − 2 in x and since
x has degree 1, the degree of W must be at most n − 3.

The degrees, n − 2 and n − 3, of the numerator and denominator of Ωi agree with
the triangular case where n = 3 and the coordinates are linear functions.

We note that the ‘global’ form of Ωi (x) in (6) is also valid for x → ∂ P , unlike the
‘local’ form (4), though it requires more computation for large n.

3.2 Perpendicular Distances to Edges

An alternative way of expressing Wachspress coordinates is in terms of the perpen-
dicular distances of x to the edges of P . This is the form used by Warren et al. [33],
and it generalizes in a natural way to higher dimension.

For each i , let ni → R
2 be the outward unit normal to the edge ei = [vi , vi+1],

and for any x → P let hi (x) be the perpendicular distance of x to the edge ei , so that

hi (x) = (vi − x) · ni = (vi+1 − x) · ni ,

see Fig. 4. Then the coordinates in (4) can be expressed as

Ωi (x) = w̃i (x)
∑n

j=1 w̃ j (x)
, (7)

where
w̃i (x) := ni−1 × ni

hi−1(x)hi (x)
, (8)
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Fig. 4 Perpendicular distances

and

x1 × x2 :=
∣
∣
∣
∣
x1 x2
y1 y2

∣
∣
∣
∣ .

for xk = (xk, yk). To see this, observe that with L j = |v j+1 − v j | (and | · | the
Euclidean norm) and Δi the interior angle of the polygon at vi ,

A(vi−1, vi , vi+1) = 1

2
sin Δi Li−1Li ,

and

A(x, vi−1, vi ) = 1

2
hi−1(x)Li−1, A(x, vi , vi+1) = 1

2
hi (x)Li ,

so that
wi (x) = 2w̃i (x).

3.3 Gradients

The gradient of a Wachspress coordinate can be found quite easily from the perpen-
dicular form (7 and 8). Since ∇hi (x) = −ni , the gradient of w̃i is [6]

∇w̃i (x) = w̃i (x)

(
ni−1

hi−1(x)
+ ni

hi (x)

)

. (9)

Thus the (vector-valued) ratio Ri := ∇w̃i/w̃i is simply

Ri (x) = ni−1

hi−1(x)
+ ni

hi (x)
.
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Fig. 5 Barycentric mapping

Fig. 6 Curve deformation

Using the formula [6]

∇Ωi = Ωi (Ri −
n∑

j=1

Ω j R j ) (10)

for any function Ωi of the form (7), we thus obtain ∇Ωi (x) for x → P .

3.4 Curve Deformation

While Wachspress’s motivation for these coordinates was finite element methods over
polygonal partitions, Warren suggested their use in deforming curves. The coordi-
nates can be used to define a barycentric mapping of one polygon to another, and
such a mapping will then map, or deform, a curve embedded in the first polygon into
a new one, with the vertices of the polygon acting as control points, with an effect
similar to those of Bézier and spline curves and surfaces.

Assuming the second polygon is P ′ with vertices v′
1, . . . , v′

n , the barycentric
mapping g : P ∩ P ′ is defined as follows. Given x → P ,

1. express x in Wachspress coordinates, x = ∑n
i=1 Ωi (x)vi ,

2. set g(x) = ∑n
i=1 Ωi (x)v′

i .

Figure 5 shows such a mapping. Figure 6 shows the effect of using the mapping to
deform a curve (a circle in this case).

It is now known that Wachspress mappings between convex polygons are always
injective; as shown in [9]. The basic idea of the proof is to show that g has a positive
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Fig. 7 Notation for mean value coordinates

Jacobian determinant J (g). To do this one first shows that J (g) can be expressed as

J (g) = 2
∑

1∞i< j<k∞n

∣
∣
∣
∣
∣
∣

Ωi Ω j Ωk

∂1Ωi ∂1Ω j ∂1Ωk

∂2Ωi ∂2Ω j ∂2Ωk

∣
∣
∣
∣
∣
∣

A(v′
i , v′

j , v′
k).

By the convexity of P ′, the signed areas A(v′
i , v′

j , v′
k) in the sum are all positive, and

so J (g) > 0 if all the 3 × 3 determinants in the sum are positive, and this turns out
to be the case for Wachspress coordinates Ωi .

4 Mean Value Coordinates

As we have seen, Wachspress coordinates are relatively simple functions, and lead to
well-behaved barycentric mappings. They are, however, limited to convex polygons.
For a nonconvex polygon they are not well-defined, since the denominator in the
rational expression becomes zero at certain points in the polygon. An alternative set
of coordinates for convex polygons is the mean value coordinates [4], which have
a simple generalization to nonconvex polygons, though positivity is in general lost.
Suppose initially that P is convex as before, then the mean value (MV) coordinates
are defined by (4) and

wi (x) = tan(ψi−1/2) + tan(ψi/2)

|vi − x| , (11)

with the angles ψ j = ψ j (x), with 0 < ψ j < δ , as shown in Fig. 7. To show that
these coordinates are barycentric, it is sufficient, as in the Wachspress case, to show
that the wi in (11) satisfy (5). This can be done in four steps:

1. Express the unit vectors ei := (vi − x)/|vi − x| in polar coordinates:

ei = (cos θi , sin θi ),
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Fig. 8 Wachspress (left). Mean value (right)

and note that ψi = θi+1 − θi .
2. Use the fact that the integral of the unit normals n(θ) = (cos θ, sin θ) on a circle

is zero:
2δ∫

0

n(θ) dθ = 0.

3. Split this integral according to the θi :

2δ∫

0

n(θ) dθ =
n∑

i=1

θi+1∫

θi

n(θ) dθ. (12)

4. Show by trigonometry that

θi+1∫

θi

n(θ) dθ = 1 − cos ψi

sin ψi
(ei + ei+1) = tan(ψi/2)(ei + ei+1).

Substituting this into the sum in (12) and rearranging gives (5).
We can compute tan(ψi/2) from the formulas

cos ψi = ei · ei+1, sin ψi = ei × ei+1. (13)

Figure 8 compares the contour lines of a Wachspress coordinate, on the left, with the
corresponding MV coordinate, on the right.

4.1 Gradients

Similar to the Wachspress case, the gradient ∇Ωi of the MV coordinate Ωi can be
computed from the formula (10) if we can find the ratio Ri := ∇wi/wi , with wi in
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(11). Let ri = |vi − x| and ti = tan(ψi/2) so that

wi = ti−1 + ti
ri

.

Further, define

ci = ei

ri
− ei+1

ri+1
,

and for a vector a = (a1, a2) → R
2, let a∀ := (−a2, a1).

Theorem 1 For the MV coordinates,

Ri =
(

ti−1

ti−1 + ti

)
c∀

i−1

sin ψi−1
+

(
ti

ti−1 + ti

)
c∀

i

sin ψi
+ ei

ri
.

We will show this using two lemmas.

Lemma 1 For u → R
2, let e = (e1, e2) = (u − x)/|u − x| and r = |u − x|. Then

∇e1 = e2e∀

r
, ∇e2 = −e1e∀

r
.

Proof If d = (d1, d2) = u − x, then using the fact that

∇d1 = (−1, 0), ∇d2 = (0,−1), and ∇r = −d/r,

the result follows from the quotient rule:

∇ek = ∇
(

dk

r

)

= r∇dk − dk∇r

r2 , k = 1, 2. �

Lemma 2 Suppose u, v → R
2, and let

e = (u − x)/|u − x|, r = |u − x|,
f = (v − x)/|v − x|, s = |v − x|.

Then
∇(e · f) = −(e × f)c∀ and ∇(e × f) = (e · f)c∀,

where

c = e
r

− f
s
.
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Proof With e = (e1, e2) and f = ( f1, f2),

∇(e · f) = f1∇e1 + e1∇ f1 + f2∇e2 + e2∇ f2,

∇(e × f) = f2∇e1 + e1∇ f2 − f1∇e2 − e2∇ f1,

and applying Lemma 1 to ∇ek and ∇ fk , k = 1, 2, gives the result. �

We now prove Theorem 1. Recalling (13), Lemma 2 shows that

∇(cos ψi ) = −(sin ψi )c∀
i , ∇(sin ψi ) = (cos ψi )c∀

i . (14)

From this it follows that
∇ti = ti

sin ψi
c∀

i .

Since, ∇ri = −ei , this means that

∇
(

t j

ri

)

= t j

ri

(
c∀

j

sin ψi
+ ei

ri

)

, j = i − 1, i.

Therefore,

∇wi = ti−1

ri

(
c∀

i−1

sin ψi−1

)

+ ti
ri

(
c∀

i

sin ψi

)

+ wi
ei

ri
,

which, after dividing by wi , proves Theorem 1.
Incidentally, though we did not use it, we note that both equations in (14) imply

that
∇ψi = c∀

i .

Another derivative formula for MV coordinates can be found in [28].

4.2 Alternative Formula

We saw that Wachspress coordinates can be expressed in the “global form” (6) in
which Ωi (x) is well-defined for x → ∂ P as well as for x → P . It turns out that MV
coordinates also have a global form with the same property, though for large n, the
resulting expression requires more computation, and involves more square roots,
than the local form based on (11). Let di = vi − x, i = 1, . . . , n.

Theorem 2 The MV coordinates in (4) can be expressed as

Ωi (x) = ŵi (x)
∑n

j=1 ŵ j (x)
, (15)
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where

ŵi = (ri−1ri+1 − di−1 · di+1)
1/2

∏

j ≤=i−1,i

(r j r j+1 + d j · d j+1)
1/2. (16)

Proof From the addition formula for sines, we have

wi = 1

ri

(
sin(ψi−1/2)

cos(ψi−1/2)
+ sin(ψi/2)

cos(ψi/2)

)

= sin((ψi−1 + ψi )/2)

ri cos(ψi−1/2) cos(ψi/2)
.

Then, to get rid of the half-angles we use the identities

sin(A/2) = √
(1 − cos A)/2,

cos(A/2) = √
(1 + cos A)/2,

to obtain

wi = 1

ri

(
2(1 − cos(ψi−1 + ψi ))

(1 + cos ψi−1)(1 + cos ψi )

)1/2

.

Now we substitute in the scalar product formula,

cos(ψi−1 + ψi ) = di−1 · di+1

ri−1ri+1
,

and similarly for cos ψi−1 and cos ψi , and the 1/ri term cancels out:

wi =
(

2(ri−1ri+1 − di−1 · di+1)

(ri−1ri + di−1 · di )(riri+1 + di · di+1)

)1/2

,

which gives 15 and 16. �

One can easily check that this formula gives the correct values (2) for x → ∂ P .

4.3 Star-Shaped Polygons

The original motivation for these coordinates was for parameterizing triangular
meshes [3, 5, 29]. In this application, the point x is a vertex in a planar triangu-
lation, with v1, . . . , vn its neighbouring vertices. Thus, in this case, the polygon P
(with vertices v1, . . . , vn) is not necessarily convex, but always star-shaped, with x a
point in its kernel, i.e., every vertex vi is “visible” from x; see Fig. 9. In this case the
angles ψi in (11) are again positive, and the weight wi (x) is again positive. Thus the
MV coordinates of x remain positive in this star-shaped case. The advantage ofthis is
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Fig. 9 A star-shaped polygon and its kernel

that when these coordinates are applied to the parameterization of triangular meshes,
the piecewise linear mapping is guaranteed to be injective, i.e., none of the triangles
“fold over,” when the boundary of the mesh is mapped to a convex polygon.

4.4 Arbitrary Polygons

It was later observed, in [13], that the coordinates are still well-defined, though not
necessarily positive, when P is an arbitrary polygon, provided that the angles ψi are
treated as signed angles: i.e., we take ψi in (11) to have the same sign as ei × ei+1,
which will be the case if we use the formulas (13). The reason for this is that even
though wi (x) in (11) may be negative for some i , when P is arbitrary, the sum∑n

i=1 wi (x) is nevertheless positive for any x in P . This was shown in [13], where
it was also shown that these more general MV coordinates have the Lagrange and
piecewise linearity properties on ∂ P .

This generalization of MV coordinates allows the curve deformation method to be
extended to arbitrary polygons. It was further observed in [13] that MV coordinates
even have a natural generalization to any set of polygons, as long as the polygons do
not intersect one another. The polygons may or may not be nested. These generalized
MV coordinates were applied to image warping in [13].

5 Polygonal Finite Elements

There has been steadily growing interest in using generalized barycentric coordinates
for finite element methods on polygonal (and polyhedral) meshes [6, 11, 23, 26, 27,
34]. In order to establish the convergence of the finite element method, one would
need to derive a bound on the gradients of the coordinates in terms of the geometry
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of the polygon P . Various bounds on

sup
x→P

|∇Ωi (x)|

were derived in [11] for Wachspress (and other) coordinates, and in [23] for MV
coordinates. For the Wachspress coordinates, a simpler bound was derived in [6].
If we define, for x → P ,

ν(x) :=
n∑

i=1

|∇Ωi (x)|, (17)

then ν plays a role similar to the Lebesgue function in the theory of polynomial
interpolation because for g in (3),

|∇g(x)| ∞
n∑

i=1

|∇Ωi (x)|| f (vi )| ∞ ν(x) max
i=1,...,n

| f (vi )|.

It was shown in [6] that with
Λ := sup

x→P
ν(x) (18)

the corresponding ‘Lebesgue constant’, and with Ωi the Wachspress coordinates,

Λ ∞ 4

h∅
,

where
h∅ = min

i=1,...,n
min

j ≤=i,i+1
hi (v j ).

6 Curved Domains

Consider again the barycentric interpolant g in (3). Since g is piecewise linear on the
boundary ∂ P , it interpolates f on ∂ P if f itself is piecewise linear on ∂ P . Warren
et al. [33] proposed a method of interpolating any continuous function f defined
on the boundary of any convex domain, by, roughly speaking, taking a continuous
“limit” of the polygonal interpolants g in (3). Specifically, suppose that the bound-
ary of some convex domain P ∈ R

2 is represented as a closed, parametric curve
c : [a, b] ∩ R

2, with c(b) = c(a). Then any sequence of parameter values,
t1, . . . , tn , with a ∞ t1 < t2 < · · · < tn < b, with mesh size h = maxi (ti+1 − ti ),
defines a convex polygon Ph with vertices vi = c(ti ); see Fig. 10. The barycentric
interpolant g in (3) with respect to this polygon is then
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Fig. 10 From polygons to curved domains

gh(x) =
n∑

i=1

Ωi (x) f (c(ti )). (19)

Taking the limit g = limh∩0 gh over a sequence of such polygons, and letting the
Ωi be the Wachspress coordinates, gives

g(x) =
b∫

a

w(x, t) f (c(t)) dt

/ b∫

a

w(x, t) dt, x → P, (20)

where

w(x, t) = (c′(t) × c′′(t))
((c(t) − x) × c′(t))2 .

It was shown in [33] that the barycentric property also holds for this g: if f : R2 ∩ R

is linear, i.e., f (x) = ax + by + c, then g = f . However, it also follows from the
fact that if f is linear, gh = f for all h.

There is an analogous continuous MV interpolant, with g also given by (20), but
with the weight function w(x, t) replaced by

w(x, t) = (c(t) − x) × c′(t)
|c(t) − x|3 . (21)

One can also derive the barycentric property of this continuous interpolant by apply-
ing the unit circle construction of Sect. 4 directly to the curved domain P . Figure 11
shows the MV interpolant to the function cos(2θ), 0 ∞ θ < 2δ , on the boundary of
the unit circle.

Similar to the generalization of MV coordinates to nonconvex polygons, the con-
tinuous MV interpolant also extends to arbitrarily shaped curve domains: one simply
applies the same formula (21). Even though the cross product,

(c(t) − x) × c′(t)
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Fig. 11 An MV interpolant on a circle

may be negative for some values of t , the integral
∫ b

a w(x, t) dt of w in (21) remains
positive [2].

6.1 Hermite Interpolation

If the normal derivative of f is also known on the boundary of the domain, we
could consider matching both the values and normal derivatives of f . In [2, 10] two
distinct approaches were used to construct such a Hermite interpolant, both based on
the construction of MV interpolants. To motivate this, let δn denote the linear space
of polynomials of degree ∞ n in one real variable. Suppose that f : [0, 1] ∩ R

has a first derivative at x = 0 and x = 1. Then there is a unique cubic polynomial,
p → δ3, such that

p(k)(i) = f (k)(i), i = 0, 1, k = 0, 1.

There are various ways of expressing p. One is as

p = l0(x) + κ(x)l1(x),

where

l0(x) = (1 − x) f (0) + x f (1), κ(x) = x(1 − x), l1(x) = (1 − x)m0 + xm1,

and
m0 = f ′(0) − ( f (1) − f (0)), m1 = ( f (1) − f (0)) − f ′(1).
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The basic idea of the Hermite interpolant in [2] is to generalize this construction to a
general planar domain, replacing the linear interpolants l0 and l1 by MV interpolants,
and replacing the weight function κ by an MV “weight” function. This gives a
Hermite interpolant in 2D, but it does not in general have cubic precision. Another
way of expressing p above is as the minimizer of a functional. For a fixed x → (0, 1),
p(x) is the value s(x) of the spline s that minimizes the functional

E(s) =
1∫

0

(s′′(y))2 dy,

in the spline space

S = {s → C1[0, 1] : s|[0,x], s|[x,1] → δ3},

subject to the boundary conditions

s(k)(i) = f (k)(i), i = 0, 1, k = 0, 1.

A generalization of this minimization was used in [10] to generate a function on
a curved domain that appears, numerically, to interpolate the boundary data, but a
mathematical proof of this is still missing. The cubic construction in [10] was recently
derived independently through certain mean value properties of biharmonic functions
by Li et al. [19]. They also give a closed-form expression for the coordinates on a
polygonal domain when a suitable definition of the boundary data is used along the
edges.

7 Coordinates in Higher Dimensions

So far we have only considered coordinates for points inR2, but there are applications
of barycentric coordinates for points in a polyhedron in R

3, such as in Fig. 12, or
more generally for points in a polytope in R

d . Both Wachspress and MV coordinates
have been generalized to higher dimensions.

7.1 Wachspress Coordinates in 3D

Warren [32] generalized the coordinates of Wachspress to simple convex polyhedra:
convex polyhedra in which all vertices have three incident faces. In [33], Warren et
al. derived the same coordinates in a different way (avoiding the so-called “adjoint”),
generalizing (7) as follows. Let P ∈ R

3 be a simple convex polyhedron, with faces
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Fig. 12 Simple, convex polyhedron

F and vertices V . For each face f → F , let n f → R
3 denote its unit outward normal,

and for any x → P , let h f (x) denote the perpendicular distance of x to f , which can
be expressed as the scalar product

h f (x) = (v − x) · n f ,

for any vertex v → V belonging to f . For each vertex v → V , let f1, f2, f3 be the
three faces incident to v, and for x → P , let

wv(x) = det(n f1 , n f2 , n f3)

h f1(x)h f2(x)h f3(x)
, (22)

where it is understood that f1, f2, f3 are ordered such that the determinant in the
numerator is positive. Here, for vectors a, b, c → R

3,

det(a, b, c) :=
∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣
.

Thus the ordering of f1, f2, f3 must be anticlockwise around v, seen from outside P .
In this way, wv(x) > 0, and it was shown in [33] that the functions

Ωv(x) := wv(x)
∑

u→V wu(x)
(23)

are barycentric coordinates for x → P in the sense that

∑

v→V

Ωv(x) = 1,
∑

v→V

Ωv(x)v = x. (24)

To deal with nonsimple polyhedra, it was suggested in [33] that one might decom-
pose a nonsimple vertex into simple ones by perturbing its adjacent facets. Later, Ju
et al. [15] found a cleaner solution, using properties of the so-called polar dual. With
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respect to each x in a general convex polyhedron P ∈ R
3, there is a dual polyhedron,

P̃x := {y → R
3 : y · (z − x) ∞ 1, z → P}.

It contains the origin y = 0, and its vertices are the endpoints of the vectors

p f (x) := n f

h f (x)
, f → F,

when placed at the origin. Suppose that a vertex v → V has k incident faces,
f1, . . . , fk , for some k ≥ 3, where we again assume they are ordered in some
anticlockwise fashion around v, as seen from outside P . The endpoints of the k
vectors p f1(x), . . . p fk (x) form a k-sided polygon. This polygon is the face of P̃x,
dual to the vertex v of P . This face and the origin in R

3 form a polygonal pyramid,
Qv ∈ P̃x. It was shown in [15] that if we define

wv(x) = vol(Qv),

then the functions Ωv in (23) are again barycentric coordinates. In practice, we could
triangulate the face dual to v by connecting the endpoint of p f1(x) to the endpoints
of all the other p fi (x), and so compute vol(Qv) as a sum of volumes of tetrahedra.
Thus, we could let

wv(x) =
k−1∑

i=2

det(p f1(x), p fi (x), p fi+1(x)). (25)

Some matlab code for evaluating these coordinates and their gradients can be found
in [6].

7.2 MV Coordinates in 3D

MV coordinates were generalized to three dimensions in [8, 16], the basic idea being
to replace integration over the unit circle, as in Sect. 4, by integration over the unit
sphere.

Consider first the case that P ∈ R
3 is a convex polyhedron with triangular faces

(though it does not need to be simple). Fix x → P and consider the radial projection
of the boundary of P onto the unit sphere centered at x. A vertex v → V is projected
to the point (unit vector) ev := (v − x)/|v − x|. A face f → F is projected to a
spherical triangle fx whose vertices are ev, v → V f , where V f ∈ V denotes the set
of (three) vertices of f . Let I f denote the (vector-valued) integral of its unit normals,
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I f :=
∫

fx

n(y) dy.

Since the three vectors ev, v → V f , are linearly independent, there are three unique
weights wv, f > 0 such that

I f =
∑

v→V f

wv, f ev. (26)

The weights can be found as ratios of 3 × 3 determinants from Cramer’s rule. Since
the integral of all unit normals of the unit sphere is zero, and letting Fv ∈ F denote
the set of faces that are incident on the vertex v, we find, by switching summations,
that

0 =
∑

f →F

I f =
∑

f →F

∑

v→V f

wv, f ev =
∑

v→V

∑

f →Fv

wv, f ev,

and so the functions
wv :=

∑

f →Fv

wv, f

|v − x| , (27)

satisfy ∑

v→V

wv(x)(v − x) = 0.

It follows that the functions Ωv given by (23) with wv given by (27) are barycentric
coordinates, i.e., they are positive in P and satisfy (24).

It remains to find the integral I f in terms of the points v → V f and x. We follow
the observation made in [8]. The spherical triangle fx and the point x form a wedge
of the solid unit sphere centered at x. Since the integral of all unit normals over this
wedge is zero, the integral I f is minus the sum of the integrals over the three planar
faces of the wedge. Suppose v1, v2, v3 are the vertices of f in anticlockwise order,
and let ei = evi . For i = 1, 2, 3, the i th side of the wedge is the sector of the unit
circle formed by the two unit vectors ei and ei+1, with the cyclic notation vi+3 := vi .
If Δi → (0, δ) is the angle between ei and ei+1 then the area of the sector is Δi/2,
and hence

I f = 1

2

3∑

i=1

Δi mi , (28)

where
mi = ei × ei+1

|ei × ei+1| .
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Equating this with (26) gives

wvi , f = 1

2

3∑

j=1

Δ j
m j · mi+1

ei · mi+1
.

These 3D MV coordinates were used for surface deformation in [16] when the surface
is represented as a dense triangular mesh. Some contour plots of the coordinate
functions can be found in [8].

For a polyhedron with faces having arbitrary numbers of vertices, the same
approach can be applied, but there is no longer uniqueness. Suppose f → F is a
face with k ≥ 3 vertices. The integral I f is again well-defined, and can be computed
as the sum of k terms, generalizing (28). However, there is no unique choice of the
local weights wv, f in (26) for k > 3, since there are k of these. Langer et al. [17]
proposed using a certain type of spherical polygonal MV coordinates to determine
the wv, f , but other choices are possible.

8 Final Remarks

We have not covered here other kinds of generalized barycentric coordinates,
and related coordinates, which include Sibson’s natural neighbor coordinates [24],
Sukumar’s maximum entropy coordinates [25], Gordon and Wixom coordinates [12],
spherical barycentric coordinates [17], harmonic coordinates [14], Green coordinates
[21], Poisson coordinates [18], Positive MV coordinates [20] and others. A more gen-
eral survey paper is being planned in which some of these other coordinates will be
included.
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Hermite and Bernstein Style Basis Functions
for Cubic Serendipity Spaces on Squares
and Cubes

Andrew Gillette

Abstract We introduce new Hermite style and Bernstein style geometric decompo-
sitions of the cubic serendipity finite element spaces S3(I 2) and S3(I 3), as defined
in the recent work of Arnold and Awanou [Found. Comput. Math. 11 (2011), 337–
344]. The serendipity spaces are substantially smaller in dimension than the more
commonly used bicubic and tricubic Hermite tensor product spaces—12 instead of
16 for the square and 32 instead of 64 for the cube—yet are still guaranteed to obtain
cubic order a priori error estimates in H1 norm when used in finite element methods.
The basis functions we define have a canonical relationship both to the finite element
degrees of freedom as well as to the geometry of their graphs; this means the bases
may be suitable for applications employing isogeometric analysis where domain
geometry and functions supported on the domain are described by the same basis
functions. Moreover, the basis functions are linear combinations of the commonly
used bicubic and tricubic polynomial Bernstein or Hermite basis functions, allowing
their rapid incorporation into existing finite element codes.

Keywords Finite elements · Serendipity elements · Multivariate polynomial inter-
polation · Tensor product interpolation · Hermite interpolation

1 Introduction

Serendipity spaces offer a rigorous means to reduce the degrees of freedom asso-
ciated to a finite element method while still ensuring optimal order convergence.
The “serendipity” moniker came from the observation of this phenomenon among
finite element practitioners before its mathematical justification was fully under-
stood; see e.g., [6, 11, 12, 15]. Recent work by Arnold and Awanou [1, 2] classifies
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Fig. 1 Cubic serendipity functions on I 2 from [16]. The left function is associated to the vertex
below the peak. The middle and right functions are associated to the edge y = −1 but do not
correspond to the domain points (± 1

3 ,−1) in any canonical or symmetric fashion, making them
less useful for geometric modeling or isogeometric analysis

serendipity spaces on cubical meshes in n ∈ 2 dimensions by giving a simple and
precise definition of a space of polynomials Sr (I n) that must be spanned, as well as
a unisolvent set of degrees of freedom for them. Crucially, the space Sr (I n) contains
all polynomials in n variables of total degree at most r , a property shared by the space
of polynomials Qr (I n) spanned by the standard order r tensor product method. This
property allows the derivation of an a priori error estimate for serendipity methods
of the same order (with respect to the width of a mesh element) as their standard
tensor product counterparts.

In this paper, we provide two coordinate-independent geometric decompositions
for bothS3(I 2) andS3(I 3), the cubic serendipity spaces in two and three dimensions,
respectively. More precisely, we present sets of polynomial basis functions, prove that
they provide a basis for the corresponding cubic serendipity space, and relate them
canonically to the domain geometry. Each basis is designated as either Bernstein or
Hermite style, as each function restricts to one of these common basis function types
on each edge of the square or cube. The standard pictures for S3(I 2) and S3(I 3)

serendipity elements, shown on the right of Figs. 2 and 4, have one dot for each
vertex and two dots for each edge of the square or cube. We refer to these as domain
points and will present a canonical relationship between the defined bases and the
domain points.

To the author’s knowledge, the only basis functions previously available for cubic
serendipity finite element purposes employ Legendre polynomials, which lack a clear
relationship to the domain points. Definitions of these basis functions can be found in
Szabó and Babuška [16, Sect. 6.1 and 13.3]; the two functions from [16] associated
to the edge y = −1 of I 2, are shown in Fig. 1 (middle and right). The restriction
of these functions to the edge gives an even polynomial in one case and an odd
polynomial in the other, forcing an ad hoc choice of how to associate the functions
to the corresponding domain points (± 1

3 ,−1). The functions presented in this paper
do have a natural correspondence to the domain points of the geometry.

Maintaining a concrete and canonical relationship between domain points and
basis functions is an essential component of the growing field of isogeometric



Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces 105

analysis (IGA). One of the main goals of IGA is to employ basis functions that
can be used both for geometry modeling and finite element analysis, exactly as we
provide here for cubic serendipity spaces. Each function is a linear combination of
bicubic or tricubic Bernstein or Hermite polynomials; the specific coefficients of the
combination are given in the proofs of the theorems. This makes the incorporation
of the functions into a variety of existing application contexts relatively easy. Note
that tensor product bases in two and three dimensions are commonly available in
finite element software packages (e.g., deal.II [4]) and cubic tensor products in par-
ticular are commonly used both in modern theory (e.g., isogeometric analysis [9])
and applications (e.g., cardiac electrophysiology models [17]). Hence, a variety of
areas of computational science could directly employ the new cubic serendipity basis
functions presented here.

The benefit of serendipity finite element methods is a significant reduction in the
computational effort required for optimal order (in this case, cubic) convergence.
Cubic serendipity methods on meshes of squares requires 12 functions per element,
an improvement over the 16 functions per element required for bicubic tensor product
methods. On meshes of cubes, the cubic serendipity method requires 32 functions per
element instead of the 64 functions per element required for tricubic tensor product
methods. Using fewer basis functions per element reduces the size of the overall
linear system that must be solved, thereby saving computational time and effort. An
additional computational advantage occurs when the functions presented here are
used in an isogeometric fashion. The process of converting between computational
geometry bases and finite element bases is a well-known computational bottleneck
in engineering applications [8] but is easily avoided when basis functions suited to
both purposes are employed.

The outline of the paper is as follows: In Sect. 2, we fix notation and summarize
relevant background on Bernstein and Hermite basis functions as well as serendipity
spaces. In Sect. 3, we present polynomial Bernstein and Hermite style basis functions
for S3(I 2) that agree with the standard bicubics on edges of I 2 and provide a novel
geometric decomposition of the space. In Sect. 4, we present polynomial Bernstein
and Hermite style basis functions for S3(I 3) that agree with the standard tricubics on
edges of I 3, reduce to our bases for I 2 on faces of I 3, and provide a novel geometric
decomposition of the space. Finally, we state our conclusions and discuss future
directions in Sect. 5.

2 Background and Notation

2.1 Serendipity Elements

We first review the definition of serendipity spaces and their accompanying notation
from the work of Arnold and Awanou [1, 2].
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Definition 1 The superlinear degree of a monomial in n variables, denoted sldeg(·),
is given by

sldeg(xe1
1 xe2

2 · · · xen
n ) :=

(
n∑

i=1

ei

)

− # {ei : ei = 1} . (1)

In words, sldeg(q) is the ordinary degree of q, ignoring variables that enter linearly.
For instance, the superlinear degree of xy2z3 is 5.

Definition 2 Define the following spaces of polynomials, each of which is restricted
to the domain I n = [−1, 1]n ≥ R

n :

Pr (I n) := spanR {monomials in n variables with total degree at most r}
Sr (I n) := spanR {monomials in n variables with superlinear degree at most r}
Qr (I n) := spanR {monomials in n variables of degree at most r in each variable} .

Note that Pr (I n) ≥ Sr (I n) ≥ Qr (I n), with proper containments when r , n > 1.
The space Sr (I n) is called the degree r serendipity space on the n-dimensional cube
I n . In the notation of the recent paper by Arnold and Awanou [2], the serendipity
spaces discussed in this work would be denoted SrΩ

0(I n), indicating that they are
differential 0-form spaces. The space Qr (I n) is associated with standard tensor
product finite element methods; the fact that Sr (I n) satisfies the containments above
is one of the key features allowing it to retain an O(hr ) a priori error estimate in H1

norm, where h denotes the width of a mesh element [5]. The spaces have dimension
given by the following formulas (cf. [1]).

dim Pr (I n) =
(

n + r

n

)

,

dim Sr (I n) =
min(n,∩r/2→)∑

d=0

2n−d
(

n

d

)(
r − d

d

)

,

dim Qr (I n) = (r + 1)n .

We write out standard bases for these spaces more precisely in the cubic cases of
concern here.

P3(I 2) = span{1, x, y
︸︷︷︸
linear

, x2, y2, xy
︸ ︷︷ ︸

quadratic

, x3, y3, x2 y, xy2
︸ ︷︷ ︸

cubic

}, (2)

S3(I 2) = P3(I 2) ∞ span{ x3 y, xy3
︸ ︷︷ ︸

superlinear cubic

}, (3)

Q3(I 2) = S3(I 2) ∞ span{x2 y2, x3 y2, x2 y3, x3 y3}. (4)

Observe that the dimensions of the three spaces are 10, 12, and 16, respectively.
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P3(I 3) = span{1, x, y, z
︸ ︷︷ ︸

linear

, x2, y2, z2, xy, xz, yz
︸ ︷︷ ︸

quadratic

, x3, y3, z3, x2 y, x2z, xy2, y2z, xz2, yz2, xyz
︸ ︷︷ ︸

cubic

}

(5)

S3(I 3) = P3(I 3) ∞ span{x3 y, x3z, y3z, xy3, xz3, yz3, x2 yz, xy2z, xyz2, x3 yz, xy3z, xyz3
︸ ︷︷ ︸

superlinear cubic

}

(6)

Q3(I 3) = S3(I 3) ∞ span{x3 y2, . . . , x3 y3z3}. (7)

Observe that the dimensions of the three spaces are 20, 32, and 64, respectively.
The serendipity spaces are associated to specific degrees of freedom in the clas-

sical finite element sense. For a face f of I n of dimension d ∈ 0, the degrees of
freedom associated to f for Sr (I n) are (cf. [1])

u ≤−∇
∫

f
uq, q ∈ Pr−2d( f ).

For the cases considered in this work, n = 2 or 3 and r = 3, so the only nonzero
degrees of freedom are when f is a vertex (d = 0) or an edge (d = 1). Thus, the
degrees of freedom for our cases are the values

u(v),
∫

e
u dt, and

∫

e
ut dt, (8)

for each vertex v and each edge e of the square or cube.

2.2 Cubic Bernstein and Hermite Bases

For cubic order approximation on square or cubical grids, tensor product bases are
typically built from one of two alternative bases for P3([0, 1]):

[∂] =



⎢
⎢


∂1
∂2
∂3
∂4



⎥
⎥
⎫ :=



⎢
⎢


(1 − x)3

(1 − x)2x
(1 − x)x2

x3



⎥
⎥
⎫ [α] =



⎢
⎢


α1
α2
α3
α4



⎥
⎥
⎫ :=



⎢
⎢


1 − 3x2 + 2x3

x − 2x2 + x3

x2 − x3

3x2 − 2x3



⎥
⎥
⎫

The set {∂1, 3∂2, 3∂3, ∂4} is the cubic Bernstein basis and the set [α] is the cubic
Hermite basis. Bernstein functions have been used recently to provide a geomet-
ric decomposition of finite element spaces over simplices [3]. Hermite functions,
while more common in geometric modeling contexts [13] have also been studied in
finite element contexts for some time [7]. The Hermite functions have the following
important property relating them to the geometry of the graph of their associated
interpolant:
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u = u(0)α1 + u∀(0)α2 − u∀(1)α3 + u(1)α4, ∅u ∈ P3([0, 1]). (9)

We have chosen these sign and basis ordering conventions so that both bases have
the same symmetry property:

∂k(1 − x) = ∂5−k(x), αk(1 − x) = α5−k(x). (10)

The bases [∂] and [α] are related by [∂] = V[α] and [α] = V
−1[∂] where

V =



⎢
⎢


1 −3 0 0
0 1 0 0
0 0 1 0
0 0 −3 1



⎥
⎥
⎫ , V

−1 =



⎢
⎢


1 3 0 0
0 1 0 0
0 0 1 0
0 0 3 1



⎥
⎥
⎫ . (11)

Let [∂n] denote the tensor product of n copies of [∂]. Denote ∂i (x)∂ j (y) ∈ [∂2]
by ∂i j and ∂i (x)∂ j (y)∂k(z) ∈ [∂3] by ∂i jk . In general, [∂n] is a basis forQ3([0, 1]n),
but we will make use of the specific linear combination used to prove this, as stated
in the following proposition.

Proposition 1 For 0 ⊂ r, s, t ⊂ 3, the reproduction properties of [∂], [∂2], and
[∂3] take on the respective forms

xr =
4∑

i=1

(
3 − r

4 − i

)

∂i , (12)

xr ys =
4∑

i=1

4∑

j=1

(
3 − r

4 − i

)(
3 − s

4 − j

)

∂i j , (13)

xr ys zt =
4∑

i=1

4∑

j=1

4∑

k=1

(
3 − r

4 − i

)(
3 − s

4 − j

)(
3 − t

4 − k

)

∂i jk . (14)

The proof is elementary. We have a similar property for tensor products of the
Hermite basis [α], using analogous notation. The proof is a simple matter of swapping
the order of summation.

Proposition 2 Let

εr,i :=
4∑

a=1

(
3 − r

4 − a

)

vai (15)

where vai denotes the (a, i) entry (row, column) of V from (11). For 0 ⊂ r, s, t ⊂ 3,
the reproduction properties of [α], [α2], and [α3] take on the respective forms
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xr =
4∑

i=1

εr,iαi , (16)

xr ys =
4∑

i=1

4∑

j=1

εr,iεs, jαi j , (17)

xr ys zt =
4∑

i=1

4∑

j=1

4∑

k=1

εr,iεs, jεt,kαi jk . (18)

Transforming the bases [∂] and [α] to domains other than [0, 1] is straightfor-
ward. If T : [a, b] ∇ [0, 1] is linear, then replacing x with T (x) in each basis
function expression for [∂] and [α] gives bases for P3([a, b]). Note, however, that
the derivative interpolation property for [α] must be adjusted to account for the
scaling:

u(x) = u(a)α1(T (x)) + (b − a)u∀(a)α2(T (x))

− (b − a)u∀(b)α3(T (x)) + u(b)α4(T (x)), ∅u ∈ P3([a, b]). (19)

In geometric modeling applications, the coefficient (b − a) is sometimes left as an
adjustable parameter, usually denoted s for scale factor [10], however, (b −a) is the
only choice of scale factor that allows the representation of u given in (19). For all
the Hermite and Hermite style functions, we will use derivative-preserving scaling
which will include scale factors on those functions related to derivatives; this will be
made explicit in the various contexts where it is relevant.

Remark 1 Both [∂] and [α] are Lagrange-like at the endpoints of [0, 1], i.e., at an
endpoint, the only basis function with nonzero value is the function associated to
that endpoint (∂1 or α1 for 0, ∂4 or α4 for 1). This means the two remaining basis
functions of each type (∂2, ∂3 or α2, α3) are naturally associated to the two edge
degrees of freedom (8). We will refer to these associations between basis functions
and geometrical objects as the standard geometrical decompositions of [∂] and [α].

3 Local Bases for S3(I2)

Before defining local bases on the square, we fix notation for the domain points to
which they are associated. For [0, 1]2, define the set of ordered pairs

X := {{i, j} | i, j ∈ {1, . . . , 4}} .

Then X is the disjoint union V ∞ E ∞ D where
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11 21 31 41

21 22 32 42

343331 32

444341 42

11 21 31 41

12 42

13 43

444341 42

Fig. 2 On the left, ordered pairs from X are shown next to the domain point of [0, 1]2 to which
they correspond. On the right, only those ordered pairs used for the serendipity basis are shown.
The correspondences V ◦ vertices, E ◦ edge points, and D ◦ domain interior points are evident

V := {{i, j} ∈ X | i, j ∈ {1, 4}} ; (20)

E := {{i, j} ∈ X | exactly one of i, j is an element of {1, 4}} ; (21)

D := {{i, j} ∈ X | i, j ∈ {2, 3}} . (22)

The V indices are associated with vertices of [0, 1]2, the E indices to edges of [0, 1]2,
and the D vertices to the domain interior to [0, 1]2. The relation between indices and
domain points of the square is shown in Fig. 2. We will frequently denote an index
set {i, j} as i j to reduce notational clutter.

3.1 A Local Bernstein Style Basis for S3(I2)

We now establish a local Bernstein style basis for S3(I 3) where I := [−1, 1]. Define
the following set of 12 functions, indexed by V ∞ E ; note the scaling by 1/16.

[Δ2] =



⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢


Δ11
Δ14
Δ41
Δ44
Δ12
Δ13
Δ42
Δ43
Δ21
Δ31
Δ24
Δ34



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎫

=



⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢


(1 − x)(1 − y)(−2 − 2x + x2 − 2y + y2)

(1 − x)(y + 1)(−2 − 2x + x2 + 2y + y2)

(x + 1)(1 − y)(−2 + 2x + x2 − 2y + y2)

(x + 1)(y + 1)(−2 + 2x + x2 + 2y + y2)

(1 − x)(1 − y)2(y + 1)

(1 − x)(1 − y)(y + 1)2

(x + 1)(1 − y)2(y + 1)

(x + 1)(1 − y)(y + 1)2

(1 − x)2(x + 1)(1 − y)

(1 − x)(x + 1)2(1 − y)

(1 − x)2(x + 1)(y + 1)

(1 − x)(x + 1)2(y + 1)



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎫

· 1

16
. (23)

Fix the basis orderings
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[Δ2] := [ Δ11, Δ14, Δ41, Δ44︸ ︷︷ ︸
indices in V

, Δ12, Δ13, Δ42, Δ43, Δ21, Δ31, Δ24, Δ34︸ ︷︷ ︸
indices in E

], (24)

[∂2] := [ ∂11, ∂14, ∂41, ∂44︸ ︷︷ ︸
indices in V

, ∂12, ∂13, ∂42, ∂43, ∂21, ∂31, ∂24, ∂34︸ ︷︷ ︸
indices in E

, ∂22, ∂23, ∂32, ∂33︸ ︷︷ ︸
indices in D

]

(25)

The following theorem will show that [Δ2] is a geometric decomposition ofS3(I 2),
by which we mean that each function in [Δ2] has a natural association to a specific
degree of freedom, i.e., to a specific domain point of the element.

Theorem 1 Let ∂ I
ψm denote the scaling of ∂ψm to I 2, i.e.

∂ I
ψm := ∂ψ((x + 1)/2)∂m((y + 1)/2).

The set [Δ2] has the following properties:

(i) [Δ2] is a basis for S3(I 2).
(ii) For any ψm ∈ V ∞ E, Δψm is identical to ∂ I

ψm on the edges of I 2.
(iii) [Δ2] is a geometric decomposition of S3(I 2).

Proof For (i), we scale [Δ2] to [0, 1]2 to take advantage of a simple characterization
of the reproduction properties. Let [Δ2][0,1] denote the set of scaled basis functions
Δ

[0,1]
ψm (x, y) := Δψm(2x − 1, 2y − 1). Given the basis orderings in (24) and (25), it

can be confirmed directly that [Δ2][0,1] is related to [∂2] by

[Δ2][0,1] = B[∂2] (26)

where B is the 12 × 16 matrix with the structure

B := ⎬
I B

∀ ⎭
, (27)

where I is the 12 × 12 identity matrix and B
∀ is the 12 × 4 matrix

B
∀ =



⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢


−4 −2 −2 −1
−2 −4 −1 −2
−2 −1 −4 −2
−1 −2 −2 −4
2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2
2 1 0 0
0 0 2 1
1 2 0 0
0 0 1 2



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎫

. (28)
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Using i j ∈ X to denote an index for ∂i j and ψm ∈ V ∞ E to denote an index for

Δ
[0,1]
ψm , the entries of B can be denoted by bψm

i j so that

B :=



⎢
⎢
⎢
⎢
⎢
⎢
⎢


b11
11 · · · b11

i j · · · b11
33

...
. . .

...
. . .

...

bψm
11 · · · bψm

i j · · · bψm
33

...
. . .

...
. . .

...

b34
11 · · · b34

i j · · · b34
33



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎫

. (29)

We now observe that for each i j ∈ X ,

(
3 − r

4 − i

)(
3 − s

4 − j

)

=
∑

ψm∈V ∞E

(
3 − r

4 − ψ

)(
3 − s

4 − m

)

bψm
i j , (30)

for all (r, s) pairs such that sldeg(xr ys) ⊂ 3 (recall Definition 1). Note that this
claim holds trivially for the first 12 columns of B, i.e., for those i j ∈ V ∞ E ≥ X .
For i j ∈ D ≥ X , (30) defines an invertible linear system of 12 equations with 12
unknowns whose solution is the i j column of B∀; the 12 (r, s) pairs correspond to the
exponents of x and y in the basis ordering of S3(I 2) given in (2) and (3). Substituting
(30) into (13) yields:

xr ys =
∑

i j∈X

(
∑

ψm∈V ∞E

(
3 − r

4 − ψ

)(
3 − s

4 − m

)

bψm
i j

)

∂i j .

Swapping the order of summation and regrouping yields

xr ys =
∑

ψm∈V ∞E

(
3 − r

4 − ψ

)(
3 − s

4 − m

)
⎛

⎝
∑

i j∈X

bψm
i j ∂i j

⎞

⎠ .

The inner summation is exactly Δ
[0,1]
ψm by (26), implying that

xr ys =
∑

ψm∈V ∞E

(
3 − r

4 − ψ

)(
3 − s

4 − m

)

Δ
[0,1]
ψm , (31)

for all (r, s) pairs with sldeg(xr ys) ⊂ 3. Since [Δ2][0,1] has 12 elements which span
the 12-dimensional space S3([0, 1]2), it is a basis for S3([0, 1]2). By scaling, [Δ2] is
a basis for S3(I 2).

For (ii), note that an edge of [0, 1]2 is described by an equation of the form
{x or y} = {0 or 1}. Since ∂2(t) and ∂3(t) are equal to 0 at t = 0 and t = 1, ∂i j ≡ 0
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on the edges of [0, 1]2 for any i j ∈ D. By the structure of B from (27), we see that
for any ψm ∈ V ∞ E ,

Δ
[0,1]
ψm = ∂ψm +

∑

i j∈D

bψm
i j ∂i j . (32)

Thus, on the edges of [0, 1]2, Δ
[0,1]
ψm and ∂ψm are identical. After scaling back, we

have Δψm and ∂ I
ψm identical on the edges of I 2, as desired.

For (iii), the geometric decomposition is given by the indices of the basis functions,
i.e., the function Δψm is associated to the domain point for ψm ∈ V ∞ E . This follows
immediately from (ii), the fact that [∂2] is a tensor product basis, and Remark 1 ⇒∃
Remark 2 It is worth noting that the basis [Δ2] was derived by essentially the reverse
order of the proof of part (i) of the theorem. More precisely, the 12 coefficients in
each column of B define an invertible linear system given by (30). After solving for
the coefficients, we can immediately derive the basis functions via (26). By the nature
of this approach, the edge agreement property (ii) is guaranteed by the symmetry
properties of the basis [∂]. This technique was inspired by a previous work for
Lagrange-like quadratic serendipity elements on convex polygons [14].

3.2 A Local Hermite Style Basis for S3(I2)

We now establish a local Hermite style basis [δ2] for S3(I 2) using the bicubic
Hermite basis [α2] for Q3([0, 1]2). Define the following set of 12 functions, indexed
by V ∞ E ; note the scaling by 1/8.

[δ2] =



⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢


δ11
δ14
δ41
δ44
δ12
δ13
δ42
δ43
δ21
δ31
δ24
δ34



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎫

=



⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢


−(1 − x)(1 − y)(−2 + x + x2 + y + y2)

−(1 − x)(y + 1)(−2 + x + x2 − y + y2)

−(x + 1)(1 − y)(−2 − x + x2 + y + y2)

−(x + 1)(y + 1)(−2 − x + x2 − y + y2)

(1 − x)(1 − y)2(y + 1)

(1 − x)(1 − y)(y + 1)2

(x + 1)(1 − y)2(y + 1)

(x + 1)(1 − y)(y + 1)2

(1 − x)2(x + 1)(1 − y)

(1 − x)(x + 1)2(1 − y)

(1 − x)2(x + 1)(y + 1)

(1 − x)(x + 1)2(y + 1)



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎫

· 1

8
. (33)

Fix the basis orderings
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[δ2] := [ δ11, δ14, δ41, δ44︸ ︷︷ ︸
indices in V

, δ12, δ13, δ42, δ43, δ21, δ31, δ24, δ34︸ ︷︷ ︸
indices in E

], (34)

[α2] := [ α11, α14, α41, α44︸ ︷︷ ︸
indices in V

, α12, α13, α42, α43, α21, α31, α24, α34︸ ︷︷ ︸
indices in E

,

α22, α23, α32, α33︸ ︷︷ ︸
indices in D

] (35)

Theorem 2 Let α I
ψm denote the derivative-preserving scaling of αψm to I 2, i.e.

α I
ψm := αψ((x + 1)/2)αm((y + 1)/2), ψm ∈ V,

α I
ψm := 2αψ((x + 1)/2)αm((y + 1)/2), ψm ∈ E .

The set [δ2] has the following properties:

(i) [δ2] is a basis for S3(I 2).
(ii) For any ψm ∈ V ∞ E, Δψm is identical to α I

ψm on the edges of I 2.
(iii) [δ2] is a geometric decomposition of S3(I 2).

Proof The proof follows that of Theorem 1 so we abbreviate proof details that are
similar. For (i), let [δ2][0,1] denote the derivative-preserving scaling of [δ2] to [0, 1]2;
the scale factor is 1/2 for functions with indices in E . Given the basis orderings in
(34) and (35), we have

[δ2][0,1] = H[α2] (36)

where H is the 12 × 16 matrix with the structure

H := ⎬
I H

∀ ⎭
, (37)

where I is the 12 × 12 identity matrix and H
∀ is the 12 × 4 matrix with

H
∀ =



⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢


−1 1 1 −1
1 −1 −1 1
1 −1 −1 1

−1 1 1 −1
−1 0 1 0

0 −1 0 1
1 0 −1 0
0 1 0 −1

−1 1 0 0
0 0 −1 1
1 −1 0 0
0 0 1 −1



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎫

. (38)
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Denote the entries ofH by hψm
i j (cf. (29)). Recalling (15), observe that for each i j ∈ X ,

εr,iεs, j =
∑

ψm∈V ∞E

εr,ψεs,mhψm
i j , (39)

for all (r, s) pairs such that sldeg(xr ys) ⊂ 3. Similar to the Bernstein case, we
substitute (39) into (17), swap the order of summation and regroup, yielding

xr ys =
∑

ψm∈V ∞E

εr,ψεs,m

⎛

⎝
∑

i j∈X

hψm
i j αi j

⎞

⎠ .

The inner summation is exactly δ
[0,1]
ψm by (36), implying that

xr ys =
∑

ψm∈V ∞E

εr,ψεs,mδ
[0,1]
ψm , (40)

for all (r, s) pairs with sldeg(xr ys) ⊂ 3, proving that [δ2][0,1] is a basis for
S3([0, 1]2). By derivative-preserving scaling, [δ2] is a basis for S3(I 2).

For (ii), observe that for any i j ∈ D, αi j ≡ 0 on the edges of [0, 1]2 by virtue of
the bicubic Hermite basis functions’ definition. By the structure of H from (37), we
see that for any ψm ∈ V ∞ E ,

δ
[0,1]
ψm = αψm +

∑

i j∈D

hψm
i j αi j . (41)

Thus, on the edges of [0, 1]2, δ
[0,1]
ψm and αψm are identical. After scaling back, we

have δψm and α I
ψm identical on the edges of I 2, as desired.

For (iii), the geometric decomposition is given by the indices of the basis functions,
i.e., the function δψm is associated to the domain point for ψm ∈ V ∞ E . This follows
immediately from (ii), the fact that [α2] is a tensor product basis, and Remark 1 at
the end of Sect. 2. See also Fig. 3. ⇒∃

4 Local Bases for S3(I3)

Before defining local bases on the cube, we fix notation for the domain points to
which they are associated. For [0, 1]3, define the set of ordered triplets

Y := {{i, j, k} | i, j, k ∈ {1, . . . , 4}} .

Then Y is the disjoint union V ∞ E ∞ F ∞ M where



116 A. Gillette

ψ I
11 ψ I

21 ψ I
31

ϑ11 ϑ21 ϑ31

Fig. 3 The top row shows 3 of the 16 bicubic Hermite functions on I 2 while the bottom row shows
3 of the 12 cubic Hermite style serendipity functions. The visual differences are subtle, although
some changes in concavity can be observed. Note that functions in the same column have the same
values on the edges of I 2

V := {{i, j, k} ∈ Y | i, j, k ∈ {1, 4}} ; (42)

E := {{i, j, k} ∈ Y | exactly two of i, j, k are elements of {1, 4}} ; (43)

F := {{i, j, k} ∈ Y | exactly one of i, j, k is an element of {1, 4}} ; (44)

M := {{i, j, k} ∈ Y | i, j, k ∈ {2, 3}} . (45)

The V indices are associated with vertices of [0, 1]3, the E indices to edges of
[0, 1]3, the F indices to face interior points of [0, 1]3, and the M vertices to the
domain interior of [0, 1]3. The relation between indices and domain points of the
cube is shown in Fig. 4.

4.1 A Local Bernstein Style Basis for S3(I3)

Under the notation and conventions established in Sect. 2, we are ready to establish
a local Bernstein style basis for S3(I 3) where I := [−1, 1]. In Fig. 5, we define a
set of 32 functions, indexed by V ∞ E ≥ Y ; note the scaling by 1/32. We fix the
following basis orderings, with omitted basis functions ordered lexicographically by
index.
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111 211

112 212

113 213

114 214

121

122

123

124

131

132

133

134

141

142

143

144

311

312

313

314

411

412

413

414

411

244 344 444
234 334 444

224 324 444

111 211

112

113

114 214

121

124

131

134

141

142

143

144

311

314

411

412

413

414

411

244 344 444
444

444

Fig. 4 On the left, ordered triplets from Y are shown next to the domain point of [0, 1]3 to which
they correspond. Points hidden by the perspective are not shown. The origin is at the point labeled
111; the positive x , y, and z axes go right, back, and up, respectively. On the right, only those
indices used for the serendipity basis are shown. The correspondences V ◦ vertices, E ◦ edge
points, F ◦ face interior points, and M ◦ domain interior points are evident

[Δ3] := [ Δ111, . . . , Δ444︸ ︷︷ ︸
indices in V

, Δ112, . . . , Δ443︸ ︷︷ ︸
indices in E

], (46)

[∂] := [ ∂111, . . . , ∂444︸ ︷︷ ︸
indices in V

, ∂112, . . . , ∂443︸ ︷︷ ︸
indices in E

, ∂122, . . . , ∂433︸ ︷︷ ︸
indices in F

, ∂222, . . . , ∂333︸ ︷︷ ︸
indices in M

, ]

(47)

Theorem 3 Let ∂ I
ψmn denote the scaling of ∂ψmn to I 3, i.e.

∂ I
ψmn := ∂ψ((x + 1)/2)∂m((y + 1)/2)∂n((z + 1)/2).

The set [Δ3] has the following properties:

(i) [Δ3] is a basis for S3(I 3).
(ii) [Δ3] reduces to [Δ2] on faces of I 3.

(iii) For any ψmn ∈ V ∞ E, Δψmn is identical to ∂ I
ψmn on edges of I 3.

(iv) [Δ3] is a geometric decomposition of S3(I 3).

The proof is similar to that of Theorem 1. Note that for (ii), the claim can
be confirmed directly by calculation, for instance, Δ111(x, y,−1) = Δ11(x, y) or
Δ142(x, 1, z) = Δ12(x, z). A complete proof can be found in a longer version of this
paper appearing online at arXiv:1208.5973 [math.NA].

4.2 A Local Hermite Style Basis for S3(I3)

We now establish a local Hermite style basis [δ3] for S3(I 3) using the tricubic
Hermite basis [α3] for Q3([0, 1]3). In Fig. 6, we define a set of 32 functions, indexed
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Fig. 5 Bernstein style basis functions for S3(I 3) with properties given by Theorem 3

by V ∞ E ≥ Y ; note the scaling by 1/16. We fix the following basis orderings, with
omitted basis functions ordered lexicographically by index.

[δ3] := [ δ111, . . . , δ444︸ ︷︷ ︸
indices in V

, δ112, . . . , δ443︸ ︷︷ ︸
indices in E

], (48)

[∂] := [ α111, . . . , α444︸ ︷︷ ︸
indices in V

, α112, . . . , α443︸ ︷︷ ︸
indices in E

, α122, . . . , α433︸ ︷︷ ︸
indices in F

, α222, . . . , α333︸ ︷︷ ︸
indices in M

, ]

(49)

Theorem 4 Let α I
ψmn denote the derivative-preserving scaling of αψmn to I 3, i.e.,

α I
ψm := αψ((x + 1)/2)αm((y + 1)/2)αn((z + 1)/2), ψmn ∈ V,

α I
ψmn := 2αψ((x + 1)/2)αm((y + 1)/2)αn((z + 1)/2), ψmn ∈ E .



Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces 119

Fig. 6 Hermite style basis functions for S3(I 3) with properties given by Theorem 4

The set [δ3] has the following properties:

(i) [δ3] is a basis for S3(I 3).
(ii) [δ3] reduces to [δ2] on faces of I 3.

(iii) For any ψmn ∈ V ∞ E, δψmn is identical to α I
ψmn on edges of I 3.

(iv) [δ3] is a geometric decomposition of S3(I 3).

The proof is similar to that of Theorem 1. A complete proof can be found in a
longer version of this paper appearing online at arXiv:1208.5973 [math.NA].
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5 Conclusions and Future Directions

The basic functions presented in this work are well-suited for use in finite element
applications, as discussed in the introduction. For geometric modeling purposes,
some adaptation of traditional techniques will be required as the bases do not have the
classical properties of positivity and do not form a partition of unity. Nevertheless,
we are already witnessing the successful implementation of the basis [δ3] in the
geometric modeling and finite element analysis package Continuity developed by
the Cardiac Mechanics Research Group at UC San Diego. In that context, the close
similarities of [δ3] and [α3] has allowed a straightforward implementation procedure
with only minor adjustments to the geometric modeling subroutines.

Additionally, the proof techniques used for the theorems suggest a number of
promising extensions. Similar techniques should be able to produce Bernstein style
bases for higher polynomial order serendipity spaces, although the introduction of
interior degrees of freedom that occurs when r > 3 requires some additional care
to resolve. Some higher order Hermite style bases may also be available, although
the association of directional derivative values to vertices is somewhat unique to the
r = 3 case. Preconditioners for finite element methods employing our bases are
still needed, as is a thorough analysis of the tradeoffs between the approach outlined
here and alternative approaches to basis reduction, such as static condensation. The
fact that all the functions defined here are fixed linear combinations of standard
bicubic or tricubic basis functions suggests that appropriate preconditioners will
have a straightforward and computationally advantageous construction.

Acknowledgments Support for this work was provided in part by NSF Award 0715146 and the
National Biomedical Computation Resource while the author was at the University of California,
San Diego.

References

1. Arnold, D., Awanou, G.: The serendipity family of finite elements. Found. Comput. Math.
11(3), 337–344 (2011)

2. Arnold, D.N., Awanou, G.: Finite element differential forms on cubical meshes. Math. Comput.
83, 1551–1570 (2014)

3. Arnold, D., Falk, R., Winther, R.: Geometric decompositions and local bases for spaces of
finite element differential forms. Comput. Methods Appl. Mech. Eng. 198(21–26), 1660–1672
(2009)

4. Bangerth, W., Hartmann, R., Kanschat, G.: Deal. ii—A general-purpose object-oriented finite
element library. ACM Trans. Math. Softw. (TOMS) 33(4), 24–es (2007)

5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New
York (2002)

6. Ciarlet, P.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics,
vol. 40, 2nd edn. SIAM, Philadelphia (2002)

7. Ciarlet, P., Raviart, P.: General Lagrange and Hermite interpolation in R
n with applications to

finite element methods. Arch. Ration. Mechan. Anal. 46(3), 177–199 (1972)



Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces 121

8. Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and
FEA. Wiley, Chichester (2009)

9. Evans, J.A., Hughes, T.J.R.: Explicit trace inequalities for isogeometric analysis and parametric
hexahedral finite elements. Numer. Math. 123(2), 259–290 (2013)

10. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters,
Wellesley (1993)

11. Hughes, T.: The Finite Element Method. Prentice Hall, Englewood Cliffs (1987)
12. Mandel, J.: Iterative solvers by substructuring for the p-version finite element method. Comput.

Methods Appl. Mech. Eng. 80(1–3), 117–128 (1990)
13. Mortenson, M.: Geometric Modeling, 3rd edn. Wiley, New York (2006)
14. Rand, A., Gillette, A., Bajaj, C.: Quadratic serendipity finite elements on polygons using gener-

alized barycentric coordinates. Math. Comput. http://www.ams.org/journals/mcom/0000-000-
00/S0025-5718-2014-02807-X/home.html (2014)

15. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood
Cliffs (1973)

16. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley-Interscience, New York (1991)
17. Zhang, Y., Liang, X., Ma, J., Jing, Y., Gonzales, M.J., Villongco, C., Krishnamurthy, A., Frank,

L.R., Nigam, V., Stark, P., Narayan, S.M., McCulloch, A.D.: An atlas-based geometry pipeline
for cardiac hermite model construction and diffusion tensor reorientation. Med. Image Anal.
16(6), 1130–1141 (2012)

http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2014-02807-X/home.html
http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2014-02807-X/home.html


Suitability of Parametric Shepard Interpolation
for Nonrigid Image Registration

A. Ardeshir Goshtasby

Abstract Shepard interpolation is known to produce flat horizontal spots at and
around data points. The phenomenon is caused by Shepard’s use of rational inverse-
distance weight functions, producing similar values around data points. In this paper,
a parametric version of Shepard interpolation is introduced that avoids flat horizontal
spots. Because Shepard interpolation or its parametric version does not require the
solution of a system of equations, the interpolation is stable under varying density and
organization of data points as well as under highly varying data values. The suitability
of parametric Shepard interpolation in nonrigid image registration is investigated and
its speed and accuracy are compared with those of multiquadric, thin-plate spline,
and moving least-squares.

Keywords Shepard interpolation · Parametric Shepard interpolation · Image reg-
istration

1 Introduction

Image registration is the process of finding correspondence between all points in two
images of a scene. This correspondence is needed to fuse information in the images,
to detect changes occurring in the scene between the times the images are obtained,
and to recover the scene’s geometry [1].

Image registration is generally achieved in three steps: (1) a set of points is detected
in one image, (2) the corresponding points are located in the second image, and (3)
from the coordinates of corresponding points in the images, a transformation function
is determined to warp the geometry of the second image to resemble that of the first.
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This transformation function makes it possible to spatially align the images and
establish correspondence between all scene points appearing in both images. When
one image is simply a translated and/or rotated version of the other, the process is
known as rigid registration. Otherwise, the process is called nonrigid registration.

The problem of finding a transformation function for registration of two images
can be described as follows: Given the coordinates of n corresponding points in the
images:

{(xi , yi ), (Xi , Yi ) : i = 1, . . . , n}, (1)

we would like to determine two functions f and g that satisfy

Xi = f (xi , yi ),

Yi = g(xi , yi ),
i = 1, . . . , n. (2)

f can be considered a single-valued surface interpolating 3-D points

{(xi , yi , Xi ) : i = 1, . . . , n}, (3)

and g can be considered another single-valued surface interpolating 3-D points

{(xi , yi , Yi ) : i = 1, . . . , n}. (4)

Coordinates (xi , yi ) represent the column and row numbers of the i th point in the first
image and coordinates (Xi , Yi ) represent the column and row numbers of the i th point
in the second image. Coordinate x increases from left to right and varies between
0 and nc − 1 and coordinate y increases from top to bottom and varies between 0
and nr − 1. The integers nc and nr are, respectively, the number of columns and the
number of rows in the first image. Similarly, coordinate X increases from left to right
and varies between 0 and Nc − 1 and coordinate Y increases from top to bottom and
varies between Nr − 1. Nc and Nr are, respectively, the number of columns and the
number of rows in the second image.

Throughout this paper, the first image will be referred to as the reference image
and the second image will be referred to as the sensed image. Also, the points given
in the images will be referred to as the control points. Therefore, (xi , yi ) and (Xi , Yi )

represent the coordinates of the i th corresponding control points in the images.
Functions f and g are the components of the transformation, relating coordinates

of points in the sensed image to the coordinates of the corresponding points in the
reference image. By knowing the coordinates of n corresponding control points in
two images of a scene, we would like to find a transformation with components f
and g that will map the sensed image point-by-point to the reference image. This
mapping, in effect, transforms the geometry of the sensed image to resemble that of
the reference image.

A component of a transformation function is a single-valued function that takes
a point (x, y) in the reference image and determines the X - or the Y -coordinate of
the corresponding point in the sensed image. Many interpolation functions exist in
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the literature that can be used for this purpose. We are interested in a function that is
locally sensitive and stable.

Local sensitivity is required to keep an error in the location of a control point local.
Due to noise and other factors, some point correspondences may be inaccurate. Such
inaccuracies should not be propagated over the entire interpolation (registration) do-
main. Rather, the influence of an inaccurate control point location should be kept
local to the point. For this reason, it is necessary to define a component of a trans-
formation function in terms of monotonically decreasing rather than monotonically
increasing basis functions.

Stability in solution is required to ensure that two images can always be registered
independent of the geometric difference between them. Methods that require the
solution of systems of equations are generally not desired because the equations to
be solved may become ill-conditioned and impossible to solve.

In this paper, a component of a transformation function is defined by a para-
metric version of the Shepard interpolation [16]. Registration speed and accuracy
of parametric Shepard interpolation (PSI) are measured and compared with those of
multiquadric (MQ) [4, 5], thin-plate spline (TPS) [2, 3, 12], and moving least-squares
(MLS) [8, 9].

2 Parametric Shepard Interpolation

One of the earliest methods for interpolation of scattered data was proposed by
Shepard [16]. Shepard interpolation is a weighted mean method that uses rational
inverse-distance weights. Given data points {(xi , yi ) : i = 1, . . . , n} with associating
data values {Fi : i = 1, . . . , n}, Shepard interpolation estimates the value at point
(x, y) in the interpolation domain from

f (x, y) =
n∑

i=1

Wi (x, y)Fi , (5)

where

Wi (x, y) = Ri (x, y)
∑n

j=1 R j (x, y)
, (6)

and
Ri (x, y) = {(x − xi )

2 + (y − yi )
2}− 1

2 . (7)

Function f (x, y) interpolates the data without solving a system of equations. The
interpolation value at (x, y) is obtained by simply evaluating the right side of Eq. (5).

Function f (x, y) can be considered a single-valued surface interpolating 3-D
points

{(xi , yi , Fi ) : i = 1, . . . , n} . (8)
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Table 1 Coordinates of 9
uniformly spaced points in the
xy domain with associating
height (data) values sampled
from the plane in Fig. 1a

i 1 2 3 4 5 6 7 8 9

xi 0 1 2 0 1 2 0 1 2
yi 0 0 0 1 1 1 2 2 2
Fi 0 1 2 0 1 2 0 1 2

(a) (b)

Fig. 1 a The planar surface from which the points in Table 1 are sampled, and b the surface
interpolating the points in Table 1 by Shepard interpolation

The 3-D points listed in Table 1 represent uniformly spaced samples from the plane
depicted in Fig. 1a. The surface interpolating the points as computed by the Shepard’s
method is depicted in Fig. 1b.

The reason for the flat horizontal spots at and around the data points is the nonlinear
relation between xy and f . Flat horizontal spots result because similar interpolation
values are obtained at and in the vicinity of each data point. This artifact can be
removed by subjecting x and y to the same nonlinearity that f is subjected to.
Representing x , y, and f as functions of new parameters u and v using Shepard’s
Eq. (5), we have

x(u, v) =
n∑

i=1

wi (u, v)xi , (9)

y(u, v) =
n∑

i=1

wi (u, v)yi , (10)

h(u, v) =
n∑

i=1

wi (u, v)Fi , (11)

where

wi (u, v) = ri (u, v)
∑n

j=1 r j (u, v)
, (12)

ri (u, v) = {(u − ui )
2 + (v − vi )

2}− 1
2 . (13)
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Fig. 2 Density of (x, y, f )

points in PSI obtained at
uniformly spaced parameters
u and v

The i th data point has parameter coordinates (ui , vi ), where ui = xi/(nc − 1) and
vi = yi/(nr − 1). The integers nc and nr are, respectively, the number of columns
and the number of rows in the reference image. As x is varied between 0 and nc − 1,
u varies between 0 and 1, and as y is varied between 0 and nr − 1, v varies between
0 and 1.

An example of a parametric Shepard surface representing a component of a trans-
formation function is given in Fig. 2. Parameters u and v are varied from 0 to 1 with
increments 0.02 in both u and v to obtain the surface points shown in the figure. Uni-
formly spaced (u, v) coordinates produce surface points that have higher densities
near the interpolation points and also near edges connecting the points. Although the
highly varying density of surface points in Fig. 2 suggests a surface with a nearly
polyhedral shape, the surface is actually very smooth and represents the height val-
ues shown in Fig. 11c. We would like to determine parameter coordinates (u, v) that
correspond to (x, y) pixel coordinates in the reference image, and by using those
parameter coordinates estimate h(u, v) and use it as f (x, y).

To find the interpolation value at (x, y), PSI requires the solution of two nonlin-
ear equations to find the corresponding parameter coordinates (u, v). The obtained
parameter coordinates are then used to find h(u, v), which is considered the same
as the value for f (x, y). For image registration purposes, however, solution of non-
linear equations is not necessary. Surface coordinates that are within half a pixel of
the actual coordinates are sufficient to resample the sensed image to the geometry
of the reference image by the nearest-neighbor resampling method. Therefore, gaps
between estimated surface points can be filled with required accuracy by bilinear
interpolation of points obtained at uniformly spaced u and v if increments in u and
v are sufficiently small.

The algorithm for calculating a component of a transformation function by PSI
is described below. By notation “if a ∈/ [b ± 0.5],” it is implied “if a < b − 0.5 or
a > b + 0.5”.

Algorithm PSI: Given 3-D points {(xi , yi , Fi ) : i = 1, . . . , n}, calculate entries of
array F[x, y] the size of the reference image with entry [x, y] showing the X - or the
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Y -component of the point in the sensed image corresponding to point (x, y) in the
reference image, depending on whether Fi represents Xi or Yi .

1. Let ui = xi/(nc − 1) and vi = yi/(nr − 1). This will map control points in the
reference image to parameter coordinates in the range 0 to 1.

2. Initially, let increments in u and v be Δu = 0.5 and Δv = 0.5.
3. For u = 0 to 1 with increment Δu and for v = 0 to 1 with increment Δv:

If [x(u, v) + x(u + Δu, v)]/2 /∈ [x(u + Δu/2, v) ± 0.5] or if [y(u, v) + y(u +
Δu, v)]/2 /∈ [y(u +Δu/2, v)±0.5] or if [h(u, v)+h(u +Δu, v)]/2 /∈ [h(u +
Δu/2, v) ± 0.5] or,

if [x(u, v)+ x(u, v+Δv)]/2 /∈ [x(u, v+Δv/2)±0.5] or if [y(u, v)+ y(u, v+
Δv)]/2 /∈ [y(u, v +Δv/2)±0.5] or if [h(u, v)+h(u, v +Δv)]/2 /∈ [h(u, v +
Δv/2) ± 0.5] or,

if [x(u, v) + x(u + Δu, v) + x(u, v + Δv) + x(u + Δu, v + Δv)]/4 /∈ [x(u +
Δu/2, v + Δv/2) ± 0.5] or if [y(u, v) + y(u + Δu, v) + y(u, v + Δv) +
y(u + Δu, v + Δv)]/4 /∈ [y(u + Δu/2, v + Δv/2) ± 0.5] or if [h(u, v) +
h(u + Δu, v) + h(u, v + Δv) + h(u + Δu, v + Δv)]/4 /∈ [h(u + Δu/2, v +
Δv/2) ± 0.5],

reduce Δu and Δv by a factor of 2 and go back to Step 3. Otherwise, continue.
(This step determines the largest increment in u and v that can produce an
accuracy of half a pixel or better in image resampling.)

4. For u = 0 to 1 with increment Δu and for v = 0 to 1 with increment Δv:
Calculate [x(u, v), y(u, v), h(u, v)], [x(u+Δu, v), y(u+Δu, v), h(u+Δu, v)],
[x(u + Δu, v + Δv), y(u + Δu, v + Δv), h(u + Δu, v + Δv)], [x(u, v +
Δv), y(u, v + Δv), h(u, v + Δv)]. Then estimate values within each local patch
defined by parameters [u, u + Δu] × [v, v + Δv] by bilinear interpolation of
values at the four corners of the patch, saving the estimated surface value for
h(u, v) at F[x(u, v), y(u, v)].

5. For i = 1, . . . , n:
If Fi ∈/ [h(ui , vi ) ± 0.5], reduce Δu and Δv by a factor of 2 and go back to Step
4.

6. Return array F .

Analysis of Algorithm PSI: Step 3 of the algorithm recursively subdivides each
surface patch into 4 smaller patches until the distance between the center of each patch
to the center of its base and the distances between midpoints of its bounding curves
to the corresponding base edges fall below half a pixel. When the approximation
error for all patches falls below half a pixel, each patch is replaced with its base,
which is the bilinear interpolation of the four corners of the patch. This will be the
speed-up achieved by not calculating the surface value at all pixels in the reference
image directly and instead estimating some of the values by bilinear interpolation.
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Computation of Step 3 of the algorithm is depicted in Fig. 3a. For a patch with
corner points at (u, v), (u + Δu, v), (u, v + Δv), and (u + Δu, v + Δv), distances
of the midpoints of the bounding curves of the patch to the midpoint of the line
connecting the corresponding bounding curve endpoints are computed. When all
such distances fall below half a pixel, and also when the distance of the center of
the patch at (u + Δ/2u, v + Δv/2) to the center of the base of the patch obtained
from the average of its four corners becomes smaller than half a pixel in x , y, and F
directions, subdivision is stopped.

Note that since two adjacent patches share a bounding curve, for each patch there
is a need to carry out the computations at only two of the bounding curves. The
bounding curves at opposing sides of the patch are considered when processing the
opposing patches. By computing the errors at midpoints of two bounding curves for
each patch, the bounding curves of patches with parameter u = 1 or parameter v = 1
will remain. After computing errors at all patches, errors are computed at patches
with boundary parameters u = 1 or v = 1, and if all such errors become smaller than
half a pixel, subdivision of Step 3 is stopped. If the smaller side of an image contains
M pixels and m is the largest number such that 2m < M , Step 3 needs to be repeated
m or fewer times. For instance, when the reference image is of size 1200 × 1600
pixels, Step 3 will be repeated a maximum of 10 times.

After estimating the largest increment in u and v to obtain desired accuracy at
the center of each patch as well as at midpoints of its bounding curves, the patch is
approximated in Step 4 by bilinear interpolation of its four corners.

To ensure that the employed bilinear interpolation creates an overall surface that
is within half a pixel of the points it is supposed to interpolate, in Step 5, the surface
values estimated in Step 4 are compared with the given Fi values, which are, in
effect, Xi or Yi . If the difference between any such values is larger than half a pixel,
Δu and Δv are reduced by a factor or 2 and Steps 4 and 5 are repeated until the
approximating surface falls within half a pixel of the required values. Note that in
Step 3 the patches are not generated; only values at bounding curve midpoints and
patch centers are calculated. In most situations, this finds the required increment in
u and v to produce the required accuracy in interpolation. In rare cases, the process
may not produce a surface sufficiently close to the interpolation points. Step 5 is
included to ensure that the obtained surface does, in fact, pass within half a pixel of
the points it is supposed to interpolate (Fig. 3b).

It should be mentioned that due to the nonlinear relation between (x, y) and (u, v),
by varying u and v from 0 to 1, the computed x and y values may not completely cover
the image domain. To cover the image domain in its entirety, it may be necessary to
start u and v from values slightly below 0 and continue to values slightly past 1 to
cover all pixels in the image domain. This requires decrementing u from 0 by Δu
and v from 0 by Δv in Step 4 of the algorithm until values for pixels along the lower
and left sides of the reference image are obtained. Also, it is required to increment u
from 1 by Δu and v from 1 by Δv in Step 4 of the algorithm until values for pixels
along the right and upper sides of the reference image are obtained.

Algorithm PSI uses the same Δu and Δv everywhere when calculating the surface
points. Since density of points vary across the interpolation domain, Δu and Δv can
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h(u,v) h( Δu,v)
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Fig. 3 a The subdivision method used in Step 3 of Algorithm PSI. b Ensuring the approximating
surface passes within half a pixel of the point it is supposed to interpolate in Step 5 of the algorithm

be made local so that after each subdivision those patches that are within half a pixel
of their base are not subdivided, and only patches that are farther from their bases
by more than half a pixel are subdivided. This requires keeping track of each patch
individually. The bookkeeping time involved in doing so is usually higher than the
time saved by not subdividing some patches.

If the reference image contains N pixels and n corresponding points are available,
the worst case requires using Eqs. (9)–(11) to calculate the X - and the Y -component
of the transformation at all pixels. In that case, the computational complexity of the
algorithm will be of order Nn. If Δu and Δv are relatively large so that interpolation
values at many pixels are calculated from bilinear interpolation of known values,
computation time reduces and, at best, the computational complexity of the algorithm
will be of order N . Therefore, the computational complexity of the algorithm when
the reference image contains N pixels and n correspondences are available will be
between N and Nn depending on whether the geometry to be estimated is simple,
such as a plane, or very complex, such as the geometric difference between images
showing different views of an urban scene.

3 Evaluation

Various interpolation functions may be used as the components of a transformation
function in image registration. Properties desired of a transformation function and
generally of an interpolation function are:

1. Monotonicity, convexity, and nonnegativity preserving: These properties en-
sure that a chosen transformation function is well behaved and does not pro-
duce high fluctuations and overshoots in estimated values. Such properties are
generally achieved by implicitly or explicitly imposing geometric gradients
at the control points, making the interpolating surface take desired shapes at
the control points. Lu and Schumaker [11] and Li [10] derive monotonicity-
preserving conditions, Lai [7], Renka [13], and Schumaker and Speleers [15]
derive convexity-preserving conditions, and Schumaker and Speleers [14] and



Suitability of Parametric Shepard Interpolation 131

Hussain and Hussain [6] derive nonnegativity preserving conditions for piece-
wise smooth interpolation of data at irregularly spaced points.

2. Linearity preserving: If data values in the image domain vary linearly, the func-
tion interpolating the data should also vary linearly. This property ensures that
a transformation function does not introduce nonlinearity into the resampled
image when reference and sensed images are related linearly.

3. Adaptive to irregular spacing of the control points: Since control points in an
image are rarely uniformly spaced, a transformation function should have the
ability to adapt to the local density and organization of the control points. Spacing
between the control points across the image domain can vary greatly. If the
transformation function is defined by rational basis functions, the shapes of the
functions adapt well to the spacing between the points.

From Eqs. (9)–(11), we see that at the vicinity of the i th data site,

a ≥ Δh(u, v)

Δx(u, v)
= Fi

xi
(14)

and

b ≥ Δh(u, v)

Δy(u, v)
= Fi

yi
. (15)

Therefore, the surface at the vicinity of the i th data point takes slopes (Fi/xi , Fi/yi ).
Note that in the traditional Shepard interpolation the slopes of the interpolating
surface at each data site are 0, resulting in a flat horizontal spot. In parametric Shepard,
the slopes of the interpolating surface at an interpolation point are no longer 0 and
represent slopes of plane

a(x − xi ) + b(y − yi ) + (F − Fi ) = 0. (16)

Since x monotonically increases with u and y monotonically increases with v, and
x and y are single-valued functions of u and v, for any unique (u, v) a unique (x, y) is
obtained. Therefore, the obtained interpolating surface does not contain folds and for
any unique (x, y) a single interpolation value is obtained. This property is required
of a component of a transformation function in an image registration.

The interpolating surface is defined by a convex combination of tangent planes of
the form given by Eq. (16). Since the tangent planes extend beyond the convex-hull
of the interpolation points, the interpolating surface covers the entire image domain.
This makes it possible to find for each point in the reference image, the corresponding
point in the sensed image, making it possible to establish correspondence between all
points in the images. Note that a convex combination of the tangent planes passing
through the interpolation points is not the same as the convex combination of the
interpolating points. Therefore, like TPS, PSI may produce overshoots away from
the interpolation points depending on the arrangement of the data points (the control
points in the reference image) and the highly varying nature of the data values.
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Fig. 4 The face image set, showing a facial stone carving captured from different distances and
views of the scene. Corresponding control points in the image are also shown. The control points
marked with a black ‘+’ are used to determine the transformation function and the control points
marked with a white ‘+’ are used to determine the registration accuracy

To determine the suitability of PSI in image registration, experiments were carried
out using the image sets shown in Figs. 4, 5, 6, 7, 8, and 9. These image sets ex-
hibit varying degrees of geometric differences. The control points used to obtain the
transformation function in each case are also shown. Methods to find corresponding
control points in images of a scene can be found in [1]. The control points marked
with a black ‘+’ are used to determine a transformation function and the control
points marked with a white ‘+’ are used to determine the registration accuracy using
the obtained transformation function.

The images in Fig. 4 are captured from different views of a facial stone carving.
The geometric difference between the images varies locally. We will refer to these
images as Face images. There are 80 control points in each image. Forty of the
control points are used to estimate the components of the transformation function,
and the remaining 40 are used to evaluate the registration accuracy with the obtained
transformation function.

The images in Fig. 5 represent aerial images taken from different views and
distances of a few buildings. The images contain small local and global geometric
differences. We will refer to these as the Aerial images. There are 31 corresponding
control points in the images, of which 16 are used to estimate the transformation
function and the remaining 15 are used to evaluate the registration accuracy with the
obtained transformation.

The images in Fig. 6 represent two views of a terrain scene. There is depth dis-
continuity near the center of the images. We will call this the Terrain image set.
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Fig. 5 The aerial image set, representing two aerial images captured from different views and
distances of a few buildings

Fig. 6 The terrain image set, representing two views of a terrain scene

There are 46 corresponding control points in the images, of which half are used to
determine the transformation function and the remaining half are used to evaluate
the registration accuracy.

The images in Fig. 7 show close-up views of a small area in the terrain scene.
The images in this set will be referred to as the Rock images. The geometric dif-
ference between the images varies greatly across the image domain. There are 58
corresponding control points in the images, of which half are used to estimate the
transformation function and the remaining half are used to evaluate the registration
accuracy.

The images in Fig. 8 show two views of a partially snow-covered rocky mountain.
We will refer to these as Mountain images. The geometric difference between the
images varies considerably across the image domain. There are 165 corresponding
control points in the images, of which 83 are used to determine the transformation
function and the remaining 82 are used to evaluate the registration accuracy.

The images in Fig. 9 show a parking lot taken from the same viewpoint but with
different views. These images are related by a homography. We will refer to these
images as the Parking images. The images contain 32 corresponding control points,
of which half are used to find the components of the transformation function and the
remaining half are used to determine the registration accuracy.
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Fig. 7 The rock image set, showing close-up views of a small area in the terrain scene

Fig. 8 The mountain image set, representing two views of a snowy mountain with sharp peaks and
valleys

We will compare the speed and accuracy of PSI with those obtained by MQ, TPS,
and MLS in the registration of these six sets of images. For each method, the time to
determine the transformation function plus the time to resample the sensed image to
the geometry of the reference image is determined. Since the true geometric relation
between the images is not known, half of the control points are used to determine the
transformation parameters and the remaining half are used to measure the accuracy
of the transformation in mapping the remaining control points in the sensed image
to the corresponding control points in the reference image. Points marked in black
‘+’ in Figs. 4, 5, 6, 7, 8 and 9 are used to determine a transformation function and
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Fig. 9 The parking image set, captured from the same viewpoint of a parking lot but with slightly
different view angles

points marked in white ‘+’ are used to determine the registration accuracy with the
obtained transformation function.

The components of a transformation function are calculated by (1) MQ, (2) TPS,
(3) MLS, and (4) PSI. Then, root-mean-squared

RMS =

√
√
√
√
√

1

n∩
n∩

∑

j=1

(
X j − f (x j , y j )

)2 + (
Y j − g(x j , y j )

)2 (17)

and maximum

MAX = n∩
max
j=1

{√
(
X j − f (x j , y j )

)2 + (
Y j − g(x j , y j )

)2
}

(18)

errors in finding known corresponding points are calculated and used to evaluate
the registration accuracy. Here, n∩ represents the number of control-point corre-
spondences not used to estimate the transformation parameters but are only used to
determine the registration accuracy. Errors obtained by the four methods on the six
image sets are shown in Table 2. These results show that thin-plate spline has the
highest speed in spite of the fact that it solves a system of equations to find each
component of a transformation function. This happens to be the case when there are
up to a few hundred corresponding control points in the images.

A single method could not produce the best RMS or MAX error for all images and
methods vary in accuracy depending on the organization of the points and the severity
of the geometric difference between the images. Most frequently, best accuracy is
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Table 2 Performance measures of multiquadric (MQ), thin-plate spline (TPS), moving least-
squares (MLS), and parametric Shepard interpolation (PSI) in registration of the Face, Aerial,
Terrain, Rock, Mountain, and Parking image sets

Method Measure Face Aerial Terrain Rock Mountain Parking

TIME 1.34 0.19 0.73 0.70 2.48 0.39
MQ RMS 4.05 6.80 10.28 4.08 4.62 5.89

MAX 9.00 13.89 26.38 9.10 30.62 14.33
TIME 1.09 0.14 0.58 0.61 1.93 0.31

TPS RMS 3.85 1.34 2.16 1.51 4.47 0.98
MAX 10.68 2.43 4.26 3.34 32.18 1.79
TIME 1.98 0.41 1.15 1.06 3.35 0.67

MLS RMS 3.96 1.16 1.62 1.52 5.46 0.95
MAX 9.32 2.13 3.40 3.69 33.17 1.45
TIME 1.93 0.27 1.05 1.05 2.98 0.69

PSI RMS 4.32 1.38 1.79 1.59 4.91 1.13
MAX 11.64 2.35 5.10 3.04 33.97 1.70

Performance measures are: computation time in seconds (TIME), root-mean-squared (RMS) error
in pixels, and maximum (MAX) error, also in pixels. The transformation functions are determined
using half of the corresponding control points in each image set, and registration errors are computed
using the remaining half. The best and the worst performances obtained for each image set are shown
in bold and underlined, respectively

achieved by MLS while worst accuracy is achieved by MQ. TPS is the fastest in all
cases while MLS is the slowest in most cases.

To view the quality of registration achieved by the four methods, registration of
the Mountain image set by the four methods is shown in Fig. 10. MQ is accurate
within the convex-hull of the control points. But errors are very large outside the
convex-hull of the control points, contributing to high MAX errors in all except one
of the datasets.

Considering both speed and accuracy, we see that the overall best results are
obtained by TPS on the image sets tested. PSI has been a stable method with a per-
formance that has been close to the best method in each case. It does not require
the solution of a system of equations, giving it a great advantage over TPS and MQ,
which require the solution of large systems of equations when a large set of corre-
spondences is given. When thousands of control points are available, solving large
systems of equations not only slows the computation, depending on the organization
of the points, the systems of equations to be solved may become ill-conditioned and
unsolvable.

A transformation function is required to be locally sensitive. This is needed so
that an error in the location of a control point does not influence registration of the
entire image. Among the methods tested, PSI and MLS are locally sensitive and are
suitable for the registration of images containing some inaccurate correspondences.
An example to demonstrate this is given below. The components of the transforma-
tion obtained from the 82 corresponding points in the Mountain image set (Fig. 8)
by TPS and PSI are shown in Fig. 11. Intensity at (x, y) in a component of a trans-
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(a)

(c)

(b)

(d)

Fig. 10 Resampling of the sensed image and overlaying with the reference image in the Mountain
image set using a MQ, b TPS, c MLS, and d PSI. The dark spots appearing in these images are
areas where registration is poor. Areas near the image borders in the reference image that do not
appear in the sensed image are shown darker

(a)

(c) (d)

(b)

Fig. 11 a X -component and b Y -component of the transformation function obtained by TPS using
the control-point correspondences depicted in Fig. 8. c X -component and d Y -component of the
transformation obtained by PSI. The intensity at (x, y) in these images is set proportional to the
X -coordinate and the Y -coordinate of the point in the sensed image corresponding to point (x, y)

in the reference image
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(a)

(c) (d)

(f)(e)

(b)

Fig. 12 a, b These images are the same as those shown in Fig. 8 except for moving one control point
in the sensed image, introducing an incorrect correspondence. The incorrect corresponding points
are encircled in these images. c X -component and d Y -component of the transformation function
obtained by TPS using the control-point correspondences shown in (a) and (b). e X -component and
f Y -component of the transformation function obtained by PSI

formation is proportional to the X - or the Y -component of the point in the sensed
image corresponding to point (x, y) in the reference image. When correspondences
are accurate, the components of transformation obtained by the two methods are very
similar.

By moving one of the control points in the sensed image, we create a pair of
points that do not correspond to each other. The incorrect correspondence pair are
encircled in Fig. 12a, b. The components of the transformation obtained by TPS are
shown in Fig. 12c, d and those obtained by PSI are shown in Fig. 12e, f. The bright
spot in a component of a transformation shows the location of the error and can be
used as a guide to identify the incorrect correspondence. While PSI keeps such errors
local, TPS spreads the errors to a wider area, affecting the registration of more pixels.
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Sharper details are obtained in the components of the transformation obtained by PSI
when compared to those obtained by TPS. This shows that PSI can accommodate
sharper geometric differences between the images than TPS.

4 Concluding Remarks

To register two images, not only is a set of corresponding control points from the
images required, a transformation function is required that can use information about
the correspondences to estimate correspondence between the remaining points in the
images. A transformation function fills in the gaps between corresponding control
points, establishing correspondence between all points in the images.

Comparing the performances of MQ, TPS, MLS, and PSI using six sets of im-
ages with varying degrees of local and global geometric differences, it is found that
although none of the transformation functions can outperform all others on all image
sets, some transformation functions generally perform better than others. Among
the transformation functions tested, MLS and PSI are found to be the most stable,
producing consistent accuracies on all image sets. With the six image sets tested,
TPS is found to produce the lowest RMS error for most cases while requiring the
least computation time.

Both MQ and TPS are global methods, and so an inaccurate correspondence can
influence registration accuracy of a large area in the image domain. MLS is a lo-
cally sensitive method in the sense that an inaccurate correspondence affects the
registration of pixels mostly in the neighborhood of the inaccurate correspondence.
Although PSI is defined globally, but since its weight functions are monotonically de-
creasing, an inaccurate correspondence affects registration accuracy of points mostly
in its neighborhood. The influence of an inaccurate correspondence on registration
of distant points becomes negligible and vanishes beyond a certain point due to the
quantization step involved in image resampling.

The main contribution of this work is considered to be parametric formulation
of the Shepard interpolation, removing its weakness of creating flat horizontal spots
at the data points while maintaining its strength of not requiring the solution of a
system of equations to find the coefficients of the function. Experimental results show
that although the speed and accuracy of PSI do not surpass those of top performing
interpolation methods in the literature, its speed and accuracy are close to those of
top performing methods.

Overall, if up to a few hundred correspondences is available and the correspon-
dences are known to be accurate, TPS is the method of choice. If more than a few
hundred correspondences are available or if some correspondences are known to be
inaccurate, MLS is the method of choice. The proposed PSI is faster than MLS,
but its accuracy falls short of MLS. PSI is the only method that does not require
the solution of a system of equations; therefore, it is the most stable method among
those tested, always producing a result independent of the severity of the geometric
difference between the images.
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Parabolic Molecules: Curvelets, Shearlets,
and Beyond

Philipp Grohs, Sandra Keiper, Gitta Kutyniok and Martin Schäfer

Abstract Anisotropic representation systems such as curvelets and shearlets have
had a significant impact on applied mathematics in the last decade. The main reason
for their success is their superior ability to optimally resolve anisotropic structures
such as singularities concentrated on lower dimensional embedded manifolds, for
instance, edges in images or shock fronts in solutions of transport dominated equa-
tions. By now, a large variety of such anisotropic systems have been introduced,
for instance, second-generation curvelets, bandlimited shearlets, and compactly sup-
ported shearlets, all based on a parabolic dilation operation. These systems share
similar approximation properties, which are usually proven on a case-by-case basis
for each different construction. The novel concept of parabolic molecules, which was
recently introduced by two of the authors, allows for a unified framework encompass-
ing all known anisotropic frame constructions based on parabolic scaling. The main
result essentially states that all such systems share similar approximation properties.
One main consequence is that at once all the desirable approximation properties of
one system within this framework can be deduced virtually for any other system
based on parabolic scaling. This paper motivates and surveys recent results in this
direction.
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1 Introduction

Wavelets have had a tremendous impact on applications requiring an efficient
representation system such as image compression or PDE solvers. However, mul-
tivariate data does typically exhibit the distinct property of being governed by
anisotropic features, whose wavelets—as an isotropic system—are not capable of
resolving optimally in the sense of optimal approximation rates. In imaging sci-
ences, this fact is even backed up by neurophysiology, since it is generally accepted
today that neurons are highly directional-based, thereby reacting most strongly to
curvelike structures.

This observation has led to the introduction of various novel representation sys-
tems, which are designed to accommodate the anisotropic nature of most multivari-
ate data. The considered model situation are functions with singularities along lower
dimensional embedded manifolds such as edges or rays in imaging applications, with
the goal to provide optimally sparse approximations of these objects. Some of the
most well-known termed directional representation systems nowadays are ridgelets
[4], curvelets [5], and shearlets [19, 28]. With the introduction of such a variety
of systems, the appeal has grown to extract the underlying principles of these new
constructions and build an abstract common framework that can unite many of these
systems "under one roof." The framework should be general enough to include as
many constructions as possible, while on the other hand, it should also be specific
enough to still capture their main features and properties. Such a framework would
help to gain deeper insights into the properties of such systems. Moreover, it bears
an obvious economical advantage. Up to now the properties of each new system,
e.g., their approximation rates of anisotropic features, have been proven more or
less from scratch, although the proofs often resemble one another in many ways.
From the higher level viewpoint provided by such a framework, it becomes possible
to provide proofs which build upon abstract properties, and are therefore indepen-
dent of the specific constructions. Thus, results can be established for many systems
simultaneously.

The introduction of parabolic molecules in 2011 by two of the authors [17] was the
first step in this direction. A system of parabolic molecules can be regarded as being
generated from a set of functions via parabolic dilations, rotations, and translations.
Each element in a system of parabolic molecules is therefore naturally associated
with a certain scale, orientation, and spatial location. The central conceptual idea is
now to allow the generators to vary, as long as they obey a prescribed time-frequency
localization, which also explains the terminology “molecules.”

At the heart of this is the fundamental observation that it is the foremost time-
frequency localizations of the functions in a system that determines its properties
and performance. This concept of variable generators, where in the extreme case
every element is allowed to have its own individual generator, is a key feature of
the framework and gives it a great amount of flexibility. Additional flexibility is
achieved by parameterizations to allow generic indexing of the elements. Another
fruitful idea is the relaxation of the rigid vanishing moment conditions imposed
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on the generators of most classical constructions by requiring the moments to only
vanish asymptotically at high scales without changing the asymptotic behavior of
the approximation.

It was shown in [17] that the concept of parabolic molecules can unify shear-based
and rotation-based constructions under one roof. In particular, it enables to treat the
classical shearlets and curvelets simultaneously, although these specific constructions
are based on different construction principles: For curvelets the scaling is done by a
dilation with respect to polar coordinates and the orientation is enforced by rotations.
Shearlets, on the other hand, are based on affine scaling of a single generator and the
directionality is generated by the action of shear matrices. As an example application,
in [17] parabolic molecules were used to show that these systems feature a similar
approximation behavior, thereby not only unifying the approximation results for
curvelets [5] and shearlets [20, 27], but proving optimal sparse approximations for
a much larger class of systems belonging to the class of parabolic molecules.

Our exposition is organized as follows: We begin with a general introduction to
the problem of sparsely representing multivariate data in Sect. 2. The main issue
with such data is the possible occurrence of anisotropic phenomena, which other-
wise impairs the good performance of classical wavelet systems. This motivates the
need for so-called directional representation systems, some classical constructions
of which we present in Sect. 3, namely classical curvelets and shearlets. Here we
emphasize their similar approximation performance, which is almost optimal for
cartoon-like images.

After this exposition we turn to parabolic molecules as a unifying framework. We
first establish the basic concepts in Sect. 4 and state one main result, namely the cross-
Gramian of two systems of parabolic molecules exhibits a strong off-diagonal decay.
This property will become essential in Sect. 6, where we discuss the approximation
behavior of parabolic molecules. Before moving there, however, we pause for a while
in Sect. 5 to illustrate the versatility of the framework by giving some examples.
After we have convinced the reader of their applicability, we then turn to the section
on approximation, where we essentially prove that any two systems of parabolic
molecules, which are consistent and have sufficiently high order, exhibit the same
approximation behavior.

2 Representation of Multivariate Data

Most applications require efficient encoding of multivariate data in the sense of
optimal (sparse) approximation rates by a suitable representation system. This is
typically phrased as a problem of best N -term approximation (see Sect. 2.1). The
performance of an approximation scheme is then usually analyzed with respect to
certain subclasses of the Hilbert space L2(Rd), which is the standard continuum
domain model for d-dimensional data, in particular, in imaging science. As elaborated
upon before, the key feature of most multivariate data is the appearance of anisotropic
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phenomena. Hence, such a subclass of L2(Rd) is required to provide a suitable model
for this fact, which, for d = 2, is fulfilled by the subclass of so-called cartoon-like
images as introduced in Sect. 2.2. It can then be easily seen that wavelets do not
deliver optimal approximation rates (Sect. 2.3), which then naturally leads to the
theory of directional representation systems.

In the sequel, we will use the “analyst’s brackets” ∈x≥ := ∩
1 + x2, for x → R.

Also, for two quantities A, B → R, which may depend on several parameters we
shall write A � B, if there exists a constant C > 0 such that A ∞ C B, uniformly
in the parameters. If the converse inequality holds true, we write A � B and if both
inequalities hold, we shall write A ≤ B.

2.1 Sparse Approximation

We start by briefly discussing some aspects of approximation theory. From a practical
standpoint, a function f → L2(R2) is a rather intractable object. In order to analyze
f , the most common approach is to represent it with respect to some representation
system (mΩ)Ω→∂ ∇ L2(R2), i.e., to expand f as

f =
∑

Ω→∂

cΩmΩ, (1)

and then consider the coefficients cΩ → R. In practice we have to account for noise,
hence it is necessary to ensure the robustness of such a representation. This leads to
the notion of a frame (cf. [8, 9]).

A frame is a generalization of the notion of an orthonormal basis to include
redundant systems while still ensuring stability. More precisely, a system (mΩ)Ω→∂ ∇
L2(R2) forms a frame for L2(R2), if there exist constants 0 < A ∞ B < ∞ such
that

A∀ f ∀2
2 ∞

∑

Ω→∂

|∈ f, mΩ≥|2 ∞ B∀ f ∀2
2 for all f → L2(R2).

A frame is called tight, if A = B is possible, and Parseval, if A = B = 1. Since
the frame operator S : L2(R2) ∅ L2(R2) defined by S f = ∑

Ω→∂∈ f, mΩ≥mΩ is
invertible, it follows that one sequence of coefficients in (1)—note that for a redundant
system this sequence is not unique anymore—can be computed as

cΩ = ∈ f, S−1mΩ≥, Ω → ∂,

where (S−1mΩ)Ω is usually referred to as the canonical dual frame. This particular
coefficient sequence has the distinct property that it minimizes the α2-norm.

When representing f with respect to a frame (mΩ)Ω ∇ L2(R2), we are con-
fronted with yet another problem. Since in real-world applications infinitely many
coefficients are infeasible, the function f has to be approximated by a finite subset of
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this system. Letting N be the number of elements allowed in this approximation, we
obtain what is called an N -term approximation for f with respect to (mΩ)Ω. The best
N -term approximation, typically denoted by fN , is optimal among those in terms of
a minimal approximation error and is defined by

fN = argmin
(cΩ)Ω→∂N

∀ f −
∑

Ω→∂N

cΩmΩ∀2
2 subject to #∂N ∞ N .

An appropriate measure for the approximation behavior of a system (mΩ)Ω for a
subclass C , say, of L2(R2) is the decay of the L2-error of the best N -term approxi-
mation ∀ f − fN ∀2 as N ∅ ∞, thus the asymptotic approximation rate. As discussed
before, the representation system might not form an orthonormal basis in which case
the computation of the best N -term approximation is far from being understood. The
delicacy of this problem can, for instance, be seen in [13]. A typical approach to
circumvent this problem is to consider instead the N -term approximation by the N
largest coefficients (cΩ)Ω→∂. It is evident that this error also provides a bound for the
error of best N -term approximation.

There indeed exists a close relation between the N -term approximation rate
achieved by a frame and the decay rate of the corresponding frame coefficients.
By measuring this decay rate in terms of the αp-(quasi)-norms for p > 0, the fol-
lowing lemma shows that membership of the coefficient sequence to an αp-space
for small p implies “good” N -term approximation rates. For the proof, we refer to
[10, 27].

Lemma 1 Let f = ∑
cΩmΩ be an expansion of f → L2(R2) with respect to a

frame (mΩ)Ω→∂. Further, assume that the coefficients satisfy (cΩ)Ω → α2/(2k+1) for
some k > 0. Then the best N-term approximation rate is at least of order N−k , i.e.

∀ f − fN ∀2 � N−k .

2.2 Image Data and Anisotropic Phenomena

To model the fact that multivariate data appearing in applications is typically governed
by anisotropic features—in the two-dimensional case curvilinear structures—the so-
called cartoon-like functions were introduced in [11]. This class is by now widely
used as a standard model, in particular, for natural images. It mimics the fact that
natural images often consist of nearly smooth parts separated by discontinuities as
illustrated in Fig. 2.

The first rigorous mathematical definition was given in [11] and extensively
employed starting from the work in [5]. It postulates that images consist of C2(R2)-
regions separated by smooth C2(R)-curves. This leads to the next definition (see also
Fig. 2).
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(1)

(2b)(2a)

Fig. 1 1 Illustration of the appearance of “cartoon-like parts” in natural images. 2 Illustration of the
fact that the human brain is able to deduce the image (2a) just from its “cartoon-like” ingredients
(2b)

Fig. 2 Example of a cartoon-like function

Definition 1 The class E 2(R2) of cartoon-like functions is the set of functions
f :R2 ∅ C of the form

f = f0 + f1εB,

where B ⊂ [0, 1]2 is a set with Δ B being a continuous and piecewise C2-curve
with bounded curvature and fi → C2(R2) are functions with supp f0 ⊂ [0, 1]2 and
∀ fi∀C2 ∞ 1, for each i = 0, 1.

We remark that by now several extensions of this model have been introduced
and studied, starting with the extended model in [26].
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Having agreed on a suitable subclass of functions, one might now ask whether
there exists a maximal asymptotic approximation rate leading to a notion of optimal-
ity. Indeed, such a benchmark result was derived by Donoho in [11].

Theorem 1 [11] Let (mΩ)Ω→∂ ∇ L2(R2). Under the assumption of polynomial
depth search for the representation coefficients used in the N-term approximation,
the associated asymptotic approximation rate of some f → E 2(R2) satisfies at best

∀ f − fN ∀2
2 ≤ N−2 as N ∅ ∞.

It is in this sense that a system satisfying this approximation rate is said to deliver
optimally sparse approximations.

2.3 2D Wavelet Systems

Nowadays, wavelet systems are widely utilized representation systems both for the-
oretical purposes as well as for engineering applications, for instance, for the decom-
position of elliptic operators or for the detection of anomalies in signals. Their success
stems from the fact that wavelets deliver optimal sparse approximations for data being
governed by isotropic features—which is in particular the case for elliptic operator
equations whose solutions may exhibit point singularities (for instance if re-entrant
corners are present in the computational domain) as well as in the one-dimensional
setting—and from the fast numerical realization of the wavelet transform.

Let us first recall a certain type of wavelet system in L2(R2), obtained by the
following tensor product construction, see example [30] for details. Starting with
a given multiresolution analysis of L2(R) with scaling function ψ0 → L2(R) and
wavelet ψ1 → L2(R), for every index e = (e1, e2) → E , E = {0, 1}2, the generators
δe → L2(R2) are defined as the tensor products

δe = ψe1 ◦ ψe2 .

Definition 2 Let ψ0, ψ1 → L2(R) and δe → L2(R2), e → E , be defined as above.
For fixed sampling parameters θ > 1, c > 0, we define the discrete wavelet system

W
(
ψ0, ψ1; θ, c

) =
{
δ(0,0)(· − ck) : k → Z

2
}

∪
{
θ jδe(θ j · −ck) : e → E\{(0, 0)}, j → N0, k → Z

2
}
.

The associated index set is given by

∂w = {((0, 0), 0, k) : k → Z
2} ∪ {(e, j, k) : e → E\{(0, 0)}, j → N0, k → Z

2}.
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Next, we recall the definition of vanishing moments for univariate wavelets, which
says that the associated wavelet system annihilates polynomials up to some degree.

Definition 3 A function g → L2(R) is said to possess M vanishing moments, if

∫

R

g(x)xkdx = 0, for all k = 0, . . . , M − 1.

It is well known that this property can be characterized by polynomial decay
near zero of the associated Fourier transform. For the convenience of the reader, we
provide the short proof.

Lemma 2 Suppose that g → L2(R) ⇒ C(R) is compactly supported and possesses
M vanishing moments. Then

|ĝ(ν)| � min (1, |ν |)M .

Proof First, note that, since g is continuous and compactly supported, g → L1(R)

and hence ĝ is bounded. This shows that the claimed inequality holds for |ν | > 1.
Let now ν → R satisfy |ν | ∞ 1. For this, observe that, up to a constant,

∫

R

g(x)xkdx =
(

d

dν

)k

ĝ(0).

Since g possesses M vanishing moments, it follows that all derivatives of order
k < M of ĝ vanish at 0. Furthermore, since g is compactly supported, its Fourier
transform is analytic. Thus

|ĝ(ν)| � |ν |M ,

which proves the claim. ∃�
We now assume that ψ0, ψ1 → L2(R) satisfy ⎢ψ0, ⎢ψ1 → C∞(R) and there are

0 < a and 0 < a1 < a2 such that

supp⎢ψ0 ⊂ [−a, a] and supp⎢ψ1 ⊂ [−a2, a2]\[−a1, a1].

These conditions are fulfilled, for instance, if ψ0, ψ1 → L2(R) are the generators
of a Lemarié-Meyer wavelet system. In this case, it is well known that the associ-
ated tensor product wavelets are indeed suboptimal for approximation of anisotropic
features modeled by cartoon-like functions.

Theorem 2 For f → E 2(R2), the wavelet system W
(
ψ0, ψ1; θ, c

)
provides an

asymptotic L2-error of best N-term approximation given by

∀ f − fN ∀2
2 ≤ N−1 as N ∅ ∞.
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(1) (2)

Fig. 3 Approximation of a curve by isotropic-shaped (1) and anisotropic-shaped (2) elements

3 Directional Representation Systems

The reason for the failure of wavelets to provide optimally sparse approximations of
cartoon-like functions is the fact that wavelets are inherently isotropic objects and
thus not optimally suited for approximating anisotropic objects. To overcome this
problem, in recent years various directional representation systems were introduced,
among which are ridgelets, curvelets, and shearlets, to name just a few. Their main
advantage lies in their anisotropic support, which is much better suited to align with
curvilinear structures (see Fig. 3), thereby already intuitively promoting a fast error
decay of the best N -term approximation.

In this section, we now first introduce the second-generation curvelet system,
which was in fact also the first system to provide (almost) optimally sparse approxi-
mations of cartoon-like functions (cf. Sect. 3.1). This is followed by a discussion of
different versions of shearlets in Sect. 3.2.

3.1 Second-Generation Curvelets

Second-generation curvelets were introduced in 2004 by Candès and Donoho in
the seminal work [5]. It is this curvelet system which is today referred to when
curvelets are mentioned. The anisotropy of these systems is induced into this system
by enforcing a parabolic scaling so that the shape of the support essentially follows
the parabolic scaling law “length2 ≈ width”. Intuitively, this seems a compromise
between the isotropic scaling, as utilized for wavelets, and scaling in only one coor-
dinate direction, as utilized for ridgelets. However, the reason is much deeper, since
this law is particularly suited for approximating C2-singularity curves, which is the
type of curves our model is based on.

We now describe the original construction. For this, let W and V be two window
functions that are both real, nonnegative, C∞, and supported in

( 1
2 , 2
)

and in (−1, 1),
respectively. We further require that these windows satisfy

∑

j→Z
W
(

2 j r
)2 = 1 for all r → R+ and

∑

α→Z
V (t − α)2 = 1 for all t →

(

−1

2
,

1

2

)

.
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For every scale j ∪ 0, we now define the functions γ( j,0,0) in polar coordinates by

γ̂( j,0,0)(r, κ) := 2−3 j/4W
(

2− j r
)

V
(

2� j/2�κ
)

.

For j → Z and π → T, the parabolic scaling matrix A j and the rotation matrix Rπ are
defined by

A j :=
(

2 j 0
0 2 j/2

)

and Rπ =
(

cos(π) − sin(π)

sin(π) cos(π)

)

.

The definition of curvelets then reads as follows:

γ( j,α,k)(·) := γ( j,0,0)

(
Rπ j,α · −x j,k

)
,

where π j,α = α2−� j/2�γ , x j,k = A−1
j k, and ( j, α, k) → ∂0 with the set of curvelet

indices given by

∂0 :=
{
( j, α, k) → Z

4 : j ∪ 0, α = −2� j/2�−1, . . . , 2� j/2�−1
}

. (2)

With appropriate modifications for the low-frequency case j = 0, for details we
refer to [7], the system

η0 :=
{
γΩ : Ω → ∂0

}

constitutes a Parseval frame for L2(R2), which is customarily referred to as the
frame of second generation curvelets. When identifying frame elements oriented in
antipodal directions, this system becomes a frame with real-valued elements.

Let us next discuss the approximation properties of η0 proved in [5]. Ignoring log-
like factors, this frame indeed attains the optimal achievable approximation rate for
the class of cartoon-like functions E 2(R2). Moreover, this rate is achieved by simple
thresholding, which is even more surprising, since this approximation scheme is
intrinsically nonadaptive.

Theorem 3 [5] The second generation curvelet frame η0 provides (almost) optimal
sparse approximations of cartoon-like functions f → E 2(R2), i.e.,

∀ f − fN ∀2
2 � N−2(log N )3 as N ∅ ∞, (3)

where fN is the nonlinear N-term approximation obtained by choosing the N largest
curvelet coefficients of f .

The implicit constant in (3) only depends on the maximal curvature of the singularity
curve of f , the number of corner points, and the minimal opening angle in the corners.
In particular, the approximation rate is uniform over all functions whose singularity
curve has maximal curvature bounded by a fixed constant.
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Fig. 4 Frequency tiling
induced by a curvelet
system (1) and a shearlet
system (2)

(1) (2)

Finally, we remark that due to the construction the frame elements of η0 are band-
limited functions. Up to now no constructions of compactly supported curvelets are
known.

3.2 Shearlet Systems

Shearlets were introduced in 2006 [19] as the first directional representation system
which not only satisfies the same celebrated properties of curvelets, but is also more
adapted to the digital realm. In fact, shearlets enable a unified treatment of the con-
tinuum and digital setting, which allows implementations faithful to the continuum
domain theory. This key property is achieved through utilization of a shearing matrix
instead of rotations as a means to parameterize orientation, thereby preserving the
structure of the integer grid. The resulting different tilings of frequency domain are
illustrated in Fig. 4.

We next introduce a selection of the variety of available shearlet systems, namely
bandlimited shearlets (Sect. 3.2.1), the so-called smooth Parseval frames of shearlets
(Sect. 3.2.3), and compactly supported shearlets (Sect. 3.2.2). For a more detailed
exposition of shearlets than given below, we refer to the book [28].

3.2.1 Bandlimited Shearlets

We first present the classical cone-adapted shearlet construction of bandlimited shear-
lets presented in [19]. It is worth emphasizing that due to the shearing operator, the
frequency domain needs to be split into four cones to ensure an almost uniform
treatment of the different directions, which comes naturally for rotation as a means
to change the orientation (compare Fig. 4).

First, let δ1, δ2 → L2(R) be chosen such that

supp δ̂1 ⊂
⎥

−1

2
,− 1

16

⎫

∪
⎥

1

16
,

1

2

⎫

, supp δ̂2 ⊂ [−1, 1] ,

∑

j∪0

⎬
⎬
⎬δ̂1

(
2− jκ

)⎬
⎬
⎬
2 = 1 for |κ| ∪ 1

8
,
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and
2� j/2�
∑

α=−2� j/2�

⎬
⎬
⎬δ̂2

(
2� j/2�κ + α

)⎬
⎬
⎬
2 = 1 for |κ| ∞ 1.

Then the classical mother shearlet δ is defined by

δ̂(ν) := δ̂1(ν1)δ̂2

(
ν2

ν1

)

.

For j, α → Z let now the parabolic scaling matrix A j and the shearing matrix Sα

be defined by

A j :=
(

2 j 0
0 2 j/2

)

and Sα :=
(

1 α

0 1

)

.

Further, for a domain � ⊂ R
2 let us define the space

L2(�)∨ :=
{

f → L2(R2) : supp⎢f ⊂ �
}

.

It was then shown in [19] that the system

�0 :=
{

23 j/4δ
(
Sα A j · −k

) : j ∪ 0, α = −2� j/2�, . . . , 2� j/2�, k → Z
2
}

constitutes a Parseval frame for the Hilbert space L2 (C )∨ on the frequency cone

C :=
⎭

ν : |ν1| ∪ 1

8
,

|ν2|
|ν1| ∞ 1

⎛

.

By reversing the coordinate axes, also a Parseval frame �1 for L2
(
C ′)∨, where

C ′ :=
⎭

ν : |ν2| ∪ 1

8
,

|ν1|
|ν2| ∞ 1

⎛

,

can be constructed. Finally, we can consider a Parseval frame

Θ :=
{
ψ(· − k) : k → Z

2
}

for the Hilbert space L2
(⎝− 1

8 , 1
8

⎞2)∨
. Combining those systems, we obtain the

bandlimited shearlet frame
� := �0 ∪ �1 ∪ Θ.
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In [20], it was shown that bandlimited shearlet frames achieve (almost) optimal
sparse approximations for elements of E 2(R2), similar to curvelets and in fact even
with the same log-like factor.

Theorem 4 [20] The bandlimited shearlet frame � provides (almost) optimal sparse
approximations of cartoon-like functions f → E 2(R2), i.e.,

∀ f − fN ∀2
2 � N−2(log N )3 as N ∅ ∞,

where fN is the nonlinear N-term approximation obtained by choosing the N largest
shearlet coefficients of f .

3.2.2 Smooth Parseval Frames of Shearlets

Following [22], a slight modification of the bandlimited shearlet construction, namely
by carefully glueing together boundary elements along the seamlines with angle γ/4,
yields a Parseval frame with smooth and well-localized elements.

3.2.3 Compactly Supported Shearlets

In 2011, compactly supported shearlets were introduced by one of the authors and
her collaborators in [27]. Currently known constructions of compactly supported
shearlets involve separable generators, i.e.,

δ(x1, x2) := δ1(x1)δ2(x2), ⎠δ(x1, x2) := δ(x2, x1). (4)

with a wavelet δ1 and a scaling function δ2. Following [27], the cone-adapted
discrete shearlet system is then defined as follows, where A j := diag(2 j , 2 j/2) as
before and ⎠A j := diag(2 j/2, 2 j ).

Definition 4 For some fixed sampling parameter c > 0, the cone-adapted discrete
shearlet system SH

(
ψ,δ, ⎠δ; c

)
generated by ψ,δ, ⎠δ → L2(R2) is defined by

SH
(
ψ,δ, ⎠δ; c

) = Θ(ψ; c) ∪ �(δ; c) ∪ ⎠�(⎠δ; c),

where

Θ(ψ; c) = {σk = ψ(· − k) : k → cZ2},
�(δ; c) = {σ j,α,k = 23 j/4δ(Sα A j · −k) : j ∪ 0, |α| ∞ �2 j/2�, k → cZ2},

⎠�(⎠δ; c) = {⎠σ j,α,k = 23 j/4⎠δ(ST
α
⎠A j · −k) : j ∪ 0, |α| ∞ �2 j/2�, k → cZ2}.

Under certain assumptions on c, δ, ⎠δ this shearlet system forms a frame with
controllable frame bounds [24].
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In [27], it was shown that compactly supported shearlet frames, under assumptions
on the separable behavior and the directional vanishing moments of the generators,
also achieve (almost) optimal sparse approximations for elements of E 2(R2).

Theorem 5 [27] Let c > 0 and let ψ,δ, ⎠δ → L2(R2) be compactly supported.
Suppose that, in addition, for all ν = (ν1, ν2) → R

2, the shearlet δ satisfies

(i) |δ̂(ν)| ∞ C1 min(1, |ν1|α) min(1, |ν1|−γ ) min(1, |ν2|−γ ) and

(ii)
⎬
⎬
⎬ Δ
Δν2

δ̂(ν)

⎬
⎬
⎬ ∞ |h(ν1)|

(
1 + ν2

ν1

)−γ

,

where α > 5, γ ∪ 4, h → L1(R), and C1 is a constant, and suppose that
the shearlet ⎠δ satisfies (i) and (ii) with the roles of ν1 and ν2 reversed. Further,
suppose that SH(ψ,δ, ⎠δ; c) forms a frame for L2(R2). Then the shearlet frame
SH(ψ,δ, ⎠δ; c) provides (almost) optimal sparse approximations of cartoon-like
functions f → E 2(R2), i.e.,

∀ f − fN ∀2
2 � N−2(log N )3 as N ∅ ∞,

where fN is the nonlinear N-term approximation obtained by choosing the N largest
shearlet coefficients of f .

With this theorem we end our presentation of directional representation systems,
although there do exist more constructions. It is a striking fact that the three pre-
sented examples all exhibit the same approximation behavior, although they are
construction-wise quite different. The framework of parabolic molecules, which we
will present in the subsequent sections, will reveal the fundamental common ingre-
dients in these systems which ensure (almost) optimal sparse approximations of
cartoon-like functions.

4 Parabolic Molecules

The concept of parabolic molecules took shape by distilling the essential principles
which underly many of the newly constructed directional representation systems, in
particular, curvelets and shearlets. It provides a framework which comprises many
of these classic systems, and allows the design of new constructions with predefined
approximation properties.

Moreover, the approximation properties of some new system are usually proven
more or less from scratch. By adopting the higher level viewpoint of time-frequency
localization, the parabolic molecule framework is very general and independent of
specific constructions. This has the advantage that it enables a unified treatment for
many systems. In particular, it can be used to establish approximation results for
many systems simultaneously.

A system of parabolic molecules consists of functions obtained from a set of
generators via parabolic dilations, rotations, and translations. Similar to curvelets,
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each function in a system of parabolic molecules is therefore naturally associated
with a certain scale, orientation, and spatial location.

A central feature of the framework, which explains the terminology “molecules,”
is the concept of variable generators: In order to gain flexibility the generators are
allowed to vary, as long as they obey a prescribed time-frequency localization. At
the heart of this is the fundamental observation that it is foremost the time-frequency
localization which determines the approximation properties and performance of a
system.

A nice side effect of this less rigid construction principle is the fact that the strict
vanishing moment conditions, usually imposed on the generators of classical con-
structions, can be relaxed without changing the asymptotic approximation behavior
of the system. It suffices to require the moments to vanish asymptotically at high
scales.

4.1 Definition of Parabolic Molecules

Let us now delve into the details of the framework of parabolic molecules. A system
of parabolic molecules is a family of functions (mΩ)Ω→∂ obtained from a set of
generators via parabolic dilations, rotations, and translations. Each function mΩ is
therefore associated with a unique point in the parameter space P, sometimes also
referred to as phase space, given by

P := R+ × T × R
2,

where a point p = (s, π, x) → P specifies a scale 2s → R+, an orientation π → T, and
a location x → R

2.
The relation between the index Ω of a molecule mΩ and its location (sΩ, πΩ, xΩ) in

the parameter space P is described via so-called parameterizations.

Definition 5 A parameterization consists of a pair (∂,Θ∂), where ∂ is a discrete
index set and Θ∂ is a mapping

Θ∂ : ∂ ∅ P, Ω �∅ (sΩ, πΩ, xΩ) ,

which associates with each Ω → ∂ a scale sΩ, a direction πΩ, and a location xΩ → R
2.

By using parameterizations, the actual indices of the molecules can be decoupled
from their associated locations in P. This gives the freedom to assign generic indices
to the molecules, a feature that is essential to include systems into the framework,
whose constructions are based on different principles, for example shearlet-like and
curvelet-like systems. Another benefit of this approach is that a parameterization
does not have to sample phase space in a regular fashion. The only property it needs
to satisfy for our results to be applicable is consistency as defined below in Sect. 6.2.
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Before defining parabolic molecules we fix the following notation. As defined
in Sect. 3, let Rπ denotes the rotation matrix by an angle π , and A j is the parabolic
scaling matrix associated with j ∪ 0.

Definition 6 Let ∂ be a parameterization. A family (mΩ)Ω→∂ of functions mΩ →
L2(R2) is called a family of parabolic molecules of order (R, M, N1, N2) if it can
be written as

mΩ(x) = 23sΩ/4a(Ω)
(

AsΩ RπΩ (x − xΩ)
)

such that

⎬
⎬
⎬Δβ â(Ω)(ν)

⎬
⎬
⎬ � min

(
1, 2−sΩ + |ν1| + 2−sΩ/2|ν2|

)M ∈|ν |≥−N1 ∈ν2≥−N2 (5)

for all |β| ∞ R. The implicit constants shall be uniform over Ω → ∂.

Remark 1 To simplify notation we did not explicitly refer to the utilized parameter-
ization Θ∂.

Note that a system of parabolic molecules (mΩ)Ω→∂ is generated by parabolically
scaling, rotating, and translating a set of generators (a(Ω))Ω→∂. In contrast to many
classical constructions, where the set of generators is usually small, each molecule
is allowed to have its own individual generator. We only require these generators to
uniformly obey a prescribed time-frequency localization.

Recall that for convenience the time-frequency conditions in the definition are
formulated on the Fourier side. Thus, the number R actually describes the spatial
localization, M the number of directional (almost) vanishing moments, and N1, N2
describe the smoothness of an element mΩ.

According to the definition, the frequency support of a parabolic molecule is
concentrated in a parabolic wedge associated to a certain orientation, and in the
spatial domain its essential support lies in a rectangle with parabolic aspect ratio. For
illustration purposes, the approximate frequency support of two parabolic molecules
at different scales and orientations is depicted in Fig. 5.

Changing into polar coordinates, we obtain the representation

m̂Ω(r, ϕ) = 2−3sΩ/4â(Ω)
(
2−sΩr cos(ϕ + πΩ), 2−sΩ/2r sin(ϕ + πΩ)

)
exp (2γ i∈xΩ, ν≥) ,

which directly implies the estimate

⎬
⎬m̂Ω(ν)

⎬
⎬ � 2−2sΩ/4 min

(
1, 2−sΩ(1 + r)

)M ⎤
2−sΩr

⎧−N1 ∈2−sΩ/2r sin(ϕ + πΩ)≥−N2 .

4.2 Index Distance

An essential ingredient for the theory is the fact that the parameter space P can be
equipped with a natural (pseudo-)metric. It was first introduced by Smith [29], albeit
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Fig. 5 1 The weight function min
(
1, 2−sΩ + |ν1| + 2−sΩ/2|ν2|

)M ∈|ν |≥−N1 ∈ν2≥−N2 for sΩ = 3,
M = 3, N1 = N2 = 2. 2 Approximate frequency support of a corresponding molecule m̂Ω with
πΩ = γ/4

in a different context, and is therefore sometimes termed as the Hart-Smith pseudo
metric. Later it was also used in [3].

Definition 7 Following [3, 29], we define for two indices Ω,μ the index distance

κ (Ω,μ) := 2|sΩ−sμ| (1 + 2sΩ0 d (Ω, μ)
)
,

and
d (Ω, μ) := |πΩ − πμ|2 + |xΩ − xμ|2 + |∈eΩ, xΩ − xμ≥|.

where Ω0 = argmin(sΩ, sμ) and eΩ = (cos(πΩ), sin(πΩ))
�.

Remark 2 The notation κ(Ω,μ) is a slight abuse of notation, since κ is acting on P.
Therefore it should read as

κ (Θ∂(Ω),Θ�(μ))

for indices Ω → ∂, μ → � with associated parameterizations Θ∂, Θ�. In order not to
overload the notation, we stick with the shorter but slightly less accurate definition.

Remark 3 We also mention that there is a slight inaccuracy in the above definition.
Real-valued curvelets or shearlets are not associated with an angle but with a ray,
i.e., π and π + γ need to be identified. This is not reflected in the above definition.
The “correct” definition should assume that |πΩ| ∞ γ

2 → P
1, the projective line.

Therefore, it should read as

d(Ω, μ) := |{πΩ − πμ}|2 + |xΩ − xμ|2 + |∈πΩ, xΩ − xμ≥|
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with {ϕ} being the projection of ϕ onto P
1 ∼= (−γ/2, γ/2]. However, for our results

it will make no difference which definition is used. Thus we employ Definition 7,
which avoids additional technicalities.

Note that the Hart-Smith pseudo metric is not a distance in the strict sense, e.g., we
have κ(Ω, Ω) = 1 �= 0. As we shall see later, it somehow measures the correlation of a
pair of parabolic molecules associated to the corresponding points inP. The following
proposition, whose proof can be found in [3], collects some of its properties.

Proposition 1 [3] For indices Ω, μ, ν we have

(i) Symmetry: κ(Ω,μ) ≤ κ(μ, Ω).
(ii) Triangle Inequality: d(Ω, μ) ∞ C (κ(Ω, ν) + κ(ν, μ)) for some constant

C > 0.
(iii) Composition: For every integer N > 0 and some positive constant CN it holds

∑

ν

κ(Ω, ν)−N κ(ν, μ)−N ∞ CN κ(Ω,μ)−N−1.

4.3 Decay of the Cross-Gramian

Given two systems (mΩ)Ω→∂ and (pμ)μ→� of parabolic molecules; we are interested
in the magnitudes of the cross-correlations |∈mΩ, pμ≥|. A fast decay will be the key
to, for instance, transferring sparse approximation properties from one system of
parabolic molecules to another.

The following theorem establishes a relation to the index distance on P. It states
that a high distance of two indices can be interpreted as a low cross-correlation of
the associated molecules. The proof is quite technical and we refer to [17] for the
details.

Theorem 6 [17] Let (mΩ)Ω→∂, (pμ)μ→� be two systems of parabolic molecules of
order (R, M, N1, N2) with

R ∪ 2N , M > 3N − 5

4
, N1 ∪ N + 3

4
, N2 ∪ 2N .

Then ⎬
⎬
⎤
mΩ, pμ

⎧⎬
⎬ � κ

(
(sΩ, πΩ, xΩ), (sμ, πμ, xμ)

)−N
.

This result shows that the Gramian matrix between two systems of parabolic
molecules satisfies a strong off-diagonal decay property and is in that sense very
close to a diagonal matrix. In Sect. 6 we will present several immediate applications
of this result, most notably for the approximation properties of parabolic molecules.
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5 Examples of Parabolic Molecules

Before going deeper into the theory of parabolic molecules and further exploring
their properties, we pause for a while and give some examples for illustration. This
will give evidence about the versatility of the concept. In particular, we show that
both rotation-based and shear-based constructions fit well into the framework. It will
also be proven that earlier constructions, which also employ the “molecule” concept,
can be viewed as subclasses of the more general parabolic molecules.

5.1 Curvelet-Like Systems

We begin with the review of curvelet-like systems, i.e., constructions based on rota-
tion. Due to their similar construction principles, it may not come as a surprise that
second-generation curvelets are instances of parabolic molecules. It is also easily
verified that curvelet molecules as defined in [3] fall into this framework.

5.1.1 Second-Generation Curvelets

We start by specifying the parameterization, which we utilize for fitting second-
generation curvelets into the framework of parabolic molecules.

Definition 8 Let

∂0 :=
{
( j, α, k) → Z

4 : j ∪ 0, α = −2� j/2�−1, . . . , 2� j/2�−1
}

,

be the curvelet index from (2) and define Θ0 : ∂0 ∅ P by

Θ0( j, α, k) := ( j, α2−� j/2�γ, R−πΩ A−sΩk).

Then (∂0,Θ0) is called the canonical parameterization.

We next prove that the frame η0 of second-generation curvelets as defined in
Sect. 3.1 forms a system of parabolic molecules of arbitrary order.

Proposition 2 [17] The second-generation curvelet frame η0 constitutes a system
of parabolic molecules of arbitrary order associated with the canonical parameter-
ization.

Proof Let Ω → ∂0. Due to rotation invariance, we may restrict ourselves to the case
πΩ = 0. Therefore, denoting γ j := γ( j,0,0), it is sufficient to prove that the function

a(Ω)(·) := 2−3sΩ/4γ j

(
A−1

sΩ ·
)
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satisfies (5) for (R, M, N1, N2) arbitrary. For this, first note that

â(Ω)(·) = 23sΩ/4γ̂ j
(

AsΩ ·
)
.

The function â(Ω), together with all its derivatives, has compact support in a rectangle
away from the ν1-axis. Therefore, it only remains to show that, on its support, the
function â(Ω) has bounded derivatives, with a bound independent of j . But this follows

from elementary arguments, using r =
⎪

ν2
1 + ν2

2 , κ = arctan (ν2/ν1), which yields

â(Ω)(ν) = γ̂( j,0,0)

(
A jν

) = W
(
α j (ν)

)
V
(
β j (ν)

)
,

α j (ν) := 2− j
⎪

22 jν2
1 + 2 jν2

2 and β j (ν) := 2 j/2 arctan

(
ν2

2 j/2ν1

)

.

By a straightforward calculation, all derivatives of α j and β j are bounded on the
support of â(Ω) and uniformly in j . The proposition is proved. ∃�

5.1.2 Hart Smith’s Parabolic Frame

Historically, the first instance of a decomposition into parabolic molecules can be
found in Hart Smith’s work on Fourier Integral Operators and Wave Equations [29].
This frame, as well as its dual, again forms a system of parabolic molecules of arbi-
trary order associated with the canonical parameterization. We refer to [1, 29] for the
details of the construction which is essentially identical to the curvelet construction,
with primal and dual frame being allowed to differ. The same discussion as above
for curvelets also shows that this system is a special instance of the framework of
parabolic molecules.

5.1.3 Borup and Nielsen’s Construction

Another very similar construction has been given in [2]. In this paper, the focus
has been on the study of associated function spaces. Again, it is straightforward to
prove that this system constitutes a system of parabolic molecules of arbitrary order
associated with the canonical parameterization.

5.1.4 Curvelet Molecules

The final concept of parabolic molecules had many predecessors. In [3] the authors
also employed the idea of molecules and introduced the notion of curvelet molecules.
It proved to be a useful concept for showing sparsity properties of wave propagators.
Let us first give their exact definition.
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Definition 9 Let ∂0 be the canonical parameterization. A family (mΩ)Ω→∂0 is called
a family of curvelet molecules of regularity R if it can be written as

mΩ(x) = 23sΩ/4a(Ω)
(

AsΩ RπΩ (x − xΩ)
)

such that, for all |β| ∞ R and each N = 0, 1, 2, . . . ,

|Δβa(Ω)(x)| � ∈x≥−N

and, for all M = 0, 1, 2, . . . ,

|â(Ω)(ν)| � min
(

1, 2−sΩ + |ν1| + 2−sΩ/2|ν2|
)M

.

This definition is similar to our definition of parabolic molecules, however, with
two crucial differences: First, (5) allows for arbitrary rotation angles and is there-
fore more general. Curvelet molecules, on the other hand, are only defined for the
canonical parameterization ∂0 (which, in contrast to our definition, is not sufficiently
general to also cover shearlet-type systems). Second, the decay conditions analogous
to our condition (5) are more restrictive in the sense that it requires infinitely many
nearly vanishing moments.

In fact, the following result can be proven using similar arguments as for Propo-
sition 2.

Proposition 3 [17] A system of curvelet molecules of regularity R constitutes a
system of parabolic molecules of order (∞,∞, R/2, R/2).

5.2 Shearlet-Like Systems

It is perhaps not surprising that curvelets and their relatives described above fall into
the framework of parabolic molecules. However, we next show that even shearlets as a
very different directional representation system are examples of parabolic molecules.
In this regard, we draw the reader’s attention to the parameterization chosen for fitting
shearlets into this framework.

5.2.1 Shearlet Molecules

Shearlet molecules as introduced in [17] provide a framework for shearlet-like sys-
tems in the spirit of curvelet molecules. For their definition, we require the index
set

∂σ :=
{
(ε, j, α, k) → Z2 × Z

4 : ε → {0, 1}, j ∪ 0, α = −2� j/2�, . . . , 2� j/2�} (6)
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and generating functions ψ,δ j,α,k, ⎠δ j,α,k → L2(R2), for ( j, α, k) → ∂σ . The associ-
ated shearlet system

� := {σΩ : Ω → ∂σ
}
,

is then defined by setting σ(ε,0,0,k)(·) = ψ(· − k) and for j ∪ 1:

σ(0, j,α,k)(·) = 23 j/4δ j,α,k
(

A j Sα, j · −k
)
,

σ(1, j,α,k)(·) = 23 j/4⎠δ j,α,k

(
⎠A j ST

α, j · −k
)

.

Here, Sα, j denotes the shearing matrix

Sα, j :=
(

1 α2−� j/2�
0 1

)

.

We proceed to define shearlet molecules of order (R, M, N1, N2), which is a
generalization of shearlets adapted to parabolic molecules, in particular including
the classical shearlet molecules introduced in [21], see Sect. 5.2.5.

Definition 10 We call �, a system of shearlet molecules of order (R, M, N1, N2),
if the functions δ j,α,k satisfy

|Δβδ̂ j,α,k(ν1, ν2)| � min
(

1, 2− j + |ν1| + 2− j/2|ν2|
)M ∈|ν |≥−N1∈ν2≥−N2 (7)

and
|Δβψ̂(ν1, ν2)| � ∈|ν |≥−N1∈ν2≥−N2 (8)

for every β → N
2 with |β| ∞ R, and if the functions ⎠δ j,α,k satisfy (7) with the roles

of ν1 and ν2 reversed.

Remark 4 In our proofs, it is nowhere required that the directional parameter α runs
between −2� j/2� and −2� j/2�. Indeed, α running in any discrete interval −C2� j/2�,
. . . , C2� j/2� would yield the exact same results, as a careful inspection of our argu-
ments shows. Likewise, in certain shearlet constructions, the translational sampling
runs not through k → Z

2, but through θZ2 with θ > 0 a sampling constant. Our
results are also valid for this case with similar proofs. The same remark applies to
all curvelet-type constructions.

Now we can show the main result of this section, namely that shearlet systems
with generators satisfying (7) and (8) are actually instances of parabolic molecules
associated with a specific shearlet-adapted parametrization (∂σ ,Θσ ). This result
shows that the concept of parabolic molecules is indeed a unification of in particular
curvelet and shearlet systems.

Proposition 4 [17] Assume that the shearlet system � constitutes a system of
shearlet molecules of order (R, M, N1, N2). Then � forms a system of parabolic
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molecules of order (R, M, N1, N2), associated to the parameterization (∂σ ,Θσ ),
where with A0

j = A j , A1
j = ⎠A j , S0

α, j = Sα, j , S1
α, j = ST

α, j the map Θσ is given by

Θσ (Ω) = (sΩ, πΩ, xΩ) :=
(

j, εγ/2 + arctan(−α2−� j/2�),
(

Sε
α, j

)−1 (
Aε

j

)−1
k

)

.

Proof We confine the discussion to ε = 0, the other case being the same. Further,
we suppress the subscripts j, α, k in our notation. We need to show that

a(Ω)(·) := δ
(

AsΩ Sα,sΩ RT
πΩ

A−sΩ ·
)

satisfies (5). We first observe that the Fourier transform of a(Ω) is given by

â(Ω)(·) = δ̂
(

A−sΩ S−T
α,sΩ

RT
πΩ

AsΩ ·
)

,

and the matrix S−T
α,sΩ

RT
πΩ

has the form

S−T
α,sΩ

RT
πΩ

=
(

cos(πΩ) sin(πΩ)

0 −α2−�sΩ/2� sin(πΩ) + cos(πΩ)

)

=:
(

u v

0 w

)

.

We next claim that the quantities u and w are uniformly bounded from above and
below, independent of j, α. To prove this claim, consider the functions

θ(x) := cos(arctan(x)) and ρ(x) := x sin(arctan(x)) + cos(arctan(x)),

which are bounded from above and below on [−1, 1], as elementary arguments show.
In fact, this boundedness holds on any compact interval. We have

u = θ
(
−α2�sΩ/2�) and w = ρ

(
−α2�sΩ/2�) .

Since we are only considering indices with ε = 0, we have
⎬
⎬−α2�sΩ/2�⎬⎬ ∞ 1, which

now implies uniform upper and lower boundedness of the quantities u, w. Hence,
there exist constants 0 < δu ∞ �u < ∞ and 0 < δw ∞ �w < ∞ such that for all
j, α it holds

δu ∞ u ∞ �u and δw ∞ w ∞ �w.

Observing that the matrix A−sΩ RT
πΩ

S−T
α,sΩ

AsΩ has the form

(
u 2−sΩ/2v

0 w

)

,
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and by using the upper boundedness of u, v, w, and the chain rule, for any |β| ∞ R,
we obtain

|Δβ â(Ω)(ν)| � sup
|γ |∞R

⎬
⎬
⎬
⎬Δ

γ δ̂

((
u 2−sΩ/2v

0 w

)

ν

)⎬
⎬
⎬
⎬ �

(
|ν1| + 2−sΩ/2|ν2|

)M
.

For the last estimate we utilized the moment estimate for δ̂ , which is given by (7).
This proves the moment property required in (5).

Finally, we need to show the decay of Δβ â(Ω) for large frequencies ν . Again, due
to the fact that u, v, w are bounded from above and u, w from below, and utilizing
the large frequency decay estimate in (7), we can estimate

|Δβ â(Ω)(ν)| � sup
|γ |∞R

⎬
⎬
⎬
⎬Δ

γ δ̂

((
u 2−sΩ/2v

0 w

)

ν

)⎬
⎬
⎬
⎬

�
⎨⎬
⎬
⎬
⎬

(
u 2−sΩ/2v

0 w

)

ν

⎬
⎬
⎬
⎬

⎩−N1

∈wν2≥−N2

� ∈|ν |≥−N1 ∈ν2≥−N2 .

The statement is proven. ∃�
In the remainder of this section, we examine the main shearlet constructions

which are known today and show that they indeed fit into the framework of parabolic
molecules.

5.2.2 Classical Shearlets

For the bandlimited shearlet system � defined in Sect. 3.2.1, the following results
can be shown using Proposition 4.

Proposition 5 [17] The system � := �0 ∪ �1 ∪ Θ constitutes a shearlet frame
which is a system of parabolic molecules of arbitrary order.

It is also straightforward to check that the related Parseval frame constructed in
[22] constitutes a system of parabolic molecules of arbitrary order.

5.2.3 Bandlimited Shearlets with Nice Duals

The bandlimited shearlet frame � as described above suffers from the fact that its
dual frames are unknown. In particular, it is not known whether, in general, there
exists a dual frame which also forms a system of parabolic molecules. In particular
for applications, such a construction is however required. For general frames � of
parabolic molecules, it can be shown that the canonical dual frame �′ constitutes a
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system of parabolic molecules of lower order [16]. However, the result of that paper
is mostly of a qualitative nature and in particular it is difficult to compute the order
of the dual frame for a given construction. In [15], this problem was successfully
resolved by carefully gluing together the two bandlimited frames associated with
the two frequency cones. The result in this paper in fact provides a construction of
shearlet frames � with a dual frame �′ such that both � and �′ form systems of
parabolic molecules of arbitrary order.

5.2.4 Compactly Supported Shearlets

Again by using the general result Proposition 4, it can be shown that the compactly
supported shearlets as introduced in Sect. 3.2.3 also constitute a system of parabolic
molecules, this time with the order being dependent in a more delicate way on the
chosen generators.

Proposition 6 [17] Assume that δ1 → C N1 is a compactly supported wavelet with
M + R vanishing moments, and δ2 → C N1+N2 is also compactly supported. Then,
with δ and ⎠δ defined by (4), the associated shearlet system � constitutes a system
of parabolic molecules of order (R, M, N1, N2).

We remark that several assumptions on the generators δ, ⎠δ could be weakened,
for instance, the separability of the shearlet generators is not crucial for the arguments
of the associated proof. More precisely, neither compact support nor bandlimitedness
is necessary.

5.2.5 Shearlet Molecules of Guo and Labate [21]

In [21] the results of [3] are established for shearlets instead of curvelets. A crucial
tool in the proof is the introduction of a certain type of shearlet molecules that are
similar to curvelet molecules discussed above, but tailored to the shearing operation
rather than rotations.

Definition 11 Let ∂σ be the shearlet index set as in (6) and Aε
j , Sε

α, j be defined
as in Proposition 4. A family (mΩ)Ω→∂σ is called a family of shearlet molecules of
regularity R, if it can be written as

mΩ(x) = 23sΩ/4a(Ω)
(

Aε
j Sε

α, j x − k
)

,

such that, for all |β| ∞ R and each N = 0, 1, 2, . . . ,

|Δβa(Ω)(x)| � ∈x≥−N

and, for all M = 0, 1, 2, . . . ,
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|â(Ω)(ν)| � min
(

1, 2−sΩ + |ν1| + 2−sΩ/2|ν2|
)M

.

By the results in [21], the shearlet molecules defined therein satisfy the inequality
(7) with the choice of parameters (R, M, N1, N2) = (∞,∞, R/2, R/2). Therefore,
in view of Proposition 4, shearlet molecules of regularity R as defined in [21] form
systems of parabolic molecules of order (∞,∞, R/2, R/2).

Proposition 7 [17] A system of shearlet molecules of regularity R constitutes a
system of parabolic molecules of order (∞,∞, R/2, R/2).

6 Sparse Approximation with Parabolic Molecules

This section is devoted to one prominent application of the framework of parabolic
molecules, and, in particular, the result of the decay of the cross-Gramian (Theorem
6), namely to sparse approximation behavior. This result also shows that the viewpoint
of time-frequency localization as adopted by the framework of parabolic molecules
provides the right angle to view questions of approximation behavior.

After introducing a measure for determining similar sparsity behavior, two main
results are presented: First, it is shown that any two systems of parabolic molecules
that are consistent, in a certain sense made precise later of sufficiently high order,
exhibit the same approximation behavior. Second, by linking an arbitrary system
to the curvelet frame, we obtain a “stand-alone result” in the sense of sufficient
conditions on the order of a system of parabolic molecules for providing (almost)
optimally sparse approximations of cartoon-like functions.

6.1 Sparsity Equivalence

In light of Lemma 1, two frames should possess similar sparse approximation behav-
ior, provided that the corresponding coefficient sequences have the same sparsity.
This gave rise to the notion of sparsity equivalence from Grohs and Kutyniok [17],
which is a useful tool to compare such behavior. It is based on the close connection
between the best N -term approximation rate of a frame and the αp-(quasi-)norm of
the associated coefficient sequence.

Definition 12 Let (mΩ)Ω→∂ and (pμ)μ→� be systems of parabolic molecules and let
0 < p ∞ 1. Then (mΩ)Ω→∂ and (pμ)μ→� are sparsity equivalent in αp, if

∥
∥
∥
(∈mΩ, pμ≥)

Ω→∂,μ→�

∥
∥
∥

αp∅αp
< ∞.
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Intuitively, systems of parabolic molecules being in the same sparsity equivalence
class have similar approximation properties. This will subsequently be elaborated
more deeply.

6.2 Consistency of Parameterizations

The next goal will be to find conditions that ensure that two systems of parabolic
molecules are sparsity equivalent. It seems clear from an intuitive viewpoint that this
requires some “consistency” of the associated parameterizations. The next definition
provides the correct notion for making this mathematically precise.

Definition 13 Two parameterizations (∂,Θ∂) and (�,Θ�) are called k-consistent,
for k > 0, if

sup
Ω→∂

∑

μ→�

κ (Ω,μ)−k < ∞ and sup
μ→�

∑

Ω→∂

κ (Ω,μ)−k < ∞.

In combination with Theorem 6, consistency is the essential tool to decide whether
two frames of parabolic molecules are sparsity equivalent. We emphasize that
although the original definition of systems of parabolic molecules does not require
those systems to form a frame in the context of approximation theory, however, the
frame property becomes important.

The following result states a sufficient condition for sparsity equivalence.

Theorem 7 [17] Two frames (mΩ)Ω→∂ and (pμ)μ→� of parabolic molecules of order
(R, M, N1, N2) with k-consistent parameterizations for some k > 0, are sparsity
equivalent in αp, 0 < p ∞ 1, if

R ∪ 2
k

p
, M > 3

k

p
− 5

4
, N1 ∪ k

p
+ 3

4
, and N2 ∪ 2

k

p
.

Proof By Schur’s test, a well-known result from operator theory, we have

∥
∥
∥
(∈mΩ, pμ≥)

Ω→∂,μ→�

∥
∥
∥
αp∅αp

∞ max



 sup
μ→�

∑

Ω→∂

|∈mΩ, pμ≥|p, sup
Ω→∂

∑

μ→�

|∈mΩ, pμ≥|p





1/p

.

By Theorem 6, this implies that

∥
∥
∥
(∈mΩ, pμ≥)

Ω→∂,μ→�

∥
∥
∥
αp∅αp

� max



 sup
μ→�

∑

Ω→∂

κ(Ω,μ)−k , sup
Ω→∂

∑

μ→�

κ(Ω,μ)−k





1/p

.
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But the term on the right-hand side is finite, due to the k-consistency of the
parameterizations (∂,Θ∂) and (�,Θ�). This proves that (mΩ)Ω→∂ and (pμ)μ→�

are sparsity equivalent in αp. ∃�
Thus, as long as the parameterizations are consistent, the sparsity equivalence can

be controlled by the order of the molecules.
In the remainder, we fix the frame of second-generation curvelets η0 from Sect. 3.1

as a reference frame. Recall that with respect to the canonical parameterization
(∂0,Θ∂0), this frame constitutes a system of parabolic molecules justifying the
following definition.

Definition 14 A parameterization (∂,Θ∂) is called k-admissible, for k > 0, if it is
k-consistent with the canonical parameterization (∂0,Θ∂0).

Before stating our main results, it seems natural to ask whether the curvelet and
shearlet parameterizations are k-admissible. This is the content of the next two lem-
mata.

Lemma 3 [17] The canonical parameterization (∂0,Θ∂0) is k-admissible for all
k > 2.

Proof Writing sμ = j ′ in the definition of κ (μ, Ω), we need to prove that

∑

j→Z+

∑

Ω→∂0,sΩ= j

2−k| j− j ′| (1 + 2min( j, j ′)d(μ, Ω)
)−k

< ∞. (9)

By [3, Eq. (A.2)], for any q, we have

∑

Ω→∂0,sΩ= j

(1 + 2qd(μ, Ω))−2 � 22( j−q)+ . (10)

Hence, for each k > 2, (9) can be estimated by

∑

j∪0

2−k| j− j ′|22| j− j ′| < ∞,

which finishes the proof. ∃�
Lemma 4 [17] The shearlet parameterization (∂σ ,Θσ ) is k-admissible for k > 2.

Proof The proof follows the same arguments as the proof of Lemma 3, except deriv-
ing the analog to (10), i.e.,

∑

Ω→∂σ ,sΩ= j

(1 + 2qd(μ, Ω))−2 � 22( j−q)+ , for any q and μ → ∂0, (11)

requires a bit more work.
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Without loss of generality, we assume that πμ = 0 and xμ = 0. Also, we only
restrict ourselves to the case ε = 0, the other case being exactly the same. In the case
q > j , the term on the left-hand side of (11) can be bounded by a uniform constant.

Thus, it remains to deal with the j ∪ q. Now we use the fact that, whenever
|α| � 2− j/2, we have

⎬
⎬
⎬arctan

(
−α2−� j/2�)

⎬
⎬
⎬ �

⎬
⎬
⎬α2−� j/2�

⎬
⎬
⎬ and |S−1

α A− j k| � |A− j k|,

to estimate (11) by

∑

α

∑

k

(

1 + 2q
(⎬
⎬
⎬α2−� j/2�

⎬
⎬
⎬
2 +

⎬
⎬
⎬2−� j/2�k2

⎬
⎬
⎬
2 +

⎬
⎬
⎬2− j k1 − α2−� j/2�k22−� j/2�

⎬
⎬
⎬

))−2

.

This can be interpreted as a Riemann sum and is bounded (up to a constant) by the
corresponding integral

∫

R2

dx

2−3 j/2

∫

R

dy

2− j/2

(
1 + 2q(y2 + x2

2 + |x1 − x2 y|)
)−2

,

compare [3, Eq. (A.3)]. This integral is bounded by C × 22( j−q) as can be seen by
the substitution x1 ∅ 2q x1, x2 ∅ 2q/2x2, y ∅ 2q/2 y. This yields (11), which
completes the proof. ∃�

6.3 Sparse Approximations

The next theorem now states the central fact that any system of parabolic molecules
of sufficiently high order, whose parameterization is k-admissible, is sparsity equiv-
alent to the second-generation curvelet frame from Sect. 3.1. This theorem can be
interpreted as a means to transfer sparse approximation results from one system of
parabolic molecules to another, which is also the key to Theorem 9.

Theorem 8 [17] Assume that 0 < p ∞ 1, (∂,Θ∂) is a k-admissible parame-
trization, and η0 = (γΩ)Ω→∂0 the tight frame of bandlimited curvelets. Further,
assume that (mΩ)Ω→∂ is a system of parabolic molecules associated with ∂ of order
(R, M, N1, N2) such that

R ∪ 2
k

p
, M > 3

k

p
− 5

4
, N1 ∪ k

p
+ 3

4
, N2 ∪ 2

k

p
.

Then (mΩ)Ω→∂ is sparsity equivalent in αp to η0.
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Recall that it was shown by Donoho in [11] (cf. Theorem 1) that (under natural
conditions) the optimally achievable decay rate of the approximation error for the
class E 2(R2) is given by

∀ f − fN ∀2
2 ≤ N−2, as N ∅ ∞.

As discussed before, in [5, 20, 24] rotation-based as well as shear-based systems
were constructed, which attain this rate up to a log factor. Since these systems are
instances of parabolic molecules with consistent parameterizations, their similar
approximation behavior is no coincidence, as we will see in the next result.

Theorem 9 [17] Assume that (mΩ)Ω→∂ is a system of parabolic molecules of order
(R, M, N1, N2) with respect to the parameterization (∂,Θ∂) such that

(i) (mΩ)Ω→∂ constitutes a frame for L2(R2),
(ii) (∂,Θ∂) is k-admissible for every k > 2,

(iii) it holds that

R ∪ 6, M > 9 − 5

4
, N1 ∪ 3 + 3

4
, N2 ∪ 6.

Then the frame (mΩ)Ω→∂ possesses an almost best N-term approximation rate of
order N−1+ε, ε > 0 arbitrary, for the cartoon image class E 2(R2).

We remark that condition (ii) holds in particular for the shearlet parameterization.
Hence this result allows a simple derivation of the results in [20, 24] from Candès [5].
In fact, Theorem 9 provides a systematic way to, in particular, prove results on sparse
approximation of cartoon-like functions. It moreover enables us to provide a very
general class of systems of parabolic molecules that optimally sparsely approximate
cartoon-like functions by using the known result for curvelets.

7 Outlook and Further Generalizations

Finally, we discuss some possible extensions and directions for future research.

• Higher Dimensional Setting. A general framework such as parabolic molecules
would also be of benefit for higher dimensional functions, in particular for the
three-dimensional setting which then includes videos with time as third dimension.
The model of cartoon-like functions was already extended to this situation in [26].
Then, in [12], a general framework of parabolic molecules for functions in L2(R3)

was introduced allowing, in particular, a similar result on the cross-Gramian of
two systems of 3D parabolic molecules. We expect that the 3D framework now
indicates a natural extension to higher dimensional settings.
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• General Scaling Matrix. Another key question concerns the inclusion of other types
of scaling laws: Can the framework of parabolic molecules be extended to also
include, in particular, wavelets and ridgelets as well as newer hybrid constructions
such as [26] or [23]? In the parabolic molecule framework the degree of anisotropic
scaling is confined to parabolic scaling, but one approach to cover more scaling
laws consists in the introduction of a parameter α → [0, 1], which measures the
degree of anisotropy. More precisely, one then considers scaling matrices of the
type diag(a, aα) for α → [0, 1], α = 0 corresponding to ridgelets, α = 1

2 to
curvelets and shearlets, and α = 1 to wavelets. First results using this approach
to introduce an extension of parabolic molecules coined α-molecules have been
derived in [18].

• Continuum Setting. It would be highly desirable to also introduce such a framework
for the continuum setting, i.e., with continuous parameter sets, adapted to the
continuous shearlet and curvelet transform [6, 14, 25]. This would, for instance,
allow the transfer of characterization results of microlocal smoothness spaces
between different representation systems.
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1 Introduction

How do you detect the location of a jump discontinuity in a function? One possible
approach consists in using as probes a collection of well-localized functions of the
form ψa,t(x) = a−n/2ψ(a−1(x − t)), a > 0, t ∈ R

n, where ψ ∈ L2(Rn). We assume
that ψ is chosen such that ψ̂ ∈ C≥

c (Rn), with 0 /∈ supp ψ̂ . Since ψ has rapid decay
in space domain, the functions ψa,t are mostly concentrated around t, with the size
of the essential support controlled by the scaling parameter a. We can then analyze
the local regularity of a function or distribution f via the mapping

f ∩ →f , ψa,t∞, a > 0, t ∈ R
n.

To illustrate this approach, let us consider as a prototype of a jump discontinuity
the one-dimensional Heaviside function f (x) = 1 if x ≤ 0 and f (x) = 0 otherwise.
Using the Plancherel theorem and the distributional Fourier transform of f , a direct
calculation using the analyzing functions ψa,t with n = 1 shows that1

→f , ψa,t∞ = →f̂ , ψ̂a,t∞
= ∇

a
∫

R

f̂ (ξ) ψ̂(aξ) e−2π iξ t dξ

= ∇
a

∫

R

1

2π iξ
ψ̂(aξ) e−2π iξ t dξ

= ∇
a

∫

R

γ̂ (η) e−2π iη t
a dη,

where γ̂ (η) = 1
2π iη ψ̂(η). If t = 0, the calculation above shows that |→f , ψa,t∞| ≈∇

a, provided that
∫

γ̂ (η)dη ∀= 0. On the other hand, if t ∀= 0, an application of
the Inverse Fourier Transform theorem yields that →f , ψa,t∞ = ∇

a γ (−t/a). Since
γ̂ ∈ C≥

c (R), γ has rapid decay in space domain, implying that →f , ψa,t∞ decays
rapidly to 0, as a ∩ 0; that is, for any N ∈ N, there is a constant CN > 0 such that
|→f , ψa,t∞| ∅ CN aN , as a ∩ 0.

In summary, the elements→f , ψa,t∞ exhibit rapid asymptotic decay, as a ∩ 0, for
all t ∈ R except at the location of the singularity t = 0, where →f , ψa,t∞ behaves as
O(

∇
a).

The mapping f ∩ →f , ψa,t∞ is the classical continuous wavelet transform and
this simple example illustrates its ability to detect local regularity information about
functions and distributions through its asymptotic decay at fine scales (cf. [16–18,
22]).

1 Note that the distributional Fourier transform of f is f̂ (ξ) = 1
2 δ(ξ)+ 1

2π i p.v. 1
ξ

, but the term 1
2 δ(ξ)

gives no contribution in the computation for →f , ψa,t∞ since ψ̂(0) = 0.
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The generalization of the example above to higher dimensions is straightforward.
Let us consider the two-dimensional Heaviside function H(x1, x2) = χ{x1>0}(x1, x2)

and let us proceed as in the example above. Using the analyzing functions ψa,t with
n = 2 and denoting t = (t1, t2) ∈ R

2 we have:

→H, ψa,t∞ = →Ĥ, ψ̂a,t∞
= a

∫

R2
Ĥ(ξ1, ξ2) ψ̂(aξ1, aξ2) e−2π i(ξ1t1+ξ2t2) dξ1 dξ2

= a
∫

R2

δ(ξ2)

2π iξ1
ψ̂(aξ1, aξ2) e−2π i(ξ1t1+ξ2t2) dξ1 dξ2

= a
∫

R

1

2π iξ1
ψ̂(aξ1, 0) e−2π iξ1t1 dξ1

= a
∫

R

γ̂ (η) e−2π iη
t1
a dη,

where γ̂ (η) = 1
2π iη ψ̂(η, 0). A similar argument to the one above shows that the

elements →H, ψa,t∞ exhibit rapid asymptotic decay, as a ∩ 0, at all t ∈ R
2 except

at the location of the singularity t1 = 0, where →H, ψa,t∞ behaves as O(a), provided
that

∫
γ̂ (η)dη ∀= 0.

However, even though the continuous wavelet transform is able to identify the
location of the singularities also in this case, the result of this second example is
not completely satisfactory since it provides no information about the orientation of
the singularity line. In dimensions larger than one, when the singularity points are
supported on a curve or on a higher dimensional manifold, it is useful not only to
detect the singularity location but also to capture its geometry, such as the orientation
of a discontinuity curve or boundary.

As a matter of fact, it is possible to overcome this limitation by introducing gener-
alized versions of the continuous wavelet transform that are more capable of dealing
with directional information. The idea of considering generalized (discrete or contin-
uous) wavelet transforms with improved directional capabilities has a long history,
going back to the steerable filters [8, 23] introduced for the analysis of discrete
data and to the notion of directional wavelets [1]. More recently, starting with the
introduction of ridgelets [2] and curvelets [3, 4], a new generation of more flexible
and powerful multiscale transforms has emerged, which has led to several success-
ful discrete applications in signal and image processing. Among such more recent
generalizations of the wavelet transform, the shearlet transform [9, 20] is especially
remarkable since it combines a simple mathematical structure that is derived from
the general framework of affine systems together with a special ability to capture
the geometry of the singularity sets of multidimensional functions and distributions.
For example, in the case of the two-dimensional Heaviside function, the continu-
ous shearlet transform is able to determine both the location and the orientation of
the discontinuity line. More generally, by extending and generalizing several results



176 K. Guo et al.

derived previously by two of the authors, in this paper we show that the continuous
shearlet transform provides a precise geometric description of the set of discontinu-
ities of a large class of multivariate functions and distributions. These results provide
the theoretical underpinning for improved algorithms for image analysis and feature
extraction, cf. [25].

The rest of the paper is organized as follows. In Sect. 2, we recall the definition
of the continuous shearlet transform; in Sect. 3, we present the shearlet analysis
of jump discontinuities in the two-dimensional case; in Sect. 4, we illustrate the
generalization of the shearlet approach to other types of singularities.

2 The Continuous Shearlet Transform

To define the continuous shearlet transform, we recall first the definition of the
“generalized” continuous wavelet transform associated with the affine group on R

n.

2.1 Wavelet Transforms

The affine group A on R
n consists of the pairs (M, t) ∈ GLn(R) × R

n, with group
operation (M, t) · (M ⊂, t⊂) = (MM ⊂, t + Mt⊂). The affine systems generated by ψ ∈
L2(Rn) are obtained from the action of the quasi-regular representation of A on ψ

and are the collections of functions of the form

{
ψM,t(x) = | det M|− 1

2 ψ(M−1(x − t)) : (M, t) ∈ A
}
.

Let Λ = {(M, t) : M ∈ G, t ∈ R
n} ◦ A , where G is a subset of GLn(R). If there is

an admissible function ψ ∈ L2(Rn) such that any f ∈ L2(Rn) can be recovered via
the reproducing formula

f =
∫

Rn

∫

G
→f , ψM,t∞ψM,t dλ(M) dt,

where λ is a measure on G, then such ψ is a continuous wavelet associated with Λ

and the mapping

f ∩ Wψ f (M, t) = →f , ψM,t∞, (M, t) ∈ Λ,

is the continuous wavelet transform with respect to Λ. Depending on the choice of
G and ψ , there is a variety of continuous wavelet transforms [21, 24]. The simplest
case is G = {a I : a > 0}, where I is the identity matrix. In this situation, we obtain
the classical continuous wavelet transform
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Wψ f (a, t) = a−n/2
∫

Rn
f (x) a−1 ψ(a−1(x − t)) dx,

which was used in Sect. 1 for n = 1, 2. Note that, in this case, the dilation group G
is an isotropic since the dilation factor a acts in the same way for each coordinate
direction. It is reasonable to expect that, by choosing more general dilation groups
G, one obtains wavelet transforms with more interesting geometric properties.

2.2 The Shearlet Transform

The continuous shearlet transform is the continuous wavelet transform associated
with a special subgroup AS of A called the shearlet group (cf. [6, 7, 19, 20]). For
a fixed β = (β1, . . . , βn−1), where 0 < βi < 1, 1 ∅ i < n − 1, AS consists of the
elements (Mas, t), where

Mas =










a −aβ1 s1 . . . −aβn−1 sn−1

0 aβ1 . . . 0
...

...
...

...

0 0 . . . aβn−1










,

a > 0, s = (s1, . . . , sn−1) ∈ R
n−1, and t ∈ R

n. Note that each matrix Mas is the
product of the matrices Bs Aa, where

Aa =










a 0 . . . 0
0 aβ1 . . . 0
...

...
...

...

0 0 . . . aβn−1










, Bs =












1 −s1 . . . −sn−1

0 1 . . . 0
...

...
...

...

0 0 . . . 1












,

where Aa is an anisotropic dilation matrix and Bs is a nonexpanding matrix called
a shear matrix. Hence, for an appropriate admissible function ψ ∈ L2(Rn) and
β = (β1, . . . , βn−1), where 0 < βi < 1, the continuous shearlet transform is the
mapping

f ∩ →f , ψMas,t∞, (Mas, t) ∈ AS.

The analyzing elements ψMas,t are called shearlets and are the affine functions

ψMas,t(x) = | det Mas|− 1
2 ψ(M−1

as (x − t)).
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In the following we will show that, thanks to the geometric and analytic properties
of shearlets, the continuous shearlet transform enables a very precise description
of jump discontinuities of functions of several variables. For example, if f = χS ,
where S ◦ R

n, n = 2, 3, is a bounded region with piecewise smooth boundary,
the continuous shearlet transform provides a characterization of the location and
orientation of the boundary set through its asymptotic decay at fine scales.

2.3 The Shearlet Transform (n = 2)

Before applying the shearlet framework in dimensions n = 2, we need to specify the
definition of the continuous shearlet transform that will be needed for our analysis.

For appropriate admissible functions ψ(h), ψ(v) ∈ L2(R2), a fixed 0 < β < 1,
and matrices

Mas =



a −aβs

0 aβ



 , Nas =



aβ 0

−aβs a



 ,

we define the horizontal and vertical (continuous) shearlets by

ψ
(h)
a,s,t(x) = | det Mas|− 1

2 ψ(h)(M−1
as (x − t)), a > 0, s ∈ R, t ∈ R

2,

and
ψ

(v)
a,s,t(x) = | det Nas|− 1

2 ψ(v)(N−1
as (x − t)), a > 0, s ∈ R, t ∈ R

2,

respectively. To ensure a more uniform covering of the range of directions through
the shearing variable s, rather than using a single shearlet system where s ranges over
R, it will be convenient to use the two systems of shearlets defined above and let s
range over a bounded interval.

To define our admissible functions ψ(h), ψ(v), for ξ = (ξ1, ξ2) ∈ R
2 let

ψ̂(h)(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

), ψ̂(v)(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2(
ξ1
ξ2

), (1)

where
∫ ≥

0
|ψ̂1(aω)|2 da

a
= 1, for a.e. ω ∈ R, and supp ψ̂1 ◦ [−2,− 1

2 ] ∪ [ 1
2 , 2]; (2)

⇒ψ2⇒2 = 1 and supp ψ̂2 ◦ [−
∇

2
4 ,

∇
2

4 ].

Observe that, in the frequency domain, a shearlet ψ
(h)
a,s,t has the form:

ψ̂
(h)
a,s,t(ξ1, ξ2) = a

1+β
2 ψ̂1(a ξ1) ψ̂2(a

β−1(
ξ2
ξ1

− s)) e−2π iξ ·t . (3)



Microlocal Analysis of Singularities 179

Fig. 1 Supports of the
shearlets ψ̂

(h)
ast (in the

frequency domain) for dif-
ferent values of a and s

(a, s) = ( 1
32 , 1)

(a, s) = ( 1
4 , 0)

(a, s) = ( 1
32 , 0)

ξ1

ξ2

This shows each function ψ̂
(h)
a,s,t has support:

supp ψ̂
(h)
a,s,t ◦

{
(ξ1, ξ2) : ξ1 ∈ ⎢− 2

a ,− 1
2a

] ∪ ⎢ 1
2a , 2

a

]
, | ξ2

ξ1
− s| ∅ a1−β

}
.

That is, its frequency support is a pair of trapezoids, symmetric with respect to the
origin, oriented along a line of slope s. The support becomes increasingly thin as
a ∩ 0. This is illustrated in Fig. 1. The shearlets ψ

(v)
a,s,t have similar properties, with

frequency supports oriented along lines of slopes 1
s .

For 0 < a < 1
4 and |s| ∅ 3

2 , each system of continuous shearlets spans a subspace
of L2(R2) consisting of functions having frequency supports in one of the horizontal
or vertical cones defined in the frequency domain by

P(h) = {(ξ1, ξ2) ∈ R
2 : |ξ1| ≤ 2 and | ξ2

ξ1
| ∅ 1},

P(v) = {(ξ1, ξ2) ∈ R
2 : |ξ1| ≤ 2 and | ξ2

ξ1
| > 1}.

More precisely, the following proposition, which is a generalization of a result in [19],
shows that the horizontal and vertical shearlets form a continuous reproducing system
for the spaces of L2 functions whose frequency support is contained in P(h) and
P(h), respectively.

Proposition 1 Let ψ(h) and ψ(v) be given by (1) with ψ̂1 and ψ̂2 satisfying (2) and
(3), respectively. Let

L2(P(h))∃ = {f ∈ L2(R2) : supp f̂ ◦ P(h)},

with a similar definition for L2(P(v))∃. We have the following:

(i) For all f ∈ L2(P(h))∃,
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f =
∫

R2

∫ 2

−2

∫ 1
4

0
→f , ψ(h)

a,s,t∞ψ
(h)
a,s,t

da

a3 ds dt.

(ii) For all f ∈ L2(P(v))∃,

f =
∫

R2

∫ 2

−2

∫ 1
4

0
→f , ψ(v)

a,s,t∞ψ
(v)
a,s,t

da

a3 ds dt.

The equalities are understood in the L2 sense.

Note that da
a3 ds dt is the left Haar measure of the shearlet group AS .

Using the horizontal and vertical shearlets, we define the (fine-scale) continuous
shearlet transform on L2(R2) as the mapping

f ∈ L2(R2 \ [−2, 2]2)∃ ∩ SHψ f (a, s, t), a ∈ (0, 1
4 ], s ∈ [−≥,≥], t ∈ R

2,

given by

SHψ f (a, s, t) =
⎥

SH (h)
ψ f (a, s, t) = →f , ψ(h)

a,s,t∞, if |s| ∅ 1

SH (v)
ψ f (a, 1

s , t) = →f , ψ(v)
a,s,t∞, if |s| > 1.

In this expression, it is understood that the limit value s = ±≥ is defined and that
SHψ f (a,±≥, t) = SH (v)

ψ f (a, 0, t).
The term fine-scale refers to the fact that this shearlet transform is only defined

for the scale variable a ∈ (0, 1/4], corresponding to “fine scales”. In fact, as it
is clear from Proposition 1, the shearlet transform SHψ f defines an isometry on
L2(R2 \ [−2, 2]2)∃, the subspace of L2(R2) of functions with frequency support
away from [−2, 2]2, but not on L2(R2). This is not a limitation since our method
for the geometric characterization of singularities will require to derive asymptotic
estimates as a approaches 0.

3 Shearlet Analysis of Jump Discontinuities in Dimension n = 2

To introduce the main ideas associated with the shearlet-based analysis of singulari-
ties, let us examine first the two-dimensional Heaviside function which was consid-
ered in Sect. 1. Using the Plancherel theorem and denoting t = (t1, t2) ∈ R

2, when
|s| < 1 we have

SHψH(a, s, t) = →H, ψ
(h)
a,s,t∞

=
∫

R2
Ĥ(ξ1, ξ2) ψ̂

(h)
a,s,t(ξ1, ξ2) dξ1 dξ2
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=
∫

R2

δ2(ξ1, ξ2)

2π iξ1
ψ̂

(h)
a,s,t(ξ1, ξ2) dξ1 dξ2

=
∫

R

1

2π iξ1
ψ̂a,s,t(ξ1, 0) dξ1

= a
1+β

2

∫

R

1

2π iξ1
ψ̂1(a ξ1) ψ̂2(a

β−1s) e2π iξ1t1 dξ1

= a
1+β

2 ψ̂2(a
β−1s)

∫

R

γ̂ (η) e2π iη
t1
a dη,

where γ̂ (η) = 1
2π iη ψ̂1(η). Hence, using the same argument from the introduction,

under the assumption that ψ̂1 ∈ C≥
c (R) we have that SHψH(a, s, t) exhibits rapid

asymptotic decay, as a ∩ 0, for all (t1, t2) ∈ R
2 when t1 ∀= 0. If t1 = 0 and s ∀= 0,

the term ψ̂2(aβ−1s) will vanish as a ∩ 0, due to the support assumptions on ψ̂2.
Finally, if t1 = 0 and s = 0, we have that

SHψH(a, 0, (0, t2)) = a
1+β

2 ψ̂2(0)

∫

R

γ̂ (η) dη.

Hence, provided that ψ̂2(0) ∀= 0 and
∫
R

γ̂ (η) dη ∀= 0, we have the estimate

SHψH(a, 0, (0, t2)) = O(a
1+β

2 ).

A similar computation shows that SHψH(a, s, t) exhibits rapid asymptotic decay,
as a ∩ 0, for all |s| > 1. In summary, under appropriate assumptions on ψ1 and ψ2,
the continuous shearlet transform of H decays rapidly, asymptotically for a ∩ 0,
for all t and s, unless t is on the discontinuous line and s corresponds to the normal
direction of the discontinuous line at t.

The same properties of the continuous shearlet transform observed on the two-
dimensional Heaviside function can be extended to any function of the form f = χS

where S ◦ R
2 is a compact region whose boundary, denoted by ∂S, is a simple

piecewise smooth curve, of finite length L. To define the normal orientation to the
boundary curve ∂S, let α(t), 0 ∅ t ∅ L be a parameterization of ∂S. Let p0 = α(t0)
and let s0 = tan(θ0) with θ0 ∈ (−π

2 , π
2 ). We say that s0 corresponds to the normal

direction of ∂S at p0 if (cos θ0, sin θ0) = ±n (t0).
The following theorem generalizes a result proved originally in [10] for the special

case β = 1
2 .

Theorem 1 Let ψ1, ψ2 be chosen such that

• ψ̂1 ∈ C≥
c (R), supp ψ̂1 ◦ [−2,− 1

2 ] ∪ [ 1
2 , 2], is odd, nonnegative

on [ 1
2 , 2] and it satisfies

∫ ≥

0
|ψ̂1(aξ)|2 da

a
= 1, for a.e. ξ ∈ R; (4)
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• ψ̂2 ∈ C≥
c (R), supp ψ̂2 ◦ [−

∇
2

4 ,
∇

2
4 ], is even, nonnegative,

decreasing in [0,
∇

2
4 ), and ⇒ψ2⇒2 = 1. (5)

Let 1
3 < β < 1. For B = χS, where S ◦ R

2 is a compact set whose boundary ∂S is
a simple piecewise smooth curve, the following holds:

(i) If p /∈ ∂S then, for all s ∈ R,

lim
a∩0+ a−N SHψB(a, s, p) = 0, for all N > 0.

(ii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at
p0 and s ∀= s0, then

lim
a∩0+ a−N SHψB(a, s, p0) = 0, for all N > 0.

(iii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at
p0 and s = s0, then

≥ > lim
a∩0+ a− 1+β

2 SHψB(a, s0, p0) ∀= 0.

That is, if p0 ∈ ∂S, the continuous shearlet transform decays rapidly, asymptotically
for a ∩ 0, unless s = s0 corresponds to the normal direction of ∂S at p0, in which
case

SHψB(a, s0, p0) = O(a
1+β

2 ), as a ∩ 0.

Theorem 1 generalizes to the case of functions of the form f = χS where S ◦ R
2

and the boundary curve ∂S contains corner points. In this case, if p0 is a corner point
and s corresponds to one of the normal directions of ∂S at p0, then the continuous

shearlet transform has a decay rate of order O(a
1+β

2 ), as a ∩ 0, similar to the
situation of regular points. For other values of s, however, the asymptotic decay rate
depends both on the tangent and the curvature at p0 (cf. [10]).

Theorem 1 was originally proved in [10] for the case β = 1/2 and its proof was
successively simplified and streamlined in [13]. In the following section, we sketch
the main ideas of the proof, highlighting how to extend the proof from [13] to the
case β ∀= 1/2.
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3.1 Proof of Theorem 1 (Sketch)

The argument used for the two-dimensional Heaviside function cannot be extended
to this case directly since this would require an explicit expression of the Fourier
transform of the function B = χS . Instead, we can apply the divergence theorem that
allows us to express the Fourier transform of B as a line integral over ∂S:

B̂(ξ) = ⎫χS(ξ) =
∫

S
e−2π iξ ·x dx (6)

= − 1

2π i⇒ξ⇒2

∫

∂S
e−2π i→ξ,x∞ ξ · n (x) d σ(x),

for all ξ ∀= 0, where ∂S is the boundary of S, n is the unit outward normal to S, and
σ is one-dimensional Hausdorff measure on R

2.
Hence, using (6), we have that

SHψB(a, s, p) = →B, ψ(d)
a,s,p∞

= →B̂, ψ̂(d)
a,s,p∞

=
∫

R2
B̂(ξ) ψ̂

(d)
a,s,p(ξ) dξ (7)

= − 1

2π i

∫

R2

ψ̂
(d)
a,s,p(ξ)

⇒ξ⇒2

∫

∂S
e−2π iξ ·x ξ · n (x) d σ(x) dξ,

where the superscript in ψ
(d)
a,s,p is either d = h, when |s| ∅ 1, or d = v, when |s| > 1.

One can observe that the asymptotic decay of the shearlet transform SHψ

B(a, s, p), as a ∩ 0, is only determined by the values of the boundary ∂S which are
“close” to p. Hence, for ε > 0, let D(ε, p) be the ball in R

2 of radius ε and center p,
and Dc(ε, p) = R

2 \ D(ε, p). Using (7), we can write the shearlet transform of B as

SHψB(a, s, p) = I1(a, s, p) + I2(a, s, p),

where

I1(a, s, p) = − 1

2π i

∫

R2

ψ̂
(d)
a,s,p(ξ)

⇒ξ⇒2

∫

∂S∩D(ε,p)

e−2π iξ ·x ξ · n (x) d σ(x) dξ, (8)

I2(a, s, p) = − 1

2π i

∫

R2

ψ̂
(d)
a,s,p(ξ)

⇒ξ⇒2

∫

∂S∩Dc(ε,p)

e−2π iξ ·x ξ · n (x) d σ(x) dξ. (9)

The Localization Lemma below (whose assumptions are satisfied by the shearlet
generator function in Theorem 1) shows that I2 has rapid asymptotic decay at fine
scales. For its proof, we need the following “repeated integration by parts” lemma
whose proof follows easily from induction and the standard integration by parts
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result. Note that this version of the Localization Lemma is more general than the one
that appeared in [10, 13], since it does not assume a special form of the function ψ .

Lemma 1 Let N ∈ Z
+ = {1, 2, 3, . . . } and let f , g ∈ CN (R) be such that

f (n)g(N−1−n) vanishes at ≥, for all n = 0, . . . , N − 1, and f (n)g(N−n) ∈ L1(R),
for all n = 0, . . . , N. Then,

∫

R

f (x)g(N)(x) dx = (−1)N
∫

R

f (N)(x)g(x) dx.

Lemma 2 (Localization Lemma) Fix p ∈ R
2 and let N ∈ Z

+. Suppose that

(i) ψ̂(d) ∈ CN (R2), for d = h, v;
(ii) ∂ωψ̂(d) ∈ L1(R2) ∩ L≥(R2), for all 0 ∅ |ω| ∅ N − 1 and d = h, v;

(iii) ∂ωψ̂(d)/rN+1−|ω|
d ∈ L1(R2), for all 0 ∅ |ω| ∅ N and d = h, v, where

rd(ξ) =
⎥

|ξ1|, if d = h

|ξ2|, if d = v.

Then, there exists a constant 0 < C < ≥ such that

|I2(a, s, p)| ∅ C aNβ+(1−β)/2,

for all a and s.

Proof Fix 0 < a ∅ 1/4 and s ∈ R. We may assume that s ∅ 1 and d = h.
Substituting for ψ̂

(h)
a,s,p and using (9), the change of variable η1 = aξ1 and η2 =

aβξ2 − aβsξ1, and some algebraic manipulation, we have

I2(a, s, p)

= −a(1+β)/2

2π i

∫

R2

ψ̂(h)(aξ1, aβξ2 − aβsξ1)

⇒ξ⇒2

∫

∂S∩Dc(ε,p)
e−2π iξ ·(x−p) ξ · n (x) d σ(x) dξ

= −a−(1+β)/2

2π i

∫

R2

ψ̂(h)(η)

a−2η2
1 + (a−βη2 + a−1sη1)2

∫

∂S∩Dc(ε,p)
e−2π i(a−1η1,a−βη2+a−1sη1)·(x−p)

× (a−1η1, a−βη2 + a−1sη1) · n (x) d σ(x) dη

= −a(1−β)/2

2π i

∫

R2

ψ̂(h)(η)

η2
1 + (a1−βη2 + sη1)2

∫

∂S∩Dc(ε,p)
e−2π ia−1η1[(x1−p1)+s(x2−p2)]

× (η1, a1−βη2 + sη1) · n (x)e−2π ia−βη2(x2−p2) d σ(x) dη. (10)

Note also that

∫

R2

⎬
⎬
⎬
⎬
⎬

ψ̂(h)(η)

η2
1 + (a1−βη2 + sη1)2

⎬
⎬
⎬
⎬
⎬

∫

∂S∩Dc(ε,p)

⎬
⎬
⎬(η1, a1−βη2 + sη1) · n (x)

⎬
⎬
⎬
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×
⎬
⎬
⎬e−2π ia−1η1[(x1−p1)+s(x2−p2)]e−2π ia−βη2(x2−p2)

⎬
⎬
⎬ d σ(x) dη

∅
∫

R2

|ψ̂(h)(η)|
η2

1 + (a1−βη2 + sη1)2

∫

∂S∩Dc(ε,p)
⇒(η1, a1−βη2 + sη1)⇒⇒n (x)⇒ d σ(x) dη

∅ σ(∂S)

∫

R2

|ψ̂(h)(η)|
rh(η)

dη < ≥, (11)

where, in the last inequality, we have used properties (ii) and (iii) in the statement of
this lemma.

Choose δ > 0 not depending on s and disjoint Borel measurable subsets Eq ◦ R
2,

for q = 1, 2, satisfying

Eq ◦ {x ∈ R
2 : |(xq − pq) + sq(x2 − p2)| ≤ δ} and E1 ∪ E2 = ∂S ∩ Dc(ε, p), (12)

where s1 = s and s2 = 0. Then, using (10), (11), and the Fubini–Tonelli theorem, it
follows that

I2(a, s, p) = −a(1−β)/2

2π i

⎭

q=1,2

∫

Eq

∫

R2
fa(x, η)

× e−2π ia−1η1[(x1−p1)+s(x2−p2)]e−2π ia−βη2(x2−p2) dη d σ(x), (13)

where fa : ∂S × R
2 ∩ C is defined by

fa(x, η) = (η1, a1−βη2 + sη1) · n (x)

η2
1 + (a1−βη2 + sη1)2

ψ̂(h)(η)

for a.e. (x, η). We require the following claim, whose proof is a straightforward
application of induction and the quotient rule.

For each q ∈ {1, 2} and n ∈ {0, . . . , N}, there exists Lq
n ∈ Z

+ and, for each
l = 1, . . . , Lq

n , there exist γ
qn
l ≤ 0, cqn

l ∈ L≥(S, σ) not depending on a, η, or s,
a monomial mqn

l : R
2 ∩ R, and a multi-index ω

qn
l with |ωqn

l | ∅ n and |ωqn
l | =

deg(mqn
l ) − 2n+1 + n + 1 such that

∂n

∂ηn
q

fa(x, η) =
Lq

n⎭

l=1

aγ
qn
l cqn

l (x)mqn
l (η1, a1−βη2 + sη1)

(η2
1 + (a1−βη2 + sη1)2)2n ∂ω

qk
l ψ̂(h)(η),

for a.e. (x, η). We are using monomial in the strict sense (i.e., η1η2 is a monomial
but −η1η2 and 2η1η2 are not).

If q ∈ {1, 2}, choose r such that {q, r} = {1, 2}. If m : R
2 ∩ R is a monomial and

γ ∈ R, then, by switching to spherical coordinates, it is clear that |m(η)|/⇒η⇒γ ∅
1/⇒η⇒γ−deg(m), for all η ∀= 0. Using this and the claim, if n ∈ {0, . . . , N}, we have
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⎬
⎬
⎬
⎬
⎬

∂n

∂ηn
q

fa(x, η)

⎬
⎬
⎬
⎬
⎬
∅

Lq
n⎭

l=1

⇒cqn
l ⇒≥

⎬
⎬
⎬
⎬
⎬

mqn
l (η1, a1−βη2 + sη1)

(η2
1 + (a1−βη2 + sη1)2)2n

⎬
⎬
⎬
⎬
⎬
|∂ω

qn
l ψ̂(h)(η)|

∅
Lq

n⎭

l=1

⇒cqn
l ⇒≥

|∂ω
qn
l ψ̂(h)(η)|

⇒(η1, a1−βη2 + sη1)⇒k+1−|ωqn
l | (14)

∅
Lq

n⎭

l=1

⇒cqn
l ⇒≥

|∂ω
qn
l ψ̂(h)(η)|

rh(η)n+1−|ωqn
l | ,

for a.e. (x, η). The second inequality, together with the claim and property (ii) of
ψ(h), implies that ∂n

∂ηn
q
fa(x, ·) vanishes at ≥, for n = 0, . . . , N − 1 and σ-a.e. x. The

third inequality, together with the claim and properties (ii) and (iii) of ψ(h) implies
that ∂n

∂ηn
q
fa(x, ·) ∈ L1(R2), for n = 0, . . . , N and σ-a.e. x.

Using the observations of the previous paragraph, the Fubini–Tonelli theorem,
Lemma 1, (12), (14), the claim, and property (i) of ψ(h), we obtain

⎬
⎬
⎬
⎬

∫

Eq

∫

R2
fa(x, η)e−2π ia−1η1[(x1−p1)+s(x2−p2)]e−2π ia−βη2(x2−p2) dη d σ(x)

⎬
⎬
⎬
⎬

∅
∫

Eq

∫

R

⎬
⎬
⎬
⎬

∫

R

fa(x, η)e−2π ia−βq ηq[(xq−pq)+sq(x2−p2)] dηq

⎬
⎬
⎬
⎬ dηr d σ(x)

=
∫

Eq

∫

R

⎬
⎬
⎬
⎬

∫

R

fa(x, η)
∂N

∂ηN
q






e−2π ia−βq ηq[(xq−pq)+sq(x2−p2)]
⎛
−2π ia−βq [(xq − pq) + sq(x2 − p2)]

⎝N




dηq

⎬
⎬
⎬
⎬dηr d σ(x)

=
∫

Eq

∫

R

⎬
⎬
⎬
⎬

∫

R

∂N

∂ηN
q

fa(x, η)
e−2π ia−βq ηq[(xq−pq)+sq(x2−p2)]

⎛
−2π ia−βq [(xq − pq) + sq(x2 − p2)]

⎝N
dηq

⎬
⎬
⎬
⎬ dηr d σ(x)

∅ aNβq

(2πδ)N

∫

Eq

∫

R2

⎬
⎬
⎬
⎬
⎬

∂N

∂ηN
q

fa(x, η)

⎬
⎬
⎬
⎬
⎬

dη d σ(x)

∅ σ(∂S)aNβq

(2πδ)N

Lq
N⎭

l=1

⇒cqN
l ⇒≥⇒∂ω

qN
l ψ̂(h)/r

N+1−|ωqN
l |

h ⇒1,

where β1 = 1 and β2 = β. The lemma follows from the claim, property (iii) of ψ(h),
the above inequality, and (13). �

For the analysis of the term I1, we will use a local approximation of the curve ∂S.
Let α(t) be the boundary curve ∂S, with 0 ∅ t ∅ L, and p ∈ ∂S. Without loss

of generality, we may assume that L > 1 and p = (0, 0) = α(1). We can write the
boundary curve near p as C = ∂S ∩ D(ε, (0, 0)), where

C = {α(t) : 1 − ε ∅ t ∅ 1 + ε}.
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Rather than using the arclength representation of C , we can also write C =
{(G(u), u), −ε ∅ u ∅ ε}, where G(u) is a smooth function. Since p = (0, 0),
then G(0) = 0. Hence, we define the quadratic approximation of ∂S near p = (0, 0)

by ∂S0 = (G0(u), u), where G0 is the Taylor polynomial of degree 2 of G centered at
the origin, given by G0(u) = G⊂(0)u+ 1

2 G⊂⊂(0)u2. Accordingly, we define B0 = χS0 ,
where S0 is obtained by replacing the curve ∂S in B = χS with the quadratic curve
∂S0 near the point p = (0, 0).

The following lemma, which is a generalization from [13], shows that to derive
the estimates of Theorem 1 it is sufficient to replace the set B with set B0, since
this produces a “low-order” error. Note that this approximation result only holds for
1
3 < β < 1, that is, when the anisotropic scaling factor of the dilation matrices is
not too high. The argument provided below does not extend to smaller values of β.
Possibly this restriction could be removed by considering a higher order polynomial
approximation for the boundary curve ∂S, but this would make the rest of the proof
of Theorem 1 significantly more involved.

Lemma 3 Let 1
3 < β < 1. For any |s| ∅ 3

2 , we have

lim
a∩0+ a− 1+β

2
⎬
⎬SHψB(a, s, 0)) − SHψB0(a, s, 0)

⎬
⎬ = 0.

Proof Let p = (0, 0) ∈ ∂S. Since we assume |s| ∅ 3
2 , we need to use the system of

“horizontal” shearlets only.
Let γ be chosen such that 1+β

4 < γ < β (this can be satisfied for 1
3 < β < 1)

and assume that a is sufficiently small, so that aγ � 1. A direct calculation shows
that

⎬
⎬SHψB(a, s, 0) − SHψB0(a, s, 0)

⎬
⎬ ∅

∫

R2
|ψ(h)

a,s,0(x)| |χS(x) − χS0(x)| dx

= T1(a) + T2(a),

where x = (x1, x2) ∈ R
2 and

T1(a) = a− 1+β
2

∫

D(aγ ,(0,0))

|ψ(h)(M−1
as x)| |χS(x) − χS0(x)| dx,

T2(a) = a− 1+β
2

∫

Dc(aγ ,(0,0))

|ψ(h)(M−1
as x)| |χS(x) − χS0(x)| dx.

Observe that:

T1(a) ∅ C a− 1+β
2

∫

D(aγ ,(0,0))

|χS(x) − χS0(x)| dx.

To estimate the above quantity, it is enough to compute the area between the
regions S and S0. Since G0 is the Taylor polynomial of G of degree 2, we have
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T1(a) ∅ C a− 1+β
2

∫

|x|<aγ

|x|3dx ∅ C a4γ− 1+β
2 .

Since γ >
1+β

4 , the above estimate shows that T1(a) = o(a
1+β

2 ).
The assumptions on the generator function ψ(h) of the shearlet system ψ(h) imply

that, for each N > 0, there is a constant CN > 0 such that |ψ(x)| ∅ CN (1+|x|2)−N .

Also note that (Mas)
−1 = A−1

a B−1
s , where B−1

s =



1 s

0 1



 and A−1
a =




a−1 0

0 a−β



.

It is easy to verify that, for all |s| ∅ 3
2 , there is a constant C0 > 0 such that ⇒B−1

s x⇒2 ≤
C0⇒x⇒2, or (x1 + sx2)

2 + x2
2 ≤ C0(x2

1 + x2
2), for all x ∈ R

2. Thus, for a < 1, we can
estimate T2(a) as:

T2(a) ∅ C a− 1+β
2

∫

Dc(aγ ,(0,0))

|ψ(h)(Masx)| dx

∅ CN a− 1+β
2

∫

Dc(aγ ,(0,0))

⎛
1 + (a−1(x1 + sx2))

2 + (a−βx2)
2
⎝−N

dx

∅ CN a− 1+β
2

∫

Dc(aγ ,(0,0))

⎛
(a−β(x1 + sx2))

2 + (a−βx2)
2
⎝−N

dx

∅ CN a2βN− 1+β
2

∫

Dc(aγ ,(0,0))

(x2
1 + x2

2)−N dx

= CN a2βN− 1+β
2

∫ ≥

aγ

r1−2N dr

= CN a2N(β−γ ) a2γ− 1+β
2 ,

where the constant C0 was absorbed in CN . Since γ < β and N can be chosen

arbitrarily large, it follows that T2(a) = o(a
1+β

2 ). �
The proof of Theorem 1 can now be completed using Lemmata 2 and 3, following

the arguments from [13].

4 Shearlet Analysis of General Singularities

The shearlet analysis of singularities extends beyond the case of functions of the
form χS considered in the previous sections. The results presented below illustrate
the shearlet analysis of singularities of rather general functions.

As a first case, we will examine the case of “general” functions of two vari-
ables containing jump discontinuities. Let S be a bounded open subset of R

2 and
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assume that its boundary ∂S is generated by a C3 curve that can be parameterized
as (ρ(θ) cos θ, ρ(θ) sin θ) where ρ(θ) : [0, 2π) ∩ [0, 1] is a radius function. We
will consider functions of the form f χS , where f is a smooth function. Note that this
model is a special case of the class of cartoon-like images, where the set ∂S describes
the edge of an object. Similar image models are commonly used, for example, in the
variational approach to image processing (cf. [5, Chap. 3]).

We have the following result, which is a refinement from an observation in [14]:

Theorem 2 Let ψ1, ψ2, β be chosen as in Theorem 1. Let B = f χS, where S ◦ R
2

is a bounded region whose boundary ∂S is a simple C3 curve and f ∈ C≥(R2). Then
we have the following results:

(i) If p /∈ ∂S then, for all s ∈ R,

lim
a∩0+ a−N SHψB(a, s, p) = 0, for all N > 0.

(ii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at
p0 and s ∀= s0, then

lim
a∩0+ a−N SHψB(a, s, p0) = 0, for all N > 0.

(iii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at
p0, s = s0 and f (p) ∀= 0, then

lim
a∩0+ a− 1+β

2 SHψB(a, s0, p0) ∀= 0.

For simplicity of notation, we will prove Theorem 2 in the special case, where
β = 1

2 . The case of general 1
3 < β < 1 can be easily derived from here. For the

proof, we need first the following lemma (where we assume β = 1
2 ).

Lemma 4 Let S ◦ R
2 be a bounded region whose boundary ∂S is a simple C3 curve.

Assume that p0 ∈ ∂S is a regular point and PS is a polynomial with PS(p0) = 0. For
any N > 0, we have

(i) lima∩0 a−N →PS χS, ψ
(h)
a,s,p0∞ = 0, s ∀= ±n (p0),

(ii) lima∩0 a− 5
4 →PS χS, ψ

(h)
a,s,p0∞ = C, s = ±n (p0),

where C is a finite real number.

Proof We only prove the lemma when PS is a polynomial of degree 2, since the same
argument works for a polynomial of degree >2. Without loss of generality, we may
assume p0 = (0, 0) and that near p0, we have that ∂S = {(g(u), u), −ε < u < ε},
where g(u) = Au2 + Bu. Also we may write s = tan θ0 with θ0 = 0.

Recall that, by the divergence theorem,
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⎫χS(ρ, θ) = − 1

2π iρ

∫

∂S
e−2π iρΘ(θ)·x Θ(θ) · n (x) d σ(x)

= − 1

2π iρ

∫ L

0
e−2π iρ Θ(θ)·α(t) Θ(θ) · n (t) dt.

Since PS(0) = 0, we can write PS(x) as A1x1 + A2x2 + A3x2
1 + A4x1x2 + A5x2

2.
Let PS(

i
2π

D) be the differential operator obtained from the polynomial PS(x) by
replacing x1 with i

2π
∂

∂ξ1
and x2 with i

2π
∂

∂ξ2
.

A direct computation gives that

∂

∂ξ1

⎞

ψ̂1(aξ1)ψ̂2(a
− 1

2 (
ξ2

ξ1
− s))

⎠

= aψ̂1
⊂
(aξ1)ψ̂2(a

− 1
2 (

ξ2

ξ1
− s)) − ξ2

ξ2
1

a− 1
2 ψ̂1(aξ1)ψ̂2

⊂
(a− 1

2 (
ξ2

ξ1
− s)),

and

∂2

∂ξ2
1

⎞

ψ̂1(aξ1)ψ̂2(a
− 1

2 (
ξ2

ξ1
− s))

⎠

= a2ψ̂1
⊂⊂
(aξ1)ψ̂2(a

− 1
2 (

ξ2

ξ1
− s)) − a

1
2
ξ2

ξ2
1

ψ̂1
⊂
(aξ1)ψ̂2

⊂
(a− 1

2 (
ξ2

ξ1
− s))

+a− 1
2

2ξ2

ξ3
1

ψ̂1(aξ1)ψ̂2
⊂
(a− 1

2 (
ξ2

ξ1
− s)) − a

1
2
ξ2

ξ2
1

ψ̂1
⊂
(aξ1)ψ̂2

⊂
(a− 1

2 (
ξ2

ξ1
− s))

+(a− 1
2
ξ2

ξ2
1

)2ψ̂1(aξ1)ψ̂2
⊂⊂
(a− 1

2 (
ξ2

ξ1
− s)).

Using these expressions, we obtain that

→PS χS, ψ
(h)
a,s,p∞ = →χS, PS ψ(h)

a,s,p∞
= →⎫χS,

∅
PS ψ

(h)
a,s,p∞

= →⎫χS, PS(
i

2π
D)(

̂
ψ

(h)
a,s,p)∞

=
5⎭

m=1

Jm(a, s, p),

where, using p = (0, 0),

J1(a, s, 0) = A1i

2π
→⎫χS,

∂

∂ξ1
(ψ̂1(aξ1)ψ̂2(a

− 1
2 (

ξ2

ξ1
− s)))∞,
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J2(a, s, 0) = A2i

2π
→⎫χS,

∂

∂ξ2
(ψ̂1(aξ1)ψ̂2(a

− 1
2 (

ξ2

ξ1
− s)))∞,

J3(a, s, 0) = − A3

(2π)2 →⎫χS,
∂2

∂ξ2
1

(ψ̂1(aξ1)ψ̂2(a
− 1

2 (
ξ2

ξ1
− s)))∞,

J4(a, s, 0) = − A4

(2π)2 →⎫χS,
∂2

∂ξ1∂ξ2
(ψ̂1(aξ1)ψ̂2(a

− 1
2 (

ξ2

ξ1
− s)))∞,

J5(a, s, 0) = − A5

(2π)2 →⎫χS,
∂2

∂ξ2
2

(ψ̂1(aξ1)ψ̂2(a
− 1

2 (
ξ2

ξ1
− s)))∞.

Since s ∀= ±n (p0), by integration by parts, it is easy to see that for each N > 0,
we have ⎫χS(a−1ρ, θ) = O(aN ), as a ∩ 0, uniformly for all ρ and θ . For each Jm,
let ξ = ρ Θ(θ) and aρ = ρ⊂, by the Localization Lemma (Lemma 2) we see that
Jm = O(aN ) for m = 1, 2, 3, 4, 5 and this proves part (i).

For s = ±n (p0), let us first examine the term J1. By the Localization Lemma,
we can assume that J1 has the following expression:

J1(a, s, 0)

= A1i

2π

∫

R2
⎫χS(ξ)

∂

∂ξ1

⎛
ψ̂1(aξ1) ψ̂2(a

− 1
2 (

ξ2
ξ1

))
⎝

dξ

= − a
3
4 A1

(2π)2

∫ ≥

0

∫ 2π

0

∫ ε

−ε

e−2π iρ Θ(θ)·(g(u),u) Θ(θ) · n (u) du

×
⎤

aψ̂1
⊂
(aρ cos θ)ψ̂2(a

− 1
2 tan θ) − a− 1

2 tan θ

ρ cos θ
ψ̂1(aρ cos θ)ψ̂2

⊂
(a− 1

2 tan θ)

⎧

dθ dρ

= −a− 1
4 A1

(2π)2

∫ ≥

0

∫ 2π

0

∫ ε

−ε

e−2π ia−1ρ Θ(θ)·(g(u),u) Θ(θ) · n (u) du

×
⎤

aψ̂1
⊂
(ρ cos θ)ψ̂2(a

− 1
2 tan θ) − a

1
2 tan θ

ρ cos θ
ψ̂1(ρ cos θ)ψ̂2

⊂
(a− 1

2 tan θ)

⎧

dθ dρ

= J11(a, s, 0) + J12(a, s, 0),

where

J11(a, s, 0) = −a− 1
4 A1

(2π)2

∫ ≥

0

∫ 2π

0

∫ ε

−ε

e−2π ia−1ρ Θ(θ)·(g(u),u) Θ(θ) · n (u) du

× a ψ̂1
⊂
(ρ cos θ) ψ̂2(a

− 1
2 tan θ) dθ dρ,

J12(a, s, 0) = a− 1
4 A1

(2π)2

∫ ≥

0

∫ 2π

0

∫ ε

−ε

e−2π ia−1ρ Θ(θ)·(g(u),u) Θ(θ) · n (u) du
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× a
1
2 tan θ

ρ cos θ
ψ̂1(ρ cos θ) ψ̂2

⊂
(a− 1

2 tan θ) dθ dρ.

Then, similar to part (iii) of the proof of Theorem 1, we examine the oscillatory
integrals J11 and J12 depending on the behavior of the phase Θ(θ) · (g(u), u). As
in the proof of Theorem 1, part (iii), there are two cases to consider depending on
A = 0 or A ∀= 0 (recall that g(u) = Au2 +Bu). In either case, we break up the interval

[0, 2π ] into [−π
2 , π

2 ] ⎪
(π

2 , 3π
2 ] and let t = a− 1

2 tan θ), u⊂ = a− 1
2 u. Thus, we have

the following estimates:
Case 1: A ∀= 0. We will only consider the case A > 0 since the case A < 0 is

similar. Using the formulas of Fresnel integrals, we have

lim
a∩0+(2π)22

∇
Aa− 7

4 J11(a, s, 0)

= −A1
∇

A
∫ ≥

0
ψ̂1

⊂
(ρ)

∫ 1

−1
e

π iρ
2A t2

ψ̂2(t)dt
∫ ≥

−≥
e−2π iρAu2

du dρ

+ A1
∇

A
∫ ≥

0
ψ̂1

⊂
(ρ)

∫ 1

−1
e− π iρ

2A t2
ψ̂2(t)dt

∫ ≥

−≥
e2π iρAu2

du dρ

= A1

∫ ≥

0

ψ̂1
⊂
(ρ)∇
ρ

∫ 1

−1

⎛
cos(

πρ

2A
t2) − sin(

πρ

2A
t2)

⎝
ψ̂2(t)dt dρ

= C11,

where C11 is a finite real number.
A similar calculation gives that

lim
a∩0+(2π)22

∇
Aa− 7

4 J12(a, s, 0)

= A1
∇

A
∫ ≥

0

ψ̂1(ρ)

ρ

∫ 1

−1
e

π iρ
2A t2

tψ̂2
⊂
(t)dt

∫ ≥

−≥
e−2π iρAu2

du dρ

+ A1
∇

A
∫ ≥

0

ψ̂1(ρ)

ρ

∫ 1

−1
e− π iρ

2A t2
tψ̂2

⊂
(t)dt

∫ ≥

−≥
e2π iρAu2

du dρ

= A1

∫ ≥

0

ψ̂1(ρ)

ρ
3
2

∫ 1

−1

⎛
cos(

πρ

2A
t2) + sin(

πρ

2A
t2)

⎝
tψ̂2

⊂
(t)dt dρ

= C12,

where C12 is a finite real number.
The same argument applied to the term J2 gives that

lim
a∩0+(2π)22

∇
Aa− 5

4 J2(a, s, 0)
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= A2
∇

A
∫ ≥

0

ψ̂1(ρ)

ρ

∫ 1

−1
e

π iρ
2A t2

ψ̂2
⊂
(t)dt

∫ ≥

−≥
e−2π iρAu2

du dρ

+ A2
∇

A
∫ ≥

0

ψ̂1(ρ)

ρ

∫ 1

−1
e− π iρ

2A t2
ψ̂2

⊂
(t)dt

∫ ≥

−≥
e2π iρAu2

du dρ

= A2

∫ ≥

0

ψ̂1(ρ)

ρ
3
2

∫ 1

−1

⎛
cos(

πρ

2A
t2) − sin(

πρ

2A
t2)

⎝
ψ̂2

⊂
(t)dt dρ = C2 = 0,

where C2 is a finite real number and, similarly,

lim
a∩0+ a− 11

4 J3(a, s, 0) = C3, lim
a∩0+ a− 9

4 J4(a, s, 0) = C4, lim
a∩0+ a− 7

4 J5(a, s, 0) = C5,

where C3, C4, C5 are finite real numbers.
In general, for m = (m1, m2) ∈ N × N, we have

lim
a∩0+ a−( 3

4 +m1+ m2
2 )→⎫χS,

∂m

∂ξm

⎞

ψ̂1(aξ1) ψ̂2(a
− 1

2 (
ξ2

ξ1
− s))

⎠

∞ = Cm,

where Cm is a finite real number for each fixed m. This shows that part (ii) holds for
the case A ∀= 0.

Case 2: A = 0. Using an argument similar to the one used in the proof of part
(iii) of Theorem 1, we have that

lim
a∩0+(2π)22a− 7

4 →⎨χS,
∂

∂ξ1
(ψ̂1(aξ1) ψ̂2(a− 1

2 (
ξ2

ξ1
− s)))∞

=
∫ ≥

0
ψ̂1

⊂
(ρ)

∫ 1

−1
ψ̂2(t)e−2π iρtu dt du dρ −

∫ ≥
0

ψ̂1
⊂
(ρ)

∫ 1

−1
ψ̂2(t)e2π iρtu dt du dρ

+
∫ ≥

0

ψ̂1(ρ)

ρ

∫ 1

−1
tψ̂2

⊂
(t)e−2π iρtu dt du dρ −

∫ ≥
0

ψ̂1(ρ)

ρ

∫ 1

−1
tψ̂2

⊂
(t)e2π iρtu dt du dρ

= 0,

where we have used the assumption that ψ̂1 is odd and ψ̂2 is even.
Similarly,

lim
a∩0+(2π)22a− 5

4 →⎨χS,
∂

∂ξ2
(ψ̂1(aξ1) ψ̂2(a− 1

2 (
ξ2

ξ1
− s)))∞

=
∫ ≥

0

ψ̂1(ρ)

ρ

∫ 1

−1
ψ̂2

⊂
(t)e−2π iρtu dt du dρ −

∫ ≥
0

ψ̂1(ρ)

ρ

∫ 1

−1
ψ̂2

⊂
(t)e2π iρtu dt du dρ

= 0.

Also in this case, in general, for m = (m1, m2) ∈ N × N, we have
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lim
a∩0+ a−( 3

4 +m1+ m2
2 )→⎫χS,

∂m

∂ξm

⎞

ψ̂1(aξ1) ψ̂2(a
− 1

2 (
ξ2

ξ1
− s))

⎠

∞ = Cm,

where Cm is a finite real number for each fixed m. �
We can now complete the proof of the theorem.

Proof (of Theorem 2) It will be sufficient to consider the horizontal shearlet system
{ψ(h)

a,s,p} since the analysis of the vertical system is similar.
(i) For any p /∈ ∂S using the argument from the proof of Lemma 3, one can find

the Taylor polynomial PS of f at p of degree N ⊂ such that, for any N ∈ N,

lim
a∩0+ a−N |→PS χS, ψ

(h)
a,s,p∞ − →f χS, ψ

(h)
a,s,p∞| = 0.

As in the proof of Lemma 4, we convert PS(x) into the differential operator
PS(

i
2π

D). Then, by the Localization Lemma 2, it follows that

lim
a∩0+ a−N |→PS χS, ψ

(h)
a,s,p∞| = 0.

This completes the proof of part (i).
(ii) As in the proof of part (i), we can replace B = f χS by the expression Ps χS .

Then part (ii) follows from the argument used in the proof of part (i) of Lemma 4.
(iii) Again we can replace B = f χS by Ps χS . Then, using Lemma 3, we see that

near p the boundary curve can be replaced by (g(u), u) where, as in Lemma 4, g
is a polynomial of degree 2. Since Ps(p) = f (p) ∀= 0, Lemma 4 and part (iii) of
Theorem 1 imply that

lim
a∩0+ a− 3

4 SHψB(a, s0, p0) = f (0) lim
a∩0+ a− 3

4 SHψχS(a, s0, p0) ∀= 0. �

As yet another class of two-dimensional singularities, let us consider the case of
discontinuities in the derivative. As a prototype of such singularities, let us examine
the two-dimensional ramp function x1H(x1, x2), where H is the two-dimensional
Heaviside function defined in Sect. 3. Using a calculation very similar to Sect. 3, we
obtain

SHψ(x1H)(a, s, t) = →x1H, ψa,s,t∞
= − 1

2π i

∫

R2
∂1Ĥ(ξ1, ξ2) ψ̂a,s,t(ξ1, ξ2) dξ1 dξ2

= 1

2π i

∫

R2
Ĥ(ξ1, ξ2) ∂1ψ̂a,s,t(ξ1, ξ2) dξ1 dξ2

=
∫

R2

δ2(ξ1, ξ2)

2π iξ1
∂1ψ̂a,s,t(ξ1, ξ2) dξ1 dξ2

=
∫

R

1

2π iξ1
∂1ψ̂a,s,t(ξ1, ξ2)|ξ2=0 dξ1
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= a
1+β

2 ψ̂2(a
β−1s)

∫

R

1

2π iξ1
∂1

⎛
ψ̂1(a ξ1) e2π iξ1t1

⎝
dξ1

= a
1+β

2 ψ̂2(a
β−1s)

∫

R

1

2π iξ1

⎛
a∂1

⎛
ψ̂1

⎝
(a ξ1) + 2π it1ψ̂1(a ξ1)

⎝
e2π iξ1t1 dξ1.

As in the case of shearlet transform of H, under the assumption that ψ̂1 ∈ C≥
c (R)

it follows that SHψ(x1H)(a, s, t) decays rapidly, asymptotically for a ∩ 0, for all
(t1, t2) when t1 ∀= 0, and for t1 = 0, s ∀= 0. On the other hand, if t1 = 0 and s = 0
we have:

SHψ(x1H)(a, s, t) = a
3+β

2 ψ̂2(0)

∫

R

1

2π iξ1
∂1

⎛
ψ̂1

⎝
(a ξ1) dξ1.

Provided that ψ̂2(0) ∀= 0 and that the integral on the right-hand side of the equation

above is nonzero, it follows that SHψ(x1H)(a, s, t) = O(a
3+β

2 ).

This result suggests that, under appropriate assumptions onψ1 and ψ2, the analysis
of Sect. 3 extends to singularities that behave locally as the ramp function. The
complete discussion of this problem is beyond the scope of this paper.

Finally, we remark that the analysis of singularities using the continuous shearlet
transform extends “naturally” to the 3D setting. In particular, one can derive a char-
acterization result of jump discontinuities, which follows rather closely the analysis
we presented in the 2D setting even though not all arguments from the 2D case carry
over to this case (cf. [11, 12]). However, the analysis of the irregular boundary points
and other types of singularities is more involved and only partial results are currently
available in the references cited above.
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Barycentric Interpolation

Kai Hormann

Abstract This survey focusses on the method of barycentric interpolation, which
ties up to the ideas that August Ferdinand Möbius published in his seminal work
“Der barycentrische Calcul” in 1827. For univariate data, it leads to a special kind
of rational interpolation which is guaranteed to have no poles and favorable approx-
imation properties. We further discuss how to extend this idea to bivariate data, both
for scattered data and for data given at the vertices of a polygon.

Keywords Rational interpolation ·Barycentric coordinates ·Approximation order ·
Lebesgue constant

1 Introduction

Consider a system of n + 1 particles, located at x0, . . . , xn and with masses
w0, . . . , wn . It is then well known from physics that the centre of mass or barycentre
of this particle system is the unique point x which satisfies

n∑

i=0

wi (x − xi ) = 0,

that is,

x =
∑n

i=0 wi xi
∑n

i=0 wi
.
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The idea of barycentric interpolation stems from this concept, by asking the ques-
tion: given a fixed set of distinct locations or nodes x0, . . . , xn and an arbitrary point x ,
do there exist some masses or weights w0, . . . , wn , such that x is the barycentre of
the corresponding particle system? Consequently, we are interested in functions
w0(x), . . . , wn(x), such that

x =
∑n

i=0 wi (x)xi
∑n

i=0 wi (x)
. (1)

Möbius [24] was probably the first to answer this question in full generality. He
showed that for particle systems in R

m such weights always exist1 for any x ∈ R
m ,

as long as the number of particles is greater than the dimension, that is, for n ≥ m.
Möbius called the weights w0(x), . . . , wn(x) the barycentric coordinates of x with
respect to x0, . . . , xn .

It is clear that barycentric coordinates are homogeneous in the sense that they
can be multiplied with a common nonzero scalar and still satisfy (1). In the context
of barycentric interpolation we therefore assume without loss of generality that the
barycentric coordinates sum to one for any x . We further demand that they are 1
at the corresponding node and 0 at all other nodes. The resulting barycentric basis
functions bi : Rm ∩ R, i = 0, . . . , n are then characterized by the three properties:

Partition of unity:
n∑

i=0

bi (x) = 1, (2a)

Barycentric property:
n∑

i=0

bi (x)xi = x, (2b)

Lagrange property: bi (x j ) = Ωi j , (2c)

where (2b) is equivalent to (1) because of (2a). Möbius observed that these barycen-
tric basis functions are unique in the special case n = m, when the nodes x0, . . . , xn

can be considered the vertices of an m-simplex, and he gave an explicit formula for
bi in this case, which reveals that bi is a linear function.

Let us now consider data f0, . . . , fn corresponding to the nodes x0, . . . , xn and
possibly sampled from some function f : Rm ∩ R, that is, fi = f (xi ) for i =
0, . . . , n. The barycentric interpolant of this data is then given by

F(x) =
n∑

i=0

bi (x) fi . (3)

It follows from (2c) that the function F : Rm ∩ R interpolates the data fi at xi

for i = 0, . . . , n, and from (2a) and (2b) that this kind of interpolation reproduces

1 Note that at least one of the wi (x) must be negative if x is outside the convex hull of the nodes
x0, . . . , xn , which is physically impossible and motivates to call the wi weights rather than masses.
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linear functions. That is, if the data f0, . . . , fn are sampled from a linear polynomial
f ∈ ∂1, where ∂d denotes the space of polynomials with degree at most d, then
F = f .

Vice versa, if an interpolation operator reproduces linear functions, then its car-
dinal basis functions clearly satisfy the three conditions in (2). Therefore, many
classical interpolation methods, including interpolation with splines, radial basis
functions, and subdivision schemes, just to name a few, could be called barycen-
tric. However, we prefer to use the term barycentric interpolation whenever simple
closed-form expressions for the barycentric basis functions bi exist, so that evaluating
the interpolant (3) is efficient.

In this survey, we review recent progress in the construction of such barycentric
basis functions and the related interpolants. We mainly focus on the univariate setting
in Sect. 2, but also summarize some results on scattered data interpolation in two
variables in Sect. 3. The special case of barycentric interpolation at the vertices of
a polygon in R

2 is only briefly discussed in Sect. 4, as more details can be found
in [12].

2 Univariate Barycentric Interpolation

Suppose we are given two distinct nodes x0, x1 ∈ R. Then it is clear that the two
functions b0, b1 : R ∩ R with

b0(x) = x1 − x

x1 − x0
and b1(x) = x − x0

x1 − x0

are barycentric basis functions2 with respect to x0 and x1, that is, these functions
satisfy the three conditions in (2). Therefore, the barycentric interpolant to the data
f0 and f1, associated with x0 and x1, is the linear function

F1(x) = x1 − x

x1 − x0
f0 + x − x0

x1 − x0
f1. (4)

In order to generalize this approach to more than two nodes, we first rewrite F1(x)

as

F1(x) = (x − x1) f0 − (x − x0) f1

−(x1 − x0)
= (x − x1) f0 − (x − x0) f1

(x − x1) − (x − x0)
,

2 Since n = m = 1, these are the unique barycentric basis functions, according to Möbius [24].
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and then, after dividing numerator and denominator both by (x − x0)(x − x1), as

F1(x) =
1

x−x0
f0 − 1

x−x1
f1

1
x−x0

− 1
x−x1

=
∑1

i=0
(−1)i

x−xi
fi

∑1
i=0

(−1)i

x−xi

. (5)

2.1 Berrut’s Interpolants

The extension to n + 1 distinct nodes in ascending order x0 < · · · < xn with
associated data f0, . . . , fn is now as easy as changing the upper bound of summation
in (5) from 1 to n, giving the interpolant

Fn(x) =
∑n

i=0
(−1)i

x−xi
fi

∑n
i=0

(−1)i

x−xi

. (6)

To see that Fn indeed interpolates the data, we multiply numerator and denominator
both with

α(x) =
n∏

i=0

(x − xi ), (7)

so that

Fn(x) =
∑n

i=0 (−1)i ∏n
j=0, j →=i (x − x j ) fi

∑n
i=0 (−1)i ∏n

j=0, j →=i (x − x j )
, (8)

and evaluation at x = xk reveals that

Fn(xk) =
∑n

i=0 (−1)i ∏n
j=0, j →=i (xk − x j ) fi

∑n
i=0 (−1)i ∏n

j=0, j →=i (xk − x j )
= (−1)k ∏n

j=0, j →=k(xk − x j ) fk

(−1)k ∏n
j=0, j →=k(xk − x j )

= fk .

Equation (8) shows that Fn is a rational function of degree at most n over n.
This rational interpolant was discovered by Berrut [1], who also shows that Fn does
not have any poles in R, because the denominator of (6) does not vanish for any
x ∈ R \ {x0, . . . , xn}. For example, if x ∈ (x0, x1), then

n∑

i=0

(−1)i

x − xi
= 1

x − x0︸ ︷︷ ︸
>0

+ 1

x1 − x
− 1

x2 − x
︸ ︷︷ ︸

>0

+ 1

x3 − x
− · · ·

︸ ︷︷ ︸
>0

> 0,



Barycentric Interpolation 201

that is, for each negative term −1/(x2i − x) there is a positive term 1/(x2i−1 − x)

such that their sum is positive, because x2i−1 < x2i . All other cases of x can be
treated similarly. Another property of Fn is that it is a barycentric interpolant in case
n is odd.

Proposition 1 Berrut’s first interpolant Fn in (6) is barycentric for odd n.

Proof It is clear that the underlying basis functions

bi (x) =
(−1)i

x−xi
∑n

j=0
(−1) j

x−x j

, i = 0, . . . , n. (9)

of Fn satisfy conditions (2a) and (2c). Applying the construction of F1 in (5) to data
sampled from the identity function at xi and xi+1 gives F1(x) = x , hence

(
1

x − xi
− 1

x − xi+1

)

x = 1

x − xi
xi − 1

x − xi+1
xi+1 (10)

for i = 0, . . . , n − 1. Adding these equations for i = 0, 2, . . . , (n − 1)/2 gives

n∑

i=0

(−1)i

x − xi
x =

n∑

i=0

(−1)i

x − xi
xi ,

which is equivalent to (2b) for the bi in (9). �

Unfortunately, the trick used in the proof of Proposition 1 to establish condi-
tion (2b) does not work for n even, but a slight modification of Fn takes care of it.
We just need to weight all but the first and the last terms of the sums in (6) by a factor
of 2, giving the interpolant

F̂n(x) =
1

x−x0
f0 + 2

∑n−1
i=1

(−1)i

x−xi
fi + (−1)n

x−xn
fn

1
x−x0

+ 2
∑n−1

i=1
(−1)i

x−xi
+ (−1)n

x−xn

. (11)

This rational interpolant was also discovered by Berrut [1] and like Fn it does not
have any poles in R [13]. Its advantage, however, is that it is a barycentric interpolant
for any n.

Proposition 2 Berrut’s second interpolant F̂n in (11) is barycentric for any n.

Proof Multiplying the equations in (10) by (−1)i and adding them for i = 0, . . . , n−
1 gives

(
1

x − x0
+ 2

n−1∑

i=1

(−1)i

x − xi
+ (−1)n

x − xn

)

x = 1

x − x0
x0 + 2

n−1∑

i=1

(−1)i

x − xi
xi + (−1)n

x − xn
xn .
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Therefore, condition (2b) holds for the basis functions of the interpolant F̂n in (11),
and it is clear that these basis functions also satisfy conditions (2a) and (2c). �

2.2 General Rational Interpolants

Berrut’s interpolants Fn and F̂n are special cases of the general rational function

Fε(x) =
∑n

i=0
εi

x−xi
fi

∑n
i=0

εi
x−xi

(12)

with coefficients ε = (ε0, . . . , εn), which was introduced and studied by Schneider
and Werner [28]. They show that Fε interpolates fi at xi as long as εi →= 0, which
can be seen immediately after multiplying numerator and denominator both with
α(x) in (7), similarly to how we did it for Fn above.

Moreover, Berrut and Mittelmann [4] observe that any rational interpolant to the
data f0, . . . , fn at x0, . . . , xn can be written in the form (12) for some suitable choice
of ε. Assume that

r(x) = p(x)

q(x)
, p ∈ ∂k, q ∈ ∂m

is a rational function of degree k over m with k, m ∞ n and r(xi ) = fi for i =
0, . . . , n. Now consider the Lagrange form of p,

p(x) =
n∑

i=0

n∏

j=0, j →=i

x − x j

xi − x j
p(xi ) = α(x)

n∑

i=0

p(xi )

(x − xi )α≤(xi )
,

with α(x) as in (7), and the Lagrange form of q,

q(x) = α(x)

n∑

i=0

q(xi )

(x − xi )α≤(xi )
,

and let

εi = q(xi )

α≤(xi )
, i = 0, . . . , n.

The interpolation condition of r implies p(xi ) = q(xi ) fi and substituting this in
p(x) as well as εi both in p(x) and q(x) then gives r(x) in the form (12) after
cancelling out the common factor α(x). These coefficients ε are actually unique up
to a common nonzero scaling factor.



Barycentric Interpolation 203

An immediate consequence of this observation is that Fε with

εi = 1

α≤(xi )
=

n∏

j=0, j →=i

1

xi − x j
, i = 0, . . . , n,

is the interpolating rational function with denominator q(x) = 1, that is, the interpo-
lating polynomial of degree n. This special way of writing the interpolating polyno-
mial is called the (true) barycentric formula,3 and it provides a fast and stable algo-
rithm for evaluating the interpolating polynomial, which outperforms even Newton’s
interpolation formula [5, 18].

Returning to the general rational interpolant Fε in (12), a natural question arises
in the context of this survey: how to choose the coefficients ε such that Fε is a
barycentric interpolant and without poles inR? The coefficients from Berrut’s second
interpolant as well as those from the interpolating polynomial certainly satisfy both
goals, but are there other choices? The answer is positive, but before we go into
details, let us review some basic facts.

The first goal can easily be achieved by slightly constraining the coefficients ε.

Proposition 3 If the coefficients ε = (ε0, . . . , εn) satisfy

n∑

i=0

εi = 0, (13)

then the interpolant Fε in (12) is barycentric.

Proof As in the proof of Proposition 2, we consider the equations in (10). Multiplying
each by Δi = ∑i

j=0 ε j and adding them for i = 0, . . . , n − 1 gives

n−1∑

i=0

Δi

(
1

x − xi
− 1

x − xi+1

)

x =
n−1∑

i=0

Δi

(
1

x − xi
xi − 1

x − xi+1
xi+1

)

∇⇒
n−1∑

i=0

Δi

x − xi
x −

n∑

i=1

Δi−1

x − xi
x =

n−1∑

i=0

Δi

x − xi
xi −

n∑

i=1

Δi−1

x − xi
xi

∇⇒ Δ0

x − x0
x +

n−1∑

i=1

Δi − Δi−1

x − xi
x − Δn−1

x − xn
x = Δ0

x − x0
x0 +

n−1∑

i=1

Δi − Δi−1

x − xi
xi − Δn−1

x − xn
xn

∇⇒
n∑

i=0

εi

x − xi
x =

n∑

i=0

εi

x − xi
xi ,

where the last equivalence stems from the identities Δ0 = ε0, Δi − Δi−1 = εi , and
Δn−1 = −εn by (13). This shows that condition (2b) holds for the basis functions

3 According to Henrici [17], this terminology goes back to Rutishauser [27] and is justified because
the interpolating polynomial reproduces linear functions for n ≥ 1 and therefore is a barycentric
interpolant.
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Some examples of the rational interpolant Fε in (12) to the data ( f0, f1, f2, f3) =
(2,−1, 1, 1) at the nodes (x0, x1, x2, x3) = (1, 3, 4, 7) for different choices of ε: a Berrut’s first
interpolant; b Berrut’s second interpolant; c interpolating cubic polynomial; d, e two examples of
rational interpolants with poles in R; f Floater–Hormann interpolant for d = 1

of the interpolant F̂ε in (11), and it is clear that these basis functions also satisfy
conditions (2a) and (2c). �

As for the second goal, the absence of poles, Schneider and Werner [28] derive a
necessary condition: the coefficientsεi need to have alternating sign, that is,εiεi+1 <

0 for i = 0, . . . , n − 1. But as the examples in Fig. 1 illustrate, this is not a sufficient
condition. Schneider and Werner [28] also show that Fε has an odd number of poles
in the open interval (xi , xi+1) if εi and εi+1 have the same sign. However, this is
all that is known so far and deriving further conditions remains a challenging open
problem.

2.3 Floater–Hormann Interpolants

A set of coefficients ε, which is different from the special cases above, is

εi = (−1)i

xi+1 − xi
+ (−1)i

xi − xi−1
, i = 1, . . . , n − 1,

and

ε0 = 1

x1 − x0
, εn = (−1)n

xn − xn−1
.
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These coefficients clearly satisfy the condition of Proposition 3, but there is
another way to show that the corresponding rational interpolant Fε is barycentric.
To this end, let us rewrite the numerator of Fε as

n∑

i=0

εi

x − xi
fi =

n−1∑

i=0

(−1)i fi

(x − xi )(xi+1 − xi )
+

n∑

i=1

(−1)i fi

(x − xi )(xi − xi−1)

=
n−1∑

i=0

(−1)i fi

(x − xi )(xi+1 − xi )
+

n−1∑

i=0

(−1)i+1 fi+1

(x − xi+1)(xi+1 − xi )

=
n−1∑

i=0

(−1)i+1

(x − xi )(x − xi+1)
· (xi+1 − x) fi + (x − xi ) fi+1

xi+1 − xi
.

Remembering (4), we recognize the term

ψi (x) = (xi+1 − x) fi + (x − xi ) fi+1

xi+1 − xi

as the linear interpolant to the data fi and fi+1 at xi and xi+1. Introducing the
functions

δi (x) = (−1)i+1

(x − xi )(x − xi+1)
, i = 0, . . . , n − 1,

we can now write the numerator of Fε as

n∑

i=0

εi

x − xi
fi =

n−1∑

i=0

δi (x)ψi (x)

and the denominator as

n∑

i=0

εi

x − xi
=

n−1∑

i=0

δi (x). (14)

It then turns out that the rational interpolant Fε is an affine combination of the local
linear interpolants ψi ,

Fε(x) =
n−1∑

i=0

μi (x)ψi (x), (15)

with weight functions
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μi (x) = δi (x)
∑n−1

j=0 δ j (x)
, i = 0, . . . , n − 1,

which clearly sum to one. Now, if the data is sampled from the function f (x) = x ,
that is, fi = xi for i = 0, . . . , n, then ψi (x) = x for i = 0, . . . , n −1 and Fε(x) = x
by (15), which confirms Fε to be a barycentric interpolant.

With the denominator of Fε written as in (14), it is also easy to see that Fε has
no poles in R. If x ∈ (x0, x1), then

n∑

i=0

εi

x − xi
= 1

(x − x0)(x1 − x)
︸ ︷︷ ︸

>0

+ 1

(x1 − x)(x2 − x)
− 1

(x2 − x)(x3 − x)
︸ ︷︷ ︸

>0

+ · · · > 0,

similar to our consideration for the denominator of Berrut’s first interpolant Fn above,
and analyzing the other cases shows that the denominator of Fε does not vanish for
any x ∈ R \ {x0, . . . , xn}.

In the same way that Fε in (15) is an affine combination of local linear interpolants,
Berrut’s first interpolant Fn in (6) can be seen as an affine combination of local
constant interpolants with the bi in (9) as weight functions, which also indicates
why it does not reproduce linear functions in general.

Equipped with this new point of view, it is now straightforward to design barycen-
tric rational interpolants which reproduce polynomials up to some general degree
d ∞ n. Let us denote the unique polynomials of degree at most d that interpolate the
data fi , . . . , fi+d at xi , . . . , xi+d by ψd

i ∈ ∂d for i = 0, . . . , n − d and consider
their affine combination

Fd
n (x) =

n−d∑

i=0

μd
i (x)ψd

i (x) (16)

for certain weight functions μd
i (x). Looking at the weight functions in the constant

and linear case, the obvious generalization is

μd
i (x) = δd

i (x)
∑n−d

j=0 δd
j (x)

, i = 0, . . . , n − d, (17)

with

δd
i (x) = (−1)i+d

(x − xi ) · · · (x − xi+d)
, i = 0, . . . , n − d.

The functions Fd
n in (16) were introduced by Floater and Hormann [13], who

also show that they do not have any poles in R, using similar arguments as above.
Multiplying numerator and denominator of Fd

n with α(x) in (7), it is clear that this
function is rational of degree n over n−d and that it interpolates the data f0, . . . , fn at
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Fig. 2 Comparison of several
Floater–Hormann interpolants
to data at 9 irregularly distrib-
uted nodes, including Berrut’s
first interpolant (d = 0) and
the interpolating polynomial
(d = 8)

d = 8

d = 0
d = 1
d = 3

x0, . . . , xn . Therefore, it must be possible to convert Fd
n into the general barycentric

form (12) and Floater and Hormann [13] derive that

εi = (−1)i
min(i,n−d)∑

j=max(i−d,0)

j+d∏

k= j,k →=i

1

|xi − xk | , i = 0, . . . , n. (18)

is the correct choice of coefficients ε. As Fd
n clearly reproduces polynomials up to

degree d by construction, it is a barycentric interpolant, as long as d ≥ 1.
This family of Floater–Hormann interpolants nicely closes the gap between

Berrut’s first interpolant Fn = F0
n and the interpolating polynomial Fn

n and the
barycentric form allows us to efficiently evaluate Fd

n with O(n) operations. In this
regard, note that the coefficients ε in (18) do not depend on the data. Hence, they
can be computed once for a specific set of nodes x0, . . . , xn and then be used to
interpolate any data f0, . . . , fn given at these nodes. This also shows that the ratio-
nal interpolant Fd

n depends linearly on the data. Some examples of Fd
n for different

values of d are shown in Fig. 2.
In the special case of equidistant nodes xi = x0 + ih, i = 0, . . . , n with spacing

h > 0, the coefficients in (18), after multiplying them by d!hd , simplify to [13]

εi = (−1)i
min(i,n−d)∑

j=max(i−d,0)

(
d

i − j

)

, i = 0, . . . , n. (19)

Ignoring the sign and assuming n ≥ 2d, the first few sets of these coefficients are

d = 0 : 1, 1, . . . , 1, 1,

d = 1 : 1, 2, 2, . . . , 2, 2, 1,

d = 2 : 1, 3, 4, 4, . . . , 4, 4, 3, 1,

d = 3 : 1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1,

and we recognize that F1
n is identical to Berrut’s second interpolant F̂n in the case

of equidistant nodes, but not in general, as shown in Fig. 1b, f.
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2.4 Approximation Properties

The Floater–Hormann interpolants Fd
n in (16) have some remarkable approximation

properties, both with respect to the approximation order and to the Lebesgue con-
stant. On the one hand, the approximation order of the interpolant Fd

n is essentially
O(hd+1), where

h = max
0∞i∞n−1

(xi+1 − xi ) (20)

is the maximal distance between neighbouring nodes. On the other hand, the
Lebesgue constant of Fd

n grows logarithmically with n for equidistant nodes, which
is a setting where polynomial interpolation is known to be very ill-conditioned.

To be more precise, let [a, b] = [x0, xn] be the interpolation interval, assume that
the data f0, . . . , fn is sampled from some function f ∈ Cd+2[a, b], and denote the
maximum norm on [a, b] by ∀ f ∀ = maxa∞x∞b | f (x)|. Floater and Hormann [13]
show that for d ≥ 1 the error between f and the rational interpolant Fd

n satisfies

∀Fd
n − f ∀ ∞ hd+1(b − a)

∀ f (d+2)∀
d + 2

, (21a)

if n − d is odd, and if n − d is even, then

∀Fd
n − f ∀ ∞ hd+1

(

(b − a)
∀ f (d+2)∀

d + 2
+ ∀ f (d+1)∀

d + 1

)

. (21b)

The key idea of the proof is to note that the weighting functions μd
i in (17) are a

partition of unity and to remember the Newton form of the error between f and the
interpolating polynomial ψd

i [22]. Then,

f (x) − Fd
n (x) =

n−d∑

i=0

μd
i (x)

(
f (x) − ψd

i (x)
⎢

=
n−d∑

i=0

μd
i (x)

i+d∏

j=i

(x − x j ) f [xi , . . . , xi+d , x]

=
∑n−d

i=0 (−1)i+d f [xi , . . . , xi+d , x]
∑n−d

i=0 δd
i (x)

, (22)

where f [xi , . . . , xi+d , x] denotes the divided difference of f at xi , . . . , xi+d , x . The
error bounds in (21) then follow after bounding the numerator and the denominator
in (22) suitably from above and from below, respectively.

Floater and Hormann [13] also derive similar error bounds for Berrut’s first inter-
polant (i.e., for d = 0), but only if the local mesh ratio is bounded, that is, if a
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Fig. 3 Numerically computed
Lebesgue constants θd

n of the
Floater–Hormann interpolants
Fd

n at n + 1 equidistant nodes
for 2d ∞ n ∞ 200 and several
values of d
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constant R ≥ 1 exists, such that

1

R
∞ xi+1 − xi

xi − xi−1
∞ R, i = 1, . . . , n − 1. (23)

For equidistant points with mesh ratio R = 1, these bounds show that the approxi-
mation order of Fn is O(h), which confirms the conjecture of Berrut [1].

Another way to bound the approximation error is by using the Lebesgue con-
stant θd

n for the interpolant Fd
n , which is defined as the maximum of the associated

Lebesgue function

θ̄d
n(x) =

n∑

i=0

|bi (x)| =
∑n

i=0
|εi ||x−xi |∣

∣
∣
∣
∑n

i=0
εi

x−xi

∣
∣
∣
∣

(24)

with the coefficients ε in (18),

θd
n = max

a∞x∞b
θ̄d

n(x).

Since Fd
n reproduces polynomials of degree d by construction, it follows [25] that

∀Fd
n − f ∀ ∞ (θd

n + 1)∀ψd∅ − f ∀,

where ψd∅ ∈ ∂d is the best approximation to f among all polynomials of degree at
most d. Moroever, if F̃d

n is the Floater–Hormann interpolant to the perturbed data
f̃i = fi + νi , i = 0, . . . , n with noise ν = max{|ν0|, . . . , |νn|}, then [7]

∀F̃d
n − Fd

n ∀ ∞ νθd
n .

Hence, the interpolation process is well conditioned if the Lebesgue constant is small.
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Fig. 4 Numerically computed
Lebesgue constants θ0

n of
Berrut’s first interpolant Fn at
n + 1 equidistant nodes for
1 ∞ n ∞ 200 and the upper
bounds (from top) by Bos et
al. [6], Hormann et al. [20],
and Zhang [32]
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For the special case of equidistant nodes, Bos et al. [6, 7] show that the Lebesgue
constant θd

n for the Floater–Hormann interpolant Fd
n grows only logarithmically with

n, as illustrated in Fig. 3, while the Lebesgue constant for polynomial interpolation
at such nodes is known to grow exponentially. In particular, they prove that

θd
n ∞ Δd(2 + ln n) (25)

with Δd = 1 for d = 0, 1 and Δd = 2d−1 for d > 1. The key idea of the proof is to
multiply both the numerator and the denominator in (24) with (x − xk)(xk+1 − x)

for some k ∈ {0, 1, . . . , n − 1} and to consider xk < x < xk+1. It is then possible to
bound the numerator from above and the denominator from below by bounds that do
not depend on k, and (25) follows after noticing that θ̄d

n(xi ) = 1 for i = 0, . . . , n.
This initial result has been improved and extended subsequently in various ways.

Hormann et al. [20] tighten the upper bound on the Lebesgue constant θ0
n for Berrut’s

first interpolant Fn = F0
n to

θ0
n ∞ 3

4
(2 + ln n)

and Zhang [32] further improves it to

θ0
n ∞ 1

1 + ψ2/24
ln(n + 1) +


⎥⎫

⎥⎬

1.47, ifn ≥ 10,

1.00, ifn ≥ 174,

0.99, ifn ≥ 500.

Figure 4 shows a visual comparison of these two and the initial bound in (25).
Based on extensive numerical experiments, Ibrahimoglu and Cuyt [21] predict

the asymptotic growth rate of the Lebesgue constant θd
n to be

θd
n ⊂ Δd

2

ψ
ln(n + 1)
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as n ∩ ◦. For d = 0, 1 this is identical to the optimal growth rate of the Lebesgue
constant for polynomial interpolation [30], which is obtained, for example, by sam-
pling at the extended Chebyshev nodes.

Hormann et al. [20] generalize the upper bound in (25) to the case where the nodes
are only quasi-equidistant. That is, they assume the existence of a global mesh ratio
M ≥ 1, independent of n, such that

h

h∅
∞ M

with h from (20) and

h∅ = min
0∞i∞n−1

(xi+1 − xi ),

and then show

θd
n ∞ Δ̃d(2 + M ln n)

with Δ̃0 = 3
4 M and Δ̃d = 2d−1 Md for d ≥ 1.

Finally, Bos et al. [8] prove that the Lebesgue constant θ0
n of Berrut’s first inter-

polant grows logarithmically with n for the very general class of well-spaced nodes.
A family X = (Xn)n∈N of sets of nodes Xn = {x0, . . . , xn} is called well-spaced if
each Xn the local mesh ratio is bounded as in (23) for some R ≥ 1 and if

xk+1 − xk

xk+1 − x j
∞ C

k + 1 − j
, j = 0, . . . , k, k = 0, . . . , n − 1, (26)

xk+1 − xk

x j − xk
∞ C

j − k
, j = k + 1, . . . , n, k = 0, . . . , n − 1, (27)

for some C ≥ 1, where both constants R and C must be independent of n. Under
these assumptions,

θ0
n ∞ (R + 1)(1 + 2C ln n).

This definition of well-spaced nodes includes equidistant nodes (with R = C = 1),
extended Chebyshev nodes

xi = cos (2i+1)ψ
2n+2

cos ψ
2n+2

, i = 0, . . . , n

(with R = 2 and C = ψ2/2), and Chebyshev–Gauss–Lobatto or Clenshaw–Curtis
nodes
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xi = cos
kψ

n
, i = 0, . . . , n

(with R = 9ψ/2 and C = 2ψ ). In general, nodes are well spaced as long as they do
not cluster too heavily, but they are allowed to cluster anywhere in the interpolation
interval, not just toward its ends, and still the Lebesgue constant θ0

n is guaranteed to
grow only logarithmically.

2.5 Conclusion

We have seen in the previous sections that the rational Floater–Hormann interpolants
Fd

n provide a promising alternative to other univariate interpolation methods, so let
us quickly summarize their advantages. More details regarding recent extensions and
applications of rational Floater–Hormann interpolants can be found in [3].

Compared to classical rational interpolation, Fd
n is guaranteed to not have any

poles in R, which is important in many applications. Moreover, interpolation with
Fd

n is linear in the data and does not require to solve a linear system.
The advantage over polynomial interpolation is that interpolation with Fd

n is stable
for a larger class of nodes, and in particular for equidistant nodes, where polynomial
interpolation can be infeasible even for rather small n ≈ 20.

Spline interpolation is probably the closest competitor, because approxima-
tion error and convergence rate of Fd

n are similar to those of spline interpolation
with (odd) degree d, and this carries over to the approximation of derivatives.
Berrut et al. [2] show that

∀(Fd
n )(k) − f (k)∀ ∞ Chd+1−k

for k = 1, 2 and f being sufficiently smooth, where the constant C may depend on the
local mesh ratio (23) of the nodes, and they conjecture that a similar approximation
result holds for k ≥ 3. The advantage over spline interpolation is that Fd

n is infinitely
smooth, while the interpolating spline is only d −1 times continuously differentiable.

However, the favorable properties of the rational interpolant Fd
n may disappear

if d is chosen incorrectly. On the one hand, small values of d lead to very stable
interpolation, but rather low approximation order. On the other hand, large values of d
guarantee good convergence rates, but the interpolation process may become unstable
for equidistant nodes, because the Lebesgue constant θd

n grows exponentially in d
for fixed n, which is not too surprising, as Fd

n approaches the polynomial interpolant
as d ∩ n. In practice, it is recommended [26, Chap. 3.4.1] to start with small values
of d, say d = 3 and then try larger values to get better results. For the case when f
is analytic in a domain that contains the interpolation interval, Güttel and Klein [16]
suggest an algorithm for choosing an optimal value of d.
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3 Bivariate Barycentric Interpolation

The main idea behind the construction of the univariate rational barycentric inter-
polants in Sect. 2 can also be generalized to the bivariate setting. To this end, let
X = {x1, . . . , xn} be a set of n distinct nodes in R

2 with associated data f1, . . . , fn .
The classical Shepard interpolant [29]

S(x) =
n∑

i=1

ωi (x) fi

with

ωi (x) =
1

∀x−xi ∀κ

∑n
j=1

1
∀x−x j ∀κ

, i = 1, . . . , n

for some κ > 0 can be seen as a convex combination of local constant interpolants
with weight functions ωi (x). Like Berrut’s first interpolant, S does not reproduce
linear functions in general and so it is not a barycentric interpolant.

To construct the simplest bivariate barycentric interpolant, we consider a triangula-
tion T = {t1, . . . , tm} of the nodes X with triangles t j = [x j1 , x j2 , x j3 ]. Analogously
to (15) we then define

F(x) =
m∑

j=1

μ j (x)ψ j (x), (28)

where ψ j is the local linear interpolant to the data given at the vertices of the triangle
t j and

μ j (x) = δ j (x)
m∑

k=1
δk(x)

, j = 1, . . . , m,

are some weight functions that sum to one. Little [23] suggests to let

δ j (x) = 1

∀x − x j1∀2∀x − x j2∀2∀x − x j3∀2 , j = 1, . . . , m, (29)

which guarantees F to interpolate fi at xi and avoids the occurrence of poles, because
the common denominator of the weight functions μ j is positive. Since this triangular
Shepard interpolant F reproduces linear functions by construction, it clearly is a
barycentric interpolant.

Little [23] observes that the triangular Shepard interpolant surpasses Shepard’s
interpolant in aesthetic behavior, because it does not suffer from flat spots at the
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n = 202, m = 362

h =  0.122, e = 0.0170

n = 777, m = 1472

h = 0.068, e = 0.0041

n = 2991, m = 5820

h = 0.035, e = 0.0011

Fig. 5 Examples of triangular Shepard interpolants to data sampled from Franke’s test function
at n uniformly distributed nodes and with respect to the Delaunay triangulation of the nodes with m
triangles and maximum edge length h. The approximation error e decreases roughly by a factor
of 4 as h decreases by a factor of 2

nodes and is generally “smoother”. But he also notices that it requires the choice of
an appropriate triangulation T . One possible choice is to take the Delaunay trian-
gulation [9] of X and Fig. 5 shows some examples for this choice and data sampled
from Franke’s classical test function [15]. In these examples, the approximation error
seems to be O(h2), where h is the maximum edge length of the triangles in Dell’Accio
et al. [10] prove that the triangular Shepard interpolant has indeed quadratic approx-
imation order for a very general class of triangulations, which includes the Delaunay
triangulation.

While this construction can easily be extended to the multivariate setting and
generalized to barycentric interpolants with arbitrary reproduction degree by taking
convex combinations of higher order local polynomial interpolants with suitable
weighting functions, it lacks two essential properties from the univariate interpolants.
On the one hand, the degree of the bivariate rational interpolant is roughly twice the
degree of the univariate analogue, because of the squared distances between x and the
nodes in the denominator of δ j in (29). The univariate setting allows us to take signed
distances instead, which makes it harder to avoid poles but keeps the degree of the
rational interpolant low. On the other hand, an equivalent of the elegant barycentric
form in (12) is not known for the triangular Shepard interpolant, and its evaluation
is therefore slightly less efficient.
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4 Barycentric Interpolation Over Polygons

A very special case of bivariate interpolation occurs if the data f1, . . . , fn is given
as the vertices x1, . . . , xn of a planar polygon π. In this setting, let us consider the
n triangles ti = [xi−1, xi , xi+1] for i = 1, . . . , n, where the vertices are indexed
cyclically (i.e., xn+1 = x1 and x0 = xn); see Fig. 6.

As for the triangular Shepard interpolant, we then define F as in (28) with m = n,
except that we replace the functions δ j in (29) by

δi (x) = γ(ri (x))
Ci

Ai−1(x)Ai (x)
, i = 1, . . . , n,

where γ : R+ ∩ R is an arbitrary function, ri (x) = ∀x − xi∀ is the distance between
x and xi , Ci is the signed area of ti and Ai−1(x), Ai (x) are the signed areas of the
triangles [x, xi−1, xi ], [x, xi , xi+1], respectively; see Fig. 6.

Denoting by Bi (x) the signed area of the triangle [x, xi−1, xi+1] and remembering
that Ai (x), −Bi (x), and Ai−1(x) are homogeneous barycentric coordinates of x with
respect to ti , we can write the linear interpolant to the data given at the vertices of ti
as

ψi (x) = Ai (x) fi−1 − Bi (x) fi + Ai−1(x) fi+1

Ai−1(x) − Bi (x) + Ai (x)
.

Since Ci = Ai−1(x) − Bi (x) + Ai (x), we then have

n∑

i=1

δi (x)ψi (x) =
n∑

i=1

γ(ri (x))

(
1

Ai−1(x)
fi−1 − Bi (x)

Ai−1(x)Ai (x)
fi + 1

Ai (x)
fi+1

)

=
n∑

i=1

(
γ(ri+1(x))

Ai (x)
− γ(ri (x))Bi (x)

Ai−1(x)Ai (x)
+ γ(ri−1(x))

Ai−1(x)

)

fi

=
n∑

i=1

wi (x) fi ,

where

wi (x) = γ(ri+1(x))Ai−1(x) − γ(ri (x))Bi (x) + γ(ri−1(x))Ai (x)

Ai−1(x)Ai (x)
, i = 0, . . . , n.

Likewise,

n∑

i=1

δi (x) =
n∑

i=1

wi (x),
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Fig. 6 Notation used for the
definition of the barycentric
interpolant over a planar
polygon π with vertices
x1, . . . , xn

and it turns out that we can rewrite F in terms of the basis functions

bi (x) = wi (x)
∑n

j=1 w j (x)
, i = 1, . . . , n, (30)

as

F(x) =
n∑

i=1

bi (x) fi .

Since F reproduces linear functions by construction, it follows that the bi (x)

in (30) satisfy conditions (2a) and (2b), and Floater et al. [14] show that they further
satisfy (2c), if the polygon π is convex and the function γ has the four properties

Positivity: γ(r) ≥ 0,

Monotonicity: γ≤(r) ≥ 0,

Convexity: γ≤≤(r) ≥ 0,

Sublinearity: γ(r) ≥ rγ≤(r).

Under these assumptions, it also follows that bi (x) is positive for any x in the interior
of π, so that F(x) lies in the convex hull of the data f1, . . . , fn , and that the bi (x)

as well as F(x) are linear along the edges of the polygon.
Two examples of functions that satisfy the four conditions above and thus give

barycentric basis functions bi and corresponding barycentric interpolants F are the
functions γ1(r) = 1 and γ2(r) = r . Floater et al. [14] show that the bi corresponding
to γ1 are the Wachspress coordinates [31], which are important in the context of
polygonal finite element methods. Instead, γ2 leads to mean value coordinates [11],
which turn out to be well defined also for nonconvex and even nested polygons [19]
and are used in computer graphics for surface parameterization, image warping,
shading, and many other applications. More details on both coordinates can be found
in [12].
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Numerical Determination of Extremal Points
and Asymptotic Order of Discrete Minimal
Riesz Energy for Regular Compact Sets

Manuel Jaraczewski, Marco Rozgic̀ and Marcus Stiemer

Abstract The asymptotic approximation of continuous minimal s-Riesz energy
(0 ∈ s ∈ d − 2) by the discrete minimal energy of systems of n-points on com-
pact Ahlfors-David d-regular sets in R

d , d ≥ 2, is analyzed. In addition, numeri-
cal examples are presented, computed via an interior point method for constrained
optimization.

Keywords Minimal discrete Riesz energy · Riesz potential · Distributing points
on manifolds

1 Introduction

This work is motivated by the hypothesis that recent results on the order of asymp-
totic approximation of minimal s-Riesz energy by the discrete minimal energy of
point systems on the (d −1)-dimensional sphere may be extended to classes of more
general compact sets in R

d . In this paper, we first give some evidence to this hypoth-
esis by numerically computing the extremal points and the corresponding energy
for solid ellipses of different eccentricity as well as for a more complicated set in
R

3. To this end, an approach to computing the extremal points based on an interior
point method is proposed (Sect. 3), which can quite easily be employed to compute
extremal points and discrete minimal energy for large classes of manifolds. Aiming
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to find a suitable method for analyzing the asymptotic approximation of continu-
ous minimal energy, we study some approximation properties of measures which
are constructed by redistributing (smearing out) a point-mass continuously in a sur-
rounding ball. If discrete minimal energy is replaced by the continuous energy of
such measures two kinds of errors occur: the so-called diagonal error and the local
approximation error. The first is due to the fact that for discrete minimal energy
the infinite self-energy of a point mass must be left out, while the second results
from the redistribution of the mass. These will be analyzed in Sect. 5. To control
both errors, a suitable assumption on the regularity of the considered compact set is
required. In this work, Ahlfors-David regularity is proposed as a suitable property.
It will be briefly introduced in Sect. 4. For a class of d-Ahlfors-David regular sets
Ω , it is analyzed how the asymptotic behavior of the diagonal error is related to the
densities of the redistributed point measures in Sect. 5. We now begin with a short
review of results known for the sphere and the torus and introduce the basic notion
in the following Sect. 2.

2 Minimal Riesz Energy and Extremal Points

The s-Riesz potential of a point charge located at the origin of Rd with d ≥ 2 and
0 ∈ s < d is defined by

Rs(x) :=
{ ∩x∩−s, s > 0,

− log ∩x∩ , s = 0,

where ∩·∩ denotes the Euclidean norm inRd . If Ω is a compact subset ofRd , the total
Riesz energy can be attributed to any normalized charge distribution ∂ represented
by a Borel measure with total mass ∂(Ω) = 1 by the energy integral

Is(∂) :=
∫

Ω

∫

Ω

Rs(x − y) d∂(x)d∂(y). (1)

The set of all Borel measures on Ω with total mass 1 is denoted by M (Ω). In
the case d = 3 and s = 1, the Riesz potential coincides with the three-dimensional
Newton potential, and for d = 2 and s = 0 the Riesz potential equals the logarithmic
potential in the plane. The s-Riesz energy Vd(s) of Ω is defined by

Vd(s) := Vd(s,Ω) := inf

{

Is(∂) : ∂ → M (Ω)

}

.

This infimum always exists and is larger than 0 for s > 0 and larger than −∞ for
s = 0, but it may coincide with +∞. A measure μe with
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Is(μe) = min

{

Is(∂) : ∂ → M (Ω)

}

is called equilibrium measure. Potential theory has been intensively studied for a
very long time due to its intrinsic relations to many other fields both in physics
and in mathematics, see, e.g., [11]. In particular for plane sets, the close connection
of logarithmic potentials (s = 0) and complex analysis offers an extremely rich
theory, see, e.g., [29]. During the past 20 years, an increasing interest in algorithmic
and computational aspects of potential theory has arisen, e.g., [32]. This led both
to a new interest in classical approaches to discrete minimal energy problems in
the complex plane as developed, e.g., by Fekete [9], Menke [22] or Tsuji [33], and
to new results. In the last decades’ new developments, focus was both imposed on
extensions of the plane theory, as, e.g., weighted potentials [32], and on extensions
to higher dimensions, see, e.g., [14, 28, 31].

Both in the plane and in higher dimensions, discretization of the energy inte-
gral (1) can be achieved with the help of point charges distributed on the set un-
der consideration. As the energy integral (1) in its original form equals ∞ for
any point charge, discrete energy functionals are introduced, defined for a vector
Pn := (w1, . . . , wn) → Ωn consisting of n → N distinct points in Ω by

Ed,s(Pn) :=
n∑

j=1

n∑

k= j+1

Rs(w j − wk). (2)

The discrete n-point s-energy of Ω is consequently defined via

Ed,s(n) := inf
Pn→Ωn

Ed,s(Pn) = min
Pn→Ωn

Ed,s(Pn). (3)

It is well known that the normalized discrete energies
(

2
n2 Ed,s(n)

)

n→N of a compact

set Ω ≤ R
d converge to the continuous energy Vd(s) as n tends to ∞, e.g., [19, 24].

Among others, discrete minimal energy is connected to coverings of manifolds by
balls (sphere packing) and minimal energy positions of atoms in crystals, e.g., [1,
10, 37]. Most investigations into minimal discrete energy configurations focus on
the sphere or on the surface of a torus as canonical manifolds, e.g., [28, 31] for the
sphere and [3, 12, 15] for tori surfaces.

It should be mentioned that discrete minimal energy can also be considered in
cases where the continuous energy integral (1) fails to converge, i.e., s ≥ d, e.g., [14,
18]. In this case, local interaction between points dominates over global phenomena,
and for s ∇ ∞ minimal energy configurations are given by the midpoints of best
packing balls. In this work, however, only the case 0 ∈ s < d is relevant, and we
remain in the realm of potential theory.

For numerical purposes, such as, e.g., approximation of continuous energy and
potentials by their discrete counterparts, it is essential to have information on the
quality of the approximation provided by discrete expressions. In case that Ω coin-
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cides with the unit sphere, i.e., Ω = {
x → R

d : ∩x∩ = 1
}
, the asymptotic behavior

of the sequence (Ed,s(n))n→N is analyzed, e.g., in [14, 18, 28]: From Wagner’s work
[37], the lower estimates

Ed,s(n) ≥ 1

2
Vd(s)n2 − Cn1+ s

d−1 for d − 3 < s < d − 1 and

Ed,s(n) ≥ 1

2
Vd(s)n2 − Cn1+ s

2+s for d ≥ 4 and 0 < s ∈ d − 3 (4)

follow, where C denotes a positive constant that may depend on d and s, but not on
n. Employing techniques provided by Rakhmanov et al. [28], Kuijlaars and Saff [18]
showed

Ed,s(n) ∈ 1

2
Vd(s)n2 − Cn1+ s

d−1 for d ≥ 3 and 0 < s < d − 1 (5)

for the unit sphere in R
d . Before, G. Wagner [38] already proved this estimate for

the particular case d ≥ 3 and 0 < s < 2. For logarithmic energy (s = 0 and d ≥ 2)
on the sphere, a sharper lower and upper estimate including a higher order term has
recently been proven by Brauchart et al. [4].

3 Computing Extremal Points with an Interior Point Method

In this section, we present a flexible method to compute the extremal points on a
large class of compact sets in R

d and present first numerical results on the discrete
minimal energy of some sets.

Optimization methods based on quadratic programming are used, e.g., by Hardin,
Saff and Kuijlaars [13, 31] to determine extremal points and the minimal discrete
energy on the sphere or the surface of a torus. Minimal energy for more general
sets, like a solid cube or its boundary, has been computed in [25] by Rajon et al.
By providing rigorous upper and lower bounds, this method leads to reliable values
for minimal energy and the related capacities. This method has been extended to
weighted s-Riesz energy in the presence of external fields in [26]. In contrast, the
presented method here is based on an interior point method, more precisely on
the efficient implementation IPOPT of this method by Wächter and Biegler [36].
This approach solves the minimization problem (3) under constraints given by the
set under consideration. It is easily manageable and works for large numbers of
sets and kernel functions. The underlying primal-dual framework [23, Chap. 14]
leads to a separation of the objective function, which is purely given by the energy
functional Ed,s , and the geometric constraints given by an implicit representation of
the particular set Ω under consideration. Hence, the position of the points distributed
over the given compact set Ω need not be parametrized, but are immediately primal
variables of the minimization problem, while the geometrical constraints resulting
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from the description of the considered set lead to additional dual variables in the
corresponding Lagrangian (see below). This does not only allow for a high degree
of flexibility, since the energy functional and the geometrical constraints can be
altered independently from each other, but also allows for a more efficient numerical
treatment compared to a gradient method as well as more insight into the success of
the numerical scheme via the duality gap. However, such a formulation of the minimal
energy problem requires an optimization method that can deal with a large number
of constraints. Below we will briefly sketch this approach. Further investigations into
the efficiency and reliability of this method represent work in progress.

We consider sets Ω ≤ R
d that can be described by a set of finitely many equations

or inequalities of the type

α1(x) = 0 , . . . , αk(x) = 0 , ε1(x) ≥ 0 , . . . , εΔ(x) ≥ 0,

where the functions αi , ε j : R
d ∇ R, 1 ∈ i ∈ k, 1 ∈ j ∈ Δ are assumed to be

at least twice continuously differentiable. This general form contains, among other
sets, smooth compact manifolds of arbitrary (integer) dimensions ψ ∈ d and sets
which are the union or intersection of a finite number of such manifolds. Fixing d, s
and n we consider Pn = (w1, . . . , wn) → Ωn . A set of extremal points of order n on
Ω , i.e., points w1, . . . , wn → Ω minimizing (2), can be determined by solving the
constrained nonlinear optimization problem

min
Pn→Ωn

Ed,s(Pn)

subject to αi (w∂) = 0 , i = 1, . . . , k , ∂ = 1, . . . , n,

ε j (w∂) ≥ 0 , j = 1, . . . , Δ , ∂ = 1, . . . , n.

Here, Ed,s is the objective function as given in (2) and the constraints ensure the ex-
tremal points to be located in Ω . The usually nonlinear inequalities may be rendered
into equalities by subtracting positive slack variables δ j → R, j = 1, . . . , Δ n, from
each inequality, yielding the following reformulation

min
Pn→Ωn

Ed,s(Pn) (6a)

subject to c(Pn, δ ) = 0 , (6b)

δ j ≥ 0 , j = 1, . . . , Δ n . (6c)

Here, c : Ωn × R
Δn ∇ R

n(k+Δ) contains the constraining information given by
α1, . . . , αk and ε j (w∂) − δ j+Δ(∂−1) for 1 ∈ j ∈ Δ, 1 ∈ ∂ ∈ n and δ := (δ j )1∈ j∈Δn .
We refer to [36, Sect. 3.4] for a more detailed description. In the sequel we use IPOPT,
cf. [36], to solve (6). Interior point (or barrier) methods provide a powerful tool for
solving nonlinear constrained optimization problems. For an introduction to this
field we refer to [23, Chap. 14]. The problem (6) can be transformed to a constrained
problem without inequality bounds: By converting the bounds into barrier terms in
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the objective function Ed,s we obtain

min
Pn→Ωn

δ→RΔn

B(Pn, δ, θ) , (7a)

subject to c(Pn, δ ) = 0 (7b)

with the barrier function

B(Pn, δ, θ) := Ed,s(Pn) − θ

Δn∑

j=1

log δ j ,

and a barrier parameter θ > 0. If θ tends to 0, any point fulfilling the Karush-
Kuhn-Tucker conditions (KKT condition) [16, 17] of problem (7) tends to a KKT
point of the original problem (6), see [30] for more details on the relationship of the
barrier problem and the original problem. The KKT conditions represent a set of first-
order necessary conditions for w1, . . . , wn to be optimal. If additionally constraint
qualifications are satisfied [5], the KKT conditions become sufficient. A. Wächter
and L. Biegler showed global convergence to a local minimum under quite mild but
technical assumptions for the IPOPT algorithm. A more detailed discussion is out of
the scope of this work, we refer to [34, 35].

Let Ak := grad c(Pn,k, δk) and Wk := νL (Pn,k, δk, ωk, zk) represent the

Hessian with respect to
(
P	

n , δ	)	
of the Lagrangian

L (Pn, δ, ω, z) := Ed,s(Pn) + c(Pn, δ )	ω − z	δ

of the original problem (6) in the kth step with the Lagrange multipliers ω → R
n(k+Δ)

and z → R
Δn for Eqs. (6b) and (6c), respectively. Then, IPOPT solves the optimization

problem (6) by applying Newton’s method to the barrier problem (7). The system to
derive a Newton direction in the kth iteration for a fixed barrier parameter θ reads as



⎢
Wk Ak −Id
A	

k 0 0
Zk 0 Xk







⎢
d(Pn ,δ )

k
dω

k
dz

k



 = −


⎢
gradL (Pn,k, δk, ωk, zk)

c(Pn,k, δk)

Xk Zk1 − θ1



 ,

yielding the search directions d(Pn ,δ )
k , dω

k and dz
k , which are scaled with an ade-

quate step size and then added to (Pn,k, δk), ωk , and zk , respectively, to obtain the
corresponding values in the (k + 1)th iteration step. Here, Xk is a diagonal matrix

representing the vectors Pn,k and δk , i.e., Xk := diag
(

P	
n,k, δ

	
k

)	
, Id represents

the identity matrix of adequate size and gradL (Pn,k, δk, ωk, zk) the gradient of the

Lagrangian with respect to
(

P	
n,k, δ

	
k

)	
. Finally, Zk := diag (zk) represents the La-
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grange multiplier zk and 1 := (1, . . . , 1)	. For details about how the step size for
the obtained Newton direction is computed within IPOPT we refer to [36].

After each solution of (7) with a current value for the barrier parameter θ, the
barrier parameter is decreased (see [36] for the particular algorithm to find a new
θ) and IPOPT continues with a further barrier problem based on the approximated
solution of the previous one. To solve the KKT system the IPOPT solver requires
information about the first and second derivatives of Ed,s and c to derive search
directions proceeding toward the minimal energy. It should be mentioned that the
objective function Ed,s is not convex. The number of local minima of the objective
function on the unit sphere for instance (ignoring rotations and reflections) grows
exponentially with n (at least for certain subsequences of integers) [8, 27]. Thus, by
optimization only relative minima (and maxima) can be derived. Nevertheless, as
we will see below, the numerical results match the analytical for the asymptotics of
minimal energy, where those are available, i.e., in case of the sphere.

To compute some numerical examples by solving the constrained optimization
problem in (6) with IPOPT, a MATLAB [20] interface is used, providing all necessary
derivative information of the objective function Ed,s and the functions representing
the constraints c. Due to the expected large number of local minima, various ran-
domly chosen points on the set Ω are used as starting points for the above described
optimization scheme. Hence, some information about the set of local extrema of the
energy functional on Ω is gained as well as some confidence that a value close to the
global minimum has numerically been detected by the optimization method. In a first
numerical study, we have implemented the above described optimization procedure
to compute the discrete n-point s-energy for different compact sets Ω in the case
d = 3 and s = 1 (Newtonian energy). Note, that in this case the equilibrium measure
is concentrated on the boundary of Ω , see [19]. Hence, the results of computations
carried out for solids, as reported on below, can be compared with results known for
their boundary (e.g., results computed for a solid ball can be compared with those
known for the sphere). However, a solid is treated differently by the optimization
method than its boundary. Consequently, it is important to separate between both. To
validate the implementation, we first consider the solid unit ball (set Ω1, see Table 1),
and check if we can reproduce the known results for the unit sphere. Then, solid el-
lipsoids with different eccentricities are considered (sets Ω2 and Ω3 in Table 1), and
finally a more complicated set, namely the union of a solid ball and a solid ellipsoid
(Ω4 in Table 1).

We solved the minimization problem for a 64 point configuration on the sets
Ω1, . . . , Ω4 with 160 randomly chosen starting configurations. All computations
were performed with a stop criterion tolerance of 10−5 or a maximum number
of 3000 iterations. By studying the evolution of the (normalized) discrete energy

2
642 E3,1(P64) during the iteration process of the optimization algorithm, nearly the

same behavior is observed for all sets. In Fig. 1 the evolution of 2
642 E3,1(P64) is

presented for different starting values on the solid unit ball Ω1 and on the set Ω4,
respectively. Here, the evolution is presented for ten different starting configurations
which are exemplary for all the executed instances. It becomes obvious that all com-
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Table 1 Description of sets for which extremal points and discrete energies are numerically com-
puted

Name Set Semi-axes

Ω1
{

x → R
3 : ∩x∩ ∈ 1

}
a = b = c = 1

Ω2

{

(x1, x2, x3)
	 → R

3 : x2
1 + x2

2
2 + x2

3
2 ∈ 1

}

a = 1, b = c = 21/2

Ω3

{

(x1, x2, x3)
	 → R

3 : x2
1 + x2

2
10 + x2

3
10 ∈ 1

}

a = 1, b = c = 101/2

Ω4 Ω1 ∀
{

(x1, x2, x3)
	 → R

3 : 2x2
1 + x2

2
2 + x2

3
2 ∈ 1

}
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Fig. 1 Behavior of discrete Newtonian energy 2
642 E3,1(P64) for a 64-point configuration on the

sets Ω1 and Ω4. a Discrete Newtonian energy for the set Ω1. b Discrete Newtonian energy for the
set Ω4

putations approximatively lead to the same minimal value. The downwardly pointing
peaks in Fig. 1 occurring during the iteration indicate constraint violations: At these
stages the optimization procedure yields points with a lower energy, which violate the
set of constraints given by the implicit description of the set Ω . By exploiting special
feasibility restoration techniques (see [36]) IPOPT can then pursue the optimization
with feasible point configurations that are consequently higher in energy. This may
eventually lead to convergence to a feasible point configuration with locally minimal
energy. Moreover, the average number of iterations needed to obtain the minimal
energy within the scope of the stop criterion mentioned above, is much higher in the
case of the nondifferentiable set Ω4 than for the smooth set Ω1.

In Fig. 2 the computed minimal discrete energies of 160 optimization procedures
with different starting values for the sets Ω1 andΩ4 are shown. The observed behavior
here is again exemplary for the obtained minimal discrete energies for all regarded
sets Ω1, . . . ,Ω4. For Ω4 a small number (seven) of the 160 performed optimization
instances did not converge within the given tolerances. Further the obtained minima
spread in a larger range as can be seen in Fig. 2b. Nevertheless, a huge number
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Fig. 2 Convergence of IPOPT. Derived minimal energy for 160 different computations on the solid
unit ball and 153 successful optimization instances of the sets Ω1 and Ω4. a Discrete Newtonian
energy for the set Ω1. b Discrete Newtonian energy for the set Ω4

of computations terminated close to the same optimal value. The fact that IPOPT
converged for the majority of performed instances for the non differentiable set Ω4 is
quite remarkable. Since the majority of computations terminated at nearly the same
minimal discrete energy value, some confidence in the assumption that the derived
extremal values can be considered being close to the global extremum is gained.

In Fig. 3 the value of 2
n2 E3,1(n) is computed for certain numbers of points 4 ∈

n ∈ 128. For better visualization of the trend and for an estimation of the continuous
minimal energy

Vd(s) = lim
n∇∞

2

n2 Ed,s(n)

a function of the form x ∅∇ a + bx−c has been fitted to the data with a, b, c → R

determined by a least-squares fit.
In case of the solid ball, which is expected to have the same discrete energy as the

unit sphere, the theoretical result is reproduced very well: By direct computation one

obtains lim
n∇∞

2
n2 E3,1(n) = 1

2 . As it is shown in [18] and [37], the error
⎥
⎥
⎥ 2

n2 E3,1(n) − 1
2

⎥
⎥
⎥

is of the order O(n− 1
2 ) (n ∇ ∞), which matches the numerical results displayed in

Fig. 3. Finally, comparing the asymptotic behavior of 2
n2 E3,1(n) for the sets Ω2,Ω3

and Ω4 with the results for the unit sphere, which can be represented by the results
for Ω1 (cf. [19]), the same asymptotic behavior of 2

n2 E3,1(n) for all these sets seems
to occur. This puts some emphasis on the hypothesis of the universality of the as-
ymptotics within a larger class of sets Ω . It is particularly remarkable that the lack
of smoothness of Ω4 does not seem to influence the convergence rate as far as this
can be deduced from the computed data. A computation of the minimal energy for
the different sets yields
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Fig. 3 Discrete Newtonian energy 2
n2 E3,1(n) for different manifolds

Vd(s) = lim
n∇∞

2

n2 E3,1(n) ⊂

⎫
⎬⎬⎬⎭

⎬⎬⎬⎛

1
2 , Ω1,

0.388375, Ω2,

0.235602, Ω3,

0.449464, Ω4.

4 Ahlfors-David Regularity

As a class in which we want to derive asymptotic estimates like (4) and (5), we
consider the class of Ahlfors-David regular sets, cf. [21].

Definition 1 A compact set D ≤ R
d is called q-regular (Ahlfors-David regular,

[6, 7]), 0 < q < ∞, if there exists a Borel (outer) measure σ on R
d and a constant

κ → [1,∞), depending on D, such that σ(Rd\D) = 0 and

rq ∈ σ (Br (x)) ∈ κ rq for all x → D , 0 < r < diam(D) , r < ∞ . (8)

Here, diam(D)denotes the diameter of D and Br (x) := {
y → R

d : ∩x − y∩ ∈ r
}

is the closed ball with radius r > 0 centered around x → D. An equivalent defin-
ition can be given with the restriction of the q-dimensional Hausdorff measure to
D instead of general Borel measures. Then, rq on the left-hand side of (8) has to
be replaced by rq

κ
. It should be pointed out that Ahlfors-David q-regularity is not a
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conventional regularity property, but rather a scale-invariant way of expressing the
fact that D has Hausdorff-dimension q. From the technical point of view it provides a
convenient way to derive estimates on measures defined on D from metric properties
of the set. The class of d-regular sets in R

d contains all images of closed balls under
a bi-Lipschitz mapping [7]. Since any bi-Lipschitz image of a q-regular set is still
q-regular, see, e.g., [21], and since this is obviously true for q = d and a closed ball
in R

d , d-regularity follows for bi-Lipschitz images of closed balls. Similarly, each
set having a continuously differentiable boundary is (d − 1)-Ahlfors-David regular.

We will assume d-regularity of the given compact set Ω ≤ R
d itself, i.e., D = Ω

or, alternatively that it bounds a (compact) d-regular set D, i.e., D = πΩ . This
means, that we assume

rd

κ
∈ σ (Br (x)) ∈ κ rd for all x → D, 0 < r < diam(D) , r < ∞

for fixed κ > 1 with σ being the d-dimensional Lebesgue measure. Geometrically
speaking, this means that there exists a constant 1 ≥ θ = C

κ
> 0 (with C > 0) such

that any intersection of D with a closed ball Br (x) with 0 < r < diam(D) centered
at a point x → D possesses a d-dimensional Lebesgue measure σ(D ◦ Br (x)) of at
least θ σ(Br (x)):

θ σ (Br (x)) ∈ σ (D ◦ Br (x)) .

5 Asymptotics of Discrete Minimal Energy

As it is shown in [2], the bounds in (4) and (5) are asymptotically optimal for the
sphere. Our aim is to compute similar bounds for larger classes of sets Ω with an
appropriate regularity. In case of the sphere, techniques for such an analysis have
been provided, e.g., in [31] or [37]. Since Ed,s(n) ∈ 1

2 Vd (s) n2 is true for all n → N

and any compact set Ω , it is only required to analyze how much the continuous
minimal energy exceeds the normalized discrete one depending on n → N. But first,
we repeat the argument from [19, p. 161] in the following Lemma 1 for the reader’s
convenience.

Lemma 1 Let Ω ≤ R
d be compact. Then

Ed,s(n) ∈ 1

2
Vd (s) n2 for all n → N.

Proof (Lemma 1) By definition we have Ed,s(n) ∈ Ed,s(Pn) for any vector Pn =
(x1, ...xn) of n distinct points in Ωn . Integrating this inequality

(n
2

)
times over Ω ×Ω

with respect to dμe(x j )dμe(xk) with the equilibrium measure μe on Ω we obtain
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Ed,s(n) ∈
⎝

n

2

⎞ ∫

Ω

∫

Ω

Rs(x − y) dμe(x)dμe(y) =
⎝

n

2

⎞

Vd (s) ∈ 1

2
Vd (s) n2. �⇒

To analyze how much the continuous minimal energy exceeds the normalized dis-
crete n-point energy on sets possessing an adequate regularity property, we consider
a certain class of measures μn which approximate a distribution of point masses of
size 1

n in the nth extremal points, such that the following properties hold:

1. For any n → N, the measure μn is absolutely continuous with respect to the d-
dimensional Lebesgue measure σ. Let γn denote the corresponding L1-density
function, i.e., dμn(x) = γn(x)d σ(x) on Ω .

2. The support of μn is restricted to the intersection Ω ◦ ⎠n
j=1 B j of Ω with the

union of closed balls

B j :=
⎤

x → R
d : ∩x − w j∩ ∈ η

⎧
,

centered about the nth extremal points w1, . . . , wn , and each with radius

η := d

⎪

Γ
( d

2 + 1
)

πd/2n
(Γ : Gamma function). (9)

3. We have μn(B j ) = 1
n for all j = 1, . . . , n, i.e.,

∫

B j ◦Ω

γn(x) d σ(x) = 1

n
.

Definition 2 A measure μn with the above properties will be denoted a locally
redistributed point mass. The set of all functions γ being the density of such a
measure will be denoted by Dn .

The existence of such measures depends on regularity properties of the set Ω . For
a set Ω which is d-regular in the sense of Ahlfors-David, we always have Dn ∃= ∅
(see Theorem 1). If Dn ∃= ∅, there is a μ → M (Ω) such that Is(μ) = ||γ||L1 < ∞,
and hence, Vd(s) < ∞. The following lemma points out, how locally redistributed
point masses are related to asymptotic estimates for minimal energy.

Lemma 2 Let Ω ≤ R
d be compact with Dn ∃= ∅. Then, for any n → N, the estimate

Vd(s) ∈ 2

n2 Ed,s(n) + inf
γ→Dn

⎤
capprox
γ (n) + cdiag

γ (n)
⎧
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holds, with

cdiag
γ (n) :=

n∑

j=1

∫

B j

∫

B j

Rs(x − y)γ(x)γ(y) d σ(x)d σ(y),

capprox
γ (n) :=

n∑

j=1

n∑

k=1
k ∃= j

∫

B j

∫

Bk

⎨
Rs(x − y) − Rs(w j − wk)

⎩
γ(x)γ(y) d σ(x)d σ(y).

Definition 3 The numbers cdiag
γ (n) in Lemma 2 are called the diagonal error

and the numbers capprox
γ (n) are denoted local approximation error of the energy-

approximation by extremal points.

Proof (Lemma 2) Since any function in Dn defines a measure in M (Ω), and from
the definition of the continuous minimal energy we immediately conclude

Vd(s) ∈
n∑

j=1

n∑

k=1
k ∃= j

∫

B j

∫

Bk

Rs(x − y)γ(x)γ(y) d σ(x)d σ(y)

+
n∑

j=1

∫

B j

∫

B j

Rs(x − y)γ(x)γ(y) d σ(x)d σ(y)

= 1

n2

n∑

j=1

n∑

k=1
k ∃= j

Rs(w j − wk) + cdiag
γ (n)

+
n∑

j=1

n∑

k=1
k ∃= j

∫

B j

∫

Bk

⎨
Rs(x − y) − Rs(w j − wk)

⎩
γ(x)γ(y) d σ(x)d σ(y)

= 2

n2 Ed,s(n) + cdiag
γ (n) + capprox

γ (n)

for any γ → Dn . �⇒
This estimate is true for any vector of points on Ω if Ed,s(n) is replaced by the

discrete energy of the particular point system. An upper estimate for Vd(s) results
if it is applied to the extremal points as done in the preceding lemma. With regard
to the desired estimate on the asymptotic behavior of the discrete minimal energy,
the question arises if functions γ exists such that cdiag

γ (n) and capprox
γ (n) possess the

sharp error order for n ∇ ∞. Such an estimate, and hence the construction of a
corresponding γ , is not independent of the position of the extremal points, since
the local approximation error capprox

γ (n) depends on the position of the extremal
points. The diagonal error cdiag

γ (n) in contrast is independent of the extremal point
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configuration. To get a first idea on the quality of the estimates on Ed,s(n) that can
be obtained by this approach we concentrate on the construction of estimates on
the diagonal error via appropriate density functions γ in this work. In the following
Lemma 3 the diagonal error will be analyzed in a more abstract setting and then
concretized to Ahlfors-David regular sets in Theorem 1.

Lemma 3 Let Ω ≤ R
d (d ≥ 2) be compact with Dn ∃= ∅. Furthermore, let 0 <

s ∈ d − 2. Then, for any γ → Dn

cdiag
γ ∈ C(d, s)∩γ∩∞n

s
d −1

with the least upper bound ∩γ∩∞ of γ on B j . For s = 0, we have

cdiag
γ ∈ C(d, 0)∩γ∩∞

log n

n

for any γ → Dn. The constant C(d, s) depends on d and s, but not on n.

Proof (Lemma 3) Due to 0 ∈ s ∈ d − 2, the locally defined potential

Uμn
s,B j

(y) :=
∫

B j

Rs(x − y)γ(x) d σ(x)

of the measure μn on B j with density γ|B j ◦Ω , γ → Dn with respect to the Lebesgue-
measure σ is a (super)harmonic function on B j . Hence,

cdiag
γ (n) =

n∑

j=1

∫

B j

Uμn
s,B j

(y)γ(y) d σ(y) ∈
n∑

j=1

Uμn
s,B j

(w j ).

To estimate Uμn
s,B j

(w j ), we now treat the cases s = 0 and s > 0 separately. First we

tackle the case s > 0. Using spherical coordinates (in R
d ), we obtain

Uμn
s,B j

(w j ) ∈
∫

B j

γ(x)∩x − w j∩−s d σ(x)

∈ 2π∩γ∩∞
η∫

0

π∫

0

. . .

π∫

0

Θd−s−1 sind−2(α1) sind−3(α2)

. . . sin(αd−2) dαd−2 . . . dα1dΘ

= 2π∩γ∩∞
ηd−s

d − s

π∫

0

. . .

π∫

0

sind−2(α1) sind−3(α2)

. . . sin(αd−2) dαd−2 . . . dα1.
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With

Im :=
π∫

0

sinm(t) dt (m → N)

and by inserting η according to Eq. (9), we obtain

Uμn
s,B j

(w j ) ∈ 2π∩γ∩∞
ηd−s

d − s
I0 . . . Id−2

= C̃(d, s)∩γ∩∞
1

d − s



⎢
d

⎪

Γ
( d

2 + 1
)

πd/sn





d−s

= C(d, s)∩γ∩∞n
s
d −1.

(10)

Here, C̃(d, s) := I0 · . . . · Id−2 with

I2m = (2m − 1)(2m − 3) . . . 3 · 1

2m(2m − 2) . . . 4 · 2
π, I2m+1 = 2m(2m − 2) . . . 4 · 2

(2m + 1)(2m − 1) . . . 5 · 3
2,

is a constant depending on d and s but not on n.
In case of s = 0 (logarithmic potential) the integral over B j is computed as

follows:
∫

B j

−γ(x) log ∩x − w j∩ d σ(x)

∈ ∩γ∩∞
η∫

Θ=0

π∫

α1=0

. . .

π∫

αd−2=0

2π∫

θ=0

(− log Θ)Θd−1 sind−2(α1) sind−3(α2)

. . . sin(αd−2) dθdαd−2 . . . dα1dΘ

= C(d, 0)∩γ∩∞
log n

n
, (11)

yielding the claimed estimate for all cases s = 0 and d ≥ 2. �⇒
The above lemma reduces the analysis of the asymptotic behavior of the discrete
energy on constructing a sequence of suitable functions γn on Ω , such that both
local approximation error and diagonal error remain in the desired order, which is
n

s
d−1 −1 for s > 0 according to the results known for the sphere, since demanding a

corresponding estimate for the diagonal error requires that ∩γn∩∞ must not grow too
fast. On the other hand, functions γn localized in a very small area around the center
w j of B j provide a smaller local approximation error. For d-regular sets in the sense
of Ahlfors-David, we can state the following theorem:
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Theorem 1 Let Ω ≤ R
d (d ≥ 2) be compact and d-regular in the sense of Ahlfors-

David, such that θ σ(Br (x)) ∈ σ(Ω ◦ Br (x)) holds with some θ > 0 for all 0 < r <

diam(Ω). Then Dn ∃= ∅ and the following holds:

1. Functions constant on each B j , 1 ∈ j ∈ n are contained in Dn, and we obtain

cdiag
γn ∈

{
C(d,s)

θ
n

s
d −1, s > 0,

C(d,0)
θ

log n
n , s = 0,

for each n → N.
2. For s > 0 there is γn → Dn with

cdiag
γn ∈ C(d, s)

θ
n

s
d−1 −1

and ∩γn∩∞ = C
θ

n
s

d(d−1)

All constants depend on s and d, but not on n.

The meanings of these estimates are as follows:

1. A constant γn is the worst case for the approximation error and the best for the
diagonal error. In case of d-regular sets we can obtain a diagonal error that is
below the sharp error asymptotics for the sphere.

2. A d-regular set permits a mild growth of γn and simultaneously an asymptotic
behavior of the diagonal error that matches the error asymptotics in case of the
sphere. Hence, the question arises if the growth of γn suffices to have a local
approximation error in the desired magnitude.

Theorem 1 does also hold if Ω itself is not a d-regular set, but bounding such a set. In
this case we can replace Ω by the d-regular set D that is bounded by it. The reason
for this is that for (super) harmonic potentials (0 ∈ s ∈ d − 2) the equilibrium
measure is concentrated on the outer boundary, i.e., we have Vd(s, D) = Vd(s,Ω).

Proof (Theorem 1) Ahlfors-David d-regularity implies σ(B j ◦ Ω) ≥ θ
n > 0 with a

constant θ = θ(Ω). Hence, B j ◦ Ω is no null set for the Lebesgue measure σ. By
setting

γn(x) = 1

n σ(B j ◦ Ω)
, x → B j ◦ Ω,

we, hence, define a function γn → Dn that is constant on each B j . The d-regularity
further implies

∩γn∩∞ ∈ 1

nθ σ(B j )
∈ 1

θ

with a constant 0 < θ ∈ 1, which—inserted into estimate in Lemma 3—yields
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cdiag
γn ∈

{
C(d,s)

θ
n

s
d −1, s > 0,

C(d,0)
θ

log n
n , s = 0,

as stated in the first part of the theorem.
For the second part of the theorem, we choose 0 < δ < η such that the closed

ball Bδ(w j ) about w j with radius δ possesses d-dimensional Lebesgue measure

σ(Bδ(w j )) = n− s
d(d−1)

−1. Due to d-regularity, neither Bδ(w j ) nor B j is a Lebesgue-
null set, and hence we can define

kn(x) =
{

1−α
n σ(Bδ(w j )◦Ω)

, x → Bδ(w j ),

α
n σ((B j \Bδ(w j ))◦Ω)

, x → B j \ Bδ(w j ),

where 0 < α < θ ∈ 1 is chosen that the maximum of γn is attained on Bδ(w j ),
which may only be critical for a finite number of small n. For such a γn we have
γn → Dn and, again employing the d-regularity of Ω ,

∩γn∩∞ ∈ 1 − α

θ
n

s
d(d−1) .

Hence, by Lemma 3

cdiag
γn ∈ C(d, s)

θ
n

s
d(d−1)

+ s
d −1 = C(d, s)

θ
n

s
d−1 −1. �⇒

With regard to the estimate in Lemma 2, we end the paper with the following question:

Problem 1 If Ω is a d-regular set in the sense of Ahlfors-David, is there for any
n → N a γn → Dn such that ∩γn∩∞ ∈ Cn

s
d(d−1) and

capprox
γn ∈ C(d, s)

θ
n

s
d−1 −1?

Moreover, if this is not the case, which sort of regularity assumptions on Ω are
required to have such an estimate?
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Eigenvalue Sequences of Positive Integral
Operators and Moduli of Smoothness

T. Jordão, V. A. Menegatto and Xingping Sun

Abstract We utilize moduli of smoothness and K -functionals as new tools in the
arena of estimating the decay rates of eigenvalue sequences associated with some
commonly used positive integral operators on spheres. This approach is novel and
effective. We develop two readily verifiable and implementable conditions for the
kernels of the integral operators under which favorable decay rates of eigenvalue
sequences are derived. The first one (based on spherical mean operators) is an
enhancement of the classical Hölder condition. The second one, works seamlessly
with the Laplace-Beltrami operators and can be applied directly to Bessel potential
kernels.

Keywords Sphere · Decay rates · Positive integral operators · Fourier coefficients ·
Moduli of smoothness

1 Introduction

In this paper, we study the decay rates of eigenvalues for certain types of kernel
operators on spheres. Research of this nature can trace its own origin to at least
the year 1912. To give readers a historical perspective, we begin by summarizing the
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main results in this research area. A function K ∈ L2([0, 1]2) gives rise to a compact
operator LK from L2([0, 1]) to itself as described by the following equation:

LK ( f )(x) =
∫

[0,1]
K (x, y) f (y) dy, f ∈ L2([0, 1]), x ∈ [0, 1].

We will refer to K as the generating kernel for the operator LK . In most contexts,
the association of K with LK is obvious. We will then simply call K the kernel and
LK the operator. If we make the following symmetry assumption:

K (x, y) = K (y, x), for almost all (x, y) ∈ [0, 1]2,

then the operator LK is self-adjoint, and therefore has an eigenvalue sequence {λn}
approaching zero. The eigenvalues can be conveniently arranged in decreasing order
according to their modulus:

|λ1| ≥ |λ2| ≥ · · · ,

in which the number of appearances of each eigenvalue is equal to its algebraic
multiplicity.

Weyl [22] proved that, if K ∈ CΩ

(

[0, 1]2
)

, then we have

λn = o
(

n−(Ω+1/2)
)

,

as n ∩ →. Here CΩ
([0, 1]2

)
denotes the Banach space of all functions whose

partial derivatives up to order Ω are continuous on [0, 1]2. If, in addition, the operator
is positive, then Reade [16] established the faster decay rate of the eigenvalues

λn = O
(

n−(Ω+1)
)

,

as n ∩ →. The operatorLK is positive if and only if the kernel K is positive definite
in the sense that for each f ∈ L2([0, 1]), we have

1∫

0

1∫

0

K (x, y) f (x) f (y) dxdy ≥ 0.

In a separate paper, Reade [17] considered kernels of Hölder class, i.e., symmetric
kernels K for which there is a constant C , independent of x and y, such that

|K (x, y) − K (x ∞, y∞)| ≤ C(|x − x ∞|r + |y − y∞|r ),

where 0 < r < 1 is a prescribed constant. Reade showed that if K satisfies the above
inequality and is positive definite, then
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λn = O
(

n−(1+r)
)

as n ∩ →. Remarkably, Kühn [12] made a sweeping generalization. For a multi-
index α = (α1,α2, . . . ,αm), let Dα stand for ∂|α|/(∂xα1

1 ∂xα2
2 · · · ∂xαm

m ). The dif-
ference operators ∂h, h ∈ R

m , are defined by

∂h f (x) = f (x + h) − f (x), x ∈ R
m,

and ∂Ω
h, Ω ∈ N, are defined iteratively. For 0 < r = κ + s < →, with κ ∈ Z+,

0 < s ≤ 1, the Hölder class C r (Rm) consists of all functions f : R
m ∩ C such that

∇ f ∇C r (Rm) :=
∑

|α|≤κ

sup
x∈Rm

|Dα f (x)| +
∑

|α|=κ

sup
h,x∈Rm

|∂2
h Dα f (x)|
∇h∇r

< →.

For a subset α ⊂ R
m , one defines

C r (α) = { f : α ∩ C : there exists g ∈ C r (Rm) with f = g|α},

and for f ∈ C r (α), one defines

∇ f ∇C r (α) = inf{∇g∇C r (Rd ) : f = g|α}.

Let M be a compact m-dimensional C→-manifold. One definesC r (M) to be the class
of all continuous functions f on M that are locally in C r , i.e., for each chart (of M)
ε : U ∩ R

m, f ∀ ε−1 ∈ C r (ε(U )). Choosing charts εi : Ui ∩ R
m, 1 ≤ i ≤ N ,

such that M = ∅N
i=1Ui and εi (Ui ) are bounded C→-domains of R

m , one defines

∇ f ∇C r (M) = sup
1≤i≤N

∇ f ∀ ε−1
i ∇C r (εi (Ui )).

The kernel classes Kühn had investigated are C r,0(M) consisting of all continuous
functions K : M × M ∩ C such that

K (·, y) ∈ C r (M), for each fixed y ∈ M,

and
∇K∇C r,0(M) := sup

y∈M
∇K (·, y)∇C r (M) < →.

Kühn [12] proved the following result:

Theorem 1 Let M be a compact m-dimensional C→-manifold equipped with a finite
Lebesgue-type measure μ. For each 0 < r < → and every positive definite kernel
K ∈ C r,0(M), it holds that
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λn = O(n−(r/m+1)).

Both Reade and Kühn had given examples of operators whose eigenvalue sequences
have the desirable decay rates but the kernels do not have any extra smoothness,
which implies in a certain sense that these types of estimates are best possible.
Powerful and general as Kühn’s result is, the conditions posed on the kernels are not
necessarily easy to verify. This problem becomes more acute when the underlying
manifold is the m-dimensional sphere, arguably the most simple and useful compact
m-dimensional manifold. Verifying these conditions is a demanding job. Sometimes
this task can be outright burdensome. In addition, the supremal norms permeated the
process,1 which has practically excluded some of the most useful kernels, such as
those that resemble the Bessel potential kernels.2 One such kernel is

sin2r (θ/2), θ = cos−1 x · y, x, y ∈ R
m+1, |x | = |y| = 1.

Here r > −1/2, r ⊂= 0 is a prescribed constant. This kernel has shown promising
capacities and utilities for several approximation problems on Euclidean spaces and
spherical domains; see [6] and [11].

In this paper, we work on the m-dimensional sphere embedded in the (m + 1)-
dimensional Euclidean space. We develop new and readily verifiable conditions on
spherical kernels under which the operators’ eigenvalue sequences have the desir-
able decay rates. Precisely, we give two such conditions; see Eqs. (3) and (4). In
establishing these conditions, we introduce new tools, moduli of smoothness and
K -functionals of fractional order. To wit, the tools themselves are not new but the
idea of utilizing them in this context is. The effectiveness of this approach not only
empowers us to derive the results in the current paper, but also has opened a door for
future research in identifying new smoothness conditions on kernels so that opera-
tors’ eigenvalue sequences decay exponentially, or at other nonalgebraic rates.

An outline of the paper is as follows: In Sect. 2, we introduce notation and state
our main results. In Sect. 3, we describe the technical machinery that will be needed
in the proofs of the main results. The details of the proofs will be given in Sect. 4.

2 Notation and Results

Let Sm (m ≥ 2) denote the unit sphere in R
m+1 endowed with its usual surface

measure σm . For 1 ≤ p ≤ →, we denote L p(Sm) := L p(Sm, σm) the usual L p space

on Sm consisting of all functions f : Sm ∩ C satisfying
∫

Sm
| f (x)|p dσ

m
(x) < →.

A function (kernel) K ∈ L2(Sm × Sm, σm × σm) induces a compact operator LK

1 Kühn and his co-author studied integrated Hölder conditions in Cobos and Kühn [4].
2 Here we call K a Bessel potential kernel if K can reproduce a Bessel potential Sobolev space on
spheres. We refer readers to Mhaskar et al. [15] for technical details in this regard.
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from L2(Sm) to itself as described by the following equation:

LK ( f )(x) =
∫

Sm

K (x, y) f (y) dσ
m
(y), f ∈ L2(Sm), x ∈ Sm . (1)

A kernel K is called zonal if there exists a function φ : [−1, 1] ∩ C such that

K (x, y) = φ(x · y), (x, y) ∈ Sm × Sm,

where x · y denotes the usual dot product of x and y. Schoenberg [20] characterized
all the continuous zonal positive definite kernels φ(x · y) in the following way:

φ(x · y) =
→∑

k=0

ak

d(m)
k∑

j=1

Yk, j (x)Yk, j (y).

Here ak ≥ 0, and
∑→

k=0 akdk < →. The set {Yk, j }d(m)
k

j=1 is an orthonormal basis for the
space of all the homogeneous harmonic polynomials of degree k whose dimension
is

d(m)
k = m + 2k − 1

k

(
m + k − 2

k − 1

)

◦ km−1.

Characterizations of positive definite kernels on spheres of various generalities are
also accessible in the literature for which we refer the interested readers to Bochner
[2] and Stewart [21].

Our study in this paper concerns kernels of the form:

K (x, y) =
→∑

k=0

d(m)
k∑

j=1

αk, j Yk, j (x)Yk, j (y),

→∑

k=0

d(m)
k

d(m)
k∑

j=1

αk, j < →.

We make two basic assumptions on these kernels:

(A) (Positivity) The expansion coefficients are nonnegative, i.e., αk, j ≥ 0.
(B) (Monotonicity) The expansion coefficients are monotone decreasing with respect

to k, i.e., αk+1, j ≤ αk, j ∞ , 1 ≤ j ≤ d(m)
k+1, 1 ≤ j ∞ ≤ d(m)

k .

Assumption (A) assures that the operatorLK is positive and has a uniquely defined
square root operator L 1/2

K whose generating kernel K1/2 is given by

K1/2(x, y) =
→∑

k=0

d(m)
k∑

j=1

α
1/2
k, j Yk, j (x)Yk, j (y).
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Both LK and L
1/2
K are self-adjoint positive operators. The kernel K of the original

operator LK can be recovered from the kernel K1/2 of its square root operator L 1/2
K

by the integral relation,

∫

Sm

K1/2(x, y)K1/2(w, x) dσ
m
(x) = K (w, y), y, w ∈ Sm . (2)

A quick reference to Eq. (1) shows that the spherical harmonics Yk, j , k = 0, 1, . . .,

j = 1, . . . , d(m)
k , are all eigenvectors of the operator LK (the associated eigenvalues

are αk, j ). Since they form an orthonormal basis of L2(Sm), Assumption (B) gives
an eigenvalue ordering that is suitable for our analysis. It is worth noting that the
Yk, j ’s are also the eigenvectors of the Laplace-Betrami operator.3 The associated
eigenvalues are −k(k + m − 1).

Various forms of Hölder conditions have been proposed and studied in the liter-
ature (see [3, 4, 7, 13, 16, 19]). This is not surprising, as the sphere is rich with
symmetrical structures for us to explore and utilize. Our first goal in this paper is to
continue the path traveled by the authors in Castro and Menegatto [3]. We say that a
kernel K satisfies the (B,β)-Hölder condition if there exist a fixed β ∈ (0, 2] and a
function B in L1(Sm) such that

|St (K (y, ·))(x) − K (y, x)| ≤ B(y)tβ, x, y ∈ Sm, t ∈ (0,π). (3)

Here, St stands for the usual shifting operator4 defined by the formula

St f (x) = 1

Rm(t)

∫

Rt
x

f (y) dσ
r
(y), x ∈ Sm, f ∈ L p(Sm), t ∈ (0,π),

in which dσr (y) is the volume element of the ring Rt
x := {y ∈ Sm : dm(x, y) = t}

and Rm(t) is its total volume.

Theorem 2 If LK is a positive integral operator induced by the kernel K satisfying
the (B,β)-Hölder condition, then it holds that

λn(LK ) = O(n−1−β/m), (n ∩ →).

3 The Laplace-Betrami operator is the restriction to the sphere Sm of the classical Laplace operator

∂ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
m+1

in the Euclidean space R
m+1.

4 The shifting operator here can be considered as the restriction to Sm of the spherical mean operator
in R

m+1.
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It is straightforward to verify that the (B,β)-Hölder condition is weaker, and
therefore more easily satisfied than many other forms of such conditions studied in
the literature. As such, Theorem 2 gives an improvement over the previously known
results.

Our second goal is to generalize the result of Theorem 2.5 in Castro and Menegatto
[3] so that it will also work with Laplace-Beltrami derivatives of fractional orders.
To this end, we need to introduce more notation. For a positive real number r , we
write Dr (g) to denote the fractional derivative of order r of a function g ∈ L p(Sm)

[5, 10]. We denote by Yk(g) the orthogonal projection of a function g ∈ L2(Sm)

onto the space H m
k of homogeneous harmonic polynomials of degree k in m + 1

dimensions (restricted to Sm), and define Dr (g) via the following Fourier expansion:

Dr (g) ∼
→∑

k=0

(k(k + m − 1))r/2Yk(g). (4)

The space of Bessel potentials W r
p(Sm) on Sm [18] is defined by

W r
p(Sm) := {g ∈ L p(Sm) : ∇g∇p + ∇Dr (g)∇p < →}.

For convenience, we write ∇g∇Wr
p

:= ∇g∇p + ∇Dr (g)∇p, g ∈ W r
p(Sm), and observe

that (W r
p(Sm), ∇ ·∇Wr

p
) is a Banach space. We remark that the fractional derivative of

order r as defined in (4) is also called fractional Laplace-Beltrami operator (of order
r ) in Dai and Xu [5]. That may be justified by the fact that such concept coincides
with the usual Laplace-Beltrami derivative of order r when r is a positive integer
[10, 14]. If K is a kernel from L2(Sm × Sm, σm × σm) and z is fixed in Sm , then we
write K z to denote the function · ⇒∩ K (·, z). We will use the symbol Dr,0 K to stand
for the action of the fractional derivative operator only applied to the first group of
variables.

Theorem 3 Let LK be a positive integral operator and assume that, for a fixed
r > 0, all K z belong to W 2r

2 (Sm). If the integral operator generated by D2r,0 K is
trace-class, then

λn(LK ) = O(n−1−2r/m), (n ∩ →).

3 Estimating Sums of Fourier Coefficients

In this section, we review concepts and background materials that we will need in the
proofs of our main results. These include difference operators, moduli of smooth-
ness, and the associated K -functionals. Some of Ditzian’s recent results concerning
spherical type Hausdorff-Young inequalities play an important role here, which we
will highlight in the sequel. Pertinent references are [5, 8, 9, 18].

If r is a positive real number, the difference operator of order r (with step t) ∂r
t

is given by the formula
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∂r
t ( f ) := (I − St )

r/2( f ) =
→∑

k=0

(−1)k
(

r/2

k

)

Sk
t ( f ), f ∈ L p(Sm),

where I denotes the identity operator. Since the shifting operator satisfies [1]

Yk(St ( f )) = P(m−1)/2
k (cos t)

P(m−1)/2
k (1)

Yk( f ), f ∈ L p(Sm), k ∈ Z+,

where P(m−1)/2
k is the Gegenbauer polynomial of degree k and index (m − 1)/2, the

following Fourier expansion holds

∂r
t ( f ) ∼

→∑

k=0

(

1 − P(m−1)/2
k (cos t)

P(m−1)/2
k (1)

)r/2

Yk( f ), f ∈ L p(Sm), t ∈ (0,π).

The difference operator is the main object in the definition of the rth-order modulus
of smoothness (with step t) of a function f in L p(Sm):

ωr ( f, t)p := sup{∇∂r
s( f )∇p : s ∈ (0, t]}.

The last definition we want to introduce is that of K -functional associated to the
space W r

p. For r > 0 and t > 0, it is given by

Kr ( f, t)p := inf{∇ f − g∇p + tr∇g∇Wr
p

: g ∈ W r
p(Sm)}. (5)

For f ∈ L p(Sm), it is known that ωr ( f, t)p and Kr ( f, t)p are equivalent [18]:

Kr ( f, t)p ∃ ωr ( f, t)p, t ∈ (0,π). (6)

Another interesting property involving the K -functional, a realization theorem for
Kr ( f, t)p [9], is given in the lemma below (for the sake of easy referencing). In its
statement, the multiplier operator ηt depends upon a fixed function η in C→[0,→)

possessing the following features: η = 1 in [0, 1], η = 0 in [2,→) and η(s) ≤ 1,
s ∈ (1, 2). The action of the operator ηt itself is defined by the formula

ηt ( f ) =
→∑

k=1

η(tk)Yk( f ), f ∈ L p(Sm).

Lemma 1 If r > 0 and f ∈ L p(Sm), then

∇ f − ηt ( f )∇p + tr∇ηt ( f )∇Wr
p

∃ Kr ( f, t)p, t ∈ (0,π).
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The Fourier coefficients of a function f ∈ L p(Sm) with respect to the basis
{Yk, j : j = 1, 2, . . . , d(m)

k ; k = 0, 1, . . .} of L2(Sm) are defined by

ck, j ( f ) :=
∫

Sm

f (y)Yk, j (y) dσm(y), j = 1, 2, . . . , d(m)
k ; k = 0, 1, . . . .

In the remainder of the section, we provide estimates for the sums

sk( f ) :=
d(m)

k∑

j=1

|ck, j ( f )|2, k = 0, 1, . . . . (7)

The following lemma is proved in Ditzian [9]. We include it here for completeness.

Lemma 2 (1 ≤ p ≤ 2) If f belongs to L p(Sm) and q is the conjugate exponent of
p, then

⎢ →∑

k=1

(d(m)
k )(2−q)/2q [sk( f )]q/2

}1/q

≤ a(p)∇ f ∇p,

in which a(p) is a positive constant depending upon p (and m).

Theorem 4 If f belong to L p(Sm) (1 ≤ p ≤ 2) and q is the conjugate exponent of
p, then for each fixed r > 0, there exists a constant cp for which

⎢ →∑

k=1

(d(m)
k )(2−q)/2q(min{1, tk})rq [sk( f )]q/2

}1/q

≤ cpωr ( f, t)p, t ∈ (0,π).

(8)

Ditzian [9] proved this theorem for the special case in which r is a positive integer.
Ditzian also mentioned that the same proof can be slightly modified to work for the
general case. Because the result of the above theorem plays an important role in the
derivation of our main results, we include a full proof here.

Proof Due to the equivalence (6) and Lemma 1, it suffices to prove that

⎢ →∑

k=1

(d(m)
k )(2−q)/2q (min{1, tk})rq [sk( f )]q/2

}1/q

≤ ap

(
∇ f − ηt ( f )∇p + tr ∇ηt ( f )∇Wr

p

)
,

where ap is a constant depending upon p. Clearly,

sk( f ) =
d(m)

k∑

j=1

|ck, j ( f − ηt ( f )) + ck, j (ηt ( f ))|2 ≤ 22sk( f − ηt ( f )) + 22sk(ηt ( f )).
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Writing St,r,q( f ) to denote the left-hand side of (8), we have

St,r,q( f ) ≤ 2

⎢ →∑

k=1

(d(m)
k )(2−q)/2q(min{1, tk})rq [sk( f − ηt ( f ))]q/2

}1/q

+2

⎢ →∑

k=1

(d(m)
k )(2−q)/2q(min{1, tk})rq [sk(ηt ( f ))]q/2

}1/q

.

We use S1 and S2 to denote, respectively, the two terms on the right-hand side of the
above inequality. We have

S1 ≤ 2

⎢ →∑

k=1

(d(m)
k )(2−q)/2q [sk( f − ηt ( f ))]q/2

}1/q

.

We then apply Lemma 2 to obtain

S1 ≤ 2a(p)∇ f − ηt ( f )∇p.

Similarly, we estimate S2,

S2 ≤ 2tr

⎢ →∑

k=1

(d(m)
k )(2−q)/2qkrq [sk(ηt ( f ))]q/2

}1/q

≤ 2tr

⎢ →∑

k=1

(d(m)
k )(2−q)/2q [

(k(k + m − 1))r sk(ηt ( f ))
⎥q/2

}1/q

≤ 2tr

⎢ →∑

k=1

(d(m)
k )(2−q)/2q [

sk(D
r (ηt ( f )))

⎥q/2

}1/q

.

Applying Lemma 2 once again, we deduce that

S2 ≤ 2tr∇Dr (ηt ( f ))∇p ≤ 2a(p)tr∇ηt ( f )∇Wr
p
.

Thus,
St,r,q( f ) ≤ 2a(p)

⎫
∇ f − ηt ( f )∇p + tr∇ηt ( f )∇Wr

p

⎬
,

and the proof is complete. �
We conclude this section by bringing the shifting operator into the inequality

presented in the above theorem. Its derivation requires an additional equivalence

∇St ( f ) − f ∇p ∃ ω2( f, t)p, t ∈ (0,π)
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proved in Ditzian [9].

Corollary 1 (1 ≤ p ≤ 2) If f belongs to L p(Sm) and q is the conjugate exponent
of p, then there exists a constant cp for which

⎢ →∑

k=1

(d(m)
k )(2−q)/2q(min{1, tk})2q [sk( f )]q/2

}1/q

≤ cp∇St ( f ) − f ∇p, t ∈ (0,π).

4 Proofs of the Main Results

Our task in this section is to prove both Theorems 2 and 3. To present the proofs
in an easily followed fashion, we will first prove a few additional technical results
which we organize in a succession of lemmas. We remind readers that the kernels K
we are dealing with satisfy Assumptions (A) and (B) in Sect. 2. It follows that for
each z ∈ Sm , the Fourier coefficients of the function K z are

ck, j (K z) = αk, j Yk, j (z), j = 1, 2, . . . , d(m)
k , k = 0, 1, . . . .

It also follows that the kernel K1/2 of the square root of the integral operator LK

has the expansion:

K1/2 ∼

→∑

k=0

d(m)
k∑

j=1

α
1/2
k, j Yk, j ⊗ Yk, j .

That is,

ck, j (K z
1/2) = α

1/2
k, j Yk, j (z), j = 1, 2, . . . , d(m)

k , k = 0, 1, . . . ,

which implies that

sk(K z
1/2) =

d(m)
k∑

j=1

αk, j |Yk, j (z)|2, z ∈ Sm, k = 0, 1, . . . .

Integrating on both sides of this equation yields the following result.

Lemma 3 Under the notations and conditions stated above, the following formula
holds:

∫

Sm

sk(K z
1/2) dσ

m
(z) =

d(m)
k∑

j=1

αk, j , k = 0, 1, . . . .

The action of the fractional derivative on K z
1/2 can be expressed by
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Dr (K z
1/2) ∼

→∑

k=0

d(m)
k∑

j=1

α
1/2
k, j (k(k + m − 1))r/2Yk, j (z) Yk, j .

It follows that |Dr (K z
1/2)|2 has the Fourier expansion:

→∑

k=0

→∑

p=0

d(m)
k∑

j=1

d(m)
k∑

i=1

α
1/2
k,i α

1/2
p, j (k(k+m−1))r/2(p(p+m−1))r/2Yk, j (z) Yp,i (z)Yk, j⊗Yp,i .

Since the set of all the spherical harmonics forms an orthonormal basis of L2(Sm),
we have

∇Dr (K z
1/2)∇2

2 =
→∑

k=0

d(m)
k∑

j=1

αk, j (k(k + m − 1))r |Yk, j (z)|2.

The following lemma is an immediate implication of the above discussion.

Lemma 4 The following equation holds true:

∇Dr (K z
1/2)∇2

2 = D2r K z(z) = D2r,0 K (z, z), z ∈ Sm .

Next, we derive an estimate for ∇St (K z
1/2)− K z

1/2∇2
2, where K satisfies the (B,β)-

Hölder condition.

Lemma 5 If K satisfies the (B,β)-Hölder condition, then

∫

Sm

∇St (K z
1/2) − K z

1/2∇2
2 dσ

m
(z) ≤ 2∇B∇1tβ, z ∈ Sm, t ∈ (0,π).

Proof Fix z and t . We have

∇St (K z
1/2) − K z

1/2∇2
2 =

∫

Sm

St (K1/2(·, z))(y)St (K1/2(z, ·))(y) dσ
m
(y)

−
∫

Sm

St (K1/2(·, z))(y)K1/2(z, y) dσ
m
(y)

−
∫

Sm
St (K1/2(z, ·))(y)K1/2(y, z)] dσ

m
(y)

+
∫

Sm

K1/2(y, z)K1/2(z, y) σ
m
(y).
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Writing

I z
t :=

∫

Sm

∇St (K z
1/2) − K z

1/2∇2
2 dσ

m
(z),

integrating on both sides of the above equation, and using (2), we get

I z
t =

∫

Sm

1

Rm(t)

∫

Rt
y

(St (K (x, ·))(y) − K (x, y)) dσ
m
(x) dσ

m
(y)

+
∫

Sm

(K (y, y) − St (K (y, ·))(y)) dσ
m
(y).

Since K satisfies the (B,β)-Hölder condition, applying Inequality (3), we obtain

I z
t ≤

∫

Sm

1

Rm(t)

∫

Rt
y

B(x)tβ dσ
r
(x) dσ

m
(y) +

∫

Sm

B(y)tβ dσ
m
(y)

=
∫

Sm

St (B)(y)tβ dσ
m
(y) +

∫

Sm

B(y)tβ dσ
m
(y)

= tβ (∇St (B)∇1 + ∇B∇1) .

The result of the lemma then follows from the fact that ∇St (B)∇1 = 1 (see [1]). �
We are now ready to prove the main results in this paper.

Proof of Theorem 3 Applying Theorem 4 to the function K z
1/2 (for the case p = q =

2), we have

→∑

k=0

(min{1, tk})2r sk(K z
1/2) ≤ cp

⎫
ωr (K z

1/2, t)2

⎬2
, z ∈ Sm, t ∈ (0,π).

Since K z
1/2 ∈ W r

2 , Lemma 3.8 in Rustamov [18] asserts the existence of a constant
C1 > 0 (independent of both K z

1/2 and t) so that

ωr (K z
1/2, t)2 ≤ C1tr∇Dr (K z

1/2)∇2, z ∈ Sm, t ∈ (0,π).

Hence, we have

→∑

k=0

(min{1, tk})2r sk(K z
1/2) ≤ cpC2

1 t2r∇Dr (K z
1/2)∇2

2, z ∈ Sm, t ∈ (0,π).

Integrating on both sides of the above inequality with respect to z (against the measure
σm(z)), we have
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→∑

k=0

(min{1, tk})2r

⎭

⎛
∫

Sm

sk(K z
1/2) dσ

m
(z)

⎝

⎞ ≤ cpC2
1 t2r

∫

Sm

∇Dr (K z
1/2)∇2

2 dσ
m
(z), t ∈ (0, π).

Since D2r,0 K is a trace-class kernel, the result of Lemma 4 asserts that cpC2
1∇Dr

(K z
1/2)∇2

2 is a nonnegative constant. Denoting this constant by C2 and invoking
Lemma 3, we obtain

→∑

k=0

(min{1, tk})2r
d(m)

k∑

j=1

αk, j ≤ C2t2r , t ∈ (0,π).

Letting t = 1/n in the above inequality, we get

→∑

k=0

(min{1, k/n})2r
d(m)

k∑

j=1

αk, j ≤ C2n−2r , n = 1, 2, . . . .

All the summands in the left-hand side of the above inequality are nonnegative.
Dropping those terms with index k < n, we derive the following inequality:

→∑

k=n

d(m)
k∑

j=1

αk, j ≤ C2n−2r , n = 1, 2, . . . .

It implies that

dm
n

→∑

k=n

αk ≤
→∑

k=n

d(m)
k αk ≤ C2n−2r , n = 1, 2, . . . ,

in which αk := min{αk, j : j = 1, 2, . . . , d(m)
k }, k = 0, 1, . . .. Using the equivalence

dm
n ◦ nm−1 as n ∩ →, we arrive at

nm−1
→∑

k=n

αk ≤ C3C2n−2r , n = 1, 2, . . . ,

for some C3 > 0, that is,

→∑

k=n

αk ≤ C3n−2r−m+1, n = 1, 2, . . . .
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Next, observe that

n2r+mαn = n2r+m−1
2n−1∑

k=n

αn ≤ n2r+m−1
→∑

k=n

αk ≤ C3, n = 1, 2, . . . ,

or, equivalently, αk = O(n−2r−m), as n ∩ →. Returning to our original notation
for the eigenvalues of LK and recalling that {λn(LK )} decreases to 0, we have that
αn = λ

d(m+1)
n

(LK ), n = 1, 2, . . .. In particular,

λ
d(m+1)

n
(LK ) = O(n−2r−m), (n ∩ →).

Therefore, the decay in the statement of the theorem follows. �
Proof of Theorem 2 Many steps in this proof are essentially repetitions of those in
Theorem 4. Applying the inequality in Corollary 1 to the function K z

1/2 for the case
p = q = 2 and r = 2, we get

→∑

k=1

(min{1, tk})4sk(K z
1/2) ≤ c2∇St (K z

1/2) − K z
1/2∇2

2, z ∈ Sm, t ∈ (0,π).

Repeating the same procedure used in the first half of the proof of Theorem 3, we
obtain the inequality

→∑

k=0

(min{1, tk})4
d(m)

k∑

j=1

αk, j ≤ c2

∫

Sm

∇St (K z
1/2)−K z

1/2∇2
2 dσ

m
(z), z ∈ Sm, t ∈ (0,π).

Since K satisfies the (B,β)-Hölder condition, the result of Lemma 5 asserts that

→∑

k=0

(min{1, tk})4
d(m)

k∑

j=1

αk, j ≤ 2c2∇B∇1tβ, t ∈ (0,π).

Repeating the procedure used in the second half of the proof of Theorem 3 leads us
to the conclusion of the theorem we are proving. �
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Reconstructing Multivariate Trigonometric
Polynomials from Samples Along
Rank-1 Lattices

Lutz Kämmerer

Abstract The approximation of problems in d spatial dimensions by trigonometric
polynomials supported on known more or less sparse frequency index sets I ∈ Z

d is
an important task with a variety of applications. The use of rank-1 lattices as spatial
discretizations offers a suitable possibility for sampling such sparse trigonometric
polynomials. Given an arbitrary index set of frequencies, we construct rank-1 lattices
that allow a stable and unique discrete Fourier transform. We use a component-by-
component method in order to determine the generating vector and the lattice size.

Keywords Mutlivariate trigonometric approximation ·Lattice rule ·Rank-1 lattice ·
Component-by-component (CBC) · Fast Fourier transform

1 Introduction

Given a spatial dimension d ≥ N, we consider Fourier series of sufficiently smooth
functions f (x) = ∑

k≥Zd f̂ke2Ω ik·x mapping the d-dimensional torus [0, 1)d into
the complex numbers C, where f̂k ≥ C are the Fourier coefficients. A sequence(

f̂k

)

k≥Zd
with a finite number of nonzero elements specifies a trigonometric poly-

nomial. We call the index set of the nonzero elements the frequency index set of the
corresponding trigonometric polynomial. For a fixed index set I ∈ Z

d with a finite
cardinality |I |, ∂I = span{e2Ω ik·x : k ≥ I } is called the space of trigonometric
polynomials with frequencies supported on I .

Assuming the index set I is of finite cardinality and a suitable discretization in fre-
quency domain for approximating functions, e.g., functions of specific smoothness,
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cf. [5, 8], we are interested in evaluating the corresponding trigonometric polyno-

mials at sampling nodes and reconstructing the Fourier coefficients
(

f̂k

)

k≥I
from

sample values. Accordingly, we consider (sparse) multivariate trigonometric poly-
nomials

f (x) =
∑

k≥I

f̂ke2Ω ik·x

and assume the frequency index set I is given.
For different specific index sets I there has been done some related work using

rank-1 lattices as spatial discretizations [4, 7]. A multivariate trigonometric poly-
nomial evaluated at all nodes of a rank-1 lattice essentially simplifies to a one-
dimensional fast Fourier transform (FFT) of the length of the cardinality of the rank-1
lattice, cf. [6]. Allowing for some oversampling one can find a rank-1 lattice, which
even allows the reconstruction of the trigonometric polynomial from the samples at
the rank-1 lattice nodes. A suitable strategy to search for such reconstructing rank-1
lattices can be adapted from numerical integration. In particular, a modification of the
component-by-component constructions of lattice rules based on various weighted
trigonometric degrees of exactness described in Cools et al. [3] allows one to find
adequate rank-1 lattices in a relatively fast way. We already showed the existence
and upper bounds on the cardinality of reconstructing rank-1 lattices for hyperbolic
crosses as index sets, cf. [4].

In this paper, we generalize these results considering arbitrary frequency index
sets I instead of symmetric hyperbolic crosses and suggest some strategies for deter-
mining reconstructing rank-1 lattices even for frequency index sets I containing gaps.
To this end, we present corresponding component-by-component (CBC) algorithms,
where the frequency index set I is the only input.

In Sect. 2, we introduce the necessary notation and specify the relation between
exact integration of trigonometric polynomials and reconstruction of trigonomet-
ric polynomials using rank-1 lattices. Section 3 contains the main results, i.e., a
component-by-component algorithm searching for reconstructing rank-1 lattices for
given frequency index sets I and given rank-1 lattice sizes M . In detail, we deter-
mine conditions on M guaranteeing the existence of a reconstructing rank-1 lattice
of size M for the frequency index set I . The proof of this existence result describes a
component-by-component construction of a corresponding generating vector z ≥ N

d

of the rank-1 lattice, such that we obtain directly a component-by-component
algorithm. In Sect. 4, we give some simple improvements of the component-by-
component construction, such that the corresponding algorithms automatically deter-
mine suitable rank-1 lattice sizes. Accordingly, the only input is the frequency index
set I here. Finally, we give some specific examples and compare the results of our
different algorithms in Sect. 5.
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2 Rank-1 Lattices

For given M ≥ N and z ≥ N
d we define the rank-1 lattice

α(z, M) := {x j = jz
M

mod 1, j = 0, . . . , M − 1}

as discretization in the spatial domain. Following [6], the evaluation of the trigono-
metric polynomial f ≥ ∂I with frequencies supported on I simplifies to a one-
dimensional discrete Fourier transform (DFT), i.e.,

f (x j ) =
∑

k≥I

f̂ke2Ω i jk·z =
M−1∑

l=0




∑

k·z∩l (mod M)

f̂k



 e2Ω i jl
M .

We evaluate f at all nodes x j ≥ α(z, M), j = 0, . . . , M − 1, by the precom-
putation of all ĝl := ∑

k·z∩l (mod M) f̂k and a one-dimensional (inverse) FFT in
O (M log M + d|I |) floating point operations, cf. [2], where |I | denotes the car-
dinality of the frequency index set I .

As the fast evaluation of trigonometric polynomials at all sampling nodes x j of
the rank-1 lattice α(z, M) is guaranteed, we draw our attention to the reconstruction
of a trigonometric polynomial f with frequencies supported on I using function
values at the nodes x j of a rank-1 lattice α(z, M). We consider the corresponding
Fourier matrix A and its adjoint A→,

A :=
(

e2Ω ik·x)

x≥α(z,M),k≥I
≥ C

M×|I | and A→ :=
(

e−2Ω ik·x)

k≥I, x≥α(z,M)
≥ C

|I |×M ,

in order to determine necessary and sufficient conditions on rank-1 lattices α(z, M)

allowing for a unique reconstruction of all Fourier coefficients of f ≥ εI . Note
that we assume to run through the sets I and α(z, M) in some fixed order whenever
we use k ≥ I or x ≥ α(z, M) as running index of matrices or vectors. Hence,
the reconstruction of the Fourier coefficients f̂ = ( f̂k)k≥I ≥ C

|I | from sampling
values f = ( f (x))x≥α(z,M) ≥ C

M can be realized by solving the normal equation
A→Af̂ = A→f , which is equivalent to solve the least squares problem

find f̂ ≥ C
|I | such that ∞Af̂ − f∞2 ≤ min,

cf. [1]. Assuming f = ( f (x))x≥α(z,M) being a vector of sampling values of the
trigonometric polynomial f ≥ ∂I , the vector f belongs to the range of A and we
can find a possibly nonunique solution f̂ of Af̂ = f . We compute a unique solution
of the normal equation, iff the Fourier matrix A has full column rank.

Lemma 1 Let I ∈ Z
d of finite cardinality and α(z, M) a rank-1 lattice be given.

Then two distinct columns of the corresponding Fourier matrix A are orthogonal or
equal, i.e., (A→A)h,k ≥ {0, M} for h, k ≥ I .
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Proof The matrix A→A contains all scalar products of two columns of the Fourier
matrix A, i.e., (A→A)h,k is the scalar product of column k with column h of the
Fourier matrix A. We obtain

(A→A)h,k =
M−1∑

j=0

(
e2Ω i (k−h)·z

M

) j =





M, for k · z ∩ h · z (mod M),

e2Ω i(k−h)·z−1

e2Ω i (k−h)·z
M −1

= 0, else. �

According to Lemma 1 the matrix A has full column rank, iff

k · z ∇∩ h · z (mod M), for all k ∇= h; k, h ≥ I, (1)

or, equivalently,

k · z ∇∩ 0 (mod M), for all k ≥ D(I )\{0} (2)

with D(I ) := {h = l1 − l2 : l1, l2 ≥ I }. We call the set D(I ) difference set of the
frequency index set I . Furthermore, we name a rank-1 lattice α(z, M) ensuring (1)
and (2) reconstructing rank-1 lattice for the index set I . In particular, condition (2)
ensures the exact integration of all trigonometric polynomials g ≥ ∂D(I ) applying
the lattice rule given by α(z, M), i.e., the identity

⎢
Td g(x)dx = 1

M

∑M−1
j=0 g(x j )

holds for all g ≥ ∂D(I ), cf. [9]. Certainly, f ≥ ∂I and k ≥ I implies that f e−2Ω ik·◦ ≥
∂D(I ) and we obtain

1

M

M−1∑

j=0

f

(
jz
M

)

e−2Ω i j k·z
M =

⎥

Td

f (x)e−2Ω ik·xdx =: f̂k,

where the right equality is the usual definition of the Fourier coefficients.
Another fact, which comes out of Lemma 1, is that the matrix A fulfills A→A = MI

in the case of α(z, M) being a reconstructing rank-1 lattice for I . The normalized
normal equation simplifies to

f̂ = 1

M
A→Af̂ = 1

M
A→f,

and in fact we reconstruct the Fourier coefficients of f ≥ ∂I applying the lattice
rule

f̂k = 1

M

M−1∑

j=0

f (x j )e
−2Ω i jk·z

M = 1

M

M−1∑

j=0

f (x j )e
−2Ω i jl

M

for all k ≥ I and l ∩ k·z (mod M). In particular, one computes all Fourier coefficients
using one one-dimensional FFT and the unique inverse mapping of k ∀≤ k·z mod M .
The corresponding complexity is given by O (M log M + d|I |).
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Up to now, we wrote about reconstructing rank-1 lattices without saying how
to get them. In the following section, we prove existence results and give a first
algorithm in order to determine reconstructing rank-1 lattices.

3 A CBC Construction of Reconstructing Rank-1 Lattices

A reconstructing rank-1 lattice for the frequency index set I is characterized by (1)
and (2), respectively. Similar to the construction of rank-1 lattices for the exact inte-
gration of trigonometric polynomials of specific trigonometric degrees, see [3], we
are interested in existence results and suitable construction algorithms for recon-
structing rank-1 lattices. In order to prepare the theorem of this section, we define
the projection of an index set I ∈ Z

d on Z
s , d ∅ s ≥ N,

Is := {⎫k j
⎬s

j=1 : k = ⎫
k j

⎬d
j=1 ≥ I }. (3)

Furthermore, we call a frequency index set I ∈ Z
d symmetric to the origin iff

I = {−k : k ≥ I }, i.e., k ≥ I implies −k ≥ I for all k ≥ I .

Theorem 1 Let s ≥ N, d ∅ s ∅ 2, Ĩ ∈ Z
d be an arbitrary d-dimensional set of

finite cardinality that is symmetric to the origin, and M be a prime number satisfying

M ∅ |{k ≥ Ĩs : k = (h, hs), h ≥ Ĩs−1\{0} and hs ≥ Z\{0}}|
2

+ 2.

Additionally, we assume that each nonzero element of the set of the s-th component
of Ĩs and M are coprime, i.e., M ∅ l for all l ≥ {hs ≥ Z\{0} : k = (h, hs) ≥ Ĩs, h ≥
Ĩs−1}, and that there exists a generating vector z→ ≥ N

s−1 that guarantees

h · z→ ∇∩ 0 (mod M) for all h ≥ Ĩs−1\{0}.

Then there exists at least one z→
s ≥ {1, . . . , M − 1} such that

(h, hs) · (z→, z→
s ) ∇∩ 0 (mod M) for all (h, hs) ≥ Ĩs\{0}.

Proof We adapt the proof of [3, Theorem 1]. Let us assume that

h · z→ ∇∩ 0 (mod M) for all h ≥ Ĩs−1\{0}.

Basically, we determine an upper bound of the number of elements zs ≥ {1, . . . , M −
1} with

(h, hs) · (z→, zs) ∩ 0 (mod M) for at least one (h, hs) ≥ Ĩs\{0}

or, equivalent,
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h · z→ ∩ −hs zs (mod M) for at least one (h, hs) ≥ Ĩs\{0}.

Similar to Cools et al. [3] we consider three cases:

hs = 0: With (h, hs) ≥ Ĩs\{0} we have 0 ∇= h ≥ Ĩs−1\{0}. Consequently, h ·
z→ ∩ −0zs (mod M) never holds because of h · z→ ∇∩ 0 (mod M) for all
h ≥ Ĩs−1\{0}.

h = 0: We consider zs ≥ {1, . . . , M − 1}. We required M being prime, so zs and
M are coprime. Due to (h, hs) ≥ Ĩ\{0}, we obtain hs ∇= 0 and we assumed
M and hs ∇= 0 are coprime. Consequently, we realize zshs ∇= 0 and zshs

and M are relatively prime. So 0z→ ∩ −hs zs (mod M) never holds for
(0, hs) ≥ Ĩs\{0} and zs ≥ {1, . . . , M − 1}.

else: Since 0 ∇= hs and M are coprime and h·z→ ∇∩ 0 (mod M), there is at most one
zs ≥ {1, . . . , M − 1} that fulfills h · z→ ∩ −hs zs (mod M). Due to the sym-
metry of the considered index set {(h, hs) ≥ Ĩs\{0} : h ≥ Ĩs−1\{0} and hs ≥
Z\{0}} we have to count at most one zs for the two elements (h, hs) and
−(h, hs).

Hence, we have at most

|{(h, hs) ≥ Ĩs\{0} : h ≥ Ĩs−1\{0} and hs ≥ Z\{0}}|
2

(4)

elements of {1, . . . , M − 1} with

h · z→ ∩ −hs zs (mod M) for at least one (h, hs) ≥ Ĩs\{0}.

If the candidate set {1, . . . , M − 1} for z→
s contains more elements than (4) we can

determine at least one z→
s with

h · z→ ∇∩ −hs z→
s (mod M) for all (h, hs) ≥ Ĩs\{0}.

Consequently, the number of elements in {1, . . . , M − 1} with

|{1, . . . , M − 1}| ∅ |{(h, hs) ≥ Ĩs\{0} : h ≥ Ĩs−1\{0} and hs ≥ Z\{0}}|
2

+ 1

and M is prime guarantees that there exists such a z→
s . Since, we assumed M being

prime and

M = |{1, . . . , M − 1}| + 1

∅ |{(h, hs) ≥ Ĩs\{0} : h ≥ Ĩs−1\{0} and hs ≥ Z\{0}}|
2

+ 2

we can find at least one zs by testing out all possible candidates {1, 2, . . . , M − 1}.
�
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Theorem 1 outlines one step of a component-by-component construction of a rank-1
lattice, guaranteeing the exact integration of trigonometric polynomials with fre-
quencies supported on index sets Ĩ which are symmetric to the origin.

We obtain this symmetry of the difference sets D(I )s

h ≥ D(I )s ⊂ ◦k1, k2 ≥ Is : h = k1 − k2 ⊂ −h = k2 − k1 ≥ D(I )s .

So, our strategy is to apply Theorem 1 to the difference set D(I )s of the frequency
index set Is for all 2 ≤ s ≤ d. In order to use Theorem 1, we have to find sufficient
conditions on rank-1 lattices of dimension d = 1 guaranteeing that hz1 ∇∩ 0 (mod M)

for all h ≥ D(I )1\{0}.
Lemma 2 Let I ∈ Z be a one-dimensional frequency index set of finite cardi-
nality and M be a prime number satisfying M ∅ |I |. Additionally, we assume M
and h being coprime for all h ≥ D(I )\{0}. Then we can uniquely reconstruct the
Fourier coefficients of all f ≥ ∂I applying the one-dimensional lattice rule given
by α(1, M).

Algorithm 1 Component-by-component lattice search
Input: M ≥ N prime cardinality of rank-1 lattice

I ∈ Z
d frequency index set

z = ⇒
for s = 1, . . . , d do

form the set Is as defined in (3)
search for one zs ≥ [1, M − 1] ∃ Z with |{(z, zs) · k mod M : k ≥ Is}| = |Is |
z = (z, zs)

end for
Output: z ≥ Z

d generating vector

Proof Applying the lattice rule given by α(1, M) to the integrands of the integrals
computing the Fourier coefficient f̂k , k ≥ I , of f ≥ ∂I , we obtain

1

M

M−1∑

j=0

f

(
j

M

)

e−2Ω i k j
M = 1

M

M−1∑

j=0

∑

h≥I

f̂he2Ω i h j
M e−2Ω i k j

M

= 1

M

∑

h≥I

f̂h

M−1∑

j=0

e2Ω i (h−k) j
M = f̂k =

1⎥

0

f (x)e−2Ω ikx dx

due to h − k ≥ D(I )\{0} and M are coprime. �

We summarize the results of Theorem 1 and Lemma 2 and figure out the following
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Corollary 1 Let I ∈ Z
d be an arbitrary d-dimensional index set of finite cardinality

and M be a prime number satisfying

M ∅ max

(

|I1|, max
s=2,...,d

|{k ≥ D(I )s : k = (h, hs), h ≥ D(I )s−1\{0} and hs ≥ Z\{0}}|
2

+ 2

)

.

In addition we assume that M ∅ l for all l ≥ {k = es · h : h ≥ D(I ), s =
1, . . . , d}\{0}, where es ≥ N

d is a d-dimensional unit vector with es, j =⎭
0, for j ∇= s

1, for j = s.
. Then there exists a rank-1 lattice of cardinality M that allows

the reconstruction of all trigonometric polynomials with frequencies supported on I
by sampling along the rank-1 lattice. Furthermore, once we determined a suitable M
the proof of Theorem 1 verifies that we can find at least one appropriate generating
vector component-by-component. Algorithm 1 indicates the corresponding strategy.

Algorithm 1 is already specified in [4, Algorithm 3] for hyperbolic crosses as fre-
quency index set. Both algorithms do not differ. In contrast to [4], we simply allow
arbitrary frequency index sets I as input, now. Only for reasons of clarity and com-
prehensibility, we stated the algorithm in this paper again.

Algorithm 2 Lattice size decreasing

Input: I ∈ Z
d frequency index set

Mmax ≥ N cardinality of rank-1 lattice
z ≥ N

d α(z, Mmax) is reconstructing rank-1 lattice for I

for j = |I |, . . . , Mmax do
if |{z · k mod j : k ≥ I }| = |I | then

Mmin = j
break

end if
end for

Output: Mmin reduced lattice size

Once one has discovered a reconstructing rank-1 lattice α(z, M) for the index set
I , the condition

k · z ∇= h · z, for all k ∇= h; k, h ≥ I,

holds and one can ask for M ′ < M fulfilling

k · z ∇∩ h · z (mod M ′), for all k ∇= h; k, h ≥ I.

For a fixed frequency index set I and a fixed generating vector z, we assume the
rank-1 lattice α(z, Mmax) being a reconstructing rank-1 lattice. Then, Algorithm 2
computes the smallest lattice size M ′ guaranteeing the reconstruction property of the
rank-1 lattice α(z, M ′).

Finally, we give a simple upper bound on the cardinality of the difference setD(I )
depending on the cardinality of I
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|D(I )| = |{k − h : k, h ≥ I }| = |{k − h : k, h ≥ I, k ∇= h} ∪ {0}| ≤ |I |(|I | − 1) + 1.

According to this and applying Bertrand’s postulate, the prime number M from
Corollary 1 is bounded from above by |D(I )| and |I |2, provided that |D(I )| > 4
and |I | ∅ 4, respectively.

Remark 1 In [4] we considered frequency index sets I of the specific hyperbolic
cross type. Since hyperbolic crosses are a subset of the d-dimensional box [−(|I | −
1)/2, (|I | − 1)/2]d ∃ Z

d and we necessarily have |I | ≤ M , we obtain the difference
set D(I ) is contained in the box [−M + 1, M − 1] ∃ Z

d and thus we know a
priori that the prime M and the components of the elements of the difference set
D(I ) are coprime. The additional assumption of the coprimality of each number
l ≥ {k = es · h : h ≥ D(I ), s = 1, . . . , d}\{0} and the prime number M is essential
in order to generalize the result of [4, Theorem 3.2] in Corollary 1.

4 Improvements

There are two serious problems concerning Corollary 1. In general, the computational
costs of determining the cardinality of the difference sets D(I )s , 2 ≤ s ≤ d, has
a complexity of Δ(d|I |2) and, maybe, the minimal M satisfying the assumptions
of Corollary 1 is far away from a best possible reconstructing rank-1 lattice size.
Accordingly, we are interested in somehow good estimations of the reconstructing
rank-1 lattice size for the index set I .

In this section, we present another strategy to find reconstructing rank-1 lattices.
We search for rank-1 lattices using a component-by-component construction deter-
mining the generating vectors z ≥ Z

d and suitable rank-1 lattice sizes M ≥ N.

Theorem 2 Let d ≥ N, d ∅ 2, and I ∈ Z
d of finite cardinality |I | ∅ 2 be given.

We assume that α(z, M) with z = (z1, . . . , zd−1)
∪ is a reconstructing rank-1 lattice

for the frequency index set Id−1 := {(hs)
d−1
s=1 : h ≥ I }. Then the rank-1 lattice

α((z1, . . . , zd−1, M)∪, M S) with

S := min {m ≥ N : |{hd mod m : h ≥ I }| = |{hd : h ≥ I }|}

is a reconstructing rank-1 lattice for I .

Proof We assume the rank-1 lattice α((z1, . . . , zd−1)
∪, M) is a reconstructing rank-

1 lattice for Id−1 and α((z1, . . . , zd−1, M)∪, M S) is not a reconstructing rank-1
lattice for I , i.e., there exist at least two different elements (h, hd), (k, kd) ≥ I ,
(h, hd) ∇= (k, kd), such that

h · z + hd M ∩ k · z + kd M (mod M S).
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We distinguish three different possible cases of (h, hd), (k, kd) ≥ I , (h, hd) ∇=
(k, kd):

• h = k and hd ∇= kd

We consider the corresponding residue classes

0 ∩ k · z + kd M − h · z − hd M ∩ (kd − hd)M (mod M S)

and obtain S|(kd − hd), i.e., kd ∩ hd (mod S). Thus, we determine the cardinality
|{hd mod S : h ≥ I }| < |{hd : h ≥ I }|, which is in contradiction to the definition
of S.

• h ∇= k and hd = kd

Accordingly, we calculate

0 ∩ k · z + kd M − h · z − hd M ∩ (k − h) · z (mod M S)

and obtain M S|(k−h) ·z and M | (k−h) ·z as well. According to that, we obtain
h · z ∩ k · z (mod M), which is in contradiction to the assumption α(z, M) is a
reconstructing rank-1 lattice for Id−1.

• h ∇= k and hd ∇= kd

Due to α(z, M) is a reconstructing rank-1 lattice for Id−1 we have

Algorithm 3 Component-by-component lattice search (unknown lattice size M)

Input: I ∈ Z
d frequency index set

M1 = min {m ≥ N : |{k1 mod m : k ≥ I }| = |{k1 : k ≥ I }|}
z1 = 1
for s = 2, . . . , d do

S = min {m ≥ N : |{ks mod m : k ≥ I }| = |{ks : k ≥ I }|}
z = (z, zs)

zs = Ms−1
form the set Is as defined in (3)
search for Ms = min {m ≥ N : |{z · k mod m : k ≥ Is}| = |Is |} ≤ SMs−1 using Algorithm 2

end for
Output: z ≥ N

d generating vector
M ≥ N

d rank-1 lattice sizes for dimension s = 1, . . . , d

0 ∇∩ k · z − h · z (mod M).

Thus, we can find uniquely specified ak,h ≥ Z and bk,h ≥ {1, . . . , M − 1} such
that k · z − h · z = ak,h M + bk,h. We calculate

0 ∩ k · z + kd M − h · z − hd M ∩ (ak,h + kd − hd)M + bk,h (mod M S)
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Algorithm 4 Component-by-component lattice search (unknown lattice size M ,
improved)

Input: I ∈ Z
d frequency index set

M1 = min {m ≥ N : |{k1 mod m : k ≥ I }| = |{k1 : k ≥ I }|}
z1 = 1
for s = 2, . . . , d do

S = min {m ≥ N : |{ks mod m : k ≥ I }| = |{ks : k ≥ I }|}
form the set Is as defined in (3)
search for the smallest zs ≥ [1, Ms−1] ∃ Z with |{(z, zs) · k mod SMs−1 : k ≥ Is}| = |Is |
z = (z, zs)

search for Ms = min {m ≥ N : |{z · k mod m : k ≥ Is}| = |Is |} using Algorithm 2
end for

Output: z ≥ N
d generating vector

M ≥ N
d rank-1 lattice sizes for dimension s = 1, . . . , d

and obtain M S|(ak,h +kd −hd)M +bk,h. As a consequence, we deduce M | bk,h,
which is in conflict with bk,h ≥ {1, . . . , M − 1}.

Extending the reconstructing rank-1 lattice α(z, M) for Id−1 to α((z, M), M S) with
S as defined above, we actually get a reconstructing rank-1 lattice for the frequency
index set I ∈ Z

d . �

In addition to the strategy provided by Theorem 2 and the corresponding Algo-
rithm 3, we bring the following heuristic into play. We assume small components
of the vector z being better than large ones. Therefore, we tune Algorithm 3 and
additionally search for the smallest possible component zs fulfilling

|{(z, zs) · h mod SMs−1 : h ≥ Is}| = |Is |.

Due to Theorem 2 the integer Ms−1 is an upper bound for the minimal zs we can find.
Algorithm 4 indicates the described strategy in detail. Algorithms 3 and 4 provide
deterministic strategies to find reconstructing rank-1 lattices for a given index set
I . We would like to point out that in both algorithms the only input we need is the
frequency index set I .

5 Numerical Examples

Our numerical examples treat frequency index sets of the type

I d
p,N :=

⎛
k ≥ Z

d : ∞k∞p ≤ N
⎝

,

where ∞ · ∞p is the usual p–(quasi–)norm
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∞k∞p :=





(∑d
s=1 |ks |p

)1/p
for 0 < p < ∞

maxs=1,...,d |ks | for p = ∞.

In particular, trigonometric polynomials with frequencies supported on the index
sets I d

p,N are useful in order to approximate functions of periodic Sobolev spaces

Hψ,p(Td) of isotropic smoothness

Hψ,p(Td) := { f : T
d ≤ C|

∑

k≥Zd

max(1, ∞k∞p)
ψ| f̂k|2 < ∞},

where ψ ≥ R is the smoothness parameter. In Kühn et al. [5], detailed estimates of
the approximation error for p = 1, 2 are given. Furthermore, tractability results are
specified therein.

According to Kühn et al. [5], our examples deal with p = 1, p = 2, and, in
addition, p = 1/2, p = ∞, see Fig. 1 for illustrations in dimension d = 2. We
construct corresponding frequency index sets I d

p,N and apply Algorithms 1, 3, and 4
in order to determine reconstructing rank-1 lattices. We have to determine suitable
rank-1 lattice sizes M for using Algorithm 1. For this, we compute the minimal
prime number MCor1 fulfilling Corollary 1. Since this computation is of high costs,
we only apply Algorithm 1 to frequency index sets I d

p,N of cardinalities not larger
than 20,000. We apply Algorithm 1 using the lattice size MCor1 and the frequency
index set I d

p,N as input. With the resulting generating vector, we apply Algorithm
2 in order to determine the reduced lattice size MAlg1+Alg2. Additionally, we use
Algorithms 3 and 4 computing rank-1 lattices α(zAlg3, MAlg3) and α(zAlg4, MAlg4),
respectively. For reasons of clarity, we present only the rank-1 lattice sizes MCor1,
MAlg1+Alg2, MAlg3, and MAlg4 but not the generating vectors z ≥ N

d in our tables.
First, we interpret the results of Table 1. In most cases, the theoretical result

of Corollary 1 gives a rank-1 lattice size MCor1 which is much larger than the
rank-1 lattice sizes found by applying the different strategies in practice. For p = ∞,
all our algorithms determined a rank-1 lattice of best possible cardinalities, i.e.,
|I d

∞,N | = MAlg1+Alg2 = MAlg3 = MAlg4. The outputs MAlg3 of Algorithm 3 are
larger than those of Algorithm 1 in tandem with Algorithm 2 and Algorithm 4, with a
few exceptions. Considering the nonconvex frequency index sets I d

1
2 ,N

, Algorithm 3

brings substantially larger rank-1 lattice sizes MAlg3 than the two other approaches.
Maybe, we observe the consequences of the missing flexibility in choosing the gener-
ating vector in Algorithm 3. Moreover, we observe the equality MAlg1+Alg2 = MAlg4
in all our examples. We would like to point out that Algorithm 1 requires an input lat-
tice size M , which we determined using Corollary 1. However, Algorithm 4 operates
without this input.

Since our approach is applicable for frequency index sets with gaps, we also
consider frequency index sets I d,even

p,N := I d
p,N ∃ (2Z)d . These frequency index sets

are suitable in order to approximate functions which are even in each coordinate,
i.e., the Fourier coefficients f̂k are a priori zero for k ≥ Z

d\ (2Z)d , cf. Fig. 1.
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Fig. 1 Two-dimensional frequency index sets I 2
p,16 and I 2,even

p,16 for p ≥ { 1
2 , 1, 2,∞}

Certainly, the gaps of the index sets I d,even
p,N are homogeneously distributed. We stress

the fact, that the theoretical results and the algorithms can also be applied to strongly
inhomogeneous frequency index sets.

Analyzing the frequency index sets I d,even
p,N in detail, we obtain

I d,even
p,N = {2k : k ≥ I d

p,N/2}.

We assume α(z, M) being a reconstructing rank-1 lattice for I d
p,N/2. Accordingly,

we know

k1 · z − k2 · z ∇∩ 0 (mod M)

for all k1 ∇= k2, k1, k2 ≥ I d
p,N/2. We determine lk1,k2 ≥ {1, . . . , M − 1} and t ≥ Z

such that
k1 · z − k2 · z = t M + lk1,k2

and, furthermore,
2k1 · z − 2k2 · z = t2M + 2lk1,k2 .

This yields
2k1 · z − 2k2 · z ∩ 2lk1,k2 (mod M), (5)
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Table 1 Cardinalities of reconstructing rank-1 lattices of index sets I d
p,N found by applying Corol-

lary 1, Algorithm 1 and 2, Algorithm 3, and Algorithm 4

p N d |I d
p,N | MCor1 MAlg1+Alg2 MAlg3 MAlg4

1
2 8 10 1,241 51,679 5,895 16,747 5,895
1
2 8 20 4,881 469,841 36,927 172,642 36,927
1
2 8 30 10,921 1,654,397 128,370 804,523 128,370
1
2 16 5 2,561 122,509 16,680 23,873 16,680
1
2 16 10 21,921 – – 910,271 403,799
1
2 16 15 83,081 – – 9,492,633 3,495,885
1
2 32 3 3,529 51,169 17,280 15,529 17,280
1
2 32 6 63,577 – – 1,932,277 1,431,875
1
2 64 3 24,993 – – 113,870 99,758

1 2 10 221 1,361 369 399 369

1 2 20 841 10,723 1,935 2,641 1,935

1 2 30 1,861 36,083 5,664 8,213 5,664

1 4 5 681 4,721 1,175 1,225 1,175

1 4 10 8,361 329,027 36,315 41,649 36,315

1 4 15 39,041 – – 400,143 340,247

1 8 3 833 2,729 1,113 1,169 1,113

1 8 6 40,081 – – 126,863 126,738

1 16 3 6,017 21,839 8,497 8,737 8,497

2 2 5 221 1,373 356 353 356

2 2 10 4,541 203,873 21,684 20,013 21,684

2 2 15 25,961 3,865079 259,517 280,795 259,571

2 2 20 87,481 – – 1,634,299 1,481164

2 4 3 257 809 346 377 346

2 4 6 23,793 496,789 69,065 72,776 69,065

2 8 3 2,109 7,639 2,893 3,050 2,893

2 16 3 17,077 65,309 23,210 23,889 23,210

∞ 1 3 27 53 27 27 27

∞ 1 6 729 6,257 729 729 729

∞ 1 9 19,683 781,271 19,683 19,683 19,683

∞ 2 3 125 331 125 125 125

∞ 2 6 15,625 236,207 15,625 15,625 15,625

where 2lk1,k2 ≥ {2, 4, . . . , 2M − 2}. Assuming M being odd, we obtain 2lk1,k2 ∇∩ 0
(mod M) for all k1 ∇= k2, k1, k2 ≥ I d

p,N/2 and α(z, M) is a reconstructing rank-1

lattice for I d,even
p,N .
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Table 2 Cardinalities of reconstructing rank-1 lattices of index sets I d,even
p,N found by applying

Corollary 1, Algorithm 1 and 2, Algorithm 3, and Algorithm 4

p N d |I d,even
p,N | MCor1 MAlg1+Alg2 MAlg3 MAlg4

1
2 16 10 1,241 51,679 5,895 15,345 5,895
1
2 16 20 4,881 469,841 36,927 176,225 36,927
1
2 16 30 10,921 1,654,397 129,013 763,351 129,013
1
2 32 5 2,561 122,509 17,825 23,873 17,825
1
2 32 10 21,921 – – 992,097 403,799
1
2 32 15 83,081 – – 8,848,095 3,495,885
1
2 64 3 3,529 51,169 17,689 15,529 17,689
1
2 64 6 63,577 – – 1,932,277 1,431,875
1
2 128 3 24,993 – – 119,159 105,621

1 4 10 221 1,361 369 399 369

1 4 20 841 10,723 1,935 2,641 1,935

1 4 30 1,861 36,083 5,711 8,213 5,711

1 8 5 681 4,721 1,175 1,225 1,175

1 8 10 8,361 329,027 36,315 41,649 36,315

1 8 15 39,041 – – 400,143 340,247

1 16 3 833 2,729 1,113 1,169 1,113

1 16 6 40,081 – – 126,863 126,875

1 32 3 6,017 21,839 8,497 8,737 8,497

2 4 5 221 1,373 361 353 361

2 4 10 4541 203,873 22,525 20,013 22,525

2 4 15 25,961 – – 280,795 259,571

2 4 20 87,481 – – 1,634,299 1,497,403

2 8 3 257 809 347 13,309 347

2 8 6 23,793 – – 72,777 69,065

2 16 3 2,109 7,639 2,893 3,063 2,893

2 32 3 17,077 65,309 23,243 23,915 23,243

∞ 2 3 27 53 27 27 27

∞ 2 6 729 6,257 729 729 729

∞ 2 9 19,683 781,271 19,683 19,683 19,683

∞ 4 3 125 331 125 125 125

∞ 4 6 15,625 236,207 15,625 15,625 15,625

In Table 2 we present the reconstructing rank-1 lattice sizes we found for even
frequency index sets. Comparing the two tables, we observe the same odd lattice sizes
MAlg1+Alg2 and MAlg4 for I d

p,N/2 and I d,even
p,N . In fact the corresponding generating
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vectors are also the same. In the case we found even reconstructing lattice sizes
for I d

p,N/2, we constructed some slightly larger reconstructing rank-1 lattice sizes

for I d,even
p,N . In these cases, we cannot use the found reconstructing rank-1 lattices for

I d
p,N/2 in order to reconstruct trigonometric polynomials with frequencies supported

on I d,even
p,N . The statement in (5) shows the reason for this observation. There exists at

least one pair k1, k2 ≥ I d
p,N , k1 ∇= k2 with k1·z−k2·z ∩ M

2 (mod M). Consequently,
doubling k1 and k2 leads to 2k1 · z − 2k2 · z ∩ 0 (mod M) and, hence, α(z, M) is
not a reconstructing rank-1 lattice for I d,even

p,N .
The fastest way for determining reconstructing rank-1 lattices is to apply Algo-

rithm 1 with a small and suitable rank-1 lattice size M . As mentioned above, the
biggest challenge is to determine this small and suitable rank-1 lattice size M . Con-
sequently, estimating relatively small M using some a priori knowledge about the
structure of the frequency index set I or some empirical knowledge, leads to the
fastest way to reasonable reconstructing rank-1 lattices. We stress the fact, that this
strategy fails if there exists no generating vector z which can be found using Algo-
rithm 1 with input I and M . For that reason, we presented Algorithms 3 and 4.
Both algorithms determine reconstructing rank-1 lattices of reasonable cardinalities
M using the frequency index set I as the only input. In particular, the rank-1 lat-
tice sizes MAlg4 determined by Algorithm 4 are the same as the rank-1 lattice sizes
MAlg1+Alg2 in our examples.

All presented deterministic approaches use Algorithm 2. The computational com-
plexity of Algorithm 2 is bounded by O((Mmax − |I |)|I |). However, some heuristic
strategies can decrease the number of loop passes. The disadvantage of this strategy
is that one does not find Mmin but, maybe, an M with Mmin ≤ M � Mmax. We
do not prefer only one of the presented algorithms because the computational com-
plexity mainly depends on the structure of the specific frequency index set and the
specific algorithm which is used. In detail, the number of function calls of Algorithm
2 in connection with the order of magnitude of the corresponding inputs, i.e., the
cardinality |Is | of the frequency index sets Is , and outputs Mmin essentially cause
the computational costs of all presented algorithms.

6 Summary

Based on Theorem 1, we determined a lattice size MCor1 guaranteeing the exis-
tence of a reconstructing rank-1 lattice for a given arbitrary frequency index set I
in Corollary 1. In order to prove this result, we used a component-by-component
argument, which leads directly to the component-by-component algorithm given by
Algorithm 1, that computes a generating vector z such that α(z, M) is a reconstruct-
ing rank-1 lattice for the frequency index set I . Due to difficulties in determining
MCor1, we developed some other strategies in order to compute reconstructing rank-1
lattices. The corresponding Algorithms 3 and 4 are also component-by-component
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algorithms. These algorithms compute complete reconstructing rank-1 lattices, i.e.,
generating vectors z ≥ N

d and lattice sizes M ≥ N, for a given frequency index set
I . All the mentioned approaches are applicable for arbitrary frequency index sets of
finite cardinality.

Acknowledgments The author thanks the referees for their careful reading and their valuable
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On Nondegenerate Rational Approximation

L. Franklin Kemp

Abstract The total degree algorithm of [3] failed to converge for some delicate
approximations because of a wrong Remes one point exchange or an inaccurate
eigenvalue (i.e., reference equioscillation error) unless started near an optimal ref-
erence. Here we present a modified algorithm that is robust and prove when the
revised algorithm’s total degree rational Ω∈ approximation is optimal for all lesser
degrees. Detailed examples and their figures show the bounded eigenvalue computa-
tions, steps of the Remes one point exchange for reference searching, and degeneracy
pyramids of the revised robust algorithm.

Keywords Ω∈ Rational approximation · Equioscillation error · Eigenvalue bounds

1 Introduction

Kemp [3] combines orthogonal polynomials, persymmetry, bounded symmetric
eigenvalue problems, eigenvalue interlacing, inverse iteration, Rayleigh’s quotient,
Sturm’s root test, and Remes exchange to produce a total degree algorithm that
searches for the best discrete nondegenerate rational Ω∈ approximation in the
p + q + 1 sets of rational functions of total degree p + q: R(p + q, 0), R(p +
q −1, 1), R(p +q −2, 2), . . . , R(1, p +q −1), R(0, p +q). It bypasses degenerate
approximations (i.e., those with minimax errors equioscillating on references of less
than p + q + 2 points) and approximations with no minimax error thereby avoiding
extra searching. The possibility arises that a bypassed degenerate might be better than
what the total degree algorithm finds among nondegenerates even though it seems
that degenerates should have larger minimax errors than nondegenerates since their
minimax errors equioscillate on fewer points (i.e., are less constrained) than nonde-
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generates. Moreover, all [3] test cases never found such a degenerate. In the absence
of a counterexample or a proof of impossibility, the best we can offer is a proof of
impossibility when the total degree algorithm terminates under the condition that
each rational set has a pole free reference over its p + q + 2 points with equioscil-
lating error that is greater than or equal to the total degree approximation minimax
error. Under this termination condition the total degree rational Ω∈ approximation
is not only the best out of the p + q + 1 rational sets, but also best over all rational
sets of lesser degree. We describe how we compute eigenvalues accurately and list
the steps of the Remes one point exchange method for deeper search of references.
The detailed examples help to explain the descriptions.

2 Summary of Minimax (l∞) Rational Approximation

Let X be a finite point set, I (X) its smallest containing interval, and R(p, q) the set
of rational functions of form:

P(x)/Q(x) = a0 + a1x + · · · + apx p

b0 + b1x + · · · + bq xq

Chebyshev Theorem: P(x)/Q(x) ≥ R(p, q) is the minimax approximation of
y(x) on X iff ∩ a reference Xref = {x0 < x1 < · · · < xnre f −1} → X such that

y − P/Q = s∂, on Xre f and 0 ≥/ Q(I (X))

where

|∂| = maxX |y − P/Q|, (minimax error, (eigenvalue))
s(xi ) = (−1)nre f −i , 0 ∞ i ∞ nre f − 1, (alternating sign function on Xref )

d = min(p − deg P, q − deg Q), (degeneracy of y for R(p, q) if d >0)

nre f = p + 1 + q + 1 − d, (no. of minimax error alternations)

For any d multiply the above dubbed equioscillating error equation by Q to get

Q(y − s∂) − P = 0 on Xref ,

a linear system of nre f equations (also dubbed the equioscillating error equation) in
nre f unknown coefficients of P and Q with parameter ∂. It has a nontrivial solution
if the determinant of its coefficient matrix, a polynomial of degree q + 1 in ∂, is
zero. This polynomial has q + 1 real roots; therefore, the Chebyshev theorem shows
the problem is a finite maximization problem: solves the equioscillating equation
for every Xref → X , discard those for which 0 ≥ Q(I (X)), and select from the
remaining references one with largest error.
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3 Degeneracy

d = 3 R(0, 0)

d = 2 R(2, 0) R(1, 1) R(0, 2)

d = 1 R(4, 0) R(3, 1) R(2, 2) R(1, 3) R(0, 4)

d = 0 R(6, 0) R(5, 1) R(4, 2) R(3, 3) R(2, 4) R(1, 5) R(0, 6)

Pyramid of Degeneracy Sets for Total Degree p + q = 6.

Theorem 1 (Degeneracy Theorem) If P/Q is the minimax approximation of y(x)

out of R(p, q) with degeneracy d, then P/Q ≥ R(p − d, q − d), but P/Q /≥
R(p − d − 1, q − d − 1).

Proof If d = p−deg(P) ∞ q −deg(Q), then deg(P) = p−d and deg(Q) ∞ q −d;
hence, P/Q ≥ R(p−d, q −d), but P/Q /≥ R(p−d −1, q −d −1) since deg(P) =
p −d > p −d −1. The same argument applies if d = q −deg(Q) ∞ p −deg(P). ≤∇
Corollary 1 y cannot be degenerate for R(p, 0) or R(0, q).

Proof Approximation in R(p, 0) is polynomial so y has a minimax P . y cannot be
degenerate for R(0, q), q > 0 so y either has a minimax 1/Q or it does not. ≤∇
Corollary 2 If p ≥ q, then y for R(p, q) has a minimax P/Q for some degeneracy
d = 0, 1, . . . , q.

Corollary 3 If p < q, then y for R(p, q) has a minimax P/Q for some
d = 0, 1, . . . , p or it does not.

Corollary 4 If R(p1, q1) ∀ R(p2, q2) have minimax errors ∂1 and ∂2, respectively,
then ∂1 ≥ ∂2.

Proof Minimax P/Q coefficients for R(p1, q1) are attainable in R(p2, q2). ≤∇

4 Total Degree Rational Approximation

Total degree rational approximation means d = 0 so it is nondegenerate approxima-
tion. It seeks the best minimax P/Q on full references of p + q + 2 points out of
up to p + q + 1 existing minimax’s from R(p + q, 0), R(p + q − 1, 1), R(p + q −
2, 2), . . . , R(0, p+q) sets. It is effective because existence is guaranteed, degeneracy
is eliminated so degenerate references are not calculated, all approximations share the
same reference, each equioscillating error equation involves the same set of orthog-
onal polynomials up to degree p + q , all equioscillating errors (∂’s) have bounds, it
visits more references, it may yield the minimax P/Q ∅ deg P + deg Q ∞ p + q,
and for free, it can save references with least Ω1 and Ω2 norms that it visits [4].
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Remark 1 There may be P/Q’s with lower error but they are not minimax. For
example, the total degree 1 algorithm applied to {(0,1),(1,0),(2,0)} yields minimax
P/Q = (3 − 2x)/4 ≥ R(1, 0) with minimax error .25 while approximations like
1/(1 + 1000x) ≥ R(0, 1) have maximum errors approaching zero, but none equal to
zero. There is no minimax P/Q ≥ R(0, 1). The total degree 1 result is (3 − 2x)/4.

Definition 1 Xref is a pole free reference if P/Q ≥ R(p, q) equioscillates on Xref

with no root of Q in I (Xref ).

Lemma 1 A pole free reference error is a lower bound on the minimax error.

Proof If Xref is a pole free reference, then its P/Q coefficients only depend on the
values from Xre f and y(Xre f ) so its error is independent of whether or not Q has
a root in I (X). In other words, the error on a pole free reference is the same for
0 ≥ Q(I (X)) or 0 /≥ Q(I (X)); hence, every pole free reference is a contender for
the minimax error pole free reference when it exists. If all pole free references have
0 ≥ Q(I (X)), then there is no pole free reference for a minimax error; hence, no
minimax error. ≤∇
Theorem 2 (Total Degree Theorem) If each set in the pyramid base exhibits a pole
free reference i.e., 0 /≥ Q(I (Xref )), with equioscillating error greater than that of
the set of least minimax error in the base, then the P/Q of least minimax error in
the base has the least minimax error for all sets of lesser total degree.

Proof The degeneracy theorem and its corollaries show that all minimax errors (that
exist) in sets above the base which includes those interleaved between the pyramid
rows are greater than or equal to those in the base. The claim follows from the lemma
since any pole free reference error that exceeds another rational’s minimax error, its
own minimax error also exceeds it. ≤∇
Theorem 3 (Convergence Theorem) The total degree Remes one point exchange
algorithm converges to a minimax rational approximation of total degree p + q in
one of the sets R(p + q, 0), R(p + q − 1, 1), . . . , R(0, p + q).

Proof Polynomial approximation (i.e., for R(p+q, 0)), always exists and the Remes
one point exchange ascent will converge to its minimax error regardless of starting
reference. ≤∇
Remark 2 If other sets have close enough pole free references to their minimax pole
free reference, then the Remes one point exchange method for reference searching
will find their unique minimax error.
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5 Revised Total Degree Algorithm

5.1 Eigenvalue/Eigenvector Computations

See the example eigenvalue triangles below for understanding.

1. Eigenvalues are computed in ascending order down columns right to left.
2. Eigenvalues at equal bounds are computed first without inverse iteration.
3. One guess suffices for inverse iteration to produce an eigenvalue.
4. Eigenvalues are swapped and sorted to maintain ascent down a column.

5.2 Remes One Point Exchange

In the following steps “ref” means “pole free reference.”

1. Start with a ref Xre f .
2. Compute Xref ’s equioscillating error for each total degree rational.
3. Pick the rational ref Xref with smallest equioscillating error greater than the

previous smallest equioscillating error.
4. For this rational find two points in X − Xre f : One with the greatest error and

another with the least error exceeding the equioscillating error.
5. Exchange each point of Xref with the first point until a new ref appears with

greater equioscillating error; then do the same for the second point to get a new
ref Xre f updating all the other rationals with any exchanged refs that increase
their equioscillating errors (unflagging a flagged rational).

6. Remove a minimax rational.
7. Flag the rational in Step 5 if its equioscillating error did not increase.
8. Stop if only minimax and flagged rationals remain; else go to Step 3.

6 Examples

6.1 All Total Degree 2 Equioscillating Errors for |x|

Figures 1 and 2 show 30 graphs of all total degree 2 rational approximations of |x |
on five references of four points in X = {−1,−.5, 0, .5, 1} that are the solutions
to the 30 equioscillating (EO) error equations. Each reference has 1 approximation
with p = 2, q = 0, 2 approximations with p = 1, q = 1, and 3 approximations
with p = 0, q = 2 for a total of six; hence, 30 for five references.

From Figs. 1 and 2 it is easy to find the optimum in this small problem. In general
the number of approximations of total degree m is nCm+2(1 + 2 + · · ·+ m + m + 1)
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Fig. 1 R(2, 0) and R(1, 1) equioscillating and maximum errors on X = {−1. − .5, 0, .5, 1}

where n is the number of points of X . For the example y = y12 below with n = 21
and m = 6, the number of approximations is 5697720 which justifies an algorithm for
finding the optimum in lieu of exhaustive search. Although approximations of lower
total degree are not examined by the total degree algorithm, the optimum over all
such will be in one of the rational function sets of total degree when the termination
condition of the total degree theorem is satisfied.

Because R(1, 1) has a pole in X for each reference, it does not have a minimax
error. By Corollary 2 it has degeneracy d = 1 with minimax error .5 in R(0, 0), the
midpoint of the greatest and least y values over X .
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Fig. 2 R(0, 2) equioscillating (EO) and maximum errors on X = {−1. − .5, 0, .5, 1}

6.2 Steps of the Total Degree 2 Algorithm for |x|

The initial eigenvalue (equioscillation error) bounds that appear outside the triangles
in Step 1 and Step 2 are the ordered values of {s(xi )y(xi )|xi ≥ Xref, 0 ∞ i ∞
nre f − 1} first proved in Kemp [2]. Initial bounds for Xre f 1 = {−1. − .5, 0, 1} and
Xref2 = {−.5, 0, .5, 1} are {1. − .5, 0,−1} and {.5, 0, .5,−1}, respectively. Steps
1 and 2 find R(0, 2)’s errors first using initial bounds, then R(1, 1)’s errors second
using R(0, 2)’s errors for bounds. R(2, 0)’s error is a direct calculation but bounded
by R(1, 1)’s errors.
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Step 1
R(2, 0) R(1, 1) R(0, 2)

.111

3
.222
.222

0
1
2
4
1

0
0
.5
.5
0
0
0
0
0

.220

3
.237
.237

0
1
2
4
5

= ∂=equioscillating error on Xre f , 0 ≥/ Q(I (Xref ))

= exchange point of max or min error ≥ ∂ on X
= max or min error ≥ ∂ on X
= least max or min error ≥ ∂ on X yet met (if -, then
no ∂ ascent from Xre f )

=Xre f ’s nref indices

=index of ∂ in
eigenvalue triangle (if -, then 0 ≥ Q(I (X)))

-1
-.111

1
0
0

-1

-.440
.190

1
0

-1
-.960
-.220

.791
1

-1
-1
-.5
0
1

������������

Step 2
R(2, 0) R(1, 1) R(0, 2)

.125

2
.125
.125

1
2
3
4
1

0
0
.5
.5
0
0
0
0
0

.222

2
.222
.222

1
2
3
4
5

Eigenvalues (equioscillating errors) are inside the
triangle. Initial eigenvalue bounds are outside.
Right values bound left values.

R(2, 0) R(1, 1) R(0, 2)

-1
.125

.5
0
0

-1

-.25
.25
.5
0

-1
-.847
.222

.5

.5

-1
-1
0
.5
.5

������������

The total degree theorem fails because R(1, 1) does not have a pole free reference
with error greater than .125 at Step 2. Nevertheless, .125 is the minimax error for
all degrees less than or equal to 2 because |x | has degeneracy d = 1 for R(1, 1) and
minimax .5 since, all 5 references are visited by the total degree algorithm. If X had
more than 5 points and the result of the algorithm were the same as that at Step 2,
then it is uncertain that |x | is degenerate.

However, if a point, say (1.5,±.0001), is added to {X, y(X)} to get a y+(x) = |x |
on X which nearly equioscillates four times with error ⊂ .5 on X ◦ {1.5}, then the
total degree algorithm produces a bounded rational function in R(1, 1) for y+(x)

with minimax error ⊂ .5 on I (X ◦ {1.5}). This rational function restricted to I (X)

has error ⊂ .5 greater than the minimax errors associated with R(2, 0) and R(0, 2).
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Moreover, it can be adjusted to come as close to the minimax error of .5 as desired
but not with 4 equioscillations on X . There is no such rational function in R(1, 1)

with 4 equioscillations on X ; therefore, |x | for R(1, 1) has degeneracy d = 1.

6.3 Total Degree Approximations for y = y12 from Kemp [3]

Kemp [3] uses y12(x) from Kaufman [1] which notes that y12(x) on X = {0, .05, .1,

. . . , 95., 1} is designed to give degenerate approximations because on the five points
with indices {0 5 10 15 20}, y12(x) − 1/1 + x equioscillates with minimax error .5.
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The starting references for each total degree rational approximation from 1 to 6 use
uniformly distributed indices: {0 10 20}, {0 7 13 20}, {0 5 10 15 20}, {0 4 8 12 16
20}, {0 3 7 10 13 17 20}, and {0 3 6 9 11 14 17 10}, respectively. The total degree
theorem’s pole free reference error condition is satisfied in each case so the total
degree minimax errors are also the best for all lesser degrees than the total degree.
They are .7143, .5, .5, .5, .2685, .2674, and .1019, for total degrees from 0 to 6,
respectively.

From the two pyramid of degeneracy sets, there are apparently seven d = 1
degeneracies: R(5, 1) → R(4, 0), R(3, 1) → R(2, 0), R(2, 2) → R(1, 1), R(1, 3)

→ R(0, 2), R(1, 5) → R(0, 4), R(3, 2) → R(2, 1), and R(2, 3) → R(1, 2), and
one d = 2 degeneracy R(3, 3) → R(2, 2) → R(1, 1). In fact, these are true degen-
eracies.

For example, if three equally spaced points are added to X for R(3, 3) with
ordinates 1/1+x ⇒ .5+ .0001 or 1/1+x ⇒ .5− .0001, then the total degree algorithm
produces a bounded rational function in R(3, 3), with minimax error ⊂ .5 on the
larger set with eight equioscillations. Note that only three points are needed because
y12(x) actually equioscillates five times for R(1, 1). Thus y12(x) has degeneracy
d = 2 for R(3, 3). To check degeneracy d = 1 for y12(x) in R(2, 2), add just one
point to obtain the required six equioscillations. Make similar calculations for the
other degeneracy d = 1 cases. In the case of R(5, 1), the minimax rational function in
R(4, 0) with error .2685 serves as the basis curve around which y12(x) equioscillates,
not 1/1 + x . Add two points to X to check degeneracy for y12(x) approximated by
R(5, 1).

The upshot is that the total degree algorithm output only hints at degeneracy. When
the total degree algorithm fails to find a minimax for a rational set, one can check
for degeneracy by finding a minimax of lower degree. With this minimax P/Q, add
enough points to X so that P/Q equioscillates as if it were nondegenerate. If the total
degree algorithm produces approximately the same minimax error for this larger X ,
then there is a degeneracy d.

References

1. Kaufman Jr, E.H., Leeming, D.J., Taylor, G.D.: A combined Remes-differential correction algo-
rithm for rational approximation: experimental results. Comp. Math. Appl. 6(2), 155–160 (1980)

2. Kemp, L.F.: Rational approximation and symmetric eigenvalue bounds. In: Chui, C., Schumaker,
L., Ward, J. (eds.) Approximation Theory V, pp. 415–417. Academic Press, New York (1986)

3. Kemp, L.F.: Non-degenerate rational approximation. In: Chui, C., Schumaker, L., Stöckler,
J. (eds.) Approximation Theory X, pp. 246–266. Vanderbilt University Press, Nashville, TN
(2002). Available at https://www.researchgate.net/profile/L_Franklin_Kemp/publications

4. Powell, M.J.D.: Approximation Theory and Methods, pp. 7–8. Cambridge University Press,
New York (1981)

https://www.researchgate.net/profile/L_Franklin_Kemp/publications


Multivariate C1-Continuous Splines
on the Alfeld Split of a Simplex

Alexei Kolesnikov and Tatyana Sorokina

Abstract Using algebraic geometry methods and Bernstein-Bézier techniques, we
find the dimension of C1-continuous splines on the Alfeld split of a simplex in R

n

and describe a minimal determining set for this space.

Keywords Multivariate spline · Minimal determining set · Alfeld split

1 Introduction

Let Pn denote the set of polynomials in n variables over R. In approximation theory,
a spline is a piecewise-polynomial function defined on a polyhedral domain Ω ∈ R

n

that belongs to a certain smoothness class. More precisely, for a fixed partition ∂ of
the domain Ω into a finite number of n-dimensional polyhedral subsets α , a spline
space is defined with respect to that partition:

Sr
d(∂) = {s ≥ Cr (Ω) : s|α ≥ Pn

d for all α ≥ ∂}.

We use the following notation:

Sr (∂) :=
⋃

d∩0

Sr
d , S(∂) :=

⋃

r∩0

Sr (∂).
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Bernstein-Bézier techniques have become a standard tool used to analyze multivariate
splines. We assume that the reader is familiar with the concepts of domain points,
rings, disks, determining sets, and smoothness conditions, see [2, 3, 7].

To explain the approach of algebraic geometry, let us temporarily suspend the
smoothness assumption. A piecewise polynomial function can be written in the form
s = ∑

α≥∂ pα ·εα , where εα is the characteristic function of the set α and pα ≥ Pn .
Thus, the set S(∂) can be naturally identified with a subset of the following set:

Rn(∂) :=
{
{(α, pα )}α≥∂ : pα ≥ Pn

}
.

The set Rn(∂) has the natural structure of a module over the ring Pn : the sum and
scalar multiplication are defined as follows:

{(α, pα )}α≥∂ + {(α, qα )}α≥∂ := {(α, pα + qα )}α≥∂,

p · {(α, pα )}α≥∂ := {(α, p · pα )}α≥∂.

Let Rr
n(∂) be the subset of Rn(∂) that corresponds to Sr (∂). This subset is

easily seen to be a submodule of Rn(∂). Let α and α → be adjacent regions, that
is, the regions sharing an (n − 1)-dimensional face or facet α ∞ α → located on the
hyperplane with the equation lα∞α → = 0. Then the smoothness condition of order r
across the facet is given by the smoothness equation

pα − pα → = lr+1
α∞α → · qα,α →

for some polynomial qα,α → . The key idea behind our approach can be phrased as
follows: if two different partitions of Ω give rise to the same set of equations, then
the spaces of splines of degree ≤ d for the two partitions are isomorphic. For a more
detailed treatment of spline modules we refer the reader to [5, 8].

The paper is organized as follows. In Sect. 2 we introduce the Alfeld split An of
a simplex T n in R

n , and the associated Alfeld pyramid Ân . We prove that the space
of splines Sr

d(An) on the Alfeld split is isomorphic to the space of splines Sr
d( Ân) on

the Alfeld pyramid. In Sect. 3, we construct a determining set for S1
d(An). In Sect. 4,

we find the dimension of S1
d( Ân) using induction on the spatial dimension n. Since

S1
d( Ân) and S1

d(An) are isomorphic they have the same dimension. We conclude the
paper with several remarks in Sect. 5.

2 Splines on the Alfeld Split and Pyramid

Let T n := [v1, . . . , vn+1] be a nondegenerate simplex in R
n , and An be its Alfeld

split around an interior point v0 into n + 1 subsimplices, see Figs. 1 and 2 for
the two-dimensional case. We note that the two-dimensional Alfeld split coincides
with the Clough–Tocher split, and some authors refer to the n-dimensional Alfeld
split as the Clough–Tocher split as well. This is inaccurate since there exists an
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Fig. 1 Simplex T 2

v1

v2

v3

Fig. 2 Alfeld split A2

v0

v1

v2

v3

n-dimensional Clough–Tocher split, different from the Alfeld split, see [9] and
references therein. Each subsimplex in the Alfeld split is a convex hull of a facet
of T n and v0. We index the subsimplices of the split as follows: The simplex
αi := [v0, . . . , vi−1, vi+1, . . . , vn+1] is the unique n-simplex opposite vi . The com-
mon facet of the simplices αi and α j , i < j , will be denoted Δi, j . We may assume
that v0 is the origin, v1 = −∑n

i=1 ei , and vi+1 = ei for i = 1, . . . , n, where ei is
the standard basis vector in R

n . It is immediate to check that for 1 ≤ i ≤ n the facet
Δ1,i+1 lies on the hyperplane xi = 0. For a pair (i, j), where 1 ≤ i ≤ n − 1 and
i + 1 ≤ j ≤ n, the facet Δi+1, j+1 lies on the hyperplane xi − x j = 0.

In this section, we show that the space of splines of a given polynomial degree d
and smoothness r on the Alfeld split is isomorphic to the space of splines over a
different partition of T n that we call the Alfeld pyramid. In the rest of the paper,
we compute the dimension of the spline space on the Alfeld pyramid split using
the Bernstein-Bézier methods and induction on the spatial dimension n. Given the
Alfeld split An described above, the associated Alfeld pyramid Ân is the partition of
T n into n simplices {̂αi }n+1

i=2 and one non-convex polytope α̂1. For i = 2, . . . , n + 1,
the simplex α̂i has the vertices

{v0, u1, v2, . . . , vi−1, vi+1, . . . , vn+1}, where u1 := −v1

n
, (1)

and the polytope α̂1 is T n\(R+)n . Figure 3 shows the Alfeld pyramid split in the
two-dimensional case. Denoting by Δ̂i, j the (n − 1)-simplex which is a common
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Fig. 3 Alfeld pyramid Â2

u1

v0

v1

v2

v3

Fig. 4 Pyramid P2

u 1

v0

v2

v3

facet of α̂i and α̂ j , we note that for each pair (i, j), the facets Δi, j and Δ̂i, j lie on
the same hyperplane. This is the key property connecting the Alfeld split An and the
Alfeld pyramid Ân . We denote by Pn the collection of simplices α̂i , i = 2, . . . , n+1.
This collection is a subset of the Alfeld pyramid, see Fig. 4 for the two-dimensional
case.

Theorem 1 For all n ∩ 2, and for all d, r ∩ 0, the spline spaces Sr
d(An) and

Sr
d( Ân) are isomorphic. In particular,

dim Sr
d(An) = dim Sr

d( Ân).

Proof Following [4] or [8], we treat the spline module Rr (An) as the projection onto
the first n + 1 coordinates of the syzygy module of the system of column vectors in
the following matrix:













ψ(1,2),1 . . . ψ(1,2),n+1 xr+1
1 0 . . . . . . . . . 0

...
. . .

...
...

. . .
...

...
. . .

...

ψ(1,n+1),1 . . . ψ(1,n+1),n+1 0 . . . xr+1
n 0 . . . 0

ψ(2,3),1 . . . ψ(2,3),n+1 0 . . . 0 (x1 − x2)
r+1 . . . 0

...
. . .

...
...

...
. . .

. . .
...

ψ(n,n+1),1 . . . ψ(n,n+1),n+1 0 . . . 0 . . . 0 (xn − xn+1)
r+1













,
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where for 1 ≤ i < j ≤ n + 1 and 1 ≤ k ≤ n + 1,

ψ(i, j),k =

⎢


⎥

0, if k /≥ {i, j},
(−1)k+ j , if k = i,

(−1)i+k+1, if k = j.

It remains to note that the matrix associated with the Alfeld pyramid Ân is exactly
the same as the one above. Thus the modules Rr (An) and Rr ( Ân) are equal. Since

Sr
d(An) ∇= {(p1, . . . , pn+1) ≥ Rr (An)| deg(pi ) ≤ d ∀i = 1, . . . , n + 1},

and

Sr
d( Ân) ∇= {(p1, . . . , pn+1) ≥ Rr ( Ân)| deg(pi ) ≤ d ∀i = 1, . . . , n + 1},

the result follows. ∀∅

3 A Determining Set for S1
d(An)

We recall that given any simplex T n in R
n , every polynomial p of degree ≤ d can

be written uniquely in the form

p =
⎫

i1+···+in+1=d

ci1...in+1 Bd
i1...in+1

, (2)

where Bd
i1...in+1

are the Bernstein basis polynomials associated with T n . As usual,
we call the ci1...in+1 the B-coefficients of p, and define the associated domain
point as

δd
i1...in+1

:= (i1v1 + · · · + in+1vn+1)/d, i1 + · · · + in+1 = d. (3)

The point δi1...in+1 is at distance l from the face [v1, . . . , vk] if i1 + · · · + ik ∩ d − l.
A ring Rl(v0) of radius l around v0 is the set of domain points at distance l from
v0. The disk Dl(v0) is the union of rings of radius ≤ l around v0. Distances, rings,
and disks associated with other faces of T n are defined similarly. Given ∂, every
spline s ≥ S0

d (∂) can be associated with the set of B-coefficients of its polyno-
mial pieces, and with the set Dd,∂ of the domain points corresponding to those
coefficients.

We begin this section with two simple combinatorial facts. The proofs are based
on the tools from the Bernstein-Bézier analysis in order to facilitate the transition to
the domain point count in the subsequent theorems.
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Lemma 1 For positive integers n and m, let

In
m := {(i1, . . . , in+1) ≥ Z

n+1 | i j ∩ 0, ∀ j ≥ {1, . . . , n + 1},
n+1⎫

j=1

i j = m},

Mn
m := {(i1, . . . , in+1) ≥ In

m | ⊂ a unique j ≥ {1, . . . , n + 1} with i j = 0}.

Then |Mn
m | = (n + 1)

⎬m−1
n−1

⎭
.

Proof Fix j ≥ {1, . . . , n + 1} and set i j = 0. Then |Mn
m | = (n + 1)|J n

m |, where

J n
m := {(i1, . . . , in) ≥ Z

n| ∀ j ≥ {1, . . . , n}, i j > 0, i1 + · · · + in = m}.

In the Bernstein-Bézier analysis, |J n
m | is the number of the domain points of a

polynomial of degree ≤ m in (n −1) variables that are strictly interior to the (n −1)-
simplex. This number is

⎬m−1
n−1

⎭
. Thus, |Mn

m | = (n + 1)
⎬m−1

n−1

⎭
. ∀∅

Lemma 2 Let In
m be as in Lemma 1. Suppose

N n
m := {(i1, . . . , in+1) ≥ In

m | ⊂ j ≥ {1, . . . , n + 1} such that i j = 0}.

Then |N n
m | = ⎬m+n

n

⎭ − ⎬m−1
n

⎭
.

Proof In the Bernstein-Bézier analysis, this is the number of the domain points of a
polynomial of degree ≤ m in n variables that are on the boundary of the n-simplex.
The easiest way to compute it is to subtract the number of the domain points that
are strictly interior to the n-simplex from the total number of the domain points of a
polynomial of degree ≤ m in n variables in the n-simplex. ∀∅

Consider a spline s ≥ S1
d(An). The set of all B-coefficients associated with this

spline is the union of (n + 1) sets of B-coefficients associated with the polynomials
s|αi , i = 1, . . . , n + 1, on each subsimplex. Accordingly, the set of all the domain
points associated with s is the union of the domain points for each of the s|αi in αi .
One of the key ideas in the argument below is to organize the domain points as

D :=
d⋃

m=0

Rm(v0) =
d⋃

m=0

δm
I , I ≥ N n

m,

where each δm
I is as in (3), Rm(v0) is the ring of radius m around v0, and N n

m is
as in Lemma 2. Indeed, for any 0 ≤ m ≤ d, the ring Rm(v0) of radius m around
v0 is exactly the set of domain points on the boundary of an n-simplex T n

m :=
[mv1/d, . . . , mvn+1/d]. Note that these domain points are the boundary domain
points associated with a single polynomial of degree m defined on the simplex T n

m .
This notation establishes a one-to-one correspondence between each domain point
and a pair (m, I ), where m ≥ {0, . . . , d} and I ≥ N n

m .
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We need two basic facts from the Bernstein-Bézier analysis.

Lemma 3 Let s ≥ S1
d(An), and let In

m be as in Lemma 1. Suppose

Fn
m :={(i1, . . . , in+1) ≥ In

m | ⊂ j, k ≥ {1, . . . , n + 1}
such that j ◦= k and i j = ik = 0}.

Then for each 0 ≤ m < d, the coefficient cm
I ≥ Rm(v0), where I ≥ Fn

m, can be
determined as a linear combination L of the following n + 1 coefficients located on
Rm+1(v0)

cm
i1,...,in+1

= L(cm+1
i1+1,...,in+1

, cm+1
i1,i2+1,...,in+1

, . . . , cm+1
i1,...,in+1+1). (4)

Proof This is a rewrite of the usual smoothness conditions across interior faces of
An . Indeed, without loss of generality assume i1 = i2 = · · · = ik = 0, k ∩ 2. Then
δm

I lies on the interior face Fk := [v0, vk+1, . . . , vn+1] shared by k subsimplices in
An of the form

α j = [v0, v1, . . . , v j−1, v j+1, . . . , vk, vk+1, . . . , vn+1], j = 1, . . . , k.

Then, we apply C1 smoothness conditions across Fk to any two such subsimplices.
Each smoothness functional combines cm

I with the n + 1 coefficients associated
with the domain points on T n

m+1 that are located at distance one from δm
I in a linear

equation and yields (4). ∀∅
The proof of the next result can be found in Theorem 6.3 of [10].

Lemma 4 Let s ≥ S1
d(An). Then s ≥ Cn(v0).

Combining Lemma 4 and Theorem 1 we obtain the following:

Lemma 5 Let s ≥ S1
d( Ân). Then s ≥ Cn(v0).

We note that in both lemmas above, Cn(v0) is understood in the sense of equality
of all partial derivatives of order up to n at v0. We are now ready to construct a
determining set for S1

d(An) as in Definition 5.12 of [7], that is, a subset G of Dd,∂

such that if s ≥ S1
d(An) and the B-coefficients corresponding to all domain points in

G vanish, then s vanishes as well. Note that at this point, we do not prove that this
determining set is minimal.

Theorem 2 Let s ≥ S1
d(An). Then

DS1
d(An) := {δd

I , I ≥ N n
d } ∪ {δm

I , j ≥ {n, . . . , d − 1}, I ≥ Mn
m},

is a determining set and |DS1
d(An)| = ⎬d+n

n

⎭+n
⎬d−1

n

⎭
. This set consists of all domain

points on the exterior of T n, along with the domain points strictly interior to each
boundary facet of every simplex T n

m for m = d − 1, . . . , n.
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Proof It suffices to show that if all coefficients of s corresponding to DS1
d(An) are

set to zero, then s ⇒ 0. We start with setting to zero all the coefficients associated
with {δd

I , I ≥ N n
d }, or, equivalently, on Rd(v0). From Lemma 2 we obtain

|{δd
I , I ≥ N n

d }| =
⎛

d + n

n

⎝

−
⎛

d − 1

n

⎝

.

Next we move to Rd−1(v0). All indices I on this ring have two properties: the number
of elements in I is d − 1, and at least one entry in I is zero. According to Lemma 3,
each coefficient corresponding to I with two or more zero entries vanishes. Thus,
we only need to set to zero the coefficients corresponding to I with precisely one
zero entry. We repeat this process for each m between d − 1 and n. That is, once
Rm+1(v0) is populated with zeros, we move to Rm(v0), where all indices I have two
properties: the number of elements in I is m, and at least one entry in I is zero.
According to Lemma 3, each coefficient corresponding to I with two or more zero
entries vanishes. Thus, we only need to set to zero the coefficients corresponding to
I with precisely one zero entry. From Lemma 1 we obtain

|{δm
I , I ≥ Mn

m}| = (n + 1)

⎛
m − 1

n − 1

⎝

, m ≥ {d − 1, d − 2 . . . , n}.

When we populate Rn(v0) with zeros, we note that by Lemma 4, the disk Dn(v0)

can be considered as a single simplex since the coefficients of s corresponding to this
disk form a polynomial .of degree n. We note that from Lemma 2, the total number
of domain points on Rn(v0) is

⎬2n
n

⎭
which is precisely the dimension of polynomials

degree ≤ n in n variables. Moreover, this polynomial of degree n vanishes on all n+1
faces of the simplex T n

n , and thus it is a zero polynomial. Therefore, all coefficients
of s in Dn(v0) vanish. We now do the final count

|DS1
d(An)| =

⎛
d + n

n

⎝

−
⎛

d − 1

n

⎝

+ (n + 1)

d−1⎫

m=n

⎛
m − 1

n − 1

⎝

=
⎛

d + n

n

⎝

−
⎛

d − 1

n

⎝

+ (n + 1)

⎛
d − 1

n

⎝

=
⎛

d + n

n

⎝

+ n

⎛
d − 1

n

⎝

.

The proof is complete. We note that if the dimension of S1
d(An) is known to be

|DS1
d(An)|, then DS1

d(An) would be a minimal determining set. ∀∅

4 The Main Result

In this section, we compute the dimension of C1-continuous splines defined over
the Alfeld pyramid Ân in R

n . By Theorem 1 this is equal to the dimension of C1-
continuous splines over the Alfeld split An of a single simplex in R

n . We note that
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from Theorem 9.3 in [7] it follows that dim S1
d(A2) = ⎬d+2

2

⎭+ 2
⎬d−1

2

⎭
. In Remark 6,

we illustrate the idea of our proof for n = 2 since this is the only case with clear
visual illustration.

Theorem 3 For all integers d ∩ 0 and n ∩ 1,

dim S1
d(An) =

⎛
d + n

n

⎝

+ n

⎛
d − 1

n

⎝

.

Proof We use induction on n. Since A1 is the split of a line segment into two
subsegments, it is immediate that dim S1

d(A1) = 2d.

For n ∩ 2, in view of Theorem 1 we can consider S1
d( Ân) instead of S1

d(An).

The dimension of S1
d( Ân) is equal to the dimension of polynomials of degree ≤ d in

n variables
⎬d+n

n

⎭
plus the dimension of

S0 := {s ≥ S1
d( Ân)| s ⇒ 0 everywhere outside of the pyramid Pn}.

We treat S0 as a subspace of S1
d(Pn). The plan is to use the induction hypothesis to

compute the dimension of S1
d(Pn) and then subtract the number of domain points

associated with vanishing B-coefficients due to the condition s ⇒ 0 outside of Pn .
We recall that the pyramid Pn is the split of the simplex [v0, v2, . . . , vn+1] into n
subsimplices with the split point u1 := −v1/n, as in (1). The domain points inside
Pn are located on the union of rings Ri (v0), i = 0, . . . , d. These rings lie on parallel
(n − 1)-simplices T n−1

i := [iv2/d, . . . , ivn+1/d]. Each simplex T n−1
i is partitioned

as (n − 1)-dimensional Alfeld split Ai
n−1 by the point iu1/d. Therefore, the domain

points in the pyramid Pn can be considered as the domain points for the Alfeld
splits Ai

n−1 of T n−1
i . Moreover, since all T n−1

i are parallel in R
n , all C1 smoothness

conditions across interior faces of Pn are those for the (n − 1)-dimensional Alfeld
split. Thus, using the induction hypothesis on Ai

n−1 , we obtain

dim S1
d(Pn) =

d⎫

i=0

dim S1
i (Ai

n−1) =
d⎫

i=0

⎞⎛
i + n − 1

n − 1

⎝

+ (n − 1)

⎛
i − 1

n − 1

⎝⎠

.

Moreover, the induction hypothesis along with Theorem 2 provides minimal
determining sets DS1

i (Ai
n−1). In order to find the dimension of S0, we need to know

the number Ni of points in DS1
i (Ai

n−1) that have associated vanishing B-coefficients
after joining the zero function outside of Pn . Then

dim S0 =
d⎫

i=0

dim (S1
i (Ai

n−1) − Ni ). (5)

We now compute Ni . Due to the supersmoothness result of Lemma 5, any s ≥ S0 is
Cn(v0). Thus,
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Ni =
⎛

i + n − 1

n − 1

⎝

= dim S1
i (Ai

n−1) for 0 ≤ i ≤ n.

For each i > n, the C1-smoothness conditions across the boundary of Pn affect the
coefficients associated with the domain points located on the boundary and one layer
inside of Pn . More precisely, they are located in the rings Ri (iu1/d) and Ri−1(iu1/d).
They form a subset of DS1

i (Ai
n−1). Lemma 1, Lemma 2, and Theorem 2 provide the

complete description and the number of such domain points:

DS1
i (Ai

n−1) ∞ Ri (iu1/d) = {δ i
I , I ≥ N n−1

i },
DS1

i (Ai
n−1) ∞ Ri−1(iu1/d) = {δ i−1

I , I ≥ Mn−1
i−1 },

and

Ni =
⎛

i + n − 1

n − 1

⎝

−
⎛

i − 1

n − 1

⎝

+ n

⎛
i − 2

n − 2

⎝

. (6)

Substituting (6) into (5) we obtain

dim S0 = n
d⎫

i=n+1

⎞⎛
i − 1

n − 1

⎝

−
⎛

i − 2

n − 2

⎝⎠

= n
d⎫

i=n+1

⎛
i − 2

n − 1

⎝

= n
d−n−1⎫

i=0

⎛
i + n − 1

i

⎝

= n

⎛
d − 1

n

⎝

.

Finally,

dim S1
d(An) = dim S1

d( Ân) =
⎛

d + n

n

⎝

+ dim S0 =
⎛

d + n

n

⎝

+ n

⎛
d − 1

n

⎝

.

The proof is now complete. ∀∅

5 Remarks

Remark 1 Theorem 2 combined with Theorem 3 provides a minimal determining
set. This set can be used directly to construct C1-continuous macro-elements based
on the Alfeld split of a simplex. However, the polynomial degree d of such macro-
elements is at least 2n−1 + 1. Thus for n ∩ 3, without additional supersmoothness
conditions, C1-continuous macro-elements on the Alfeld split of a simplex have
excessive number of free parameters and are hard to implement. For the case n = 3,
additional smoothness is introduced in [1].
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Remark 2 The work on finding dimensions of spline spaces Sr
d (An) for higher values

of r is in progress. The main difficulty is that the analog of Lemma 4 for r > 1 is
not known. The lower bound for the supersmoothness at v0 can be found in [10], but
this bound is not exact. The supersmoothness at the split point is one of the main
ingredients of the current proof of Theorem 3.

Remark 3 The conjecture on the dimension of Sr
d(An) for all values of n, r , and d

can be found in [6]. Our result in Theorem 3 proves this conjecture for r = 1, for all
values of n and d.

Remark 4 There has been a considerable amount of work done with bivariate and
trivariate macro-elements based on the Alfeld splits of a triangle and a tetrahedron,
respectively. Such macro-element spaces can have dimension different from our
result due to additional conditions imposed on them, see [1, 7] and references therein.

Remark 5 The minimal determining sets of Theorem 2 for n = 2 and n = 3 can be
checked directly using P. Alfeld’s software available on http://www.math.utah.edu/
~pa. The software computes dimension of spline spaces for fixed values of d as well.

Remark 6 In this remark we illustrate the idea of the proof of Theorem 3 for n = 2.
We consider S1

d( Â2) instead of S1
d(A2), and refer to Figs. 2 and 3 to observe that

dim S1
d( Â2) =

⎛
d + 2

2

⎝

+ dim S0, where

S0 := {s ≥ S1
d( Â2)| s ⇒ 0 everywhere outside of [v0, v2, v3]}.

The split of the triangle [v0, v2, v3] into two subtriangles, [v0, v2, u1] and [v0, v3, u1],
forms the pyramid P2. The domain points inside P2 are located on the parallel line
segments T 1

i := [iv2/d, iv3/d] partitioned into two subsegments [iv2/d, iu1/d] and
[iv3/d, iu1/d] forming the Alfeld splits Ai

1. In Fig. 5, there are five segments T 1
i split

in half. Since all T 1
i are parallel in R

2, all C1-smoothness conditions across [v0, u1]
are those for Ai

1. Each minimal determining set DS1
i (Ai

1), i = 1, . . . , d, is formed
by all domain points on [iv2/d, iv3/d] except iu1/d. The minimal determining set
for DS1

i (A0
1) is just v0. In order to find the dimension of S0, we need to know Ni

the number of points in DS1
i (Ai

1) that have associated vanishing coefficients after
joining the zero function outside of [v0, v2, v3]. Then

dim S0 =
d⎫

i=0

dim (S1
i (Ai

1) − Ni ).

Due to supersmoothness two at v0, the B-coefficients associated with the domain
points in D2(v0) marked as black dots in Fig. 5 vanish. Thus N0 = 1, N1 = 2, and
N2 = 4. For each i > 2, the C1-smoothness conditions across [v0, v2], and [v0, v3]
affect the coefficients associated with the domain points on [v0, v2] ∪ [v0, v3], and

http://www.math.utah.edu/~pa
http://www.math.utah.edu/~pa


294 A. Kolesnikov and T. Sorokina

D2 (v )0

R2 (3u  /5) and R   (3u /5 ) 1           13

R3 (4u  /5 ) and R   (4u /5 )    1     14

R4 (u  ) and R   (u )1 15v0 v2

v3

u 1

Fig. 5 Domain points in P2 for S1
5 ( Â2)

one layer inside of P2. For example, in Fig. 5, the coefficients associated with the
stars, the dots in circles, and the crosses all vanish due to C1 smoothness conditions
across [v0, v2] and [v0, v3]. Therefore, Ni = 4 for i > 2, and

dim S1
d( Â2) =

⎛
d + 2

2

⎝

+
d⎫

i=3

(2i − 4) =
⎛

d + 2

2

⎝

+ 2

⎛
d − 1

2

⎝

.
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On Convergence of Singular Integral
Operators with Radial Kernels

Sevilay Kırcı Serenbay, Özge Dalmanoğlu and Ertan İbikli

Abstract In this paper, we prove the pointwise convergence of the operator
L( f ;x, y;Ω) to the function f (x0, y0), as (x, y;Ω) tends to (x0, y0;Ω0) by the three
parameter family of singular integral operators in L1(Q1), where Q1 is a closed,
semi-closed, or open rectangular region < −a, a > × < −b, b >. Here, the kernel
function is radial and we take the point(x0, y0) as a μ-generalized Lebesgue point
of f .

Keywords Singular operators · Radial kernel · Lebesgue point · Pointwise conver-
gence

1 Introduction and Preliminaries

In papers [1] and [6], Gadjiev and Taberski studied the pointwise convergence of
integrable functions in L1(−∂, ∂) space by a two parameter family of convolution
type singular integral operators of the form

U ( f ; x, Ω) =
∂∫

−∂

f (t)K (t − x, Ω)dt, x ∈ (−∂, ∂). (1)

Here, the kernel function K (t, Ω) is defined for all t and Ω ∈ α (where α is a
given set of numbers with accumulation point Ω0), 2∂ -periodic, even, and measurable
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with respect to t at each Ω ∈ α. The pointwise convergence of the operator (1) was
investigated at the point x0, when x0 is a continuous point, Lebesgue point, or a
generalized Lebesgue point of the function f in L1(−∂, ∂).

In [3] Karsli improved the results of Gadjiev and Taberski by considering the
singular integral operator of the form

T ( f ; x, Ω) =
b∫

a

f (t)K (t − x, Ω)dt x ∈ (a, b). (2)

Here, f belongs to the function space L1(a, b) and the kernel function K (t, Ω) of
T ( f ; x, Ω) does not have to be 2∂ -periodic, positive, or even. So, Karsli extended
the results found in [1] and [6]. By taking x0 a μ−generalized Lebesgue point of
f , he showed the pointwise convergence of T ( f ; x, Ω) to f (x0) as (x, Ω) tends to
(x0, Ω0).

In papers [5] and [7], the pointwise convergence of integrable functions in L1(P)

was investigated by a three-parameter family of convolution type singular integral
operators of the form

U ( f ; x, y; Ω) =
∫

P

f (s, t)K (s − x, t − x; Ω)dsdt (x, y) ∈ P. (3)

(Here, P denotes the region [−a, a] × [−b, b] and [−∂, ∂ ] × [−∂, ∂ ],
respectively.)

In [8] Yilmaz et al. investigated the pointwise convergence of the
integral operator L( f, x, y; Ω) to f (x0,y0, Ω0) in the space L1(D) (space of func-
tions 2∂ periodic in each variable separately and Lebesgue integrable in the square
D =< −∂, ∂ > × < −∂, ∂ > where < −∂, ∂ > × < −∂, ∂ > is an arbitrary
closed, semi-closed, or open square region), by the three-parameter family of integral
operators with radial kernel of the form

L( f ; x, y; Ω) =
∂∫

−∂

∂∫

−∂

f (s, t)K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt (x, y) ∈ D.

(4)
Here, (x0, y0) is taken as a generalized Lebesgue point of the function f (s, t).
In this work, we have studied the pointwise convergence of the integral operator

L≥( f ; x, y; Ω) =
b∫

−b

a∫

−a

f (s, t)K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt (5)

to the function f (x0,y0) in L1(Q1) (space of Lebesque integrable functions in Q1)
by the three parameter family of singular integral operators with radial kernel. Here,
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(x0, y0) is a μ−generalized Lebesgue point of the function f (s, t), Ω ∈ α ∩ R and
the region is extended to a rectangle Q1 =< −a, a > × < −b, b > (< −a, a > is
an arbitrary interval in R such that [−a, a], [−a, a), (−a, a], or (−a, a) ).

Now, we will give some definitions and lemmas that will be used in the next
section.

Definition 1 A function ε ∈ L1(Q1)
(
Q1 ∩ R

2
)

is said to be radial, if there exists

a function Δ
(→

s2 + t2
)

, defined on 0 ∞ →
s2 + t2 < ≤ , such that ε (s, t) =

Δ
(→

s2 + t2
)

a.e. [4].

Definition 2 (Class A)

We take a family Δ =
(

K
(→

s2 + t2; Ω
))

Ω∈α
of functions K

(→
s2 + t2; Ω

)
: R2 ×

α ∇ R. We will say that the function K
(→

s2 + t2; Ω
)

belongs to class A, if the

following conditions are satisfied:

(a) As a function of (s, t), K
(→

s2 + t2; Ω
)

is defined on R
2 and integrable for each

fixed Ω ∈ α (α is a given set of numbers with accumulation point Ω0).

(b) lim
(x,y;Ω)∇(x0,y0;Ω0)

∫ ≤

−≤

∫ ≤

−≤
K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt = 1.

(c) There exists a ψ0 > 0 such that the function K
(→

s2 + t2; Ω
)

takes its

maximum value at ψ0 in the regionR2\
{
(s, t) : →

s2 + t2 ∞ ψ0

}
for each Ω ∈ α.

(d) lim
Ω∇Ω0

∫ ∫

R2\{(s,t):→s2+t2∞ψ}
K
(√

s2 + t2; Ω
)

dsdt = 0 for every ψ > 0.

(e) lim
(x,y;Ω)∇(x0,y0;Ω0)

sup
ψ∞

→
(s−x)2+(t−y)2

K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt = 0 for

every ψ > 0.

In order to prove our main result, we shall also need the following Lemmas and
remarks:

Lemma 1 Let 1 ∞ p < ≤. If the kernel K
(→

s2 + t2; Ω
)

belongs to class A, then

L≥( f ; x, y; Ω) defines a continuous transformation over L p(Q1).

Proof One can find the proof of similar Lemma in [9].

Lemma 2 [2] If g(x, y) is continuous over the rectangle M : (a ∞ x ∞ b; c ∞
y ∞ d) and δ(x, y) is of bounded variation on M, then g ∈ RS(δ).

Lemma 3 [2] Assume that g ∈ RS(δ) on M and δ is of bounded variation on M.
Then, ⎢

⎢
⎢
⎢
⎢
⎢

b∫

a

d∫

c

g(x, y)dx dyδ(x, y)

⎢
⎢
⎢
⎢
⎢
⎢
∞ sup

(x,y)∈M
|g(x, y)| .

∨

M

(δ). (6)
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Remark 1 We denote f̃ ∈ L1(R2) as

f̃ (s, t) =
{

f (s, t), (s, t) ∈ Q1;
0 , (s, t) /∈ Q1.

(7)

2 Main Result

We now give our main result with the following theorem:

Theorem 1 Suppose that the kernel function K
(→

s2 + t2; Ω
)

belongs to class A.

Let (x0, y0) be a μ−generalized Lebesgue point of the function f (x, y) ∈ L1(Q1),

i.e., the condition

lim
(h,r)∇(0,0)

1

μ1 (h) μ2 (r)

h∫

0

r∫

0

| f (s + x0, t + y0) − f (x0, y0)| dsdt = 0 (8)

is satisfied, where μ1 (s) and μ2 (t) are defined on < −a, a > and < −b, b >,
respectively. μ1 (s) and μ2 (t) are also increasing, absolutely continuous, and
μ1 (0) = μ2 (0) = 0.

If (x, y; Ω) tends to (x0, y0; Ω0) on any set Z on which the functions

x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)
⎢
⎢μ′

1 (x0 − s)
⎢
⎢ ds

+ 2K (|y0 − ψ − y| ; Ω)μ1 (|x0 − x |)
(9)

y0∫

y0−ψ

K

(√

(x0 − ψ − x)2 + (t − y)2; Ω

)
⎢
⎢μ′

2 (y0 − t)
⎢
⎢ dt

+ 2K (|x0 − ψ − x | ; Ω) μ2 (|y0 − y|)
(10)

and
μ1(x0 − s) μ2(y0 − t) (11)

are bounded, then

lim
(x,y;Ω)∇(x0,y0;Ω0)

L≥( f ; x, y; Ω) = f (x0, y0) . (12)
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Proof Suppose that (x0, y0) ∈ Q1 and

x0 + ψ1 < a, x0 − ψ1 > −a, 0 < x0 − x < ψ1/2, (13)

y0 + ψ2 < b, y0 − ψ2 > −b, 0 < y0 − y < ψ2/2, (14)

where 0 < max{ψ1, ψ2} < ψ0. From Remark 1, we can write

⎢
⎢L≥( f ; x, y; Ω) − f (x0, y0)

⎢
⎢

=
⎢
⎢
⎢
⎢
⎢
⎢

b∫

−b

a∫

−a

f (s, t) K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt − f (x0, y0)

⎢
⎢
⎢
⎢
⎢
⎢

=
⎢
⎢
⎢
⎢
⎢
⎢

≤∫

−≤

≤∫

−≤
f̃ (x, y) K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt − f (x0, y0)

⎢
⎢
⎢
⎢
⎢
⎢

=
⎢
⎢
⎢
⎢
⎢
⎢

≤∫

−≤

≤∫

−≤
f̃ (s, t) K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt − f (x0, y0)

+
≤∫

−≤

≤∫

−≤
f (x0, y0) K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

−
≤∫

−≤

≤∫

−≤
f (x0, y0) K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

⎢
⎢
⎢
⎢
⎢
⎢
.

⎢
⎢L≥( f ; x, y; Ω) − f (x0, y0)

⎢
⎢

∞
≤∫

−≤

≤∫

−≤

⎢
⎢
⎢ f̃ (s, t) − f (x0, y0)

⎢
⎢
⎢ K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

+ | f (x0, y0)|
⎢
⎢
⎢
⎢
⎢
⎢

≤∫

−≤

≤∫

−≤
K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt − 1

⎢
⎢
⎢
⎢
⎢
⎢

= I (x, y; Ω) + J (x, y; Ω).

From condition (b), one can easily obtain that

lim
(x,y;Ω)∇(x0,y0;Ω0)

J (x, y; Ω) = 0. (15)

Now, let us investigate I (x, y; Ω). We shall divide the region into two parts and
examine I (x, y; Ω) on these two regions.
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I (x, y; Ω) =
∫ ∫

Q1

| f (s, t) − f (x0, y0)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

+
∫ ∫

R2\Q1

⎢
⎢
⎢ f̃ (s, t) − f (x0, y0)

⎢
⎢
⎢ K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

= I1 (x, y; Ω) + I2 (x, y; Ω) .

If we consider I2 (x, y; Ω), we have

I2 (x, y; Ω) =
∫ ∫

R2\Q1

⎢
⎢
⎢ f̃ (s, t) − f (x0, y0)

⎢
⎢
⎢ K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

= | f (x0, y0)|
∫ ∫

R2\Q1

K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

∞ | f (x0, y0)|
∫ ∫

R2\Q

K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt,

where Q = ⎥
(s, t) : (s − x0)

2 + (t − y0)
2 ∞ ψ2, (x0, y0) ∈ Q1

⎫
. Now from

condition (d), we can write

lim
(x,y;Ω)∇(x0,y0;Ω0)

I2 (x, y; Ω) = 0. (16)

Now, we take I1 (x, y; Ω) into account. We shall again divide the region into two parts.

I1 (x, y; Ω) =
∫ ∫

Q1\Q

| f (s, t) − f (x0, y0)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

+
∫ ∫

Q

| f (s, t) − f (x0, y0)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

= I11 (x, y; Ω) + I12 (x, y; Ω) .

Our aim is to show that I1 (x, y; Ω), and thereby I11 (x, y; Ω) and I12 (x, y; Ω), tends
to zero as (x, y; Ω) ∇ (x0, y0; Ω0).

First, we consider I11 (x, y; Ω) . From (e), we have the following inequalities:

I11 (x, y; Ω) ∞
∫

Q1\Q
| f (s, t)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

+ | f (x0, y0)|
∫

Q1\Q

K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt



On Convergence of Singular Integral Operators with Radial Kernels 301

∞ sup
ψ∞

→
(s−x)2+(t−y)2

K

(√

(s − x)2 + (t − y)2; Ω

)

×
⎬

⎭
⎛

∫

Q1

| f (s, t)| dsdt + | f (x0, y0)|
∫

Q1

dsdt

⎝

⎞
⎠

= sup
ψ∞

→
(s−x)2+(t−y)2

(∀ f ∀L1(Q1)
+ 4ab | f (x0, y0)|

)
.

Taking the limit of both sides as (x, y; Ω) ∇ (x0, y0; Ω0), we get

lim
(x,y;Ω)∇(x0,y0;Ω0)

I11 (x, y; Ω) = 0. (17)

Now, let us consider the second integral I12 (x, y; Ω) .

I12 (x, y; Ω) =
∫

Q

| f (s, t) − f (x0, y0)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

∞
y0+ψ∫

y0−ψ

x0+ψ∫

x0−ψ

| f (s, t) − f (x0, y0)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

=
⎬

⎭
⎛

y0∫

y0−ψ

x0∫

x0−ψ

+
y0∫

y0−ψ

x0+ψ∫

x0

+
y0+ψ∫

y0

x0∫

x0−ψ

+
y0+ψ∫

y0

x0+ψ∫

x0

⎝

⎞
⎠

× | f (s, t) − f (x0, y0)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

= I121 (x, y; Ω) + I122 (x, y; Ω) + I123 (x, y; Ω) + I124 (x, y; Ω) .

Since

I12 (x, y; Ω) ∞ I121 (x, y; Ω) + I122 (x, y; Ω) + I123 (x, y; Ω) + I124 (x, y; Ω) (18)

we need to show that the terms on the right hand side of the above inequality tend to
zero as (x, y; Ω) ∇ (x0, y0; Ω0).

Now, let us consider the first integral I121 (x, y; Ω) . Remember that, from (8) for
every θ > 0, there exists a ψ > 0 such that

y0∫

y0−h

x0∫

x0−r

| f (s, t) − f (x0, y0)| dsdt ∞ θμ1 (h) μ2 (r) (19)

for all 0 < h, r ∞ ψ.
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Let us define a new function

F (s, t) =
y0∫

t

x0∫

s

| f (u, v) − f (x0, y0)| dudv. (20)

From (19) we can write

F(s, t) ∞ θμ1 (x0 − s) μ2 (y0 − t) . (21)

Now, we start to evaluate the integral I121 (x, y; Ω). We can write (see [7])

y0∫

y0−ψ

x0∫

x0−ψ

| f (s, t) − f (x0, y0)| K

(√

(s − x)2 + (t − y)2; Ω

)

dsdt

= (S)

y0∫

y0−ψ

x0∫

x0−ψ

K

(√

(s − x)2 + (t − y)2; Ω

)

d F (s, t) ,

where (S) denotes the Riemann-Stieltjes integral.
Applying two-dimensional integration by parts to the above Riemann–Stieltjes

integral (see [7]) we get,

y0∫

y0−ψ

x0∫

x0−ψ

K

(√

(s − x)2 + (t − y)2; Ω

)

d F (s, t)

=
y0∫

y0−ψ

x0∫

x0−ψ

F (s, t) d K

(√

(s − x)2 + (t − y)2; Ω

)

+
x0∫

x0−ψ

F (s, y0 − ψ) d K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

+
y0∫

y0−ψ

F (x0 − ψ, t) d K

(√

(x0 − ψ − x)2 + (t − y)2; Ω

)

+ F (x0 − ψ, y0 − ψ) K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

.
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From (21) we have,

y0∫

y0−ψ

x0∫

x0−ψ

K

(√

(s − x)2 + (t − y)2; Ω

)

d F (s, t)

∞ θ

y0∫

y0−ψ

x0∫

x0−ψ

μ1 (x0 − s) μ2 (y0 − t) d K

(√

(s − x)2 + (t − y)2; Ω

)

+ θ

x0∫

x0−ψ

μ1 (x0 − s) μ2 (ψ) d K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

+ θ

y0∫

y0−ψ

μ1 (ψ) μ2 (y0 − t) d K

(√

(x0 − ψ − x)2 + (t − y)2; Ω

)

+ θμ1 (ψ) μ2 (ψ) K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

= i1 + i2 + i3 + i4. (22)

First, we will evaluate the integrals i2 and i3.

i2 = θμ2 (ψ)

x0∫

x0−ψ

μ1 (x0 − s) d K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

= θμ2 (ψ)

(

μ1 (x0 − s) K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

|x0
x0−ψ

+
x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − s) ds

⎝

⎞
⎠

= θμ2 (ψ)

(

−μ1 (ψ) K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

+
x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − s) ds

⎝

⎞
⎠

= −θμ1 (ψ) μ2 (ψ) K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

+ θμ2 (ψ)

x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − s) ds. (23)
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Here, we note that if a function f is monotone on [a, b], then

∨
[ f ; a, b] =

b∨

a

( f ) = | f (b) − f (a)| . (24)

Here
⎤

[ f ; a, b] denotes the total variation of f on [a, b].
According to condition (c) and from (13) and (14), we have the following estimates

for the integral on the right hand side of equality (23):

x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − s) ds

=
x0−x∫

x0−ψ−x

K

(√

(s)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

=
x0−x∫

x0−ψ−x

⎧
⎪

⎨

s∨

x0−ψ−x

K

(√

(u)2 + (y0 − ψ − y)2; Ω

)

+K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)⎩

μ′
1 (x0 − x − s) ds

=
⎬

⎭
⎛

0∫

x0−ψ−x

+
x0−x∫

0

⎝

⎞
⎠

⎧
⎪

⎨

s∨

x0−ψ−x

K

(√

(u)2 + (y0 − ψ − y)2; Ω

)




μ′

1 (x0 − x − s) ds

+
x0−x∫

x0−ψ−x

K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

μ
′
1 (x0 − x − s) ds

=
0∫

x0−ψ−x

(

K

(√

(s)2 + (y0 − ψ − y)2; Ω

)

− K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

))

μ′
1 (x0 − x − s) ds

+
x0−x∫

0

⎬

⎛
0∨

x0−ψ−x

+
s∨

0

⎝

⎠ K

(√

(u)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

+ K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

(μ1 (0) − μ1 (ψ)) . (25)
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For the integral above that includes bounded variation we have the following estimate:

x0−x∫

0

⎬

⎛
0∨

x0−ψ−x

+
s∨

0

⎝

⎠ K

(√

(u)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

=
x0−x∫

0

0∨

x0−ψ−x

K

(√

(u)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

+
x0−x∫

0

s∨

0

K

(√

(u)2 + (y0 − ψ − y)2; Ω

)

μ
′
1 (x0 − x − s) ds

=
x0−x∫

0

(

K (|y0 − ψ − y| ; Ω) − K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

))

× μ′
1 (x0 − x − s) ds

+
x0−x∫

0

(

K (|y0 − ψ − y| ; Ω) − K

(√

(s)2 + (y0 − ψ − y)2; Ω

))

× μ′
1 (x0 − x − s) ds. (26)

Substituting (26) into (25) gives us,

x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)

μ
′
1 (x0 − s) ds

=
0∫

x0−x−ψ

K

(√

s2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

−
x0−x∫

0

K

(√

s2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

−
x0−x∫

x0−ψ−x

K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

+ 2

x0−x∫

0

K (|y0 − ψ − y| ; Ω) μ′
1 (x0 − x − s) ds

− μ1 (ψ) K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)
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=
0∫

x0−x−ψ

K

(√

s2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

−
x0−x∫

0

K

(√

s2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

− 2K (|y0 − ψ − y| ; Ω)μ1 (x0 − x) .

Hence we find,

⎢
⎢
⎢
⎢
⎢
⎢
⎢

x0−x∫

x0−ψ−x

K

(√

(s)2 + (y0 − ψ − y)2; Ω

)

μ′
1 (x0 − x − s) ds

⎢
⎢
⎢
⎢
⎢
⎢
⎢

∞
x0−x∫

x0−ψ−x

K

(√

(s)2 + (y0 − ψ − y)2; Ω

)

μ
′
1 (|x0 − x − s|) ds

+ 2K (|y0 − ψ − y| ; Ω) μ1 (|x0 − x |)

=
x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)
⎢
⎢μ′

1 (x0 − s)
⎢
⎢ ds

+ 2K (|y0 − ψ − y| ; Ω) μ1 (|x0 − x |) .

Returning back to i2, we finally obtain

|i2| ∞ θμ1 (ψ)

(

μ2 (ψ) K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

+
x0∫

x0−ψ

K

(√

(s − x)2 + (y0 − ψ − y)2; Ω

)
⎢
⎢μ′

1 (x0 − s)
⎢
⎢ ds

+ 2K (|y0 − ψ − y| ; Ω) μ1 (|x0 − x |)) .

Making similar calculations yields

|i3| ∞ θμ2 (ψ)

(

μ1 (ψ) K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

+
y0∫

y0−ψ

K

(√

(x0 − ψ − x)2 + (t − y)2; Ω

)
⎢
⎢μ′

2 (y0 − s)
⎢
⎢ dt

+ 2K (|x0 − ψ − x | ; Ω)μ2 (|y0 − y|)) .
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Now from condition (e), (13) and (14), one can easily get

lim
(x,y;Ω)∇(x0,y0;Ω0)

sup
ψ∞

→
(s−x)2+(t−y)2

K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

= 0.

(27)
Taking conditions (9) and (10) into account we can finally write

lim
(x,y;Ω)∇(x0,y0;Ω0)

i2 + i3 + i4 = 0. (28)

Now, we return back to the integral i1 in (22). Here, we shall use Lemma 2 in order
to get a bound for i1.

We note that for a function K
(→

s2 + t2; Ω
)

on Q1 =< −a, a > × < −b, b >

we have

∨

Q1

(K ) =
∨

(K ;< −a, a >,< −b, b >)

= K (a, b) + K (−a,−b) − K (−a, b) − K (a,−b). (29)

So, using Lemma 2 and equality (29) we can write

|i1| =

⎢
⎢
⎢
⎢
⎢
⎢
⎢

θ

y0∫

y0−ψ

x0∫

x0−ψ

μ1 (x0 − s) μ2 (y0 − t) d K

(√

(s − x)2 + (t − y)2; Ω

)
⎢
⎢
⎢
⎢
⎢
⎢
⎢

∞ θ sup {μ1 (x0 − s) μ2 (y0 − t)}
∨

Q

(K )

= θ sup {μ1 (x0 − s) μ2 (y0 − t)}
[

K

(√

(x0 − x)2 + (y0 − y)2; Ω

)

+ K

(√

(x0 − ψ − x)2 + (y0 − ψ − y)2; Ω

)

− K

(√

(x0 − x)2 + (y0 − ψ − y)2; Ω

)

− K

(√

(x0 − ψ − x)2 + (y0 − y)2; Ω

)]

.

Taking condition (e) and property (11) into account we find

lim
(x,y;Ω)∇(x0,y0;Ω0)

i1 = 0. (30)
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Consequently, according to (28) and (30) we finally obtain

lim
(x,y;Ω)∇(x0,y0;Ω)

I121 = 0. (31)

Similar to the above procedure the limit of the integrals I122, I123, I124 can also be
shown to be zero, and this leads to

lim
(x,y;Ω)∇(x0,y0;Ω0)

I12 (x, y; Ω) = 0. (32)

Hence, from (17) and (32) we get

lim
(x,y;Ω)∇(x0,y0;Ω0)

I1 (x, y; Ω) = 0, (33)

which implies
lim

(x,y;Ω)∇(x0,y0;Ω0)
L≥( f ; x, y; Ω) = f (x0, y0)

together with (15), as desired. �
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Lower Bound on the Dimension of Trivariate
Splines on Cells

Jianyun Jimmy Shan

Abstract In [1], Alfeld, Schumaker, and Whiteley determined the generic dimen-
sion of the space of C1 splines of degree d ∈ 8 on tetrahedral decompositions. In this
chapter, we analyze the dimension of Cr, r = 1, 2, trivariate splines on cells, which
are tetrahedral complexes sharing a single interior vertex. The dimension depends
on subtle geometry of the fatpoints corresponding to the configuration of the hyper-
planes adjacent to the interior vertex. A key tool is the classification of the relevant
fatpoint ideals by Geramita, Harbourne, and Migliore in [2].

Keywords Trivariate splines · Ideals of powers of linear forms · Fat points

1 Introduction

In mathematics, it is often useful to approximate a function f on a region by a
“simpler” function. A natural way to do this is to divide the region into simplicies, and
then approximate f on each simplex by a polynomial function. A Cr-differentiable
piecewise polynomial function on a d-dimensional simplicial complex Δ ≥ R

d is
called a spline. The set of splines of degree at most k on Δ form a vector space Cr

k(Δ).

In the case of one-dimensional splines, the dimension and bases for this vector space
are completely known. But for higher dimensions, things are more complicated. In
the planar case, Alfeld and Schumaker [3] use Bezier-Bernstein techniques to give
an explicit formula for the dimension of Cr

k(Δ) when k ∈ 3r + 1. In [4], Billera
constructed a complex of modules where the spline module Cr(Δ) appeared as the
top homology. Combining this with a vanishing result of Whiteley [5] allowed him
to prove a conjecture of Strang [6] on dim C1

k (Δ), for generic complex Δ (that is,
complexes where all 2-cells are triangles whose edges are in sufficiently general
position).
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In [7, 8], Schenck and Stillman introduced a chain complex different from that
used by Billera, where the top homology also gives the spline module and the lower
homologies have nicer properties. Using this, Geramita and Schenck [9] determined
the dimension of planar (mixed) splines for sufficiently high degrees. Another inter-
esting aspect of [9] is the use of inverse system between ideals in R[x, y] generated
by powers of homogeneous linear forms and fatpoints in P

1.
In the case of trivariate splines, Alfeld, Schumaker, and Whiteley [1] determined

the dimension of C1 generic tetrahedral splines for degree d ∈ 8. But for r > 1,
there is no general formula known. In [10, 11] Alfeld and Schumaker gave upper
and lower bounds for dim Cr

k(Δ).
It is very natural to first consider some simple tetrahedral complexes, as a first

step in understanding splines on general tetrahedral complexes. In this paper, for a
tetrahedral complex Δv, which consists of several tetrahedra sharing a single interior
vertex v, we generalize the approach of Geramita and Schenck [9], and find a lower
bound for the dim Cr

k(Δ), r = 1, 2, see Sect. 6 for a precise statement.
The organization of the paper is as follows. In Sect. 2, we define the spline complex

R/J and show that H1(R/J ) = H0(R/J ) = 0 and H2(R/J ) is Artinian
(vanishes for high degrees). In Sect. 3, we analyze the dimension of each component
of the spline complex, except the last one. In Sect. 4, we review the inverse system
between ideals of powers of linear forms and ideals of fatpoints, and the algorithm
to compute the dimension of ideals of fatpoints. In Sect. 5, we compute the last
component of R/J for some examples of tetrahedral complexes. In Sect. 6, we
state our main results, compare our bounds with the bounds in the literature, and end
with some remarks.

2 Spline Complexes

Let R = R[x, y, z] be fixed throughout this paper. Our tetrahedral complex Δv,
which we call a Cell, consists of several tetrahedra sharing a single interior vertex v.
Following Schenck [7], we define the spline complex Cr(Δv) for any r ∈ 0.

In general, for a tetrahedral complex Δ, Cr(Δ) is not a graded module over R
and it is convenient to have a graded module to compute the dimension of splines
for each degree. Denote by Δ̂ the simplicial complex obtained by embedding the
simplicial complex Δ ≥ R

3 in the plane {w = 1} ≥ R
4 and forming the cone with

the origin. Then the set of splines (of all degrees) on Δ̂ is a graded module Cr(Δ̂)

over a polynomial ring S = R[x, y, z, w]. We denote its kth graded component by
Cr(Δ̂)k . As a vector space, it is isomorphic to the space Cr

k(Δ) of splines on Δ of
degree at most k.

Since there is a single interior vertex v for our tetrahedral complex Δv, we can
put the vertex v at the origin O = (0, 0, 0) ∩ R

3, so every linear form defining a
hyperplane passing through v will be homogeneous. Thus we do not need to do the
above cone construction, Cr(Δ) is still a graded module over R and Cr(Δ)k will be
the vector space of splines of smoothness r of degree exactly k.
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Let Δ = Δv in the rest of the paper, unless otherwise stated. Fix an integer r ∈ 0.

Define a complex of ideals of J on Δ by

J(σ) = 0, for σ ∩ Δ3,

J(τ ) = →lτ r+1∞, for τ ∩ Δ0
2,

J(e) = →lτ r+1∞e∩τ for e ∩ Δ0
1,

J(v) = →lτ r+1∞v∩τ for v ∩ Δ0
0.

Here Δ0
i are the i-dimensional interior faces of Δ, and we consider all the tetrahedra

Δ3 as interior. lτ is the homogeneous linear form in R defining the affine hull of
τ . We denote he and hv as the number of distinct hyperplanes (not triangular faces)
incident to e and v, respectively. Then J(e) is an ideal generated by he powers of
linear forms, and similarly J(v) is generated by hv powers of linear forms.

We also define the constant complex R on Δ by R(σ) = R for each face σ ∩ Δ

with the boundary map ∂i to be the usual simplicial boundary map. We get the
following quotient complex R/J :

0 ≤
∑

σ∩Δ3

R
∂3−≤

∑

τ∩Δ0
2

R/J(τ )
∂2−≤

∑

e∩Δ0
1

R/J(e)
∂1−≤ R/J(v) ≤ 0. (1)

Lemma 1 H1(R/J ) = H0(R/J ) = 0, and H2(R/J ) is Artinian.

Proof If we form the cone Δ̂, and define the constant complexS on Δ byS (Δ) = S
for each face σ ∩ Δ, we get the quotient complex S /J , see [7]:

0 ≤
∑

σ∩Δ3

S
∂3−≤

∑

τ∩Δ0
2

S/J(τ )
∂2−≤

∑

e∩Δ0
1

S/J(e)
∂1−≤ S/J(v) ≤ 0.

Since
S /J = R/J ∇R R[w],

we have

H1(S /J ) = H1(R/J ) ∇R R[w],
H2(S /J ) = H2(R/J ) ∇R R[w].

By Lemma 3.1 in [7], dim H2(S /J ) ≤ 1, so we have

dim H2(R/J ) ≤ 0.

Similarly, dim H1(S /J ) ≤ 0 implies that

H1(R/J ) = H0(R/J ) = 0.

This completes the proof.
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3 Dimension of Graded Components of the Modules

It is well known that

dim Rk =
(

k + 2

2

)

. (2)

Since J(τ ) is a principal ideal generated by an element of degree r + 1, we also have

dim(R/J(τ ))k =
(

k + 2

2

)

−
(

k − r + 1

2

)

. (3)

3.1 The Case r = 1

To compute dim(R/J(e))k, we use the minimal free resolution of the ideal J(e).

Lemma 2 The minimal free resolution of J(e) is given by

0 ≤ R(−4) ≤ R(−2)2 ≤ R ≤ R/J(e) ≤ 0, if he = 2,

0 ≤ R(−3)2 ≤ R(−2)3 ≤ R ≤ R/J(e) ≤ 0, if he ∈ 3.

So we get

dim(R/J(e))k =
{(k+2

2

) − 2
(k

2

) + (k−2
2

)
, if he = 2,

(k+2
2

) − 3
(k

2

) + 2
(k−1

2

)
, if he ∈ 3.

(4)

Proof If he = 2, then J(e) is a complete intersection, generated by two quadratics.
If he ∈ 3, then J(e) = →l2

1, l1l2, l2
2∞, and the result follows.

Similarly, we can analyze the ideal J(v), which is generated by squares of the
linear forms which define the hyperplanes passing through v. Since the dimension
of quadratic forms in R is 6, we only need to consider the case hv ≤ 6. If hv ∈ 6,

then J(v) = →x2, y2, z2, xy, xz, yz∞, so

dim(R/J(v))k =






1, if k = 0,

3, if k = 1,

0, if k ∈ 2.

(5)

This is actually the case of Clough-Tocher in Example 5.
At the other extreme, if hv = 3, then

J(v) = →x2, y2, z2∞,

and therefore,
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k 0 1 2 3 ∈4
dim(R/J(v))k 1 3 3 1 0

We are thus left with the case hv = 4, or 5. If hv = 4, suppose the four hyperplanes
passing through v are defined by l1, l2, l3, l4, so the ideal J(v) = →l2

1, l2
2, l2

3, l2
4∞. After

a change of variables,
J(v) = →x2, y2, z2, l2∞,

for some linear form l in x, y, z. This is an example of an almost complete intersection,
whose Hilbert series are given by Iarrobino (Lemma C of [12]), giving

dim(R/J(v))k =






1, if k = 0,

3, if k = 1,

2, if k = 2,

0, if k ∈ 3.

(6)

For hv = 5, there are more variations, depending on the five linear forms defining
the hyperplanes passing through v. After a change of variables, we may assume the
linear forms are given by x, y, z, l1(x, y, z), l2(x, y, z). If the linear forms l1, l2 only
involve two variables, say x, y, (see Example 3), then

J(v) = →x2, y2, xy, z2∞,

and the dim(R/J(v))k is the same as in (6).
In the other cases, we have not been able to analyze the ideal J(v), though we can

still compute a Grobner basis and find the dimension as given by

dim(R/J(v))k =






1, if k = 0,

3, if k = 1,

1, if k = 2,

0, if k ∈ 3.

(7)

We can also get the above formulas of dim(R/J(v))k using fatpoints as in Sect. 4.

3.2 The Case r = 2

Lemma 3 The minimal free resolution of J(e) is given by

0 ≤ R(−6) ≤ R(−3)2 ≤ R ≤ R/J(e) ≤ 0, if he = 2,

0 ≤ R(−4) ∀ R(−5) ≤ R(−3)3 ≤ R ≤ R/J(e) ≤ 0, if he = 3,

0 ≤ R(−4)3 ≤ R(−3)4 ≤ R ≤ R/J(e) ≤ 0, if he ∈ 4.
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So we get

dim(R/J(e))k =






(
k+2

2

⎢
− 2

(
k−1

2

⎢
+

(
k−4

2

⎢
, if he = 2,

(
k+2

2

⎢
− 3

(
k−1

2

⎢
+

(
k−2

2

⎢
+

(
k−3

2

⎢
, if he = 3,

(
k+2

2

⎢
− 4

(
k−1

2

⎢
+ 3

(
k−2

2

⎢
, if he ∈ 4.

(8)

Proof Notice that the ideal J(e) is of codimension 2 in R, so we can apply Hilbert-
Burch Theorem [13]. There are 3 cases:

Case 1: he = 2. This is similar to the case r = 1, but J(e) is a complete intersection
of two cubics.

Case 2: he = 3. Suppose the linear forms are given by l1, l2 and l3 = al1 +bl2. Then
it is not hard to see the linear syzygy of l3

1, l3
2, l3

3 is given by

−a3(al1 + 2bl2)l
3
1 + b3(2al1 + bl2)l

3
2 + (al1 − bl2)l

3
3 = 0,

and the quadratic syzygy is given by

(a3l2
2)l

3
1 + (2a2bl2

1 + 2ab2l1l2 + b3l2
2)l

3
2 + (−l3

2)l
3
3 = 0.

Then the minimal free resolution of J(e) is given by

0 ≤ R(−4) ∀ R(−5)
ϕ−≤ R(−3)3 →l31,l32,l33∞−−−−−≤ R ≤ R/J(e) ≤ 0,

where

ϕ =



−a3(al1 + 2bl2) a3l2

2

b3(2al1 + bl2) 2a2bl2
1 + 2ab2l1l2 + b3l2

2
al1 − bl2 −l3

2

⎥

⎫ .

Case 3: he ∈ 4. Suppose the hyperplanes incident to e are given by l1, l2, . . . , ls,
where li = ail1 + bil2 for i ∈ 3. Then it is easy to see the ideal
J(e) = →l3

1, l2
1 l2, l1l2

2, l3
2∞, so the minimal free resolution of J(e) is given by

0 ≤ R(−4)3 ψ−≤ R(−3)4 →l31,l21 l2,l1l22 ,l32∞−−−−−−−−≤ R ≤ R/J(e) ≤ 0,

where

ψ =



⎬
⎬


−l2 0 0
l1 −l2 0
0 l1 −l2
0 0 l1

⎥

⎭
⎭
⎫ .
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This completes the proof. �

As in the case above, though the number of hyperplanes passing through v may
be big, the dimension of R/J(v) only depends on the ideal J(v). Since the dimension
of cubic forms in R is 10, we only need to consider the case hv ≤ 10.

Example 1 If hv ∈ 10, then J(v) = →x, y, z∞3 and

k 0 1 2 ∈3
dim(R/J(v))k 1 3 6 0

At the other extreme, if hv = 3, then J(v) = →x3, y3, z3∞, so

k 0 1 2 3 4 5 6 ∈7
dim(R/J(v))k 1 3 6 7 6 3 1 0

We are thus left to consider the possibilities for hv ∩ {4, 5, .., 9}. We use the
inverse system dictionary to translate this into a question about the Hilbert function
of hv fatpoints on P

2. Interestingly, there are two distinct cases.

Case 1: hv ∩ {4, . . . , 8}. In this case, we can give a complete answer to the dimension
of (R/J(v))k for each degree k.

Case 2: hv = 9. There are two subcases depending on whether the cone of numer-
ically effective classes of divisors on the surface obtained by blowup P

2 at the 9
points is finitely generated or not. If the cone is finitely generated, then Harbourne’s
algorithm, which we will give below (Sect. 4.2), still works and enables us to com-
pute the Hilbert function of fatpoints, thus dim(R/J(v))k, for each k. However, if
the cone is not finitely generated, it is a famous open problem in algebraic geome-
try (see Miranda’s survey article [14]), and therefore the same difficulty to compute
dim(R/J(v))k . However, in any specific case, the dimension may be calculated using
Macaulay2 [15].

4 Review of Inverse System and Fatpoints on P
2

4.1 Inverse System

In [16], Emsalem and Iarrobino proved there is a close connection between ideals
generated by powers of linear forms and ideals of fatpoints. We use their results in
the special case of ideals generated by powers of linear forms in 3 variables and
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ideals of fatpoints in P
2, see [9, 17] for more details. Let p1, . . . , pn ∩ P

2 be a set of
distinct points,

pi = [pi1 : pi2 : pi3],
I(pi) = ℘i ∅ R⊂ = k[x⊂, y⊂, z⊂].

A fat point ideal is an ideal of the form

F =
n⎛

i=1

℘
αi+1
i ≥ R⊂. (9)

We define
Lpi = pi1x + pi2y + pi3z ∩ R, for1 ≤ i ≤ n. (10)

Define an action of R⊂ on R by partial differentiation:

p(x⊂, y⊂, z⊂) · q(x, y, z) = p(∂/∂x, ∂/∂y, ∂/∂z)q(x, y, z). (11)

Since F is a submodule of R⊂, it acts on R. The set of elements annihilated by the
action of F is denoted by F−1.

Theorem 1 (Emsalem and Iarrobino [16]) Let F be an ideal of fatpoints

F =
n⎛

i=1

℘
αi+1
i .

Then

(F−1)j =
{

Rj, for j ≤ max {αi},
Lj−α1

p1 Rα1 + · · · , Lj−αn
pn Rαn , for j ∈ max{αi + 1}. (12)

and
dimk(F

−1)j = dimk(R/F)j.

Corollary 1 In the case r = 1, 2, let

F = ℘
j−r
1 ◦ · · · ◦ ℘j−r

n

be an ideal of fatpoints on P
2. Then (F−1)j = →Lr+1

p1
, . . . , Lr+1

pn
∞j, and

dim(R/J(v))j =
{(j+2

2

)
for 0 ≤ j ≤ r,

dim Fj for j ∈ r + 1.
(13)
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Therefore, to obtain the dimension of (R/J(v))k , for each k, it is necessary to consider
a corresponding ideal of fatpoints on P

2.

4.2 Blowup of Points in P
2

Here we will use some facts about rational surfaces obtained by blowup of n points
p1, . . . , pn on P

2, see Hartshorne [18]. We follow Harbourne [2] and only state what
is needed in this paper.

There is a well-known correspondence between the graded pieces of an ideal of
fat points F ≥ R and the global sections of a line bundle on the surface X which is
the blowup of P2 at the points. Let Ei be the class of the exceptional divisor over the
point pi, and L the pullback of a line on P

2. For the fatpoint ideal F in Corollary 1,
define

Dj = jL − (j − r)(E1 + · · · + En). (14)

Then dim Jj = h0(Dj), and thus we have

dim(R/J(v))j =
{(j+2

2

)
, for 0 ≤ j ≤ r,

h0(Dj), for j ∈ r + 1.
(15)

Remark 1 This equation tells us that dim(R/J(v))j only depends on the divisor Dj,
which only depends on the configuration of the fatpoints, and thus only depends on
the geometry of the hyperplanes passing through v. See Sect. 5 for examples.

On X, the divisor class group Cl(X) is a free abelian group with basis L, E1, . . . , En

which has the intersection product

L2 = −E2
i = 1, L.Ei = Ej.Ei = 0, for j �= i. (16)

The canonical class of X is

KX = −3L + E1 + · · · + En.

We also define
An = (n − 2)L − KX .

A prime divisor is the class of a reduced irreducible curve on X, and an effective
divisor is a nonnegative integer combination of prime divisors. We denote the set
of effective divisors by EFF(X). A divisor whose intersection product with every
effective divisor is ∈ 0 is called numerically effective(nef). We define Neg(X) as the
classes of prime divisors C with C2 < 0. In [2] Proposition 3.1 and 4.1, Neg(X)

is explicitly determined, which is the main point for the following algorithm of
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Geramita, Harbourne, and Migliore to compute h0(F) for any divisor F on X. To
determine Neg(X), we first define a few classes of divisors on X.

1. Br = {E1, . . . , Er};
2. Lr = {L − Ei1 − · · · − Eij |2 ≤ j, 0 < i1 < · · · < ij ≤ r};
3. Qr = {2L − Ei1 − · · · − Eij |5 ≤ j ≤ r};
4. Cr = {3L − 2Ei1 − Ei2 − · · · − Eij |7 ≤ j ≤ 8, j ≤ r};
5. M8 = {4L − 2Ei1 − 2Ei2 − 2Ei3 − Ei4 − · · · − Ei8 , 5L − 2Ei1 − 2Ei2 − · · · −

2Ei6 − Ei7 − Ei8 , 6L − 2Ei1 − 2Ei2 − · · · − 2Ei8}.
Let Nr = Br ⇒ Lr ⇒ Qr ⇒ Cr ⇒ M8. Let X be obtained by blowing up 2 ≤ r ≤ 8
distinct points of P2. Then

Neg(X) ≥ Nr .

and

Neg(X) = neg(X) ⇒ {C ∩ Nr |C2 = −1, C · D ∈ 0, for all D ∩ neg(X)},

where neg(X) is the subset of Neg(X) of classes of those C with C2 = C · C < −1.

Remark 2 In any given case, we can list the five classes of divisors on X, and Neg(X)

is the union of the classes C which has C2 < −1 and the classes C⊂ which has
C⊂2 = −1 and C⊂ · D ∈ 0 for all D ∩ neg(X). The classes in Lr are the pullback of a
line passing through the points pi1 , . . . , pij if they are on a line; similarly, the classes
in Qr are the pullback of a conic passing through the points pi1 , . . . , pij if they are
on a conic; and so on. The computation of C2 and C · D just uses the intersection
product, see Eq. (16). See also examples in Sect. 5.

Once we have determined Neg(X), we can use the following algorithm due to
Geramita et al. [2] to compute h0(F) for any class F on X.

Algorithm:
Start with H = F, N = 0.
If H.C < 0 for some C ∩ Neg(X), replace H by H − C and replace N by N + C.
Eventually either H.An < 0 or H.C ∈ 0 for all C ∩ Neg(X).
In the first case, F is not effective, and h0(F) = 0.

In the latter case, H is nef and effective, and we have a Zariski decomposition

F = H + N,

with
h0(F) = h0(H) = (H2 − H.KX)/2 + 1.

Remark 3 The above algorithm is based on Bezout considerations. See Miranda [14]
for an elementary exposition.
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5 Examples of Fatpoint Computation

In this section, we will apply the above algorithm to compute dim(R/J(v))j, depend-
ing on the number of hyperplanes hv passing through v, where hv ∩ {4, 5, 6, 7, 8}.
We mainly consider the case r = 2 and indicate the similar computation for r = 1
in remarks. We demonstrate the computation with examples of tetrahedral complexes
constructed from the standard octahedron Δ by perturbing a vertex to get different
numbers of hyperplanes passing through O. A key point is to determine Neg(X) in
each case, where X as above, is the blowup of P

2 at the fatpoints corresponding to the
linear forms defining hv hyperplanes. For concreteness, we give the coordinates of the
vertices of Δ as O = (0, 0, 0), P1 = (10, 0, 0), P2 = (0, 10, 0), P3 = (−10, 0, 0),
P4 = (0,−10, 0), P5 = (0, 0, 10), P6 = (0, 0,−10). As said in the Remark 1, the
result does not depend on the actual coordinates.

Example 2 (4 hyperplanes) By perturbing one vertex along one of the edges, we get
an example with 4 hyperplanes. For example, move P1 along the edge P1P2 to get
P⊂

1 = (7, 3, 0). Then there are 3 hyperplanes passing through the interior edge OP5
with defining equations and the corresponding 3 points in P

2 as follows.

l1 = x ∃≤ Q1 = [1 : 0 : 0],
l2 = y ∃≤ Q2 = [0 : 1 : 0],

l3 = 3x − 7y ∃≤ Q3 = [3 : −7 : 0].

The points Q1, Q2, Q3 are colinear. The other hyperplane defined by

l4 = z ∃≤ Q4 = [0 : 0 : 1].

Q4 is not colinear with the other 3 points. So on the surface X, the divisor

C1 = L − E1 − E2 − E3 ∩ Neg(X),

where L is the pullback of a line onP2 and Ei is the exceptional divisor corresponding
to Qi for i = {1, 2, 3, 4}. In fact,

Neg(X) = {C1, L − E1 − E4, L − E2 − E4, L − E3 − E4, E1, E2, E3, E4}.

Define Dj as in Eq. (14),

Dj = jL − (j − 2)(E1 + E2 + E3 + E4).

Remark 4 In this example, Nr = Br ⇒ Lr . It seems that we should include
L − E1 − E2, L − E1 − E3, L − E2 − E3 in Neg(X). However, these classes are
not in Neg(X), because they are not prime. For example,
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L − E1 − E2 = (L − E1 − E2 − E3) + E3

is a sum of two prime divisors. The class L − E1 − E2 − E3 is prime because the
points Q1, Q2, Q3 are colinear. Moreover, neg(X) = ∅.

Let’s just show that h0(D4) = 4 as a sample computation, using the intersection
product. First,

D4 = 4L − 2(E1 + E2 + E3 + E4),

D4.C1 = 4L2 + 2E2
1 + 2E2

2 + 2E2
3

= 4 − 2 − 2 − 2 = −2 < 0.

So we take
D⊂

4 = D4 − C1 = 3L − E1 − E2 − E3 − 2E4.

It is easy to check that

D⊂
4 · C ∈ 0, for any C ∩ Neg(X),

and therefore D⊂
4 is nef and effective. So the Zariski decomposition of D4 is

D4 = D⊂
4 + C1.

Using the intersection product (16) again, we have

D⊂2
4 = (3L)2 + E2

1 + E2
2 + E2

4 + (2E3)
2

= 9 − 1 − 1 − 1 − 4

= 2

Similarly,

KX = −3L + E1 + E2 + E3 + E4,

D⊂
4.KX = −(3L)2 − E2

1 − E2
2 − E2

4 − 2E2
3

= −9 + 1 + 1 + 1 + 2 = −4.

So we get

h0(D4) = h0(D⊂
4) = (D⊂2

4 − D⊂
4.KX)/2 + 1 = 4.

A similar computation shows the Zariski decomposition of D5 is

D5 = D⊂
5 + 2C1,
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where
D⊂

5 = 3L − E1 − E2 − E3 − 3E4,

and
h0(D5) = h0(D⊂

5) = 1.

Summarizing, we have

dim(R/J(v))j = h0(Dj) =






6, for j = 3,

4, for j = 4,

1, for j = 5,

0, for j ∈ 6.

(17)

Example 3 (5 hyperplanes: Δ1) By perturbing P2, P3 on the plane z = 0, there
are 4 hyperplanes passing through the interior edge OP5(or OP6), so there are 4
corresponding points Q1, Q2, Q3, Q4 on P

2 which lie on a line l. There is another
point Q5 = [0 : 0 : 1] corresponding to the plane z = 0, not lying on l. On the
surface X from blowup of the Q⊂

is, as above, Ei corresponds to Qi, for 1 ≤ i ≤ 5, the
divisor class

C1 = L − E1 − E2 − E3 − E4 ∩ Neg(X).

In fact,
Neg(X) = {C1, L − Ei − E5, Ei, E5, i ∩ {1, 2, 3, 4}}.

We also have

Dj = jL − (j − 2)(E1 + E2 + E3 + E4 + E5).

We analyze the case j = 4 in detail, since it is similar for any j. First,

D4 = 4L − 2(E1 + E2 + E3 + E4 + E5),

D4.C1 = 4L2 + 2E2
1 + 2E2

2 + 2E2
3 + 2E2

4

= 4 − 2 − 2 − 2 − 2 = −4 < 0,

and so we take

D⊂
4 = D4 − C1 = 3L − E1 − E2 − E3 − E4 − 2E5.

Moreover,

D⊂
4.C1 = 3L2 + E2

1 + E2
2 + E2

3 + E2
4

= 3 − 1 − 1 − 1 − 1 = −1 < 0.
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So we subtract C1 from D⊂
4 to get

D⊂⊂
4 = D⊂

4 − C1 = 2L − 2E5.

Now, we can check
D⊂⊂

4 .C1 = 2L2 = 2 > 0.

In fact, D⊂⊂
4 .C ∈ 0 for any C ∩ Neg(X). Therefore, we have the Zariski Decomposation

of D4 as
D4 = D⊂⊂

4 + 2C1.

A similar computation will show that,

D⊂⊂2
4 = 0, D⊂⊂

4 .KX = −4.

So we get
h0(D4) = h0(D⊂⊂

4) = 3.

Summarizing, we have

dim(R/J(v))j = h0(Dj) =






5, for j = 3,

3, for j = 4,

0, for j ∈ 5.

(18)

Remark 5 We have given the formula of dim(R/J(v))k in Eq. (6) for the case r = 1,

by applying a result of Iarrobino [12]. Here we reprove that formula using a similar
computation as above. Since r = 1, the divisor Dj is given by

Dj = jL − (j − 1)(E1 + · · · + E5).

By Corollary 1, we just need to compute dim(R/J(v))j, or equivalently h0(Dj) for
j ∈ 2. For j = 2, D2 = 2L − (E1 + · · · + E5). Since

D2 · C1 = 2L2 + E2
1 + · · · + E2

4 = 2 − 4 = −2 < 0,

we get D⊂
2 = D2 − C1 = L − E5, which is effecitve. Since

D⊂2
2 = 0, and D⊂

2 · KX = −3 + 1 = −2,

we get

h0(D4) = h0(D⊂
4) = 0 − (−2)

2
+ 1 = 2.

The computation for j > 2 is completely similar.
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Example 4 (5 hyperplanes: Δ2) By perturbing one vertex along the interior of a
face, we can get another example of 5 hyperplanes. For example, if we perturb
P5 = (0, 0, 10) to P⊂

5 = (1, 1, 8), then there are 3 hyperplanes passing through the
interior edge OP1(or OP3) with defining equations and the corresponding 3 points
in P

2 as follows:

l1 = z ∃≤ Q1 = [0 : 0 : 1],
l2 = y ∃≤ Q2 = [0 : 1 : 0],

l3 = 8y − z ∃≤ Q3 = [0 : 8 : −1].

The points Q1, Q2, Q3 are colinear in P
2. Similarly, through the interior edge OP2

(or OP4), there are 3 hyperplanes

l1 = z ∃≤ Q1 = [0 : 0 : 1],
l4 = x ∃≤ Q4 = [1 : 0 : 0],

l5 = 8x − z ∃≤ Q5 = [8 : 0 : −1].

Similarly, Q1, Q4, Q5 are colinear and Q1 is the intersection of the two lines. So, on
the surface X, the two divisors

C1 = L − E1 − E2 − E3,

C2 = L − E1 − E4 − E5,

are in Neg(X), where Ei is the exceptional divisor corresponding to Qi for i =
{1, 2, 3, 4, 5}. In this case, Neg(X) given by

{C1, C2, L −E2 −E4, L −E2 −E5, L −E3 −E4, L −E3 −E5, Ei, i = {1, 2, 3, 4, 5}}.

We also have
Dj = jL − (j − 2)(E1 + E2 + E3 + E4 + E5).

It is easy to check that D3 is nef , and a similar computation shows

D2
3 = 4, D3.KX = −4,

and so
h0(D3) = 5.

For

D4 = 4L − 2(E1 + E2 + E3 + E4 + E5),
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we have

D4.C1 = 4L2 + 2E2
1 + 2E2

2 + 2E2
3

= 4 − 2 − 2 − 2 < 0,

and so we take

D⊂
4 = D4 − C1 = 3L − E1 − E2 − E3 − 2E4 − 2E5.

Since

D⊂
4.C2 = 3L2 + E2

1 + 2E2
4 + 2E2

5

= 3 − 1 − 2 − 2 < 0,

and so we take
D⊂⊂

4 = D⊂
4 − C2 = 2L − E2 − E3 − E4 − E5.

It is easy to check D⊂⊂
4 is nef , so we get the Zariski decomposition

D4 = D⊂⊂
4 + C1 + C2.

A similar computation will show that,

D⊂⊂2
4 = 0, D⊂⊂

4 .KX = −2.

Thus,
h0(D4) = h0(D⊂

4) = 2.

For j ∈ 5, Dj is not effective, so h0(Dj) = 0.
Summarizing, we have

dim(R/J(v))j = h0(Dj) =






5, for j = 3,

2, for j = 4,

0, for j ∈ 5.

(19)

Remark 6 Comparing Example 3 and Example 4, the dim(R/J(v))j differ at j = 4,
even though in both examples, J(v) is an ideal generated by 5 powers of linear forms
in x, y, z.

Remark 7 In Eq. (7), we have given a formula of dim(R/J(v))k in the case r = 1.

Here we prove that formula using the same computation. For k = 2, we consider the
divisor D2 = 2L − (E1 + · · · + E5). Now

D2 · C1 = 2 − 3 = −1 < 0,
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so we get D⊂
2 = D2 − C1 = L − E4 − E5. It is easy to check that D⊂

2 · D ∈ 0, for all
D ∩ Neg(X), so D⊂

2 is nef. Since

D⊂2
2 = −1, and D⊂

2 · KX = −3 + 2 = −1,

we get

h0(D2) = h0(D⊂
2) = −1 − (−1)

2
+ 1 = 1.

Example 5 (6 hyperplanes: Clough-Tocher(CT)) This tetrahedral complex CT is
constructed by choosing an interior point O, which we put at the origin (0, 0, 0),
in the tetrahedron and decomposing the tetrahedron into four tetrahedra. Through
each interior edge of CT, there are 3 different hyperplanes, each corresponding to
a point in P

2. So we have 4 lines in P
2, with each line corresponding to an interior

edge of CT, and on each line, there are exactly 3 points. Moreover, each point is the
intersection of two lines. For example, through the interior edge OP1, we have the
planes OP1P2,OP1P3 and OP1P4, each corresponding to a point, say Q1,Q2 and Q3
in P

2. Similarly, around OP2,OP3 and OP4, we have the following corresponding
points:

OP2 OP3 OP4
OP2P1 ∃≤ Q1 OP3P1 ∃≤ Q4 OP4P1 ∃≤ Q5
OP2P3 ∃≤ Q4 OP3P2 ∃≤ Q2 OP4P2 ∃≤ Q3
OP2P4 ∃≤ Q5 OP3P4 ∃≤ Q6 OP4P3 ∃≤ Q6

The configuration of the 6 points on P
2 is type 10 in the Table of [2]. So on the

surface X obtained from the blowup the six points, we have the following class of
divisors in Neg(X):

C1 = L − E1 − E2 − E3, C2 = L − E1 − E4 − E5,

C3 = L − E2 − E4 − E6, C4 = L − E3 − E5 − E6,

with Ei as the exceptional divisor from blowup of Qi, for 1 ≤ i ≤ 6. In this case, D3
is nef , with

D2
3 = 3, D3.KX = −3,

and so h0(D3) = 4. As for D4, the Zariski decomposition is

D4 = 0 + C1 + C2 + C3 + C4,

and so h0(D4) = h0(0) = 1. Summarizing, we have
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dim(R/J(v))j = h0(Dj) =






4, for j = 3,

1, for j = 4,

0, for j ∈ 5.

(20)

6 Main Result

6.1 Theorems

Now we have computed the dimension for each component of the complex R/J .

Putting the results together, we get our main result.

For a tetrahedral complex Δ = Δv, denote the number of tetrahedra by f3, the
number of 2-dimensional interior faces passing through v by f2, the number of interior
edges with he = 2, he = 3, and he ∈ 4,, respectively, by f1,2, f1,3, and f1,4. Recall
that he is the number of distinct hyperplanes incident to e. Let f1 be the number of
interior edges, so f1 = f1,2 + f1,3 + f1,4.

Theorem 2 The dimension of C1(Δ)k, the vector space of splines of smoothness
r = 1 of degree exactly k, is given by

dim C1(Δ)k = h2,k + Ck,

where
h2,k = dim H2(R/J )k,

Ck = f3

(
k + 2

2

)

− f2

⎝(
k + 2

2

)

−
(

k

2

)⎞

+ f1,2

⎝(
k + 2

2

)

− 2

(
k

2

)

+
(

k − 2

2

)⎞

+ (f1,3 + f1,4)

⎝(
k + 2

2

)

− 3

(
k

2

)

+ 2

(
k − 1

2

)⎞

− dim(R/J(v))k,

and dim(R/J(v))k is given by (5), (6) and (7), and can be explicitly computed using
the method of Sect. 4.

Theorem 3 The dimension of C2(Δ)k, the vector space of splines of smoothness
r = 2 of degree exactly k, is given by

dim C2(Δ)k = h2,k + Dk,
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where
h2,k = dim H2(R/J )k,

Dk = f3

(
k + 2

2

)

− f2

⎝(
k + 2

2

)

−
(

k − 1

2

)⎞

+ f1,2

⎝(
k + 2

2

)

− 2

(
k − 1

2

)

+
(

k − 4

2

)⎞

+ f1,3

⎝(
k + 2

2

)

− 3

(
k − 1

2

)

+
(

k − 2

2

)

+
(

k − 3

2

)⎞

+ f1,4

⎝(
k + 2

2

)

− 4

(
k − 1

2

)

+ 3

(
k − 2

2

)⎞

− dim(R/J(v))k,

and dim(R/J(v))k can be explicitly computed using the method of Sect. 4.

In the above theorems, (
a

2

)

= 0, if a < 2.

Proof (of Theorems 2, 3) The Euler characteristic equation applied to the complex
R/J is

χ(H(R/J )) = χ(R/J ).

Since C2(Δ) � H3(R/J ), this implies that

dim C2(Δ)k = dim
3∑

i=0

(−1)i
⎠

β∩Δ0
3−i

(R/J(β))k + dim
2∑

i=0

(−1)iH2−i(R/J )k

By Eqs. (4), (8), we get dim(R/J(τ ))k and dim(R/J(e))k . By Lemma 1, H1(R/J ) =
H0(R/J ) = 0. Also H2(R/J ) is Artinian, so its kth graded component vanishes
when k ∪ 0. This completes the proof. �

Corollary 2 dim C1(Δ)k ∈ Ck, and dim C2(Δ)k ∈ Dk .

Remark 8 The two complexes R/J for r = 1 and r = 2 are different, and so are
the modules H2(R/J ).

Corollary 3 The dimension of C1
d(Δ), the vector space of splines of smoothness

r = 1 of degree at most d, is bounded below as
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dim C1
d(Δ) ∈ (f3 − f2 + f1)

(
d + 3

3

)

+ (f2 − 2f1,2 − 3f1,3 − 3f1,4)

(
d + 1

3

)

+ 2(f1,3 + f1,4)

(
d

3

)

+ f1,2

(
d − 1

3

)

−
d∑

k=0

dim(R/J(v))k . (21)

For d ∈ 4, the inequality simplifies to

dim C1
d(Δ) ∈ f3

6
d3 + (f3 − f2)d

2 +
(

11

6
f3 − 2f2 + 3f1 + f1,2

)

d

+ (f3 − f2 + f1,3 + f1,4) −
d∑

k=0

dim(R/J(v))k . (22)

Corollary 4 The dimension of C2
d(Δ), the vector space of splines of smoothness

r = 2 of degree at most d, is bounded below as

dim C2
d(Δ) ∈ (f3 − f2 + f1)

(
d + 3

3

)

+ (f2 − 2f1,2 − 3f1,3 − 4f1,4)

(
d

3

)

+ (f1,3 + 3f1,4)

(
d − 1

3

)

+ f1,3

(
d − 2

3

)

+ f1,2

(
d − 3

3

)

−
d∑

k=0

dim(R/J(v))k . (23)

For d ∈ 6, the inequality simplifies to

dim C2
d(Δ) ∈ f3

6
d3 + (f3 − 3

2
f2)d

2 + (
11

6
f3 − 3

2
f2 + 6f1 + 3f1,2 + f1,3)d

+ (f3 − f2 − 9f1,2 − 4f1,3 − 2f1,4) −
d∑

k=0

dim(R/J(v))k . (24)

For the extremal cases of exactly 3 or∈ 10 hyperplanes, we work out dim(R/J(v))k
in Example 1. Here we put our results on the above examples of 4, 5 or 6 hyperplanes
in one place for the readers’ convenience. We do not claim these are all the cases of
4, 5 or 6 hyperplanes. Our point is to illustrate the computation of dim(R/J(τ ))k by
the algorithm. All the remaining cases are similar but more complicated.

Proposition 1 In the case r = 2, dim(R/J(v))k for the following cases are given
by
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k 0 1 2 3 4 5 ∈6
4 hyperplanes 1 3 6 6 4 1 0

5 hyperplanes(Δ1) 1 3 6 5 3 0 0
5 hyperplanes(Δ2) 1 3 6 5 2 0 0

Clough-Tocher 1 3 6 4 1 0 0

6.2 Comparison and Examples

In the case r = 1, Alfeld, Schumaker, and Whiteley also give a lower bound on
dim C1

d(Δ) in [1, Theorem 54].

dim C1
d(Δ) ∈ d(d − 1)(d − 5)

6
T + 3(d −1)VI + d(d −1)VB + 1 + 5d − 2d2, for d ∈ 3,

where T , VB, VI are the number of tetrahedra, boundary vertices, and interior ver-
tices, respectively.

In the setting of our paper, VI = 1. Using the relation VB = 2f3 − f2 + 2, their
bound is given by

dim C1
d(Δ) ∈ f3

6
d3 + (f3 − f2)d

2 +
(

−7

6
f3 + f2 + 6

)

d − 2. (25)

Comparing our bound in (22) with their bound, the difference is

f1,2d + (f3 − f2 + f1,3 + f1,4) + 2 −
d∑

k=0

dim(R/J(v))k . (26)

It is clear that our bound is better if f1,2 > 0. If f1,2 = 0, the difference is only

−
d∑

k=2

dim(R/J(v))k .

For a tetrahedral partition Δ of a simply connected polygonal region D ≥ R
3 and

d > r, Lau [19] proved that a lower bound of Cr
d(Δ) is given by

dim Cr
d(Δ) ∈

(
d + 3

3

)

+ f2

(
d − r + 2

3

)

− f1

⎝(
d + 3

3

)

−
(

r + 3

3

)

− (d − r)

(
r + 2

2

)⎞

+ δ, (27)

where
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δ =
f1∑

k=1

d−r∑

l=1

l∑

j=1

(r + 1 + j − jek∗)+,

and ek∗ is the number of interior faces attached to the interior edge ek (k =
1, 2, . . . , f1) which lie on different planes. Here, (x)+ = x, if x > 0. Otherwise,
(x)+ = 0. The leading term of his formula is only

1 − f1 + f2
6

d3 = f3 − 1

6
d3,

and thus is weaker than our bounds, especially when d is large.

Example 6 For the example of 4 hyperplanes from Example 6 in Sect. 5 of Chap. 1,
we have

f3 = 8, f2 = 12, f1,2 = 4, f1,3 = 2, f1,4 = 0.

For the two interior edges OP5 and OP6, there are three hyperplanes passing through
each edge. For the other four edges OP1, OP2, OP3, OP4, only two hyperplanes
passing through each edge. The formula above gives the following lower bound for
dim C1

d(Δ) and

d 0 1 2 3

Bound 1 4 12 30

dim C1
d(Δ) ∈ 4/3d3 − 4d2 + 38/3d − 8, for d ∈ 4.

In this case, the bound is actually exact, because a computer calculation shows that
H2(R/J ) = 0.

In the case r = 2, we get the lower bound for dim C2
d(Δ) as and

d 0 1 2 3 4

Bound 1 4 10 22 44

dim C2
d(Δ) ∈ 4/3d3 − 10d2 + 140/3d − 69, for d ∈ 6.

In this case, the bound is actually also exact, because a computer calculation shows
that H2(R/J ) = 0.

Example 7 For the Clough-Tocher cell, we have

f3 = 4, f2 = 6, f1,2 = f1,4 = 0, f1,3 = 4.

The lower bound for dim C2
d(Δ) is given by

http://dx.doi.org/10.1007/978-3-319-06404-8_1
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dim C2
d(Δ) ∈ 2

(
d + 3

3

)

− 6

(
d

3

)

+ 4

(
d − 1

3

)

+ 4

(
d − 2

3

)

−
d∑

k=0

dim(R/J(v))k .

The right hand side is equal to 1, 4, 10, 20, 35 for d = 0, 1, 2, 3, 4, and

2/3d3 − 5d2 + 79/3d − 33, for d ∈ 5.

For example, when d = 17, this gives 2245, which agrees with the computation in
[20].

Similarly, the lower bound for dim C1
d(Δ) is given by

dim C1
d(Δ) ∈ 2

(
d + 3

3

)

− 6

(
d + 1

3

)

+ 8

(
d

3

)

−
d∑

k=0

dim(R/J(v))k,

where dim(R/J(v))k is computed in Eq. (5).

Example 8 For the example of 5 hyperplanes from Example 3 in Sect. 5 of Chap. 1,
we have

f3 = 8, f2 = 12, f1,2 = 4, f1,3 = 0, f1,4 = 2.

In this case, we have the following bounds

dim C1
d(Δ) ∈ 2

(
d + 3

3

)

− 2

(
d + 1

3

)

+ 4

(
d

3

)

+ 4

(
d − 1

3

)

−
d∑

k=0

dim(R/J(v))k,

where dim(R/J(v))k is given by Eq. (6).
The lower bound for dim C2

d(Δ) is given by

dim C2
d(Δ) ∈ 2

(
d + 3

3

)

− 4

(
d

3

)

+ 6

(
d − 1

3

)

+ 4

(
d − 3

3

)

−
d∑

k=0

dim(R/J(v))k,

where dim(R/J(v))k is given by Eq. (18).
For the example of 5 hyperplanes from Example 4 in Sect. 5 of Chap. 1, we have

f3 = 8, f2 = 12, f1,2 = 2, f1,3 = 4, f1,4 = 0.

In this case, we have the following bounds

dim C1
d(Δ) ∈ 2

(
d + 3

3

)

− 4

(
d + 1

3

)

+ 8

(
d

3

)

+ 2

(
d − 1

3

)

−
d∑

k=0

dim(R/J(v))k,

where dim(R/J(v))k is given by (7);

http://dx.doi.org/10.1007/978-3-319-06404-8_1
http://dx.doi.org/10.1007/978-3-319-06404-8_1
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dim C2
d(Δ) ∈ 2

(
d + 3

3

)

− 4

(
d

3

)

+ 4

(
d − 1

3

)

+ 4

(
d − 2

3

)

+ 2

(
d − 3

3

)

−
d∑

k=0

dim(R/J(v))k .

where dim(R/J(v))k is given by (19).

Remark 9 Using Macaulay2, we found that C2(Δ) is a free module over R for the
above examples of 4 hyperplanes and Clough-Tocher. By Schenck’s Theorem in
[7], this implies H2(R/J ) = 0 and dim C2(Δ)k = Ck , so our bound in Corol-
lary 2 is tight. Corollary 2agrees with Macaulay2’s output. This strongly supports
our theorem.

Remark 10 To compute the homology H2(R/J ) is complicated; our calculations
were performed with the Macaulay2 software package [15].

Remark 11 For any given tetrahedral complex Δv, we can find the configuration
of the fatpoints corresponding to the hyperplanes passing through v. The classifi-
cation of all configurations of fatpoints up to 8 points is given in [2], though some
configurations do not correspond to a tetrahedral complex Δv.
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One Characterization of Lagrange Projectors

Boris Shekhtman

Abstract Introduced by G. Birkhoff and popularized by C. de Boor, ideal projectors
are an elegant generalization of Hermite interpolation projectors to the multivariate
setting. An important class of ideal projectors comprises Lagrange interpolation
projectors. In this article, we give a characterization of Lagrange projectors in terms
of their “restriction property.”

Keywords Ideal projector · Lagrange projector · Restriction property

1 Introduction

In this article, the symbol k will stand for the field C of complex numbers or the
field R of real numbers. The symbol k[x] = k [x1, . . . , xd ] denotes the algebra of
polynomials in d variables with coefficients in the field k.

Definition 1 A linear idempotent operator P : k[x] ∈ k[x] is called an ideal
projector if ker P is an ideal in k[x].

Ideal projectors were defined by Birkhoff in [1] and further studied by de Boor
(cf. [4]), Sauer (cf. [8]) as well as the author (cf. [9]).

An important class of ideal projectors is a class of (finite-dimensional) Lagrange
interpolation projectors, that is the projectors PZ with finite-dimensional range that
interpolate at a set Z := {z1, . . . , zN } of N = dim(ran PZ ) distinct points in k

d .
Sauer and Xu [7] showed that for any subspace G0 ≥ ran PZ one can find a subset
Z0 ≥ Z of dim G0 points such that the problem of interpolation from the space G0
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at the points Z0 is well posed, i.e., there exists a Lagrange interpolation projector
PZ0 onto G0 that interpolates at the points Z0. Since

ker PZ = { f ∩ k[x] : f (z) = 0 , for all z ∩ Z },

the above fact can be reformulated as the existence of a Lagrange projector PZ0 onto
G0 such that ker PZ0 → ker P .

Definition 2 We say an ideal projector P has the restriction property if for every
subspace G0 ≥ ran P there exists an ideal projector P0 onto G0 such that ker P0 →
ker P . Equivalently for every G0 ≥ ran P there exists an ideal J0 → ker P such that

J0 ∞ G0 = k[x] = ker P ∞ ran P. (1)

In this article, we will show that this property indeed characterizes Lagrange
projectors within the class of all (finite-dimensional or infinite-dimensional) ideal
projectors:

Theorem 1 An ideal projector P on k[x] is a Lagrange interpolation projector if
and only if P has the restriction property.

2 Preliminaries

In this section, we recall some needed notations and rudimentary facts from algebraic
geometry readily available in [2].

With every ideal J ≥ k[x] we associate its affine variety:

Z (J ) := {z ∩ k
d : f (z) = 0 for all f ∩ J }.

The ideal J ≥ k[x] is called zero-dimensional if dim(k[x]/J ) < ≤. It is well known
(cf. [2, Proposition 8, p. 235], [3]) that the ideal J ≥ C[x] is zero-dimensional if
and only if the variety Z (J ) is finite. Moreover #Z (J ) ∇ dim(C[x]/J ). Hence the
ideal projector P on C[x] is Lagrange if and only if

#Z (ker P) = dim(k[x]/ ker P) = dim(ran P),

i.e., if and only if ker P is a zero-dimensional radical ideal.
An affine variety Z is called irreducible if it cannot be written as a union of two

of its proper subvarieties. In particular, every 1-point set {z} ≥ k
d is an irreducible

variety.
By the Hilbert basis theorem (cf. [2, Theorem 2, p. 204]), every affine variety Z

can be written as a finite union of irreducible varieties:

Z = ∪k
j=1Z j .
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Such a decomposition is called irredundant if i ∀= j implies thatZi is not a subvariety
of Z j .

We will need the following lemma that must be well known, but I could not find
a reference to it in the literature:

Lemma 1 An ideal J ≥ C[x] is zero-dimensional if and only if the set Z (J )\{z0}
is an affine variety for every z0 ∩ Z (J ).

Proof If J is zero-dimensional, then Z (J ) is finite. Hence Z (J )\{z0} is finite and
thus an affine variety. Conversely, assume that J is not zero-dimensional and let

Z (J ) = Z1 ∪ · · · ∪ Zm (2)

be its irredundant decomposition. At least one of Z j ’s, say Zm , has infinitely many
points. Pick a point z0 ∩ Zm . Since the decomposition is irredundant, {z0} ∀= Z j

for any j . If Z (J )\ {z0} is an affine variety, it has an irredundant decomposition
Z (J )\ {z0} = Z̃1 ∪ · · · ∪Z̃ k . Hence Z (J ) = Z̃1 ∪ · · · ∪Z̃ k ∪ {z0} is an irredun-
dant decomposition of Z (J ) different from (4). This contradicts the uniqueness of
irredundant decomposition. �
Theorem 2 [2, Theorem 4, p. 203]. An affine variety Z has a unique irredundant
decomposition as a finite union of irreducible subvarieties. In particular, any finite
affine variety is irreducible iff it is a 1-point set.

A word about duality: Let k�x1, . . . , xd� denote the space of formal power
series in d variables with coefficients in k. Via Macaulay duality (inverse sys-
tems), the dual space (k [x1, . . . , xd ])∅ is identified with k�x1, . . . , xd� as fol-
lows: With every element λ ∩ k�x1, . . . , xd� we associate the differential operator
λ(D) ∩ k [D1, . . . , Dd ] obtained by formally replacing monomials in λ with the
appropriate powers of operators D j that are partial derivatives with respect to x j .
Now, for every λ ∩ k�x1, . . . , xd� we define the functional λ̃ ∩ (k [x1, . . . , xd ])∅ by

λ̃( f ) := (λ(D) f )(0) for every f ∩ k [x1, . . . , xd ] .

It is well known (cf. [3, 9] and [6]) that the map λ ⊂−∈ λ̃ (defined above) is a skew-
linear isomorphism between k�x1, . . . , xd� and (k [x1, . . . , xd ])∅. From this point on,
we will identify the functional with the corresponding power series and drop the tilde
if there is no danger of confusion. In particular if z ∩ k

d , the exponential function

ez : kd ∈ k, ez(x) := ez·x

is identified with its power series and, as such, with the functional

ẽz( f ) =
∑

α

1

α! zα
(
Dα f

)
(0) = f (z) = δz( f ), ◦ f ∩ k [x1, . . . , xd ] . (3)

For a subspace J ≥ k [x1, . . . , xd ] we define
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J⊥ := {
λ ∩ k�x1, . . . , xd� : λ( f ) = 0 for all f ∩ J

}
.

A subspace E ≥ k�x1, . . . , xd� is called D-invariant if D jλ ∩ E for every λ ∩ E
and every j = 1, . . . , d.

Theorem 3 (cf. [3, 5] and [6]). A subspace J ≥ k [x1, . . . , xd ] is an ideal if and
only if J⊥ is D-invariant. If J ≥ C[x] is a zero-dimensional ideal, then

J⊥ = ∞z∩Z (J )δz ⇒ Mz(D), (4)

where Mz ≥ C[x] is a D-invariant subspace of polynomials.

We will now describe a simple process of “complexification” of ideals in R[x].
If J is an ideal in R[x] then, by Hilbert’s basis theorem, there exist finitely many
polynomials f1, . . . , fm that generate the ideal J :

J = ∃ f1, . . . , fm〉 .

The polynomials f1, . . . , fm are also polynomials in C [x1, . . . , xd ] and, as such,
generate an ideal, say Ĵ , in C [x1, . . . , xd ].

Proposition 1 The ideal Ĵ ≥ C [x1, . . . , xd ] does not depend on the choice of
generators f1, . . . , fm for the ideal J ≥ R [x1, . . . , xd ].

Proof Let {g1, . . . , gs} ≥ R [x1, . . . , xd ] be another set of generators of the ideal J ≥
R [x1, . . . , xd ]. Then there exist polynomials p j,k ∩ R [x1, . . . , xd ] such that g j =∑

k p j,k fk and for every sequence of complex polynomials h j ∩ C [x1, . . . , xd ] we
have

∑

j

h j g j =
∑

k




∑

j

h j p j,k



 fk ∩ Ĵ ,

which proves the proposition. �

Definition 1 The ideal Ĵ is denoted by JC and is called the complexification of J .

3 Proof of the Main Result

Proposition 1 Let G be a subspace in R[x] and let J be an ideal in R[x] that
complements G and such that for every subspace H ≥ G with dim G/H = 1 there
exists an ideal K ≥ R[x] that complements H and contains J . Then Z

(
JC

) =
Z (J ) ≥ R

d .

Proof Suppose not. Let z = (z1, . . . , zd) ∩ Z
(
JC

)
be such that z ∀= z̄. Then

z̄ = (z̄1, . . . , z̄d) ∩ Z
(
JC

)
since every real polynomial in R [x1, . . . , xd ] that
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vanishes on z also vanishes on z̄. Hence ez and ez̄ annihilate the ideal JC. So, as
formal power series with real coefficients,

Cz(x) := eRe (z)·x cos((Im z) · x) and Sz(x) := eRe (z)·x sin((Im z) · x)

annihilate JC and, in particular, annihilate J as functionals on R[x]. Since G com-
plements J , no linear combination of Cz and Sz annihilates G. Hence, in particular,

H := {g ∩ G : Cz(g) = 0}

is a subspace of G of codimension 1 and Sz /∩ H⊥. Let K → J be an ideal that
complements H . Then dim K/J = 1. Since K complements H and Cz annihilates
H hence Cz /∩ K ⊥; but K ⊥ is D-invariant, thus Sz /∩ K ⊥. This means that Cz
and Sz are two linearly independent linear functionals over K that annihilate J , and
therefore dim K/J ≥ 2. �

Theorem 1 Let J be an ideal in k[x] and G be any subspace of k[x] that comple-
ments J . Then, the following are equivalent:

(i) J = { f ∩ k[x] : f (z) = 0 for all z ∩ Z } for some finite set Z ≥ k
d .

(ii) For every subspace G0 of G of codimension 1 in G, there exists an ideal J0
complementing G0 and containing J .

Proof

(i)∪(ii): (i) implies that δZ is an injective map from G onto kZ . Hence the matrix
δZ V is invertible for any basis V for G. In particular, with V =: [V0, v] any basis
for G for which V0 is a basis for G0, there exists Z0 ≥ Z for which δZ0 V0 is
invertible, hence J0 := ker δZ0 complements G0 and contains J .

(ii)∪(i): For any z ∩ Z (J ), let

Gz := ker δz ∩ G.

By Proposition 3.1, Z (J ) ≥ k
d , hence, dim G/Gz ∇ 1. On the other hand, since

G complements J , Gz cannot be all of G, hence

dim G/Gz = 1. (5)

By assumption, there exists an ideal Jz that contains J and complements Gz.
Hence Z (Jz) ≥ Z (J ). In fact, since Jz complements Gz, z /∩ Z (Jz), hence
Z (Jz) ≥ Z (J )\{z}. More than that:

Z (Jz) = Z (J )\{z}, (6)

as we now prove.
If there were a z1 /∩ Z (J )\{z} not in Z (Jz), then, with z0 := z, Jz would
contain polynomials fi with fi (zi ) = 1, i = 0, 1. But then, choosing pi ∩ k[x]
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such that pi (zk) = δi,k , we would have pi fi (zk) = δi,k and pi fi ∩ Jz. Since G
complements J by assumption, we would have pi fi = gi + hi with gi ∩ G and
hi ∩ J , hence

gi (zk) = δi,k . (7)

Assume that for some ai ∩ k we have
1∑

i=0
ai (gi + Gz) = 0, i.e., g := a0g0

+ a1g1 ∩ Gz. Since g =
1∑

i=0
ai (pi fi − hi ) ∩ Jz and Jz complements Gz, it

would follow that g = 0 and, by (7), a0 = a1 = 0. This would show that
G/Gz contains a linearly independent pair of elements, hence dim G/Gz ≥ 2
contradicting (5).
Since we now know that (6) holds for arbitrary z ∩ Z (J ), we know by Lemma 2.1
that J is 0-dimensional, and therefore

J⊥ = ∞z∩Z (J )δz ⇒ Mz(D)

for some D-invariant polynomial subspaces Mz. Continuing, for arbitrary z ∩
Z (J ), with the ideal Jz, we know that Jz is 0-dimensional, and hence we must
have

∞y∩Z (J )δy ⇒ Ny(D) = J⊥
z ≥ J⊥ = ∞y∩Z (J )δy ⇒ My(D)

with Ny ≥ My for all y. But then, dim Gz = dim J⊥
z ∇ dim J⊥ − dim Mz =

dim G − dim Mz. Therefore, by (5), dim Mz = 1 for all z ∩ Z (J ). This
proves (i). �
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Minimal Versus Orthogonal Projections
onto Hyperplanes in �n

1 and �n∞

Boris Shekhtman and Lesław Skrzypek

Abstract In this paper, we explore the relation between the minimal and the
orthogonal projections onto hyperplanes in Ωn

1 and Ωn∈.

Keywords Minimal projection · Orthogonal projection · Hyperplanes

1 Introduction

Suppose X is a Banach space and V a (closed) subspace of X . A projection from X
onto V is a linear continuous operator P : X ≥ V having the property that Pv = v
for all v ∩ V . The set of all projections from X onto V is denoted by P(X, V ). The
set P(X, V ) can be empty. If it is not empty then V is said to be complemented.

The relative projection constant of V with respect to X is defined by

∂(V, X) = inf{→P→, P ∩ P(X, V )}. (1)

A projection whose norm is equal to this constant is called a minimal projection.
It is useful to know whether minimal projections exist, how they are characterized,
whether they are unique, and how they are calculated (see [1–8]). The existence
of minimal projections onto finite dimensional spaces may be deduced using the
compactness argument (see [9] for details).

Note that for any (closed) subspace V of a Hilbert spaceH we have ∂(V,H ) = 1
and the orthogonal projection onto V is the unique minimal projection. In general,
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a given subspace will not be the range of a projection of norm 1, and minimal
projections are very difficult to discover even if their existence is known. In case of
the X = Ωn

p, the orthogonal projection seems like a good candidate for a minimal or
near minimal projection. Here, by an orthogonal projection we mean the orthogonal
projection P from Ωn

2 onto V ∞ Ωn
2 viewed as a projection on Ωn

p. This idea is not
new and has been previously explored [10–13].

In this paper, we investigate some of the relations between minimal and orthogonal
projections onto hyperplanes in Ωn

1 and Ωn∈. For this reason, we introduce the notation

∂O(V, Ωn
p) = ||PO ||, (2)

where PO is the orthogonal projection from Ωn
p onto V .

For any n dimensional space V and any n codimensional space W of X we have,
respectively, (see [7, 14])

∂(V, X) ≤ ∇
n (3)

and
∂(W, X) ≤ 1 + ∇

n. (4)

Applying (4) to hyperplanes H of X we obtain

∂(H, X) ≤ 2. (5)

This estimate is sharp, as a consequence of the Daugavet Theorem, for any hyperplane
H in C[0, 1]

∂(H, C[0, 1]) = 2. (6)

For finite dimesional spaces X , we can improve the estimate in (5) even further
(see [15])

∂(H, X) ≤ 2 − 2

dim X
. (7)

For further results regarding projections onto hyperplanes, see [1, 6, 8, 16–19].
The natural question to ask is how large the quantities ∂(H, Ωn

p) and ∂O(H, Ωn
p)

can be for hyperplanes H ∞ Ωn
p and what is the relation between them?

For p = 1,∈, (see Theorem 1 and Theorem 2), the maximum of ∂(H, Ωn
p)

reaches the upper bound in the estimate (7) and this maximum is attained when H
is the kernel of the functional (1, 1, . . . , 1) in Ωn

q , i.e.,

H = ker 1 =
{

(x1, . . . , xn) ∩ Ωn
p :

n∑

i=1

xi = 0

}

. (8)

One can easily see that the minimal projection onto ker(1, 1, . . . 1) is in fact the
orthogonal projection, i.e.,
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∂
(

ker 1, Ωn
p

)
= ∂O

(
ker 1, Ωn

p

)
. (9)

As a result, one may think (as the authors did originally) that the maximal norm of
all orthogonal projections onto hyperplanes in Ωn

1 and Ωn∈ is also attained for ker 1.

We show a rather intriguing result (see Theorem 3) that the maximum of the norms
of orthogonal projections onto hyperplanes in Ωn

1 and Ωn∈ is attained for a hyperplane
given by functional f which has all but one of its coordinates equal. The result also
shows that

max
{
∂O(H, Ωn

p) : H ∞ Ωn
p

}
(10)

can be arbitrary large contrasting the estimate (5).
Recall that the full description of the uniqueness of minimal projection from Ωn∈

or Ωn
1 onto any hyperplane H has been obtained in [1] and [6] (for easier proofs,

see [20]).
Finally, note that, for p ∩ (1,∈) and p 	= 2, it is still an open question whether

the maximum of ∂(H, Ωn
p) is attained when H = ker 1.

2 Results

Every hyperplane H ∞ Ωn
p is a kernel of a linear functional f = ( f1, . . . , fn) ∩

S(Ωn
q). The lemma below will allow us to assume, without loss of generality, that

fi ∀ 0 for every i = 1, . . . , n.

Lemma 1 Observe that

∂
(

ker f, Ωn
p

)
= ∂

(
ker | f |, Ωn

p

)
. (11)

and
∂O

(
ker f, Ωn

p

)
= ∂O

(
ker | f |, Ωn

p

)
. (12)

Proof Since Ωn
p is a symmetric space there is an isometry I : Ωn

p ≥ Ωn
p such that

I (ker f ) = I (ker | f |). ∅⊂
The next two theorems may be a part of the mathematical folklore (see [1] and

[6]), yet we could not find explicit formulations nor the proofs for these theorems in
the literature. Thus, we formulate and prove them for the sake of completeness.

Theorem 1 The maximal norm of minimal projections onto hyperplanes in Ωn∈
equals 2 − 2

n . That is,

max
f ∩S(Ωn

1)
∂

(
ker f, Ωn∈

) = 2 − 2

n
(13)

where the equality is attained only for f which has all of its coordinates equal.
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Proof Consider f ∩ S(Ωn
1). Without loss of generality, we can assume fi > 0 and

|| f ||∈ < 1/2 (otherwise the norm of minimal projection is 1). By [20] we have

∂
(
ker f, Ωn∈

) = 1 + 2
∑n

i=1
2 fi

1−2 fi

. (14)

Observe that the function f (x) = 2x
1−2x is convex on (0, 1

2 ). By the classical Jensen
inequality, we get

∑n
i=1

2 fi
1−2 fi

n
∀

2
(∑n

i=1 fi
n

)

1 − 2
(∑n

i=1 fi
n

) =
2
n

1 − 2
n

= 2

n − 2
, (15)

and equality holds only when all of fi are equal. As a result,

∂(ker f, Ωn∈) = 1 + 2
∑n

i=1
2 fi

1−2 fi

≤ 1 + 2
n−2
2n

= 2 − 2

n
, (16)

and equality holds only when all of fi are equal. ∅⊂
Theorem 2 The maximal norm of minimal projections onto hyperplanes in Ωn

1 equals
2 − 2

n . That is,

max
f ∩S(Ωn∈)

∂
(
ker f, Ωn

1

) = 2 − 2

n
(17)

where the equality is attained only for f which has all of its coordinates equal.

Proof Consider f ∩ S(Ωn
1). Without loss of generality we can assume fi > 0 and

that P attains its norm on all extreme points of S(Ωn
1). By [20] we have

∂
(
ker f, Ωn∈

) = 1 + 2

(
∑n

i=1 fi)
(∑n

i=1 f −1
i

)

n−2 − n

. (18)

By the classical inequality between Harmonic and Arithmetic mean, we get

n
∑n

i=1 f −1
i

≤
∑n

i=1 fi

n
(19)

and equality holds only when all of fi ’s are equal. As a result,

∂
(
ker f, Ωn

1

) = 1 + 2

(
∑n

i=1 fi)
(∑n

i=1 f −1
i

)

n−2 − n

≤ 1 + 2
n2

n−2 − n
= 2 − 2

n
, (20)

and equality holds only when all of fi ’s are equal. ∅⊂
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By the above theorems, the maximal norm of all minimal projections onto hyper-
planes in Ωn

1 and Ωn∈ is attained for ker(1, 1, . . . , 1). But the minimal projection onto
ker(1, 1, . . . , 1) is orthogonal and is unique. As a result, one may think that the
maximal norm of all orthogonal projections onto hyperplanes in Ωn

1 and Ωn∈ is also
attained for ker(1, 1, . . . , 1). However, this expectation is not true as we obtained
the following result:

Theorem 3 For p = 1 and p = ∈, the maximal norm of orthogonal projections

onto hyperplanes in Ωn
p equals 1+∇

n
2 . That is,

max
f ∩S(Ωn

2)
∂O

(
ker f, Ωn

p

)
= 1 + ∇

n

2
. (21)

where the equality is attained only for f ∩ S(Ωn
2) which is a permutation of the

following:

f1 =
√∇

n − 1

2
∇

n
, (22)

f2 = · · · = fn =
√

1

2
(
n − ∇

n
) .

Proof Fix a hyperplane H in Ωn
1 . We can assume that H is given by ker f where

f = ( f1, . . . , fn) ∩ S(Ωn
2) and by Lemma 1 we can assume that fi ∀ 0. The

orthogonal projection onto H is given by

Pf = I d − f ◦ f. (23)

Easy calculations yeld Pf (ek) = ek − fk · f and

||Pf (ek)||1 = 1 − f 2
k + fk

⎢


∑

i 	=k

fi



⎥ . (24)

Using the classical inequality between arithmetic and quadratic mean and the fact
that

∑n
i=1 f 2

i = 1 we get

∑

i 	=k

fi ≤
√

(n − 1)
∑

i 	=k

f 2
i = ∇

n − 1
⎫

1 − f 2
k . (25)

As a result,

||Pf (ek)||1 ≤ 1 − f 2
k + ∇

n − 1 fk

⎫
1 − f 2

k
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≤ max
0≤x≤1

{
1 − x2 + ∇

n − 1 · x
⎬

1 − x2
}

. (26)

Using the fact that the set of extreme points of S(Ωn
1) equals {±e1, . . . ,±en} from

the above estimate we get

||Pf ||1 = max
k=1,...,n

||Pf (ek)||1 ≤ max
0≤x≤1

{
1 − x2 + ∇

n − 1 · x
⎬

1 − x2
}

. (27)

Set
g(x) = 1 − x2 + ∇

n − 1 · x
⎬

1 − x2. (28)

Putting x = sin(α) for α ∩ [0, ε/2] we get

g(x) = cos2(α) + ∇
n − 1 sin(α) cos(α)

= 1 + cos(2α) + ∇
n − 1 sin(2α)

2
(29)

= 1 + ∇
n sin(2α + Δ)

2
≤ 1 + ∇

n

2
,

where Δ = arctan( 1∇
n−1

). The equality is attained only when

2α + Δ = ε

2
, (30)

which, after standard computations, yields

x2 = sin2(α) = 1

2
− cos(2α)

2
= 1

2
− cos(ε

2 − Δ)

2
= 1

2
− sin(Δ)

2
. (31)

Using the fact that sin(arctan t) = t∇
1+t2 we can easily obtain

x2 = 1

2
−

sin
(

arctan
(

1∇
n−1

))

2
= 1

2
−

1∇
n−1

2
⎫

1 + 1
n−1

=
∇

n − 1

2
∇

n
. (32)

As a result,

||Pf ||1 ≤ 1 + ∇
n

2
(33)

and the equality is attained only when one of the coordinates of f equals

⎭∇
n−1

2
∇

n

and the remaining coordinates equals
⎫

1
2(n−∇

n)
.
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The result for Ωn∈ follows easily from a standard duality argument (Ωn∈ and Ωn
1 are

dual spaces to each other) after noting that if P is an orthogonal projection then P∗
(P∗ being a dual operator to P) is also an orthogonal projection. ∅⊂
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On Hermite Interpolation by Splines
with Continuous Third Derivatives

Vesselin Vatchev

Abstract For a C3-smooth function, we consider a convolution-based method for
constructing a C3 spline interpolant that agrees with the function and its first and
second derivatives at the points of interpolation. In the case of equidistant nodes
x j = j

n , j = 0, . . . , n the error of interpolation on [0, 1] is proven to be of order
n−3 which is one less than the order of the natural spline interpolation at the same
points, n−4. Applications are discussed.

Keywords Spline interpolation · Hermite interpolation · Order of approximation

1 Introduction

In this paper for a function f ∈ C3[a, b], where Ck[a, b] is the space of all k
times continuously differentiable functions on [a, b] we construct a spline function
S ∈ C3[a, b] such that S(k)(a) = f (k)(a), S(k)(b) = f (k)(b), k = 0, 1, 2, j =
0, . . . , n. By using that procedure, we construct a C3 Hermite spline interpolant with
equidistant interpolating nodes x j = a + j b−a

n , j = 0, . . . , n. In the case when only
S(x j ) = f (x j ) is required, we have Lagrange interpolation which is a well-studied
problem. Most of the spline methods that construct Lagrange interpolants use cubic
splines due to their simplicity to construct and the fact that they are C2 functions.
The problem of interpolating higher derivatives of f by C2 quintic and higher order
splines was considered in [2], and the references within; another treatment of the
problem can be found in [1]. The error of approximation is measured by O(n−r )

where r is an integer related to the smoothness of the spline function. In the case of
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n equidistant nodes, the natural cubic spline interpolation is of order O(n−4), i.e.,
the error decreases as constant multiple of n−4.

In [4], we studied Hermite interpolation by splines at arbitrary nodes. The method
used there can be summarized as first constructing a rough sketch of the interpolant
and then refining it by a smoothing procedure. In this work, restricting the inter-
polating nodes to the case of equally spaced points allows us to use standard fast
computational techniques. The resulting splines belong to C3, are of varying degree
(up to sixth), and provide O(nk−3) order of approximation to f (k), k = 0, 1, 2.

The algorithm is introduced and the error estimate established in Sect. 2. The case
of equidistant interpolation points is discussed in Sect. 3.

2 Hermite Spline Interpolation

The cardinal B-spline of order 1 for some real α is defined as the characteristic
function B1,α(x) = χ[−α,α](x). The cardinal spline of order k + 1 > 0 is de-
fined recursively by the convolution Bk+1,α(x) = Bk,α ≥ B1,α(x) = ∫

Bk,α(x −
v)B1,α(v) dv. The spline Bk+1,α ∈ Ck−2 for k > 1 and is zero outside the interval
(−(k + 1)α, (k + 1)α). The central differences of f at x are defined recursively by
Δ1

α f (x) = f (x + α) − f (x − α),Δk+1
α f (x) = Δk

α f (x + α) − Δk
α f (x − α).

The result from the next lemma is an extension of the results about convolution
with B-splines of any order presented in [4].

Theorem 1 For a function f ∈ C3[a − b−a
2 , b + b−a

2 ] and α ∩ b−a
8 let

Tξ (x) = f →→(ξ)

2
(x − ξ)2 + f →(ξ)(x − ξ) + f (ξ) − 2

3
f →→(ξ)α2,

Rα(x) = Ta(x)χ[a− b−a
2 ,a+ b−a

2 ](x) + Tb(x)χ
(b− b−a

2 ,b+ b−a
2 ](x),

and

Sα(x) = 1

(2α)4 B4,α ≥ Rα(x).

Then Sα ∈ C3[a, b], S(k)
α (a) = f (k)(a), S(k)

α (b) = f (k)(b) for r = 0, 1, 2 and
S→→→
α (a) = S→→→

α (b) = 0. Furthermore,

∞ f (k) − S(k)
α ∞C[a,b] ∩ C(b − a)3−k,

where C depends only on f .

Proof Since α is fixed throughout the proof we drop it from the notation. First, we
compute the derivatives of S for x ∈ [a, b]. Since S(x) = 1

(2α)4

∫ α

−α
R ≥ B3(x +v) dv

and R ≥ B3(x + v) is continuous then it follows that
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S→(x) = 1

(2α)4 (R ≥ B3(x + α) − R ≥ B3(x − α))

= 1

(2α)4

α∫

−α

(R(x + α + v) − R(x − α + v)) ≥ B2(v) dv

= 1

(2α)4

α∫

−α

Δ1 R(x + v) ≥ B2(v) dv.

Similarly, we get that

S→→(x) = 1

(2α)4

α∫

−α

Δ2 R(x + v) ≥ B1(v) dv,

and since the integrand function is continuous we can differentiate once again and
obtain the formula for the third derivative

S→→→(x) = 1

(2α)4

α∫

−α

Δ3 R(x + v) dv. (1)

In order to estimate S→→→ on [a, b] we need to estimate Δ3 R(x) = R(x +3α)−3R(x +
α) + 3R(x − α) − R(x − 3α) on x ∈ [a − α, b + α]. From the Taylor expansion of
f about y such that a − b−a

2 ∩ y ∩ a+b
2 we have that

R(y) = f →→(a)

2
((y − a)2 − 4

3
α2) + f →(a)(y − a) + f (a)

= f (y) − 2

3
f →→(a)α2 − f →→→(ξ(y))

6
(y − a)3,

for some ξ(y) between a and y. Similarly, for a+b
2 < y ∩ b + b−a

2 we have that

R(y) = f (y) − 2

3
f →→(b)α2 − f →→→(ξ(y))

6
(y − b)3,

for some ξ(y) between b and x . By using the above identities in Δ3 R(x) we get that
Δ3 R(x) = Δ3 f (x) + 2rα2

3 ( f →→(b) − f →→(a)) − M(x)
6 , where

|M(x)| ∩ (| f →→→(ξ(x + 3α))| + 3| f →→→(ξ(x + α))|)(b − a)3

+ (3| f →→→(ξ(x − α))| + | f →→→(ξ(x − 3α))|)(b − a)3,

and hence ∞M∞C[a,b] ∩ 8∞ f →→→∞C[a− b−a
2 ,b+ b−a

2 ](b−a)3. The parameter r is such that
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r = 0 if x + v − 3α >
a + b

2
, or x + v + 3α <

a + b

2
,

r = −1 if x + v − 3α <
a + b

2
< x + v − α, or x + v + α <

a + b

2
< x + v + 3α,

r = 2 if x + v − α <
a + b

2
< x + v + α.

Since ∞Δ3 f ∞C[a,b] < C∞ f →→→∞C[a− b−a
2 ,b+ b−a

2 ](b−a)3, for a constant C that depends

only on f and f →→(b)− f →→(a) = f →→→(ξ)(b−a) for some ξ ∈ (a, b) and α < b−a then
by substituting into (1) and using the triangle inequality we get that ∞S→→→∞C[a,b] <

C∞ f →→→∞C[a− b−a
2 ,b+ b−a

2 ]. At the point a, we have that [a−4α, a+4α] ≤ [a− b−a
2 , a+

b−a
2 ] and hence S(k)(a) depends only on Ta . Direct computations, similar [4], show

that S(k)(a) = f (k)(a) for k = 0, 1, 2 and is 0 for k = 3. From the continuity of the
integral, we can include the middle point, a+b

2 to the interval corresponding to Tb in
the definition of R, i.e., R̃(x) = Ta(x)χ[a− b−a

2 ,a+ b−a
2 )

(x)+ Tb(x)χ[b− b−a
2 ,b+ b−a

2 ](x)

and repeat the above consideration with a replaced by b. Finally, by construction
S(k)(a) = f (k)(a) for k = 0, 1, 2 and since both have continuous third derivatives
from the Taylor formula for f − S it follows that | f (k)(x) − S(k)(x)| ∩ C | f →→→(ξ) −
S→→→(ξ)|(b − a)3−k ∩ C(b − a)3−k where the constants depend only on f . �

Remark 1 If a function f ∈ C3[a, b] and has one-sided derivatives f (k)(a+) =
limε∇0,ε>0 f (k)(a + ε) and f (k)(b−) = limε∇0,ε>0 f (k)(b − ε) then f can be ex-

tended on the left of a by Qa(x) = f →→→(a+)
6 (x − a)3 + f →→(a+)

2 (x − a)2 + f →(a+)

(x − a) + f (a+) and on the right of b by Qb(x) = f →→→(b−)
6

(x − b)3 + f →→(b−)
2 (x − b)2 + f →(b−)(x − b) + f (b−). In that way the function

F = Qaχ(−∞,a) + f χ[a,b] + Qbχ(−∞,a) ∈ C3(−∞,∞),

F (k)(a) = f (k)(a), F (k)(b) = f (k)(b), k = 0, 1, 2, 3 and F →→→(x) = f →→→(a) for
x ∩ a and F →→→(x) = f →→→(b) for x ∀ b. In Theorem 1, the function F can be used
instead of f and then the norm of f →→→ can be restricted only on [a, b].

In the next section, we consider applications of the above construction in the
case of equidistant interpolation points and discuss improving the interpolation on
subintervals.

3 The Case of Equidistant Points

For a function f ∈ C3[0, 1], we consider Hermite interpolation at the points x j =
j
n , j = 0, . . . , n, and α = 1

8n . Since α is a constant throughout the section we omit it
from the notation. To each of the interpolation points x j , we assign the polynomials
Tξ , defined in Theorem 1, and denote Tj = Tx j ,
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Tj (x) = f (x j ) + f →(x j )(x − x j ) + f →→(x j )

2

(

(x − x j )
2 − 4

3

1

(8n)2

)

.

Then we define R on the extended interval
[− 1

2n , 2n+1
2n

]
as

R(x) =
n∑

j=0

Tj (x)χI j (x),

where I j =
(

2 j−1
2n ,

2 j+1
2n

]
, j = 0, . . . , n and refine it by convolution

S(x) = R ≥ B4(x). (2)

From (2) it follows that S, restricted to the domain of interpolation [0, 1], is a spline
with nodes j

4n , j = 0, . . . , 4n and on each of the intervals between the nodes is an
algebraic polynomial of degree 6. The following theorem holds true:

Theorem 2 For f ∈ C3[0, 1] the spline S belongs to C3[0, 1] and for k = 0, 1, 2
satisfies the Hermite interpolation conditions S(k)(x j ) = f (k)(x j ), j = 0, . . . , n
and the error estimate

∞ f (k) − S(k)∞C[0,1] ∩ Cnk−3,

where the constant C depends only on f .

Proof Since α is constant for any interval I j then the proof is a corollary of Theorem
1 and Remark 1.

Since in the above α = 1
8n is constant on the whole interval we can use the Fast Fourier

Transform( FFT) for constructing the spline. In that way, we keep the complexity
of computations of order O(n) but increase the degree of the spline. In order to
use FFT effectively we extend S periodically. Let x−1 = − 1

n and set S(k)(x−1) =
f (k)(1), k = 0, 1, 2, 3. In [4], we constructed C3 splines on [− 1

n , 0] that interpolate
the Hermite conditions at the end points. The technique described above and Remark
1 also can be used for constructing an extension which third derivative is less than
or equal to ∞ f →→→∞C[0,1]. The resulting function R is periodic with period 1 + 1

n and
belongs to C3. The substitution t = 2πn

n+1 (x + 1
n ) transforms the problem to a Hermite

interpolation for periodic functions on the interval [0, 2π ]. The Fourier transform of
f is f̂ (ξ) = ∫ 2π

0 f (x)e−iξ x dx . It is well known, see [3], that χ̂ (ξ) = sin αξ
αξ

and

hence B̂α(ξ) =
(

sin αξ
αξ

)4
. For practical applications, FFT can be used for computing

the convolution ( the error estimates will increase by a factor of log n).
The Hermite interpolation splines discussed above can be used to improve the ap-

proximation on subintervals. If after initial interpolation at x j = j
n , j = 0, 1, . . . , n

a better approximation is needed on certain subinterval, say [xk, xk+1], k < n − 1
we can iterate the construction from Theorem 2 on that interval by decreasing
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the estimate for the approximation error and preserving the C3 smoothness of the
interpolant.

Corollary 1 Let f ∈ C3[0, 1], S0 be the spline from Theorem 2 that interpolates
f, f →, f →→ at the points x j , j = 0, . . . , n, and S1 be the spline from Theorem 2

that interpolates f, f →, f →→ at the points z j = xk + j
nm , j = 0, . . . , m. Then the

spline S = S1χ[0,xk ]∅[xk+1,1] + S2χ[xk ,xk+1] interpolates f, f →, f →→ at the points x j ∅
zi , j = 0, . . . , n, i = 1, . . . , m − 1, S ∈ C3[0, 1], and ∞ f (r) − S(r)

2 ∞C[xk ,xk+1] <

C(nm)r−3, r = 0, 1, 2 where C depends only on f .

Proof The interpolation and the error estimate follow from Theorem 2. The third
derivative at each of the interpolation points is 0 as it was shown in Theorem 1 and
hence the spline S ∈ C3[0, 1]. �
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Best Polynomial Approximation on the Unit
Sphere and the Unit Ball

Yuan Xu

Abstract This is a survey on best polynomial approximation on the unit sphere and
the unit ball. The central problem is to describe the approximation behavior of a
function by polynomials via smoothness of the function. A major effort is to identify
a correct gadget that characterizes smoothness of functions, either a modulus of
smoothness or a K -functional, both of which are often equivalent. We concentrate
on characterization of best approximations, given in terms of direct and converse
theorems, and report several moduli of smoothness and K -functionals, including
recent results that give a fairly satisfactory characterization of best approximation
by polynomials for functions in L p spaces, the space of continuous functions, and
Sobolev spaces.

Keywords Best polynomial approximation · Unit sphere · Unit ball · Modulus of
smoothness · K -functional

1 Introduction

One of the central problems in approximation theory is to characterize the error of
approximation of a function by the smoothness of the function. In this paper, we
make a short survey of best approximation by polynomials on the unit sphere S

d−1

and the unit ball Bd in R
d with

S
d−1 = {x ∈ R

d : ≥x≥ = 1} and B
d = {x : ≥x≥ ∩ 1},

where ≥x≥ denotes the Euclidean norm of x . To get a sense of the main problem and
its solution, let us consider first S1 and B

1.
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If we parameterize S1 by (cos θ, sin θ) with θ ∈ [0, 2π) and identify a function f
defined onS1 with the 2π periodic function g(θ) = f (cos θ, sin θ), then polynomials
on S

1 are precisely trigonometric polynomials, so that polynomial approximation of
functions on the circle S1 is the same as trigonometric approximation of 2π -periodic
functions. Let Tn denote the space of trigonometric polynomials of degree at most
n, Tn := {a0 +∑n

k = 1 ak cos kθ + bk sin kθ : ak, bk ∈ R}. Let ≥ · ≥p denote the
L p(S1) norm of 2π -periodic functions on [0, 2π) if 1 ∩ p < →, and the uniform
norm of C(S1) if p = →. For f ∈ L p(S1) if 1 ∩ p < →, or f ∈ C(S1) if p = →,
define

En( f )p := inf
tn∈Tn

≥ f − tn≥p,

the error of best approximation by trigonometric polynomials. The convergence
behavior of En( f )p is usually characterized by a modulus of smoothness. For f ∈
L p(S1) if 1 ∩ p < → or f ∈ C(S1) if p = →, r = 1, 2, . . . and t > 0, the modulus
of smoothness defined by the forward difference is

ωr ( f ; t)p := sup
|θ |∩t

∥
∥
∥
−∞≤ r

θ f
∥
∥
∥

p
, 1 ∩ p ∩ →,

where
−∞≤ h f (x) := f (x + h) − f (x) and

−∞≤ r
h := −∞≤ r−1

h
−∞≤ h . The characterization

of best approximation on S
1 is classical (cf. [11, 26]).

Theorem 1.1 For f ∈ L p(S1) if 1 ∩ p < → or f ∈ C(S1) if p = →,

En( f )p ∩ c ωr

(
f ; n−1

)

p
, 1 ∩ p ∩ →, n = 1, 2, .... (1)

On the other hand,

ωr ( f ; n−1)p ∩ c n−r
n∑

k = 1

kr − 1 Ek − 1( f )p, 1 ∩ p ∩ →. (2)

The theorem contains two parts. The direct inequality (1) is called the Jackson
estimate, its proof requires constructing a trigonometric polynomial that is close to
the best approximation. The weak converse inequality (2) is called the Bernstein
estimate as its proof relies on the Bernstein inequality. Throughout this paper, we let
c, c1, c2 denote constants independent of f and n. Their values may differ at different
times.

Another important gadget, often easier to use in theoretical studies, is the
K -functional defined by

Kr ( f, t)p := inf
g∈Wr

p

{
≥ f − g≥p + tr≥g(r)≥p

}
,
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where W r
p denotes the Sobolev space of functions whose derivatives up to r -th order

are all in L p(S1). The modulus of smoothness ωr ( f, t)p and the K-function Kr ( f, t)p

are known to be equivalent: for some constants c2 > c1 > 0, independent of f and t ,

c1 Kr ( f, t)p ∩ ωr ( f, t)p ∩ c2 Kr ( f, t)p. (3)

All characterizations of best approximation, either on the sphere S
d−1 or on the

ball Bd , encountered in this paper follow along the same line: we need to define an
appropriate modulus of smoothness and use it to establish direct and weak converse
inequalities; and we can often define a K -functional that is equivalent to the modulus
of smoothness.

Convention In most cases, our direct and weak converse estimates are of the same
form as those in (1) and (2). In those cases, we simply state that the direct and weak
converse theorems hold and will not state them explicitly.

We now turn our attention to approximation by polynomials on the interval B1 :=
[−1, 1]. Let Πn denote the space of polynomials of degree n and let ≥ · ≥p also
denote the L p norm of functions on [−1, 1] as in the case of S1. For f ∈ L p(B1),
1 ∩ p < →, or f ∈ C(B1) for p = →, define

En( f )p := inf
tn ∈Πn

≥ f − pn≥p, 1 ∩ p ∩ →.

The difficulty in characterizing En( f )p lies in the difference between approximation
behavior at the interior and at the boundary of B1. It is well known that polynomial
approximation on B

1 displays a better convergence behavior at points close to the
boundary than at points in the interior. A modulus of smoothness that is strong enough
for both direct and converse estimates should catch this boundary behavior.

There are several successful definitions of modulus of smoothness in the literature.
The most satisfactory one is that of Ditzian and Totik in [15]. For r ∈ N and h > 0,
let ≤̂r

h denote the central difference of increment h, defined by

≤̂h f (x) = f (x + h
2 ) − f (x − h

2 ) and ≤̂r
h = ≤̂r−1

h ≤, r = 2, 3, . . . . (4)

Let ϕ(x) := ∇
1 − x2. For r = 1, 2 . . ., and 1 ∩ p ∩ →, the Ditzian-Totik moduli

of smoothness are defined by

ωr
ϕ( f, t)p := sup

0 < h ∩ t

∥
∥
∥≤̂r

hϕ f
∥
∥
∥

L p[−1,1] , (5)

where Δ̂r
hϕ(x) f (x) = 0 if x ± rhϕ(x)/2 /∈ [−1, 1]. Both direct theorem and weak

converse theorem for En( f )p hold for this modulus of smoothness. Furthermore,
the K -functional that is equivalent to this modulus of smoothness is defined by, for
t > 0 and r = 1, 2 . . .,
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Kr, ϕ( f, t)p := inf
g∈Cr [−1, 1]

{
≥ f − g≥p + tr≥ϕr g(r)≥p

}
. (6)

In the rest of this paper, we discuss characterization of the best approximation on
the sphereSd−1 and on the ballBd . The problem for higher dimension is much harder.
For example, functions on S

d−1 are no longer periodic, and there are interactions
between variables for functions on S

d−1 and B
d .

The paper is organized as follows. The characterization of best approximation
on the sphere is discussed in the next section, and the characterization on the ball is
given in Sect. 3. In Sect. 4 we discuss recent results on Sobolev approximation on the
ball, which are useful for spectral methods for numerical solution of partial differ-
ential equations. The paper ends with a problem on characterizing best polynomial
approximation of functions in Sobolev spaces.

2 Approximation on the Unit Sphere

We start with necessary definitions on polynomial spaces and differential operators.

2.1 Spherical Harmonics and Spherical Polynomials

For Sd−1 with d ≥ 3, spherical harmonics play the role of trigonometric functions
for the unit circle. There are many books on spherical harmonic—we follow [10].
Let Pd

n denote the space of real homogeneous polynomials of degree n and let Πd
n

denote the space of real polynomials of degree at most n. It is known that

dim Pd
n =

(
n + d − 1

n

)

and dim Πd
n =

(
n + d

n

)

.

Let Δ := ∂2
1 + · · ·+ ∂2

d denote the usual Laplace operator. A polynomial P ∈ Πd
n is

called harmonic if ΔP = 0. For n = 0, 1, 2, . . . let H d
n := {

P ∈ Pd
n : ΔP = 0

⎢

be the linear space of real harmonic polynomials that are homogeneous of degree n.
Spherical harmonics are the restrictions of elements in H d

n on the unit sphere. It is
known that

ad
n := dim H d

n = dim Pd
n − dim Pd

n−2.

Let Πd
n (Sd−1) denote the space of polynomials restricted on S

d−1. Then

Πd
n (Sd−1) =

⊕

0 ∩ j ∩ n/2

H d
n − 2 j

∣
∣
∣
Sd−1

and dim Πd
n (Sd−1) = dim Pd

n + dimPd
n − 1.
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For x ∈ R
d , write x = rξ , r ≥ 0, ξ ∈ S

d−1. The Laplace operator can be written
as

Δ = ∂2

∂r2 + d − 1

r

∂

∂r
+ 1

r2 Δ0,

where Δ0 is a differential operator on ξ , called the Laplace-Beltrami operator; see
[10, Sect. 1.4]. The spherical harmonics are eigenfunctions of Δ0. More precisely,

Δ0Y (ξ) = −n(n + d − 2)Y (ξ), Y ∈ H d
n .

The spherical harmonics are orthogonal polynomials on the sphere. Let dσ be the
surface measure, and ωd − 1 be the surface area of Sd−1. For f, g ∈ L1(Sd−1), define

∀ f, g∅Sd−1 := 1

ωd − 1

⎥

Sd−1
f (ξ)g(ξ)dσ(ξ).

If Yn ∈ H d
n for n = 0, 1, . . ., then ∀Yn, Ym∅Sd−1 = 0 if n ⊂= m. A basis {Y n

ν :
1 ∩ ν ∩ ad

n } of H d
n is called orthonormal if ∀Yν, Yμ∅Sd−1 = δν,μ. In terms of

an orthonormal basis, the reproducing kernel Zn, d(·, ·) of H d
n can be written as

Zn, d(x, y) = ∑
1 ∩ ν ∩ ad

n
Yν(x)Yν(y), and the addition formula for the spherical

harmonics states that

Zn, d(x, y) = n + λ

λ
Cλ

n (∀x, y∅), λ = d − 2

2
, (7)

where Cλ
n is the Gegenbauer polynomial of one variable. If f ∈ L2(Sd−1), then the

Fourier orthogonal expansion of f can be written as

f =
→∑

n = 0

projn f, projn : L2(Sd−1) ◦∞ H d
n ,

where the projection operator projn can be written as an integral

projn f (x) = 1

ωd − 1

⎥

Sd−1

f (y)Zn, d(x, y)dσ(y).

For f ∈ L p(Sd−1), 1 ∩ p < →, or f ∈ C(Sd−1) if p = →, the error of best
approximation by polynomials of degree at most n on S

d−1 is defined by

En( f )p := inf
P∈Πn(Sd−1)

≥ f − P≥p, 1 ∩ p ∩ →,

where the norm ≥ · ≥p denotes the usual L p norm on the sphere and ≥ · ≥→ denotes
the uniform norm on the sphere. Our goal is to characterize this quantity in terms of
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some modulus of smoothness. The direct theorem of such a characterization requires
a polynomial that is close to the least polynomial that approximates f . For p = 2,
the n-th polynomial of best approximation is the partial sum,

Sn f =
n∑

k = 0

projk f,

of the Fourier orthogonal expansion, as the standard Hilbert space theory shows. For
p ⊂= 2, a polynomial of near best approximation can be given in terms of a cut-off
function, which is a C→-function η on [0,→) such that η(t) = 1 for 0 ∩ η(t) ∩ 1
and η(t) = 0 for t ≥ 2. If η is such a function, define

Sn,η f (x) :=
→∑

k = 0

η

(
k

n

)

projk f (x). (8)

Since η is supported on [0, 2], the summation in Sn, η f can be terminated at k =
2n − 1, so that Sn, η f is a polynomial of degree at most 2n − 1.

Theorem 2.1 Let f ∈ L p(Sd−1) if 1 ∩ p < → and f ∈ C(Sd−1) if p = →. Then

(1) Sn, η f ∈ Πn(Sd−1) and Sn,η f = f for f ∈ Πd
n (Sd−1).

(2) For n ∈ N, ≥Sn, η f ≥p ∩ c≥ f ≥p.
(3) For n ∈ N, there is a constant c > 0, independent of f , such that

≥ f − Sn, η f ≥p ∩ (1 + c)En( f )p.

This near-best approximation was used for approximation on the sphere already in
[18] and it has become a standard tool by now. For further information, including a
sharp estimate of its kernel function, see [10].

2.2 First Modulus of Smoothness and K-functional

The first modulus of smoothness is defined in terms of spherical means.

Definition 2.2 For 0 ∩ θ ∩ π and f ∈ L1(Sd−1), define the spherical means

Tθ f (x) := 1

ωd − 1

⎥

S⊥
x

f (x cos θ + u sin θ)dσ(u),

where S⊥
x := {y ∈ S

d−1 : ∀x, y∅ = 0}. For f ∈ L p(Sd−1), 1 ∩ p < →, or C(Sd−1),
p = →, and r > 0, define
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ω⇒
r ( f, t)p := sup

|θ | ∩ t
≥(I − Tθ )

r/2 f ≥p, (9)

where (I − Tθ )
r/2 is defined by its formal infinite series when r/2 is not an integer.

The equivalent K -functional of this modulus is defined by

K ⇒
r ( f, t)p := inf

g

⎫

≥ f − g≥p + tr
∥
∥
∥(−Δ0)

r/2g
∥
∥
∥

p

⎬

, (10)

where Δ0 is the Laplace-Beltrami operator on the sphere and the infimum is taken
over all g for which (−Δ0)

r/2g ∈ L p(Sd−1).
This modulus of smoothness was first defined and studied in [4, 23].

Theorem 2.3 For 1 ∩ p ∩ →, the modulus of smoothness ω⇒
r ( f, t)p can be used to

establish both direct and weak converse theorems, and it is equivalent to K ⇒
r ( f, t)p.

The direct and the weak converse theorems were established in various stages by
several authors (see [4, 17, 21–23, 27] for further references), before it was finally
established in full generality by Rustamov [25]. A complete proof is given in [27]
and a simplified proof can be found in [10].

The spherical means Tθ are multiplier operators of Fourier orthogonal series, i.e.,

projn Tθ f = Cλ
n (cos θ)

Cλ
n (1)

projn f, λ = d − 2

2
, n = 0, 1, 2, . . . . (11)

This fact plays an essential role in studying this modulus of smoothness.
It should be mentioned that this multiplier approach can be extended to weighted

approximation on the sphere, in which dσ is replaced by h2
κdσ , where hκ is a function

invariant under a reflection group. The simplest of such weight function is of the form

hκ(x) =
d⎭

i = 1

|xi |κi , κi ≥ 0, x ∈ S
d−1,

when the group is Zd
2 . Such weight functions were first considered by Dunkl associ-

ated with Dunkl operators. An extensive theory of harmonic analysis for orthogonal
expansions with respect to h2

κ(x)dσ has been developed (cf. [8, 16]), in parallel with
the classical theory for spherical harmonic expansions. The weighted best approxi-
mation in L p(h2

κ ;Sd−1) norm was studied in [29], where analogs of the modulus of
smoothness ω⇒

r ( f, t)p and K-functional K ⇒
r ( f, t)p are defined with ≥·≥p replaced by

the norm of L p(h2
κ ;Sd−1) for hκ invariant under a reflection group, and a complete

analog of Theorem 2.3 was established.

The advantages of the moduli of smoothness ω⇒
r ( f, t)p are that they are well-

defined for all r > 0 and they have a relatively simple structure through multipliers.
These moduli, however, are difficult to compute even for simple functions.
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2.3 Second Modulus of Smoothness and K-functional

The second modulus of smoothness on the sphere is defined through rotations on
the sphere. Let SO(d) denote the group of orthogonal matrix of determinant 1. For
Q ∈ SO(d), let T (Q) f (x) := f (Q−1x). For t > 0, define

Ot :=
⎫

Q ∈ SO(d) : max
x ∈Sd−1

d(x, Qx) ∩ t

⎬

,

where d(x, y) := arccos ∀x, y∅ is the geodesic distance on S
d−1.

Definition 2.4 For f ∈ L p(Sd−1), 1 ∩ p < →, or C(Sd−1), p = →, and r > 0,
define

⎛ωr ( f, t)p := sup
Q ∈ Ot

≥≤r
Q f ≥p, where ≤r

Q := (I − TQ)r . (12)

For r = 1 and p = 1, this modulus of smoothness was introduced and used in
[5] and further studied in [19]. For studying best approximation on the sphere, these
moduli were introduced and investigated by Ditzian in [12] and he defined them for
more general spaces, including L p(Sd−1) for p > 0.

Theorem 2.5 The modulus of smoothness ⎛ωr ( f, t)p can be used to establish both
direct and weak converse theorems for 1 ∩ p ∩ →, and it is equivalent to the
K -functional K ⇒

r ( f, t)p for 1 < p < →, but the equivalence fails if p = 1 or
p = →.

The direct and weak converse theorems were established in [13] and [12], respec-
tively. The equivalence of ⎛ωr ( f ; t)p and K ⇒

r ( f, t)p for 1 < p < → was proved in
[7], and the failure of the equivalence for p = 1 and → was shown in [14].

The equivalence passes to the moduli of smoothness and shows in particular that
⎛ωr ( f ; t)p is equivalent to the first modulus of smoothness ω⇒

r ( f ; t)p for 1 < p < →
but not for p = 1 and p = →.

One advantage of the second moduli of smoothness ⎛ωr ( f ; t)p is that they are
independent of the choice of coordinates. These moduli, however, are also difficult
to compute even for fairly simple functions.

2.4 Third Modulus of Smoothness and K-functional

The third modulus of smoothness on the sphere is defined in terms of moduli of
smoothness of one variable on multiple circles. For 1 ∩ i, j ∩ d, we let ≤r

i, j,t be the
r -rh forward difference acting on the angle of the polar coordinates on the (xi , x j )

plane. For instance, take (i, j) = (1, 2) as an example,
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≤r
1, 2, θ f (x) = −∞≤ r

θ f (x1 cos(·) − x2 sin(·), x1 sin(·) + x2 cos(·), x3, . . . , xd).

Notice that if (xi , x j ) = si, j (cos θi, j , sin θi, j ) then

(x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ) = si, j cos(θi, j + θ),

so that ≤r
1,2,θ f (x) can be regarded as a difference on the circle of the (xi , x j ) plane.

Definition 2.6 For r = 1, 2, . . ., t > 0, and f ∈ L p(Sd−1), 1 ∩ p < →, or
f ∈ C(Sd−1) for p = →, define

ωr ( f, t)p := max
1 ∩ i < j ∩ d

sup
|θ | ∩ t

∥
∥
∥≤r

i, j, θ f
∥
∥
∥

p
. (13)

The equivalent K -functional is defined using the angular derivative

Di, j := xi∂ j − x j∂i = ∂

∂θi, j
, 1 ∩ i ⊂= j ∩ d

where θi, j is the angle of polar coordinates in (xi , x j )-plane defined as above. For
r ∈ N0 and t > 0, the K -functional is defined by

Kr ( f, t)p := inf
g

⎫

≥ f − g≥p + tr max
1 ∩ i < j ∩ d

≥Dr
i, j g≥p

⎬

, (14)

where g is taken over all g ∈ L p(Sd−1) for which Dr
i, j g ∈ L p(Sd−1) for all

1 ∩ i, j ∩ d.

Theorem 2.7 The modulus of smoothness ωr ( f, t)p can be used to establish both
direct and weak converse theorems, and is equivalent to Kr ( f, t)p for 1 ∩ p ∩ →.

These moduli and K -functionals were introduced in [8], where the above theorem
was proved. Furthermore, it was also shown that

Kr ( f, n−1)p ∃ ≥ f − Sn,η f ≥p + n−r max
1 ∩ i < j ∩ d

≥Dr
i, j Sn, η f ≥p,

where Sn,η is the polynomial defined in (8).
For comparison with the other two moduli of smoothness, it was proved in [8]

that for r = 1, 2, . . . and 1 ∩ p ∩ →,

ωr ( f, t)p ∩ ⎛ωr ( f, t)p, 0 < t < 1.

Furthermore, for 1 < p < →, the two moduli of smoothness are equivalent if r = 1
or r = 2. Thus, the direct theorem with ωr ( f, t)p is at least not weaker than the
one with either one of the other two moduli of smoothness. Furthermore, all three
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moduli are equivalent if 1 < p < → and r = 1 or 2. It remains an open problem if
ωr ( f, t)p is equivalent to the other two moduli of smoothness for 1 < p < → and
r ≥ 3 or for p = 1 and p = →.

The angular derivatives are related to the Laplace-Beltrami operator by

Δ0 =
∑

1∩i< j∩d

D2
i, j .

Since the K -functional K ⇒
r ( f, t)p is defined in terms of Δ0 and the K -function

Kr ( f, t) is defined in terms of Di, j , it indicates that Kr ( f, t)p may be stronger than
K ⇒

r ( f, t)p if we believe that the parts encode more information than the whole.
The main advantage of the modulus of smoothness ωr ( f, t)p lies in the fact that

it is defined in terms of moduli of smoothness of one variable, which allows us to tap
into the well-established theory of trigonometric approximation of one variable, and
it also means that ωr ( f, t)p can be computed relatively easily (see [8] for examples).

One interesting phenomenon observed from the computational example is that
the best approximation on S

d−1 for d ≥ 3 displays a boundary behavior rather like
approximation by polynomials on [−1, 1]. This is not all that surprising on second
thought, but it does put d = 2 in approximation on S

d−1 apart from d ≥ 3.

3 Approximation on the Unit Ball

On the unit ball, we often work with weighted approximation with a fairly general
weight function. We shall restrict our discussion to the classical weight function

wμ(x) := (1 − ≥x≥2)μ−1/2, μ > −1/2, x ∈ B
d ,

for which the most has been done. We start with an account of orthogonal structure.

3.1 Orthogonal Structure on the Unit Ball

For the weight function Wμ, we consider the space L p(wμ,Bd) for 1 ∩ p < → or
C(Bd) when p = →. The norm of the space L p(wμ,Bd) will be denoted by ≥ f ≥μ,p,
taken with the measure wμ(x)dx . The inner product of L2(wμ,Bd) is defined by

∀ f, g∅μ, p := bμ

⎥

Bd

f (x)g(x)wμ(x)dx,

where bμ is the normalization constant of wμ such that ∀1, 1∅μ, p = 1. Let V d
n (wμ)

denote the space of polynomials of degree n that are orthogonal to polynomials in
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Πd
n−1 with respect to the inner product ∀·, ·∅μ,p. It is known that dim V d

n (wμ) =
⎝n+d−1

n

⎞
. The orthogonal polynomials in V d

n (wμ) are eigenfunctions of a second-
order differential operator: for g ∈ V d

n (wμ),

Dμg := ⎝Δ − ∀x,∇∅2 − (2μ + d − 1)∀x,∇∅⎞g = −n(n + 2μ + d − 1)g. (15)

For ν ∈ N
d
0 with |ν| = n, let Pn

ν denote an orthogonal polynomial in V d
n (wμ).

If {Pn
ν : |ν| = n} is an orthonormal basis of V d

n , then the reproducing kernel
Pn(wμ; ·, ·) of V d

n (wμ) can be written as Pn(wμ; x, y) =∑|ν|=n Pn
ν (x)Pn

ν (y). This
kernel satisfies a closed-form formula [28] that will be given later in this section. Let
L2(wμ,Bd), then the Fourier orthogonal expansion of f can be written as

f =
→∑

n=0

projμn f, projμn : L2(wμ,Bd) ◦∞ V d
n (wμ),

where the projection operator projn can be written as an integral

projμn f (x) = bμ

⎥

Bd

f (y)Pn(wμ; x, y)wμ(y)dy.

For f ∈ L p(wμ,Bd), 1 ∩ p < →, or f ∈ C(Bd) if p = →, the error of best
approximation by polynomials of degree at most n is defined by

En( f )μ, p := inf
P∈Πd

n

≥ f − P≥μ, p, 1 ∩ p ∩ →.

The direct theorem for En( f )μ,p is also established with the help of a polynomial
that is a near-best approximation to f . For p = 2, the best polynomial of degree n is
again the partial sum, Sμ

n f :=∑n
k = 0 projμk f , of the Fourier orthogonal expansion,

whereas for p ⊂= 2 we can choose the polynomial as

Sμ
n,η f (x) :=

→∑

k = 0

η

(
k

n

)

projμk f (x), (16)

where η is a cut-off function as in (8). The analog of Theorem 2.1 holds for Sμ
n,η and

≥ · ≥μ, p norm.
If μ is an integer or a half-integer, then the orthogonal structure of L2(wμ,Bd)

is closely related to the orthogonal structure on the unit sphere, which allows us to
deduce many properties for analysis on the unit ball from the corresponding results
on the unit sphere. The connection is based on the following identity: if d and m are
positive integers, then for any f ∈ L(Sd+m−1),
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⎥

Sd+m−1

f (y)dσd+m =
⎥

Bd

(1 − ≥x≥2)
m − 2

2

⎠ ⎥

Sm − 1

f
(

x,
⎤

1 − ≥x≥2ξ
)

dσm(ξ)

⎧

dx .

This relation allows us to relate the space V d
n (wμ) with μ = m−1

2 directly to a
subspace of H d+m

n , which leads to a relation between the reproducing kernels.
For μ = m−1

2 , the reproducing kernel Pn(wμ; ·, ·) satisfies, for m > 1,

Pn(wμ; x, y) = 1

ωm

⎥

Sm−1

Zn, d + m

(
(x, x ′), (y,

⎪

1 − ≥y≥2ξ)
)

dσm(ξ),

where (x, x ′) ∈ S
d + m−1 with x ∈ B

d and x ′ = ≥x ′≥ξ ∈ B
m with ξ ∈ S

m−1, and it
satisfies, for m = 1 and yd + 1 = ⎤1 − ≥y≥2,

Pn(w0; x, y) = 1

2

⎨
Zn, d + m

⎝
(x, x ′), (y, yd + 1)

⎞+ Zn,d + m
⎝
(x, x ′), (y,−yd + 1)

⎞⎩
.

Using the identity (7), we can then obtain a closed-form formula for Pn(wμ; ·, ·),
which turns out to hold for all real μ > −1/2.

3.2 First Modulus of Smoothness and K-functional

The first modulus of smoothness on the unit ball is an analog of ω⇒
r ( f, t)p on the

sphere, defined in the translation operator T μ
θ . Let I denote the identity matrix and

A(x) := (1 − ≥x≥2)I + xT x, x = (x1, . . . , xd) ∈ B
d .

For Wμ on B
d , the generalized translation operator is given by

T μ
θ f (x) = bμ(1 − ≥x≥2)

d − 1
2

⎥

Ω

f
⎝

cos θx + sin θ

⎪

1 − ≥x≥2 u
⎞ (

1 − u A(x)uT
)μ− 1

du,

where Ω is the ellipsoid Ω = {u : u A(x)uT ∩ 1} in R
d .

Definition 3.1 Let f ∈ L p(Wμ,Bd) if 1 ∩ p < →, and f ∈ C(Bd) if p = →. For
r = 1, 2, . . . , and t > 0, define

ω⇒
r ( f, t)μ, p := sup

|θ |∩t
≥≤r

θ, μ f ≥p, κ , ≤r
θ, μ f := ⎝I − T μ

θ

⎞r/2
f.

The equivalent K -functional is defined via the differential operator Dμ in (15),

K ⇒
r ( f, t)μ, p := inf

g

{≥ f − g≥μ, p + tr≥Dr
μg≥μ, p

⎢
,
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where g is taken over all g ∈ L p(Wμ,Bd) for which Dr
μg ∈ L p(Wμ,Bd).

Theorem 3.2 For 1 ∩ p ∩ →, the modulus of smoothness ω⇒
r ( f, t)μ, p can be

used to establish both direct and weak converse theorems, and it is equivalent to
K ⇒

r ( f, t)μ, p.

These moduli of smoothness and K -functionals were defined in [29] and Theo-
rem 3.2 was also proved there. The integral formula of T μ

θ f was found in [30]. In
fact, these results were established for more general weight functions of h2

κwμ with
hκ being a reflection invariant function. The operator T μ

θ is a multiplier operator and
satisfies

projμn
⎝
T μ

θ f
⎞ = C

λμ
n (cos θ)

C
λμ
n (1)

projμn f, λμ = μ + d − 1

2
, n = 0, 1, . . . ,

which is an analog of (11). The proof of Theorem 3.2 can be carried out following
the proof of Theorem 2.3.

The advantage of the moduli of smoothness ω⇒
r ( f, t) are that they are well-defined

for all r > 0 and their connection to multipliers, just like the first moduli of smooth-
ness on the sphere. These moduli, however, are difficult to compute even for simple
functions.

3.3 Second Modulus of Smoothness and K-functional

The second modulus of smoothness is inherited from the third moduli of smoothness
on the sphere. With a slight abuse of notation, we write wμ(x) := (1 − ≥x≥2)μ− 1

2

for either the weight function on B
d or that on B

d+1, and write ≤r
i, j, θ for either the

difference operator on R
d or that on R

d + 1. This should not cause any confusion
from the context. We denote by ⎛f the extension of f defined by

⎛f (x, xd + 1) = f (x), (x, xd+1) ∈ B
d + 1, x ∈ B

d .

Definition 3.3 Let μ = m − 1
2 , f ∈ L p(wμ,Bd) if 1 ∩ p < → and f ∈ C(Bd) if

p = →. For r = 1, 2 . . . , and t > 0, define

ωr ( f, t)p,μ := sup
|θ | ∩ t

{
max

1 ∩ i < j ∩ d
≥≤r

i, j, θ f ≥L p(Bd , Wμ),

max
1 ∩ i ∩ d

≥≤r
i, d + 1, θ

⎛f ≥L p(Bd + 1,Wμ − 1/2)

}
,

where for m = 1, ≥≤r
i, d + 1,θ

⎛f ≥L p(Bd + 1,Wμ − 1/2)
is replaced by ≥≤r

i, d + 1, θ
⎛f ≥L p(Sd ).

The equivalent K -functional is defined in terms of the angular derivatives Di, j ,
and is defined for all μ ≥ 0 by
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Kr ( f, t)p, μ := inf
g∈Cr (Bd )

{
≥ f − g≥L p(Wμ;Bd ) + tr max

1 ∩ i < j ∩ d
≥Dr

i, j g≥L p(Wμ;Bd )

+ tr max
1 ∩ i ∩ d

≥Dr
i, d + 1⎛g≥L p(Wμ − 1/2;Bd + 1)

}
,

where if μ = 0, then ≥Dr
i, d + 1⎛g≥L p(Wμ − 1/2;Bd + 1) is replaced by ≥Dr

i, d + 1⎛g≥L p(Sd ).

Theorem 3.4 Let μ = m−1
2 . For 1 ∩ p ∩ →, the modulus of smoothness

ωr ( f, t)μ, p can be used to establish both direct and weak converse theorems, and is
equivalent to Kr ( f, t)μ, p.

The moduli of smoothness ωr ( f, t)p,μ and the K -functionals Kr ( f, t)p,μ were
introduced in [8] and Theorem 3.4 was proved there. The proof relies heavily on
the correspondence between L p(wμ,Bd) and L p(Sd + m − 1). In the definition of
ωr ( f, t)μ, p, the term that involves the difference of ⎛f may look strange but it is
necessary, since ≤r

i, j,θ are differences in the spherical coordinates.
For comparison with the first modulus of smoothness ω⇒

r ( f, t)μ, p, we only have
that for 1 < p < →, r = 1, 2, . . . and 0 < t < 1,

ωr ( f, t)p, μ ∩ cω⇒
r ( f, t)p, μ.

In all other cases, equivalences are open problems. Furthermore, the main results are
established only for μ = m − 1

2 , but they should hold for all μ ≥ 0 and perhaps even
μ > −1/2, which, however, requires a different proof from that of [8].

One interesting corollary is that, for d = 1, ωr ( f, t)μ, p defines a modulus of
smoothness onB1 = [−1, 1] that is previously unknown. For μ = m−1

2 , this modulus
is given by, for f ∈ L p(wμ, [−1, 1]),

ωr ( f, t)p, mu := sup
|θ | ∩ t




cμ

⎥

B2

∣
∣≤r

θ f (x1 cos(·) + x2 sin(·))∣∣p wμ− 1
2
(x)dx




⎜

1/p

.

One advantage of the moduli of smoothness is that they can be relatively easily
computed. Indeed, they can be computed just like the second modulus of smoothness
on the sphere; see [8] for several examples.

3.4 Third Modulus of Smoothness and K-functional

The third modulus of smoothness on the unit ball is similar to ωr ( f, t)p,μ, but with
the term that involves the difference of ⎛f replaced by another term that resembles the
difference in the Ditzian–Totik modulus of smoothness. To avoid the complication
of the weight function, we state this modulus of smoothness only for μ = 1/2 for
which wμ(x) = 1. In this section, we write ≥ · ≥p := ≥ · ≥1/2,p.
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Let ei be the i-th coordinate vector ofRd and let Δ̂r
hei

be the r -th central difference
in the direction of ei . More precisely,

Δ̂hei f (x) := f (x + hei ) − f (x − hei ), Δ̂r+1
hei

f (x) = Δ̂hei Δ̂
r
hei

f (x).

As in the case of [−1, 1], we assume that Δ̂r
hei

is zero if either of the points x ± r h
2 ei

does not belong to B
d .

Definition 3.5 Let f ∈ L p(Bd) if 1 ∩ p < → and f ∈ C(Bd) if p = →. For
r = 1, 2, . . . and t > 0,

ωr
ϕ( f, t)p := sup

0 < |h| ∩ t

{
max

1 ∩ i < j ∩ d
≥≤r

i, j, h f ≥p, max
1 ∩ i ∩ d

≥≤̂r
hϕei

f ≥p

}
.

With ϕ(x) := ⎤1 − ≥x≥2, the equivalent K -functional is defined by

Kr, ϕ( f, t)p := inf
g∈Wr

p(Bd )

{
≥ f −g≥p+tr max

1 ∩ i < j ∩ d
≥Dr

i, j g≥p+tr max
1 ∩ i ∩ d

≥ϕr∂r
i g≥p

}
.

Theorem 3.6 For 1 ∩ p ∩ →, the modulus of smoothness ωr
ϕ( f, t)μ, p can be used

to establish both direct and weak converse theorems, where the direct estimate takes
the form

En( f )p ∩ c ωr
ϕ( f, n−1)p + n−r≥ f ≥p

in which the additional term n−r≥ f ≥p can be dropped when r = 1, and it is equiv-
alent to Kr,ϕ( f, t) in the sense that

c−1ωr
ϕ( f, t)p ∩ Kr, ϕ( f, t)p ∩ c ωr

ϕ( f, t)p + c tr≥ f ≥p,

where the term tr≥ f ≥p on the right-hand side can be dropped when r = 1.

These moduli of smoothness and K -functionals were also defined in [8], and
Theorem 3.6 was proved there. For d = 1, they agree with the Ditzian–Totik moduli
of smoothness and K -functionals. The K -functional Kr,ϕ( f, t)μ, p can be defined
by replacing ≥ · ≥p with ≥ · ≥μ, p in the definition of Kr, ϕ( f, t)p, which were used to
prove direct and weak converse theorems for En( f )μ, p in terms of the K -functionals
in [8].

For comparison with the second K -functional Kr ( f, t)μ, p, which is only defined
for μ = m−1

2 , m = 1, 2, . . ., we know that for 1 ∩ p ∩ →,

K1, ϕ( f, t)μ, p ∃ K1( f, t)μ, p

and, for r > 1, there is a tr > 0 such that

Kr ( f, t)μ, p ∩ c Kr, ϕ( f, t)μ, p + c tr≥ f ≥μ, p, 0 < t < tr ,
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where we need to assume that r is odd if p = in f t y. We can also state the result for
comparison of the moduli of smoothness ωr, ϕ( f, t)p and ωr ( f, t)1/2,p accordingly.
The other direction of the equivalence for r = 2, 3, . . . remains open.

The advantages of the modulus of smoothness ωr
ϕ( f, t)p and the K -functional

ωr
ϕ( f, t)p are that they are more intuitive, as direct extensions of the Ditizian–Totik

modulus of smoothness and K -functional, and that the modulus of smoothness is
relatively easy to compute.

4 Approximation in the Sobolev Space on the Unit Ball

For r = 1, 2, . . . we consider the Sobolev space W p
r (Bd) with the norm defined by

≥ f ≥W p
r (Bd ) =

( ∑

|α| ∩ r

≥∂α f ≥p

)1/p
.

The direct theorem given in terms of the K -functional yields immediately an estimate
of En( f )p for functions in the Sobolev space. In the spectral method for solving
partial differential equations, we often want estimates for the errors of derivative
approximation as well. In this section, we again let ≥ · ≥p = ≥ · ≥1/2,p.

Approximation in Sobolev space requires estimates of derivatives. One such result
was proved in [9], which includes the following estimates:

≥Dr
i, j ( f − Sμ

n f )≥p, μ ∩ cEn(Dr
i, j f )p, μ, 1 ∩ i < j ∩ d,

and a similar estimate that involves Di,d+1 ⎛f . However, what we need is an estimate
that involves only derivatives ∂α instead of Dr

i, j . In this regard, the following result
can be established:

Proposition 4.1 If f ∈ W s
p(B

d) for 1 ∩ p < →, or f ∈ Cs(Bd) for p = →, then
for |α| = s,

∥
∥φ|α|/p(∂α f − ∂α Sn, η f )

∥
∥

p ∩ cEn−|α|(∂α f )p ∩ cn−s≥ f ≥W s
p(Bd ), (17)

where Sn, η f = S1/2
n,η f is the near-best approximation defined in (16).

The estimate (17) in the proposition, however, is still weaker than what is needed
in the spectral method, which requires an estimate similar to (17) but without the
term [φ(x)]|α|/p = (1 − ≥x≥2)|α|/p. It turns out that the near-best approximation
Sn, η is inadequate for obtaining such an estimate. What we need is the orthogonal
structure of the Sobolev space W r

2 (Bd).
The orthogonal structure of W r

2 (Bd) was studied first in [32] for the case r = 1,
and in [24, 31] for the case r = 2, and in [20] for general r . The inner product of
W r

2 (Bd) is defined by
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∀ f, g∅−s := ∀∇s f,∇s g∅Bd +
∪ s

2 �−1∑

k = 0

∀Δk f,Δk g∅Sd−1 .

LetV d
n (w−s) denote the space of polynomials of degree n that are orthogonal to poly-

nomials in Πd
n−1 with respect to the inner product ∀·, ·∅−s . Then V d

n (w−1) satisfies
a decomposition

V d
n (w−1) = (1 − ≥x≥2)V d

n−2(w1) ⊕ H d
n ,

where H d
n is the space of spherical harmonics of degree n, and V d

n (w−2) satisfies a
decomposition

V d
n (w−2) = (1 − ≥x≥2)2V d

n−4(w2) ⊕ (1 − ≥x≥2)H d
n−2 ⊕ H d

n .

For each of these two cases, an orthonormal basis can be given in terms of the
Jacobi polynomials and spherical harmonics, and the basis resembles the basis of
V d

n (wμ) for μ = −1 and μ = −2, which is why we adopt the notationV d
n (w−s). The

pattern of orthogonal decomposition, however, breaks down for r > 2. Nevertheless,
an orthonormal basis can still be defined for V d

n (w−s), which allows us to define
an analog of the near-best polynomial S−s

n,η f . The result for approximation in the
Sobolev space is as follows:

Theorem 4.2 Let r, s = 1, 2, . . . and r ≥ s. If f ∈ W r
p(B

d) with r ≥ s and
1 < p < →. Then, for n ≥ s,

≥ f − S−s
n, η f ≥W k

p(Bd ) ∩ cn−r + k≥ f ≥Wr
p(Bd ), k = 0, 1, . . . , s,

where S−s
n,η f can be replaced by S−s

n f if p = 2.

This theorem is established in [20], which contains further refinements of such
estimates in Sobolev spaces. The proof of this theorem, however, requires substantial
work and uses a duality argument that requires 1 < p < →.

The estimate in the theorem can be used to obtain an error estimate for the Galerkin
spectral method, which looks for approximate solutions of a partial differential equa-
tions that are polynomials written in terms of orthogonal polynomials on the ball
and their coefficients are determined by the Galerkin method. We refer to [20] for
applications on a Helmholtz equation of second-order and a biharmonic equation of
fourth-order on the unit ball. The method can also be applied to Poisson equations
considered in [1–3].

These results raise the question of characterizing the best approximation by poly-
nomials in Sobolev spaces, which is closely related to simultaneous approximation
traditionally studied in approximation theory. But there are also distinct differences
as the above discussion shows. We conclude this paper by formulating this problem
in a more precise form.
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Let Ω be a domain in R
d and w be a weight function on Ω . For s = 1, 2 . . ., and

f ∈ W s
p(w,Ω). Define

En( f )W s
p(w,Ω) := inf

pn ∈Πd
n

≥ f − pn≥W s
p(w,Ω).

Problem 4.3 Establish direct and (weak) converse estimates of En( f )W s
p(w,Ω).

In the case of Ω = B
d and w(x) = 1, Theorem 4.2 gives a direct estimate of

En( f )W s
p(w, sΩ) for f ∈ W r

p(w, Ω) with r ≥ s. However, the estimate is weaker
than what is needed. A direct estimate should imply that En( f )W s

p(w,Ω) goes to
zero as n ∞ → whenever f ∈ W s

p(w, Ω). What this calls for is an appropriate
K -functional, or a modulus of smoothness, for f ∈ W s

p(w, Ω) that characterizes
the best approximation En( f )W s

p(w,Ω).
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Support Vector Machines in Reproducing
Kernel Hilbert Spaces Versus Banach Spaces

Qi Ye

Abstract In this article, we compare the support vector classifiers in Hilbert spaces
versus those in Banach spaces. Recently, we developed a new concept of reproducing
kernel Banach spaces (RKBSs). These spaces are a natural generalization of repro-
ducing kernel Hilbert spaces (RKHSs) by extending the reproduction property from
inner products to dual bilinear products. Based on the techniques of Fourier trans-
forms, we can construct RKBSs by many well-known positive definite functions,
e.g., Matérn functions and Gaussian functions. In addition, we can obtain finite-
dimensional solutions of support vector machines defined in infinite-dimensional
RKBSs. Finally, the numerical examples provided in this paper show that the solu-
tion of support vector machines in a RKBS can be computed and easily coded just
as the classical algorithms given in RKHSs.

Keywords Support vector machine · Reproducing kernel Banach space · Positive
definite function · Matérn function · Sobolev spline · Gaussian function

1 Introduction

The review paper [9] states that kernel-based approximation methods have become
a general mathematical tool in the fields of machine learning and meshfree approxi-
mation. One of the popular supervised learning models is the support vector machine
for classification and regression analysis. Many of the results in support vector
machines have involved reproducing kernel Hilbert spaces (RKHSs). Recently, sev-
eral papers [3, 10–12, 16–18] have carried out abstract theoretical results of support
vector machines in reproducing kernel Banach spaces (RKBSs) while there are few
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papers that mention practical numerical tests of support vector classifiers in RKBSs.
The goal of this article is to show that the solutions of support vector machines in
RKBSs also work well for programming.

The classical works of support vector machines focus on how to minimize empir-
ical regularized risks in the RKHS H by the given training data {(xk, yk)}N

k=1 ∈
R

d × R, i.e.,

min
f ≥H

N∑

j=1

1

N
L
(
x j , y j , f (x j )

) + R
(∩ f ∩H

)
,

where L is a loss function and R is a regularization function (see [1, 13, 14]). Since
Banach spaces have different geometric structures, people have a great interest in
the extension of support vector machines from Hilbert spaces to Banach spaces. The
recent papers [3, 17] give a new concept of RKBSs. These spaces are the general-
ization of the reproduction property from inner products to dual bilinear products.
Moreover, support vector machines can be well-posed in such a RKBS B, i.e.,

min
f ≥B

N∑

j=1

1

N
L

(
x j , y j , f (x j )

) + R
(∩ f ∩B

)
.

The main ideas of this article are based on the theoretical results of our recent
paper [3] that shows how to construct RKBSs by positive definite functions. We find
that the solutions of support vector machines in RKBSs are still spanned by finite-
dimensional kernel bases so that a global minimizer over the infinite-dimensional
space belongs to some known finite-dimensional space. This allows to develop
numerical algorithms of support vector classifiers defined in RKBSs. We find that
the formulas for the solutions of support vector machines in RKBSs could be dif-
ferent from those in RKHSs when both RKBSs and RKHSs are introduced by the
same positive definite functions. For examples, the RKHS HΩ(R2) and the RKBS
B4

Ω(R2) are constructed by the same positive definite function Ω (see Theorem 1).
The solutions of the support vector machines in the RKHSHΩ(R2) given in Eq. (11)
are set up by the reproducing kernel but the solutions of the support vector machines
in the RKBS B4

Ω(R2) given in Eq. (14) are induced by a different kernel function.
This discovery gives a novel formula for learning solutions in Banach spaces which
is different from the paper [8].

Finally, we summarize the structure of this article. We mainly focus on a classical
binary classification problem described in Sect. 2. Then Sect. 3 primarily reviews
the definitions and theorems mentioned in [3]. In Sect. 4, we illustrate the solutions
of support vector machines in RKBSs by two examples of Matérn functions and
Gaussian functions. For the set of training and testing data given in Sect. 2, we
compare the performance of the support vector classifiers defined in RKHSs and
RKBSs (see Sect. 5).
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Fig. 1 A classification
example in two dimensions.
The classes are coded as a
binary variable (cross = +1
and circle = −1). The green
line is the original decision
boundary defined by g(x) = 0
where g(x) := sin(2∂x1)/2+
cos(2∂x2)/2 + 1/3. The blue
symbols denote the training
data and the red symbols
denote the testing data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

2 Background

We discuss the support vector machines starting from simple binary classification,
which is learning a class from its positive and negative samples. Standard binary
classification can be presented as follows.

Given the training data consisting of N pairs (x1, y1) , . . . , (xN , yN ), with x j ≥
R

d and y j ≥ {±1}, we want to find a nonlinear separable boundary to classify two
different classes of the training data. This separable boundary could be represented
by a decision function f : Rd → R, i.e.,

{
x ≥ R

d : f (x) = 0
}
. In other words, we

can create a classification rule r : Rd → {±1} induced by the decision function f ,
i.e.,

r(x) := sign ( f (x)) ,

such that r(x j ) = y j or y j f (x j ) > 0 for all j = 1, . . . , N .
In addition, we will apply another set of testing data (x̃1, ỹ1) , . . . , (x̃M , ỹM ) to

compute the absolute mean error for the decision function f , i.e.,

Error := 1

M

M∑

k=1

I (ỹk ∞= r(x̃k)) = 1

M

M∑

k=1

∣
∣
∣
∣
1 − sign (ỹk f (x̃k))

2

∣
∣
∣
∣ ,

where I (a ∞= b) is 1 if a ∞= b and is 0 if a = b.
In our numerical experiments, we will use a test function g : R2 → R to generate

the training and testing data, i.e., y j := sign(g(x j )) for j = 1, . . . , N and ỹk :=
sign(g(x̃k)) for k = 1, . . . , M , given in Fig. 1. In the following sections, we will show
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how to solve for the optimal decision functions from support vector machines defined
in RKHSs and RKBSs. These training data will be used to obtain the support vector
classifiers in RKHSs and RKBSs, and we will compare these two classifications with
the help of the testing data.

3 Reproducing Kernel Hilbert and Banach Spaces

For the reader’s convenience, we will review the definitions and theorems of the
RKHSs and RKBSs mentioned in the books [4, 13, 15] and the papers [3, 16, 17].

First we look at the definitions of RKHSs and RKBSs.

Definition 1 [15, Definition 10.1] Let H be a Hilbert space consisting of functions
f : Rd → R. H is called a reproducing kernel Hilbert space (RKHS) and a kernel
function K : Rd × R

d → R is called a reproducing kernel for H if

(I ) K (·, y) ≥ H and (I I ) f (y) = ( f, K (·, y))H , for all f ≥ H and all y ≥ R
d ,

where (·, ·)H is used to denote the inner product of H .

In this article, ≤·, ·∇B denotes the dual bilinear product on a Banach space B and
its dual space B′, i.e.,

≤ f, G∇B := G( f ), for all G ≥ B′ and all f ≥ B.

Obviously the dual space of a Hilbert space is equal to itself and the inner product
can be viewed as a dual bilinear product of a Hilbert space. Then we can generalize
RKHSs to RKBSs by replacing inner products with dual bilinear products.

Definition 2 [3, Definition 3.1] Let B be a Banach space composed of functions
f : Rd → R, whose dual space (i.e., the space of continuous linear functionals) B′
is isometrically equivalent to a normed spaceF consisting of functions g : Rd → R.
Note that K : Rd × R

d → R is a kernel function.
We call B a right-sided reproducing kernel Banach space (RKBS) and K its

right-sided reproducing kernel if

(I ) K (·, x) ≥ F ∀ B′ and (I I ) f (x) = ≤ f, K (·, x)∇B, for all f ≥ B and all x ≥ R
d .

If the Banach space B reproduces from the other side, i.e.,

(I I I ) K (y, ·) ≥ B and (I V ) ≤K (y, ·), g∇B = g(y), for all g ≥ F ∀ B′ and all y ≥ R
d ,

then B is called a left-sided reproducing kernel Banach space and K its left-sided
reproducing kernel.
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For two-sided reproduction as above, we say that B is a two-sided reproducing
kernel Banach space with the two-sided reproducing kernel K .

Remark 1 Actually, RKHSs and RKBSs can be defined on locally compact Haus-
dorff spaces equipped with finite Borel measures. To simplify the notation and dis-
cussion, we only consider the whole space R

d as the domain in this article.

Comparing Definitions 1 and 2, a RKHS is obviously a special case of a RKBS.
More precisely, the reproductions (I) and (III) of RKBSs are a generalization of the
reproduction (I) of RKHSs, and the reproductions (II) and (IV) of RKBSs are an
extension of the reproduction of (II) for RKHSs.

3.1 Positive Definite Functions

Next we will look at a two-sided RKBSB
p
Ω(Rd) driven by a positive definite function

Ω given in [3].

Definition 3 [15, Definition 6.1] A continuous even function Ω : R
d → R is

called positive definite if, for all N ≥ N and all sets of pairwise distinct centers
X = {x1, . . . , xN } ∅ R

d , the quadratic form

N ,N∑

j,k=1

c j ckΩ(x j − xk) > 0, for all nonzero c := (c1, . . . , cN )T ≥ R
N .

Definition 3 indicates that the function Ω is positive definite if and only if all
its associated matrices AΩ,X := (

Ω(x j − xk)
)N ,N

j,k=1 are positive definite. In the
historical terminology, the positive definite function given in Definition 3 may be
called a strictly positive definite function. In this article we want to use the same
definition of positive definite functions as in the books [4, 15] and the paper [3].

[15, Theorem 6.11] assures that the Fourier transform Ω̂ of the positive definite
function Ω ≥ L1(R

d) ⊂ C(Rd) is nonnegative and nonvanishing. Therefore, we can
apply the Fourier transform Ω̂ to define a normed space

B
p
Ω(Rd) :=

{
f ≥ Lp(R

d) ⊂ C(Rd) : the distributional Fourier transform f̂

of f is a measurable function such that f̂
/
Ω̂1/q ≥ Lq(Rd)

}
, (1)

equipped with the norm

∩ f ∩B p
Ω(Rd ) :=




⎢(2∂)−d/2

∫

Rd

∣
∣
∣ f̂ (x)

∣
∣
∣
q

Ω̂(x)
dx



⎥
⎫

1/q

, (2)
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where 1 < q ◦ 2 ◦ p < ∞ and p−1 + q−1 = 1. In particular, when f ≥ L1(R
d)

then f̂ is the L1-Fourier transform of f , i.e., f̂ (x) := (2∂)−d/2
⎬
Rd f (y)e−ixT ydy,

where i is the imaginary unit, i.e., i2 = −1.
Combining the results of [3, Theorem 4.1 and Corollary 4.2] we can obtain the

reproduction properties for the space B
p
Ω(Rd) as follows.

Theorem 1 Let 1 < q ◦ 2 ◦ p < ∞ and p−1 + q−1 = 1. Suppose that Ω ≥
L1(R

d)⊂C(Rd) is a positive definite function on R
d and that Ω̂q−1 ≥ L1(R

d). Then
B

p
Ω(Rd) given in Eqs. (1 and 2) is a two-sided reproducing kernel Banach space

with the two-sided reproducing kernel

K (x, y) := Ω(x − y), for all x, y ≥ R
d .

In particular, when p = 2 then B2
Ω(Rd) = HΩ(Rd) is a reproducing kernel Hilbert

space.

Remark 2 The paper [3] discusses the RKBS B
p
Ω(Rd) in complex values. As in the

statement of [3, Remark 5.2], the restriction of the theorems given in [3] to the reals
does not affect their conclusions by [7, Proposition 1.9.3]. In the interest of reducing
the complexity, we just regard the real RKBS B

p
Ω(Rd) in this article.

3.2 Support Vector Machines

Now we will find the optimal decision function of the binary classification by the
support vector machines defined in the RKBS B

p
Ω(Rd) based on the given finitely

many training data (x1, y1) , . . . , (xN , yN ) ≥ R
d × {±1}.

Suppose that the regularization function R : [0,∞) → [0,∞) is convex and
strictly increasing, and the loss function L : R

d × R × R → [0,∞) such that
L(x, y, ·) is a convex map for any fixed x ≥ R

d and any fixed y ≥ R. Using the
loss function L and the regularization function R, we can construct the minimization
problem (support vector machine)

min
f ≥B p

Ω(Rd )

1

N

N∑

j=1

L
(
x j , y j , f (x j )

) + R
⎭
∩ f ∩B p

Ω(Rd )

⎛
. (3)

According to [3, Theorem 4.4] we can obtain finite-dimensional representations
of support vector machine solutions of (3).

Theorem 2 Let B p
Ω(Rd) for 2 ◦ p < ∞ be defined in Theorem 1. Then the support

vector machine (3) has the unique optimal solution
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s(x) = (2∂)−d/2
∫

Rd
Ω̂(y)p−1

N∑

k=1

ckei(x−xk )
T y

∣
∣
∣
∣
∣

N∑

l=1

cle
−ixT

l y

∣
∣
∣
∣
∣

p−2

dy, for x ≥ R
d ,

(4)
where c1, . . . , cN ≥ R. Moreover, the norm of s has the form

∩s∩B p
Ω(Rd ) =

⎝
N∑

k=1

cks(xk)

⎞1/q

. (5)

The classical representer theorem [13, Theorem 5.5] provides that the support
vector machine solution in the RKHS HΩ(Rd) has a simple representation in terms
of Ω, i.e.,

s(x) :=
N∑

k=1

ckΩ(x − xk) , for x ≥ R
d .

Should we also be able to obtain a well-computable formula for s similar to the
classical ones? To this end, we are going to simplify Eq. (4) when p is an even
integer, i.e., p = 2n for n ≥ N.

The fact that Ω̂p−1 ≥ L1(R
d) ⊂ C(Rd) guarantees that Ω̂p−1 has the L1-inverse

Fourier transform Ω⇒(p−1), i.e., Ω̂p−1 = F
(
Ω⇒(p−1)

)
, where F is the Fourier

transform map. Obviously Ω⇒1 = Ω. Furthermore, it is easy to check that Ω⇒(p−1) is
even and continuous. Subsequently, we can introduce a typical representer theorem
of the RKBS B

p
Ω(Rd) using the kernel function Ω⇒(p−1) when p is an even number.

Theorem 3 If p = 2n for some n ≥ N, then the support vector machine solution
given in Eq. (4) can be rewritten as

s(x) =
N ,...,N∑

k1,...,kp−1=1



⎢
p−1⎠

j=1

ck j



⎫ Ω⇒(p−1)



⎢x +
p−1∑

l=1

(−1)lxkl



⎫ , for x ≥ R
d , (6)

and its norm has the form

∩s∩B p
Ω(Rd ) =



⎢
N ,N ,...,N∑

k0,k1,...,kp−1=1



⎢
p−1⎠

j=0

ck j



⎫ Ω⇒(p−1)



⎢
p−1∑

l=0

(−1)lxkl



⎫



⎫

1/q

, (7)

where c1, . . . , cN ≥ R and Ω⇒(p−1) is the inverse transform of Ω̂p−1.

Proof Expanding Eq. (4) for p = 2n, we can obtain that
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s(x) = (2∂)−d/2
∫

Rd
Ω̂(y)p−1

N ,...,N∑

k1,...,kp−1=1



⎢
p−1⎠

j=1

ck j



⎫ e
iyT

⎭
x+⎤p−1

l=1 (−1)l xkl

⎛

dy

=
N ,...,N∑

k1,...,kp−1=1



⎢
p−1⎠

j=1

ck j



⎫ (2∂)−d/2
∫

Rd
F

⎭
Ω⇒(p−1)

⎛
(y)e

iyT
⎭

x+⎤p−1
l=1 (−1)l xkl

⎛

dy

=
N ,...,N∑

k1,...,kp−1=1



⎢
p−1⎠

j=1

ck j



⎫ Ω⇒(p−1)



⎢x +
p−1∑

l=1

(−1)lxkl



⎫ , for x ≥ R
d .

Putting the above expansion of s into Eq. (5), we can check that the B
p
Ω(Rd)-norm

of s can be also written as in Eq. (7). �

Remark 3 Since the Fourier transform of Ω⇒(p−1) is equal to Ω̂p−1 which is non-
negative and nonvanishing, the kernel function Ω⇒(p−1) is also positive definite, e.g.,
Matérn functions and Gaussian functions discussed in Sect. 4. When p = 2, then
Theorem 3 covers the classical results of RKHSs driven by positive definite func-
tions. Actually, the B p

Ω(Rd)-norm of s given in Eq. (5) is computed by its semi-inner
product and much more details of the proof are mentioned in the proof of [3, Theo-
rem 4.4] (the representer theorem ofB p

Ω(Rd)). Roughly speaking, theB p
Ω(Rd)-norm

of s for p = 2n can be seen as the qth root of the generalization of the quadratic
form.

The solution s of the support vector machines in the RKBS B
p
Ω(Rd) can be seen

as one choice of an optimal decision function for the binary classification. Its optimal
separable boundary is given by

{
x ≥ R

d : s(x) = 0
}

and its classification rule has
the form

r(x) := sign(s(x)), for x ≥ R
d .

4 Examples of Matérn Functions and Gaussian Functions

In this section, we focus on some popular positive definite functions such as Matérn
functions and Gaussian functions. We will show that the kernel function Ω⇒(p−1) of
the Matérn function or the Gaussian function Ω discussed in Theorem 3 is still a
Matérn function or a Gaussian function, respectively. This indicates that the support
vector machine solutions driven by Matérn functions or Gaussian functions given in
Eqs. (6 and 7) can work well for computer programs.

4.1 Matérn Functions (Sobolev Splines)

The Matérn function (Sobolev spline) with the shape parameter α > 0 and degree
m > d/2
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Ωα,m(x) := 21−m−d/2

∂d/2ε(m)α2m−d
(α ∩x∩2)

m−d/2 Kd/2−m(α ∩x∩2), for x ≥ R
d ,

is a positive definite function, where t ∃→ KΔ(t) is the modified Bessel function of
the second kind of order Δ and t ∃→ ε(t) is the Gamma function. We can compute
its Fourier transform

Ω̂α,m(x) =
⎭
α2 + ∩x∩2

2

⎛−m
, for x ≥ R

d .

(Many more details of the Matérn functions are mentioned in [5, Example 5.7].)
Let 1 < q ◦ 2 ◦ p < ∞ with p−1 + q−1 = 1 such that mq/p > d/2. Since

Ω̂
q−1
α,m ≥ L1(R

d), Theorem 1 assures that B p
Ωα,m

(Rd) is a two-sided RKBS with a
two-sided reproducing kernel Kα,m(x, y) = Ωα,m(x − y).

Finally, we compute Ω
⇒(p−1)
α,m when p = 2n for n ≥ N. Since

Ω̂α,m(x)p−1 =
⎭
α2 + ∩x∩2

2

⎛−(p−1)m
, for x ≥ R

d ,

the inverse Fourier transform of Ω̂
p−1
α,m has the form

Ω
⇒(p−1)
α,m (x) = Ωα,(p−1)m(x), for x ≥ R

d .

For typical examples,

Ω⇒1
α,m = Ωα,m when p = 2, Ω⇒3

α,m = Ωα,3m when p = 4. (8)

4.2 Gaussian Functions

By [4, Example 1 in Section 4.1], the Gaussian function with the shape parameter
α > 0

Ωα(x) := e−α2∩x∩2
2 , for x ≥ R

d ,

and its Fourier transform has the form

Ω̂α (x) = 2−d/2α−de−2−2α−2∩x∩2
2 , for x ≥ R

d .

Let 1 < q ◦ 2 ◦ p < ∞ with p−1 + q−1 = 1. Since Ω̂
q−1
α ≥ L1(R

d),
Theorem 1 provides thatB p

Ωα
(Rd) is a two-sided RKBS with a two-sided reproducing

kernel Kα (x, y) = Ωα(x − y).
Furthermore, we want to obtain Ω

⇒(p−1)
α when p = 2n for n ≥ N. Since
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Ω̂α (x)p−1 = 2−(p−1)d/2α−(p−1)de−(p−1)2−2α−2∩x∩2
2 , for x ≥ R

d ,

we have

Ω
⇒(p−1)
α (x) = 2−(p−2)d/2(p − 1)−d/2α−(p−2)de−(p−1)−1α2∩x∩2

2 , for x ≥ R
d .

In particular,

Ω⇒1
α = Ωα when p = 2, Ω⇒3

α = 12−d/2α−2dΩ√
3α/3 when p = 4. (9)

5 Numerical Tests for B2
ζ(R2) and B4

ζ(R2)

In this section, we will first do some numerical tests of the support vector classifiers
in the RKHSs and RKBSs driven by positive definite functions defined on the two-
dimensional space R

2.
Let Ω be a Matérn function with α = 22 and m = 7/2 or a Gaussian function

with α = 12 defined on R
2 (see Sect. 4). Here the shape parameter α is chosen

by personal experience. We do not consider how to find the optimal parameters of
the kernel functions in this article. By Theorem 1 we can use the positive definite
function Ω to set up two kinds of normed spaces B2

Ω(R2) and B4
Ω(R2). Obviously

B2
Ω(R2) = HΩ(R2) is a Hilbert space but B4

Ω(R2) is merely a Banach space.
The training data of binary classes given in Fig. 1 will be applied in the numerical

tests of support vector machines in B2
Ω(R2) and B4

Ω(R2). We compare the separable
boundaries and the classification rules induced by the minimizers of regularized
empirical risks over RKHSs and RKBSs, respectively. We choose the hinge loss

L(x, y, t) := max {0, 1 − yt} , for x ≥ R
2, y ≥ {±1}, t ≥ R,

and the regularization function

Rp(z) := ψ z
p

p−1 , for z ≥ [0,∞), where ψ := 0.1 and p = 2 or 4,

to construct the support vector machines.
The representer theorem in RKHSs [13, Theorem 5.5] provides that the support

vector machine in the RKHS B2
Ω(R2) = HΩ(R2)

min
f ≥B2

Ω(R2)

1

N

N∑

j=1

L
(
x j , y j , f (x j )

) + R2

⎭
∩ f ∩B2

Ω(R2)

⎛
, (10)

has the unique optimal solution
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s2(x) =
N∑

k=1

ckΩ(x − xk) =
N∑

k=1

ckΩ
⇒1 (x − xk) , for x ≥ R

2, (11)

and its norm has the form

∩s2∩2
B2

Ω(R2)
=

N ,N∑

j,k=1

c j ckΩ
(
x j − xk

) =
N ,N∑

j,k=1

c j ckΩ
⇒1 (

x j − xk
)
, (12)

where c1, . . . , cN ≥ R. According to Theorem 3 the support vector machine in the
RKBS B4

Ω(R2)

min
f ≥B4

Ω(R2)

1

N

N∑

j=1

L
(
x j , y j , f (x j )

) + R4

⎭
∩ f ∩B4

Ω(R2)

⎛
, (13)

has the unique optimal solution

s4(x) =
N ,N ,N∑

k1,k2,k3=1

ck1 ck2 ck3Ω
⇒3 (

x − xk1 + xk2 − xk3

)
, for x ≥ R

2, (14)

and its norm can be written as

∩s4∩4/3
B4

Ω(R2)
=

N ,N ,N ,N∑

k0,k1,k2,k3=1

ck0 ck1 ck2 ck3Ω
⇒3 (

xk0 − xk1 + xk2 − xk3

)
, (15)

where c1, . . . , cN ≥ R. Here the kernel functions Ω⇒1 and Ω⇒3 are given in Eq. (8)
or (9).

The next step is to solve the coefficients of s2 and s4, respectively, with the help
of Matlab programs. Let the functions be

T2 (b) := 1

N

N∑

j=1

L
(
x j , y j , δ2, j (b)

) + R2 (ε2(b)) ,

and

T4 (b) := 1

N

N∑

j=1

L
(
x j , y j , δ4, j (b)

) + R4 (ε4(b)) ,
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where

δ2, j (b) :=
N∑

k=1

bkΩ
⇒1 (

x j − xk
)
, j = 1, . . . , N ,

ε2(b) :=


⎢
N ,N∑

j,k=1

b j bkΩ
⇒1 (

x j − xk
)


⎫

1/2

,

and

δ4, j (b) :=
N ,N ,N∑

k1,k2,k3=1

bk1 bk2 bk3Ω
⇒3 (

x j − xk1 + xk2 − xk3

)
, j = 1, . . . , N ,

ε4(b) :=


⎢
N ,N ,N ,N∑

k0,k1,k2,k3=1

bk0 bk1 bk2 bk3Ω
⇒3 (

xk0 − xk1 + xk2 − xk3

)


⎫

3/4

,

for b := (b1, · · · , bN )T ≥ R
N . We find that δ2, j are linear functions and δ4, j are

polynomials of degree three. Moreover, the support vector machines (10) and (13)
can be transformed into the optimization problems

min
b≥RN

T2 (b) , (16)

and
min

b≥RN
T4 (b) , (17)

respectively. This indicates that the parameters c := (c1, . . . , cN )T of s2 and s4
are the minimizers of the optimization problems (16) and (17), respectively. In our
following numerical tests, the Matlab function “fminunc” will be used to solve the
global minimizers of the optimization problems (16) and (17).

Remark 4 If we let

θk1,k2,k3 := ck1 ck2 ck3 , for k1, k2, k3 = 1, . . . , N ,

then s4 can be viewed as the linear combination of Ω⇒3
(· − xk1 + xk2 − xk3

)
. (Here

we do not consider the duplicate kernel bases for convenience.) This indicates that
we can solve for the coefficients θ := (

θk1,k2,k3

)N ,N ,N
k1,k2,k3=1 of s4 as the minimizer of

the optimization problem

min
ν≥RN3

1

N

N∑

j=1

L
(
x j , y j , fν(x j )

) + R4

⎭⎧
⎧ fν

⎧
⎧
B4

Ω(R2)

⎛
, (18)
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where

fν(x) =
N ,N ,N∑

k1,k2,k3=1

νk1,k2,k3Ω
⇒3 (

x − xk1 + xk2 − xk3

)
,

for ν := (
νk1,k2,k3

)N ,N ,N
k1,k2,k3=1 ≥ R

N 3
; hence s4 = fθ . However, in the minimization

problem (18) it is difficult to compute the norm of
⎧
⎧ fν

⎧
⎧
B4

Ω(R2)
by Eq. (2) for general

ν ≥ R
N 3

because, for any ν = (
νk1,k2,k3

)N ,N ,N
k1,k2,k3=1 ≥ R

N 3
, there may be no sequence

b = (bk)
N
k=1 ≥ R

N such that νk1,k2,k3 = bk1 bk2 bk3 for all k1, k2, k3 = 1, . . . , N .
Since the norm of s4 has an explicit form as in Eq. (15), we can add constraint
conditions to the optimization problem (18) to obtain another well-computable min-
imization problem

min
ν≥RN3

1

N

N∑

j=1

L
(
x j , y j , fν(x j )

) + R4 (ε4(b1, · · · , bN )) ,

s.t. νk1,k2,k3 = bk1 bk2 bk3 , for all k1, k2, k3 = 1, . . . , N . (19)

We also find that the optimization problem (19) is another equivalent format of the
optimization problem (17).

Firstly we compare the formulas of the support vector machine solutions s2 and
s4 driven by three different data points. Suppose that the three training data points
{x1, x2, x3} are noncollinear. The kernel bases of s2 are given by

Ω⇒1 (· − x1) , Ω⇒1 (· − x2) , Ω⇒1 (· − x3) ,

(see Fig. 2). This means that the training data points {x1, x2, x3} can be viewed as
the kernel-based points of s2, and the kernel bases of s2 are the shifts of the functions
Ω⇒1 by the kernel-basis points (Fig. 2).

The kernel bases of s4, in contrast, are represented as Ω⇒3
(· − xk1 + xk2 − xk3

)

for k1, k2, k3 = 1, 2, 3. Since the training data points {x1, x2, x3} are non-collinear,
we can obtain the twelve pairwise distinct data points z j := xk1 − xk2 + xk3 that
comprise three training data points and another nine data points around the training
data points (see Fig. 3). Then the kernel-based-point set {z1, . . . , z12} of s4 denotes
the set

{
xk1 − xk2 + xk3 : k1, k2, k3 = 1, 2, 3

}
. Using the kernel-based points z j , the

kernel bases of s4 can be rewritten as

Ω⇒3 (· − z1) , Ω⇒3 (· − z2) , . . . , Ω⇒3 (· − z12) .

(see Fig. 4). This means that the kernel-based points of s4 are rearranged and recom-
bined by the training data points, and the kernel bases of s4 are the shifts of the
functions Ω⇒3 by the kernel-basis points.

For the general case of N training data points, the support vector machine solution
s2 has O(N ) kernel bases while the kernel bases of the solution s4 have O(N 3)
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Fig. 2 The kernel bases Ω⇒1 (· − x1), Ω⇒1 (· − x2), Ω⇒1 (· − x3) of s2
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Fig. 3 The kernel-based points {z1, . . . , z12} of s4 induced by three training data points {x1, x2, x3}.
The left panel shows that each training data point xk is associated with seven kernel-based points
z j and the right panel shows that the triangle driven by the training data points xk are equivalent
to the triangles driven by the kernel-based data points z j other than the training data points. The
training data points xk are marked by red dots and the kernel-based points z j are marked as the blue
circles

elements, e.g., Fig. 5. This shows that the computational complexity of s4 is larger
than s2 because the kernel bases of s4 are more than s2. Roughly speaking, the
complexity of s2 is O(N ) and the complexity of s4 is O(N 3).

Remark 5 Currently the Matlab function “fminunc” is not an efficient program to
solve for the parameters c1, . . . , cN of s4. The paper [3] shows that the parameters
c1, . . . , cN of the solutions of support vector machines in RKBSs can be seen as a
fixed point of some function. This means that they can be further solved by a fixed-
point iterative algorithm. We will try to develop another algorithm to faster solve for
their parameters later.
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Fig. 4 The kernel bases Ω⇒3 (· − z1) , Ω⇒3 (· − z2) , . . . , Ω⇒3 (· − z12) of s4

Fig. 5 The kernel-based
points of s4 induced by the
30 training data points, i.e.,
N = 30. The green circles
mark the kernel-based data
points z j and the blue circles
mark the training data points
xk
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Next, we do numerical tests of support vector classifiers in RKHSs and RKBSs
using the training and testing data given in Fig. 1. The numerical results of Fig. 6
show that the support vector machine solution s4 has the same learning ability as the
solution s2. Since the smoothness of the kernel bases affects the geometric structures
of the separable boundaries, the separable boundaries s4(x) = 0 are smoother than the
separable boundaries s2(x) = 0. In other words, the 2-norm margin of s2(x) = ±1 is
bigger than s4(x) = ±1 because the hinge loss is designed to maximize the 2-norm
margin for binary classification and the RKHS HΩ(R2) = B2

Ω(R2) is associated
with the 2-norm margin. Then we guess that the RKBS B4

Ω(R2) would be connected
to the margin for some other τ -norm for 1 ◦ τ ◦ ∞, and we may need to construct
another loss function for the support vector machines in RKBSs. Moreover, we look



392 Q. Ye

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

Matern, RKHS, p=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

Matern, RKBS, p=4
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Gaussian, RKBS, p=4

Fig. 6 A classification example in the observation domain (0, 1)2 using the training and testing
data given in Fig. 1. The classes are coded as a binary variable (cross = +1 and circle = −1).
The top left and right panels show the binary classification for the solutions s2 and s4 induced by
the Matérn function, respectively. The bottom leftand right panels show the binary classification
for the solutions s2 and s4 induced by the Gaussian function, respectively. The blue circles and
crosses denote the training data and the red circles and crosses denote the testing data. The decision
boundaries are the green solid lines, i.e., s2,4(x) = 0. The cyan broken lines mark the margins for
s2,4(x) = ±1

at the absolute mean errors of s2 and s4 given in Table 1 and find that the predictions
of the support vector solutions s2 and s4 are alike.

In addition, we consider another numerical example in the extended observation
domain (−1, 2)2 using the same training data in Fig. 1. Let κout := (−1, 2)2\(0, 1)2.
In this case, we can still use the same decision function g(x) := sin(2∂x1)/2 +
cos(2∂x2)/2 + 1/3 given in Fig. 1 to generate the random uniformly distributed
testing data in κout. Since g is a periodic function, the testing data have a periodic
distribution in (−1, 2)2. But there are no training data in κout. Then the support
vector machine solutions s2,4 discussed in Fig. 7 and Table 2 are the same as in Fig. 6
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Table 1 Absolute mean errors of s2 and s4 for the random uniformly distributed testing data in the
observation domain (0, 1)2

Number of testing data M = 250 M = 500 M = 1000
Support vector machines s2 s4 s2 s4 s2 s4

Error for Matérn function 0.0840 0.0560 0.0920 0.0740 0.0840 0.0700
Error for Gaussian function 0.0880 0.0640 0.0880 0.0580 0.0820 0.0550
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Fig. 7 A classification example in the observation domain (−1, 2)2 using the training data given
in Fig. 1. The testing data are introduced by the same original decision function g given in Fig. 1.
The classes are coded as a binary variable (cross = +1 and circle = −1). The top left and right
panels show the binary classification for the solutions s2 and s4 induced by the Matérn function,
respectively. The bottom left and right panels show the binary classification for the solutions s2 and
s4 induced by the Gaussian function, respectively. The blue circles and crosses denote the training
data and the red circles and crosses denote the testing data. The decision boundaries are the green
solid lines, i.e., s2,4(x) = 0
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Table 2 Absolute mean errors of s2 and s4 for the random uniformly distributed testing data in the
observation domain (−1, 2)2

Number of testing data M = 500 M = 1000 M = 2000
Support vector machines s2 s4 s2 s4 s2 s4

Error for Matérn function 0.3080 0.2860 0.3050 0.2810 0.2875 0.2815
Error for Gaussian function 0.2960 0.2960 0.2940 0.2750 0.2750 0.2745

and Table 1. However, observing Fig. 7, the classification rules of s2 and s4 have
big differences in the domain κout because s4 has the kernel bases set up by kernel-
based points in κout but s2 does not. We further look at the absolute mean errors of
s2 and s4 for the additional testing data chosen in κout. Obviously the absolute mean
errors given in Table 1 are smaller than Table 2 because the support vector machine
solutions s2,4 do not include any training data information in κout. But the absolute
mean errors of s2 and s4 are slightly different.

In conclusion, we obtain interesting and novel support vector classifiers in RKBSs
driven by positive definite functions, but at this point we can not determine whether
the methods driven in RKBSs or RKHSs are better. We will try to look at numerical
examples of other support vector machines in RKBSs to understand the learning
methods in Banach spaces more deeply.

6 Final Remarks

In this article, we compare support vector machines (regularized empirical risks) in
Hilbert versus those in Banach spaces. According to the theoretical results in our
recent paper [3], we can develop support vector machines in RKBSs induced by
positive definite functions, which are to minimize loss functions subject to regular-
ization conditions related to the norms of the RKBSs. Their support vector machine
solutions have finite-dimensional representations in terms of the positive definite
functions. These formulas can be different from the classical solutions in RKHSs.
Our numerical experiments further guarantee that the new support vector classifiers
in RKBSs can be well computed and easily coded just as the classical algorithms
driven in RKHSs.

In many current works, people try to generalize machine learning over Hilbert
spaces to Banach spaces by replacing the regularization related to various norms of
Banach spaces. But they still give the same linear kernel-based representations as
the Hilbert spaces. Our theorems and algorithms show that the global minimizers of
regularized risks over Banach spaces may be written as finite-dimensional kernel-
based solutions. It is well known that the hinge loss is associated with RKHSs to
maximize the 2-norm margin. The classical loss functions may be not the best choices
for support vector machines in Banach spaces. In our next papers, we will try to
construct other loss functions for different choices of the RKBSs. Moreover, we
hope to approximate the general support vector machines
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min
f ≥B p

Ω(Rd )

∫

Rd×R

L (x, y, f (x))P(dy|x)μ(dx) + R
⎭
∩ f ∩B p

Ω(Rd )

⎛
,

where P(·|x) is a conditional probability distribution defined on R dependent on
x ≥ R

d and μ is a positive measure defined on R
d , by the empirical support vector

machines in the RKBS B
p
Ω(Rd).
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