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Abstract

Saltwater contamination constitutes a serious problem in Saloum estuary, due to the intermittent
and reverse tide flows of the Saloum River. This phenomenon is caused by the runoff deficit,
which forces the advance of saltwater 60 km upstream, contaminating surface water and thus
causing the degradation of biodiversity and large areas of agricultural soils in this region. The
present study aims to evaluate the consequences of saltwater contamination in the last three
decades in this estuary by assessing the land-cover dynamics. Thus, latter consists of tracking
the landscape-changing process over time to identify land-cover transitions. These transitions
are closely related to the ecosystem-setting condition and can be used to assess the combined
impacts of both natural and human-induced phenomena over a given period of time. In this
study, special attention was given to mangrove degradation and to temporal progression of the
salty barren soils locally called ‘‘tan’’. The loss of mangrove areas to tan and the general increase
in salty barren soil areas can reflect the increase in the level of salinization in the study area over
the time period under consideration. To fulfill this objective, four Landsat satellite images from
the same season in the years 1984, 1992, 1999, and 2010 were used to infer time series land-use
and land-cover maps of the Saloum estuary area. In addition to satellite imagery, rainfall records
were used to evaluate climatic variation in terms of high-to-low precipitation during the time
span considered. Spectral analysis indicated that from 1984 to 2010, mangroves and savanna/
rain-fed agriculture are converted to ‘‘tan’’ (denuded and salty soils). In addition, these results
showed that significant changes in land use/land cover occur within the whole estuary system
and reflecting therefore environmental degradation, such as land desertification and saliniza-
tion, and vegetation degradation which reflect the advanced of salinity.
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Introduction

Evidence is mounting that we are in a period of climate
changes brought about by increasing atmospheric concen-
trations of greenhouse gases. Due to increases in global
temperature, sea level may rise from 0.5 m to more than
1.0 m above current mean sea level by the year 2100
(Church and White 2006; Overpeck et al. 2006; IPCC 2007).
It is even expected that temperature rise over the next cen-
tury would probably be greater than that observed in the last
10,000 years. As a direct consequence of warming temper-
ature, the hydrologic cycle will undergo significant impact
with accompanying changes in the rates of precipitation and
evaporation. Predictions include higher incidences of severe
weather events, a higher likelihood of flooding, and more
droughts. Sea level rise as a result of global warming has an
impact on the increasing inundation on coastal area.

In addition to these impacts, the economic, social, and
environmental consequences will be enormous in Africa
where populations are particularly vulnerable. Awareness of
these manifestations and adaptation strategy are key con-
cerns for the continent for the coming years, especially in
many domains such as agriculture, water, soils, and
vegetation.

Coastal region and in particular low-lying estuary system
have retained our attention for this study due to the fact that
these low gradient areas would be the most affected areas as
they represent the environmentally most sensitive areas.

As defined by Pritchard (1967), according to settings and
mixing process (the type of river water and seawater mixing
and the degree of salinization), estuaries may be subdivided
into two groups. The first group includes normal estuaries, in
which freshwater dilutes seawater and water salinity
monotonically decreases downstream the river from 10–40
to 0.5–1 % and the water runoff and precipitation exceed
evaporation losses. The second group includes reverse, or
hypersaline, estuaries, in which the salinity of estuarine
water substantially exceeds the salinity of seawater; water
evaporation losses exceed freshwater river runoff and pre-
cipitation. The first group is widespread in the world, and
processes occurring are relatively well understood (Pritchard
1967; Ketchum 1983; McDowell and O’Connor 1983). The
processes of mixing of river water and seawater in such
estuaries are usually subdivided into three types: (1) com-
plete mixing through the depth and weak density stratifica-
tion of waters; (2) partial (moderate) mixing and moderate

stratification of waters; and (3) a saltwater wedge and
intense stratification of waters (Mikhailov and Isupova
2008). Reverse estuaries are less common in the world and
are poorly studied, peculiarities of the processes in reverse
estuaries, including the processes occurring in the basin of
the Caspian Sea (the Kayak Bay) as well as in west Africa
and Australia (Wolanski 1986; Pagès et al. 1987). Under
extremely arid condition, particularly during the dry season
and drought lasting for many years, considerable deficiency
of freshwater may occur in the river mouth reach.

Estuaries systems in semiarid and arid regions are
characterized by highly variable seasonal river discharge;
they represent in fact the most vulnerable zones with regard
to climate variability and climate change. In some regions,
with the persistence of drought periods and their conse-
quence of negative water budget (induced by high evapo-
ration effects), seawater may intrude into these systems and
salinity will rise monotonically to hypersalinity with dis-
tance from the mouth (Ridd and Stieglitz 2002). Such a
process has occurred in a coastal river in Senegal, namely
the Saloum, actually a tide-influenced inverse estuary. In
the Saloum estuary, saltwater contamination constitutes a
serious problem. Evaporation and tidal inundation cause salt
concentrations in the groundwater to rise above the normal
seawater value. Ridd and Sam (1996), Sam and Ridd (1998)
found that water inundating the salt flats returns to the
estuary with a greater salinity by dissolving salt crystals.
The intermittent and reverse flows of the Saloum River due
to the runoff deficit caused saltwater advance up to 60 km
upstream, contaminating surface waters, groundwater, and
large areas of agricultural soils located in these zones.
Salinity in the Saloum River showed a gradual upstream
increase from 36.7 % at the mouth to more than 90 % at
Kaolack (Pagès and Citeau 1990).

In arid and semiarid regions, soils salinity and saltwater
intrusion are one of the major threats to agriculture
(Ghassemi et al. 1995). Under most global warming sce-
narios, rate of coastal erosion will accelerate in the twenty-
first century (Zhang et al. 2004; IPCC 2007). Remote
sensing techniques have potential for mapping and moni-
toring the degree and extent of salinization. Thus, quanti-
fying and monitoring their spatial distribution are very
important for management purposes. Change detection is
the process of identifying differences in the state of an
object or phenomenon by observing it at different times
(Singh 1989). It is one of the major applications of remotely
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sensed data obtained from Earth-orbiting satellites because
of repetitive coverage at short intervals and consistent
image quality (Anderson 1977; Ingram et al. 1981; Nelson
1983). Change detection using images has been traditionally
performed by comparing the classification of multitemporal
data sets or by image processing techniques such as dif-
ferencing and rationing. Change detection is useful in such
diverse applications as land-use change analysis, monitor-
ing of shifting cultivation, assessment of deforestation,
changes in vegetation phenology, seasonal changes in pas-
ture production, damage assessment, crop stress detection,
disaster monitoring snow-melt measurements, daylight
analysis of thermal characteristics, and other environmental
changes (Singh 1989).

In change detection processes (Singh 1989; Coppin and
Bauer 1994; Lu et al. 2003, 2004a, b; Coppin et al. 2004; Pu
et al. 2008; Pan et al. 2011; Datta and Deb 2012; Petropoulos
et al. 2012), time series images acquired from different dates
are compared to analyze the spectral difference, caused by
land-use/land-cover change (LULC) over time while trying
to normalize other conditions to similar levels during that
period. Therefore, it is necessary to confirm the estuary
dynamic for mapping and monitoring the land-cover change
with different techniques. Satellite remote sensing has been
widely applied and recognized as a powerful and effective
tool for detecting land-use and land-cover changes. How-
ever, according to the change’s indices adopted and the
methods of detection applied, results obtained show signif-
icant differences that can be evaluated both quantitatively
(importance of the changes over time) and qualitatively
(types of changes observed). Works of Smits et al. (1999)
and Coppin et al. (2004) identified ten types of detection
methods that are based on different techniques of image
processing, including image subtraction, crossing classifi-
cations, principal component analysis (PCA: statistical
analysis multivariate), vector calculating change, or neural
networks.

In this study, two change detection techniques are eval-
uated: a classification method and a normalized remote
sensing technique—normal difference vegetation index
(NDVI) differencing method, focusing on a comparison
between the two techniques and also on the determination
of the threshold of the NDVI differencing method. Both
techniques are common and effective in change detection of
LULC (Gong and Howarth 1992; Kontoes et al. 1993; Fo-
ody 2004; San Miguel-Ayanz and Biging 1997; Aplin et al.
1999; Stuckens et al. 2000; Franklin et al. 2002; Pal and
Mather 2004; Gallego 2004; Lu et al. 2004a, b; Pu et al.
2008; Datta and Deb 2012). Classification and NDVI dif-
ferencing change detection methods were adopted in this
study to analyze land-cover changes associated with
salinization.

Study Area

The Saloum estuary system, located approximately between
longitudes 14�010 and 16�560 W and latitudes 13�310 and
14�570 N (Fig. 1), shrank after the last pluvial episode in
around 10,000 BC and represents one of the largest African
reverse estuaries. It consists of an extensive network of fossil,
dried secondary channels (so-called thalwegs) stretching
north and eastward. The terrain in the study area is generally
flat with altitudes ranging from below sea level in the estu-
arine zone to about 40 m above mean sea level (a.m.s.l.)
inland; the longitudinal slope of the river course is corre-
spondingly low as well as the shallow bathymetry of the
river. The climate is Sudano-Sahelian type with a long dry
season from November to June and a 4-month rainy season
from July to October. The regional annual precipitation,
which is the main source of freshwater recharge to the
superficial aquifer, increases southward from 600 to
1,000 mm. The average temperature is 28–29 �C, and the
average annual evaporation varies from 1,500 to 2,500 mm
(source: meteorological data). The geomorphology consists
of a gently sloping plain that extends toward the coast,
ranging in elevation from 0 m in the estuary system to 40 m
a.m.s.l. inland (Barusseau et al. 1985; Diop 1986). Sand dune
deposits occur near the coast with an altitude of 1 m in the
northern part and between 2 and 8 m a.m.s.l. in the southern
part of the region. The hydrologic system of the region is
characterized by the river Saloum, its two tributaries (Ban-
diala and Diomboss), and numerous small streams locally
called ‘‘bolons.’’ Downstream, it forms a large low-lying
estuary bearing tidal wetlands, a mangrove ecosystem, and
vast areas of denuded saline soils called ‘‘tan’’ locally.

Methodology

Landsat data were selected to generate time series of land-
cover changes in Saloum estuary. The regular revisit times
and spatial resolution of the Landsat mission are well suited
for regional, national, and global land-use changes. Four
images were selected for this study dated October 17, 1984,
October 31, 1992, November 01, 1999, and November 26,
2010, respectively. Accordingly, the study period covered
about the last three decades.

The methodology applied in this work consists of three
major steps: (1) collect and clean training samples; (2)
automatic classification for LULC (land-cover–land-cover)
mapping; and (3) NDVI differencing analysis. The images
were selected with respect to resolution, number of bands,
and season. Although the four scenes were already geore-
ferenced to the UTM Zone 28 North and WGS 84 projec-
tion, they were geomatching. The outputs of the second and
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third steps were combined to get the final conclusions. In
this way, combination of the thematic information and the
NDVI was possible in order to infer the nature of change,
between-class or within-class change (Lunetta and Elvidge
1998), or simply an error.

Detecting Outliers and Cleaning Training Sample

A suitable classification system and a sufficient number of
training samples are prerequisites for a successful classifi-
cation (Lu and Weng 2007). Training samples are usually
collected from fieldwork or from fine spatial resolution
aerial photographs and satellite images, and sampling of
sufficient number and their representativeness is critical for
image classifications (Landgrebe 2003; Mather 2004). Dif-
ferent collection strategies, such as single pixel, seed, and
polygon, may be used, but selecting sufficient training

samples becomes difficult to perform when the landscape is
complex and heterogeneous as they would influence clas-
sification results, especially for classifications with fine
spatial resolution image data (Chen and Stow 2002). This
problem would be complicated if medium or coarse spatial
resolution data are used for classification, because a large
volume of mixed pixels may occur (Lu and Weng 2007).

Despite precautions made in the training samples’ col-
lection, it is sometimes difficult to identify the most sensi-
tive reference land-cover class for some observations, even
resorting to ancillary data (Carrão et al. 2008). Thus, the
original training sample, i.e., the sample of pixels that was
directly collected by the analyst, contained unusual training
units. According to Johnson and Wichern (1998), unusual
observations are those that are either too large or too small
compared to the others. Thus, in order to identify these
anomalies, it is necessary to apply a statistical procedure
based on the distance of each training unit to its mean class.

Fig. 1 A location map of the study site
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Let X ¼ fw1;w2; . . .;wkg be the set of class labels, lj the
mean, and Rj the variance–covariance matrix of the jth class
of X. Assuming that each land-cover class can be modeled
by a multivariate normal distribution, it is possible to
compute the squared Mahalanobis distance, for a given
training unit t assigned to the jth class of X, by Eq. (1):

d2
j tð Þ ¼ ðt � ljÞTR�1

j ðt � ljÞ: ð1Þ

Under these assumptions, the d2
j is modeled by a chi-

square random variable with k degrees of freedom, v2
k , when

the number of observations in each land-cover class is
greater than 30 (Johnson and Wicher 1998). Thus, we can
develop the following test to identify anomalous training
units (Johnson and Wicher 1998). For every class w and for
every training unit t of w, if d2

j tð Þ is greater than v2
kðaÞ,

where a is the significance level of the test, we reject the
hypothesis that t is a standard observation in class w;
otherwise, t is accepted and kept in the training sample. We
have fixed the significance level at 2.5 %.

In practical applications, the class mean and variance–
covariance matrix are not a priori known. Thus, we need to
estimate them. To that end, we have estimated the class
mean and variance–covariance using their standard maxi-
mum likelihood estimators, given by the following equa-
tions (Johnson and Wicher 1998):

l̂j ¼
1
nj

X

t2wj

t ð2Þ

R̂j ¼
1

nj � 1

X

t2wj

ðt � l̂jÞðt � l̂jÞT ð3Þ

where nj is the number of training units in the jth class of X.

Supervised Image Classification

In recent years, many advanced classification approaches
have been widely applied for image classification. Many
factors, such as different sources of data, classification
system, availability of classification software, and spatial
resolution of the remotely sensed data, must be taken into
account when selecting a classification method for use.
Different classification methods have their own merits, and
for the classification, we resort to the linear discriminant
classifier (LDC). The LDC is a parametric classifier based
on the homoskedasticity assumption, i.e., we assume that
each land-cover class is modeled by a multivariate normal
distribution and each of these distributions has an equal
variance–covariance matrix. The LDC has many advantages
over more sophisticated classification algorithms, due to the
fact that it does not need as many training units comparing
to the maximum likelihood classifier (MLC) or support
vector machines (Hastie et al. 2009). It is simple in com-
putational and operational terms and is reasonably robust
(Kuncheva 2004), in that the results are good even when the
classes do not have normal distributions.

Fig. 2 Illustration of the two
assumptions (adapted from Pu
et al. 2008)
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Fig. 3 Classification result
showing the land cover in
Saloum estuary in October 1984
(a), October 1992 (b), November
1999 (c), and November 2010 (d)
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Fig. 3 continued
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From the pixel x 2 R
k and the number of bands k, the

label to be assigned to x is given by the class that maximizes
the LDC discrimination function (Kuncheva 2004; Hastie
et al. 2009). The LDC discrimination function is given,
according to Kuncheva (2004), by Eq. (4):

hi xð Þ ¼ 1
2

l̂T
i R̂
�1

l̂i þ l̂T
i R̂
�1

x ð4Þ

where R̂ is the common variance–covariance matrix, esti-
mated by the weighted average of the separately estimated
class variance–covariance matrix, i.e.,

R̂ ¼
Xk

i¼1

ni

n
R̂i ð5Þ

where ni is the number of training units assigned to the ith
class of X and n is the total number of training units.

The Landsat data of 1984, 1992, 1999, and 2010 are
classified into six spectral classes using the LDC. Savanna
and rain-fed agriculture are merged in the same class. This
classification algorithm is a supervised parametric classifier,
i.e., it requires a training sample in order to classify the pixel
from a given image and it assumes that each land-cover class

behaves according to the normal statistic distribution. Thus,
in this respect, it resembles the MLC. The difference is that
the LDC is based on an additional assumption which is the
homoskedasticity hypothesis, in which the classifier assumes
that each class has equal variance, and thus, all covariance
matrices are equal for every land-cover class of the nomen-
clature. Although the homoskedasticity hypothesis tends to
be unrealistic, the literature has shown that this classifier
behaves in a robust way even when there are deviations from
the hypothesis of normality and homoskedasticity (Kuncheva
2004). The LDC has several advantages, in that it requires less
training samples than the MLC and also it is easy to fine-tune
and robust to noisy data (Hastie et al. 2009). In this sense, the
LDC is a preferable classification algorithm for land-cover
mapping (Carrão et al. 2008), especially when the image
analyst does not have a reliable reference database to collect
representative training samples. For the classification, a set of
training sites and ground truth data were required. A sample
set of 50 training sites was established. They characterize the
six typical land-cover classes occurring in the study area. The
sample plots were digitized on screen, and then, a supervised
LDC was applied using a stack of the six (without band 6)
original bands of the Landsat image and the remote sensing
technique (NDVI) to generate a land-cover map.

Table 1 Change matrices generated (%) through overlay analysis between the four single-date classification results, with the classification
method

Water High mangrove Low mangrove ‘‘tan’’ Savanna/rain-fed agriculture Forest

1992

1984 Water 97 0 2 1 0 0

High mangrove 2 42 55 0 0 0

Low mangrove 5 4 83 6 1 1

‘‘tan’’ 1 0 7 83 9 0

Savanna/rain-fed agriculture 0 0 0 1 98 1

Forest 0 0 1 0 45 54

1999

1992 Water 96 0 2 2 0 0

High mangrove 5 21 72 1 1 1

Low mangrove 28 3 61 7 1 0

‘‘tan’’ 11 0 5 78 7 0

Savanna/rain-fed agriculture 0 0 0 2 96 2

Forest 0 0 2 1 26 70

2010

1999 Water 92 1 5 2 0 0

High mangrove 10 44 43 1 1 1

Low mangrove 12 14 66 4 3 1

‘‘tan’’ 18 0 7 63 12 1

Savanna/rain-fed agriculture 0 0 0 1 95 3

Forest 0 0 2 0 42 56

The bold represent the no change percentage.

56 N. M. Dieng et al.



The overall accuracy and a kappa analysis were used to
perform a classification accuracy assessment based on error
matrix analysis. Using the simple descriptive statistics
technique, overall accuracy is calculated by dividing the
total correct by the total number of pixels in the error
matrix. The kappa analysis is a discrete multivariate tech-
nique used in accuracy assessments (Jensen 1996), and it
yields a KHAT statistic (an estimate of kappa) which is a
measure of agreement or accuracy (Congalton and Green
1993). It is a measure of overall statistical agreement of an
error matrix, which takes non-diagonal elements into
account, and it is recognized as a powerful method for
analyzing a single error matrix and for comparing the dif-
ferences between various error matrices (Congalton 1991;
Smits et al. 1999; Foody 2004).

The next step was to generate a cross-tabulation using
GIS technique that combines the information of two types
of raster files into a contingency matrix. The procedure
consists of counting pairs of categorical values of two given

variables in order to produce a categorical frequency
distribution.

NDVI Differencing Method

The NDVI differencing method employs NDVI to differ-
entiate images for mapping pixel change in the land-cover
types. It is a popular vegetation index differencing used for
change detection. For the NDVI differencing method, the
NDVI image for each year was first computed according to
Tucker (1978) using the NIR and RED bands (Eq. 6):

NDVI ¼ NIR� RED
NIRþ RED

ð6Þ

NDVI is derived from differences in reflectance of the
red (pigment absorption) and near-infrared (scattering from
cellular structure), with values ranging from -1 to +1.
Negative values refer to an absence of vegetation, while

Fig. 4 NDVI images of the four Landsat images: a October 1984, b October 1992, c November 1999, and d November 2010. The NDVI images
were calculated with the NIR band, the red band
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positive values are related to biomass variables, indicating
leaf cover or productivity (Wang et al. 2003; Filella et al.
2004; Pettorelli et al. 2005; Zinnert et al. 2011).

Due to differences in atmospheric and land surface
conditions and phenological stages, among other factors,
during the acquisition, the satellite images exhibit differ-
ences in spectral behavior (Pu et al. 2008). The purpose of
change detection is to extract the true LULC changes. Prior
to that, it is important to normalize the images in order to
identify the changes caused by other factors. It is worth
noticing that the radiometric normalization does not com-
pletely correct the spectral behavior (Pu et al. 2008), i.e., the
procedure will normalize the spectral values to a similar
level for the two images acquired in different dates.

In this study, the normalization procedure was based on
the work of Pu et al. (2008). The normalization was not
done over the NIR and RED bands, but rather over the
NDVI. This procedure required less time, due to the
reduced number of samples necessary to collect when
compared with normalizing the NIR and RED separately. In
the normalization procedure, the NDVI values from one

date are assumed to be in a linear relation with the NDVI
values from the other date. That is, it is possible to correlate
using y ¼ axþ b, where x is the pixel value of one image,
y is its correspondent value, and a and b are coefficients
determined by least-square linear regression (LSLR). The
x image is usually called the reference image, and the
y image is called the subject image (Lunetta and Elvidge
1998). To compute the LSLR parameters, it is necessary to
collect a sample of pixel values. In this work, we have
applied the pseudo-invariant feature (PIF) method described
by Schott et al. (1988), to collect the samples. PIF are pixels
that do not represent changes in their spectral response over
the period of time in analysis. The PIF method is based on
two poles, namely very dark pixels and very bright pixels.
Typically, the dark PIFs can be found in deepwater pixels
and the bright sets on surfaces with very little or no vege-
tation, like barren soil and rock (Lunetta and Elvidge 1998).
These two poles are the basis to sample pixel values for
normalization. Once the coefficients are determined, it
becomes possible to apply the linear function to compute
the predicted NDVI and then the difference between two

Fig. 5 Maps show areas of NDVI increase and areas of NDVI decrease between 1992 and 1984 (a), 1999 and 1992 (b), and 2010 and 1999 (c)
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dates, as suggested by Pu et al. (2008). In the present study,
the NDVI differences between 1984 and 1992, 1992 and
1999, and 1999 and 2010 were computed.

After the computation of NDVI differences, the threshold
values that will define the change/no-change areas must to
be computed. In this step, it is assumed that the difference in
NDVI presents a normal distribution centered on zero
(Lunetta and Elvidge 1998; Pu et al. 2008). In practice, this
is usually not the case in that the NDVI differences have
mean value very close but different to zero. Additionally, it
is also assumed that NDVI increasing and decreasing parts
present a normal distribution (Pu et al. 2008). Under these
two assumptions, Pu et al. (2008) determined the threshold
values that can be used to identify the change/no-change
areas by computing the no-change interval:
½md þ csd;mi þ csi�, where md is the mean value and sd is
the standard deviation of the decreasing component; simi-
larly for mi; si (Fig. 2). The constant c can be determined
using methods based on the kappa value or accuracy
assessment (Pu et al. 2008). However, in this study, the
NDVI differences presented a very small standard deviation
value. This fact implies that the extreme values in the no-
change interval tend to be very near to the global mean
value. Thus, the threshold values were set as equal to the
NDVI difference mean value. This raises the problem of
how to detect no-change areas. To overcome this difficulty,

the LULC maps were used, so those pixels with equal
thematic label were considered stable over time.

Under the two assumptions, the NDVI difference is
centered on zero, and there is a value md, the mean value of
the NDVI decreasing component, and a value mi, the mean
value of the NDVI increasing component. The no-change
area is defined using the interval ½md þ csd;mi þ csi�.

Results and Discussions

Land-Cover Change

Classification
Using the classification method described above, the area of
land-cover types in each of four study images was obtained
and regional characterization of land-cover and land-cover
changes was understood for Saloum estuary over the twenty-
five-year period from 1984 to 2010. The results reveal that
substantial changes took place during this time. The confu-
sion matrices and kappa values were calculated from test
samples for the four single-date classification results (Fig. 3):
October 1984, October 1992, November 1999, and Novem-
ber 2010. The accuracy derived from the November 2010
image is evidently lower than that from 1984, 1992, and 1999
images (kappa value 0.79 vs. 0.90 or 0.87 or 0.85, or overall
accuracy of 78 vs. 90 or 87 or 84 %). The lower classification
accuracy might be due to the poorer quality of 2010 raw
image strips in comparison with the other. Table 4 presents
three change matrices that reflect the change directions and
percentages of land-cover types based on the single-date
classification results. The change matrices were calculated by
overlaying the four single-date classification maps. The
water area has increased in 1992 and 1999, and mangrove
(high and low) and ‘‘tan’’ were lost by immersion because the
break of the Sangomar spit in 1987. From 1984 to 1992, 55 %
of high mangrove shifted to low mangrove and 6 % of low
mangrove degraded to denudate soil (‘‘tan’’). These changes
and conversions increased from 1992 to 1999, and 72 % of
high mangrove transformed to low mangrove and 7 % of low
mangrove and 3 % of savanna shifted to ‘‘tan’’ (Table 1). In
1999, due to high precipitation (Fig. 4) and sea level rise, the
water surface also increased by 15 %.

NDVI Differencing
Over the NDVI images (Fig. 5), areas with gray reflect
higher NDVI. From Fig. 4, the area reflecting higher NDVI
(areas with gray) on the 2010 image is larger than that on
the other three images. For NDVI index normalization
between an NDVI image pair, the three linear regression
equations are as follows:
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Fig. 6 Average mean annual precipitation (MAP) for 5 years prior to
each date showing decreasing trend over time
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y ¼ 1:47x� 0:43

R2 ¼ 0:98 for NDVI image pair 1992 ðyÞ � 1984 ðxÞ
ð7Þ

y ¼ 0:73xþ 0:29

R2 ¼ 0:98 for NDVI image pair 1999 ð�Þ � 1992 ðxÞ
ð8Þ

y ¼ 1:7xþ 0:02

R2 ¼ 0:98 for NDVI image pair 2010 ðyÞ � 1999
: ð9Þ

For the NDVI image pairs 1992 (y) - 1984 (x) and 2010
(y) - 1999 (x), the slope coefficients, respectively, 1.4 and
1.7 reflect that the NDVI for the unchanged pixels increases.
For the NDVI image pair 1999 (y) - 1992 (x), the NDVI for
the unchanged pixels decreases due to precipitation increases
in 1999, which is reflected in the 0.73 slope coefficient. These
equations were used to predict the 1992 NDVI, the 1999
NDVI, and the 2010 NDVI images, respectively, from the
1984, 1992, and 1999 NDVI images. The three NDVI dif-
ference images were generated by subtracting the predicted
NDVI from the actual NDVI.

In the period 1984–1992, 73.1 % of the study area
showed an increasing NDVI, in 1992–1999 81 %, and in
1999–2010 79.5 %. Crossing these results with precipitation
values for the same periods (Fig. 6), we can see that the
increase in NDVI is caused by the increase in rainfall levels.
Although the rainfall levels increased in those periods, the
location of the areas that show decreasing NDVI is located in
zones occupied by tan around the Saloum River due to the
high salinity of the water river (Figs. 3 and 6). In fact, the
land-cover maps show that the majority of the transitions
that show NDVI are transition to decreasing tan.

Naturals Factors of Estuary’s Dynamic

Climate change has been particularly evident in west Africa in
the last 30 years. Increased drought has led to a significant
decrease in freshwater flow as well as an increase in the

salinity level in estuary system. This is the case for the inverse
estuary of the Sine Saloum where river waters with salinities
much higher than seawater salinity occur (Fig. 7). In this
region, the climate is characterized by an extended dry season,
cool from November to March and warm from April to June,
and by a short wet and warm season from July to October.
Since the 1920s, the annual rainfall has decreased in this
region with variable magnitude and drought period is much
pronounced in recent decades (Pagès and Citeau 1990). The
combined effects of reduced freshwater inputs, intense
evaporation, and a low slope in the lower estuary have resulted
in an overall high salinity and an inversion of the salinity
gradient upstream the Saloum River course. This character-
istic occurs to a lesser extent in the Diomboss branch.

The intermittent and the reverse flows of the Saloum
River due to the runoff deficit caused saltwater advance up
to 60 km upstream, contaminating surface water, ground-
water, and large areas of agricultural soils located in these
zones. Salinity in the Saloum River showed an upstream
gradual increase from 36.7 % at the mouth to higher than
90 % at Kaolack (Pagès and Citeau 1990).

The chemical and isotopic data of water sampled in the
Saloum River estuary (Faye et al. 2003, 2004, 2009; Dieng
2012 unpublished) revealed that high salinity is induced by
seawater advance through tide dynamic. During the dry
season (December to May) where maximum air temperatures
and evaporation occur, seawater advance may reach 90 km
inland (Kaolack locality) and salinity as high as 60 g/l (Dieng
2012 unpublished). Consequences of this high salinity are
contamination of the shallow groundwater resources, large
areas of arable land with formation of saline barren soils at
the vicinity of the estuary system and the economically
valuable mangrove ecosystem which plays a vital role to the
majority of this rural population. The saltwater contamina-
tion constitutes a serious problem in this region.

Higher salinity content in the upstream estuary has also
consequences on vegetation and soil resources in that the
mudflat has been affected by these hydroclimatic variations.
The morphopedological modifications induced by a high
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Fig. 7 Interannual variation in
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locality from 1927 to 2012
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salinization and acidification of soils have led to a gradual
degradation, transformation, and disappearance of the
mangrove to tan, and the most affected areas are located
from the mid-to-upstream parts of the Saloum River
(Figs. 3, 4 and 5). In addition to that, the Sangomar spit

break which occured in 1987 (Diaw et al. 1991; Dieye et al.
2013) may contribute to the significant changes downstream
(mangroves, land loss) since opening of the spit channel
(4.96 km currently) favored direct hydraulic connection
between the sea and the Saloum River (Fig. 8).

Fig. 8 Evolution of the
Sangomar sand spit between
1984 and 2010
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Conclusion

Uses of Landsat image allow us to monitor dynamic changes
in land-cover and land-use over a large area. The image
processing approach with GIS techniques can provide
valuable spatial data for both quantitative and qualitative
studies of the land-cover changes. This study showed that
significant changes in land cover occur within the whole
estuary system. These changes reflect environmental deg-
radation, such as land desertification, salinization, and veg-
etation degradation, which are caused by salinity increase.
Comparisons revealed that conversion of mangrove to ‘‘tan’’
cover was closely linked to precipitation and breaching of
the Sangomar sand spit. In addition, these results show that
significant changes in land cover occur in the study area,
reflecting in this way environmental degradation and land
desertification caused by the advance of salty bare lands.
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