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1 Introduction

In a rather precise sense the study of exterior differential systems is equivalent to the
study of partial differential equations in the language of differential forms. Although
the change of language from partial derivatives to differential forms may appear
quite surprising nowadays, the concept developed in a time, when differential forms
offered the most convenient way to do calculations in differential geometry without
reference to local coordinates. Orthodox differential geometry has caught up in the
meantime and this initial advantage has been lost to a large extent. Nevertheless
exterior differential systems are still an interesting topic to study today, because they
unify language, method and results for several different kinds of partial differential
equations.

Studying partial differential equations in the unified framework of exterior
differential systems allows us to take advantage of the beautiful theory of Cartan–
Kähler about analytical solutions to analytical exterior differential systems, which
is the central topic of these notes. In essence the theory of Cartan–Kähler replaces
actual solutions to a given exterior differential system by formal power series
solutions, an idea already used successfully in the predecessor of the Cartan–
Kähler theory, the theorem of Cauchy–Kovalevskaya. Calculating the terms of a
formal power series solution term by term reduces a complicated partial differential
equation effectively to the problem of solving an inhomogeneous linear equation
at each order of differentiation. Although this reduction to linear algebra is very
appealing, a rather unpleasant problem arises in this approach: Inhomogeneous
linear equations need not have a solution in general. An exterior differential system
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is called formally integrable, if all the inhomogeneous linear equations encountered
at different orders of differentiation in calculating a formal power series solution
allow solutions.

A partial answer to the problem of verifying formal integrability is given by
the Spencer cohomology H �;ı.A / associated to an exterior differential system.
Spencer cohomology tells us that we can always solve the inhomogeneous lin-
ear equation at differentiation order k provided the Spencer cohomology space
Hk;2.A / D f 0 g vanishes, on the other hand we may still be able to solve the
inhomogeneous linear equation at differentiation order k in case Hk;2.A / ¤ f 0 g.
Despite being only a partial answer Spencer cohomology is a very useful tool in
practice, because it is usually much easier to calculate the Spencer cohomology
of an exterior differential system than to work with formal power series solutions
directly. Moreover the algebraic roots of Spencer cohomology in commutative
algebra ensure that only a finite number of problematic differentiation orders k exist
with Hk;2.A / ¤ f 0 g.

Among the several excellent text books on the exterior differential systems let us
point out the book [1], which can be seen as an authoritative reference on the topic.
In writing these introductory notes I wanted to complement [1] with its numerous
examples with a concise exposition of the theory of exterior differential systems and
its relationship to Spencer cohomology. Moreover I wanted to discuss some of the
points in more detail, which are treated rather superficially in the existing literature,
say, for example, the distinction between the reduced symbol comodule A and the
symbol comodule R and the precise definition of the Cartan character of an exterior
differential system. In this way I hope that even the reader well acquainted with the
Cartan–Kähler theory of exterior differential systems will find these introductory
notes worth reading, the more so a reader looking for a panoramic view on the
formal theory of partial differential equations.

Grosso modo these notes on exterior differential systems are structured into three
essentially independent parts. In Sect. 2 we will construct the contact systems on
three different kinds of jet bundles based on the notion of a canonical contact
form. Sections 3 and 4 are dedicated to a detailed study of Spencer cohomology:
Sect. 3 focuses on its general algebraic properties, whereas Sect. 4 links Spencer
cohomology to three classical statements about partial differential equations. Last
but not least the theory of Cartan–Kähler is the topic of Sect. 5, in which we
will discuss the general setup of exterior differential system and sketch a proof of
the Theorem of Cartan–Kähler about the analytical solutions to partial differential
equations with analytical coefficients.

2 Jets and Contact Systems

In essence jets and jet bundles are introduced to geometrize differential operators
and/or partial differential equations, splitting their study into algebraic and analyt-
ical problems. The resulting hybrid approach is the leitmotif of the formal theory
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of partial differential equations, which becomes the theory of exterior differential
systems when formulated in the language of differential forms and exterior calculus.
In this initial section we discuss the geometry of jets and jets bundle focusing
on the construction of the contact systems on three different kinds of jets, the jets of
smooth maps, the jets of sections of fiber bundles and the jets of submanifolds. In
Sects. 3 and 4 we will discuss the algebraic aspects of exterior differential systems,
before these two strands of the formal theory of partial differential equations are
united into the theory of Cartan–Kähler in Sect. 5.

In order to begin our study of jets let us introduce an equivalence relation on the
set of smooth maps from R

m to R
n by declaring two maps f W R

m �! R
n and

g W R
m �! R

n to be in contact f �k;x g in a point x 2 R
m to order k 2 N0, if and

only if there exists a constant C > 0 such that the difference f � g is bounded by
the estimate

j f . � / � g. � / j � C j � � x jkC1

for all � in a compact neighborhood of x. Apparently this definition depends on the
choice of norms j � j on R

m and R
n and compact neighborhoods, different choices

of norms or neighborhood however only affect the constant, not the existence of the
estimate itself. The equivalence class of a given function f W R

m �! R
n under

contact �k;x to the order k is called the kth order jet of f in x written jetkxf .
According to Taylor’s Theorem smooth maps f and g are in contact in x to the
order k, if and only if all their partial derivatives

@jAjf
@xA

. x / D @jAjg
@xA

. x / jAj � k (1)

up to order k agree in x. In this case there exists a unique polynomial  of degree
at most k on R

m with values in R
n, which is in contact to both f and g to the order

k in x. Thus the set Jetkx.R
m; Rn / of all kth order jets in x of smooth maps from

R
m to R

n is in bijection

Sym�k
R
m� ˝ R

n Š�! Jetkx. R
m;Rn /;  7�! jetkx  .� � x/ (2)

with the vector space Sym�k
R
m� ˝ R

n of polynomials of degree less than or equal
to k on R

m with values in R
n. The proper reason for including the translation

jetkx  .� � x/ instead of the seemingly simpler jetkx  .�/ is that in this way the jet
projections

pr W Jetk.Rm; Rn / �! Jet
Qk.Rm; Rn /; jetkxf 7�! jet

Qk
xf

defined for all k � Qk � 0 become just the standard projections for polynomials

pr W R
m � Sym�k

R
m� ˝ R

n �! R
m � Sym� Qk

R
m� ˝ R

n;
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.x;  / 7�! .x; pr /

forgetting all homogeneous components of  of degree larger than Qk. Although the
jet projections pr are defined in this way for all k � Qk � 0, only the two special
cases Qk D k�1 and Qk D 0 are of any practical importance. Singling out the latter jet
projection in notation, which becomes the evaluation map under the identification
Jet0.Rm; Rn / D R

m � R
n

ev W Jetk.Rm; Rn / �! R
m � R

n; jetkxf 7�! .x; f .x//

we may say that the notation pr virtually always refers to the jet projection with
Qk D k � 1.

In order to “globalize” the current definition of jets to smooth maps between
manifolds it is very convenient to observe that the second definition (1) of kth
order contact together with the general chain rule for iterated partial derivatives
of compositions provide us with a well-defined jet composition map on the fibered
product of two jet spaces

Jetk.Rm; Rn / �Rm Jetk.Rl ; Rm / �! Jetk.Rl ; Rn /;

. jetkyf; jetkxg / 7�! jetkx. f ı g /

provided the source y of jetkyf agrees y D g.x/ with the target g.x/ of jetkxg,
for this reason the composition map is only defined on the fibered product �Rm .
Defining the kth order jet of a smooth map f W M �! N between manifolds M
and N with respect to local coordinates x and y about p 2 M and f .p/ 2 N

simply as jetkx.p/.y ı f ı x�1/ we obtain

jetkQx.p/. Qy ıf ı Qx�1 / D jetky.f .p//. Qy ıy�1 / ı jetkx.p/. y ıf ıx�1 / ı jetkQx.p/. x ı Qx�1 /

for every other choice Qx and Qy of the local coordinates involved. With the jet
composition map being well-defined we conclude that for two smooth maps f W
M �! N and g W M �! N satisfying f .p/ D g.p/ the validity of an equality of
jets of the form

jetkx.p/. y ı f ı x�1 / D jetkx.p/. y ı g ı x�1 /

is independent of the local coordinates x and y of M and N employed in its
formulation:

Definition 2.1 (Jets of Smooth Maps). Two smooth maps f W M �! N and
g W M �! N between manifolds M and N are said to be in contact f �k;p g in a
point p 2 M to the order k 2 N0 provided f .p/ D g.p/ and

jetkx.p/. y ı f ı x�1 / D jetkx.p/. y ı g ı x�1 /
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for some and hence every local coordinates x ofM and y ofN about p and f .p/ D
g.p/ respectively. The set of all equivalence classes of smooth maps from M to N
in contact

Jetk. M; N / WD f jetkpf j f W M �! N smooth g

to order k is a fiber bundle over M with projection � W Jetk.M; N / �!
M; jetkpf 7�! p; and over M � N under the evaluation ev W Jetk.M; N / �!
M �N; jetkpf 7�! . p; f .p/ /.

It should be hardly surprising to see that the preceding definition reduces the contact
relation for smooth maps between manifolds via a choice of local coordinates to the
contact relation for smooth maps between Euclidean spaces, after all the definition
of smoothness of maps between manifolds employs local coordinates in exactly
the same way. This very observation implies directly that the jet composition map
extends to:

Jetk.M; N / �M Jetk. L; M / �! Jetk. L; N /;

. jetkg.p/f; jetkpg / 7�! jetkp. f ı g / (3)

Using this generalized jet composition map we may define a second kind of jet
bundles, the jet bundles of sections of fiber bundles over a manifold M . Consider
therefore a smooth fiber bundle FM over a manifold M with projection � W
FM �! M . The jet composition map induces a well-defined map from the space
of jets of smooth maps M �! FM to

Jetk. M; FM / �! Jetk. M; M /; jetkpf 7�! jetkf .p/� ı jetkpf

which sends the kth order jet of a section f 2 �.FM / to jetkp.� ı f / D jetkpidM .
In turn we define the bundle of kth order jets of sections of FM as the following
submanifold

JetkFM WD fjetkpf j jetkf .p/� ı jetkpf D jetkp idM g � Jetk. M; FM /

of Jetk.M; FM / with the induced bundle projection � W JetkFM �!
M; jetkpf 7�! p. The jet projections pr W Jetk.M; FM / �! Jet

Qk.M; FM /

clearly restrict to jet projections

pr W JetkFM �! Jet
QkFM; jetkpf 7�! jet

Qk
pf

for all k � Qk � 0 with the special case ev W JetkFM �! FM; jetkpf 7�!
f .p/; singled out in notation to prevent ambiguities as discussed before. The jet
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projections pr and ev turn the jet bundles JetkFM; k � 0; associated to FM into
a tower of fiber bundles over M

: : :
pr�! Jet3FM

pr�! Jet2FM
pr�! Jet1FM

ev�! FM
��! M (4)

in the sense that every manifold in this tower is a smooth fiber bundle over every
manifold further down under the appropriate projection. It should be noted that the
two types of jet bundles we have defined so far are very closely related, in fact we
could have based all our considerations on the notion of jet bundles of sections.
In this approach the jet bundle of smooth maps M �! N becomes the bundle
Jetk.M; N / WD Jetk.N � M / of jets of sections of the trivial N -bundle N � M
over M , clearly a section n W M �! N � M is essentially the same thing as the
smooth map �N ı n W M �! N .

The geometry of the tower of jets bundles (4) associated to a fiber bundle
FM is governed by the structural property that all the fibers of the jet projection
pr W JetkFM �! Jetk�1FM are naturally affine spaces, more precisely the
fiber pr�1. jetk�1

p f / � JetkFM over jetk�1
p f is an affine space modelled on

the vector space SymkT �
p M ˝ Vertf .p/FM for all k � 1. This additional affine

structure is of the utmost importance for the formal theory of partial differential
equations, because it reduces non-linear partial differential equations effectively to
problems concerning affine linear maps, traditionally called symbol maps, which
are significantly easier to deal with. In particular the resulting symbolic calculus
allows us to climb up the tower (4) recursively one step at a time like we will do in
the proof of the Theorem of Cartan–Kähler in Sect. 5.

Ironically enough the construction of the canonical affine structure on the fibers
of the jet projection pr invariably involves a non-canonical choice, nevertheless this
ambiguity can be reduced significantly by using the concept of anchored coordinate
charts. A coordinate chart of a smooth manifold M anchored in a point p 2 M is
a smooth map ˆM W TpM �! M defined at least in some open neighborhood of
0 2 TpM such that ˆM. 0 / D p and such that the differential of ˆM in the point
0 2 TpM agrees with the identity of TpM :

ˆM�; p W TpM Š T0. TpM / �! TpM; X 7�! d

dt

ˇ
ˇ
ˇ
ˇ
0

ˆM . tX /
ŠD X

(5)

Evidently the concept of coordinate charts of a manifold M anchored in a point
p 2 M reflects the basic properties of the standard exponential maps studied in
affine differential geometry. For every smooth fiber bundle � W FM �! M over
a manifold M and for every given f0 2 Fp0M in the fiber over a point p0 2 M

we can easily find anchored coordinate charts ˆM W Tp0M �! M and ˆF W
Tf0FM �! FM anchored in p0 and f0 such that
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(6)

commutes wherever defined. Using such a pair of anchored coordinate charts we
define

jetkp0f C �f WD jetkp0

�

p 7�! ˆF
h

ˆF �1
. f .p/ / C �f . ˆM

�1
. p / /

i�

(7)

for all jetkp0f 2 Jetkp0FM evaluating to f .p0/ D f0 and all �f 2 SymkT �
p0
M ˝

Vertf0FM considered as homogeneous polynomials of degree k on Tp0M with
values in the subspace Vertf0FM � Tf0FM . The commutativity of the dia-
gram (6) ensures that the expression

M �! FM; p 7�! ˆF
h

ˆF �1
. f .p/ / C �f . ˆM

�1
. p / /

i

results in a locally defined section of FM . Needless to say this section depends on
the pair of anchored coordinate charts ˆF and ˆM used in its definition. Different
choices for ˆF and ˆM however will always lead to local sections in contact in the
point p0 2 M up to order k, because�f considered as a homogeneous polynomial
of degree k on Tp0M has all its partial derivatives of order less than k vanishing in
0 2 Tp0M .

Taking partial derivatives the first time converts a composition like ˆF ı �f ı
ˆM

�1
into a sum of products of partial derivatives of ˆF , �f and ˆM , all

subsequent partial derivatives are then calculated using the Leibniz rule for products.
Hence all partial derivatives of the compositionˆF ı�f ıˆM�1

of order less than
k in p0 vanish and the only the non-zero contributions to partial derivatives of order
k arise from choosing the critical factor �f in all subsequent applications of the
Leibniz rule. The net result is a sum of products of partial derivatives of �f of
order k in 0 2 Tp0M with only first order partial derivatives of ˆF and ˆM in
0 2 Tf0FM and 0 2 Tp0M . Exactly these first order derivatives however are fixed
by the characteristic property (5) of anchored coordinate charts!

Certainly a lot of work needs to be done to make the argument sketched in the
preceding paragraph precise, nevertheless we skip this problem for the time being
and conclude that the addition (7) does not dependent on the choice of the pair of
anchored coordinate chartsˆF andˆM used in its definition. Moreover the addition
satisfies the axioms of a group action for the additive group underlying the vector
space SymkT �

p0
M ˝ Vertf0FM :

jetkp0f C 0 D jetkp0f . jetkp0f C�f /C� Qf D jetkp0f C .�f C� Qf /
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Both verifications necessary are essentially trivial, but involve rather bombastic
formulas better omitted. Summarizing all our considerations on this topic we have
constructed for all k � 1 a canonical vector group bundle action on JetkFM fibered
over FM

C W JetkFM �FM .SymkT �M ˝ VertFM / �! JetkFM

in the sense that the fiber of the vector bundle over f0 2 FM acts on subset of jets
evaluating to f0. In the standard jet coordinates on JetkFM introduced later on it
is relatively easy to verify that the addition C is a natural affine space structure on
the fibers of the jet projection pr W JetkFM �! Jetk�1FM in the sense that it acts
simply transitively on each fiber.

Without doubt the most important use of jets is to provide us with a concise
definition of the intuitive notions of (non-linear) differential operators and par-
tial differential equations. In particular the geometrization of partial differential
equations brought about by jets can be used to reduce all possible kinds of
partial differential equations to a single standard normal form, namely an exterior
differential system. Before discussing this point let us point out very briefly that the
jet bundles JetkFM of a vector bundle FM over a manifold M are naturally vector
bundles again under the obvious choice of scalar multiplication and addition

� jetkpf WD jetkp. �f / jetkpf1 C jetkpf2 WD jetkp. f1 C f2 /

moreover the jet bundles JetkFM are also bundles of free modules over the algebra
bundle JetkRM of smooth k-jets of functions. Last but not least the vector bundle
structure on JetkFM can be used for an alternative construction of the affine space
structure on the fibers of the jet projection pr W JetkFM �! Jetk�1FM. In this
alternative construction the addition (7) is mediated by a canonical inclusion of
vector bundles

� W SymkT �M ˝ FM �! JetkFM;  p ˝ fp �! jetkp.  f / (8)

so that jetkpf C �f can be interpreted simply as the sum of jetkpf and �.�f / in

the vector space JetkpFM, note that Vertf0FM Š Fp0M are canonically isomorphic
for a vector bundle.

Definition 2.2 (Non-linear Partial Differential Equations). A smooth non-linear
differential operator of order k � 0 from sections of a fiber bundle FM over M
to sections of another fiber bundle EM is a map D W �.FM / �! �.EM /

between the sets of locally defined sections such that the value .Df /. p / 2 EpM of
the image of f 2 �.FM / in a point p 2 M depends only on jetkpf 2 JetkpFM .
In particular D induces a well-defined smooth map of fiber bundles over M called
the total symbol of D:

� total
D W JetkFM �! EM; jetkpf 7�! .D f /. p /
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A non-linear partial differential equation for local sections f 2 �.FM / is an
equation of the form Df D 	 with a distinguished global section 	 2 �.EM / of
the target bundle.

This notion of non-linear partial differential equations may not be the most general
one, nevertheless it is sufficiently ample to illustrate the use of jets and comprises
the important subclass of linear partial differential equations. Naturally enough
a differential operator D of order k � 0 is called a linear differential operator
provided both the source and target bundle FM and EM are vector bundles over M
and D W �.FM / �! �.EM / is an R-linear map between the vector spaces of
sections, equivalently we may ask for its total symbol � total

D W JetkFM �! EM
to be a homomorphism of vector bundles over M . A linear partial differential
equation for sections f 2 �.FM / is in turn an equation of the form D f D 0

with a linear operator and the distinguished zero section 0 2 �.EM /. Given now
a partial differential equation Df D 	 of order k � 1 we may “solve” the equation
algebraically

EqkpM WD f jetkpf 2 JetkpFM j � total
D . jetkpf / D 	p g � JetkpFM

in terms of jets in every point p 2 M . Evidently a local section f 2 �.FM / is
a solution to the partial differential equation Df D 	, if and only if its image under
the jet operator

jetk W �.FM / �! �. JetkFM /; f 7�!
�

p 7�! jetkpf
�

(9)

takes values jetkpf 2 EqkpM in every point p 2 M . This observation motivates the
minimal regularity assumption imposed in the formal theory of partial differential
equations, namely we require that the family f EqkpM gp2M of subsets of JetkFM

assembles into a subbundle EqkM � JetkFM . A partial differential equation
failing to satisfy this minimal regularity assumption is outside the scope of the
formal theory and has to be treated differently.

Solving a partial differential equation algebraically in every point p 2 M

introduces the concept of formal solutions into the picture, sections of the fiber
bundle EqkM � JetkFM . Only those formal solutions f k 2 �.EqkM / though,
which are in the image of the jet operator, correspond to actual solutions f 2
�.FM /. Hence it makes sense to distinguish sections in the image of the jet
operator (9) from arbitrary sections of EqkM and call them holonomic sections. In
consequence the original partial differential equation Df D 	 has been reformulated
into the problem to find all holonomic sections of EqkM . In passing we remark that
the question, whether every section of EqkM is fiberwise homotopic to a holonomic
section or not, has sparked intensive research on Gromov’s h-principle [4].

Interestingly the holonomic sections jetkf 2 �. JetkFM / of a jet bundle are
exactly those sections of JetkFM , which satisfy a particular first order partial
differential constraint, the contact constraint. In the setup of exterior differential
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systems this contact constraint is formulated in terms of a canonical 1-form specific
to jet bundles, the canonical contact form. Restricting this canonical contact form
to the subbundle EqkM � JetkFM of algebraic pointwise solutions of a partial
differential equation Df D 	 induces an exterior differential system on the manifold
EqkM , whose solutions correspond bijectively to local solutions f 2 �.FM /

of the original partial differential equation Df D 	. In this way every partial
differential equation satisfying the minimal regularity assumption is transformed
into an equivalent exterior differential system.

In order to construct the canonical contact form 	 contact on the jet bundle JetkFM

of sections of a fiber bundle FM we remark that every smooth curve c W R �!
JetkFM in the total space of a jet bundle can be written in the form c.t/ D jetkpt ft
with smooth curves t 7�! pt in the base M and a curve t �! ft in �.FM /.
Anticipating a Leibniz rule for such combined curves we can decompose every
vector tangent to JetkFM into two parts:

d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpt ft D d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpt f0 C d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkp0ft (10)

Although this formula is entirely correct the decomposition on the right depends on
the specific representation of the given tangent vector on the left as a combination
of a curve t 7�! pt in the base and a curve t 7�! ft in the local sections of FM .
Essentially the problem is that the first summand picks up partial derivatives of order
k C 1 of f0 in form of the partial derivatives of jetkf0 in the direction of d

dt

ˇ
ˇ
0
pt .

This problem is easily overcome using the jet projection pr and so we can define the
contact form 	 contact on JetkFM via:

	 contact
� d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpt ft
�

WD d

dt

ˇ
ˇ
ˇ
ˇ
0

jetk�1
p0
ft 2 Vertjetk�1

p0
f0

Jetk�1FM

En nuce the contact form tells us, whether or not we are forced to change the local
section f0 in order to reproduce a given vector tangent to JetkFM . Thus every
holonomic section jetkf W M �! JetkFM; p 7�! jetkpf; with f 2 �.FM /

pulls back the contact form to:

�

.jetkf /�	 contact
� � d

dt

ˇ
ˇ
ˇ
ˇ
0

pt

�

WD 	 contact
� d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpt f
�

D d

dt

ˇ
ˇ
ˇ
ˇ
0

jetk�1
p0
f D 0 (11)

In order to simplify this characterization of holonomic sections jetkf 2
�. JetkFM / of the jet bundle JetkFM it is convenient to replace the contact
form 	 contact, which is a 1-form on JetkFM with values in the slightly unwieldy
vector bundle pr�.Vert Jetk�1FM /, by its scalar components aka local sections of
the contact subbundle of T �JetkFM defined by:
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Contact JetkFM

WD im
�

pr�.Vert�Jetk�1FM / �! T �JetkFM; 
 7�! h 
; 	 contact i
�

Every contact form 	 2 �.Contact JetkFM / is actually horizontal for the
projection pr to Jetk�1FM , because every pr-vertical tangent vector is �-vertical
as well and thus has a presentation d

dt

ˇ
ˇ
0

jetkpft , in which the base point p 2 M does
not vary. A fortiori we get:

	 contact
� d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpft
�

D d

dt

ˇ
ˇ
ˇ
ˇ
0

jetk�1
p ft D pr�

� d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpft
�

D 0

The horizontality of contact forms allows us to define the contact system on
JetkFM as the following sequence of vector subbundles of the cotangent bundle of
the jet bundle JetkFM

Contact JetkFM 
 Horizontal JetkFM 
 T �JetkFM (12)

where Horizontal JetkFM denotes the subbundle of horizontal 1-forms with
respect to pr.

The preceding calculations offer a good insight into the geometry of the contact
system, nevertheless some readers will certainly prefer a more down to earth
approach vindicating our findings explicitly in local coordinates on jet bundles. For
the time being we will restrict to the jet bundles Jetk.M; F / of smooth maps from
a manifold M to a manifold F , in any case the difference between Jetk.M; F /

and JetkFM virtually disappears in local coordinates for a fiber bundle FM over
M with model fiber F . Choosing local coordinates .x; U / on M and .f; V / on F
we may then define local coordinates on the subset

. Jetk. M; F / /.x;U /; .f;V / WD f jetkpf j p 2 U and f .p/ 2 V g

of kth order jets of maps f W M �! F with source in U and target in V by setting

x˛. jetkpf / WD x˛. p / f �
A . jetkpf / WD @jAjf �

@xA
. x1.p/; : : : ; xm.p/ /

for all ˛ D 1; : : : ; m, � D 1; : : : ; n and all multi-indices A on f1; : : : ; mg of order
jA j � k. The standard jet coordinates constructed in this way from smooth atlases
for both M and F define a smooth atlas for Jetk.M; F / turning it into a smooth
manifold of dimension:

dim Jetk.M; F / D mC n

 

mC k

m

!
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Standard jet coordinates are adapted to the projections pr W Jetk.M; F / �!
Jet

Qk.M; F / for all k � Qk � 0 in the sense that pr simply forgets all the coordinate
functions f �

A with jAj > Qk, this observation proves explicitly that (4) really is the
stipulated tower of smooth fiber bundles overM . Moreover standard jet coordinates
on Jetk.M; F / allow us to decompose every tangent vector d

dt

ˇ
ˇ
0

jetkpt ft in the way
predicted by Leibniz’s rule

d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpt ft

D
mX

˛D1

h d

dt

ˇ
ˇ
ˇ
ˇ
0

x˛. jetkpt ft /
i @

@x˛
C

X

jAj�k
�

h d

dt

ˇ
ˇ
ˇ
ˇ
0

f �
A . jetkpt ft /

i @

@f �
A

D
mX

˛D1
ıx˛

h @

@x˛
C

X

jAj�k
�

� @

@x˛
@jAjf �

0

@xA

�

. x.p0/ /
@

@f �
A

i

C
X

jAj�k
�

ıf �
A

@

@f �
A

where ıx˛ WD d
dt

ˇ
ˇ
0
x˛. pt / and ıf �

A WD d
dt

ˇ
ˇ
0

@Af �t
@xA

. x.p0/ /. Evaluating
d
dt

ˇ
ˇ
0

@jAjf �t
@xA

. x.pt / / for a multi-index A of highest order jAj D k we pick up
derivatives of f �

0 of order k C 1 as anticipated above, albeit only in the coefficients
of the basis vector @

@f �A
associated to A. For all multi-indices A of order jAj < k

on the other hand the value of the partial derivative . @
@x˛

@jAjC1f �0
@xAC˛ /. p0 / equals

f �
AC˛. jetkp0f0 / by construction and so we obtain eventually:

pr�
� d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkpt ft
�

D
mX

˛D1
ıx˛

� @

@x˛
C

X

jAj<k
�

f �
AC˛. jetkp0f0 /

@

@f �
A

�

C
X

jAj<k
�

ıf �
A

@

@f �
A

Evidently the first part in this decomposition comes from the variation ıp WD
d
dt

ˇ
ˇ
0
pt of the point p0 2 M , while the second part is caused by the variation

ıf WD d
dt

ˇ
ˇ
0

jetkp0ft of the kth order jet of the smooth map f0 W M �! F . In

this decomposition the canonical contact form 	 contact on Jetk.M; F / is simply the
projection to the second part, so we conclude:

	 contact.
@

@x˛
/ D �

X

jAj<k
�

f �
AC˛

@

@f �
A

	 contact.
@

@f �
A

/ D C ıjAj<k
@

@f �
A
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More succinctly this explicit version of the canonical contact form 	 contact reads:

	 contact D
X

jAj<k
�

�

df �A �
mX

˛D1
f �
AC˛ dx˛

�

„ ƒ‚ …

DW 	�A

˝ @

@f �
A

D
X

jAj<k
�

	�A ˝ @

@f �
A

In standard jet coordinates the contact system on Jetk.M; F / can thus be written

Contact Jetk.M; F / WD span f 	�A j for all �; jA j < k g
Horizontal Jetk.M; F / WD span f dx˛; df �A j for all ˛; �; jA j < k g (13)

because Contact Jetk.M; F / and Horizontal Jetk.M; F / are respectively the
subbundles of scalar components of 	 contact and of horizontal forms with respect to
pr. For the calculations to come it is important to observe that the exterior derivative
of the scalar contact form 	�A

d	�A D �
mX

˛D1
df �AC˛ ^ dx˛

D �
mX

˛D1

�

	�AC˛ C
mX

Q̨D1
f �
AC˛CQ̨ dx Q̨ � ^ dx˛

ŠD �
mX

˛D1
	�AC˛ ^ dx˛

with a multi-index A of order jAj < k�1 lies in the ideal generated by all the scalar
contact forms taken together. This is no longer true for multi-indices A of highest
order jAj D k � 1, but at least d	�A D � P

˛ df �AC˛ ^ dx˛ is an element of the
ideal generated by horizontal forms. In other words the contact system satisfies the
characteristic compatibility condition:

d W �.Contact Jetk.M;F / / �! �.Horizontal Jetk.M;F / ^T �Jetk.M;F / /

(14)

An illustrative example for the contact system, whose axiomatization has become
a topic of research by itself under the keyword contact manifolds, is the first order
jet bundle Jet1RM of the trivial real line bundle RM WD R � M over M , whose
sections correspond to smooth functions f W M �! R. Rather atypically this
bundle splits into the Cartesian product

Jet1RM
Š�! R � T �M; jet1pf 7�! . f . p /; dpf / (15)

which identifies the cotangent bundle T �M of the manifold M with the pointed
jet bundle T �M WD� Jet1RM of first order jets of functions evaluating to zero
ev. jet1pf / D . 0; p / in Jet0RM D R �M . From this point of view it is natural to
define the higher order cotangent bundle as the bundle of pointed kth order jets of
functions, compare for example [8]:

T �kM D �JetkRM WD f jetkpf j f W M �! R smooth and f . p / D 0 g
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More important for our present purpose is that the vertical tangent bundle of Jet0RM
is canonically the trivial line bundle Vert .R�M / D . T R /�M over R�M due
to T R Š R�R, the contact form thus becomes a scalar valued differential form on
Jet1RM :

	 contact
� d

dt

ˇ
ˇ
ˇ
ˇ
0

jet1pt ft
�

D d

dt

ˇ
ˇ
ˇ
ˇ
0

jet0p0ft OD d

dt

ˇ
ˇ
ˇ
ˇ
0

ft . p0 /

Comparing this expression with the differential of the tautological function on
Jet1RM , which is just the projection f taut. jet1pf / WD f . p / to the first factor in
decomposition (15)

df taut
� d

dt

ˇ
ˇ
ˇ
ˇ
0

jet1pt ft
�

D d

dt

ˇ
ˇ
ˇ
ˇ
0

ft . pt / D d

dt

ˇ
ˇ
ˇ
ˇ
0

ft . p0 / C dp0f0

� d

dt

ˇ
ˇ
ˇ
ˇ
0

pt

�

we conclude that the contact form comprises 	 contact D df taut � pr�
T �M

� both
the differential of the tautological function f taut 2 C1. Jet1RM / and the
tautological 1-form � on T �M . Correspondingly we get in standard jet coordinates
. x1; : : : ; xm; f; f1; : : : ; fm / on Jet1RM the classical expression for contact forms
in Darboux coordinates for contact manifolds:

	 contact D df �
mX

�D1
f� dx�

Besides higher order cotangent bundles we can also define higher order tangent
bundles:

Definition 2.3 (Higher Order Tangent Bundles). Recalling the definition of the
tangent bundle TM of a manifold M as the set Jet10.R; M / of equivalence classes
of smooth curves c W R �! M under the relation of first order contact in 0 2 R we
define the kth order tangent bundle as the set of equivalence classes of curves

T kM WD Jetk0. R; M /

under kth order contact in 0 with projection Jetk0.R; M / �! M; jetk0c DW
d�k

dt�k

ˇ
ˇ
ˇ
0
c 7�! c.0/.

In difference to the classical tangent bundle TM D T 1M the higher order tangent
bundles T kM with k > 1 do not carry a natural vector bundle structure. The proper
way to think of this problem is to consider the canonical embedding ˆ W T kM �!
Hom . �JetkRM; RkM / of T kM into the bundle Hom . �JetkRM; RkM / of linear
maps from the kth order cotangent bundle T �kM D� JetkRM to the trivial vector
bundle R

kM with fiber Rk defined by:

ˆ
h d�k

dt�k

ˇ
ˇ
ˇ
ˇ
0

c
i

. jetkc.0/f / WD
� d1

dt1

ˇ
ˇ
ˇ
ˇ
0

.f ı c/; d
2

dt2

ˇ
ˇ
ˇ
ˇ
0

.f ı c/; : : : ; d
k

dtk

ˇ
ˇ
ˇ
ˇ
0

.f ı c/
�
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In the special case k D 1 the canonical embedding ˆ is of course a version of
the canonical pairing TM �M T �M �! RM between the tangent and cotangent
bundles TM and T �M , as such it induces an isomorphism of fiber bundles. In
general however the embedding ˆ looks in suitable coordinates on T kM and
Hom . �JetkRM; RkM / like the polynomial map

. t1; : : : ; tk / 7�! . t1; t
2
1 C t2; t

3
1 C 2 t1 t2 C t3; : : : /

from the set .TpM/k of k-tuples of vectors in TpM to the vector space
.Sym1�kTpM /k of k-tuples of polynomials of degree at most k without constant
term in TpM . Since not every quadratic polynomial is the square of a linear
polynomial, the embedding ˆ is not surjective for any k > 1, nor does it induce a
vector space structure on T kM .

Whereas the jets of smooth maps and jets of local sections are very similar and
virtually indistinguishable in local coordinates the third kind of jets we want to
discuss in this section are slightly different in nature, namely jets of submanifolds.
The jet bundles of submanifolds or generalized Graßmannians are introduced to deal
with geometrically motivated partial differential equations, which actually ask for a
submanifold solution, not a smooth map or local section, consider for example the
partial differential equations describing minimal or totally geodesic submanifolds.
Generalized Graßmannians can be used as well to describe multivalued solutions to
standard partial differential equations as submanifolds of a jet bundle as discussed
for example in [6].

In order to define the contact equivalence relation between submanifolds of a
given manifold M we recall that the higher order tangent bundles of a manifold

M are defined as the set T kpM WD Jetk0.R; M / of equivalence classes d�k

dt�k

ˇ
ˇ
ˇ
0
c of

curves c W R �! M under contact to order k � 0 in the point 0 2 R. Thinking of
the higher order tangent bundle T kp N of a submanifold N � M in a point p 2 N

as a subset of the higher order tangent bundle of M

T kp N WD
n d�k

dt�k

ˇ
ˇ
ˇ
ˇ
0

c
ˇ
ˇ
ˇ c W R �! N � M smooth curve with c. 0 / D p

o

� T kpM

we may say that two submanifolds N and QN are in contact up to order k � 0 in a
common point p 2 N \ QN provided T kp N D T kp

QN � T kpM , equivalently for every

curve c W R �! N with c.0/ D p there exists a curve Qc W R �! QN in contact to c
to order k and vice versa:

Definition 2.4 (Jets of Submanifolds and Graßmannians). Two submanifolds of
a manifoldM are said to be in contactN �k;p

QN to order k � 0 in a common point
p 2 N \ QN , if their kth order tangent spaces in p agree T kp N D T kp

QN considered as
subsets of T kpM . The equivalence class of a submanifold N under contact to order
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k � 0 in a point p 2 N is called the kth order jetkpN of N in p, the set of all kth
order jets of submanifolds of dimension n defines the generalized Graßmannian:

GrknM WD f jetkpN j N an n–dimensional submanifold of M and p 2 N g

Two submanifolds N and QN sharing a point p 2 N \ QN are in contact to order
0 in p irrespective of their dimensions, because T 0pM is just the manifold M . The

0th order Graßmannian Gr0nM D M is thus not particularly interesting. The first
order Graßmannian Gr1nM on the other hand agrees with the fiber bundle of all
linear subspaces Grn.TM / of dimension n of the tangent bundle. In consequence
two submanifolds N and QN of different dimensions n ¤ Qn are never in contact to
first and thus never in contact to positive order k > 0 due to the existence of the by
now familiar tower of fiber bundles over M

: : :
pr�! Gr3nM

pr�! Gr2nM
pr�! Gr1nM

��! Gr0nM D M (16)

under the jet projections pr W GrknM �! Gr
Qk
nM; jetkpN 7�! jet

Qk
pN . Unlike the

towers of jet bundles we have discussed before there is no meaningful evaluation
ev W Gr1nM �! Gr0nM defined in this tower other than the fiber bundle projection � .

This minor difference between jet bundles and generalized Graßmannians is
reflected faithfully in local standard coordinates on GrknM . In fact for every k > 0

and every choice of local coordinates .x1; : : : ; xm/ on an open subset U � M we
may consider the subset

.GrknM /.x;U /

WD f jetkpN j p 2 U and dpx
1
ˇ
ˇ
TpN

; : : : ; dpx
n
ˇ
ˇ
TpN

linearly independent g

of the generalized Graßmannian GrknM consisting of the kth order jets of n-
dimensional submanifolds jetkpN such that the first n coordinate functions
x1; : : : ; xn restrict to local coordinates x1

ˇ
ˇ
N
; : : : ; xnjN on N in a neighborhood

UN � N \ U of p. Upon restriction to N the other .m � n/ coordinate functions
xnC1; : : : ; xm thus become smooth functions of x1

ˇ
ˇ
N
; : : : ; xnjN turning the

submanifold N into the graph of the smooth map

. xnC1
N ; : : : ; xmN / W R

n �! R
m�n;

. x1.q/; : : : ; xn.q/ / 7�! . xnC1.q/; : : : ; xm.q/ /

defined on .x1
ˇ
ˇ
N
; : : : ; xnjN /. UN / by:

. xnC1
N ; : : : ; xmN / WD . xnC1; : : : ; xm / ı . x1ˇˇ

N
; : : : ; xnjN /�1
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In this local description of submanifolds of M the difference between two n-
dimensional submanifolds N and QN becomes the difference between the associated
tuples .xnC1

N ; : : : ; xmN / and .xnC1
QN ; : : : ; xmQN / of functions of .x1; : : : ; xn/. Clearly

two n-dimensional submanifolds N and QN are in contact in a common point
p 2 N \ QN \ U to order k � 0, if and only if

@jAjxˇN
@xA

. x1.p/; : : : ; xn.p/ / D @jAjxˇQN
@xA

. x1.p/; : : : ; xn.p/ /

for all ˇ D nC1; : : : ; m and all multi-indicesA on f1; : : : ; ng of order jAj � k. With
this observation in mind we define the standard jet coordinates on .GrknM /.x;U / by
setting

x˛. jetkpN / WD x˛. p / x
ˇ
A. jetkpN / WD @jAjxˇN

@xA
. x1.p/; : : : ; xn.p/ /

for ˛ D 1; : : : ; n, for ˇ D n C 1; : : : ; m and A a multi-index on f1; : : : ; ng of
order jAj � k. Clearly the domains .GrknM /.x;U / � GrknM of these standard jet
coordinates associated to local coordinates .x; U / on M cover GrknM making it a
smooth manifold of dimension

dim GrknM D nC .m � n /
 

nC k

n

!

say dim Gr0nM D m and dim Gr1nM D m C .m � n/ n as expected. Moreover
these standard jet coordinates are well adapted to the jet projections pr W GrknM �!
Gr

Qk
nM and the projection � W GrknM �! M to the base manifold M proving

explicitly that the tower (16) of projections specifies a tower of smooth fiber bundles
over M .

Among the subtle differences between the jet bundles of smooth maps or sections
and the generalized Graßmannians GrknM the definition of the canonical contact
form is certainly the most significant. In fact we may not simply copy the definition
of the canonical contact form 	 contact we have used before, because a tangent vector
to GrknM written in the form

d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkptNt 2 Tjetkp0N0
GrknM

implicitly requires pt 2 Nt for all t to be well-defined, so neither the expression
d
dt

ˇ
ˇ
0

jetkp0Nt nor its counterpart d
dt

ˇ
ˇ
0

jetkptN0 make any sense. For all k � 1

however we may lift the canonical inclusion �N W N �! M of an n-dimensional
submanifold N � M to the Graßmannian jetk�1�N W N �! Grk�1

n M; p 7�!
jetk�1

p N; in such a way that � ıjetk�1�N D �N . The differential of the lifted inclusion

jetk�1�N of the submanifold N in a point p 2 N
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. jetk�1
p �N /�; p W TpN 7�! Tjetk�1

p N Grk�1
n M;

d

dt

ˇ
ˇ
ˇ
ˇ
0

pt 7�! d

dt

ˇ
ˇ
ˇ
ˇ
0

jetk�1
pt
N

is thus an embedding, whose image in the tangent space Tjetk�1
p NGrk�1

n M turns

out to depend only on the kth order jet of the submanifold jetkpN 2 GrknM . In

consequence we can define the canonical contact form on GrknM simply by the
projection to the corresponding quotient:

	 contact
� d

dt

ˇ
ˇ
ˇ
ˇ
0

jetkptNt
�

WD d

dt

ˇ
ˇ
ˇ
ˇ
0

jetk�1
pt
Nt C im . jetk�1

p0
�N0 /�; p0

Although significantly different in definition this contact form serves the same
purpose as before, namely it tells us, whether we are forced to vary the submanifold
in order to reproduce a given vector tangent to GrknM . In fact im . jetk�1

p0
�N0 /�; p0 is

precisely the subspace of tangent vectors, which can be realized without a variation
of the submanifold N0!

One advantage of the preceding definition of the canonical contact form on
GrknM is that it is evidently horizontal for the jet projection pr W GrknM �!
Grk�1

n M , because a tangent vector d
dt

ˇ
ˇ
0

jetkptNt vertical under pr satisfies
d
dt

ˇ
ˇ
0

jetk�1
pt
Nt D 0 by definition and thus vanishes under 	 contact. Due to this

horizontality we can extend the canonical contact form 	 contact to the contact system
on the generalized Graßmann bundle GrknM of order k � 1

Contact GrknM 
 Horizontal GrknM 
 T �GrknM (17)

where Horizontal GrknM denotes the subbundle of horizontal forms with respect to
pr and Contact GrknM the subbundle of scalar components of the canonical contact
form 	 contact:

ContactjetkpN
GrknM

WD im
�

Ann im .jetk�1�N /�; p �! T �
jetkpN

GrknM; 
 7�! h 
; 	 contact i
�

In order to find an explicit description of the canonical contact form in standard jet
coordinates . x˛; xˇA / on GrknM let us consider a submanifoldN � M of dimension
n with canonical inclusion �N W N �! M written locally as a graph of the smooth
map . xnC1

N ; : : : ; xmN /:

�N W .x1; : : : ; xn/ 7�! .x1; : : : ; xnI xnC1
N .x1; : : : ; xn/; : : : ; xmN .x

1; : : : ; xn//

The lift of the inclusion to the Graßmannian N �! Grk�1
n M; p 7�! jetk�1

p N; is
given by

jetk�1�N W .x1; : : : ; xn/ 7�! .x1; : : : ; xnI
n @jAjxˇN

@xA
. x1; : : : ; xn /

o

jAj<k; ˇ/
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hence its differential . jetk�1�N /�; p W TpN �! Tjetk�1
p NGrk�1

n M in a point p 2 N
satisfies:

. jetk�1�N /�; p W @

@x˛
7�! @

@x˛
C

X

jAj<k
ˇ

� @

@x˛
@jAjxˇN
@xA

�

. x1.p/; : : : ; xn.p/ /
@

@x
ˇ
A

On the other hand the definition of the standard jet coordinates . x˛; xˇA / on GrknM
becomes

x
ˇ
AC˛. jetkpN / D

� @

@x˛
@jAjxˇN
@xA

�

. x1.p/; : : : ; xn.p/ /

for all multi-indices of order jA j < k less than k, in consequence the image of the
differential . jetk�1�N /�; p depends only on the coordinates . x˛; xˇA / of the point
jetkpN in the generalized Graßmannian GrknM as claimed. Specifically we obtain
the following congruences

	 contact
� @

@x˛

�

� �
X

jAj<k
ˇ

x
ˇ
AC˛

@

@x
ˇ
A

	 contact
� @

@x
ˇ
A

�

� C ıjAj<k
@

@x
ˇ
A

modulo the would be image of the differential . jetk�1�N /�; p defined as the
subspace:

†. x˛; x
ˇ
A / WD “im . jetk�1�N /�; p”

D span
n @

@x˛
C

X

jAj<k
ˇ

x
ˇ
AC˛

@

@x
ˇ
A

ˇ
ˇ
ˇ ˛ D 1; : : : ; n

o

It is comforting to know that the contact form 	 contact thus looks virtually the same
as before

	 contact D
X

jAj<k
ˇ

�

dxˇA �
nX

˛D1
x
ˇ
AC˛ dx˛

�

„ ƒ‚ …

DW 	ˇA

˝
� @

@x
ˇ
A

C †.x˛; x
ˇ
A /
�
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in standard jets coordinates on GrknM , in particular the contact system has the
familiar form:

Contact GrknM WD span f 	
ˇ
A j for all ˇ; jA j < k g

Horizontal GrknM WD span f dx˛; dxˇA j for all ˛; ˇ; jA j < k g
With the construction of the canonical contact system we have established an
almost complete analogy between the generalized Graßmannian GrknM and the jet
bundles of maps or sections. What we are still lacking though is an analogue of
the addition (7), which turns the fiber of the jet projection pr W JetkFM �!
Jetk�1FM over a point jetk�1

p f into an affine space modelled on the vector space

SymkT �
p M ˝ Vertf .p/FM for all k � 1. Much to our chagrin the fiber of the

jet projection � W Gr1nM �! M is not an affine space, rather we may identify
it via jet1pN 7�! TpN with the compact Graßmannian Grn. TpM /. Despite this

disappointment we observe that the vertical tangent space of Gr1nM in a point
jet1pN D TpN

Vertjet1pN
Gr1nM D TTpNGrn. TpM / Š Hom . TpN; TpM=TpN / (18)

can be written in a form Hom . TpN; TpM=TpN / D Sym1T �
p N ˝ . TpM=TpN /

reminiscent of the vector space acting on the first order jet bundle Jet1FM . Some-
what more precisely the identification (18) of the tangent space of the Graßmannian
Grn. TpM / associates to a homomorphism A 2 Hom . TpN; TpM=TpN / the
following tangent vector in the point TpN

d

dt

ˇ
ˇ
ˇ
ˇ
0

im
�

id C tAlift W TpN �! TpM; X 7�! X C tAliftX
�

2 TTpNGrn. TpM /

whereAlift W TpN �! TpM is a linear lift ofA. Of course the curve t 7�! im. idC
tAlift / of n-dimensional subspaces of TpM defined for t sufficiently small depends
on the lift Alift chosen, nevertheless the tangent vector to this curve in t D 0 only
depends on A.

En nuce the principal idea of the identification (18) of the tangent spaces of the
Graßmannian Grn. TpM / is to replace a subspace TpN � TpM by its inclusion
TpN �! TpM , being an application the latter is more easy to deform. In the
context of jets of submanifolds we do not loose information in replacing similarly
a submanifold N � M by its canonical inclusion �N W N �! M , because jetkp�N
determines jetkpN completely, to wit the inclusion T kp N �! T kpM used to define

jetkpN is just the jet composition (3) with jetkp�N . In the same vein the addition (7)
of jets of smooth maps becomes an addition of jets of submanifolds

jetkpN C�N WD jetkp im
�

N �! M; q 7�! ˆM
h

ˆM
�1
.q/C�N.ˆN

�1
.q//

i�

(19)
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with homogeneous polynomials�N 2 SymkT �
p N˝TpM of degree k on TpN with

values in TpM . Although this addition is well-defined for all k � 1 independent of
the choice of the anchored coordinate charts ˆN and ˆM for N and M , a peculiar
problem arises in the case k D 1 singled out in our discussion above: The image of
the deformed smooth map is not even locally a submanifold of dimension n, because
we modify the linear inclusion TpN � TpM by linear terms. Evidently this problem
disappears for jet orders k � 2 and the equality jetk�1

p im �N D jetk�1
p N ensures that

our addition acts on the fibers of the projection GrknM �! Grk�1
n M in the sense

that jetkpN C�N still lies over jetk�1
p N .

Unluckily however the vector space SymkT �
p N ˝ TpM is too large to provide

us with a simply transitive group action on the fibers of the projection in analogy to
the addition (7) on jets of maps or sections. In order to understand this problem let
us have another look at the identification (18) of the tangent spaces of Graßmannian
Grn. TpM /. The construction of an explicit curve in Grn. TpM / representing the
tangent vector associated to a linear map A W TpN �! TpM=TpN required us
to lift A to Alift W TpN �! TpM . The representing curve depended on this lift,
but not the tangent vector itself. Changing the homogeneous polynomial �N 2
SymkT �

p N ˝ TpM used in the addition (19) by a homogeneous polynomial of
degree k on TpN with values in TpN similarly changes the image submanifold

im
�

N �! M; q 7�! ˆM
h

ˆM
�1
.q/ C �N.ˆN

�1
.q/ /

i �

but not its equivalence class under contact of submanifolds to order k in p. For
example we may always choose the anchored coordinate chart ˆM in such a
way that ˆM.TpN / � N holds true. For such a choice and arbitrary �N 2
SymkT �

p N ˝ TpN the smooth map

' W N �! N; q 7�! ˆM
h

ˆM
�1
.q/ C �N.ˆN

�1
.q/ /

i

is actually a local diffeomorphism (sic!) ofN due to jetk�1
p ' D jetk�1

p idN and k � 2

so that jetkpN D jetkpN C �N . Modifying this argument slightly to make it work

for changes of �N 2 SymkT �
p N ˝ TpM by a homogeneous polynomial of degree

k with values in TpN we conclude that the addition (19) descends to a well-defined
addition of jets of submanifolds

jetkpN C�N

WD jetkp im
�

N �! M; q 7�! ˆM
h

ˆM
�1
.q/C .�N/lift.ˆN

�1
.q//

i�

(20)

with�N 2 SymkT �
p N˝.TpM=TpN/ lifted arbitrarily to .�N/lift 2 SymkT �

p N˝
TpM . Although it seems difficult to verify the axioms of a group action for the
addition C directly due to the ambiguities in choosing ˆN and ˆM as well as the
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lift .�N/lift, this problem disappears in the local standard jet coordinates . x˛; xˇA /
on GrknM . As an additional bonus this local coordinate presentation makes it rather
obvious that SymkT �

p N ˝ .TpM=TpN/ acts simply transitive on the fibers of the

projection GrknM �! Grk�1
n M .

For the purpose of writing the addition (20) as a smooth group bundle action
on the Graßmannian GrknM of jets of submanifolds we recall that the tautological
vector bundle on Gr1nM D Grn.TM / is defined as the subbundle of the pull back
��TM of the tangent bundle of M via the projection � W Gr1nM �! M , whose
fiber in jet1pN 2 Gr1nM reads:

Tautjet1pN
Gr1nM WD TpN

Implicitly we have used the tautological vector bundle already in the identifica-
tion (18)

Vert Gr1nM D Taut�Gr1nM ˝
�

��TM=Taut Gr1nM

�

of the vertical tangent bundle of Gr1nM , in a similar vein the tautological vector
bundle appears in the definition of the canonical contact form 	 contact on Gr1nM as
the composition

T Gr1nM
�

��! ��TM
pr�! ��TM=Taut Gr1nN

of the differential of � W Gr1nM �! M with the projection to ��TM=Taut Gr1nM .
The tautological vector bundle pulls back from Gr1nM to a vector bundle on GrknM ,
in turn this pull back bundle allows us to write the addition (20) as a smooth group
bundle action

C W GrknM �Gr1nM
SymkTaut�Gr1nM ˝

�

��TM=Taut Gr1nM

�

�! GrknM

defined on GrknM for all k � 2, which preserves the fibers of the projection to
Grk�1

n M . With the construction of this group bundle action we have established
a complete analogy between the three types of jets discussed in this section: Jets
of maps, jets of sections of fiber bundles and jets of submanifolds. In particular
the contact systems associated to these three types of jets allow us to treat partial
differential equations for maps, for sections and for submanifolds in the unified
language of exterior differential systems.
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3 Comodules and Spencer Cohomology

A comodule over a symmetric coalgebra can be seen as the algebraic analogue
of a jet bundle in differential geometry, in a rather precise sense this analogy
dualizes the better known analogy between differential operators and modules over
polynomial algebras. In the formal theory of partial differential equations the latter
concept is usually studied under the key word D-modules, which is essentially a
proper subtheory of commutative algebra. From our point of view however it is the
former notion of a comodule, which fits nicely into the theory of exterior differential
systems, because the notion can be seen as a straightforward axiomatization of the
commutativity of partial derivatives.

In this section and Sect. 4 we will study the algebraic properties of comodules
over symmetric coalgebras in depth starting from their axiomatic definition in terms
of partial derivatives, introducing the important subclass of tableau comodules on
the way and ending with a detailed discussion of the three most important theorems
about tableau comodules from the point of view of partial differential equations.
Needless to say all the ideas, properties and theorems discussed in this context are
essentially dual to ideas, properties and theorems of commutative algebra. A good
complementary reading to these notes would thus be [2]. Nevertheless we hope that
the reader will find our reformulation of commutative algebra in terms of comodules
helpful for explicit applications in differential geometry:

Definition 3.1 (Comodules over SymT �). A comodule over the symmetric coal-
gebra SymT � is a graded vector space A � together with a bilinear map T �A � �!
A ��1; . t; a / 7�! @a

@t
; called the directional derivative such that the endomorphism

@
@t

W A � �! A ��1; a 7�! @a
@t
; of A � with a fixed direction t 2 T is homogeneous

of degree �1 and the endomorphisms @
@t1

and @
@t2

commute for all t1; t2 2 T :

@

@t1
ı @

@t2
D @

@t2
ı @

@t1

In consequence we may iterate the axiomatic directional derivatives of a comodule
A in order to obtain well-defined homogeneous endomorphisms like @2

@t1@t2
W

A � �! A ��2 etc.

Although intimidating in nomenclature the notion of a comodule is nothing but
an axiomatization of a very familiar concept, that of the directional derivatives of
functions on the vector space T . The example motivating this axiomatization is the
vector space Sym�T � ˝ V of polynomials on T with values in a vector space V
graded by homogeneity together with

T � Sym�T � ˝ V 7�! Sym��1T � ˝ V; . t;  / 7�! @ 

@t
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which associates to a polynomial  and a direction t 2 T the directional derivative:

@ 

@t
. p / WD d

d"

ˇ
ˇ
ˇ
ˇ
0

 . p C " t /

In this interpretation of comodules as an axiomatization of directional derivatives
it is natural to define the Spencer coboundary operator on alternating forms with
values in a comodule

B W A � ˝ƒıT � �! A ��1 ˝ƒıC1T �; ! 7�! B !

in analogy to the de Rham coboundary operator on differential forms by setting

. B ! /. t0; : : : ; tr / WD
rX

�D0
.�1/� @

@t�
!. t0; : : : ;bt�; : : : ; tr /

for an alternating r-form ! 2 A k˝ƒrT � with values in A k . EvidentlyB ! is then
an .r C 1/-form on T with values in A k�1, in this sense the Spencer coboundary
operator B is bihomogeneous of bidegree .�1;C1/. The axiomatic commutation of
directional derivatives ensures that the Spencer operator B satisfies the coboundary
condition, in other words

B2!. t0; : : : ; trC1 /

D
X

0��<�rC1
.�1/�C � C @2

@t�@t
!. t0; : : : ;bt�; : : : ;bt; : : : ; trC1 /

� @2

@t@t�
!. t0; : : : ;bt�; : : : ;bt; : : : ; trC1 /

�

vanishes irrespective of !. In turn B defines a bigraded cohomology theory for
comodules:

Definition 3.2 (Spencer Cohomology of a Comodule). The Spencer cohomology
of a comodule A over the symmetric coalgebra SymT � of a vector space T is the
bigraded cohomology H �;ı.A / associated to the bigraded Spencer complex

: : :
B�! A �C1 ˝ƒı�1T � B�! A � ˝ƒıT � B�! A ��1 ˝ƒıC1T � B�! : : :

of alternating, multilinear forms on T with values in A :

H �;ı. A / WD ker. B W A � ˝ ƒıT � �! A ��1 ˝ ƒıC1T � /

im. B W A �C1 ˝ ƒı�1T � �! A � ˝ ƒıT � /
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In order to get some idea about Spencer cohomology theory let us calculate it for
some examples. Every graded vector space A � can be made a comodule A �

trivial by
declaring all its directional derivatives to vanish @a

@t
WD 0 for all a 2 A k and all

t 2 T . The Spencer cohomology of such a comodule aptly called trivial is certainly
given by:

H �;ı. Atrivial / D A � ˝ƒıT �

Somewhat more interesting are the free comodules Sym�T � ˝ V of polynomials
on T with values in a vector space V introduced before. The Spencer operator
associated to such a free comodule B W .Sym�T � ˝V /˝ƒıT � �! .Sym��1T � ˝
V /˝ƒıC1T � can be written as a sum

B D
nX

�D1

@

@t�
˝ idV ˝ dt�^

over a dual pair of bases t1; : : : ; tn and dt1; : : : ; dtn of T and T �. In order to calculate
the cohomology of the Spencer complex we introduce the operator of integration
along rays through the origin B� W Sym�T � ˝ V ˝ƒıT � �! Sym�C1T � ˝ V ˝
ƒı�1T � as the sum:

B� WD
nX

�D1
dt� � ˝idV ˝ t� y

After some more or less straightforward calculations we find that the formal Laplace
operator

� WD f B; B� g D B ı B� C B� ı B

is diagonalizable on .SymkT � ˝V /˝ƒrT � with eigenvalue kCr . In consequence
every closed Spencer cochain  2 .SymkT � ˝ V / ˝ ƒrT � of bidegree .k; r/
satisfying k C r > 0 is exact

 D 1

k C r
� D 1

k C r

�

B .B� / C B� . B /
�

D B
� 1

k C r
B�  

�

by B D 0. Hence the Spencer cohomology of a free comodule Sym�T � ˝ V is
concentrated

H0; 0. SymT � ˝ V / D V

in comodule and form degrees 0. The preceding calculation of the Spencer
cohomology of free comodules is an elementary version of Hodge theory and
by no means restricted to this special case. Considered as a method to calculate
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the cohomology of a given coboundary operator B it relies on making a suitable
guess for the operator B� such that the formal Laplace operator � WD fB; B� g
is diagonalizable. The original complex then decomposes into a direct sum of
“eigensubcomplexes” under �, because � and B commute Œ �; B � D 0, however
all these eigensubcomplexes are exact except for the kernel subcomplex!

The limited stock of examples discussed so far can be augmented by simple
modifications of the underlying graded vector spaces. For example the shift in
grading by an integer d 2 Z

.A C d /� WD A �Cd

certainly results in the shift in grading H �;ı.A Cd / D H �Cd;ı.A / in Spencer
cohomology. A theoretically important variation of the shift is the twist of a
comodule A defined by

A �. d / WD A �Cd

for � � 0 with A �. d / WD f 0 g for all � < 0, here the directional derivatives
of A �. d / equal the directional derivatives of A in positive degrees � > 0 only.
In consequence the Spencer cohomology H �;ı.A . d / / vanishes in all comodule
degrees � < 0 and equals

H0;ı. A . d / / D .A d ˝ƒıT � /=
B.A dC1 ˝ƒı�1T � / (21)

in comodule degree � D 0, while H �;ı.A .d// D H �Cd;ı.A / as before in degrees
� > 0. Another interesting variation of the shift is the idea of a free comodule
A � D Sym�T � ˝ V � generated by a graded vector space V �, which is essentially
a direct sum of shifted free comodules with associated Spencer cohomology V �
concentrated in form degree ı D 0:

Sym�T � ˝ V � D
M

k2Z
Sym��kT � ˝ V k

Coming back to the general theory we observe that the Spencer operator B
commutes with the extended directional derivatives @

@t
˝ id on the graded vector

space A � ˝ ƒrT � of Spencer cochains of fixed form degree ı D r . In turn
the Spencer complex becomes a complex of comodules, the directional derivatives
induced on the Spencer cohomology however are all trivial due to the formal version
of Cartan’s Homotopy Formula

f B; . id ˝ t y / g WD B ı . id ˝ t y / C . id ˝ t y / ı B D @

@t
˝ id (22)
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which implies for every cohomology class Œ ! � 2 H �;ı.A / with B ! D 0 and all
t 2 T :

@

@t
Œ ! � WD Œ .

@

@t
˝ id/ ! � D Œ B .id ˝ t y / ! C .id ˝ t y / B! � D 0

Although the induced comodule structure on Spencer cohomology is thus trivial,
the Spencer cohomology of a comodule H �;ı.A / carries an interesting algebraic
structure, namely the right multiplication of Spencer cochains with elements of
ƒıT � commutes with the Spencer coboundary operator B and thus descends to
a natural graded right ƒıT �-module structure. To see this point more clearly we
expand the Spencer coboundary operator into the sum

B D
nX

�D1

@

@t�
˝ dt� ^

over a dual pair of bases t1; : : : ; tn and dt1; : : : ; dtn of T and T � respectively
and conclude that right multiplication with ! 2 ƒıT � commutes with left
multiplication by dt� due to associativity. In the literature the additional module
structure onH �;ı.A / is hardly ever mentioned. Nevertheless it is not only practical
in explicit calculations, it is important for the theory as well: In quite precise a
sense we can reconstruct a comodule A from its Spencer cohomology H �;ı.A /

considered as a graded right module over ƒıT �.
A pleasant aspect of the very general and abstract Definition 3.1 of comodules

we have adopted in these notes is that it very easy to introduce the complementary
concept of homomorphisms of comodules. In general a homomorphism of degree
d 2 Z from a comodule A to a comodule B is a homogeneous linear map ˆ W
A � �! B�Cd between the underlying graded vector spaces, which intertwines the
directional derivatives

ˆ.
@

@t

ˇ
ˇ
ˇ
ˇ
A

a / D @

@t

ˇ
ˇ
ˇ
ˇ
B

. ˆa /

for all t 2 T . The set of all comodule homomorphisms ˆ W A � �! B�Cd of
fixed degree d 2 Z is evidently a vector space Hom d

SymT �

.A ; B /, in consequence
we can talk about the abelian category of comodules over the symmetric coalgebra
SymT � by defining the vector space of morphisms A �! B in this category as
the direct sum of all these vector spaces:

Hom �
SymT �

. A ; B / WD
M

d2Z
Hom d

SymT �

. A ; B /

This rather complicated definition of morphisms has the advantage of making the
following functor from the category of comodules to the category of graded vector
spaces representable:
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Definition 3.3 (Finitely Generated and Bounded Comodules). The space of
generators of a comodule A over the symmetric coalgebra SymT � of a vector
space T is the graded vector space of elements of A � constant under all partial
derivatives:

Gen�A WD
M

k2Z
GenkA GenkA WD

n

a 2 A k
ˇ
ˇ
ˇ
@a

@t
D 0 for all t 2 T

o

A comodule A is called finitely generated and bounded below in case Gen A is a
finite-dimensional vector space and A k D f 0 g vanishes for all sufficiently small
k  0.

In passing we observe that the homogeneous subspaces of a finitely generated
comodule A bounded below are finite-dimensional dim A k < 1 for all k 2 Z

due to a straightforward induction based on A k D f 0 g for k  0 and an induction
step using the exact sequence:

0 �! Gen�A ��! A � B�! A ��1 ˝ T �

In order to understand the significance of generators let us consider the real numbers
as a trivial comodule R

� concentrated in degree 0 with all directional derivatives
necessarily vanishing. The image of 1 2 R under a homomorphism ˆ W R

� �!
A �Ck of comodules homogeneous of degree k 2 Z is then a generator ˆ.1/ 2
GenkA of A of degree k due to

@

@t
ˆ. 1 / D ˆ.

@1

@t
/ D 0

and vice versa every a 2 GenkA defines the homomorphism ˆa W R
� �!

A �Ck; x 7�! xa. In other words the functor Gen� to the category of graded vector
spaces is represented by R:

Hom �
SymT �

. R; A /
Š�! Gen�A ; ˆ 7�! ˆ. 1 /

Using a suitable projective resolution of the representing comodule R it is then easy
to prove:

H �;ı. A / Š Extı;�SymT �

. R; A /

In consequence the Spencer cohomology calculates the derived functor
Extı;�SymT �

.R; �/ associated to the functor Gen� D Hom �
SymT �

.R; �/ from comodules
to graded vector spaces!

Remark 3.4 (Interpretation of Spencer Cohomology). In general it seems to be
difficult to say directly, what exactly a non-zero Spencer cohomology class tells
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us about the underlying comodule. Direct interpretations are available however for
the Spencer cohomology of a comodule A over SymT � in form degrees 0 and
n WD dim T , namely H �; 0.A / D Gen�A is true for ı D 0 by our preceding
discussion, whereas

H �; 0. A / D Gen�A H �; n. A / Š A �=spanf @a
@t

j a 2 A �C1 and t 2 T g

is satisfied in form degree ı D n by a straightforward and not too complicated
calculation.

Lemma 3.5 (Finiteness of Spencer Cohomology). Consider a finitely generated
comodule A bounded below. Every subcomodule B � A and every quotient
comodule A =B of A are likewise finitely generated and bounded below. In
particular the Spencer cohomology H �;ı.A / of A is a finite dimensional vector
space:

dim H �;ı. A / < 1

Needless to say the hard part in the proof of this lemma is the assertion
that a quotient A =B of a finitely generated comodule A bounded below by a
subcomodule B is finitely generated, all other assertions of the lemma are trivial or
direct consequences of this finiteness. For example the rather surprising conclusion
about the Spencer cohomology of a finitely generated comodule A bounded below
simply observes that the Spencer complex

: : :
B�! A �C1 ˝ƒı�1T � B�! A � ˝ƒıT � B�! A ��1 ˝ƒıC1T � B�! : : :

associated to A is a complex of finitely generated comodules A ˝ƒıT � bounded
below with generators Gen�.A ˝ ƒıT �/ D .Gen�A / ˝ ƒıT �. Assuming finite
generation of quotients the subquotient comodule H ı.A / of the finitely generated
comodule A ˝ƒıT � bounded below is itself finitely generated and bounded below,
on the other hand we have seen that H ı.A / is a trivial comodule in the sense that
all its directional derivatives vanish. In consequence

H �;ı. A / D Gen� H ı. A /

is finite-dimensional as claimed. All in all Lemma 3.5 reduces very easily to the
non-trivial statement that quotients of finitely generated comodule bounded below
are finitely generated.

In order to give at least a sketch of the principal argument leading to Lemma 3.5
let us consider a quotient A =B of a finitely generated comodule A bounded below.
For sufficiently large d � 0 the spaces of generators GenkCdA D f0g vanish for
all k � 0 due to the finite generation of A . Hence for all k � 0 the following
composition of injective maps
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A kCd �! T � ˝ A kCd�1 �! T � ˝ T � ˝ A kCd�2

�! : : : �! T � ˝ : : :˝ T �
„ ƒ‚ …

k

˝A d

is injective itself for all k � 0 and factorizes by coassociativity over the embedding

A �. d / ��! Sym�T � ˝ A d (23)

by means of the comultiplication� (sic!), which is defined for a 2 A kCd as the sum

�a WD 1

kŠ

nX

�1;:::;�kD1
dt�1 � : : : � dt�k ˝ @ka

@t�1 : : : @t�k
(24)

over a dual pair t1; : : : ; tn and dt1; : : : ; dtn of bases. In consequence the twisted
quotient comodule .A =B/. d / embeds via � into a quotient of the free comodule
generated by A d :

.A =B /�. d / Š A �. d /=B�. d / �! Sym�T � ˝ A d =�.B�. d / /

All generators of A =B of degree at least d are thus generators of a quotient of
the free comodule SymT � ˝ A d as well. An upper bound for the dimension of
the space of generators of quotients of free comodules however can be calculated
quite effectively using the fundamental ideas underlying the construction of Gröbner
bases. On the other hand the quotient comodule A =B has finite dimensional
homogeneous subspaces and thus only a finite dimensional space of generators of
degrees less than d , hence we end up with a finite dimensional space Gen .A =B/
of generators of arbitrary degree.

In general the direct calculation of the Spencer cohomology of a comodule can
get quite involved. A convenient alternative, at least for a comodule A with a large
symmetry group, is to construct an initial free resolution of length r � 0 for A first,
this is an exact sequence

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

with suitable comodule homomorphisms ˆ0; : : : ; ˆr of degrees �d0; : : : ;�dr
respectively. The difference here to an actual free resolution of the comodule A
is that we do not ask for ˆr to be surjective. Comodules allowing an initial free
resolution of some length r � 0 are rather special of course, to the very least they
are isomorphic via ˆ0 to subcomodules of free comodules. In practice however it
is often easy to guess an initial free resolution and apply the following lemma to
obtain information about the Spencer cohomology:
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Lemma 3.6 (Initial Free Resolutions and Spencer Cohomology). Consider a
comodule A �, which allows an initial free resolution of length r � 0 of the form

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

with comodule homomorphisms ˆ0; : : : ; ˆr of degrees �d0; : : : ;�dr respectively.
Independent of whether the last comodule homomorphism ˆr is surjective or not
the only non-vanishing Spencer cohomology spaces of A of form degree ı � r at
most equal to r are:

Hd0;0. A / Š V0 Hd0Cd1�1;1. A / Š V1 : : : Hd0C:::Cdr�r;r . A / Š Vr

It is a pity that the only conceptual proof of this lemma I know of requires
some knowledge of spectral sequences, which is quite formidable a concept from
homological algebra for an introductory text like this one on exterior differential
systems. In essence however spectral sequences are just a highly efficient tool
to facilitate certain types of diagram chases. The spectral sequence accelerated
diagram chases proving the Lemma of Five, the Lemma of Nine and the Snake
Lemma for example are almost trivial. Perhaps our use of spectral sequences in
this section motivates the reader unacquainted with the concept to study spectral
sequences from this point of view to accelerate her or his future diagram chases.

Using spectral sequences the proof of Lemma 3.6 proceeds along the following
line of argument. In a first step we extend the given initial free resolution of length
r � 0 to the right by the projection onto the cokernel of ˆr in order to obtain an
exact sequence:

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

pr�! C ��d1�:::�dr �! 0

Thinking of this exact sequence of comodules as a complex with trivial homology
and taking Spencer cochains we obtain a double complex with columns given by
the Spencer complexes of the comodules involved, while the rows are all copies
of the original exact sequence tensored with ƒıT �. Of course we would prefer to
have the two coboundary operators in this double complex anticommuting instead
of commuting, the difference however plays a negligible role in the construction of
the two spectral sequences associated to a double complex.

By assumption the initial free resolution extended by the projection to the
cokernel comodule C of ˆr is exact everywhere, hence the rows first spectral
sequence associated to our double complex collapses at itsE1-term, simply because
it equals f 0 g everywhere, in consequence the columns first spectral sequence
necessarily converges to f 0 g as well. On calculating itsE1-term however we obtain
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the Spencer cohomology of A in the first column, the Spencer cohomology of C
in the last column with the vector spaces V0; : : : ; Vr in between in the first row
representing the Spencer cohomology of the free comodules forming the initial free
resolution of A . A spectral sequence with such an E1-term has only one chance
left to converge to f 0 g, namely the higher order coboundary operators must induce
isomorphisms

H �Cd0�s; s. A /
Š�! Œ Vs ��Dd1C:::Cds

of graded vector spaces for all s D 0; : : : ; r as well as for all s > r isomorphisms:

H �Cd0�r�1; s. A /
Š�! H ��d1�:::�dr ; s�r�1. C /

Apropos spectral sequences by far the most useful spectral sequence in the theory
of comodules is not the spectral sequence discussed above, but the spectral sequence
arising from a peculiar double Spencer complex. In general the graded tensor
product Sym�T � ˝ A � of the free comodule Sym�T � with a comodule A � can be
turned into a comodule in two different ways with different directional derivatives.
Namely it can be considered as a free comodule Sym�T � ˝A �

trivial generated by the
graded vector space A �

trivial underlying A with directional derivatives @
@t

˝ idA or it
can be considered as a tensor product Sym�T � ˝A � of comodules with directional
derivatives dictated by the usual Leibniz rule:

� @

@t

�˝ WD @

@t
˝ idA C idSymT � ˝ @

@t

For a comodule A bounded below the resulting two comodules are actually
isomorphic via

exp P W Sym�T � ˝ A � Š�! Sym�T � ˝ A �
trivial;  7�!

X

r�0

1

rŠ
P r 

where P W Sym�T � ˝ A � �! Sym�C1T � ˝ A ��1 is defined as the sum over a
dual pair

P WD
nX

�D1
dt� � ˝ @

@t�

of bases t1; : : : ; tn and dt1; : : : ; dtn for T and T � respectively. In fact P is at least
locally nilpotent for a comodule A bounded below so that its exponential exp P is
well-defined, moreover the commutator Œ @

@t
˝ idA ; P � D idSymT � ˝ @

@t
commutes

with P and the identity
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.
@

@t
˝ idA / ı exp P D exp P ı . @

@t
˝ idA / C Œ .

@

@t
˝ idA /; exp P �

D exp P ı
� @

@t
˝ idA C idSymT � ˝ @

@t

�

shows that exp P is a homomorphism of comodules with inverse exp.�P /. In a
sense the resulting isomorphism Sym�T � ˝A � Š Sym�T � ˝A �

trivial of comodules
tells us that a general comodule A bounded below is not too different from a free
comodule. A convenient method to make this structural statement about comodules
bounded below precise is to consider the two spectral sequences associated to the
double Spencer complex

(25)

where B and b are the anticommuting Spencer operators for A and SymT �
respectively with the other factor merely serving as additional coefficients. The b-
first spectral sequence collapses at its E1-term, simply because it is concentrated in
forms degree ı D 0

ı�D0Dı A ◆

and so it is impossible that any of the higher coboundary operators are non-trivial.
Things are quite different for theB-first spectral sequence however, which turns into
an efficient algorithm to reconstruct a comodule A from its Spencer cohomology:

Lemma 3.7 (Standard Spectral Sequence of a Comodule). Every finitely gener-
ated comodule A bounded below carries a canonical complete filtration

A � � : : : � . F �1A /� � . F 0A /� � . FC1A /� � : : : � f0g
by the subcomodules F kA generated in degrees greater than or equal to k 2 Z in
the sense:

. F kA /� WD ker
�

A � ��! Sym��kC1T � ˝ A k�1 �

Whereas the b-first spectral sequence associated to the double Spencer complex (25)
collapses at its E1-term, the E1-term of the B-first spectral sequence reflects the
Spencer cohomology

Sym�T � ˝H ◆; ı. A / H) ııD0 . F ◆A =
F ◆C1A /�C◆
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of A and the spectral sequence converges to the successive quotients of the filtration
subcomodules F ◆A . In addition the coboundary operator B1 for the E1-term
is completely determined by the right ƒıT �-module structure on the Spencer
cohomology H ◆; ı.A /.

Perhaps the most striking application of the standard spectral sequence with a
very practical appeal is the following explicit formula for the dimensions of the
homogeneous subspaces of a finitely generated comodule bounded below, which
reflects the equality of the E1-Euler characteristics of the two spectral sequences
associated to the double Spencer complex (25):

Corollary 3.8 (Poincaré Function of a Comodule). The dimensions of the homo-
geneous subspaces A k; k 2 Z; of a finitely generated comodule A bounded below
can be calculated from the Betti numbers dim H �; ı.A / of its Spencer cohomology
and the dimension n WD dim T of the vector space T by means of the formula:

dim A k D
X

rD0;:::;n
d2Z

dCr�k

.�1/r
 

k � d � r C n � 1
n � 1

!

dim Hd; r . A /

In particular dim A k equals the value of a polynomial in k of degree at most n� 1
for all k > dmax, where dmax 2 Z is chosen so that Hd; r .A / D f 0 g for all
d > dmax and all r .

Proof. The two spectral sequences associated to the double Spencer complex (25)
arise from the two anticommuting Spencer coboundary operators B and b, which
are trihomogeneous of tridegrees . 0; �1; C1 / and .�1; 0; C1 / respectively with
respect to the trigrading on Sym�T � ˝ A ◆ ˝ ƒıT �. In particular both B and b
preserve the total grading so that the both spectral sequences actually decompose
into the direct sum of spectral sequences

Sym�T � ˝ A ◆ ˝ƒıT � D
M

k2Z

�

Sym�T � ˝ A ◆ ˝ƒıT � �

�C◆CıDk

parametrized by the total degree k 2 Z. The total degree k part of the b-first spectral
sequence collapses as before at its E1-term ı�D0Dı A k of Euler characteristic
dim A k . According to Lemma 3.7 the total degree k-part of the E1-term of the
B-first spectral sequence reads Symk�◆�ıT � ˝ H ◆; ı.A /, its Euler characteristic
is thus finite and given by

X

rD0;:::;n
d2Z

.�1/r dim Symk�d�rT � ˝Hd;r .A /

D
X

rD0;:::;n
d2Z

dCr�k

.�1/r
 

k � d � r C n � 1
n � 1

!

dim Hd;r .A /
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because H.A / is a finite-dimensional vector for the finitely generated comodule
A bounded below. The Euler characteristic of every complex on the other hand
equals the Euler characteristic of its cohomology, in turn the Euler characteristic is
constant all along a spectral sequence, which is in essence a sequence of coboundary
operators each defined on the cohomology of the previous operator. With the E1-
terms of the two spectral sequences arising from the double Spencer complex (25)
being isomorphic the stipulated formula for dim A k simply reflects the equality of
the two different E1-Euler characteristics.

The Spencer cohomology of the finitely generated comodule A bounded below
is a finite dimensional vector space according to Lemma 3.5, hence we may certainly
choose dmax 2 Z so that Hd; r .A / D f 0 g for all d > dmax and all r D 0; : : : ; n.
For all degrees k > dmax the original summation calculating dim A k can be
simplified to read

dim A k D
X

rD0;:::;n
d2Z

.�1/r
 

k � d � r C n � 1
n � 1

!

dim Hd; r . A / (26)

because all summands with d C r > k vanish automatically. In fact either d > dmax

or d � dmax < k, in the first case dim Hd;r .A / D 0, whereas
�
k�d�rCn�1

n�1
� D 0 in

the second case due to n�1 > k�d�rCn�1 � 0. The simplified summation (26)
however defines a polynomial of degree at most n � 1 in k equal to dim A k for
k > dmax. ut

Another direct application of the standard spectral sequence leads to a kind
of converse to Lemma 3.6. Consider a comodule A bounded below satisfying
the additional condition that its only non-vanishing Spencer cohomology in form
degrees ı D 0; : : : ; r is concentrated in

V0 WD Hd0; 0.A / V1 WD Hd0Cd1�1; 1.A / : : : Vr WD Hd0C:::Cdr�r; r .A /

for suitable integers d0; : : : ; dr 2 Z. The integers d1; : : : ; dr � 1 are then actually
positive except for d0 and the comodule A has an initial free resolution of length
r � 0 by free comodules linked by comodule homomorphisms ˆ0; : : : ; ˆr of
degrees �d0; : : : ;�dr

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

which are determined by the higher order coboundary operators of the standard
spectral sequence of Lemma 3.7. In particular the comodule homomorphism ˆ0
identifies A � with a subcomodule of the shifted free comodule Sym��d0T � ˝ V0
determined by the tableau:
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A d0Cd1 Š ker
�

ˆ1 W Symd1T � ˝ V0 �! V1

�

In the following section we will study the structure of such tableau comodules in
more detail.

4 Algebraic Properties of Tableau Comodules

In the algebraic analysis of exterior differential systems the comodules of interest are
usually tableau comodules, comodules which arise as the kernels of homogeneous
homomorphisms between free comodules. Tableau comodules and the partial
differential equations they represent are classified, albeit rather superficially, into
underdetermined, determined and overdetermined tableau comodules depending
on the ranks of the free comodules involved in their definition. Underdetermined
partial differential equations can usually be studied successfully with methods
from functional analysis, while integrability constraints will likely thwart such an
approach for a given overdetermined partial differential equation.

Perhaps the most interesting case of this superficial classification of partial
differential equations is the limiting case of both realms: The Euler–Lagrange
equations associated to a variational principle and the elliptic differential equations
studied in global analysis are always determined partial differential equations.
Mathematical physics for example favors determined partial differential equations
according to the following metaprinciple: Reasonable field equations should allow
for a unique solution for arbitrarily given Cauchy data. In this section we will discuss
the three classical statements about under- and overdetermined partial differential
equations from the point of view of their associated tableau comodules:

• Formal Integrability of underdetermined differential equations.
• Complex Characterization of finite type differential equations.
• Cartan’s Test for Involutivity of first order tableau comodules.

In order to begin our study of tableau comodules let us have a closer look at a
non-trivial homogeneous homomorphism ˆ W Sym�T � ˝ V �! Sym��dT � ˝ E

between free comodules. As a homomorphism of comodules ˆ maps the space V
of generators of the domain to generators of the codomain SymT � ˝ E including
0 so that d 2 N0 is necessarily non-negative. Moreover it is easily seen that ˆ
is completely determined by its restriction � to the subspace SymdT � ˝ V �
Sym�T � ˝V of elements of degree d . Conversely every linear map � W SymdT � ˝
V �! E extends in a unique way to a homomorphism of comodules

ˆ W Sym�T � ˝ V �! Sym��dT � ˝E
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of degree �d , which can be written in terms of directional derivatives as an
iterated sum

ˆ.  ˝ v / WD
nX

�1;:::;�dD1

@d 

@t�1 : : : @t�d
˝ �

� 1

dŠ
dt�1 � : : : � dt�d ˝ v

�

(27)

over a basis t1; : : : ; tn of T and its dual basis dt1; : : : ; dtn of T �. In the spirit of partial
differential equations we may interpret the original linear map � W SymdT � ˝
V �! E as a linear differential operator D� W C1. T; V / �! C1. T; E / of
order d defined by:

.D� /. p / WD �
� nX

�1;:::;�dD1

1

d Š
dt�1 � : : : � dt�d ˝ @d  

@t�1 : : : @t�d
. p /

�

(28)

The associated partial differential equation D� D 0 can be written as a system
of dim E scalar differential equations in the dim V unknown scalar components of
 2 C1. T; V /, for this reason the equation is called underdetermined, determined
or overdetermined respectively, if there are less, an equal number of or more
equations than unknown functions:

underdetermined: dim E � dim V

determined: dim E D dim V

overdetermined: dim E � dim V

(29)

The homomorphism ˆ W Sym�T � ˝ V �! Sym��kT � ˝ E of free comodules
associated to � is nothing else but the restriction of the operator D� to the subspace
SymT � ˝V � C1. T; V / of polynomials on T with values in V . In particular its
kernel comodule agrees with the space of polynomial solutions  2 SymT � ˝ V

to the partial differential equation D� D 0:

Definition 4.1 (Tableaux and Comodules). A tableau of order d � 1 is by
definition a subspace A d � SymdT � ˝ V of the vector space SymdT � ˝ V

of homogeneous polynomials of degree d on T with values in V . The tableau
comodule A � � Sym�T � ˝ V associated to a tableau A d is the kernel of the
homomorphism

0 �! A � ��! Sym�T � ˝ V
ˆ�! Sym��dT � ˝E

of free comodules induced by some linear map � W SymdT � ˝ V �! E

with kernel A d . A tableau comodule A is called underdetermined, determined or
overdetermined provided:

codimA d � dim V codimA d D dim V codimA d � dim V
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Of course one possible choice for the linear map � in the definition is simply the
canonical projection pr W SymdT � ˝ V �! SymdT � ˝ V=A d , other choices
however are convenient to avoid the typographical monster SymdT � ˝ V=A d .
Whatever the preferred choice the tableau comodule A does only depend on
A d D ker�, for this reason its homogeneous subspaces A dC1; A dC2; : : : are
sometimes called the first and the second prolongation of A d etc. Of little concern
is the equality A k D SymkT � ˝V for k < d , because in general we are interested
in the behavior of A k at large degrees k � 0. According to Lemma 3.6 the non-
vanishing Spencer cohomology of a tableau comodule in form degrees ı D 0; 1

reads:

H0;0. A / D V Hd�1;1. A / D SymdT � ˝ V=
A d (30)

In order to reduce the complexity it seems like a good idea to replace the linear map
� from the complicated and high-dimensional vector space SymdT � ˝ V with its
localizations

�� W V �! E; v 7�! �. 1
dŠ
�d ˝ v /

at covectors � 2 T �. In this way we are interpreting the linear map � W SymdT � ˝
V �! E via the vector space isomorphism Hom .SymdT � ˝V; E / Š SymdT ˝
Hom . V; E / as a homogeneous polynomial of degree d on T � (sic!) with values
in Hom . V; E /. Motivated by this interpretation of � we define the characteristic
(projective) variety of a tableau A d by

Z . A d / WD f Œ � � 2 PT � j �� W V �! E is not surjective g (31)

this is � 2 T � is a characteristic covector, if and only if �� fails to be surjective. Evi-
dently the tableau A d has to be underdetermined to allow some non-characteristic
covector:

Theorem 4.2 (Formal Integrability of Underdetermined Equations). Consider
a linear map � W SymdT � ˝ V �! E possessing at least one non-characteristic
covector � 2 T � in the sense that the localization �� W V �! E; v 7�!
�. 1

dŠ
�d ˝ v/; of � at � is surjective. The homomorphism of free comodules defining

the tableau comodule A associated to the tableau A d WD ker� is surjective, too,
with associated short exact sequence:

0 �! A � ��! Sym�T � ˝ V
ˆ�! Sym��dT � ˝E �! 0

According to Lemma 3.6 the only non-vanishing Spencer cohomology spaces
of A are:

H0;0. A / D V Hd�1;1. A / D E
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By far the most important conclusion of this theorem is that underdetermined partial
differential equations have no Spencer cohomology of form degree ı D 2, in
consequence there are no obstructions at all to the recursive procedure discussed
in Sect. 5 to construct infinite order formal power series solutions for arbitrarily
specified Cauchy data. In other words Theorem 4.2 is exactly the reason, why the
term Spencer cohomology is never even mentioned in text books studying partial
differential equations in the language of Functional Analysis: Banach and Sobolev
spaces etc.

Despite its importance the proof of Theorem 4.2 is rather straightforward.
Fixing a non-characteristic covector � 2 T � with surjective localization �� W
V �! E; v 7�! �. 1

dŠ
�d ˝ v /; we try to construct a preimage of a vector

1
kŠ
˛k˝e 2 SymkT �˝E under the comodule homomorphismˆ W Sym�T �˝V �!

Sym��dT � ˝E extending � by making an ansatz

kX

�D0
1

.k��/Š ˛
k�� 1

.dC�/Š �
dC� ˝ v� 2 SymkCdT � ˝ V

with as yet unknown parameter vectors v0; : : : ; vk 2 V . Inserting this ansatz into
the definition (27) of the comodule homomorphism ˆ we get after some auxiliary
calculations:

ˆ
� kX

�D0
1

.k��/Š ˛
k�� 1

.dC�/Š �
dC� ˝ v�

�

D
kX

sD0
1

.k�s/Š ˛
k�s 1

sŠ
�s ˝ �

h sX

�D0_.s�d/
1

.s��/Š ˛
s�� 1

.dC��s/Š �
dC��s ˝ v�

i

D
kX

sD0
1

.k�s/Š ˛
k�s 1

sŠ
�s

˝
�

��vs C �
h s�1X

�D0_.s�d/
1

.s��/Š ˛
s�� 1

.dC��s/Š �
dC��s ˝ v�

i �

Due to the surjectivity of the localization �� W V �! E at the non-characteristic
covector � we may thus choose the parameters v0; : : : ; vk 2 V of our ansatz
recursively to satisfy

��v0 D e

��v1 D ��
h
1
1Š
˛1 1

.d�1/Š �
d�1 ˝ v0

i

��v2 D ��
h
1
2Š
˛2 1

.d�2/Š �
d�2 ˝ v0 C 1

1Š
˛1 1

.d�1/Š �
d�1 ˝ v1

i
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etc. in order to obtain a preimage of 1
kŠ
˛k ˝ e 2 SymkT � ˝ E under ˆ. In this

argument ˛ 2 T � and e 2 E as well as k 2 N0 were all arbitrary so that ˆ is
surjective

im ˆ � span f 1
kŠ
˛k ˝ e j ˛ 2 T �; e 2 E; k 2 N0 g D SymT � ˝E

because the polarization formula says that the vectors 1
kŠ
˛k ˝ e span SymkT � ˝E.

Unluckily the other two classical statements about tableau comodules discussed in
this section are more difficult, in particular the following characterization of partial
differential equations of finite type as complex elliptic differential equations requires
confidence in multilinear algebra:

Theorem 4.3 (Complex Elliptic Partial Differential Equations). The homomor-
phism ˆ of free comodules extending a given linear map � W SymdT � ˝ V �! E

with kernel tableau A d WD ker� has a finite-dimensional kernel comodule A

0 �! A � ��! Sym�T � ˝ V
ˆ�! Sym��dT � ˝E

if and only if only the complex localizations of � at complex valued linear forms
�C 2 T � ˝R C:

��C W V ˝R C �! E ˝R C; vC 7�! �. 1
dŠ
�d
C

˝ vC /

are injective for every non-zero complex-valued linear form �C 2 T � ˝R C n f 0 g.

Essentially this theorem is a consequence of Hilbert’s Nullstellensatz in algebraic
geometry, although the necessary reformulation (37) can hardly be called obvious.
Nevertheless it is well worth the effort to try to understand the main idea of this
reformulation, because it provides us with a peculiar kind of upper bound on the
growth of a tableau comodule A in terms of the homogeneous ideal I � � Sym�T
defining the characteristic variety:

Z . A d / WD f Œ � � 2 PT � j �� W V �! E is not injective g (32)

Needless to say this definition is different to our previous definition (31) of
the characteristic variety, although we may reconcile both definitions by asking
for covectors � 2 T � such that �� fails to be of the maximal possible rank
minf dim V; dim E g. In other words the redefinition (32) is specific to the study
of overdetermined partial differential equations.

Let us begin our discussion of Theorem 4.3 with a small side remark about the
rank of a linear map � W V �! E. The canonical isomorphism Hom . V; E / Š
V � ˝ E allows us to think of � as an element of the algebra ƒV � ˝ƒE with the
(untwisted) tensor product multiplication. Pairing powers of � in this algebra with
elements of the dual space we get

h 1
rŠ
�r ; . v1 ^ : : : ^ vr /˝ 
 i D 
 . � v1; : : : ; � vr / (33)
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for all r � 1 and all v1; : : : ; vr 2 V , 
 2 ƒrE�, in particular 1
rŠ
�r D 0 is

equivalent to � being of rank less than r . Similarly we may interpret the linear map
� W SymdT � ˝V �! E defining the tableau A d as a homogeneous polynomial of
degree d on T � with values in Hom . V; E / or as an element � 2 SymdT ˝V � ˝E
of the algebra SymT ˝ƒV � ˝ƒE. In direct generalization of Eq. (33) the powers
of � in this algebra satisfy

h 1
rŠ
�r ; 1

.rd/Š �
rd ˝ . v1 ^ : : : ^ vr /˝ 
 i D 
 . ��v1; : : : ; ��vr / (34)

when paired with elements of the dual space SymrdT �˝ƒrV ˝ƒrE� with arbitrary
� 2 T �, v1; : : : ; vr 2 V and 
 2 ƒrE�. Equation (34) implicitly characterizes the
covectors � 2 T �, for which the localization �� W V �! E fails to have rank
at least r , in terms of the power 1

rŠ
�r 2 SymrdT ˝ ƒrV � ˝ ƒrE. In order to

make this characterization somewhat more explicit let us consider the following
two rearrangements of the factors in (34)

�
�
r W ƒrV ˝ƒrE� �! SymrdT

�
�
r W ƒr�1V˝ƒrE� �! SymrdT˝V �

characterized as linear maps by:


 . ��v1; : : : ; ��vr / DW h ��r . v1 ^ v2 ^ : : : ^ vr ˝ 
 /; 1
.rd/Š �

rd i
DW h ��r . v2 ^ : : : ^ vr ˝ 
 /; 1

.rd/Š �
rd ˝ v1 i (35)

The localization �� W V �! E of � W SymdT � ˝ V �! E at a covector � 2 T �
thus has rank less than r , if and only if � is a common zero of all polynomials in
im �

�
r � SymrdT and thus a common zero of all polynomials in the homogeneous

ideal generated by im �
�
r :

I � �
r WD h im ��r i � Sym�T

In consequence the homogeneous ideal I � �
r ; r � 1; defines the projective algebraic

variety

Zr . A
d / WD f Œ � � 2 PT � j  . � / D 0 for all polynomials  2 I �r g

D f Œ � � 2 PT � j �� W V �! E has rank less than r g

associated to the linear map � W SymdT � ˝ V �! E or its tableau comodule
A , which is called the r th systolic variety in [7]. In particular the characteristic
variety (32) is defined by the homogeneous ideal I � �

N corresponding to N WD
dim V .

In the same vein we may consider the graded submodule M� �
r WD h im�

�
r i �

Sym�T ˝ V � generated by the image of ��r W ƒr�1V ˝ƒrE� �! SymrdT ˝ V �.
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Although the submodules M� �
r � Sym�T ˝ V � seem to have no direct geometric

interpretation in terms of the characteristic variety, they possess an interesting
algebraic property in that they are upper bounds for the tableau comodule A
associated to the tableau A d D ker�. To see this point clearly let us rewrite the
definition of ��r W ƒr�1V ˝ƒrE� �! SymrdT ˝ V � in the form

h ��r . v2 ^ : : : ^ vr ˝ 
 /; 1
.rd/Š �

rd ˝ v i
WD 
. �. 1

rŠ
�r ˝ v /; �v2. 1

rŠ
�r /; : : : ; �vr . 1

rŠ
�r / /

D h 
; . � ^ �v2 ^ : : : ^ �vr /.�Œ 1
.rd/Š �

rd ˝ v � / i

where �v W SymdT � �! E; 1
dŠ
�d 7�! �. 1

dŠ
�˝v /; denotes the localization of � at

some v 2 V and� W SymrdT ˝V � �! .SymdT ˝V � /˝SymdT ˝ : : :˝SymdT

the comultiplication:

�Œ 1
.rd/Š �

rd ˝ v � WD . 1
dŠ
�d ˝ v /˝ . 1

dŠ
�d / ˝ : : :˝ . 1

dŠ
�d /

„ ƒ‚ …

r�1 times

The decisive observation linking the tableau comodule A to the submodules
M

�
r ; r � 1; and eventually to the ideals I �r ; r � 1; is that the comultiplication

� restricts to a map

� W A rd �! A d ˝ SymdT � ˝ : : :˝ SymdT �

simply because A is after all a comodule over the symmetric coalgebra SymT �.
Hence

h��r . v2 ^ : : : ^ vr ˝ 
 /; a i D h 
; . � ^ �v2 ^ : : : ^ �vr /. �a / i D 0

vanishes for all a 2 A rd and all v2; : : : ; vr 2 V , 
 2 ƒrE� due to the consequence
.� ^ �v2 ^ : : :^ �vr /.�a / D 0 of the equality A d D ker�. In turn the canonical
pairing between SymrdT ˝V � and SymrdT � ˝V vanishes hm; a i D 0 on all pairs
a 2 A rd and m 2 im�

�
r D .M

�
r /

rd, and this mutual annihilation property extends
immediately

h m; a i D 0 (36)

to all m 2 M
� �
r ; r � 1; and all a 2 A �, because the submodule M� �

r �
Sym�T ˝ V � generated by im�

�
r is spanned by elements of the form 1

sŠ
t s �m with

t 2 T; s 2 N0 and m 2 im�
�
r , however all these elements satisfy h 1

sŠ
t s � m; a i D

hm; 1
sŠ

@s

@ts
a i D 0:

Corollary 4.9 (Upper Bound for Tableau Comodules). Consider the tableau
comodule A associated to a tableau A d � SymdT � ˝ V of order d � 1 and
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a linear map � W SymdT � ˝V �! E realizing A d in the sense ker� D A d . The
powers of the linear map � 2 SymdT˝V �˝E in the algebra SymT˝ƒV �˝ƒE
give rise to a sequence of linear maps��r W ƒr�1V ˝ƒrE� �! SymrdT˝V �; r �
1; with the property

A � AnnM�
r WD f a 2 SymT � ˝ V j h m; a i D 0 for all m 2 M�

r g

where M�
r WD h im�

�
r i denotes the Sym�T -submodule of Sym�T ˝ V � generated

by im�
�
r .

The preceding lemma is certainly interesting for all r � 1, nevertheless it has an
additional twist for r equal to the dimension N WD dim V of V in that the inclusion
M

�
r � I

�
r ˝ V � becomes an actual equality M�

N D I
�
N ˝ V � for this r . Choosing

a dual pair of bases v1; : : : ; vN and dv1; : : : ; dvN for the vector spaces V and V �
we may in fact reformulate the identity h��r . Qv2 ^ : : : ^ Qvr ˝ 
 /; � ˝ Qv1 i D
h ��r . Qv1 ^ Qv2 ^ : : : ^ Qvr ˝ 
 /; � i derived from the definition (35) of ��r and ��r into
an expansion valid for all Qv2; : : : ; Qvr 2 V and all 
 2 ƒrE�:

��r . Qv2 ^ : : : ^ Qvr ˝ 
 / D
NX

�D1
��r . v� ^ Qv2 ^ : : : ^ Qvr ˝ 
 /˝ dv�

This expansion tells us im�
�
r � im �

�
r ˝V � and soM�

r � I
�
r ˝V � for all r � 1. The

penultimate exterior power ƒN�1V of V however is spanned by the multivectors
obtained by removing a factor vs from v1^ : : :^vN 2 ƒNV , the preceding equation
thus becomes

��r . v1 ^ : : : ^ bvs ^ : : : ^ vN ˝ 
 / D .�1/s�1 ��r . v1 ^ : : : ^ vN ˝ 
 /˝ dvs

for these multivectors and all 
 2 ƒNE�, s D 1; : : : ; N so that im�
�
N D

im �
�
N ˝ V � and in turn M�

N D I
�
N ˝ V �. Combined with Corollary 4.9 this insight

establishes the direct link

A � � Ann. I � �
N ˝ V � / (37)

between the tableau comodule A associated to a tableau A d and the homogeneous
ideal I � �

N defining its characteristic variety Z .A d /. Before using this direct link
in the proof of Theorem 4.3 we want to state an alternative version of (37) in terms
of differential operators:

Corollary 4.5 (Scalar Differential Constraints). Consider a linear map � W
SymdT � ˝ V �! E realizing a tableau A d � SymdT � ˝ V of order d � 1

in the sense A d D ker�. Equation (28) associates to � a linear differential
operator D� W C1. T; V / �! C1. T; E / of order d , in complete analogy

every homogeneous element D 2 I kN � SymkT in the ideal I �N defining the
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characteristic variety Z .A d / can be interpreted as a scalar differential operator
D W C1. T / �! C1. T / of order k. For every solution  2 C1. T; V / of the
differential equation D� D 0 it holds then true that:

.D ˝ idV /  D 0

Solutions  2 C1. T; V / of the differential equation D� D 0 are characterized
by the fact that the homogeneous pieces of their Taylor series taylorp 2 SymT �˝
V taken in an arbitrary point p 2 T are elements of A k for all k � 0. On the
other hand the value of the scalar differential operator associated to D 2 I kN on
 2 C1. T; V / is given by a sum

�

.D ˝ idV /  
�

.p/ D
NX

�D1

�

Dh dv�;  i
�

.p/ v� D
NX

�D1
hD ˝ dv�; taylorkp i v�

over a dual pair v1; : : : ; vN and dv1; : : : ; dvN of bases for V and V �. Equation (37)
thus tells us that the right hand side vanishes for a solution  of the equation
D� D 0.

Proof of Theorem 4.3. According to Hilbert’s Nullstellensatz from algebraic geom-
etry every homogeneous polynomial  2 CŒ x1; : : : ; xn � of positive degree
vanishing on all points of a projective variety ZC, which is the vanishing variety
of some homogeneous ideal I

ZC D f Œ �C � 2 PC
n j p. �C / D 0 for all p 2 I g

lies in the radical
p
I � CŒ x1; : : : ; xn � of I in the sense  e 2 I for sufficiently

large exponent e 2 N. Among the well-known consequences of this theorem is
that the radical of a homogeneous ideal I with empty vanishing variety ZC D ;
equals the “irrelevant” ideal

p
I D C

CŒ x1; : : : ; xn � consisting of all polynomials of
positive degree [5]. Exactly this particular consequence of Hilbert’s Nullstellensatz
is what Theorem 4.3 is all about.

Unluckily we have been working over the real numbers as of now and not over
the algebraically closed field C required by Hilbert’s Nullstellensatz. Multilinear
algebra however behaves nicely under complexification inasmuch as we have
canonical identifications

.SymT � /˝RC D Sym . T � ˝RC / .ƒV � /˝RC D ƒ.V � ˝RC /

of symmetric and exterior powers as well as tensor products etc. Of course we
could go about and repeat all our calculations and constructions for the complexified
linear map

�˝Rid W Symd . T �˝RC /˝C . V˝RC / D .SymdT �˝V /˝RC �! E˝RC
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with complex localizations ��C W V ˝R C �! E ˝R C; vC 7�! . � ˝R

id /. 1
dŠ
�d
C

˝ vC /; etc., however the upshot of all these calculations is that the
complex characteristic variety

ZC. A
d /

WD fŒ �C � 2 P . T � ˝R C / j ��C W . V ˝R C / �! .E ˝R C / is not injectiveg

can be defined by the complexified ideal I � �
N ˝R C � Sym�.T ˝R C/, while the

kernel of the extension .ˆ ˝R id / W .Sym�T � ˝ V / ˝R C �! .Sym��dT � ˝
E /˝R C of the complexified linear map � ˝R id to comodules over the symmetric
coalgebra Sym .T � ˝R C/ is nothing else but the complexification A � ˝R C of the
tableau comodule associated to �.

Let us suppose now that the localization ��C W V ˝R C �! E ˝R C at some
non-zero complex valued form �C 2 T � ˝R C is not injective and let vC 2 V ˝R

C be a non-zero vector in its kernel. With these choices made the product vector
1
kŠ
�k
C

˝ vC ¤ 0 is for all k � 0 a non-zero element of the kernel A k ˝R C of the
comodule extension ˆ˝R id of � ˝R id

.ˆ˝R id /. 1
kŠ
�k
C

˝ vC / D 1
.k�d/Š �

k�d
C

˝ . � ˝R id /. 1
dŠ
�d
C

˝ vC / D 0

so that dim A k � 1 for all k � 0 leading to the comodule A of infinite dimension.
Conversely suppose that all localizations ��C W V ˝R C �! E ˝R C at non-zero
complex valued forms �C 2 T � ˝R C are injective. The vectors t1; : : : ; tn of a basis
for T considered as homogeneous polynomials of degree 1 on T � ˝R C trivially
vanish on the complex characteristic variety ZC.A d / D ; as it is empty, hence
Hilbert’s Nullstellensatz guarantees the existence of exponents e1; : : : ; en 2 N such
that the powers t e11 ; t

e2
2 ; : : : ; t

en
n 2 I

�
N of the basis vectors are real elements of the

homogeneous ideal I �N ˝RC describing the complex projective variety ZC.A d /. In
turn the drawers principle asserts that every monomial t k1 : : : t kn in the basis vectors
t1; : : : ; tn of total degree k1 C : : :Ckn > e1 C : : :C en �n is an element of the ideal
I
�
N , because at least one of the basis vectors t� occurs with an exponent k� � e�.

Since the monomials in basis vectors span the symmetric powers we conclude

I
� �
N D Sym�T

and so A � D f 0 g for all � > e1 C : : : C en � n due to A � � Ann. I � �
N ˝

V � / D f 0 g according to the direct link (37) between A and I
�
N . With all

homogeneous subspaces of A � � Sym�T � ˝ V being finite dimensional we
conclude dim A < 1. ut

In the second part of this section we want to discuss the main ideas and their
ramifications related to Cartan’s Involutivity Test for first order tableaux A 1 �
T � ˝ V . In contrast to tableaux of higher order tableaux of first order d D 1

possess a very interesting discrete invariant, the so-called Cartan character, under



162 G. Weingart

the natural action of GLT � GLV on the subspaces of T � ˝ V D Hom . T; V /.
The nomenclature adopted by Cartan and his collaborators with respect to tableaux
alludes directly to the fact that this Cartan character, although usually written as a
decreasing sequence of non-negative integers, is actually a Young diagram, a very
interesting combinatorial structure with strong ties to the representation theory of
the general linear groups: A Young diagram with additional “filling” is traditionally
called a Young tableau (sic!) in representation theory.

A Young diagram is by definition a finite set Y � N
2 of tuples of natural

numbers with the property that for every tuple .r; c/ 2 Y all tuples . Qr; Qc/ 2
N
2 of natural numbers satisfying both inequalities Qr � r and Qc � c are

elements . Qr; Qc/ 2 Y, too. In the parlance of partially ordered sets and lat-
tices we may equivalently define a Young diagram as a finite lower subset
Y � N

2 with respect to the componentwise partial order � on N
2. It is much

more appropriate though to think of a Young diagram as a picture of little
squares neatly aligned in rows and columns in an arrangement similar to matrices:

�row

�
column

= { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(2, 1), (2, 2), (2, 3), (2, 4), (3, 1),
(3, 2), (4, 1), (4, 2), (5, 1), (6, 1) }

Due to this interpretation the elements of a Young diagram are called its boxes,
the number ]Y of boxes of a Young diagram Y is called its order. Say the Young
diagram depicted above has order 15 with boxes arranged in columns of lengths
6 � 4 � 2 � 2 � 1 and rows of lengths 5 � 4 � 2 � 2 � 1 � 1. Similarly every
Young diagram Y is completely determined by the lengths c1 � c2 � c3 � : : : of
its columns or the lengths r1 � r2 � r3 � : : : of its rows. The image of a Young
diagram Y � N

2 under the reflection along the main diagonal .r; c/ 7�! .c; r/

interchanging rows and columns is again a Young diagram of the same order called
the diagram Y� conjugated to Y. Moreover the finite set

YD. D / WD f Y � N
2 j Y is a Young diagram of order ]Y D D g

of all Young diagrams of fixed order D 2 N0 comes along with a partial order �
defined by:

Y � QY ,
sX

�D1
c� �

sX

�D1
Qc� for all s � 1 (38)

In other words Y � QY, if and only if Y has at least as many boxes in the first column
as QY, at least as many boxes in the first two columns together as QY and so on. Under
this partial order the set YD.D / of Young diagrams of orderD � 0 is actually a self
dual lattice with antimonotone involution 	 W YD.D / �! YD.D /; Y 7�! Y�.
Lacking a pretext we will not discuss these beautiful examples of self-dual lattices
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in more detail, because only the partial order � enters into the definition of the
Cartan character of a first order tableau A 1 � Hom . T; V /. Perhaps the reader
will enjoy studying the following Hasse diagram of YD. 11 / though, in which the
Young diagrams are ordered descendingly from left to right:

The similarity between Young diagrams and matrices mentioned before provides
the fundamental link between Young diagrams and tableaux. Recall from your first
semesters at university that the choice of bases t1; : : : ; tn for T and v1; : : : ; vN for
V turns the vector space Hom . T; V / into the vector space of all N � n-matrices
via the following linear map

mat W Hom . T; V /
Š�! MatN�nR; A 7�!

0

B
@

dv1.At1 / : : : dv1.Atn /
:::

:::

dvN .At1 / : : : dvN .Atn /

1

C
A

where dv1; : : : ; dvN 2 V � is the basis dual to v1; : : : ; vN . Modulo the choice of
bases for T and V every tableau A 1 � Hom . T; V / may thus be thought of as a
subspace of matrices, in turn the coefficient of the image matrix in row r and column
c becomes the linear functional:

matrc W A 1 �! R; A 7�! matrc. A / WD dvr.Atc /

It should be noted that the matrix coefficients matrc 2 A 1� span the space A 1� of
linear functionals on A 1 since mat W A 1 �! MatN�nR is injective. Hence we may
choose a basis f matrc g.r;c/2Y of A 1� consisting entirely of the matrix coefficients
indexed by a suitable subset Y � f1; : : : ; N g � f1; : : : ; ng. The remaining matrix
coefficients are then fixed linear combinations of the matrix coefficients in Y.

It may be somewhat surprising, but the preceding rather esoteric discussion
about the linear independence of matrix coefficients captures exactly what we do
automatically, whenever we specify a subspace of matrices. Consider for example
the following subspace

� �
a b

0 2a � b
� ˇ
ˇ
ˇ a; b 2 R

	

D
� �

1
2
b C 1

2
d b

0 d

� ˇ
ˇ
ˇ b; d 2 R
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of Mat2�2R. Although defining the same subspace the left and right hand side
definitions differ significantly in form, implicitly we have chosen the basis f a; b g of
matrix coefficients corresponding to f .1; 1/; .1; 2/ g on the left and the basis f b; d g
corresponding to f .1; 2/; .2; 2/ g on the right hand side. The subset f .1; 1/; .2; 2/ g
of matrix coefficients corresponds to a third alternative definition of the same
subspace of 2 � 2-matrices, whereas subsets containing .2; 1/ certainly do not
correspond to bases of matrix coefficients:

Definition 4.6 (Young Diagrams Presenting a Tableau). A Young diagram Y of
order D is said to present a first order tableau A 1 � Hom . T; V / of dimension
D WD dim A 1, if there exist some bases t1; : : : ; tn and v1; : : : ; vN of T and V
respectively such that the associated matrix coefficients matrc 2 A 1� indexed by
.r; c/ 2 Y

matrc W A 1 �! R; A 7�! dvr. Atc /

are a basis of A 1�. Schematically we may then write mat.A 1 / � MatN�nR in the
form

where the coefficients in Y can be assigned arbitrary values, the fixed linear
combinations of these values calculating the other coefficients characterize the
subspace mat.A 1 /.

In saying that a Young diagram Y of orderD presents a tableau A 1 � Hom . T; V /

of dimension D D dim A 1 we deliberately draw attention away from the bases
of T and V realizing this presentation. In this way the set of Young diagrams
presenting a given tableau A 1 of dimension D becomes an invariant of the tableau
under the natural action GLT � GLV on the Graßmannian of D-dimensional
subspaces of Hom . T; V /. It should not pass by unnoticed that this invariant
with values in the subsets of YD.D / has a compelling interpretation in terms of
the Plücker embedding GrD Hom . T; V / �! P.ƒDHom . T; V / /. According to
the representation theory of general linear groups [3] the domain of the Plücker
embedding decomposes under GLT � GLV into a direct sum of irreducible
subrepresentations

ƒDHom . T; V / D
M

Y�YD.D /
] rows�N
] columns�n

SchurY
�

T � ˝ SchurYV
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parametrized by all Young diagrams of order D with at most n WD dim T columns
and N WD dim V rows. The subset of Young diagrams Y presenting a tableau A 1

agrees with the subset of the irreducible subrepresentations in this decomposition, to
which the Plücker line in ƒDHom . T; V / associated to A 1 projects non-trivially.

Leaving the construction of invariants aside there is another good reason not to
spend too much importance on the bases of T and V used to write a given tableau
A 1 � Hom . T; V / as a subspace of matrices of sizeN �n in Y-schematical form:
This characteristic property does not pertain to the bases themselves, but actually to
their associated flags. Recall at this point that a complete flag on T is an increasing
sequence F� of subspaces

f0g DW F0 ¨ F1 ¨ : : : ¨ Fn�1 ¨ Fn WD T

satisfying dim Fs D s for all s D 1; : : : ; n. A basis t1; : : : ; tn of T is called adapted
to a complete flag F� provided ts 2 Fs n Fs�1 for all s D 1; : : : ; n. Evidently
every basis t1; : : : ; tn of T is adapted to exactly one complete flag defined by
Fs WD spanf t1; : : : ; ts g for all s, on the other hand there are certainly many different
bases adapted to a given flag. Nevertheless two bases t1; : : : ; tn and t 01; : : : ; t 0n
adapted to the same complete flag F� on T are necessarily related by an invertible
lower triangular matrix B 2 Matn�nR via:

t 0c D
cX

sD1
Bcs ts

For the matrix coefficients mat0rc 2 A 1� associated to the basis t 01; : : : ; t 0n this
becomes

mat0rc. A / D dvr

�

A.

cX

sD1
Bcsts /

�

D
cX

sD1
Bcs matrs. A /

so that the matrix coefficients mat0rc 2 A 1� for .r; c/ 2 Y are invertible linear
combinations of the matrix coefficients matrs 2 A 1� with .r; s/ 2 Y. A very similar
argument applies to changing the basis of V , while keeping the associated complete
flag on V unchanged. This dependence on flags is precisely the reason, why we are
not interested in arbitrary subsets of matrix coefficients, but in subsets specified by
Young diagrams.

Another way to understand the relationship between complete flags on T and
Young diagram presentations of a given first order tableau A 1 is to study its restric-
tions to subspaces F � T . The linear restriction map resF W Hom . T; V / �!
Hom . F; V /; A 7�! AjF ; associated to a subspace F � T gives rise in fact to a
short exact sequence of tableaux

0 �! A 1
F

��! A 1 resF�! resFA
1 �! 0 (39)
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where resFA 1 � Hom . F; V / is the image of A 1 � Hom . T; V / under resF and
A 1
F � A 1 is the subspace of all A 2 A 1 satisfying At D 0 for all t 2 F . In general

the dimensions of the two derived tableaux A 1
F and resFA 1 depend delicately on

the chosen subspace F � T , hence it makes sense to call a subspace F � T of
dimension s a regular subspace provided:

dim resFA
1 D max f dim res OFA

1 j OF � T is a subspace of dimension s g

In the opposite case F is a singular subspace with respect to the tableau A 1 �
Hom . T; V / in the sense that the dimension of the intersection A 1

F D A 1 \
Hom . T=F; V / is larger than it needs to be. After a little bit of multilinear algebra
of the kind we used to establish Eq. (36) above the latter characterization of singular
subspaces turns into an explicit space of polynomials on the Graßmannian GrsT
considered as an algebraic variety such that a subspace F � T of dimension s is
singular with respect to A 1, if and only if F 2 GrsT is a common zero of all these
polynomials. The complementary subset of regular subspaces of T in dimension s
is thus a non-empty Zariski dense subset:

Grreg
s T WD f F j F � T is an A 1–regular subspace of dimension s g 
 GrsT

Coming back to complete flags we conclude that the set of all complete flags F�
on T , which feature a regular subspace Fs 2 Grreg

s T in a given dimension s,
is a Zariski dense subset of the algebraic variety FlagT of all complete flags on
T . Finite intersections of Zariski dense subsets however are still Zariski dense, in
consequence the subset of regular flags on T

FlagregT WD f F� 2 FlagT j every Fs is A 1–regular in its dimension s g

is a Zariski dense subset of the algebraic variety FlagT of all complete flags on
T , in particular FlagregT is a non-empty, dense subset of FlagT with respect to
the manifold topology as well. The existence of regular complete flags for arbitrary
first order tableaux allows us to define the Cartan character YA of a tableau A 1 �
Hom . T; V / in the following way:

Lemma 4.7 (Cartan Character of First Order Tableaux). Associated to every
first order tableau A 1 � T � ˝ V of dimension D WD dim A 1 is the set of all
Young diagrams of order D presenting A 1. With respect to the partial order � this
subset of YD.D / has a unique maximal element called the Cartan character YA

of the tableau A 1, its column lengths cA1 � cA2 � : : : � cAn � 0 satisfy for all
s D 1; : : : ; n:

cA1 C cA2 C : : : C cAs WD max f dim resFA
1 j F 2 GrsT g

Proof. For the purpose of proof let us assume that the column lengths of the
Cartan character YA in spe of a fixed first order tableau A 1 � Hom . T; V /
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of dimension D � 0 are defined simply as a sequence of non-negative numbers
cA1 ; c

A
2 ; : : : ; c

A
n � 0 via:

cA1 C cA2 C : : : C cAs WD max f dim resFA
1 j F 2 GrsT g (40)

For every given Young diagram Y 2 YD.D / presenting A 1 we may choose bases
t1; : : : ; tn and v1; : : : ; vN of T and V respectively such that the matrix coefficients
A 7�! dvr.Atc/ indexed by .r; c/ 2 Y are a basis of A 1�. The specific matrix
coefficients matrc 2 A 1� indexed by boxes .r; c/ 2 Y in the first s D 1; : : : ; n

columns with c � s actually come from the restriction of A 1 to the subspace
Fs 2 GrsT spanned by f t1; : : : ; ts g in the sense matrc.A/ WD dvr. ŒAjFs � tc/.
Hence the image of the adjoint .resFsA

1/� �! A 1� of the restriction A 1 �!
resFsA

1; A 7�! AjFs ; to Fs contains the c1 C : : :C cs linearly independent matrix
coefficients indexed by boxes .r; c/ 2 Y in the first s columns and so:

c1 C c2 C : : : C cs � dim resFsA
1

� max f dim resFA
1 j F 2 GrsT g

D cA1 C cA2 C : : : C cAs

Since this inequality is true for all s D 1; : : : ; n, we conclude that Y � YA

provided we can show that the non-negative numbers cA1 ; : : : ; c
A
n � 0 are actually

the column lengths of a Young diagram YA presenting the tableau A 1.
For this purpose let us fix a regular flag F� 2 FlagregT for the tableau A 1 and an

adapted basis t1; : : : ; tn for T satisfying Fs D spanf t1; : : : ; ts g for all s D 1; : : : ; n.
Evidently the kernel A 1

Fs
� A 1 of the restriction to Fs consists of those A 2 A 1 �

Hom . T; V / satisfying A t� D 0 for all 1 � � � s, this simple observation gives
rise to the short exact sequences

0 �! A 1
Fs

��! A 1
Fs�1

@
@ts�! A 1

Fs�1
ts �! 0 (41)

for all s D 1; : : : ; n, where @
@ts
A WD A ts and A 1

F0
WD A 1 in case of doubt. In

consequence

dim resFsA
1 D dim A 1 � dim A 1

Fs
D cA1 C : : : C cAs

dim A 1
Fs�1

ts D dim A 1
Fs�1

� dim A 1
Fs

D cAs

where the first equation simply reflects the regularity of the chosen flag
F� 2 FlagregT with respect to the tableau A 1 and the second the short exact
sequence (41).

The crucial observation to be made at this point is that the sequence of subspaces
A 1
Fs�1

ts; s D 1; : : : ; n; of dimensions cAs is actually a monotonely decreasing
filtration
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V � A 1
F0
t1 � A 1

F1
t2 � A 1

F2
t3 � : : : � A 1

Fn�1
tn � f 0 g (42)

so that the non-negative integers cA1 ; : : : ; c
A
n � 0 we have been using up to now

are monotonely decreasing cA1 � cA2 � : : : � cAn � 0 as appropriate for the
column lengths of a Young diagram YA of order cA1 C : : : C cAn D dim A 1. By
the our choice of a regular flag F� 2 FlagregT all the subspaces Fs 2 Grreg

s T are
regular in their dimension s with respect to the tableau A 1. With regularity being a
Zariski open condition we conclude that for an arbitrary deformation vector t 2 T

the deformation F "
s WD Fs�1 ˚ R.ts C "t/ with " sufficiently close to 0 is still a

regular subspace F "
s 2 Grreg

s T . Comparing the short exact sequence (41) for Fs
with the short exact sequence constructed similarly for F "

s

0 �! A 1
F "s

��! A 1
Fs�1

�! A 1
Fs�1

. ts C " t / �! 0

we observe that the regularity of F "
s is equivalent to dim A 1

Fs�1
.ts C "t/ D

dim A 1
Fs�1

ts , hence sufficiently close to 0 the curve " 7�! A 1
Fs�1

.ts C "t/ is a
smooth curve in the Graßmannian of subspaces of V of dimension cAs . In particular
the trivial inclusion of subspaces

A 1
Fs
t D A 1

Fs
. ts C " t / 
 A 1

Fs�1
. ts C " t /

valid for all " ¤ 0 continues to hold true for " D 0 by the way the topology is
defined on the Graßmannians. In consequence A 1

Fs�1
ts � A 1

Fs
t for all s D 1; : : : ; n

and an arbitrary deformation vector t 2 T , in particular A 1
Fs�1

ts � A 1
Fs
tsC1 in

filtration (42).
Last but not least we complement the chosen basis t1; : : : ; tn for T adapted to

the regular flag F� 2 FlagregT by a basis v1; : : : ; vN of V adapted to the decreasing
filtration (42) in the sense that for all s D 1; : : : ; n the filtration subspace A 1

Fs�1
ts is

spanned by the first cAs basis vectors v1; : : : ; vcAs . In order to show that the special
matrix coefficients matrc 2 A 1� indexed by boxes .r; c/ 2 YA with respect to
these bases are actually a basis of A 1� it is sufficient to verify that they generate
A 1�, in other words we need to prove that every A 2 A 1 satisfying matrc. A / D 0

for all .r; c/ 2 YA necessarily vanishes A D 0.
Due to A 2 A 1 D A 1

F0
the vector At1 2 A 1

F0
t1 is a linear combination of the

first cA1 basis vectors v1; : : : ; vcA1 2 V , hence the assumption matr1. A / D 0 for

all .r; 1/ 2 YA implies At1 D 0 or equivalently A 2 A 1
F1

. Iterating this argument
we find that At2 2 A 1

F1
t2 is a linear combination of the first cA2 basis vectors of V

and conclude At2 D 0 or A 2 A 1
F2

as before from the assumption matr2. A / D 0

for all .r; 2/ 2 YA . Continuing in this way we eventually arrive at the conclusion
A 2 A 1

Fn
D f 0 g or equivalently A D 0. Summing up this argument we conclude

that the matrix coefficients matrc 2 YA indexed by the boxes .r; c/ 2 YA are a
basis of A 1� so that YA presents the tableau A 1. ut
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Theorem 4.8 (Cartan’s Involutivity Test for Tableaux). Every Young diagram
Y presenting a first order tableau A 1 � Hom . T; V / with associated tableau
comodule A over the symmetric coalgebra SymT � of a vector space T of
dimension n WD dim T provides us with an a priori estimate on the dimension
of the first prolongation A 2 � Sym2T � ˝ V of the tableau in terms of its column
lengths c1 � c2 � : : : � cn � 0

dim A 2 � c1 C 2 c2 C 3 c3 C 4 c4 C : : : C n cn

which may only be sharp for the Cartan character YA of A 1. If this estimate is in
fact sharp for the Cartan character, then the Spencer cohomology of the comodule
A is concentrated in comodule degree zero with H �;ı.A / D f 0 g for � ¤ 0.
Moreover the dimensions of A k and H0;r .A / can be calculated for all k; r > 0

from the column lengths of YA via:

dim A k D C
 

k � 1
0

!

cA1 C
 

k

1

!

cA2 C : : :C
 

k C n � 2
n � 1

!

cAn

dim H0; r .A / D
 

n

r

!

dim V �
 

n � 1
r � 1

!

cA1 �
 

n � 2
r � 1

!

cA2 C : : : �
 

0

r � 1

!

cAn

Last but not least the comodule A has a canonical resolution by free comodules of
the form:

0 �! A � ��! Sym�T �˝H0;0.A / �! Sym��1T �˝H0;1.A /

�! Sym��2T � ˝H0;2.A / �! : : : �! Sym��nT � ˝H0;n.A / �! 0

Without doubt Cartan’s Involutivity Test is the most beautiful gem in the theory of
exterior differential systems, although or perhaps because it is in essence a theorem
of commutative algebra. Involutivity of a tableau is a notion actually defined by the
theorem: A first order tableau A 1 � Hom . T; V / is called an involutive tableau
provided it passes Cartan’s Test positively with dim A 2 D cA1 C2 cA2 C: : :Cn cAn ,
in consequence the associated Spencer cohomology is concentrated in comodule
degree � D 0 with H �; ı.A / D f 0 g for all � ¤ 0. The converse of is statement is
true as well, although we will not prove this fact: A first order tableau A 1, whose
Spencer cohomology is concentrated in comodule degree zero, necessarily passes
Cartan’s Test dim A 2 D cA1 C 2 cA2 C : : :C n cAn positively. The proof presented
below of the direct implication of Theorem 4.8 relies heavily on the following
technical lemma:

Lemma 4.9 (Technical Lemma for Cartan’s Involutivity Test). Consider for a
given comodule A over the symmetric coalgebra SymT � of a vector space T the
subcomodule A �

Rt � A � of elements constant in the direction of a fixed vector
t 2 T :
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A �
Rt WD ker

� @

@t
W A � �! A ��1; a 7�! @a

@t

�

In case the directional derivative @
@t

W A kC1 �! A k in the direction t is surjective
for some k 2 Z the inclusion A �

Rt �! A � induces a surjection on the level of
Spencer cohomology:

Hk; ı. ARt / �! Hk; ı. A /; Œ ! � 7�! Œ ! �

If in addition to @
@t

W A kC1 �! A k being surjective the following Spencer
cohomology spaces

HkC1; 0. A / D 0 HkC1; 1. A / D 0 Hk; 2. ARt / D 0

of A and ARt vanish, then the directional derivative @
@t

W A kC2 �! A kC1 is
surjective again.

The first statement is an almost trivial consequence of Cartan’s Homotopy Formula.
Starting with an arbitrary representative ! 2 A k ˝ ƒrT � of a cohomology
class Œ ! � 2 Hk; r .A / we use the surjectivity of the directional derivative @

@t
W

A kC1 �! A k and the algebraic analogue of Cartan’s Homotopy Formula (22) to
find a cochain !pre 2 A kC1 ˝ƒrT � satisfying:

! D .
@

@t
˝ id / !pre D f B; . id ˝ ty / g !pre

WD . id ˝ ty / B !pre C B . id ˝ ty / !pre

In consequence . id ˝ ty / B !pre � ! modulo imB is still closed and represents
the same cohomology class Œ . id ˝ ty / B !pre � D Œ ! � 2 Hk; r .A /, however its
directional derivative

.
@

@t
˝ id /

�

. id ˝ ty / B !pre
�

D . id ˝ ty / B
�

.
@

@t
˝ id / !pre

�

D . id ˝ ty / B ! D 0

in the direction of t vanishes, recall that ! is assumed to represent a cohomology
class and so it is necessarily closed B ! D 0. The modified representative . id ˝
ty / B !pre 2 A k

Rt ˝ƒrT � is thus constant in the direction of t and provides us with
the looked for preimage of Œ ! � under the map Hk; r .ARt / �! Hk; r .A / induced
by the inclusion A �

Rt �! A �. Turning to the proof of the second statement we
study the commutative diagram
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(43)

whose rows and columns are all complexes. By assumption the row complexes
are exact on the diagonal A kC1, A kC1 ˝ T � and A k

Rt ˝ ƒ2T �, while the
column complexes are exact on the parallel diagonal A k ˝ T �, A k ˝ ƒ2T � and
A k�1

Rt ˝ƒ3T � due to the definition of the comodule ARt and our assumption that the
directional derivative @

@t
W A kC1 �! A k is surjective. A very delightful diagram

chase all over this diagram proves that the directional derivative @
@t

W A kC2 �!
A kC1 on the left is surjective as well.

Proof of Theorem 4.8: Once and for all let us fix a first order tableau A 1 �
Hom . T; V / of dimension D � 0 on vector spaces T and V of dimensions n
and N respectively. On the set of Young diagrams of order D with at most n
columns we define the weighted sum jj � jj W YDn.D / �! N0 of the column lengths
c1 � c2 � : : : � cn � 0 of the argument by:

jjY jj WD c1 C 2 c2 C : : : C n cn

D . nC 1 /D � . c1 / � . c1 C c2 / � : : : � . c1 C c2 C : : :C cn /

Using the second expression for the weighted sum jj � jj and the definition (38) of
the partial order � on the lattice YD.D / we conclude directly that Y � QY implies
jjY jj � jj QY jj with equality, if and only if Y D QY. Every Young diagram presenting
A 1 has at most n columns of course and the maximality of the Cartan character
YA among the diagrams presenting A 1 implies that jj � jj attains its minimum in
and only in the Cartan character:

jjYA jj D min f jjY jj j Y 2 YDn.D / presents the tableau A 1 g (44)

In the following paragraphs we will provide two different arguments to establish the
a priori estimate dim A 2 � jjY jj for the dimension of the first prolongation A 2 in
terms of a Young diagram Y presenting A 1. Whereas the first argument is rather
explicit and is intended to provide the reader with a meaningful interpretation (46)
for the weighted sum jj � jj, the second argument is more elegant and provides us



172 G. Weingart

with the a useful description of the equality case dim A 2 D jjY jj, on which the
inductive proof of the main statement is based.

Consider an arbitrary Young diagram Y presenting the tableau A 1 and corre-
sponding bases t1; : : : ; tn and v1; : : : ; vN for T and V respectively so that the matrix
coefficients matrc. A / WD dvr.Atc/ indexed by the boxes .r; c/ 2 Y are a basis of
A 1�. Recall that the directional derivative in the tableau comodule A � associated
to A 1 agrees with insertion @

@t
W A 1 �! V; A 7�! At; in comodule degree � D 1,

this observation allows us to generalize the matrix coefficients matrc 2 A 1� to
matrix coefficients defined on A 2 by:

matrI Ncc W A 2 �! R; a 7�! dvr

� @2

@t Nc @tc
a
�

It is well known that these generalized matrix coefficients matrI Ncc with their
symmetry matrI Ncc D matrI c Nc taken into account are a basis of the vector space dual
to Sym2T � ˝ V , hence they certainly generate A 2� due to A 2 � Sym2T � ˝ V .
On the other hand we know that the matrix coefficients matNr Nc 2 A 1� indexed by
. Nr; Nc/ … Y are fixed linear combinations

matNr Nc D
X

.r;c/2Y
C rcNr Nc matrc (45)

of the matrix coefficients indexed by .r; c/ 2 Y, where the constants C rcNr Nc 2 R

are characteristic for the tableau A 1, the trivial identity matNrI s Nc. a / D matNr Nc. @a@ts /
thus implies matNrI s Nc D P

.r;c/2Y C rcNr Nc matrI sc for every s D 1; : : : ; n as well. In the
light of the symmetry matrI c Nc D matrI Ncc we conclude that the generalized matrix
coefficients matrI Ncc indexed by triples .r I Nc; c/ satisfying c � Nc � 1 and .r; c/ 2 Y
already generate all of A 2�, hence:

dim A 2 � jjY jj D ] f . r I Nc; c / j r � 1; c � Nc � 1 and . r; c / 2 Y g
(46)

Somewhat more elegantly the a priori estimate dim A 2 � jjY jj can be established
using the complete flag F� associated to the chosen basis t1; : : : ; tn 2 T with Fs WD
spanf t1; : : : ; ts g. Associated to this complete flag is a descending filtration of the
tableau A 1 by subtableaux

A 1 D A 1
F0

� A 1
F1

� A 1
F2

� : : : � A 1
Fn�1

� A 1
Fn

D f 0 g

which in turn define tableau comodules A �
Fs

for all s D 1; : : : ; n. The most
important observation to be made at this point is that these tableau comodules are
interrelated by
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A �
Fs

D ker
� @

@ts
W A �

Fs�1
�! A ��1

Fs�1
; a 7�! @a

@ts

�

DW .A �
Fs�1

/R ts

(47)

valid for all s D 1; : : : ; n. In fact the tableau comodule A �
Fs�1

� Sym�T � ˝ V is
more or less by definition the subspace of polynomials  on T with values in V ,
whose differential Bp W T �! V; t �! @ 

@t
. p /; is an element of the subspace

A 1
Fs�1

� Hom . T; V / in every point p 2 T . Clearly such a polynomial is constant
in the direction of ts , if and only if its differential in every point kills the vector ts
and thus lies in the subspace A 1

Fs
. The resulting equality (47) between the tableau

comodule A �
Fs

and the kernel of @
@ts

in the tableau comodule A �
Fs�1

for all s D
1; : : : ; n for all s D 1; : : : ; n implies the exactness of the sequences:

0 �! A 2
Fs

��! A 2
Fs�1

@
@ts�! A 1

Fs�1
(48)

Combining this exactness with the estimate dim A 1
Fs

D D�dim resFsA
1 � csC1C

: : : C cn established in the proof of Lemma 4.7 to obtain the a priori estimate as a
telescope sum

dim A 2 D
nX

sD1

�

dim A 2
Fs�1

� dim A 2
Fs

�

�
nX

sD1
dim A 1

Fs�1
� jjY jj

telescoping to dim A 2
F0

� dim A 2
Fn

D dim A 2 according to A 1
F0

D A 1 and
A 1
Fn

D f 0 g.
For the second part of the proof let us assume that the a priori estimate is actually

sharp dim A 2 D jjYA jj for the Cartan character YA . Under this assumption all
inequalities in the preceding argument must be equalities, in particular dim A 1

Fs
D

cAsC1 C : : : C cAn holds true for all s D 1; : : : ; n and all the exact sequences (48)
are surjective on the right and thus short exact. This simple observation provides the
basis in k D 1 for an inductive argument to the end that we have for all k � 1 and
all s D 1; : : : ; n short exact sequences:

0 �! A kC1
Fs

��! A kC1
Fs�1

@
@ts�! A k

Fs�1
�! 0 (49)

In the induction step from k to k C 1 we apply the first statement of the technical
Lemma 4.9 to all tableau comodules A �

Fs
D .A �

Fs�1
/Rts in turn to obtain a chain of

surjections

Hk;ı.AFn / �! Hk;ı.AFn�1 / �! : : : �! Hk;ı.AF1 / �! Hk;ı.AF0 /

in Spencer cohomology, in which the first term Hk;ı.AFn / D f 0 g vanishes due to
k > 0, after all the tableau comodule A �

Fn
D ı�D0 V is concentrated in degree zero.

In consequence
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HkC1; 0. AFs / D f 0 g HkC1; 1. AFs / D f 0 g Hk; 2. AFs / D f 0 g

vanish for all s D 0; : : : ; n, in fact we just have finished proving the third assertion,
whereas the first two are true for every first order tableau comodule according to
Eq. (30) and the assumption k > 0. All requirements of the second statement of
Lemma 4.9 are thus met, and we conclude that the short exact sequences one degree
higher up are exact

0 �! A kC2
Fs

��! A kC2
Fs�1

@
@ts�! A kC1

Fs�1
�! 0

on the right for all s D 1; : : : ; n completing thus the induction. More or less as
a by-product we have proved that the Spencer cohomology H �; ı.AFs / D f 0 g
vanishes in comodule degrees � ¤ 0 for all comodules AFs ; s D 0; : : : ; n and thus
for A D AF0 as well. With such a Spencer cohomology theE1-term of the standard
spectral sequence of Lemma 3.7

Sym�T � ˝H ◆; ı. A / H) ı◆D0Dı A �

is concentrated in degrees ◆ D 0. Hence this spectral sequence has only one chance
left to converge to the original comodule A : The coboundary operators leading to
the E2-term have to link up to form a resolution of A by the free comodules with
basisH0; ı.A /, in particular the standard spectral sequence collapses at itsE2-term
equal to A .

The short exact sequences (49) valid for all k � 1 and s D 1; : : : ; n allow us to
calculate the dimension of the homogeneous subspaces A k

Fs
of the comodules AFs

as telescope sums

dim A k
Fs

D
X

��1

�

dim A k
FsC��1

� dim A k
FsC�

�

D
X

��1
dim A k�1

FsC��1

for all k � 2. Straightforward induction on k � 1 using this equation in the
induction step and the equality dim A 1

Fs
D cAsC1 C : : :C cAn established as a direct

consequence of the assumption dim A 2 D jjYA jj as induction base thus proves
the proves the explicit formula

dim A k
Fs

D
n�sX

�D1

 

k � 2C �

� � 1

!

cAsC�

for all k � 1 and s D 0; : : : ; n, which becomes the stipulated formula for dim A k

in the special case s D 0. Eventually the Betti numbers dim H0; r .A / of the
comodule A can be calculated by binomial inversion from the following identity,
which is obtained by equating the preceding formula for dim A k with the formula
from Corollary 3.8:
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nX

sD1

 

k � 2C s

s � 1

!

cAs D
X

rD0;:::;n
.�1/r

 

k � r C n � 1
n � 1

!

dim H0; r . A /

ut
Perhaps the reader may have wondered, why we took the time to prove the a

priori estimate dim A 2 � jjY jj for the dimension of the first prolongation of a
tableau A 1 � Hom . T; V / in terms of a Young diagram Y presenting A 1. The
point is that the argument using matrix coefficients generalizes to all degrees k � 1

in the formulation that the matrix coefficients

matrI c1:::ck . a / WD dvr

� @k

@tc1 : : : @tck
a
�

indexed by tuples . r I c1; : : : ; ck / satisfying ck � : : : � c1 � 1 and .r; ck/ 2 Y
generate A k�. For the Cartan character Y D YA of an involutive tableau A 1 �
Hom . T; V / however the formulas for dim A k in terms of the column lengths of
YA imply

dim A k D ] f . r I c1; : : : ; ck / j r � 1; ck � : : : � c1 � 1 and . r; ck / 2 YA g

so that these special matrix coefficient are a basis of A k�. In a sense this statement
can be seen as an interpolation formula, because it implies that for every choice of
real constants arI c1:::ck 2 R for every tuple with r � 1 and ck � : : : � c1 � 1

as well as .r; ck/ 2 Y there exists a unique element a 2 A k of the comodule
satisfying:

matrI c1:::ck . a / D arI c1:::ck

In other words there exists an essentially algorithmic way to calculate all elements of
the tableau comodule A corresponding to an involutive tableau A 1 � Hom . T; V /

in terms of its structure constants C rc
Qr Qc of Eq. (45), although it seems difficult to

write an actual computer program to implement this algorithm. In light of this
interpolation property of involutive tableaux, it is very interesting to know that every
finitely generated comodule A bounded below becomes eventually an involutive
tableau comodule:

Theorem 4.10 (Twisted Comodules and Involutivity). Consider a finitely gener-
ated comodule A bounded below and let dmax < 1 be the maximal comodule
degree � realized by a non-trivial Spencer cohomology space H �; ı.A / ¤ f 0 g
in its finite dimensional Spencer cohomology, this is Hd;r .A / D f 0 g for all
d > dmax and all r . For all d � dmax the twist A �. d / � Sym�T � ˝ A d

associated to A is an involutive tableau comodule associated to the “prolonged”
tableau B.A dC1 / � Hom . T; A d / with:
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B. A dC1 / WD f B a W T �! A d ; t 7�! @a
@t

j a 2 A dC1 g

Its Cartan character YA .d/ has columns of length cA .d/
1 � c

A .d/
2 � : : : � c

A .d/
n �

0 given by:

cA . d /
s D

X

rD0;:::;n
l2Z

.�1/r
 

nC d � s � l � r
n � s

!

dim Hl; r .A /

where
�
x
m

�

denotes the binomial polynomial 1
mŠ
x .x � 1/ � � � .x � m C 1/ for all

m 2 N0. In passing we note the identity dim A d D c
A . d /
1 C dim Hd;n.A / valid

for all d � dmax.

The Prolongation Theorem is actually a recompilation of all the properties we have
discussed in the last two sections, for this reason we will not go into the details of its
proof. Perhaps the strangest conclusion of Theorem 4.10 is that the Betti numbers of
every finitely generated comodule A bounded below satisfy the following a priori
inequalities for all s D 1; : : : ; n

X

rD0;:::;n
l2Z

.�1/r
 

nC dmax � s � l � r � 1
n � s

!

dim Hl; r . A / � 0

which reflect the standard column length inequalities for the Cartan character
YA .dmax/.

5 Cartan–Kähler Theory

In essence the notion of an exterior differential system studied in this section
can be seen as an axiomatization of the contact systems on the jet bundles of
maps or section and the similar contact system on the generalized Graßmannians
constructed in Sect. 2. Exaggerating somewhat we may say that exterior differential
systems axiomatize the very concept of partial differential equations itself. En nuce
the Cartan–Kähler theory of exterior differential systems is based on the simple
idea to replace the submanifold solutions passing through a point by their infinite
order Taylor series in this point, an idea already present in the beautiful theorem
of Cauchy–Kovalevskaya for underdetermined partial differential equations. The
purpose of this section is to sketch a proof of the formal version of the theorem
of Cartan–Kähler, which generalizes the theorem of Cauchy–Kovalevskaya to other
partial differential equations, while linking the topic to the Spencer cohomology of
comodules discussed in Sects. 3 and 4.
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Certainly the most striking feature common to both the contact system (12) on
the bundle of jets of maps or sections and the contact system (17) on the generalized
Graßmannians is the existence of a filtration of the cotangent bundle of the total
space M by subbundles

0 
 CM 
 HM 
 T �M

such that the characteristic compatibility condition d �.CM / � �.HM ^ T �M /

holds true:

Definition 5.1 (Exterior Differential Systems). An exterior differential system on
a manifold M is a filtration of the cotangent bundle T �M by subbundles CM and
HM called the bundles of contact and horizontal forms respectively

0 
 CM 
 HM 
 T �M

such that the exterior derivative of every contact form 	 2 �.CM / is a section of the
ideal bundle d	 2 �.HM ^ T �M / generated by HM. The annihilator subbundles

C?M WD Ann CM D f Xp 2 TM j 	. Xp / D 0 for all 	 2 CpM g � TM

andH?M WD Ann HM defining the reciprocal filtration of the tangent bundle ofM

TM � C?M � H?M � f 0 g

are called the vector bundles of admissible and vertical vectors on M respectively.

The reader may well wonder how such a definition may be used to treat partial
differential equations in the language of differential forms, this question however
is as futile as asking for the proper meaning of an answer 42 without knowing the
question exactly. In other words the preceding definition is pretty useless without
being accompanied by the complementary notion of a solution to a given exterior
differential system CM 
 HM 
 T �M :

Definition 5.2 (Solutions to Exterior Differential Systems). A solution to an
exterior differential system CM � HM on a manifold M is a submanifold N � M

of dimension n WD dim HM � dim CM such that every vector tangent to N is both
admissible TpN � C?

p M and non-vertical TpN \ H?
p M D f 0 g. In every point

p 2 N the tangent space TpN is thus a linear complement to the vertical in the
admissible vectors:

C?
p M D TpN ˚ H?

p M

Whatever else exterior differential systems and their solutions may be good for,
their raison d’être is to unify different types of partial differential into a common
framework formulated in the language of differential forms. For this reason let us
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postpone the development of the general theory for the moment in order to verify
that the solutions to the contact systems discussed in Sect. 2 faithfully represent our
intuitive understanding of what a solution to a partial differential equation should
be. For convenience we will only consider the contact system on the generalized
Graßmannian GrknM , the reader is invited to repeat this analysis with the contact
systems on Jetk.N; M / and/or JetkFM .

Recall to begin with that the standard jet coordinates on the generalized
Graßmannian GrknM associated to local coordinates . x1; : : : ; xm / on M take the
form . x˛; x

ˇ
A / with indices ˛ D 1; : : : ; n and ˇ D nC 1; : : : ; m as well as multi-

indices A on f 1; : : : ; n g of order jA j � k. Moreover the scalar components of the
canonical contact form 	 contact on GrknM are indexed by ˇ D n C 1; : : : ; m and
multi-indices A of order jA j < k and read:

	
ˇ
A WD dxˇA �

nX

˛D1
x
ˇ
AC˛ dx˛

Augmented by horizontal forms the contact system (17) on GrknM can thus be
written:

C.GrknM / WD span f 	
ˇ
A j for all ˇ; jA j < k g

H.GrknM / WD span f dx˛; dxˇA j for all ˛; ˇ; jA j < k g

In particular the annihilator subbundles of the reciprocal filtration of TGrknM are
given by

H?.GrknM / WD span f @

@x
ˇ
A

j for all ˇ; jA j D k g
C?.GrknM / WD span f @

@x
ˇ
A

; d
dx˛ j for all ˛; ˇ; jA j D k g

where the total derivatives d
dx˛ associated to the jet coordinates . x˛; xˇA / are

defined by:

d

dx˛
WD @

@x˛
C

X

jA j<k
ˇ

x
ˇ
AC˛

@

@x
ˇ
A

With a view on the calculations to come we remark that in this special
exterior differential system the dual quotient bundles H.GrknM /=C.GrknM /

and C?.GrknM /=H?.GrknM / are spanned by the dual classes represented by
dx1; : : : ; dxn and d

dx1
; : : : ; d

dxn . Every linear complement to the vertical in the

admissible vectors in a point p 2 GrknM is of the form



An Introduction to Exterior Differential Systems 179

span
n d

dx˛

ˇ
ˇ
ˇ
p

C
X

jA jDk
ˇ

x
ˇ
A; ˛

@

@x
ˇ
A

ˇ
ˇ
ˇ
p

o

� C?
p . GrknM / (50)

with suitably chosen constants xˇA; ˛ 2 R defined for all ˛; ˇ and multi-indices A of
order jA j D k. According to this description of all linear complements possible in
p 2 GrknM the differentials dpx1; : : : ; dpxn of the coordinate functions x1; : : : ; xn

stay linearly independent upon restriction to the tangent space TpN of a solution
submanifoldN � GrknM passing through p, henceN can be written at least locally
as the graph of a smooth map

. x1; : : : ; xn / 7�! . x1; : : : ; xn; x
ˇ
A. x

1; : : : ; xn / /

with parameter functions xˇA. x
1; : : : ; xn / to be specified for all ˇ and all multi-

indices A of order jA j � k. In terms of these parameter functions the tangent space
TpN can be written

TpN D span
n @

@x˛

ˇ
ˇ
ˇ
p

C
X

jA j�k
ˇ

@ x
ˇ
A

@x˛
. x1; : : : ; xn /

@

@x
ˇ
A

ˇ
ˇ
ˇ
p

o

and comparing coefficients with the general form (50) of linear complements to
the vertical in the admissible vectors we obtain the following constraints on the
functions xˇA. x

1; : : : ; xn /

x
ˇ
AC˛. x

1; : : : ; xn / D @x
ˇ
A

@x˛
. x1; : : : ; xn / x

ˇ
A; ˛ D @x

ˇ
A

@x˛
. x1; : : : ; xn /

for all ˛; ˇ and all multi-indices A of order jA j < k respectively jA j D k.
By a straightforward induction all solutions to these constraints are completely
determined by the parameter functions xˇ. x1; : : : ; xn / corresponding to the empty
multi-index via the expected formula:

x
ˇ
A. x

1; : : : ; xn / D @jAjxˇ

@xA
. x1; : : : ; xn / x

ˇ
A; ˛ D @jAjC1xˇ

@xAC˛ . x1; : : : ; xn /

(51)
In consequence every solution submanifold N � GrknM to the contact system on
the generalized Graßmannian GrknM is holonomic in the sense that there exists at
least locally a submanifold Nbase � M of dimension n with the property N D
f jetk�.p/Nbase j p 2 N g. Concluding our excursion to jet coordinates we recall

that the exterior derivative of the scalar component 	ˇA of the contact form 	 contact

indexed by a multi-index A of order jA j < k � 1
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d 	
ˇ
A D �

X

˛

�

	
ˇ
AC˛ C

X

Q̨
x
ˇ

AC˛CQ̨ dx Q̨ � ^ dx˛
ŠD �

X

˛

	
ˇ
AC˛ ^ dx˛

lies in the ideal generated by the components of 	 contact, because
P
x
ˇ

AC˛CQ̨ dx Q̨ ^
dx˛ D 0 vanishes due to symmetry. For multi-indices A of order jA j D k � 1 on
the other hand the exterior derivative d	ˇA D � P

dxˇAC˛ ^ dx˛ of 	ˇA restricts to a
non-trivial 2-form

.d	
ˇ
A/p

� d

dx Q̨
ˇ
ˇ
ˇ
p

C
X

j QA jDk
Q̌

x
Q̌
QA; Q̨

@

@x
Q̌
QA

ˇ
ˇ
ˇ
p
;

d

dx Ǫ
ˇ
ˇ
ˇ
p

C
X

j OA jDk
Ǒ

x
Ǒ
OA; Ǫ

@

@x
Ǒ
OA

ˇ
ˇ
ˇ
p

�

ŠD x
ˇ

ACQ̨; Ǫ � x
ˇ

AC Ǫ ; Q̨ (52)

on a general linear complement of the vertical in the admissible vectors in a point
p 2 GrknM written in the form (50) with suitably chosen constants xˇA; ˛ 2 R.

A partial differential equation of order k � 1 for submanifolds of dimension
n of a manifold M is in essence the same as the associated subset EqkM �
GrknM of algebraic solutions. In practice EqkM is usually a smooth subbundle
of the fiber bundle � W GrknM �! M , although in principle it could arbitrarily
complicated. Partial differential equations satisfying this regularity assumption can
be transformed into an equivalent exterior differential system on the manifold EqkM
simply by restricting the differential forms comprising the contact system on GrknM
to the submanifold EqkM . Exterior differential systems of general type for example
can be reduced to an exterior differential system in the sense of Definition 5.1,
because they are invariably first order partial differential equations for submanifolds.

A peculiar consequence of the observation (52) is that the tangent space TpN of
a solution N to an exterior differential system CM 
 HM 
 T �M on a manifold
M has to satisfy additional quadratic constraints besides being a linear complement
to the vertical in the admissible vectors, namely the exterior derivative of every
contact form 	 2 �.CM / needs to vanish .d	/pjTpN�TpN D 0 when restricted
to TpN . More precisely 	 jTpN D 0 for every contact form 	 2 �.CM /, because
every vector tangent toN is admissible and hence inC?

p M , in terms of the inclusion
�N W N �! M we may write this ��N	 D 0 and obtain

��N . d	 / D d . ��N	 / D 0 H) . d	 /p
ˇ
ˇ
TpN�TpN D 0 (53)

using the naturality of the exterior derivative. Recall now that the linear comple-
ments to the vertical in the admissible vectors correspond directly to sections of the
short exact sequence

0 �! H?
p M

��! C?
p M

pr�! C?
p M=H?

p M
�! 0 (54)
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namely the image of a section s W C?
p M=H

?
p M �! C?

p M is a linear complement
and every linear complement T equals the image of a unique section sT W
C?
p M=H

?
p M �! C?

p M . Sections of a short exact sequence like (54) on the other
hand form an affine space modelled on the vector space .HpM=CpM/˝H?

p M of
linear maps �s W C?

p M=H
?
p M �! H?

p M . Only the images of those sections
s W C?

p M=H
?
p M �! C?

p M qualify as candidates for the tangent space of a
solution N passing through p 2 M , which satisfy the quadratic constraint

. d	 /p. s X; s Y / D 0 (55)

for every contact form 	 2 �.TM / and allX; Y 2 C?
p M=H

?
p M . In due course we

will analyze this quadratic constraint in more detail, in particular a description of the
set of all possible solutions s W C?

p M=H
?
p M �! C?

p M is given in Corollary 5.6.
Leaving the analytical description of exterior differential systems aside and

turning to the associated algebraic theory of comodules we begin by casting the
characteristic compatibility condition d �.CM / � �.HM ^ T �M / between
contact and horizontal forms into more manageable terms. Multilinear algebra tells
us that ideal H ^ ƒı�1T � � ƒıT � in the exterior algebra of alternating forms on
a vector space T generated by a subspace H � T � equals the ideal of alternating
forms vanishing on all tuples of arguments in H? � T :

H ^ƒı�1T � D f 	 2 ƒıT � j 	. V1; : : : ; Vı / D 0 for all V1; : : : ; Vı 2 H? g

More succinctly this statement reads ƒıH? D .H ^ ƒı�1T � /? in terms of the
duality between ƒıT and ƒıT �, in particular it can be seen as the supersymmetric
analogue of the statement that a polynomial 	 2 SymT � on T lies in the ideal
generated by H � T �, if and only if it vanishes identically on the subspace H? �
T . In consequence the characteristic compatibility condition imposed on an exterior
differential system is equivalent to

d	. V1; V2 / D 0 (56)

for every contact form 	 2 �.CM / and all vertical vector fields V1; V2 2
�.H?M /. Replacing one of the two vertical vector fields by an admissible vector
field A 2 �.C?M / we obtain an expression †. 	; A; V / WD d	.A; V / 2
C1.M/, which does only depend on the class represented by A in the sections of
the quotient bundle C?M=H?M . Despite first appearance †. 	; A; V / depends
C1.M/-linearly not only on the vector fields A and V , but on the contact form
	 2 �.CM / as well, because 	.A/ D 0 D 	.V / both vanish so that:

†. f 	; A; V / D . df ^ 	 /. A; V / C f d	. A; V / D f † . 	; A; V /

for every smooth function f 2 C1.M/ and every contact form 	 2 �.CM /:
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Definition 5.3 (Symbol of an Exterior Differential System). The symbol of an
exterior differential system CM 
 HM 
 T �M on a manifold M is the C1.M/-
trilinear map † W �.CM / � �.C?M=H?M / � �.H?M / �! C1.M/

defined for a contact form 	 2 �.CM / and vector fields A 2 �.C?M / and
V 2 �.H?M / by:

†. 	; A; V / WD d	. A; V /

Being C1.M/-trilinear the symbol † can be thought of as a homomorphism of
vector bundles in many different ways, the preferred interpretation for exterior
differential system reads:

†p W H?
p M �! .HpM=CpM /˝ C �

pM;

Vp 7�!
�

Ap ˝ 	p 7�! .d	/p.A; V /
�

Even more important than the symbol of an exterior differential system CM 

HM 
 T �M on a manifold M are the two Sym.HpM=CpM/-comodules
associated to † in a point p 2 M :

Definition 5.4 (Symbol and Reduced Symbol Comodule). Consider an exterior
differential system CM 
 HM 
 TM on a manifold M . The reduced symbol
comodule of this exterior differential system in a point p 2 M is the tableau
comodule A �

p � Sym�.HpM=CpM / ˝ C �
pM associated to the image of †p

considered as a tableau:

A 1
p WD im †p � .HpM=CpM /˝ C �

pM

The symbol comodule R�
p in the point p 2 M is the kernel of the composition

Sym�.HpM=CpM /˝H?
p M

id˝†p�! Sym�.HpM=CpM /˝ .HpM=CpM /˝ C �
pM

B˝id�! Sym��1.HpM=CpM /˝ƒ2.HpM=CpM /˝ C �
pM

of comodule homomorphisms involving the Spencer coboundary operator B of
Sect. 3.

Interestingly the symbol comodule Rp of a general exterior differential system
is never even mentioned in the otherwise authoritative reference [1] on exterior
differential systems. The most important reason for this strange omission seems
to be that the symbol comodule Rp and its reduced counterpart Ap are related by
the very simple short exact sequence

0 �! Sym�.HpM=CpM /˝ ker †p
��! R�

p

id˝†p�! A �
p . 1 / �! 0 (57)
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of comodules and thus have very similar Spencer cohomologies. In addition †p is
injective for many interesting examples so that not only the Spencer cohomology
of Rp and Ap , but the comodules themselves are easily confounded. It is symbol
comodule Rp though, which has the direct bearance on the solution space of an
exterior differential system erroneously attributed to the reduced symbol comodule
in [1]. In any case the family of subspaces ker†p � H?

p M � TpM parametrized
by p 2 M appears in [1] in the guise of the so-called special Cauchy characteristic
vector fields �.ker†/ � �.TM /.

In order to justify the short exact sequence (57) linking the two symbol
comodules associated to an exterior differential system we recall from Theorem 4.10
that the twist Ap. 1 / of the tableau comodule Ap is again a tableau comodule, in
fact it is the tableau comodule arising from the tableau A 2

p � .HpM=CpM/˝A 1
p .

In turn this tableau can be written as the kernel of the Spencer coboundary operator
B ˝ id in the exact sequence

0 �! A 2
p

��! .HpM=CpM/˝ A 1
p

B˝id�! ƒ2.HpM=CpM/˝ C �
pM

due to the generic property H0; 2.Ap / D f 0 g D H1; 1.Ap / of tableau comodules
established in Eq. (30). In consequence the twist A �

p . 1 / of the reduced symbol
comodule A �

p can be written as the kernel of the following homomorphism of free
comodules:

Sym�.HpM=CpM /˝ A 1
p

B˝id�! Sym��1.HpM=CpM /˝ƒ2.HpM=CpM /˝ C �
pM

With A 1
p WD im†p the symbol comodule R�

p is thus by its very definition the
preimage of the subcomodule A �

p . 1 / � Sym�.HpM=CpM/ ˝ .HpM=CpM/ ˝
C �
pM under the homomorphism id ˝ †p W Sym�.HpM=CpM/ ˝ H?

p M �!
Sym�.HpM=CpM/ ˝ .HpM=CpM/ ˝ C �

pM of free comodules induced by †p
so that the sequence (57) is short exact.

With the machinery of symbol and symbol comodules at our disposal let us
now come back to the discussion of the quadratic constraint (55) characterizing
the set of linear complements to the vertical in the admissible vectors, which are
proper candidates for the tangent spaces TpN of solutions N passing through
p 2 M . Modifying the section s W C?

p M=H
?
p M �! C?

p M of the short exact
sequence (54) corresponding to an arbitrary linear complement by a linear map
�s W C?

p M=H
?
p M �! H?

p M we obtain for all vectors X; Y 2 C?
p M=H

?
p M

.d	/p. .s C�s/X; .s C�s/ Y /

D .d	/p. s X; s Y / C .d	/p. s X; .�s/ Y / � .d	/p. s Y; .�s/X /

D .d	/p. s X; s Y / C †p. 	p; X; .�s/ Y / � †p. 	p; Y; .�s/X /
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because .d	/p vanishes on two vertical arguments due to the reformulation (56) of
the axiomatic compatibility condition d �.CM / � �.HM ^ T �M / between the
contact and the horizontal forms. The modified section s C �s is a solution to the
quadratic constraint (55), if and only if �s satisfies the following inhomogeneous
linear equation:

†p. 	p; X; .�s/ Y / � †p. 	p; Y; .�s/X / D � .d	/p. s X; s Y / (58)

Our preferred interpretation †p W H?
p M �! .HpM=CpM/ ˝ C �

pM

of the symbol †p on the other hand allows us to write the trilinear form
.X; Y; 	p / 7�! †p. 	p; Y; .�s/X / as the image of �s considered as an element
of .HpM=CpM/˝H?

p M under the linear map:

id ˝†p W .HpM=CpM /˝H?
p M �! .HpM=CpM /˝ A 1

p

In addition the skew-symmetrization of this trilinear form on the left hand side of
the linear equation (58) for�s implements a special case of the Spencer coboundary
operator

h B
h

. id ˝†p /. � s /
i

. X; Y /; 	p i
D †p. 	p; X; .�s/ Y / � †p. 	p; Y; .�s/X /

namely B W .HpM=CpM/ ˝ A 1
p �! ƒ2.HpM=CpM/ ˝ A 0

p with A 0
p WD

C �
pM by definition, the most difficult problem here is to convince oneself of

the correctness of the sign. Since every section of the short exact sequence (54)
can be written in the form s C �s for an arbitrarily chosen base section s W
C?
p M=H

?
p M �! C?

p M and a suitable modification �s we conclude that the
linear complements T to the vertical vectorsH?

p M in the admissible vectors C?
p M

satisfying the quadratic constraint (55) correspond via sT D s C �s bijectively to
the solutions �s 2 .HpM=CpM/˝H?

p M of the inhomogeneous linear equation

B
�

. id ˝†p /. � s /
�

D �‚p. s / (59)

with right hand side given by h ‚p.s/.X; Y /; 	p i WD .d	/p. sX; sY /, compare
the original equation (58). In turn this inhomogeneous linear equation gives rise to
the concept of torsion:

Definition 5.5 (Torsion). Consider an exterior differential system CM 
 HM 

TM on a manifold M . The torsion of this exterior differential system in a point
p 2 M is the Spencer cohomology class

Œ ‚p. s / � 2 H0; 2. Ap /

WD
�

ƒ2.HpM=CpM /˝ C �
pM

�

=
B
�

.HpM=CpM/˝ A 1
p

�
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represented by the 2-form‚p. s / 2 ƒ2.HpM=CpM/˝C �
pM with values in C �

pM

defined for an arbitrary section s W C?
p M=H

?
p M �! C?

p M of the short exact
sequence (54) by:

h ‚p. s /. X; Y /; 	p i WD .d	/p. sX; sY /

A classical theorem of linear algebra asserts that the inhomogeneous linear equa-
tion (59) characterizing the candidates im. s C �s / � C?

p M for the tangent
spaces of solution submanifolds N � M passing through p 2 M has a solution
�s 2 .HpM=CpM/ ˝ H?

p M , if and only if �‚p.s/ lies in the image of the
Spencer coboundary operator B , if and only if the torsion vanishes. After all
id ˝ †p W .HpM=CpM/ ˝ H?

p M �! .HpM=CpM/ ˝ A 1
p is surjective by

definition, hence the vanishing Œ ‚p.s/ � D 0 of the torsion implies that every
preimage �s 2 .HpM=CpM/ ˝ H?

p M of an element of .HpM=CpM/ ˝ A 1
p

making �‚p. s / exact is a solution to the inhomogeneous equation (59). A very
similar argument implies that the torsion is actually independent of the section used
to define the representative ‚p.s/ due to the identity ‚p. s C �s / D ‚p. s / C
BŒ .id ˝†p/.�s / �:

Corollary 5.6 (Significance of Torsion). No solution submanifold N � M to
an exterior differential system CM 
 HM 
 T �M on a manifold M passes
through a point p 2 M , unless the torsion Œ ‚p.s/ � 2 H0; 2.Ap / vanishes for
one and hence every section s W C?

p M=H
?
p M �! C?

p M of the short exact
sequence (54). In the latter case the linear complements T to the vertical in the
admissible vectors satisfying the constraint .d	/p. sT X; sT Y / D 0 for all contact
forms 	 2 �.CM / and all X; Y 2 C?

p M=H
?
p M form an affine space modelled on

the vector space R1
p .

Somewhat surprisingly it is the homogeneous subspace R1
p of the symbol comodule

Rp , which parametrizes the possible candidates for the tangent spaces TpN of
solution submanifolds N � M in the case of vanishing torsion Œ ‚p.s/ � D 0 in the
point p 2 M , not a homogeneous subspace of the more prominent reduced symbol
comodule Ap . The reason for this is simple: By its very definition R1

p equals the
kernel of the linear map B ı .id ˝ †p/ and thus acts naturally on the solutions to
the inhomogeneous linear equation (59).

The generalization of Corollary 5.6 to higher orders of differentiation forms the
cornerstone of the Cartan–Kähler theory of exterior differential systems. Similar
to its historic precursor, the theorem of Cauchy–Kovalevskaya the Cartan–Kähler
theory tries to reconstruct the solution submanifolds from their infinite order Taylor
series in a given point, a notion made precise by the projective limit Gr1

n M of the
tower (16) of Graßmannians:

: : :
pr�! Gr3nM

pr�! Gr2nM
pr�! Gr1nM

��! Gr0nM D M

In such a power series approach we are inevitably led to consider jet solutions of
sorts:
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Definition 5.7 (Jet Solutions and Semisolutions). A jet solution of order k � 1

to an exterior differential system CM 
 HM 
 T �M on a manifold M is a kth
order jet of a submanifold jetkpN 2 GrknM , whose tangent space in p is a linear
complement TpN � C?

p M to the subspace H?
p M of vertical vectors, such that

jetk�1
p . ��N 	 / D 0 D jetk�1

p . ��N d	 /

for all contact forms 	 2 �.CM /. Similarly a jet semisolution of order k � 1

is an element jetkpN 2 GrknM represented by a submanifold N � M satisfying

C?
p M D TpN ˚H?

p M and jetk�1
p . ��N	 / D 0 for all 	 2 �.CM /. Solutions and

semisolutions assemble into the sets:

EqkpM WD f jetkpN j jetkpN 2 GrknM is a jet solution of order k g
Eq

k

pM WD f jetkpN j jetkpN 2 GrknM is a jet semisolution of order k g

In light of the identification jet1pN $ TpN of the generalized Graßmannian

Gr1nM with the Graßmann bundle Grn.TM / of n-dimensional subspaces of TM
the preceding definition of jet solutions and jet semisolutions faithfully reflects our
considerations above for order k D 1. Jet semisolutions of order k D 1 say are
simply linear complements TpN to the vertical in the admissible vectors, while jet
solutions are linear complements satisfying the quadratic constraint jet0p. �

�
Nd	 / D

.d	/pjTpN�TpN D 0. Hence Eq
1

pM is always the affine space of sections of the

short exact sequence (54), while Eq1pM is described by Corollary 5.6 as an affine
space modelled on R1

p in the case of vanishing torsion, otherwise it is empty. This
classification of jet solutions and jet semisolutions of order k D 1 generalizes to
the picture at higher orders of differentiation k � 1, which is best remembered as a
tower

(60)

we need to climb up one step at a time. The diagonal projections pr W
Eq

kC1
p M �! EqkpM are always surjective with fiber an affine space modelled

on SymkC1.HpM=CpM/˝H?
p M , while the rows in this tower are “exact” in the

following sense: There exists a jet solution jetkC1
p N 2 EqkC1

p M over a jet solution
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jetkpN 2 EqkpM , if and only if the higher torsion tork W Eq
kC1
p M �! Hk;2.Ap /

vanishes on some and hence on every jetkC1
p N 2 Eq

kC1
p M lying over jetkpN .

Interestingly all obstructions against formal integrability live in the Spencer
cohomology H �;2.Ap / of the reduced symbol comodule of form degree ı D 2.

A more detailed study of the tower (60) has to wait a little bit until we have
clarified the subtle interplay between the jets of submanifolds and the jets of
differential forms, on which Definition 5.7 is based. Conceptually it is easier in
this endeavor to consider the more general case of smooth maps ' W N �! M

between manifolds N and M and specify to canonical inclusions �N W N �! M

of submanifolds later on. A smooth map ' W N �! M can be written in local
coordinates . x1; : : : ; xn / and . y1; : : : ; ym / around a point p 2 N and its image
'.p/ 2 M as m smooth functions of n variables, namely the pull backs of:

'�y� DW y�. x1; : : : ; xn / H) '�dy� D
nX

˛D1

@y�

@x˛
. x1; : : : ; xn / dx˛

In this local coordinate description the pull back of a general differential form reads:

'� h f . y1; : : : ; ym / dy�1 ^ : : : ^ dy�r
i

D
nX

˛1;:::;˛rD1
f . y1.x/; : : : ; ym.x/ /

@y�1

@x˛1
. x / : : :

@y�r

@x˛r
. x / dx˛1 ^ : : : ^ dx˛r

In consequence the partial derivatives up to order k of the coefficients of the right
hand side with respect to the monomial basis dx˛1 ^ : : :^ dx˛r depend on the partial
derivatives of the original coefficient f .y1; : : : ; ym/ up to order k and on the partial
derivatives of the functions y� up to order k C 1 only. In other words we have a
well-defined linear map of vector spaces

ŒŒ jetkC1
p ' �� W Jetk'.p/ƒ

ıT �M �! Jetkpƒ
ıT �N; jetk'.p/! 7�! jetkp. '

�! /
(61)

which only depends on jetkC1
p ' 2 JetkC1

p .N; M /. In a similar vein we recall that
the exterior derivative d is a linear first order differential operator, its composition
jetk�1 ı d is thus a linear differential operator of order k, whose total symbol map
in the sense of Definition 2.2 induces for every point p 2 N a linear map of the jet
fiber vector spaces

d formal W Jetkpƒ
ıT �N �! Jetk�1

p ƒıC1T �N; jetkp! 7�! jetk�1
p . d! /

as well as its analogue d formal W Jetk'.p/ƒ
ıT �M �! Jetk�1

'.p/ƒ
ıC1T �M , such that

the diagram
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(62)
commutes due to the naturality d. '�! / D '�. d! / of the exterior derivative. In
passing we remark that the principal symbol of the differential operator jetk�1 ı
d , which is by definition the restriction of its total symbol d formal to the symbol
subspace defined in (8)

SymkT �
p N ˝ƒıT �

p N D ker
�

pr W Jetkpƒ
ıT �N �! Jetk�1

p ƒıT �N
�

(63)

agrees with the Spencer coboundary operator B defined in Sect. 3. Of course this is
the conditio sine qua non for the usefulness of Spencer cohomology in the study of
exterior differential systems.

A rather surprising aspect of the commutative diagram (62) should not pass
by unnoticed, the linear map ŒŒ jetk' �� does only depend on the jet of ' of order
k, whereas ŒŒ jetkC1' �� invariably involves the partial derivatives of ' of order
k C 1. In order to resolve this apparent contradiction to the commutativity of (62)
we observe that the only terms in the partial derivatives of the coefficients of
'�Œ f .y1; : : : ; ym/ dy�1 ^ : : :^dy�r � of order up to k, which actually involve partial
derivatives of the functions y� of order k C 1, can be written:

f . '.p/ /
� nX

˛D1

@jAjC1y�1
@AC˛x

dx˛
�

^ '�
pdy

�2 ^ : : : ^ '�
pdy

�r

C f . '.p/ / '�
pdy

�1 ^
� nX

˛D1

@jAjC1y�2
@AC˛x

dx˛
�

^ : : : ^ '�
pdy

�r C : : :

Quite remarkably this expression looks like a derivation applied to f .'.p// dy�1 ^
: : : ^ dy�r ! The change in the pull back of jets of differential forms resulting
from a modification of the highest order partial derivatives of ' by adding �' 2
SymkC1T �

p N ˝ T'.p/M thus reads

ŒŒ jetkC1
p ' C�' ��. jetkp! / D ŒŒ jetkC1

p ' ��. jetkp! /C B
�

.id ˝ '�
p/.�' y !'.p/ /

�

(64)

where the additional term involves the Spencer coboundary operator B and the
composition

ƒıT �
'.p/M

�' y�! SymkC1T �
p N ˝ƒı�1T �

'.p/M
id˝'�

p�! SymkC1T �
p N ˝ƒı�1T �

p N
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applied to the value !'.p/ 2 ƒıT �
'.p/M of the differential form ! in '.p/. Since the

Spencer coboundary operator equals d formal on the symbol subspace, the additional
term in (64) lies in the kernel of d formal and is thus irrelevant to the commutativity
of (62).

Specializing the preceding observations to the inclusion maps �N W N �! M

of submanifolds of M we remark that jetkp�N 2 Jetk.N; M / and jetkpN 2 GrknM
encode essentially the same object, the jet of a submanifold, hence we may write in
a shorthand notation

ŒŒ jetkpN �� W Jetk�1
p ƒıT �M �! Jetk�1

p ƒıT �N; jetk�1
p ! 7�! jetk�1

p . ��N! /

for the restriction maps appearing prominently in Definition 5.7 of jet solutions
and semisolutions. Feeling somewhat uneasy with the fact that the target vector
space depends on the representative submanifold N we sooth our conscience by
observing that for every two submanifoldsN1 andN2 representing jetkpN1 D jetkpN2
there exists a distinguished class jetkp' 2 Jetkp.N1; N2 / represented by those
diffeomorphisms ' W N1 �! N2, which satisfy

d�k

dt�k

ˇ
ˇ
ˇ
ˇ
0

c D d�k

dt�k

ˇ
ˇ
ˇ
ˇ
0

. ' ı c / 2 T kpM

for every curve c W R �! N1. For every diffeomorphism ' in this class jetkp�N1 D
jetkp.�N2 ı '/ so that the two realizations of ŒŒ jetkpN �� are intertwined by the well-
defined isomorphism:

ŒŒ jetkp' �� W Jetk�1
p ƒıT �N2

Š�! Jetk�1
p ƒıT �N1; jetk�1

p ! 7�! jetk�1
p . '�! /

Although these comments may look rather pedantic, they are directly related
to a delicate subtlety, which has bothered the author for quite a while. If we
modify the highest order partial derivatives of jetkC1

p N 2 GrkC1
n M by an element

�N 2 SymkC1T �
p N ˝ .TpM=TpN/ using the addition (20), then the modification

formula (64) tells us

ŒŒ jetkC1
p N C�N ��.jetkp!/

D ŒŒ jetkC1
p N ��.jetkp!/C B

�

.id ˝ resT �

p N
/..�N/lift y !p/

�

(65)

the additional term on the right however depends on the lift .�N/lift 2
SymkC1T �

p N ˝ TpM we need to chose in the addition (20). The resolution to

this paradox is that a representative submanifold QN for jetkC1
p N C�N is in contact

with N to order k in p only, hence we no longer sport a distinguished vector space

isomorphism ŒŒ jetkC1
p ' �� W Jetkpƒ

ıT � QN Š�! Jetkpƒ
ıT �N . Cum grano salis the

modification formula still makes sense: The ambiguity in choosing .�N/lift given
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�N is countered exactly by the ambiguity of lifting the distinguished class jetkp' of

diffeomorphisms ' W N �! QN to a vector space isomorphism ŒŒ jetkC1
p ' ��.

Let us now put the formulas derived above to the test and study the tower (60)
of jet solutions and jet semisolutions in more detail. In a first step we observe

that every jet semisolution jetkC1
p N 2 Eq

kC1
p M of order k C 1 projects under

pr W GrkC1
n M �! GrknN to a jet solution jetkpN . By assumption jetkp. �

�
N	 / D 0

vanishes for every contact form 	 2 �.CM /, thus

prŒ jetkp. �
�
N d	 / � D jetk�1

p . ��N d	 / D d formal
�

jetkp. �
�
N	 /

�

D 0

for all 	 2 �.CM / as claimed. In this way we have proved the first statement of the
lemma:

Lemma 5.8 (Lifting Jet Solutions to Semisolutions). Every jet semisolution
jetkC1

p N of order k C 1 of an exterior differential system CM 
 HM on a manifold

M projects under pr W GrkC1
n M �! GrknM to a jet solution jetkpN of order k.

Conversely the set of all jet semisolutions lying over a given solution jetkpN of

order k � 1 is a non-empty affine subspace of pr�1. jetkpN / modelled on the vector
subspace:

SymkC1T �
p N ˝H?

p M � SymkC1T �
p N ˝ . TpM=TpN /

Proof. Consider a submanifold N � M of dimension n representing a given jet
solution jetkpN of order k � 1. By definitionN represents a jet semisolution of order

kC1, if and only if the R-linear map‚ W �.CM / �! JetkpT
�N; 	 7�! jetkp. �

�
N	 /;

is trivial. In light of our discussion above ‚ depends on the representative
submanifold N only through jetkC1

p N :

‚. 	 / WD ŒŒ jetkC1
p N ��. jetkp	 / WD jetkp. �

�
N	 /

Since N represents a jet solution of order k, we find prŒ jetkp. �
�
N	 / � D

jetk�1
p . ��N	 / D 0, hence �.CM / gets mapped under ‚ into the kernel of the

jet projection, the symbol subspace SymkT �
p N ˝ T �

p N of observation (63). In
particular ‚ is C1.M/-linear with

‚.f 	 / D jetkp. �
�
Nf ^ ��N	 / D jetkp. �

�
Nf / ^ jetkp. �

�
N	 / D f . p / jetkp. �

�
N	 /

for all f 2 C1.M/, where we use the natural algebra structure induced on the
jet fiber of the algebra bundle ƒıT �N in the second and jetk�1

p . ��N	 / D 0 in the
third equality. Due to C1.M/-linearity ‚. 	 / depends on the value of 	 in p only,
moreover the composition



An Introduction to Exterior Differential Systems 191

CpM
‚�! SymkT �

p N ˝ T �
p N

B�! Symk�1T �
p N ˝ƒ2T �

p N

vanishes, because the Spencer coboundary B agrees with d formal on the symbol
subspace:

BŒ ‚. 	p / � D d formalŒ jetkp. �
�
N	 / � D jetk�1

p . d ��N	 / D jetk�1
p . ��Nd	 / D 0

The calculation of the Spencer cohomology of free comodules on the other hand
implies that

0 �! SymkC1T �
p N

B�! SymkT �
p N ˝ T �

p N
B�! Symk�1T �

p N ˝ƒ2T �
p N

is exact for k � 1. In consequence there exists a unique ‚pre 2 SymkC1T �
p N ˝

C �
pM with

B. h ‚pre; 	p i / D ‚. 	p / D jetkp. �
�
N	 /

What remains to do, now that the existence of ‚pre is established, is to write the
standard short exact sequence associated to the 3-step filtration TpN � C?

p M �
TpM with a view

0 �! H?
p M �! TpM=TpN �! C �

pM �! 0 (66)

on the canonical isomorphisms TpM=C?
p M Š C �

pM and H?
p M Š C?

p M=TpN .

The element ‚pre 2 SymkC1T �
p N ˝ C �

pM can thus be lifted to �N 2
SymkC1T �

p N˝.TpM=TpN/, although not uniquely, and all lifts satisfy the decisive
property �N y 	p D h ‚pre; 	p i. Together with the modification formula (65)
this property implies that the modification jetkC1

p N � �N 2 GrkC1
n M is a jet

semisolution of order k C 1 lying over jetkpN due to:

ŒŒ jetkC1
p N � �N ��. jetkp	 / D jetkp. �

�
N	 / � B . �N y 	p / D 0

Last but not least the exactness of the sequence (66) tells us that the difference of
two lifts of ‚pre corresponds exactly to an element of SymkC1T �

p N ˝H?
p M . ut

Lemma 5.9 (Obstructions against Formal Integrability). Consider a jet semiso-

lution jetkC1
p N 2 Eq

kC1
p M of order k C 1 to an exterior differential system on a

manifold M . There exists a jet solution jetkC1
p

QN 2 EqkC1
p M of order k C 1 lifting

the jet solution jetkpN D jetkp QN , if and only if kC 1 recursively defined obstructions

BrC1
h

‚pre. jetkC1
p N /

i

2 Symk�rT �
p N ˝Hr; 2. Ap /
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vanish for all r D 0; : : : ; k. In the latter case the set of all possible jet solutions
jetkC1

p N over the jet solution jetkpN form an affine space modelled on the vector

space RkC1
p .

In a very precise sense the statement of this lemma reflects the standard spectral
sequence of Lemma 3.7, the operators BrC1 say are exactly the higher order
coboundary operators of this spectral sequence. In particular the obstructions are
defined strictly recursively in the sense that BrC1 Œ‚pre.jetkC1

p N / � is only defined,

if the preceding obstructions B1 Œ‚pre. jetkC1
p N / �; : : : ; Br Œ‚

pre. jetkC1N / � D 0

all vanish. For this reason in particular it is rather difficult to calculate these
integrability obstructions explicitly.

Proof. In order to begin we choose a representative submanifold N � M for

the given jet semisolution jetkC1
p N 2 Eq

kC1
p M of order k � 0 and consider the

associated the R-linear map ‚ W �.CM / �! Jetkp ƒ
2T �N; 	 7�! jetkp. �

�
Nd	 /,

whose triviality characterizes jetkC1
p N as a jet solution of order kC1. We recall that

jetkC1
p N projects to a jet solution jetkpN

pr Œ jetkp. �
�
Nd	 / � D jetk�1

p . d ��N	 / D d formal. jetkp. �
�
Nd	 / / D 0

so that the image of ‚ lies in the symbol subspace SymkT �
p N ˝ ƒ2T �

p N �
Jetkpƒ

2T �N defined in (63). In consequence the R-linear map ‚ is actually
C1.M/-linear with

‚.f 	 / D jetkp. �
�
N . df ^ 	 C f d	 / /

D jetkp. �
�
N df / ^ jetkp. �

�
N	 / C jetkp. �

�
Nf / ^ jetkp. �

�
Nd	 /

D f . p / jetkp. �
�
Nd	 /

for all f 2 C1.M/, because jetkp. �
�
N	 / D 0 as well as jetk�1

p . ��Nd	 / D 0. We

may thus think of ‚ as a linear map CpM �! SymkT �
p N ˝ ƒ2T �

p N with the
additional property that

CpM
‚�! SymkT �

p N ˝ƒ2T �
p N

B�! Symk�1T �
p N ˝ƒ3T �

p N

vanishes as a linear map, after all B agrees with d formal on the symbol subspace (63)
and so:

BŒ ‚. 	p / � D d formalŒ jetkp. �
�
Nd	 / � D jetk�1

p . ��N d2	 / D 0

Up to this point we have followed the proof of Lemma 5.8 closely with only minute
changes in the argument, but now we have to deviate from the path laid out above.
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Although we may still choose a preimage ‚pre 2 SymkC1T �
p N ˝ T �

p N ˝C �
pM of

‚ with the property

B. h ‚pre; 	p i/ D ‚. 	p / D jetkp. �
�
Nd	 /

this preimage is no longer unique, because B W SymkC1T �
p N ˝ T �

p N �!
SymkT �

p N ˝ ƒ2T �
p N is no longer injective, to wit its kernel equals the image of

SymkC2T �
p N under B .

Keeping an eye on this non-uniqueness problem of the chosen preimage ‚pre we
observe that the restriction resTpN W HpM �! T �

p N is surjective due to TpN \
H?
p M D f 0 g with kernel equal to CpM by TpN � C?

p M , in other words it
induces a canonical isomorphism

HpM=CpM
resTpN�! T �

p N (67)

equivalently TpN � C?
p M is a complete set of representatives for the quotient

C?
p M=H

?
p M . This canonical isomorphism by restriction allows us to interpret the

tableau A 1
p as a subspace of T �

p N ˝ C �
pM Š .HpM=CpM/˝ C �

pM , in turn we
will consider the class

Œ ‚pre � 2 SymkC1T �
p N ˝

h

T �
p N ˝C �

pM=A 1
p

i

D SymkC1T �
p N ˝H0; 1. Ap /

represented by ‚pre. The vector space on the right is one the trihomogeneous
subspaces of the E1-term of the standard spectral sequence for the reduced symbol
comodule Ap

Sym�T �
p N ˝H ◆; ı. Ap / H) ııD0D◆ A �

p

constructed in Lemma 3.7. More precisely the total degree kC2 part of theE1-term
reads

in form degree 0; 1 and 2, where B1 is the coboundary operator for the E1-term
and the higher order coboundary operators B2; : : : ; BkC1 relevant for our argument
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have been indicated, although they are defined only on the kernel of all preceding
coboundary operators. In consequence the standard spectral sequence results in kC1
recursively defined obstructions

BrC1 Œ ‚pre � 2 Symk�rT �
p N ˝Hr; 2. Ap /

which are independent of the preimage ‚pre chosen for ‚, because the resulting
ambiguity of the class Œ ‚pre � lies in the image of the left coboundary operator B1.

Because the standard spectral sequence converges to f 0 g in all positive form
degrees, the class Œ ‚pre � lies in the image of the left B1 coboundary operator, if
and only if all the recursively defined obstructions BrC1Œ‚pre � D 0 vanish for all
r D 0; : : : ; k. Under this assumption we can modify our chosen preimage to a
possibly different preimage of ‚ with:

‚pre 2 SymkC1T �
p N ˝ A 1

p � SymkC1T �
p N ˝ T �

p N ˝ C �
pM (68)

Recall now that the set of jet semisolutions of order k C 1 lying over jetkpN is

an affine space modelled on SymkC1T �
p N ˝ H?

p M according to Lemma 5.8,
where H?

p M serves as a set of representatives for the subspace C?
p M=TpN �

TpM=TpN .
In case that we can chose a preimage ‚pre of ‚ of the special form (68),

equivalently in case that all recursively defined obstructions vanish, we can lift such
a ‚pre to a preimage �N 2 SymkC1T �

p N ˝ H?
p M under the surjective symbol

map id ˝ †p . Since the symbol map †p is based on the idea of inserting vertical
vectors V 2 H?

p M into the exterior derivatives

resTpN
�

V y . d	 /p
�

D � resTpN
�

†p. 	p; � ; V /
�

D �†p. 	p; � ; V /

of contact forms, every �N chosen in this way satisfies the decisive equation:

.id ˝ resTpN /. �N y . d	 /p / D �†p. 	p; � ; �N / D � h ‚pre; 	p i

Note that the restriction resTpN implements the canonical isomorphism

HpM=CpM
Š�! T �

p N only and can be dropped from notation. For all contact
forms 	 2 �.CM / we thus find:

ŒŒ jetkC1
p N C�N ��. jetkp. d	 / /

D jetkp. �
�
N d	 / C B

�

.id ˝ resTpN /. �N y . d	 /p /
�

D jetkp. �
�
N d	 / � B h ‚pre; 	p i D 0

In consequence the modification jetkpN C�N 2 EqkC1
p M is a jet solution of order

kC1 lying over jetkpN . Being the kernel of .B˝ id/ı .id ˝†p/ in SymkC1T �
p N ˝
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H?
p M the homogeneous subspace RkC1

p of the symbol comodule Rp parametrizes

the possible choices for the difference element �N 2 SymkC1T �
p N ˝H?

p M . ut
Unluckily Lemma 5.9 does not exclude the possibility of an infinite

number of obstructions against formal integrability occurring at arbitrarily high
orders of differentiation. Only the last of the recursively defined obstructions
BkC1Œ‚pre. jetkC1

p N / � however appears to convey genuine information, the
preceding obstructions are simply partial derivatives of the obstructions at lower
order of differentiation. This intuitive idea gives rise to the conjecture:

Conjecture 5.10 (Vanishing Criterion for Obstructions). Consider an exterior dif-
ferential system CM 
 HM 
 T �M on a manifold M . If the sets EqkM and
Eqk�1M of jet solutions of order k and k � 1 form a smooth subtower

of the tower (16) of Graßmannians in a neighborhood of a point p 2 M , then all

the recursively defined obstructions on Eq
kC1
p M vanish except possibly the last, the

higher torsion:

tork W Eq
kC1
p M �! Hk; 2. Ap /

For the time being the author has been unable to prove this conjecture, nevertheless
he is quite convinced of its validity. The point is that the conjecture is definitely
true in an essentially dual formulation of the formal theory of partial differential
equations, however this proof appears to require the use of so-called semiholonomic
jets and is thus not easily translated into the language of exterior differential systems.
Assuming the validity of this conjecture and climbing up the tower (60) one step at
a time using Lemmas 5.8 and 5.9 alternatingly the reader will find no difficulties to
prove the following version of the Theorem of Cartan–Kähler inductively starting
with the fact that Eq1M �! M is a smooth subbundle of the tower of generalized
Graßmannians in the case of vanishing torsion:

Theorem 5.11 (Formal Version of Cartan–Kähler). Consider an exterior differ-
ential system CM 
 HM 
 T �M on a manifold M . In a given point p 2 M

we choose dmax so that the Spencer cohomology of the reduced symbol comodule
vanishes Hd; 2.Ap / D f 0 g in form degree ı D 2 for all d > dmax. If the
torsion maps

tork W Eq
kC1
p M �! Hk;2.Ap /
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all vanish for k D 0; : : : ; dmax, then EqkC1
p M is an affine fiber bundle over EqkpM

with fiber modelled on RkC1
p for all k � 0. In particular there exist as many formal

submanifold solutions in Gr1
n M as predicted by the dimensions of the homogeneous

subspaces of Rp .

In its original formulation the theorem of Cartan–Kähler treats involutive reduced
symbol comodules only, for which we may choose dmax D 0 according to
Lemma 4.8, the theorem of Cauchy–Kovalevskaya for underdetermined partial
can be seen as the case, where dmax D �1 is already sufficient. In general a
formal solution to a given exterior differential system need not correspond to a
real submanifold solution, under the additional assumption that M is an analytical
manifold and both CM and HM are analytical subbundles of the cotangent bundle
T �M however, every formal solution defines an actual submanifold solution within
its radius of convergence. Under this analyticity assumption the theorem of Cartan–
Kähler extends to the statement that there exist as many formal solutions with
positive radius of convergence as predicted by the dimensions of the homogeneous
subspaces of Rp .
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