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Preface

The Third Mini-Meeting on Differential Geometry, “Recent Advances in the
Geometry of Manifolds with Non-negative Sectional Curvature,” was held from
December 6 to 17, 2010, at the Center for Research in Mathematics (CIMAT),
Guanajuato, Mexico.

The invited speakers included, in alphabetical order, Gil Bor, Owen Dearri-
cott, Fernando Galaz-García, Luis Hernández-Lamoneda, Lee Kennard, Catherine
Searle, Fabio Simas, Gregor Weingart, and Wolfgang Ziller (Distinguished Visiting
Professor for the Mexican Academy of Sciences and the USA-Mexico Foundation
for Science 2010). The lectures were organized into five advanced mini-courses
(three lectures each) as well as two introductory mini-courses and two research
reports. In addition, there were several question-and-answer sessions for graduate
students, in which the lecturers participated actively.

This volume includes the lecture notes of the advanced mini-courses whose
content we describe briefly. W. Ziller’s notes give an introductory and up-to-date
view of the subject with sufficient bibliographic references to allow further study.
C. Searle’s notes give a basic introduction to isometric group actions with a focus
on applications to spaces with curvature bounded below. F. Galaz-García’s notes
deal with classification results of effective, isometric torus actions on Riemannian
manifolds of maximal symmetry rank. O. Dearricott’s notes deal with the construc-
tion of n-Sasakian manifolds and recall a good deal of preliminary material, such
as isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, and
a very detailed introduction to Riemannian submersions. L. Kennard’s notes are
a condensed version of his research paper dealing with the Hopf conjecture with
symmetry. Finally, G. Weingart’s notes give an introduction to exterior differential
systems.

We thank all the participants for making the meeting a successful and stimulating
mathematical event. We also thank CIMAT’s staff for the smooth running of the
event. This meeting was the third edition of an annual event intended for researchers
and graduate students, with the dual aim of combining a winter school and a research
workshop. The meeting was supported by the Mexican Academy of Sciences
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vi Preface

(AMC), the USA-Mexico Foundation for Science (FUMEC), and the Mexican
Science and Technology Research Council (CONACyT). The organizers were Luis
Hernández-Lamoneda (CIMAT, Mexico) and Rafael Herrera (CIMAT, Mexico).

Guanajuato, Mexico Luis Hernández-Lamoneda
Guanajuato, Mexico Rafael Herrera
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Riemannian Manifolds with Positive Sectional
Curvature

Wolfgang Ziller

1 History and Obstructions

It is fair to say that Riemannian geometry started with Gauss’s famous “Disqui-
sitiones generales” from 1827 in which one finds a rigorous discussion of what
we now call the Gauss curvature of a surface. Much has been written about
the importance and influence of this paper, see in particular the article [13] by
Dombrowski for a careful discussion of its contents and influence during that time.
Here we only make a few comments. Curvature of surfaces in 3-space had been
studied previously by a number of authors and was defined as the product of the
principal curvatures. But Gauss was the first to make the surprising discovery (his
famous “Theorema Egregium”) that this curvature only depends on the intrinsic
metric and not on the embedding. Here one finds for example the formula for a
metric in normal coordinates ds2 D dr2 C f .r; �/2d�2, and Gauss showed that it
has curvature K D �frr=f . He also proved a local version of what we nowadays
call the Gauss–Bonnet theorem, which states that in a geodesic triangle � with
angles ˛; ˇ; � the Gauss curvature measures the angle “defect”:

Z
�

Kdvol D ˛ C ˇ C � � �

He also derived a similar formula for geodesic polygons, and Bonnet generalized it
to the case where the sides are not necessarily geodesics.

These are notes from a series of lectures given in Guanajuato, Mexico in 2010. The author was
supported by a grant from the National Science Foundation and by the Mexican National Academy
of Sciences.

W. Ziller (�)
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e-mail: wziller@math.upenn.edu
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2 W. Ziller

Nowadays the Gauss–Bonnet theorem also goes under its global formulation for
a compact surface:

Z
M

Kdvol D 2��.M/

where �.M/ is the Euler characteristic. This follows from the defect formula by
using a triangulation, but it is actually not found in any of Gauss’s papers. Of course
no rigorous definition of a manifold or of the Euler characteristic existed at the time.
Maybe the first time the above formulation can be found is in Blaschke’s famous
book “Vorlesungen ueber Differential Geometrie” from 1921 [7] (although it was
already discussed in a paper by Boy in 1903 [8]).

In any case, the formula implies that a compact surface with positive curvature
must be the 2-sphere, or the real projective plane. This is of course the beginning of
the topic of these lectures on positive curvature.

The next big step was made by Riemann in his famous Habilitation from 1854,
(8 months before Gauss’s death). He started what we now aptly call Riemannian
geometry by giving intrinsic definitions of what is now called sectional curvature
(we will use sec for this notion instead of the more common one K). For each 2-
plane � � TpM one associates the sectional curvature sec.�/, which can be defined
for example as the Gauss curvature of the two-dimensional surface spanned by going
along geodesics in the direction of � (this was in fact one of Riemann’s definitions).
Here one also finds for the first time an explicit formula for a space of constant
curvature c:

ds2 D dx21 C : : : dx2n
1C c

4
.x21 C : : : x2n/

including in particular the important case of the hyperbolic plane c D �1.
For our story, the next important development was Clifford’s discovery in 1873

of the Clifford torus S
1.1/ � S

1.1/ � S
3.

p
2/ � R

4, which to his surprise has
intrinsic curvature 0 (after all, something that locally looks like a plane would have
to extend to infinity). This motivated Klein to formulate his famous Clifford–Klein
space form problem, which in one formulation asks to classify surfaces of constant
curvature. This has a painful history (one needs a good definition of completeness, a
concept of an abstract manifold, and some understanding of covering space theory).
In a beautiful paper by Hopf from 1926 [32] he gave us our present definition of
completeness and solves the classification problem. It is amusing to note that Hopf,
in a footnote, points out that the authors of previous papers on the subject, especially
by Killing in 1891–1893, did not realize that the Moebius band has a flat metric.

For us the next development is of course the Bonnet–Myers theorem from
1941, which holds more generally for the positivity of an average of the sectional
curvatures [39]:
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Theorem (Bonnet–Myers). If M has a complete metric with Ric � 1 then the
diameter is at most � , and the fundamental group is finite.

This theorem also has an interesting history. Bonnet in 1855 only showed that
the “extrinsic” diameter in 3-space has length at most � . The difficulty to obtain
an intrinsic proof in higher dimensions was partially due to the fact that one needs
a good formula for the second variation, which surprisingly took a long time to
develop. Noteworthy are papers by Synge from 1925 [43] (who was the first one
to show that a geodesic of length > � cannot be shortest by a second variation
argument), Hopf–Rinow from 1931 [33] (where they proved any two points can
be joined by a minimal geodesic) Schoenberg from 1932 [47], Myers from 1935
[38] (here one finds for the first time the conclusion that �1.M/ is finite) and
Synge [44] from 1935 as well. There was a fierce competition between Myers and
Synge for priorities ([38] and [44] appeared in the same issue of Duke Math J.
and in Myers paper one finds the mysterious footnote “Received by the Editors
of the Annals of Mathematics, February 27, 1934, accepted by them, and later
transferred to this journal”). Schoenbergs paper contains the formula for second
variation that one now finds in books, and Synges papers the modern proof in the
case of sectional curvature. In 1941 Myers used Synge’s proof and summed over
an orthonormal basis. Thus it would be fairer to call it the Bonnet–Synge–Myers
theorem. Nevertheless, Myers paper created a lot of excitement at the time due to
the importance of Ricci curvature in general relativity.

Important for our story is another paper by Synge from 1936 [45] where he
proved:

Theorem (Synge). If M is a compact manifold with positive sectional curvature,
then �1.M/ is 0 or Z2 if n is even, and M is orientable if n is odd.

In particular, RP
n � RP

n does not admit a metric with positive curvature. I can
also recommend reading Preissman’s paper from 1936 [42] on negative curvature,
still very readable for today’s audience.

The surprising fact is that the above two theorems are the only known obstruc-
tions that deal with positive curvature only. There are a number of theorems that give
obstructions to non-negative curvature. On the other hand, one expects that the class
of manifolds admitting positive curvature is much smaller than the class admitting
non-negative curvature (and this is born out in known examples). Since this is not
the purpose of the present notes, we just summarize them:

• (Gromov) IfMn is a compact manifold with sec � 0, then there exists a universal
constant c.n/ such that bi .Mn; F / � c.n/ for all i and any field of coefficients
F . Furthermore, the fundamental group has a generating set with at most c.n/
elements.

• (Cheeger–Gromoll) If Mn is a compact manifold that admits a metric with non-
negative sectional curvature, then there exists an abelian subgroup of �1.Mn/

with finite index.
• (Lichnerowicz–Hitchin) The obstructions to positive scalar curvature imply that

a compact spin manifold with OA.M/ ¤ 0 or ˛.M/ ¤ 0 does not admit a metric
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with non-negative sectional curvature, unless it is flat. In particular there exist
exotic spheres, e.g., in dimension 9, which do not admit positive curvature.

• (Cheeger–Gromoll) If Mn is a non-compact manifold with a complete metric
with sec � 0, then there exists a totally geodesic compact submanifold Sk , called
the soul, such that Mn is diffeomorphic to the normal bundle of Sk .

If we allow ourselves to add an upper as well as a lower bound on the sectional
curvature it is convenient to introduce what is called the pinching constant which
is defined as ı D min sec=max sec. One then has the following recognition and
finiteness theorems:

• (Berger–Klingenberg, Brendle–Schoen) IfMn is a compact manifold with ı � 1
4
,

then M is either diffeomorphic to a space form S
n=� or isometric to CP

n, HP
n

or CaP2 with their standard Fubini metric.
• (Cheeger) Given a positive constant 	, there are only finitely many diffeomor-

phism types of compact simply connected manifolds M2n with ı � 	.
• (Fang–Rong, Petrunin–Tuschmann) Given a positive constant 	, there are

only finitely many diffeomorphism types of compact manifolds M2nC1 with
�1.M/ D �2.M/ D 0 and ı � 	.

Since our emphasis is on positive curvature, we will not discuss other results
about non-negative curvature, except in passing. We finally mention some
conjectures:

• (Hopf) There exists no metric with positive sectional curvature on S
2 � S

2. It
is natural to generalize this to a conjecture that there are no positively curved
metrics on the product of two compact manifolds, or on a symmetric space of
rank at least two.

• (Hopf) A compact manifold with sec � 0 has non-negative Euler character-
istic. An even dimensional manifold with positive curvature has positive Euler
characteristic.

• (Bott–Grove–Halperin) A compact simply connected manifold M with sec � 0

is elliptic, i.e., the sequence of Betti numbers of the loop space of M grows at
most polynomially for every field of coefficients.

The latter conjecture, and its many consequences, were discussed in the literature
for the first time in [24]. It is usually formulated for rational coefficients, where
it is equivalent to the condition that only finitely many homotopy groups are not
finite (called rationally elliptic). One can thus apply rational homotopy theory
to obtain many consequences. For example, the conjecture implies, under the
assumption of non-negative curvature, that

P
bi .M

n; F / � 2n and that the Euler
characteristic is non-negative (Hopf conjecture), and positive in even dimensions
iff all odd Betti numbers vanish. The above more geometric formulation, which
I will call topologically elliptic, is a natural generalization. If n D 4, rational
homotopy theory implies that M , if compact, simply connected, and rationally
elliptic, is homeomorphic to one of the known examples of non-negative curvature,
i.e., S4;CP

2;S2 � S
2 or CP

2# ˙ CP
2. In [40] it was shown that a compact simply
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connected topologically elliptic 5-manifold is diffeomorphic to one of the known
examples with non-negative curvature, i.e., one of S5, SU.3/=SO.3/, S3 � S

2 or the
non-trivial S3 bundle over S2. In both cases, no curvature assumption is necessary.

Of course, one should also mention Hamilton’s theorem which states that a 3
manifold with positive Ricci curvature is diffeomorphic to a space form S

3=� . Thus
in dimension 2 and 3, manifolds with positive curvature are classified.

We formulate some other natural conjectures:

• A compact simply connected 4 manifold with positive curvature is diffeomorphic
to S

4 or CP
2.

• A compact simply connected 5 manifold with positive curvature is diffeomorphic
to S

5.
• (Klingenberg-Sakai) There are only finitely many diffeomorphism classes of

positively curved manifolds in a given homotopy type.
• In a fixed even dimension, there are only finitely many diffeomorphism classes

of positively curved manifolds, and all odd Betti numbers are 0.
• In a fixed odd dimension, there are only finitely many 2-connected manifolds

with positive curvature.

The last two finiteness conjectures are probably too optimistic, but one should at
least expect an upper bound on the Betti numbers, e.g., at most 2 in dimension 6.

2 Compact Examples of Positive Curvature

Homogeneous spaces that admit a homogeneous metric with positive curvature have
been classified by Wallach in even dimensions [56] and by Bérard-Bergery in odd
dimensions [4]. We now describe these examples, due to Berger, Wallach and Aloff–
Wallach [2,5,56], as well as the biquotient examples [3,14,15]. In most cases we will
also mention that they admit natural fibrations, a topic we will cover in Sect. 4.

1. The God given basic examples of positive curvature are the rank one symmetric
spaces S

n, CP
n, HP

n or CaP2. (We do not know where in the literature it is
first discussed that CaP2 carries a metric with positive curvature which is 1=4
pinched.) They admit the well known homogeneous Hopf fibrations. Recall that
a homogeneous fibration is of the form K=H ! G=H ! G=K obtained from
inclusions H � K � G.

S
1 ! S

2nC1 ! CP
n obtained from SU.n/ � U.n/ � SU.nC 1/;

S
3 ! S

4nC3 ! HP
n obtained from Sp.n/ � Sp.n/Sp.1/ � Sp.nC 1/;

S
2 ! CP

2nC1 ! HP
n obtained from Sp.n/U.1/ � Sp.n/Sp.1/ � Sp.nC 1/:

S
7 ! S

15 ! S
8 coming from Spin.7/ � Spin.8/ � Spin.9/:
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2. The homogeneous flag manifolds due to Wallach: W 6 D SU.3/=T2, W 12 D
Sp.3/=Sp.1/3 and W 24 D F4=Spin.8/. They are the total space of the following
homogeneous fibrations:

S
2 ! SU.3/=T2 ! CP

2;

S
4 ! Sp.3/=Sp.1/3 ! HP

2;

S
8 ! F4=Spin.8/ ! CaP2:

3. The Berger space B13 D SU.5/=Sp.2/ � S1, which admits a fibration

RP
5 ! SU.5/=Sp.2/ � S1 ! CP

4;

coming from the inclusions Sp.2/ � S1 � U.4/ � SU.5/. Here Sp.2/ � SU.4/
is the usual embedding and S1 is the center of U.4/. Furthermore, the fiber is
U.4/=Sp.2/ � S1 D SU.4/=Sp.2/ � Z2 D SO.6/=O.5/ D RP

5.
4. The Aloff–Wallach spaces W 7

p;q D SU.3/=diag.zp; zq; NzpCq/ ; gcd.p; q/ D 1.
By interchanging coordinates we can assume p � q � 0. They have positive
curvature, unless .p; q/ D .1; 0/. They also admit interesting fibrations

S
3=Zq ! Wp;q ! CP

2;

coming from the inclusions diag.zp; zq; NzpCq/ � U.2/ � SU.3/. Hence,
as long as q > 0, the fiber is the lens space U.2/=diag.zp; NzpCq/ D
SU.2/=diag.zp; NzpCq/ with zq D 1. In the special case of p D q D 1, we
obtain a principal SO.3/ bundle.

Another fibration is of the form

S
1 ! Wp;q ! SU.3/=T2;

coming from the inclusions diag.zp; zq; NzpCq/ � T2 � SU.3/.
5. The Berger space: B7 D SO.5/=SO.3/. To describe the embedding SO.3/ �

SO.5/, we recall that SO.3/ acts orthogonally via conjugation on the set of 3 �
3 symmetric traceless matrices. This space is special since this embedding of
SO.3/ is maximal in SO.5/ and hence does not admit a homogeneous fibration.
On the other hand, in [22] it was shown that the manifold is diffeomorphic to an
S
3 bundle over S4. It is also what is called isotropy irreducible, i.e., the isotropy

action of SO.3/ on the tangent space is irreducible. This implies that there is only
one SO.5/ invariant metric up to scaling.

Thus all of these examples in (2)–(5) are the total space of a fibration. This
property will be interesting to us in Sect. 4.

A natural generalization of homogeneous spaces are so called biquotients,
discussed for the first time in [23]. For this, let G=H be a homogeneous space
and K � G a subgroup. Then K acts on G=H on the left, and in some cases the
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action is free, in which case the manifold KnG=H is a biquotient. An equivalent
formulation is as follows: Take a subgroup U � G � G and let U act one the
left and right .u1; u2/ � g D u1gu�1

2 . The action is free, if for any .u1; u2/ 2 U
the element u1 is not conjugate to u2 unless u1 D u2 lies in the center of G. We
denote the quotient by G==U. The biinvariant metric on G (or G � G ) induces a
metric onG==U with non-negative sectional curvature. In some cases, this can be
deformed (via a Cheeger deformation) into one with positive curvature. We now
describe these biquotient examples, due to Eschenburg and Bazaikin, explicitly.

6. There is an analogue of the six-dimensional flag manifold which is a biquotient
of SU.3/ under an action of T2 D f.z;w/ j z;w 2 C; jzj D jwj D 1g. It is
given by:

E6 D SU.3/==T2 D diag.z;w; zw/nSU.3/=diag.1; 1; z2w2/�1:

The action by T2 is clearly free. In order to show that this manifold is
not diffeomorphic to the homogeneous flag W 6, one needs to compute the
cohomology with integer coefficients. The cohomology groups are the same
for both manifolds, but the ring structure is different [15]. The examples W 6

and E6, which have b2 D 2, as well as S
6 and CP

3, are the only known
examples of positive curvature in dimension 6. It is thus a natural question
whether positive curvature in dimension 6 implies that the Betti numbers satisfy
b1 D b3 D b5 D 0 and b2 D b4 � 2.

The inhomogeneous flag also admits a fibration of a (different) sphere bundle
similar to the flag manifold:

S
2 ! SU.3/==T2 ! CP

2

7. We now describe the seven-dimensional family of Eschenburg spacesEk;l , which
can be considered as a generalization of the Aloff Wallach spaces. Let k WD
.k1; k2; k3/ and l WD .l1; l2; l3/ 2 Z

3 be two triples of integers with
P
ki D P

li .
We can then define a two-sided action of S1 D fz 2 C j jzj D 1g on SU.3/whose
quotient we denote by Ek;l :

Ek;l D SU.3/==S1 D diag.zk1 ; zk2 ; zk3/nSU.3/=diag.zl1 ; zl2 ; zl3 /�1:

The action is free if and only if diag.zk1 ; zk2 ; zk3/ is not conjugate to
diag.zl1 ; zl2 ; zl3 /, i.e.,

gcd.k1 � li ; k2 � lj / D 1; for all i ¤ j ; i; j 2 f1; 2; 3g :

Eschenburg showed that Ek;l has positive curvature if

ki … Œmin.l1; l2; l3/;max.l1; l2; l3/
:
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Among the biquotients Ek;l there are two interesting subfamilies. Ep D Ek;l
with k D .1; 1; p/ and l D .1; 1; p C 2/ has positive curvature when p > 0. It
admits a large group acting by isometries. Indeed,G D SU.2/�SU.2/ acting on
SU.3/ on the left and on the right, acts by isometries in the Eschenburg metric
and commutes with the S1 action. Thus it acts by isometries onEp and one easily
sees that Ep=G is one-dimensional, i.e., Ep is cohomogeneity one. A second
family consists of the cohomogeneity two Eschenburg spaces Ea;b;c D Ek;l with
k D .a; b; c/ and l D .1; 1; a C b C c/. Here c D �.a C b/ is the subfamily of
Aloff–Wallach spaces. The action is free iff a; b; c are pairwise relatively prime
and the Eschenburg metric has positive curvature iff, up to permutations, a �
b � c > 0 or a � b > 0; c < �a. For these spaces G D U.2/ acts by isometries
on the right and Ea;b;c=G is two-dimensional. For a general Eschenburg space
G D T3 acts by isometries and Ek;l=G is four-dimensional. In [28] it was shown
that these groups G are indeed the id component of the full isometry group of a
positively curved Eschenburg space, unless it is an Aloff–Wallach space.

There are again natural fibrations. In the case of Ea;b;aCb with a � b > 0, we
have the circle fibrations:

S
1 ! Ea;b;aCb ! SU.3/==T2;

and the lens space fibrations:

S
3=ZaCb ! Ea;b;aCb ! CP

2

which, in the case of a D b D 1, gives a second SO.3/ principal bundle
over CP

2.
The cohomogeneity two Eschenburg spaces admit orbifold fibrations, which

will also be of interest to us in Sect. 4.

F ! Ea;b;c ! CP
2ŒaC b; aC c; b C c
 ;

where the fiber F is RP
3 if all a; b; c’s are odd, and F D S

3 otherwise. Here
the base is a two-dimensional weighted complex projective space. A general
Eschenburg space is the total space of an orbifold circle bundle [18].

8. We finally have the 13-dimensional Bazaikin spacesBq , which can be considered
as a generalization of the Berger space B13. Let q D .q1; : : : ; q5/ be a 5-tuple of
integers with sum q0 and define

Bq D diag.zq1 ; : : : ; zq5/nSU.5/=diag.z�q0 ; A/�1;

where A 2 Sp.2/ � SU.4/ � SU.5/. Here we follow the treatment in Ziller
(1998, Homogeneous spaces, biquotients, and manifolds with positive curvature.
Lecture Notes , unpublished) of Bazaikin’s work [3] (see also [16]). First, one
easily shows that the action of Sp.2/ � S1 is free if and only if
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all qi ’s are odd and gcd.q�.1/ C q�.2/; q�.3/ C q�.4// D 2;

for all permutations � 2 S5: On SU.5/ we choose an Eschenburg metric by
scaling the biinvariant metric on SU.5/ in the direction of U.4/ � SU.5/. The
right action of Sp.2/ � S1 is then by isometries. Repeating the same arguments
as in the previous case, one shows that the induced metric on SU.5/==Sp.2/ � S1

satisfies

sec > 0 if and only if qi C qj > 0 .or < 0/ for all i < j:

The special case of q D .1; 1; 1; 1; 1/ is the homogeneous Berger space. One
again has a one parameter subfamily that is cohomogeneity one, given by Bp D
B.1;1;1;1;2p�1/ since U.4/ acting on the left induces an isometric action on the
quotient. It has positive curvature when p � 1.

There is another equivalent description of the Bazaikin spaces given by

Bq D diag.zq1 ; : : : ; zq6/nSU.6/=Sp.3/

with
P
qi D 0.

For these manifolds one has natural fibrations obtained from both descriptions,
given by

S
1 ! SU.6/=Sp.3/ ! Bq;

and

S
5 ! SU.6/=Sp.3/ ! S

9:

But Bq is not the total space of a fibration, unless it is homogeneous. On the other
hand, if we allow orbifold fibrations they all admit one:

RP
5 ! Bq ! CP

4Œq0 C q1; q0 C q2; : : : ; q0 C q6
:

Unlike in the homogeneous case, there is no general classification of positively
curved biquotients, except in the following cases. We call a metric on G==H torus
invariant if it is induced by a left invariant metric on G which is also right invariant
under the action of a maximal torus. The main theorem in [15] states that an
even dimensional biquotient G==H with G simple and which admits a positively
curved torus invariant metric is diffeomorphic to a rank one symmetric space or
the biquotient SU.3/==T 2. In the odd dimensional case he shows that G==H with a
positively curved torus invariant metric and G of rank 2 is either diffeomorphic to a
homogeneous space or a positively curved Eschenburg space.

There are only two more examples which are not homogeneous or biquotients.
One is a seven-dimensional exotic sphere due to Petersen–Wilhem [41,53] (although
the rather delicate calculations have not yet been verified). The method is via
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deforming a natural metric of non-negative curvature on a biquotient description of
the exotic sphere to positive curvature. Deforming non-negative curvature to positive
curvature is an important problem, and not yet well understood.

The second example is due to Grove–Verdiani–Ziller [30], and independently
Dearricott [11], and will be discussed in Sect. 4. It arises as the total space of an
orbifold fibration.

It is also interesting to examine the topology of the known examples. In [37] it
was shown that there exist pairs of positively curved Aloff Wallach spaces which
are homeomorphic but not diffeomorphic. This turns out to happen more frequently
for the Eschenburg spaces [10]. For such positively curved pairs M;M 0, one knows
thatM D M 0#†7, for some exotic sphere†7. It is not hard to check that among the
examples in [10], every exotic 7-sphere can occur as a factor †7, whereas this does
not seem to be the case for Aloff Wallach spaces. On the other hand, [19] provides
evidence that positively curved Bazaikin spaces are homeomorphically distinct.

3 Positive Curvature with Symmetry

As we saw in Sect. 1, not much is known as far as general obstructions to positive
curvature is concerned. A very successful program was suggested by Grove,
motivated by the Hsiang–Kleiner theorem below [34], that one should examine
positive curvature under the additional assumption of a large symmetry group.

Theorem (Hsiang–Kleiner). If M is a compact simply connected 4-manifold on
which a circle acts by isometries, then M is homeomorphic to S

4 or CP
2.

Topological results on circle actions [17] imply that they are diffeomorphic, and
a recent result by Grove–Wilking [26] shows that the S1 action is linear. Thus a
counter example to the Hopf conjecture would have to have a finite isometry group.

In higher dimensions, one obtains obstructions assuming that a torus of large
dimension acts [25].

Theorem (Grove–Searle). If Mn is a compact simply connected manifold with
positive curvature on which a torus Ts acts by isometries, then s � n=2 in
even dimensions, and s � .n C 1/=2 in odd dimensions. Equality holds iff M is
diffeomorphic to S

n or CP
n.

See the article in this volume where it is shown that the torus action is linear as well.
Great strides were made by Wilking [54, 55] who showed

Theorem (Wilking). Let Mn be a compact simply connected manifold with
positive curvature:

(a) If n ¤ 7 and Ts acts by isometries with s � nC1
4

, thenM is homotopy equivalent
to a rank one symmetric space.

(b) If 0 < dimM=G <
p
n=18 � 1, then M is homotopy equivalent to a rank one

symmetric space.



Riemannian Manifolds with Positive Sectional Curvature 11

(c) If dim Isom.M/ � 2n � 6 then M is either homotopy equivalent to a rank one
symmetric space or isometric to a homogeneous space with positive curvature.

One of the main new tools is the so called connectedness Lemma, which turns
out to be very powerful.

Lemma (Connectedness Lemma). IfMn has positive curvature, andN is a totally
geodesic submanifold of codimension k � .nC 1/=2, then the inclusion N ,! M

is n � 2k C 1 connected.

The proof is surprisingly simple and similar to the proof of Synge’s theorem.
One shows that in the loop space �N.M/ of curves starting and ending at N every
critical point, i.e., geodesic starting and ending perpendicular toN , has index at least
n� 2kC 1. Indeed, due to the assumption on the codimension, there are n� 2kC 1

parallel Jacobi fields starting and ending perpendicular to N . This implies that the
inclusion N ! �N.M/ is n � 2k connected, and hence N ! M is n � 2k C 1

connected.
An important consequence is a certain kind of periodicity in cohomology:

Lemma (Periodicity Theorem). If Mn has positive curvature, and N is a totally
geodesic submanifold of codimension k, then there exists cohomology class e 2
Hk.M;Z/ such that [e W Hi.M;Z/ ! HiCk.M;Z/ is an isomorphism for k �
i � n � 2k.

Along the way to proving these results, he obtains a number of fundamental
obstructions on the structure of the possible isotropy groups of the action. We
mention a few striking examples.

Theorem (Wilking). Let Mn be a compact simply connected manifold with
positive curvature on whichG acts by isometries with principal isotropy groupH .

(a) If H is non-trivial, then @.M=G/ is non-empty.
(b) Every irreducible subrepresentation of G=H is a subrepresentation of K=H

where K is an isotropy group and K=H is a sphere.
(c) If dim.M=G/ D k, then @.M=G/ has at most k C 1 faces, and in the case of

equality M=G is homeomorphic to a simplex.

Part (a) is powerful since the distance to the boundary is a strictly concave
function. In general one can use Alexandrov geometry on the quotient as an
important tool, see the article by Fernando Galaz-Garcia in this volume. Part (b)
has strong implications for the pair .G;H/, with a very short list of possibilities
when the rank of H is bigger than 1.

Recently, Kennard proved two theorems concerning the Hopf conjectures with
symmetry [35, 36], see also his article in this volume.

Theorem (Kennard). Let Mn be a compact simply connected manifold with
positive sectional curvature.

(a) If n D 4k and Tr acts effectively and isometrically with r � 2 log2.n/, then
�.M/ > 0.
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(b) Suppose Mn has the rational cohomology of a compact, simply connected
irreducible symmetric space N . If Tr acts isometrically with r � 2 log2 nC 7,
then N is either a rank one symmetric space, or a rank p Grassmannian
SO.p C q/ D SO.p/SO.q/ with p D 2 or p D 3.

The last two exceptions are due to the fact that, up to high degrees, the rational
cohomology is that of a complex or quaternionic projective space. The main new
tool is to use the action of the Steenrod algebra to improve periodicity theorems.
For example, the analogue of the connectedness Lemma is

Theorem (Kennard). Let Mn be a compact simply connected manifold.

(a) If Mn has positive curvature and contains a pair of totally geodesic, trans-
versely intersecting submanifolds of codimensions k1; k2 such that 2k1C2k2 �
n, then H�.M IQ/ is gcd.4; k1; k2/-periodic.

(b) IfH�.M IZ/ is k-periodic with 3k � n, thenH�.M IQ/ is gcd.4; k/-periodic.

Here the cohomology is called k-periodic if there exists cohomology class
e 2 Hk.M;Z/ such that [e W Hi.M;Z/ ! HiCk.M;Z/ is an isomorphism for
0 < i < n � k, surjective for i D 0 and injective for i D n � k. In particular,
Hik.M;Z/ ' Z for 0 � i � n � 2k � 1.

One conclusion one may draw from Wilking’s results is that positive curvature
with a large isometry group can only be expected in low dimensions (apart from the
rank one symmetric spaces). This is born out in the classification of cohomogeneity
one manifolds with positive curvature. We first need to describe the structure of such
manifolds.

A simply connected compact cohomogeneity one manifold is the union of two
homogeneous disc bundles see egg. [1,27]. Given compact Lie groups H; K�; KC

and G with inclusionsH � K˙ � G satisfyingK˙=H D S
`

˙ , the transitive action
of K˙ on S

`
˙ extends to a linear action on the disc D

`
˙

C1. We can thus define

M D G �K� D
`

�

C1 [G �KC
D
`

C

C1

glued along the boundary @.G �K˙

D
`

˙

C1/ D G �K˙

K˙=H D G=H via the
identity. G acts onM on each half via left action in the first component. This action
has principal isotropy group H and singular isotropy groups K˙. One possible
description of a cohomogeneity one manifold is thus simply in terms of the Lie
groups H � fK�; KCg � G.

The simplest example is feg � fS1;S1g � S1 which is the manifold S
2 with

G D S1 fixing north and south pole (and thus K˙ D G) and principal isotropy
trivial. The isotropy groups feg � fS1 � feg; feg � S1g � S1 � S1 describe the
3-sphere S

3 � C ˚ C on which S1 � S1 acts in each coordinate. More subtle is the
example S.O.1/O.1/O.1// � fS.O.2/O.1//;S.O.1/O.2/g � SO.3/. This is the 4-
sphere, thought of as the unit sphere in the set of 3�3 symmetric traceless matrices,
on which SO.3/ acts via conjugation.
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The first new family of cohomogeneity one manifolds we denote by
P.p

�

;q
�

/;.p
C

;q
C

/, and is given by the group diagram

H D f˙.1; 1/;˙.i; i/;˙.j; j /;˙.k; k/g
� f.eip

�

t ; eiq
�

t / �H ; .ejp
C

t ; ejq
C

t / �H g � S3 � S3:

where gcd.p�; q�/ D gcd.pC; qC/ D 1 and all four integers are congruent to 1
mod 4.

The second family Q.p
�

;q
�

/;.p
C

;q
C

/ is given by the group diagram

H D f.˙1;˙1/; .˙i;˙i/g � f.eip
�

t ; eiq
�

t / �H ; .ejp
C

t ; ejqCt / �H g � S3 � S3;

where gcd.p�; q�/ D gcd.pC; qC/ D 1, qC is even, and p�; q�; pC are congruent
to 1 mod 4.

Special among these are the manifolds Pk D P.1;1/;.1C2k;1�2k/, Qk D
Q.1;1/;.k;kC1/ with k � 1, and the exceptional manifold R7 D Q.�3;1/;.1;2/. In
terms of these descriptions, we can state the classification, see [29, 50].

Theorem (Verdiani, n Even, Grove–Wilking–Ziller, nOdd). A simply connected
cohomogeneity one manifold Mn with an invariant metric of positive sectional
curvature is equivariantly diffeomorphic to one of the following:

• An isometric action on a rank one symmetric space.
• One of E7

p; B
13
p or B7.

• One of the 7-manifolds Pk D P.1;1/;.1C2k;1�2k/, Qk D Q.1;1/;.k;kC1/ with k � 1,
or the exceptional manifold R7 D Q.�3;1/;.1;2/

with one of the actions described above.

Here Pk;Qk;R should be considered as candidates for positive curvature.
Recently the exceptional manifold R was excluded [52]:

Theorem (Verdiani–Ziller). Let M be one of the 7-manifolds Q.p
�

;q
�

/;.p
C

;q
C

/

with its cohomogeneity one action by G D S3 � S3 and assume that M is not of
type Qk; k � 0. Then there exists no analytic metric with non-negative sectional
curvature invariant under G, although there exists a smooth one.

In particular, it cannot carry an invariant metric with positive curvature.
Among the candidates Pk;Qk the first in each sequence admit an invariant metric

with positive curvature sinceP1 D S
7 andQ1 D W 7

1;1. The first success in the Grove
program to find a new example with positive curvature is the following [11, 30]:

Theorem (Grove–Verdiani–Ziller, Dearricott). The cohomogeneity one manifold
P2 carries an invariant metric with positive curvature.

As for the topology of this manifold one has the following classification [21]:
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Theorem (Goette). The cohomogeneity one manifold Pk is diffeomorphic to

Ek#†
k.kC1/

2 , where Ek is the S3 principal bundle over S4 with Euler class k, and †
is the Gromoll–Meyer generator in the group of exotic 7-spheres.

In particular, it follows that P2 is homeomorphic but not diffeomorphic to T1S4,
and thus indeed a new example of positive curvature.

4 Fibrations with Positive Curvature

As we saw in Sect. 2, many of the examples of positive curvature are the total space
of a fibration. It is thus natural to ask under what condition the total space admits
positive curvature, if the base and fiber do. One should certainly expect conditions,
since the bundle could be trivial.

Weinstein examined this question in the context of Riemannian submersions with
totally geodesic fibers [57]. He called a bundle fat if sec.X;U / > 0 for all 2-planes
spanned by a vector U tangent to the fibers and X orthogonal to the fibers. For
simplicity, we restrict ourselves for the moment to principle bundles. Let � WP ! B

be a G-principle bundle. Given a metric on the base h:; :iB , a principal connection
� WTP ! g, and a fixed biinvariant metric Q on G, one defines a Kaluza Klein
metric on P as:

gt .X; Y / D tQ.�.X/; �.Y //C g.��.X/; ��.Y //:

Here one has the additional freedom to modify t , in fact t ! 0 usually increases the
curvature.

The projection � is then a Riemannian submersion with totally geodesic fibers
isometric to .G; tQ/. Weinstein observed that the fatness condition (for any t ) is
equivalent to requiring that the curvature� of � has the property that�u D Q.�; u/
is a symplectic 2-form on the horizontal space, i.e., the vector space orthogonal to
the fibers, for every u 2 g. IfG D S1, this is equivalent to the base being symplectic.
Fatness of the principal connection is already a strong condition on the principal
bundle which one can express in terms of the characteristic classes of the bundle.

Weinstein made the following observation. Assume that G and B2n are compact
and connected. For each y 2 g, we have a polynomial qy W g ! R given by

qy.˛/ D
Z
G

hAdg.y/; ˛i2ndg

which one easily checks is AdG-invariant (in ˛ and y). By Chern–Weyl theory, there
exists a closed 2n-form !y on B2n such that ��!y D qy.�/ and Œ!y
 2 H2n.B;R/

represents a characteristic class of the bundle. If the bundle is fat, �2n
y ¤ 0 and

hence hAdg.y/;�i2n is nowhere zero and (if G is connected) has constant sign
when g varies along G. This implies that the integral qy.�/ is nonzero, and hence
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!y is a volume form of B2m, in particular B2m is orientable. Fatness of � thus
implies that the characteristic number

R
B
!y is nonzero. In [20] this characteristic

number is called the Weinstein invariant associated to y 2 t and was computed
explicitly in terms of Chern and Pontrjagin numbers. For each adjoint orbit in t
one obtains obstructions to fatness in terms of Chern and Pontryagin numbers. The
above discussion easily generalizes to fiber bundles associated to principle bundles
to obtain obstructions. We call the metric on the fiber bundle a connection metric if
the fibers are totally geodesic. Some sample obstructions are:

Theorem. (a) ([12]) The only S3 bundle over S4 that admits a fat connection metric
is the Hopf bundle S

3 ! S
7 ! S

4.
(b) ([20]) The only two S

3 sphere bundles over CP
2 that may admit a fat connection

metric are the complex sphere bundles with c21 D 9 and c2 D 1 or 2. In
particular, T1CP

2 ! CP
2 does not have a fat connection metric.

(c) ([20]) If a sphere bundle over B2n admits a fat connection metric, then the
Pontryagin numbers satisfy det.pj�iC1/1�i;j�n ¤ 0.

On the other hand, many of the examples in Sect. 2 are fat fiber bundles, and the
new example of positive curvature in Sect. 3 is a fat bundle as well.

If one wants to achieve positive curvature on the total space, we need to assume,
in addition to the base having positive curvature, that G D S1, SU.2/ or SO.3/.
In [9] a necessary and sufficient condition for positive curvature of such metrics
was given. The proof carries over immediately to the category of orbifold principal
bundles, which includes the case where the G action on P has only finite isotropy
groups.

Theorem 4.1 (Chaves–Derdzinski–Rigas). A connection metric gt on an orbifold
G-principal bundle with dimG � 3 has positive curvature, for t sufficiently small,
if and only if

.rx�u/ .x; y/
2 < jix�uj2kB.x; y/;

for all linearly independent horizontal vectors x; y and 0 ¤ u 2 g.

Here kB.x; y/ D g.RB.x; y/y; x/ is the unnormalized sectional curvature and
ix�u ¤ 0 is precisely the above fatness condition.

All the known examples of principle bundles with positive curvature satisfy this
condition (called hyperfatness in [58]). The new example in Sect. 3 also is such an
G D S3 principle bundle, if one allows the action of G to be almost free (the base
is an orbifold homeomorphic to S

4).
The condition is of course trivially satisfied if r� D 0. This is equivalent to

the metric on B being quaternionic Kähler. Thus a quaternionic Kähler manifold
with positive sectional curvature gives rise to a positively curved metric on the
S3 or SO.3/ principal bundle defined canonically by its structure. Unfortunately,
if dim > 4, a positively curved quaternionic Kähler metric is isometric to HP

n

(Berger) and thus the construction only gives rise to the metric on S
4nC3.1/. And
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in dimension 4, the only smooth quaternionic Kähler metric (with positive scalar
curvature) is isometric to S

4.1/ and CP
2 giving rise to S

7.1/ and the positively
curved Aloff Wallach spaceW1;1. Thus in the smooth category, it gives nothing new.

But if the quotient is a quaternionic Kähler orbifold, there are many examples.
In the case of the candidate Pk , the subgroup S3 � feg � S3 � S3 acts almost freely
and the quotient is an orbifold homeomorphic to S

4. Similarly, forQk , the subgroup
S3 � feg � S3 � S3 acts almost freely with quotient an orbifold homeomorphic to
CP

2. On these two orbifolds, Hitchin [31] constructed a quaternionic Kähler metric
with positive scalar curvature, and in [29] it was shown that the total space of the
canonically defined principal S3 resp. SO.3/ bundle is equivariantly diffeomorphic
to Pk resp. Qk . In [59] it was shown that the Hitchin metrics have a large open set
on which the curvature is positive, but not quite everywhere. Nevertheless, in [29]
and [11] this Hitchin metric was the starting point. In [29] a connection metric was
constructed on P2 by defining the metric piecewise via low degree polynomials,
both for the metric on the base, and the principle connection. The metric is indeed
very close to the Hitchin metric. In [11] the quaternionic Kähler Hitchin metric on
S
4 was deformed, but the principle connection stayed the same. The metric on S

4

was then approximated by polynomials in order to show the new metric has positive
curvature.

In both cases, the proof that the polynomial metric has positive curvature, was
carried out by using a method due to Thorpe (and a small modification of it in [11]).

We finish by describing this Thorpe method since it is not so well known, but
very powerful (see [48,49] and also [46]). In fact, one of the problems of finding new
examples is that after constructing a metric, showing that it has positive curvature is
difficult. Even the linear algebra problem for a curvature tensor on a vector space is
highly non-trivial! Here is where the Thorpe method helps.

Let V be a vector space with an inner product and R a 3–1 tensor which satisfies
the usual symmetry properties of a curvature tensor. We can regardR as a linear map

ORWƒ2V ! ƒ2V;

which, with respect to the natural induced inner product on ƒ2V , becomes a
symmetric endomorphism. The sectional curvature is then given by:

sec.v;w/ D h OR.v ^ w/; v ^ wi
if v;w is an orthonormal basis of the 2-plane they span.

If OR is positive definite, the sectional curvature is clearly positive as well. But this
condition is exceedingly strong since a manifold with OR > 0 is covered by a sphere
[6]. But one can modify the curvature operator by using a 4-form � 2 ƒ4.V /. It
induces another symmetric endomorphism O�Wƒ2V ! ƒ2V via h O�.x^y/; z ^ wi D
�.x; y; z;w/. We can then consider the modified curvature operator OR� D ORC O�. It
satisfies all symmetries of a curvature tensor, except for the Bianchi identity. Clearly
OR and OR� have the same sectional curvature since

h OR�.v ^ w/; v ^ wi D h OR.v ^ w/; v ^ wi C �.v;w; v;w/ D sec.v;w/
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If we can thus find a 4-form � with OR� > 0, the sectional curvature is positive.
Thorpe showed [49] that in dimension 4, one can always find a 4-form such that
the smallest eigenvalue of OR� is also the minimum of the sectional curvature, and
similarly a possibly different 4-form such that the largest eigenvalue of cR� is the
maximum of the sectional curvature. Indeed, if an eigenvector ! to the largest
eigenvalue of OR is decomposable, the eigenvalue is clearly a sectional curvature. If
it is not decomposable, then ! ^! ¤ 0 and one easily sees that cR� with � D ! ^!
has a larger eigenvalue.

This is not the case anymore in dimension bigger than 4 [60]. Nevertheless this
can be an efficient method to estimate the sectional curvature of a metric. In fact,
Püttmann [46] used this to compute the maximum and minimum of the sectional
curvature of most positively curved homogeneous spaces, which are not spheres.
It is peculiar to note though that this method does not seem to work to determine
which homogeneous metrics on S

7 have positive curvature, see [51].
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positively curved manifolds are few. In dimensions greater than or equal to 24, all
known examples are diffeomorphic to the CROSSes, that is, the compact rank one
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To further complicate matters, there are only two classifical results that give us
topological obstructions:

Theorem 1.1 (Bonnet-Myers Theorem). Let M be a manifold of strictly positive
sectional curvature. Then M is compact and �1.M/ < 1.

Theorem 1.2 (Synge’s Theorem). Let M be a Riemannian manifold of strictly
positive sectional curvature. Then the following are true:

(1) If M is even-dimensional, �1.M/ D 0 if M is orientable and �1.M/ D Z2 if
M is non-orientable.

(2) If M is odd-dimensional, then it is orientable.

In the 1990s Wu-Yi Hsiang and Karsten Grove promoted the idea of attacking the
classification of positive curved manifolds by considering “large” isometric group
actions, where “large” can be interpreted as one likes. With this in mind, we’ll begin
with the basics of group actions, eventually restricting our attention to isometric
ones. In the second and third talk, we’ll see some results that have been obtained for
closed, simply-connected manifolds of both positive and negative curvature.

Now, it is a well-known fact that the isometry group of a connected compact
manifold is a compact Lie group (cf. [27]) and therefore we will restrict our attention
to compact Lie groups. Before we start, we need to introduce some general notation
and terminology.

Let  W G �M ! M be a (left) group action defined as .g; x/ D gx. We may
similarly define a (right) group action.

An action will be called effective if the only element that fixes M pointwise is
the identity element. An action is called almost effective if a finite group fixes M
pointwise. An action defines a natural map

‚ W G ! Diff.M/

g 7! ‚g

and we can rephrase the above definitions as follows. G acts effectively if ker‚ is
trivial and almost effectively if ker‚ is finite.

For most purposes, it suffices to consider effective actions because if N D ker‚
is non-trivial, then there exists a canonically induced effective action ofG=N onM .

As some trivial examples of G-actions we have the following:

1. G, a compact Lie group, can act on itself by conjugation:

G �G ! G

.g; h/ 7! ghg�1

and ker‚ D Z.G/, the center of G.
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2. G acts on itself by left translation

G �G ! G

.g; h/ 7! gh

and ker‚ D feg.
3. G acts on the coset space G=H by left translation.

G �G=H ! G=H

.g0; gH/ 7! g0gH

and ker‚ D \g2GgHg�1.

Given a subset A � M , the stabilizer of A under the G-action is

GA D fg 2 G W g.A/ D Ag:

In the particular case where A D fpg, Gp is called the isotropy group of the point
p. We call G.p/ D fgp W g 2 Gg the orbit of p.

Lemma 1.3. In each orbit, all isotropy groups are equal up to conjugacy, that is,
for some g 2 G,

Gp D g�1Gqg;

where q D gp.

The proof is left as an exercise for the reader.
We call an action free if Gx D feg for all x 2 M , semi-free if Gx is G or feg

for all x 2 M and almost free if Gx is finite for all x 2 M . We illustrate these
definitions with the following examples:

1. The Hopf action is an example of a free action:

S1 � S2nC1 ! S2nC1

e2�i� ; .z1; : : : ; zn/ 7! .e2�i� z1; : : : ; e
2�i� zn/:

2. The “generalized” Hopf action on S3 is given by:

S1 � S3 ! S3

e2�i� ; .z1; z2/ 7! .e2�ik� z1; e
2�il� z2/:
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This action is effective provided .k; l/ D 1 and almost free, since G.z1;0/ D Zk ,
G.0;z2/ D Zl and G.z1;z2/ D feg, otherwise. This action gives us a Seifert fibration
of S3 over S2.

3. Finally, there is a semi-free action of the circle on S2.

SO.2/ � S2 ! S2

0
@ cos.�/ sin.�/ 0

� sin.�/ cos.�/ 0
0 0 1

1
A ;
0
@x1x2
x3

1
A 7!

0
@ cos.�/x1 C sin.�/x2

� sin.�/x1 C cos.�/x2
x3

1
A :

Here G.0;0;˙1/ D SO.2/ and G.x1;x2;x3/ D feg, otherwise.

This last example is an action of cohomogeneity one, where a cohomogeneity k
action is defined as an action for which the principal orbit is of codimension k.

Now a smooth map f W M ! N , where both M and N admit a G-action is
called equivariant if the map commutes with the G-action, that is

f .g.x// D g.f .x// for all g 2 G; for all x 2 M:

Observe that the inverse, f �1 will also be equivariant:

f �1.g.y// D f �1.g.f .x// D f �1.f .g.x// D g.x/ D g.f �1.y//:

Example 1.4. If G acts on M then there is an induced action on TM, the tangent
bundle over M . The induced action is given by:

G � TM ! TM
.g; vp/ 7! DgpVp

The exponential map exp W TM ! M and the canonical projection � W TM ! M

are both G-equivariant maps since expgp.gv/ D g.expp v/ and �.gv/ D g�.v/.
When expp W TpM ! M is a diffeomorphism, we obtain a G-equivalence.

A G-equivariant diffeomorphism f W M ! N is called an equivalence of M
and N . In this case, Gp D Gf.p/. When two manifolds are not equivalent, but still
related by an equivariant map, one can show that Gp � Gf.p/. That is, suppose that
g 2 Gp then f .p/ D f .g.p// D g.f .p// and therefore g 2 Gf.p/.

There is also a notion of weak equivalence, where the map differs by an
automorphism of G, that is,

f .g.x// D ˛.g/.f .x//; for all g 2 G; for all x 2 M

where ˛ 2 Aut.G/.
We present an example to illustrate.
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Example 1.5. Let G D Z5 D< � > be generated by the fifth roots of unity. Let
1 W G � S1 ! S1 send .�; z/ 7! �z and let 2 W G � S1 ! S1 send .�; z/ 7! �2z.
Let f W S1 ! S1 be the identity. Then f is a weak equivalence since if we let
z D re2�i� , then

re2�i.�C1=5/ D �z D f .�.z// ¤ �f .z/ D �2z D re2�i.�C2=5/:

Now we would like to consider the orbit spaces of G-actions. As mentioned
previously, G.x/ D fgx W g 2 Gg is called the orbit of x 2 M under the action of
G. Observe that if gx D hy for some g; h 2 G; x; y 2 M then G.x/ D G.y/ and
thus we see that orbits of G are either disjoint or equal.

Let M=G D M � denote the set whose elements are the orbits G.x/ D x� of G
on M . Then x� D y� if and only if x; y 2 G.x/. Let � W M ! M=G denote the
natural map taking x into its orbit x� D G.x/. M=G is endowed with the quotient
topology, that is, U � M=G is open if and only if ��1.U / is open in M , and is
called the orbit space of M with respect to the G-action.

Example 1.6. Consider the action of R on T 2 producing an irrational flow. The
quotient space has the trivial (indiscrete) topology and is therefore not very
interesting . For actions of compact groups, however, we will see that the orbit space
exhibits lots of nice properties as in the following theorem (cf. [5]).

Theorem 1.7. If G �M ! M with G compact then the following hold:

(1) M=G is Hausdorff.
(2) � W M ! M=G is closed.
(3) � W M ! M=G is proper.
(4) M is compact if and only if M=G is compact.
(5) M is locally compact if and only if M=G is locally compact.

Moreover, in some special cases M=G will be a manifold (although not neces-
sarily smooth): for example, when the action of G is free or of low cohomogeneity,
namely if it is transitive (in which caseM D G=H ) or of cohomogeneity one or two.
IfM is compact and simply connected andG has connected orbits, then if the action
is of cohomogeneity three M=G is also a manifold (see Sect. 2, Theorem 2.13).

However, in the more general case where we considerM a Riemannian manifold
with a lower curvature bound, then M=G is an Alexandrov space with a lower
curvature bound. Recall that an Alexandrov space is a finite-dimensional length
space with a lower curvature bound defined in the comparison sense. The space of
Alexandrov spaces properly contains Riemannian manifolds with a lower curvature
bound. They are not manifolds in general and have “singular” points. For example,
the spherical suspension of RP 2 is not a manifold (the only spherical suspension
that is a manifold is the spherical suspension of a sphere) but it is an Alexandrov
space with two singular points, namely the two cone points.

We have the following theorem:
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Theorem 1.8. If G acts freely on M then M=G has the structure of a smooth
manifold such that � W M ! M=G is a submersion.

The proof is left to the reader. The following corollary is immediate since H acts
freely on G by left multiplication.

Corollary 1.9. If H is a closed Lie subgroup of H then G=H is a smooth
submanifold such that � W G ! G=H is a submersion.

Corollary 1.10. SupposeG�M ! M . ThenG.p/ D G=Gp � M is an embedded
submanifold.

We now proceed to define the concept of a slice. This will allow us to find a
canonical decomposition of an 	-tubular neighborhood of an orbit and gives us more
information about orbit types as well as valuable information about the action itself.

Recall by Corollary 1.10 that G.p/ is an embedded submanifold of M . Thus,
there is an 	 > 0 such that for any p 2 G.q/ the orthogonal ball B?

	 D fv 2
TpG.q//

? W jvj < 	g is normal to TpG.q/. The image of B?
	 via the exponential

map is an 	-neighborhood S of G.q/ in M .
We define S as follows:

Definition 1.11. Given p 2 G.q/, the embedded submanifold Sp normal to the
orbit G.q/ given by expp v; v 2 B?

	 is the slice through p.

Let S D [x2G.p/Sx D [g2Gg � Sx , then the following are true:

(1) If Sp \ Sq ¤ ; then p D q.
(2) g � Sp D Sgp.
(3) S D [g2GSgx.
(4) If p0 2 Sp then Gp0 is conjugate to a subgroup of Gp .
(5) (Slice Representation)Gp�Sp ! Sp and Sp isGp-equivalent to the orthogonal

action of Gp on TpSp via the exponential map.
(6) The neighborhood S can be represented as a product if the action of Gx is free,

otherwise we have the following G-equivariant map:

‰ W G �Gp Sp ! S

Œg; p0
 7! gp0;

where G �Gp Sp D .G � S/=Gp is given by the diagonal action Qg � .g; p0/ D
.g Qg; Qg�1p0/. G also acts on G �Gp Sp via a left action:

. Qg; Œg; p0
/ 7! Œg Qg; p0
:

(7) If Gp acts trivially on Sp then G �Gp Sp D G=Gp � Sp .
(8) If every isotropy group of the G action on M is conjugate to some fixed

subgroup H � G (that is, we only have principal orbits), then M=G is a
manifold.
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For [6] we need to verify the following:

• ‰ is well-defined:

‰.Œg Qg; Qg�1p0
/ D g Qg Qg�1p0 D gp0 D ‰.Œg; p0
/:

• ‰ is a G-equivariant map:

‰. QgŒg; p0
/ D ‰.Œ Qgg; p0
/ D Qggp0 D Qg‰.Œg; p0
/:

• ‰ is one-to-one:
Suppose g1p1 D g2p2, then ‰.Œg1; p1
/ D ‰.Œg2; p2
/. But p2 D g�1

2 g1p1
and therefore

Œg2; p2
 D Œg2g
�1
2 g1; .g

�1
2 g1/

�1p2
 D Œg1; .g
�1
2 g1/

�1.g�1
2 g1p1
 D Œg1; p1
:

• ‰ is onto.
Given q 2 S , then q D expgp.gv/ D g expp v D ‰.Œg; expp v
/ which

implies that S D G.Sp/.
• ‰ is differentiable by definition and its inverse is differentiable.

We now define the different possible types of orbits.

Definition 1.12. We call an orbit principal if its isotropy subgroup Gx is minimal
with respect to the following partial order. .H/ 	 .K/ if and only ifH is conjugate
to some subgroup of K. The ordering is partial because there may be elements that
we cannot compare.

An orbit is called exceptional if its isotropy subgroup is not minimal but has the
same dimension as the minimal (principal) isotropy subgroup. An orbit is called
singular if its isotropy subgroup has strictly larger dimension than that of the
principal isotropy subgroup.

We have the following theorem (cf. [5]):

Theorem 1.13 (Principal Orbit Theorem). Let G be a compact group acting on
M . Then the following are true.

(1) There exists a unique minimal isotropy type.
(2) Mr D fp 2 M W p 2 G.q/ a principal orbit g is open and dense.Mr=G D M �

r

is open dense and convex (and therefore connected) in M �.
(3) There are only finitely many isotropy types.

We now give some examples of G-actions with different orbit types.
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Example 1.14. Let SO.n/ � Sn ! Sn as follows.

�
A

1

�0B@
x1
:::

xnC1

1
CA 7!

0
BBB@

a11x1 C : : :C a1n
:::

an1x1 C : : :C annxn
xnC1

1
CCCA

The G-action is not transitive, but on the subsphere Sn�1 D f.x1; : : : ; xn; 0/ WP
x2i D 1g it is. The principal orbits have isotropy SO.n � 1/. The points

.0; : : : ; 0;˙1/ are distinct singular orbits with isotropy SO.n/. This is an example
of a cohomogeneity one actions and it is easy to see that Sn=SO.n/ D I an interval
of length � .

Example 1.15. Let SO.n/ � Sn ! Sn as above. The action clearly commutes
with the antipodal map on Sn and induces an action on RPn with principal orbits
SO.n/=SO.n � 1/ D Sn�1 and one exceptional orbit SO.n/=O.n � 1/ D RPn�1
and a singular orbit SO.n/=SO.n/ D fpg.

Now we have the following result about the action of Gx on its slice (cf. [5]).

Theorem 1.16. Let G � M ! M , G compact, G.x/ the orbit of x and Gx its
isotropy subgroup. Let S be the slice and Sx the slice at x. Then the following are
true.

(1) Gx.p/; p 2 Sx is a principal, exceptional or singular orbit for the Gx action
on Sx according as G.p/ is principal, exceptional or singular.

(2) G.x/ is principal if and only if Gx acts trivially on Sx , that is G �Gx Sx '
G=Gx � Sx .

Observe that in the previous example, the principal isotropy was SO.n � 1/ and
it acts trivially on the slice to its orbit at any point of the orbit. The singular orbit
SO.n/=SO.n/ D fpg has an induced action on its slice by SO.n/ and the orbits of the
slice are principal with isotropy SO.n�1/. That is, the isotropy group at the point p
acts transitively on the normal Sn�1 with isotropy SO.n� 1/. The exceptional orbit
is SO.n/=O.n � 1/ and the O.n � 1/ isotropy subgroup acts on its normal S0 with
isotropy SO.n � 1/. This action is also transitive.

Here the 	-neighborhood around a principal orbit SO.n/=SO.n � 1/ is Sn�1 �
Sx , where Sx ' Œ�	; 	
. The 	-tubular neighborhood around the singular orbit is
.SO.n/�Sx/=SO.n/ and around the exceptional orbit it is .SO.n/�Sx/=O.n� 1/.

We will finish this lecture with the following non-trivial example.

Example 1.17. Let SO.3/�R
5 ! R

5. We may represent R5 as the set of real 3� 3
symmetric matrices of trace 0. Since the action is isometric, we may also consider
the action on S4 � R

5. Then the action of SO.3/ on R
5 is given by the following.

Let A 2 SO.3/, X 2 R
5.

.A;X/ 7! AXA�1
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It is a well-known fact of linear algebra that Y 2 G.X/ if and only if the
eigenvalues of Y and X are the same counting multiplicities. The orbit space
consists of representatives

0
@�1 �2

�3

1
A ;

where �1 � �2 � �3 and �1 C �2 C �3 D 0. If we restrict out attention to S4, we
have the additional condition that �21 C �22 C �23 D 1.

The quotient space R
5=SO.3/ is a triangular wedge of R2 starting at the origin

and forming an angle of �=3. The quotient space S4=SO.3/ is the arc of length �=3
corresponding to the intersection of the unit circle in R

2 with R
5=SO.3/. Here we

have four distinct orbit types for the cohomogeneity two action on R
5 and three

distinct orbit types for the cohomogeneity one action on S4.
The principal orbits correspond to elements in the quotient space with �1 >

�2 > �3. It is clear for points in the principal orbit that the isotropy subgroup is
S.O.1/ � O.1/ � O.1//. The points in the quotient space that correspond to those
for which �1 D �2 � �3 form a line of singular orbits with isotropy S.O.2/O.1//
and those for which �1 � �2 D �3 form a line of singular orbits with isotropy
S.O.1/O.2//. These two lines intersect in the point �1 D �2 D �3 D 0 and
the isotropy of this point is the entire group, SO.3/. One may easily calculate the
angle of the triangular wedge by calculating the Euclidean distance between the two
endpoints of the quotient space S4=SO.3/, which, without loss of generality, can be
taken to be . 1p

6
; 1p

6
;� 2p

6
/ and . 2p

6
; 1p

6
; 1p

6
/, and converting this distance into the

corresponding arc-length of the arc via the formula

� D 2 arcsin.
d

2
/:

2 Lecture 2: The Hopf Conjecture and Torus Actions
of Low Cohomogeneity

The main goal of this lecture is to give a detailed proof of the Hsiang–Kleiner
theorem [24], which we now state.

Theorem 2.1 ([24]). Let S1�M4 ! M4 be an isometric, effective action withM4

a compact, simply-connected positively curved Riemannian manifold. Then M4 is
homeomorphic to S4 or CP 2.

In order to give a proof we first need to establish some facts about fixed point
sets of isometries. We have the following theorem (cf. [25]).
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Theorem 2.2. Let M be a Riemannian manifold and G any set of isometries of
M . Let F D Fix.M IS1/ D fx 2 M W g.x/ D x8x 2 M;8g 2 Gg. Then each
connected component of F is a closed totally geodesic submanifold of M .

We will prove this theorem, but first let us recall what totally geodesic means.

Definition 2.3. We say that N � M is a totally geodesic submanifold if a geodesic
in N is also a geodesic in M .

Trivially, any geodesic �.t/ � M is a totally geodesic submanifold of M , since
� gives us an embedded submanifold in M . In the sphere, S2, the great circles are
totally geodesic but no other closed embedded curve is. In S3 we can easily find
totally geodesic S2 submanifolds, but there are many more S2 submanifolds that
are not totally geodesic. For example, most embedded submanifolds of R3 are not
totally geodesic, such as T 2, S2, the catenoid and more, whereas any straight line or
flat, embedded two-plane will be.

In general, if N is a totally geodesic submanifold of M , then

sec.N / D sec.M/

by the Gauss equation and therefore if we have a lower curvature bound for M , we
also have the same lower bound for N .

We will now prove Theorem 2.2.

Proof. Suppose that Fix.M IG/ does not consist only of isolated fixed points. Let
F � Fix.M IG/ be a connected component of positive dimension. Let p 2 F and
let U be a normal neighborhood of p which we assume to be convex. That is, we
assume expp W Uo � TpM ! U is a diffeomorphism onto U . Let V � TpM be
the subspace of vectors left fixed by all elements of G. Recall that a G-action on N
induces a G-action on the tangent space and for directions corresponding to fixed
points theG action will be trivial. Then it is easy to see that U \F D expx.Uo\V /.
This tells us that a neighborhood, U \F , of p 2 F is a submanifold, expp.Uo\V /.
Thus Fix.M IG/ consists of submanifolds of M . It is clear that each connected
component will be closed.

Now it remains to show that F is totally geodesic. Suppose that p and q

are contained in the same connected component of Fix.M IG/ and that they are
sufficiently close so that we can find a unique geodesic joining them. Let � W
Œ0; 1
 ! M be this geodesic and such that �.0/ D p and �.1/ D q. Since isometries
map geodesics to geodesics, g�.t/ is another geodesic joining p to q for any g 2 G.
By uniqueness, g�.t/ D �.t/ for all g 2 G and for all t 2 Œ0; 1
 and therefore
�.t/ � F . ut

As an immediate corollary we obtain the following (cf. [25]).

Corollary 2.4. Assume M is a complete Riemannian manifold and G is a con-
nected group acting isometrically on M . Let p and q belong to different connected
components of Fix.M IG/. Then q is a conjugate point of p.
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Note that in non-positive curvature this means that if we have a fixed point set it has a
unique connected component since for non-positively curved manifolds there are no
conjugate points. For non-negative sectional curvature this means that the connected
components of Fix.M IG/ are as far away from each other as they can be.

The following theorem allows us to characterize the fixed point set components
of isometric circle actions (cf. [25])

Theorem 2.5. Let .M; g/ be a Riemannian manifold and suppose that S1 �M !
M acts isometrically and effectively. Let F ix.M IS1/ D [iNi be a decomposition
of the fixed point set into its connected components. Then the following are true.

(1) Each Ni is a closed totally geodesic submanifold of even codimension.
(2) If M is orientable then each Ni is orientable.

Proof. By the previous theorem we know that theNi are closed and totally geodesic.
Let xi 2 Ni . By the slice representation we know that at each xi , G � Sxi ! Sxi
and Sxi Š TxiM . Further we know that the action is G-equivalent to a linear action
on TxiM . Now, G acts trivially on TxiN and non-trivially on T ?

xi
. This implies that

the S1 action, for a suitable choice of basis looks like

0
BBBBBBBBB@

0
: : :

0

rot.�/
: : :

rot.�/

1
CCCCCCCCCA
:

Since the rotation matrices are 2 � 2 real matrices it follows that

dim.Ni / D dim.TxiNi / D dim.M/ � dim.TxiN
?
i / D dim.M/ � 2k;

where k is the number of rotation matrices. Thus Ni is of even codimension. Now,
for the second part it is possible to put a complex structure on TxiN

?
i and since M

is orientable and Txi D TxiNi C TxiN
?
i it follows that Ni is orientable. ut

We now present some illustrative examples.

Example 2.6. Let S1 � S2n ! S2n as follows:

.�; x1; : : : ; x2nC1/ 7!

0
BBB@

rot.�/
: : :

rot.�/
1

1
CCCA

0
BBB@

x1
:::

x2n
x2nC1

1
CCCA :
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Clearly f.0; : : : ; 0;˙1/g Š S0 are the only fixed points in S2n under this action.
Isolated fixed points are trivially totally geodesic submanifolds.

Example 2.7. One can easily generalize this example to obtain any S2k as a fixed
point set as follows.

Let S1 � S2n ! S2n as follows:

.�; x1; : : : ; x2nC1/ 7!

0
BBBBBBBBB@

rot.�/
: : :

rot.�/
1
: : :

1

1
CCCCCCCCCA

0
BBBBBBBBB@

x1
:::

x2n�2k
x2n�2kC1

:::

x2nC1

1
CCCCCCCCCA
:

Clearly f.0; : : : ; 0; x2n�2kC1; : : : ; x2nC1/ W P2nC1
iD2n�2kC1 x2i D 1g Š S2k is fixed by

the circle action.

Example 2.8. Let S1 � CP 2 ! CP 2 as follows. Consider CP 2 D fŒz1; z2; z3
 W
.z1; z2; z3/Q.e2�i� z1; e2�i� z2; e2�i� z3/; � 2 Œ0; 2�/g. The circle action is then given by

e2�i; Œz1; z2; z3
 7! Œe2�iz1; e
�2�iz2; z3


and the circle action fixes fŒz1; z2; 0
g Š S2 and an isolated point, fŒ0; 0; z3
g.

Note here that for homogeneous spaces Fix.M IS1/ will consist of only homo-
geneous submanifolds with the same sectional curvature. For the case of strictly
positive sectional curvature this alone gives us a lot of information as will become
evident after stating the following topological result (cf. [25]).

Theorem 2.9. Let M be a compact Riemannian manifold. Let S1 � M ! M act
isometrically. Let Fix.M IS1/ D [iNi . Then the following are true.

(1)
P

k.�1/kdim.Hk.M IK// D P
i

P
k.�1/kdim.Hk.Ni IK// and

(2)
P

k dim.Hk.M IK// � P
i

P
k dim.Hk.Ni IK//,

for any coefficient field K.

We will prove (1) and refer the reader to [25] for the proof of (2).

Proof. Let Ai be the closure of an 	-neighborhood around Ni . Take 	 > 0 to be
small enough so that every point of Ai can be joined to the nearest point of Ni by a
unique geodesic of length less than or equal to 	 and such that Ai \Aj D ;; i ¤ j .
Thus Ai is a fiber bundle over Ni whose fibers are closed solid balls of radius 	. Set
A D [iAi . Let B be the closure of the open setM XA. Then A\B is the boundary
of A.
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Recall that a sequence is exact if

� � � ! Uk
k! Vk

 k! Wk ! � � �

satisfies ker k D imk .
Now observe that if

� � � ! Uk ! Vk ! Wk ! Uk�1 ! Vk�1 ! Wk�1 ! � � �

is an exact sequence of vector spaces then

X
k

.�1/kdim.Uk/ �
X
k

.�1/kdim.Vk/C
X
k

.�1/kdim.Wk/ D 0:

We apply the formula to the exact relative sequences in homology of .M;B/ and
.A;A \ B/, that is

� � � ! Hk.M;B/ ! Hk�1.B/ ! Hk�1.M/ ! Hk�1.M;B/ ! � � �

and

� � � ! Hk.A;A \ B/ ! Hk�1..A \ B/ ! Hk�1.A/ ! Hk�1.A;A \ B/ � � �

and we obtain

�.B/ � �.M/C �.M;B/ D 0

and

�.A \ B/ � �.A/C �.A;A \ B/ D 0:

The excision axiom tells us that Hi.X;C / Š Hi.X X U;C X U/, where U �
C � X . It then follows by the excision axiom that the pairs .M;B/ and .A;A \
B/ have the same relative homology. In particular, this tells us that �.M;B/ D
�.A;A \ B/ and therefore

�.M/ D �.A/ � �.B/ � �.A \ B/:

Since S1 fixes no points inB or inA\B , the Lefschetz theorem tells us that �.B/ D
�.A \ B/ D 0 and therefore �.M/ D �.A/. Moreover, since �.Ai / D �.Ni / this
tells us that �.M/ D P

i �.Ni /. ut
Note that in the case where the fixed point set is zero-dimensional, the Euler

characteristic of the manifold tells us exactly how many isolated fixed points there
will be. In the case of an even-dimensional sphere, this tells us that if we have an
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isometric circle action, there must be a non-empty fixed point set and the fixed point
set must have Euler characteristic equal to two.

The following theorem tells us when we have fixed points of an isometry
(cf. [25]).

Theorem 2.10. Let .M; g/ be a compact Riemannian manifold of positive sectional
curvature. Let f be an isometry of M .

(1) If n D dim.M/ is even and f is orientation preserving then f has a fixed point.
(2) If n D dim.M/ is odd and f is orientation reversing then f has a fixed point.

As a corollary we obtain Synge’s theorem.

Corollary 2.11. Let .M; g/ be a compact Riemannian manifold of positive sec-
tional curvature.

(1) If n D dim.M/ is even and M is orientable then �1.M/ D 0.
(2) If n D dim.M/ is odd then M is orientable.

Proof. We begin by proving part (1). Let QM be the universal cover ofM . Every deck
transformation of QM is an orientation preserving isometry without fixed points. This
is a contradiction by Theorem 2.10 unless �1.M/ D 0 to begin with.

We now prove part (2). If M is not orientable, let QM be its orientable double
cover. Then the nontrivial deck transformation of QM is orientation reversing and
therefore it must have a fixed point by Theorem 2.10. This gives us a contradiction
once again and therefore M must be orientable. ut

We now need to gather a few facts about the orbit space of a Riemannian manifold
under an isometric group action.

Let M=G be the quotient space of M where G � M ! M acts by isometries
with G compact and M a Riemannian manifold with sectional curvature bounded
below by some positive constant ˛ 2 R. Then, M=G is an Alexandrov space with
curvature bounded below by ˛. The metric on M=G is the orbital distance metric,
that is, distM=G.x�; y�/ D distM.G.x/;G.y//. The space of directions †x� , for
any point x� 2 M=G will be Sk=Gx , where Sk is the unit normal sphere to any
point of the orbit G.x/ and Gx is the isotropy subgroup of x. This tells us that the
directions in M=G are geodesic directions. We now define the q-extent of a metric
space as the maximum average distance between q points and we have the following
geometrical result for points x� 2 M=G.

Extent Lemma 2.12 ([15, 17]). Let p0; : : : ; pq be q C 1 distinct points in X D
M=G. If curvX � 0, then

1

q C 1

qX
iD0

xtq.†piX/ � �=3:

We remark that in the case of strictly positive curvature, the inequality is also
strict.
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We now recall the following topological result from Bredon [5].

Theorem 2.13. Let G be a compact Lie group acting by cohomogeneity three on
M , a compact, simply-connected smooth manifold. If all orbits are connected, then
M � is a simply-connected topological 3-manifold with or without boundary.

It follows from the resolution of the Poincaré conjecture (cf. [30–32]) that M �
is homeomorphic to one of S3, D3, S2 � I or, more generally, to S3 with a finite
number of disjoint open 3-balls removed.

We also recall the following general result of Bredon [5] about the fundamental
group of the orbit space:

Theorem 2.14. Let G be a compact Lie group acting on X , a topological space. If
either G is connected or G has a nonempty fixed point set, then the orbit projection
� W X ! X=G induces an onto map on fundamental groups.

Finally, we recall the Soul theorem for Alexandrov spaces (cf. [7]).

Soul Theorem 2.15. Let X D M=G. If curvX � 0 and @X ¤ ;, then there exists
a totally convex compact subset S � X with @S D ;, which is a strong deformation
retract of X . If curvM=G > 0, then S D s is a point, and @X is homeomorphic to
†sX ' S?

s =Gs .

We now have all the tools necessary to prove Theorem 2.1.

Proof. By the classification results of Freedman for 4-manifolds (cf. [11]), in order
to obtain the result it is sufficient to show that �.M/ � 3. By Theorem 2.10,
we know that Fix.M4IS1/ is non-empty and since its components must be of
even codimension they are either isolated points or orientable, positively curved
2-manifolds. In the latter case, it follows directly from the Gauss-Bonnet theorem
that they must be S2.

There are two cases to consider: case one, where dim.Fix.M4IS1// D 0 and
case two, where there is a component of the fixed point set of dimension two.

We begin with case one. We may apply the Extent Lemma 2.12 to see that four
isolated points may not occur and therefore there are at most three.

We now consider case two. Let N2 D S2 � Fix.M4IS1/. Consider X3 D
M4=S1. N2 will correspond to the boundary of X3 and applying the Soul theorem
for Alexandrov spaces we see that there is a unique point, p�, at maximal distance
from N2 in X3. Using the convexity of the distance function from the boundary, we
also see easily that all points in X3 X fN2 [ fpgg are regular points and therefore
correspond to principal orbits in M4. The orbit in M4 corresponding to p� 2 X3

will either be S1, S1=Zk or fpg. Note that in the latter case, we have a fixed point.
This shows that Fix.M4IS1/ consists of either S2 or S2 [ fpg. In particular, once
again �.M4/ � 3 as desired. ut

In case two, we can actually say more about the manifold. In particular, we can
decompose M4 as the union of disc bundles over N2 and the orbit of p. This result
generalizes in a variety of ways (cf. [17, 18, 35, 37]).
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3 Lecture 3: Cohomogeneity One Alexandrov Spaces

The goal of this lecture is to prove a structure result for cohomogeneity one
Alexandrov spaces. Alexandrov spaces play an important role in Riemannian
geometry. They are a natural synthetic generalization of Riemannian manifolds with
a lower curvature bound and the natural process of taking Gromov-Hausdorff limits
is closed in Alexandrov geometry.

In order to better motivate why one might want to study Alexandrov spaces of
cohomogeneity one or with symmetries in general, we’ll first take a short detour and
consider Gromov-Hausdorff convergence.

The Hausdorff distance between two subsets A;B � X , where X is a metric
space, is defined as

dH.A;B/ D inffr W B � B.A; r/ and A � B.B; r/g:

Hausdorff distance does not give a metric on subsets of a metric space X . Consider
any dense (proper) subset B � X , then dH.B;X/ D 0 since B.B; 	/ 
 X for all
	 > 0 but B ¤ X .

Example 3.1. Let A D Q; B D R X Q; X D R and as we saw above,
dH.A;B/ D 0.

Gromov modified this distance as follows.

Definition 3.2. The Gromov-Hausdorff distance between X and Y is

dGH.X; Y / D inffdH.i.X/; j.Y / W i W X ! Z; j W Y ! Zg;

where i; j are isometric embeddings of X and Y into a metric space Z.

Observe that the Gromov-Hausdorff distance is not a metric, but rather a
pseudo metric for the same reasons as detailed above. However, the set U WD
fisometry classes of compact metric spacesg together with dGH does form a com-
plete metric space.

We observe as well that i.X/ D X 0 and j.Y / D Y 0 are metric spaces considered
with the restriction of the metric of the ambient space, as opposed to the induced
intrinsic metric. For example, consider X D S2.1/ with the standard round metric.
Then Z cannot be R

3 because S2.1/ � R
3 has the restricted metric and X and X 0

are path-isometric but not isometric.
Naturally one says that a sequence fXig1

iD1 of (compact) metric spaces converges
in the Gromov-Hausdorff sense to a (compact) metric space X if dGH.Xi ; X/

converges to 0. Note that we have the following nice property for Gromov-Hausdorff
distance. We first define an 	-net to be a subset S of a metric space X such that for
any point x 2 X there exists a point p 2 S such that distGH.X; Y / < 	. Then, if Y is
an 	-net in a metric space X , distGH.X; Y / � 	. Indeed, we can take Z D X 0 D X

and Y 0 D Y .
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Now, how does this distance differ from Hausdorff distance? It is clear that
distGH.X; Y / � distH.X; Y /. For example, let X D fpg and Y D D2.1/. Then
distGH.X; Y / D 1=2, since we can always isometrically embed X as the center of
the disk, whereas if p 2 @D2.1/, then distH.X; Y / D 1.

Observe that Gromov-Hausdorff distance does not detect small scale behaviour.
For example, letX be a circle with very thin spikes such thatXXf spikes g � S1.1/.
Then we can find an 	-net Y ofX such that Y is also an 	-net of S1.1/ and therefore
distGH.X; S

1/ < 	 whereas distH.X; S1/ D l , where l is the length of the spikes.
Gromov-Hausdorff convergence does not preserve dimension. As an example,

one can take a sequence of three-balls progressively shrinking along one diameter.
The limit will be an interval.

Gromov-Hausdorff convergence does not behave well with respect to fundamen-
tal group. We can take a sequence of tori, which are spheres with progressively
smaller handles. The limit of this sequence will be a sphere.

The Gromov-Hausdorff limit of a sequence of manifolds with a lower curvature
bound will be an Alexandrov space. There is also a notion of convergence for non-
compact spaces which is called pointed Gromov-Hausdorff convergence. That is,
given a sequence f.Xi ; pi /g of locally compact complete length metric spaces with
marked points. The sequence converges to .Y; p/ if for any R > 0 the closed R-
balls around pi 2 Xi converge to the R-ball around p 2 Y in the usual Gromov-
Hausdorff sense.

The following general problem is still unsolved.

General Problem . Given n 2 Z; n � 2; k;K 2 R; k � K, let Mk.n/

(respectively MK
k .n/) be the class of complete, connected, pointed Riemannian n-

manifolds with sectional curvatures greater than or equal to k (respectively k �
sec.M/ � K, M 2 MK

k .n/). Describe the metric spaces in the Gromov-Hausdorff

closures of Mk.n/ and MK
k .n/, denoted by Mk.n/ and MK

k .n/, respectively.
As has been mentioned, the spaces in Mk.n/ are Alexandrov spaces with

curvature bounded below by k and dimension � n. Fukaya showed that all spaces
in Mk.n/ look like quotient spaces N=O.n/, where N is a Riemannian manifold
and O.n/ acts on N by isometries (cf. [12]).

However, not all quotients N=O.n/ are limits of Riemannian manifolds with
bounded curvature. In order to see this we need the following three results from
Petersen, Wilhelm and Zhu (cf. [34]).

Theorem 3.3. Let M be a convex Riemannian manifold with k � sec.M/ � K.
Let G � M ! M isometrically with closed orbits. Then M=G with the natural
quotient metric can be obtained as a limit of a sequence of Riemannian manifolds
with a uniform lower curvature bound and fixed dimension.

A good example here is†sinRP
n, which can be seen as the quotient of SnC1 by a

finite group as follows. Let A be the antipodal map on Sn and since†sinS
n D SnC1

we may simply “suspend” the antipodal action on Sn to obtain †sinRP
n. Without

Theorem 3.3, it is not obvious that†sinRP
n is the limit of a sequence of Riemannian

manifolds with a lower curvature bound.
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Theorem 3.4. Let N be a connected Riemannian manifold with dimension � 2,
sec � 1, �1.N / D �2.N / D 0. If

P
sinN 2 MK

k .m/ for some k;K;m then N is
diffeomorphic to a standard sphere.

In particular, N D HPn, n � 2 satisfies the hypothesis of the theorem but since
it is not a standard sphere, this tells us that

P
sin HP

n, n � 2 is not in MK
k .n/.

Note further that
P

sin HP
n D P

sin S
4nC3=SU.2/ D .

P
sin S

4nC3/=SU.2/ D
S4nC4=SU.2/. Hence not all quotient spaces are limits of Riemannian manifolds
with an upper and a lower sectional curvature bound.

Another question we can ask is whether an Alexandrov space of curvature � k

is in Mk.n/ for some n. This is not true for k D 1 as the following theorem shows.

Theorem 3.5. LetN be a connected Riemannian manifold of dimension n � 2 and
sectional curvature � 1. If

P
sinN is in Mk.m/ for some k > 1=4 and m � 2

then:

(1) N is homeomorphic to the sphere,
(2) N has the homotopy type of CP

n
2 or

(3) N has the cohomology algebra of HP
n
4 .

If n ¤ 4; 8 and if N is homeomorphic to the sphere then N is diffeomorphic to the
sphere.

Consider the following example.

Example 3.6. Let N D CaP2 r RPn. Then
P

sinN … Mk.n/ when k > 1=4.
By Theorem 3.3

P
sin RP

n 2 Mk.n/ for some k and some m since
P

sin RP
n D

SnC1=Z2. However, it is not known whether or not
P

sin CaP2 2 Mk.m/ for some
k;m, because we do not know how to write it as a quotient N=O.n/. Recall that
CaP2 D F 4=Spin.9/. Previously we could write

P
sinN as N 0=O.n/ since N D

M=G and M D Sm. Note that
P

sin F
4 is a topological space but is not even an

Alexandrov space, since the space of directions at the two cone points is not an
Alexandrov space of curvature � 1. However, .

P
sin F

4/=Spin.9/ D P
sin CaP2 is

an Alexandrov space . This gives us an example of an Alexandrov space that arises
as an isometric quotient of a topological length space that is not Alexandrov.

Also, while
P

sin HP
n
4 D SnC4=SU.2/ 2 Mk.nC 4/ and

P
sin CP

n
2 2

Mk.nC 2/ for some (possibly different) k, we don’t know whether k can be chosen
to be strictly larger than 1=4 since we only know that N in such a case would have
the homotopy type of HP

n
2 or the cohomology algebra of CP

n
2 .

Now, as was mentioned in the first lecture, the isometry group of a Riemannian
manifold is a Lie group (cf. [27]). In 1994, Fukaya and Yamaguchi [13] showed that
Isom.A/ is also a Lie group for X , a length space which is locally compact and has
curvature bounded away from �1. Therefore the isometry group of an Alexandrov
space is a Lie group.

Now, the fact that Isom.X/ is a Lie group is extremely powerful for obvious
reasons. If X is a homogeneous Alexandrov space then it is in fact a Riemannian
manifold.
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Just as in the Riemannian case it makes sense to try to understand what
cohomogeneity one Alexandrov spaces are. Cohomogeneity one manifolds have
been studied extensively (see, e.g., [1,19–21,23,26,28,29,36,38,39]). The concept
of cohomogeneity one was introduced by Mostert in 1957 [26] and he (along
with Neumann [28]) classified the three-dimensional cohomogeneity one manifolds
(without curvature restrictions).

We’ll first discuss the structure of cohomogeneity one manifolds and some
properties of the same. From here on, all spaces to be considered are compact. A
compact Riemannian manifold admits a cohomogeneity one action if there exists
a compact Lie group, G, acting isometrically on Mn such that dim.Mn=G/ D 1

or equivalently if dim.G=H/ D n � 1, where G=H is a principal orbit. Now, in
this particular case, the orbit space must also be compact and can therefore only be
S1 or I . If M=G D S1 then it follows that all orbits are principal and we have a
fibration over S1 with fiber G=H . The structure group of the fibration is N.H/=H .
This particular case is not very interesting and we will now restrict our attention to
the case where M=G D I . Here the situation changes some: the principal orbits
are dense in M and will correspond to the inverse images of the interior points
of the interval whereas the inverse images of the two endpoints will correspond
to singular or exceptional orbits. Additionally the principal orbits will fiber over
the singular orbits with fiber a sphere. In fact, a cohomogeneity one G action on a
closed manifold with orbit space an interval determines a group diagram

where i˙ and j˙ are the inclusion maps, K˙ are the isotropy groups of the singular
orbits at the endpoints of the interval, and H is the principal isotropy group of the
action. Further, K˙=H Š Sk˙ .

In dimensions �4 a complete classification of such manifolds is due to Mostert
and Neumann [26,28] and Parker and Hoelscher [23,29]. It is easy to write down the
manifolds in dimension three. Note first that the only groups acting effectively are
T 2 and SO.3/ and we see that for the T 2 action we obtain S3, RP 3, Lp;q , S2 � S1,
S2 Q�S1, Kl � S1, A, RP 2 � S1 and T 3, where the last is the only example of a
cohomogeneity one action by T 2 with quotient space S1. For the SO.3/ action we
obtain S3, RP 3, RP 3#RP 3, S2 � S1, S2 Q�S1 and RP 2 � S1, where the last three
are examples of a cohomogeneity one SO.3/ action with quotient space S1.

In dimension 4 we have more groups to deal with: namely, if we only consider
effective actions, we have T 3, SO.3/T 1 and SO.3/ � SO.3/. Here there are more
than 60 manifolds that admit a cohomogeneity one action. Parker classified these
manifolds in [29] and Hoelscher found a few missing examples in his thesis [23].
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In dimensions 5–7, Hoelscher classified simply-connected cohomogeneity one
manifolds.

There are many results about cohomogeneity one manifolds that are of a purely
group theoretic nature. This is the case for theorems about the basic decomposition
of a cohomogeneity one manifold. Since the fibres over the singular or exceptional
orbits are spheres, by the slice theorem we know that the tubular neighborhoods of
G=K˙ have the form G �Kpm D˙ and therefore M decomposes as a union of disc
bundles, that is,M D G�K

�

D� [G=H G�K
C

DC, where Sk˙ D @D˙ D K˙=H .
Thus we have a description of M in terms of its group diagram. Conversely, given
a group diagram of compact Lie groups .G;H;KC; K�/ where K˙=H Š Sk˙ ,
then by the classification of transitive actions on spheres (see [6]) the K˙ actions
on Sk˙ are linear and therefore extend to an action on the corresponding discsDpm

bounded by Sk˙ for eachK˙ and one can construct a cohomogeneity one manifold
from the group diagram. This implies that a cohomogeneity one manifold M with
M=G D I is in one-to-one correspondence with its group diagram.

In particular, this reduces the problem of classifying cohomogeneity one mani-
folds whose quotient space is an interval to the problem of classifying the possible
group diagrams.

Normally we classify these actions up to “weak equivalence”, but for two
diagrams .G1;H1;K1

C

; K1
�

/ and .G2;H2;K2
C

; K2
�

/, if G1 D G2 D G we ask
for G-equivariant equivalence.

The following operations on the group diagram result in a G-equivariantly
diffeomorphic manifold:

(1) Switching K� and KC.
(2) Conjugating each group by the same element of G.
(3) Replacing K� with aKa�1 for a 2 N.H/.

Conversely, two group diagrams are G-equivariantly equivalent via some com-
bination of these operations. Now the idea is to see what results can be extended to
Alexandrov spaces. We have the following structure result from [14].

Theorem 3.7. Let X be a closed Alexandrov space with an effective isometric
action of G by cohomogeneity one with principal isotropy group H .

(1) If the orbit space of the action is an interval, then X is the union of two fiber
bundles over the two singular orbits whose fibers are cones over positively
curved homogeneous spaces, that is,

X D G �K
�

C.K�=H/ [G=H G �K
C

C.KC=H/:

The group diagram of the action is given by .G;H;K�; KC/, where K˙=H
are positively curved homogeneous spaces. Conversely, a group diagram
.G;H;K�; KC/, where K˙=H are positively curved homogeneous spaces,
determines a cohomogeneity one Alexandrov space.
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(2) If the orbit space of the action is a circle, thenX is equivariantly homeomorphic
to a G=H -bundle over a circle with structure group N.H/=H . In particular, X
is a manifold.

As mentioned before, a homogeneous Alexandrov space is a manifold, so it is
interesting and natural to try to understand at what level of symmetry do Alexandrov
spaces appear which are no longer manifolds. Since one- and two-dimensional
Alexandrov spaces are topological manifolds [8], it follows from work of Mostert
[26] that any closed one- or two-dimensional cohomogeneity one Alexandrov space
is equivariantly homeomorphic to a closed manifold with the same action.

In contrast, there is one three-dimensional Alexandrov space of cohomogeneity
one that is not a manifold as we see in the following theorem from [14].

Theorem 3.8. Let X3 be a closed, three-dimensional Alexandrov space with an
effective isometric cohomogeneity one G action. Then G is SO.3/ or T 2 and the
only non-manifold we obtain is †.RP 2/.

The following corollary from [14] is immediate.

Corollary 3.9. A closed Alexandrov spaceXn of dimension n � 4 with an effective
isometric T n�1 action is equivariantly homeomorphic to the product of T n�3 with
one of T 3, S3, Lp;q , S2 � S1, S2 Q�S1, Kl � S1, RP 2 � S1 or A.

We will now give a brief idea of how we obtain these results. First, the group
considerations pass from the Riemannian case to the Alexandrov case pretty much
directly. Further, just as for manifolds, the quotient space of an Alexandrov space by
an isometric group action (with closed orbits) is once again an Alexandrov space.
So, for a closed, cohomogeneity one Alexandrov space X , X=G is an Alexandrov
space of dimension one and hence a topological manifold. Since X is closed, X=G
is either S1 or I .

The proof of the first theorem relies on the slice representation which can be
applied in this case since G is compact and an Alexandrov space is a topological
space. We can show then that at non-principal orbits where dim.G=K˙/ > 0, the
space of directions for any x 2 †x splits as Sx , the unit tangent space to G=Gx ,
and the set �.Sx// D fv 2 †x W dist.v;w/ D diam†x=2 for all w 2 Sxg, which
is a compact, totally geodesic Alexandrov subspace of †x with curvature bounded
below by 1, and finally, the space of directions†x is isometric to the join Sx��.Sx/.
Further, either �.Sx/ is connected or it contains exactly two points at distance � .

Recall that †x is a compact Alexandrov space with curvature �1. This tells us
that our “normal space of directions” to any orbit is of the same type and since the
action on the normal space is either homogeneous or trivial, it gives us the structure
result. Note that if the orbit is exceptional or of codimension one then the cone
bundle has to be a disc bundle.

To prove the result on splitting we note that the compactness of �.Sx/ follows
from the continuity of the distance function. The rest follows from the Join Lemma
(cf. [15, 16]) once we show that Sx is isomorphic to the unit round sphere and is
totally geodesic in †X .
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Lemma 3.10 (Join Lemma). Let X be an n-dimensional Alexandrov space with
curvature bounded below by 1. IfX contains the unit round sphere Sm1 isometrically,
then E D f x 2 X W dist.x; Sm1 / D �=2 g is an isometrically embedded .n�m�1/-
dimensional Alexandrov space with curvature bounded below by 1, and X is
isometric to Sm1 �E with the standard join metric.

The fact that Sx is isomorphic to the unit round sphere follows from the fact that
the tangent cone at x splits isometrically as R

n � U , where R
n correspond to the

tangent space to G.x/ Š G=Gx and U is a cone.
Using this structure theorem we can classify Alexandrov spaces of cohomogene-

ity one through dimension four.
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1 Introduction and Main Results

The topological classification of compact Riemannian n-manifolds with positive
or nonnegative (sectional) curvature is a fundamental question in Riemannian
geometry. The classification in dimension 2 is well-known and follows from the
Gauss-Bonnet theorem. In dimension 3, the classification follows from Hamilton’s
work [22]; in particular, a compact, simply connected 3-manifold of positive
curvature must be diffeomorphic to the 3-sphere. In dimension n � 4, in contrast,
a complete solution to the classification problem remains elusive to this day, as
evidenced by the relative scarcity of examples and techniques for the construction of
compact manifolds with positive or nonnegative curvature. Given these difficulties,
it has been helpful to first consider the classification of the most symmetric spaces
in these classes, that is, those with a “large” group of isometries. This approach,
proposed by Grove [16], allows for flexibility in deciding which isometry groups are
to be considered “large”. The classification of simply connected positively curved
homogeneous spaces (cf. [1–3,46,48]), for example, may be framed in this program,
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which has led to other classification results and to new examples of positively and
nonnegatively curved Riemannian manifolds (cf. [6, 19–21, 44, 45, 52, 53]).

Let .M; g/ be a (compact) Riemannian manifold and let Isom.M; g/ be its
isometry group, which is a (compact) Lie group (cf. [27, 29]). There are several
possible measures for the size of Isom.M; g/, e.g., the cohomogeneity, defined as the
dimension of the orbit space of the action of Isom.M; g/ on .M; g/, the symmetry
degree, defined as the dimension of Isom.M; g/, or the symmetry rank, defined as
the rank of Isom.M; g/ and denoted by symrank.M; g/. In this note we will focus
our attention on this last invariant in the cases when .M; g/ has positive curvature
and when .M; g/ has quasipositive curvature, i.e., .M; g/ has nonnegative curvature
and a point with strictly positive curvature.

The following three problems arise naturally in the study of Riemannian
manifolds and their symmetry rank:

(a) Maximal symmetry rank: Given a class Mn of Riemannian n-manifolds, find
an optimal upper bound K for the symmetry rank of the elements in Mn.

(b) Topological classification: Classify, up to diffeomorphism, all manifolds in Mn

with symmetry rank k � K.
(c) Equivariant classification: Let M 2 Mn with symrank.M/ D k. Classify, up

to equivariant diffeomorphism, all possible (effective) isometric actions of T k

on M and realize these actions via appropriate Riemannian metrics on M .

These problems have received particular attention when Mn is the class of
compact, positively curved n-manifolds or the class of compact, simply connected
n-manifolds of nonnegative curvature (cf. [12–14, 17, 23, 26, 41, 42, 50, 51]). In a
curvature-free setting, analogs of problems (a), (b) and (c) for compact, simply
connected smooth n-manifolds, 3 � n � 6, have also been extensively studied
(cf. [10, 11, 18, 28, 30–36, 40]).

The maximal symmetry rank problem and the topological classification of com-
pact, positively curved manifolds of maximal symmetry rank were first considered
by Grove and Searle [17]:

Theorem 1.1 (Grove and Searle [17]). Let .Mn; g/ be a compact Riemannian n-
manifold of positive curvature. Then the following hold:

(1) symrank.Mn; g/ � b.nC 1/=2c.
(2) If symrank.Mn; g/ D b.n C 1/=2c, then Mn is diffeomorphic to a sphere, a

lens space or to a real or complex projective space.

Let .M; g0/ be isometric to any of the manifolds listed in Theorem 1.1(2),
equipped with its standard Riemannian metric g0. As pointed out in [17], .M; g0/
has maximal symmetry rank. We will refer to the isometric torus actions on .M; g0/
as linear torus actions. Our first result is the equivariant classification of torus
actions of maximal rank on compact, positively curved manifolds of maximal
symmetry rank:



A Note on Maximal Symmetry Rank, Quasipositive Curvature, and Low. . . 47

Theorem 1.2. Any effective, isometric torus action of maximal rank on a compact,
positively curved Riemannian manifold of maximal symmetry rank is equivariantly
diffeomorphic to a linear action.

It is natural to ask to what extent the conclusions of Theorem 1.1 hold under
weaker curvature conditions, e.g., nonnegative curvature. In this case, an upper
bound on the symmetry rank smaller than the dimension of the manifold, as in
Theorem 1.1, cannot be achieved in full generality, since the n-dimensional flat
torus has maximal symmetry rank n. Under the additional hypothesis of simple
connectivity, it has been conjectured (cf. [12]) that if .Mn; g/ is a compact, simply
connected nonnegatively curved Riemannian n-manifold, then symrank.Mn; g/ �
b2n=3c and that, if n D 3k and .Mn; g/ has maximal symmetry rank, then
Mn must be diffeomorphic to the product of k copies of the 3-sphere S

3. This
conjectural bound on the symmetry rank has been verified in dimensions at most 9;
the topological classification of compact, simply connected Riemannian manifolds
of nonnegative curvature and maximal symmetry rank has also been completed in
dimensions at most 6, verifying the diffeomorphism conjecture in dimensions 3 and
6 (cf. [12]).

In addition to nonnegatively curved (Riemannian) manifolds, one may consider
manifolds with almost positive curvature, i.e., nonnegatively curved manifolds with
positive curvature on an open and dense set, or manifolds with quasipositive curva-
ture, i.e., nonnegatively curved manifolds with a point at which all tangent 2-planes
have positive curvature. These two families may be considered as intermediate
classes between positively and nonnegatively curved manifolds, and may be used as
test cases to determine to what extent the collections of positively and nonnegatively
curved manifolds differ from each other. In the noncompact case, it follows
from Perelman’s proof of the Soul Conjecture [37] that a complete, noncompact
manifold with quasipositive curvature must be diffeomorphic to R

n; in particular, it
admits positive curvature. In the compact case, RP 2 � RP 3 admits a metric with
quasipositive curvature (cf. [49]) and cannot support a metric of positive curvature.
In contrast to this, in the simply connected case there are no known obstructions
distinguishing compact manifolds with positive, almost positive, quasipositive or
nonnegative curvature .

Although there are many examples of manifolds with quasipositive or almost
positive curvature (cf. [7–9, 15, 24, 38, 43, 47, 49]), including an exotic 7-sphere,
the topological classification of these spaces remains open and one may consider
problems (a), (b) and (c) for these classes of Riemannian manifolds. Problem (a)
was solved by Wilking [54], who showed that the bound for the symmetry rank in
Theorem 1.1(1) also holds for Riemannian manifolds with quasipositive curvature:

Theorem 1.3 (Wilking [54]). If .Mn; g/ is an n-dimensional Riemannian mani-
fold of quasipositive curvature, then symrank.Mn; g/ � b.nC 1/=2c.

Our second result is the topological classification of compact, simply-connected
4- and 5-manifolds of quasipositive curvature and maximal symmetry rank:
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Theorem 1.4. Let Mn be a compact, simply connected Riemannian n-manifold
with quasipositive curvature and maximal symmetry rank. Then the following
hold:

(1) If n D 4, then M4 is diffeomorphic to S
4 or CP 2.

(2) If n D 5, then M5 is diffeomorphic to S
5.

It follows from work of Orlik and Raymond [34], in dimension 4, and of Oh [32], in
dimension 5, that smooth, effective T 2 actions on S

4 and CP 2, and smooth, effective
T 3 actions on S

5, are equivalent to linear actions. Therefore, the isometric torus
actions in Theorem 1.4 must be equivalent to linear actions; any such action can be
realized via a standard metric that is (trivially) quasipositively curved, whence the
equivariant classification follows.

Recall that the known examples of simply connected 4- and 5-manifolds of
nonnegative curvature that are not known to admit positively curved metrics are
S
2 � S

2, CP 2# ˙ CP 2, S
2 � S

3, the non-trivial bundle S
2 Q�S3 and the Wu

manifold SU.3/=SO.3/. Out of these manifolds, only S
2 � S

2 and CP 2# ˙ CP 2

admit metrics with nonnegative curvature and maximal symmetry rank 2, and the
bundles S

2 � S
3 and S

2 Q�S3 are the only ones admitting metrics of nonnegative
curvature and maximal symmetry rank 3; the Wu manifold SU.3/=SO.3/, equipped
with its standard nonnegatively curved homogeneous metric, has symmetry rank 2
(cf. [13, 14]). On the other hand, the trivial sphere bundle S

3 � S
2 carries an almost

positively curved metric with symmetry rank 1 (cf. [49]) and it is not known if the
remaining 4- and 5-manifolds listed in this paragraph admit metrics of quasipositive
curvature. Theorem 1.4 implies that any such metric would have symmetry rank at
most 1, in dimension 4, and at most 2, in dimension 5.

We conclude these remarks by recalling the so-called deformation conjecture
(cf. [15, 49]), which states that if .M; g/ is a complete Riemannian manifold of
quasipositive curvature, thenM admits a metric with positive curvature. As pointed
out above, this conjecture is true ifM is noncompact, false ifM is compact and not
simply connected, and remains open if M is compact and simply connected (see
[39] for the construction of a metric with positive curvature on the Gromoll-Meyer
sphere, an exotic 7-sphere with quasipositive curvature). Theorem 1.4 may be seen
as supporting this conjecture when .M; g/ is compact, simply connected and has
maximal symmetry rank.

The contents of this note are organized as follows. In Sect. 2 we collect some
background material and recall the proof of Theorem 1.3. This result was not
available in the literature; for the sake of reference, we have included Wilking’s
proof as conveyed to us by M. Kerin. In Sect. 3 we prove Theorem 1.2 and in Sect. 4
we prove Theorem 1.4. The proofs follow easily from restrictions on the structure
of the manifolds and their orbit spaces imposed by the curvature hypotheses and the
rank of the actions. As the reader may have already noticed, we have strived to give
extensive references to the literature.
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2 Preliminaries

2.1 Basic Setup and Notation

Let G � M ! M , m 7! g.m/, be a smooth action of a compact Lie group G on
a smooth manifold M . The orbit G.p/ through a point p 2 M is diffeomorphic to
the quotient G=Gp , where Gp D fg 2 G W g.p/ D pg is the isotropy subgroup
of G at p. If Gp acts trivially on the normal space to the orbit at p, then G=Gp is
called a principal orbit. The set of principal orbits is open and dense inM . Since the
isotropy groups of principal orbits are all conjugate in G, all principal orbits have
the same dimension. The isotropy group of principal orbits is the principal isotropy
subgroup. If G=Gp has the same dimension as a principal orbit and Gp acts non-
trivially on the normal space at p, thenG=Gp is called an exceptional orbit. An orbit
that is neither principal nor exceptional is called a singular orbit. When Gp D G,
the point p is called a fixed point of the action. Recall that the ineffective kernel of
the action is K WD fg 2 G W g.m/ D m; for all m 2 M g. The action is effective if
the ineffective kernel is trivial. The group QG D G=K always acts effectively on M .

Given a subset X � M , we will denote its projection under the orbit map � W
M ! M=G byX�. Following this convention, we will denote the orbit spaceM=G
by M �.

Recall that a finite dimensional length space .X; dist/ is an Alexandrov space
if it has curvature bounded from below in the triangle comparison sense (cf. [5]).
When .M; g/ is a complete, connected Riemannian manifold and G is a compact
Lie group acting on .M; g/ by isometries, the orbit space M � can be made into a
metric space .M �; dist/ by defining the distance between orbits p� and q� inM � as
the distance between the orbits G.p/ and G.q/ as subsets of .M; g/. If, in addition,
.M; g/ has sectional curvature bounded below by k, then the orbit space .M �; dist/
equipped with this so-called orbital metric is an Alexandrov space with curvature
bounded below by k. The space of directions of a general Alexandrov space at a
point x is, by definition, the completion of the space of geodesic directions at x. In
the case of an orbit space M � D M=G, the space of directions †p�M � at a point
p� 2 M � consists of geodesic directions and is isometric to

S
?
p =Gp;

where S
?
p is the unit normal sphere to the orbit G.p/ at p 2 M .

2.2 Proof of Theorem 1.3 (Wilking [54])

Let .Mn; g/ be an n-dimensional Riemannian manifold of quasipositive curvature
with an (effective) isometric T k action. It suffices to show that if k > .n C 1/=2,
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then .Mn; g/ cannot have quasipositive curvature. Throughout the proof we will let
�p D T k.p/ be a principal orbit of the T k action for some p 2 M . Given q 2 �p ,
we let Tq.�p/

? be the orthogonal complement of Tq.�p/ in TpM . Recall that the
second fundamental form at q 2 �p is given by

˛ W Tq.�p/ � Tq.�p/ ! Tq.�p/
?:

Let u 2 Tq.�p/, juj D 1, and let u? be its orthogonal complement in Tq.�p/.
Note that

dim u? D dim�p � 1 > n � 1
2

;

dimTq.�p/
? D dimM � dim�p <

n � 1
2

:

Consider ˛.u; �/ W u? ! Tq.�p/
?. For dimension reasons there exists a unit vector

w 2 u? such that ˛.u;w/ D 0.
We will now show that there exists a unit vector v 2 Tq.�p/ such that

˛.v; v/ D 0. Suppose that there is no such vector in Tq�p . Then there exists
u 2 Tq.�p/, juj D 1, such that j˛.u; u/j > 0 is minimal. By the preceding
paragraph, there exists w 2 u?, jwj D 1, such that ˛.u;w/ D 0. Consider the
function

f .t/ WD j˛..cos t /u C .sin t /w; .cos t /u C .sin t /w/j2
D j.cos2 t/˛.u; u/C .sin2 t/˛.w;w/j2:

Since f .0/ D j˛.u; u/j2 is minimal, f 0.0/ D 0 and

0 � f 00.0/ D 4.h˛.u; u/; ˛.w;w/ i � j˛.u; u/j2/:

In particular, since j˛.u; u/j2 > 0, we have that

h˛.u; u/; ˛.w;w/ i > 0:

It then follows from the Gauss formula that

sec�p.u;w/ D secM.u;w/C h˛.u; u/; ˛.w;w/ i > 0:

This yields a contradiction, since�p is a torus equipped with a left-invariant metric,
hence flat.

It follows from the preceding paragraph that there exist orthogonal unit vectors
u; v 2 Tq.�p/ such that ˛.u; u/ D ˛.u; v/ D 0. Then, by the Gauss formula,

sec�p.u; v/ D secM.u; v/:
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Since the choice of principal orbit �p and q 2 �p was arbitrary, it follows that
there is an open and dense set of points p 2 M with a tangent plane …p � Tp.�p/

such that

0 D sec�p.…p/ D secM.…p/:

Therefore, .M; g/ cannot have quasipositive curvature. �

3 Proof of Theorem 1.2

Let .Mn; g/ be a compact, positively curved Riemannian n-manifold of maximal
symmetry rank with an (effective) isometric action of a torus T k of maximal
rank. We first recall some basic facts from [17, 18]. There exists a circle subgroup
T 1 � T k with fixed point set a totally geodesic codimension 2 submanifold F n�2
ofMn such that F n�2 D @.Mn=T 1/. The orbit spaceMn=T 1 is a positively curved
Alexandrov space homeomorphic to the cone over an orbit p� at maximal distance
from @.Mn=T 1/. The isotropy subgroup of p� is either T 1, Zk , k � 2, or 1, the
trivial subgroup of T 1. Since F n�2 is diffeomorphic to the space of directions of
Mn=T 1 at p�, F n�2 is diffeomorphic to a sphere, if p� is a principal orbit; a lens
space or an even-dimensional real projective space, if p� is an exceptional orbit;
or to a complex projective space, if p� is a fixed point. Moreover, there exists an
invariant disc bundle decomposition

Mn D D.F n�2/ [E D.G.p//;

whereD.F n�2/ is a tubular neighborhood of F n�2,D.G.p// is a tubular neighbor-
hood of the orbit G.p/ corresponding to the vertex p� of the orbit space, and E is
the common boundary @D.F n�2/ D @D.G.p//. The manifoldMn is diffeomorphic
to a sphere if p� is a principal orbit; a lens space or a real projective space, if p� is
an exceptional orbit; or to a complex projective space, if p� is a fixed point.

We will now prove the theorem in the case where Mn is diffeomorphic to an n-
sphere Sn. We proceed by induction on the dimension n. For n D 2, it is well known
that any smooth T 1 action on S

2 is equivalent to a linear action. Fix n > 2 and let
.Sn; g/ be a positively curved n-sphere of maximal symmetry rank, so that there
exists an effective isometric T k action on .Sn; g/ with k D b.nC1/=2c. As recalled
in the preceding paragraph, there is a circle subgroup T 1 � T k with fixed point set
a totally geodesic sphere Sn�2 � S

n of codimension 2. The invariant decomposition
of Sn into a union of disc bundles induced by the T 1 action is given by

S
n ' D.Sn�2/ [@D.S1/ D.S

1/

' .Sn�2 �D2/ [Sn�2�S1 .D
n�1 � S

1/;
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where D.Sn�2/ is a tubular neighborhood of the fixed point set Sn�2 of T 1 and
D.S1/ is a tubular neighborhood of the orbit T 1.p/ ' S

1 whose projection p� is
the vertex point of the orbit space S

n=T 1. As in [17], the T 1 action on

D.Sn�2/ ' S
n�2 �D2

is equivalent to the T 1 action on S
n�2 �T 1 D

2, the associated disc bundle to the T 1

action on the (trivial) normal bundle of the fixed point set Sn�2.
We may write T k D T 1 ˚ T k�1, where T k�1 is the orthogonal complement of

T 1 in T k . Observe now that T k�1 acts effectively and isometrically on S
n�2 � S

n.
By induction, the action of T k�1 on S

n�2 is linear. It follows that the T k action on
S
n�2 �D2 is given by the product of a linear T k�1 action on S

n�2 and a linear T 1

action onD2. Consequently, on the boundary S
n�2�S

1 the T k action is the product
of a linear T k�1 action on S

n�2 and a linear T 1 action on S
1. OnDn�1�S

1, the other
half of the disc bundle decomposition of Sn, the T k action is given by the product
of a linear T k�1 action on Dn�1 and a linear action T 1 action on S

1. Observe that
the linear T k�1 action on Dn�1 is the cone over the linear action of T k�1 on the
S
n�2 factor of the boundary D.S1/ ' S

n�2 � S
1. Hence, the T k action on .Sn; g/ is

equivariantly diffeomorphic to the linear T k action on S
n D S

1 �S
n�2 � R

2�R
n�1

given by letting T 1 act orthogonally on R
2 and T k�1 act orthogonally on R

n�1.
When Mn is diffeomorphic to a lens space or to a real projective space, the

conclusion follows by passing to the universal covering space and observing that
the covering torus action must be equivalent to a linear action on S

n.
The proof when Mn is diffeomorphic to CPm is analogous to the case of the

sphere. For m � 2, the equivariant disc bundle decomposition is given by

CPm ' S
2n�1 �T 1 D

2 [S2n�1 D2n;

where T 1 is the circle subgroup of T m fixing both CPm�1 � CPm and the vertex
of D2n, and S

2m�1 �T 1 D
2 is the normal disc bundle of CPm�1 in CPm. The T m

action is equivalent to a linear T m action on CPm induced by a linear T mC1 action
on S

2mC1 via the projection map � W S2mC1 ! CPm of the Hopf action. �

4 Proof of Theorem 1.4

We proceed along the lines of [12]. Let .Mn; g/ be a compact, simply connected
Riemannian n-manifold, n D 4 or 5, with quasipositive curvature and maximal
symmetry rank. Then .Mn; g/ has an isometric torus action whose orbit space M �
is two-dimensional. It follows from work of several authors (cf. [4, 25, 32, 34]) that
the orbit spaceM � of the action has the following properties:M � is homeomorphic
to a 2-disk, the boundary of M � is the set of singular orbits and the interior of M �
consists of principal orbits. Moreover, when n D 4, there are at least two isolated
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orbits with isotropy T 2 and, when n D 5, there are at least three isolated orbits with
isotropy T 2. In both cases, points in the arcs in the boundary of M � joining orbits
with isotropy T 2 have isotropy conjugate to a circle T 1; the angle between these
arcs is �=2 and is the length of the space of directions at an orbit with isotropy T 2

in M �.
Since .Mn; g/ is a quasipositively curved Riemannian manifold, M � is a

nonnegatively curved 2-manifold with non-smooth boundary and positive curvature
on an open subset. A simple comparison argument using Toponogov’s theorem
shows that there can be at most 4 points inM � corresponding to orbits with isotropy
T 2 and, if there are 4 such points, then M � must be isometric to a flat rectangle.
Since M � has positive curvature on an open subset, there can be at most 3 points in
M � with isotropy T 2. Hence, for n D 4, the orbit space M � has 2 or 3 points with
isotropy T 2 and, for n D 5, M � has exactly 3 such points. The conclusions of the
theorem now follow from the Orlik-Raymond classification of compact, smooth,
simply connected 4-manifolds with a smooth, effective T 2 action (cf. [34]), and
from Oh’s classification of compact, smooth, simply connected 5-manifolds with a
smooth, effective T 3 action (cf. [32]). �
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Lectures on n-Sasakian Manifolds

Owen Dearricott

1 Progress Toward the Classification of Isoparametric
Hypersurfaces of Spheres

Given an oriented hypersurface, Mn, of a Riemannian manifold, NMnC1, there is
a well defined unit length normal field, N , along Mn. The Weingarten map, A W
TM ! TM, is defined to be the negative of the component of the covariant derivative
of the unit normal tangent to the hypersurface,

AX � � .rXN/
k :

A quick calculation reveals that at each point of M the Weingarten map is a
symmetric endomorphism,

hAX; Y i D �hrXN; Y i D hN;rXY i compatibility and Y ? N

D hN; ŒX; Y 
C rY Xi symmetry

D hN; ŒX; Y 
i C hN;rY Xi D hN;rY Xi integrability

D h�rY N;Xi D hAY;Xi:

Since the Weingarten map is symmetric it has real eigenvalues at each point. These
are the principal curvatures of the hypersurface.

Typically the principal curvatures and their multiplicities vary from point to
point as one moves around M . In the late 1930s Elié Cartan became interested in
classifying hypersurfaces of spheres whose principal curvatures remained constant
over the hypersurface, [8]. He observed:
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Proposition 1. A hypersurface,M , of a sphere has constant principal curvatures if
and only if it is the level set of a function, f W SnC1 ! R, such that the Laplacian,
�f , and square length of the gradient, jrf j2, are purely f dependent.

For such f Cartan coined the term isoparametric function. For a level set of a regular
value of an isoparametric function, i.e., a hypersurface with constant principal
curvatures, he coined the term isoparametric hypersurface.

Cartan classified such hypersurfaces with g distinct principal curvatures where
g D 1; 2 or 3. He found that each sphere was acted upon transitively by
isometries fixing the levels of the isoparametric function, that is, fixing a whole
family of hypersurfaces with constant principal curvatures. In general any family
of hypersurfaces realised as the orbits of an isometric action on the sphere must
necessarily preserve the principal curvatures along each hypersurface since the
Weingarten map is equivariant under isometry and hence must be isoparametric.
Cartan surmised that all isoparametric hypersurfaces were homogeneous in this way.

Although unresolved the problem remained essentially completely abandoned in
the postwar years until Nomizu sparked interest in the study among the Japanese
school in the 1970s. Much to the surprise of everyone, Ozeki and Takeuchi
demonstrated Cartan to be wrong in his conjecture by finding infinite families of
inhomogeneous examples of isoparametric hypersurface families with four principal
curvatures [28]. A few years later Ferus, Karcher and Münzner extended this
inhomogeneous family [20]. We will discuss this in greater detail in a moment.

A key advance toward a classification was Münzner’s discovery that the number
of possible distinct principal curvatures, g, is highly restricted [26]. He observed the
sphere can be reconstructed as the union of two disk bundles over the critical levels
(focal sets), M� D f �1.�1/ and MC D f �1.1/, glued along a common boundary
hypersurface,M . This allowed Münzner to argue the rank of the cohomology group
of M is 2g and is restricted to 2; 4; 6; 8; 12. Hence the possible numbers of distinct
principal curvature are g D 1; 2; 3; 4; 6. Much later Stolz used similar information
to classify the possible multiplicities and to classify isoparametric hypersurfaces in
spheres up to multiplicity [29].

Armed with this topological data the stage was set to explicitly conjecture the
nature of a classification.

Conjecture 1. Isoparametric hypersurface families in spheres fall under at least one
of two schemes:

(i) the Ferus-Karcher-Münzner description, i.e., the FKM examples,
(ii) hypersurface orbits of isometric actions on spheres.

The principal orbits of the actions described in (ii) are submanifolds of the sphere
of codimension one, that is the action is cohomogeneity one. Such actions on spheres
were classified by Hsiang and Lawson [21].

By the close the first decade of the twenty first century Cartan’s classification
problem is finally coming close to a resolution. The range of techniques used to
attack the problem have been unusually broad. In this lecture we only present an
informal outline.
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Cartan observed that any isoparametric function, f W Sn ! R, was the restriction
of a homogeneous polynomial, F W R

nC1 ! R, f D F jSn . In particular for
his classification of isoparametric hypersurfaces with three principal curvatures
he observed that the Cartan polynomial must obey a pair of partial differential
equations,

�F D 0; jrF j2 D 9jxj4:

Münzner’s articulated this situation in full generality in the late 1970s:

Proposition 2. f W Sn�1 ! R is an isoparametric function if and only if f D
F jSn�1 for a homogeneous polynomial of degree g, F W Rn ! R, satisfying

2�F D .m1 �m2/g
2jxjg�2; jrF j2 D g2jxj2g�2 (1)

for non-negative integers, m1;m2.

Following this Ferus, Karcher and Münzner found elegant solutions to (1) which
we now describe. Let P0; P1; : : : ; Pm be symmetric n � n matrices such that

PiPj C PjPi D 2ıijI;

that is, Pi and Pj anti-commute if i ¤ j and P 2
i D I for each i . Define F W Rn !

R by

F.x/ D jxj4 � 2
mX
kD0

hPkx; xi2: (2)

Exercise 1. Verify that (2) satisfies (1) with m1 D m and m2 D ` �m � 1 where
n D 2`.

Exercise 2. Verify that the isoparametric function, f D F jSn�1 , for (2) has that the
focal submanifolds, MC D f �1.1/ and M� D f :1.�1/, are

MC D ˚
x 2 Sn�1 W hPkx; xi D 0; k D 0; 1; : : : ; m

�
; (3)

M� D
(
x 2 Sn�1 W Px D x for some P D

mX
kD0

akPk s.t.
mX
kD0

a2k D 1

)
: (4)

In the case of six principal curvatures Abresch classified the hypersurfaces up to
multiplicity some years before Stolz [2]. He found the multiplicity of each of the
principal curvatures must be either m D 1 or m D 2. In the mid 1980s Dorfmeister
and Neher classified the m D 1 case using what they called E-families.
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Definition 1. An E-family is a linear map, E, from R
2 to the symmetric 5 � 5

matrices with distinct eigenvalues that satisfies

E.w/5 � 120jwj2E.w/3 C 1296jwj4E.w/ D 0:

They argued that the hypersurface family associated with the E-family naturally
associated with them D 1 case must be homogeneous and thus classified [18]. Quite
recently Miyaoka gave arguments to deal with m D 1 by different means, [23], and
extended the approach to deal with m D 2, [24], completing the classification for
g D 6. Recall the shape operator of a submanifold, M , of a Riemannian manifold,
NM , is defined by taking minus the tangential component of the covariant derivative

of a normal field along a submanifold,

SNX D � .rXN/
k :

Definition 2. An isoparametric hypersurface family is said to obey Condition A at
x 2 MC if ker.SN / D ker.SN 0/ for all normal vectors, N;N 0.

In her arguments, using Lax pairs, Miyaoka shows that in the g D 6 case that
Condition A holds at each point of MC. She argues this implies the existence
of a linear isometry between any two points on each hypersurface that preserves
all covariant derivatives of the curvature tensor. With simple connectivity it then
follows from a theorem of Singer that the hypersurfaces are homogeneous and thus
fall under the cohomogeneity one classification of Hsiang and Lawson.

The g D 4 case remains open, but now is largely done. This is thanks to a result
proven by Cecil, Chi and Jensen [9], and again shortly thereafter by Immervoll [22].
Cecil, Chi and Jensen’s exhaustive work is based on Cartan’s method of moving
frames and complete intersections from commutative algebra. Immervoll’s brief
proof uses the algebraic framework of ternary products developed by Dorfmeister
and Neher in conjunction with his original ideas from incidence geometry.

Proposition 3. If an isoparametric hypersurface family with g D 4 has
multiplicities, m2 � 2m1 � 1, then the family is of FKM type.

Here m1 and m2 are two repeated multiplicities of the four eigenspaces of the
Weingarten map on a hypersurface. Since these proofs originally appeared Quo-
Shin Chi has proven the above result by yet two more different means [10, 12].

This leaves only multiplicities, (2,2), (3,4), (4,5), (6,9) and (7,8), uncovered
by this theorem. Ozeki and Takeuchi dealt with (2,2) back in the 1970s. For the
multiplicity pair, (3,4), Chi used the notion of a regular sequence from commutative
algebra to show that Condition A holds at a point of MC and hence an old result
of Dorfmeister and Neher classifies it as FKM type [11]. Since the meeting in 2010
Chi has built on this result to settle multiplicities (4,5) and (6,9), leaving only the
(7,8) case unresolved as of June 2014 [13].

The focus of these lectures is not so much the resolution of Cartan’s problem
but rather explore interesting geometric structure carried by some focal sets among
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isoparametric hypersurface families with g D 4. For this it is useful for us
to reiterate some elements of the algebraic framework built up by Dorfmeister and
Neher [17], as a convenient language to build up an understanding of the curvature
tensor of a focal submanifold through the shape operator. Since Dorfmeister and
Neher’s formalism is somewhat intimidating to the uninitiated we largely avoid
using it in the middle lectures. We return to it in the final lecture when the reader is
in a position to more fully appreciate its usefulness.

Definition 3. A ternary product, f: : :g W V � V � V ! V , or triple, on an inner
product space, V , is a multi-linear map sending triples of vectors to vectors. A triple
is said to be symmetric if:

(i) fxyzg is unchanged if its arguments are permuted.
(ii) hfxyzg;wi D hz; fxywgi for each quadruple of vectors, x; y; z;w, i.e., T .x; y/ W

V ! V defined by T .x; y/z D fxyzg is self adjoint, for each, x; y.

Lemma 1. The set of symmetric triples on V is in one to one correspondence with
the set of homogeneous symmetric quartics, F W V ! R, via

F.x/ D 3jxj4 � 2

3
hfxxxg; xi: (5)

Proof. Let fei ji D 1; ::; ng be an orthonormal basis for V and x D P
i xi ei . Let

aijkl D hfei ej ekg; eli. Note conditions (i) and (ii) amount to the invariance of aijkl

under permutation of the indices, i; j; k; l . Hence

hfxxxg; xi D
X
ijkl

aijklxixj xkxl

is a homogeneous symmetric quartic if and only if we have (i) and (ii). Since jxj4 is
also a homogeneous symmetric quartic, F.x/ D 3jxj4 � 2

3
hfxxxg; xi is as well.

Conversely if F.x/ is a homogeneous symmetric quartic it follows that 9
2
jxj4 �

3
2
F.x/ is as well. Let

9

2
jxj4 � 3

2
F.x/ D

X
ijkl

aijklxixj xkxl :

where aijkl are invariant under permutation of the indices, i; j; k; l Define
fei ej ekg � P

l aijklel and extend multi-linearly. Verify that (i) and (ii) follow
immediately.

As both sets are in correspondence to choices of aijkl invariant under permutation
of i; j; k; l it now follows that the correspondence is established.

Example 1. Let V D M2�r .F/ be the vector space of 2� r matrices with entries in
F, where F is one of the associative division algebras, R;C or H. Let jxj2 D tr.xx�/
give the norm. Consider the Cartan polynomial found by Ozeki and Takuechi,

F.x/ D 3
�
tr.xx�/

�2 � 4tr
�
.xx�/2

�
: (6)
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Let us find the associated symmetric triple. Comparing (5) with (6) we have

3jxj4 � 2

3
hfxxxg; xi D 3

�
tr.xx�/

�2 � 2

3
hfxxxg; xi D 3.tr.xx�//2 � 4tr..xx�/2/:

Hence

hfxxxg; xi D 6tr.xx�xx�/: (7)

Exercise 3. Show that in general, yhfxxxg; xi D 4hfxxxg; yi, where yh � dh.y/ 2
V for h W V ! R is understood.

y(7), where by this we mean Eq. (7) differentiated in direction y, becomes

4hfxxxg; yi D 6
�
tr.yx�xx�/C tr.xy�xx�/C tr.xx�yx�/C tr.xx�xy�/

�
D 6

�
tr.yx�xx�/C tr.xx�xy�/C tr.yx�xx�/C tr.xx�xy�/

�
D 12

�
tr
�
.xx�x/y��C tr

�
y.xx�x/�

�� D 24hxx�x; yi:

Hence

fxxxg D 6xx�x: (8)

Likewise y(8) becomes

3fxxyg D 6
�
yx�x C xy�x C xx�y

�
: (9)

Moreover since y is a constant vector z(9) becomes

3 .2fxzyg/ D 6
�
yz�x C yx�z C zy�x C xy�z C zx�y C xz�y

�
:

Hence for Ozeki and Takuechi’s Cartan polynomial, F , we have the symmetric
triple,

fxyzg D xy�z C yx�z C xz�y C yz�x C zx�y C zy�x: (10)

Given this equivalence between symmetric triples and homogeneous symmetric
quartics Dorfmeister and Neher reformulated Münzner’s equations in terms of
conditions on the symmetric triple.

Lemma 2. jrF j2 D 16jxj6 if and only if jfxxxgj2 � 9jxj2hfxxxg; xi C 18jxj4 D 0.

Proof. Recall

F.x/ D 3hx; xi2 � 2

3
hfxxxg; xi:
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Hence y(5) becomes

hrF; yi D 12hx; xihx; yi � 8

3
hfxxxg; yi:

Hence

rF D 12jxj2x � 8

3
fxxxg: (11)

j(11)j2 is now

jrF j2 D
ˇ̌
ˇ̌12jxj2x � 8

3
fxxxg

ˇ̌
ˇ̌2 D

ˇ̌
ˇ̌4
�
3jxj2x � 2

3
fxxxg

�ˇ̌
ˇ̌2

D 16

ˇ̌
ˇ̌3jxj2x � 2

3
fxxxg

ˇ̌
ˇ̌2 :

ˇ̌
ˇ̌3jxj2x � 2

3
fxxxg

ˇ̌
ˇ̌2 D 9jxj4jxj2 � 4jxj2hfxxxg; xi C 4

9
jfxxxgj2

D 9jxj6 � 4jxj2hfxxxg; xi C 4

9
jfxxxgj2:

Hence jrF j D 16jxj6 if and only if

9jxj6 � 4jxj2hfxxxg; xi C 4

9
jfxxxgj2 D jxj6:

That is

4

9
jfxxxgj2 � 4jxj2hfxxxg; xi C 8jxj6 D 0: (12)

Equivalently 9
4

(12) reads

jfxxxgj2 � 9jxj2hfxxxg; xi C 18jxj6 D 0: (13)

Exercise 4. Prove that �F D 8.m1 �m2/jxj2 if and only if both

(i) tr .T .x; y// D 2.3C 2m1 Cm2/,
(ii) dim.V / D 2.1Cm1 Cm2/.

Lemma 3.

MC D ˚
x 2 V W jxj2 D 1 and fxxxg D 3x

�
;

M� D ˚
x 2 V W jxj2 D 1 and fxxxg D 6x

�
:
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Proof. Recall the focal sets correspond to critical values of f D F jSn�1 . Thus to
find them amounts to a Lagrange multiplier problem for F subject to the constraint,
jxj2 D 1.

rF D 12jxj2x � 8

3
fxxxg; rjxj2 D 2x:

Hence the Lagrange multiplier condition, rF D �rjxj2, can be written

12x � 8

3
fxxxg D 2�x; fxxxg D �x:

The condition (13) subject to jxj2 D 1 is

jfxxxgj2 � 9hfxxxg; xi C 18 D 0: (14)

Hence �2 � 9�C 18 D 0. That is .� � 3/.� � 6/ D 0. So either � D 3 or � D 6.
Cauchy-Schwarz gives jhfxxxg; xij � jfxxxgjjxj D jfxxxgj. Hence

jfxxxgj2 � 9jfxxxgj C 18 � 0: (15)

Hence 3 � jfxxxgj � 6.

�1 D 3 � 2

3
� 6 � F.x/ D 3 � 2

3
hfxxxg; xi � 3 � 2

3
� 3 D 1:

Hence x with jxj2 D 1 and fxxxg D 3x correspond to elements of MC and x with
jxj2 D 1 and fxxxg D 6x correspond to elements of M�.

Definition 4. For x 2 M�. Define

V�.x/ � fv 2 V jhx; vi D 0 and T .x/v � T .x; x/v D �vg :

Exercise 5. Show for x 2 M� that TxM� D V2.x/.

Lemma 4. The normal space, .TxM�/? D V0.x/.

Proof. Since T .x/ is a symmetric endomorphism of the vector space, V , it follows
from the spectral theorem that V orthogonally decomposes into a sum of spaces,
V�.x/ and Rx. To understand what � occur consider y (13).

6hfxxxg; fxxygi � 36jxj2hfxxxg; yi � 18hx; yihfxxxg; xi C 128jxj4hx; yi D 0:

Hence

hfxxfxxxgg; yi � 6jxj2hfxxxg; yi � 3hfxxxg; xihx; yi C 18jxj4hx; yi D 0:



Lectures on n-Sasakian Manifolds 65

Hence

fxxfxxxgg � 6jxj2fxxxg � 3hfxxxg; xix C 18jxj4x D 0: (16)

Consider v(16).

3fxxfxxvgg C 2ffxxxgxvg � 18jxj2fxxvg � 12hx; vifxxxg
�12hfxxxg; vix � 3hfxxxg; xiv C 72jxj2hx; vix C 18jxj4v D 0:

Now fxxxg D 6x and jxj2 D 1.

3fxxfxxvgg C 12fxxvg � 18fxxvg � 72hx; vix
�72hx; vix � 18hx; xiv C 72hx; vix C 18v D 0:

3fxxfxxvgg � 6fxxvg � 72hx; vix � 18v C 18v D 0:

3fxxfxxvgg � 6fxxvg � 72hx; vix D 0:

fxxfxxvgg � 2fxxvg � 18hx; vix D 0:

T .x/2v � 2T .x/v � 18hx; vix D 0:

Let v 2 V�.x/. Then �2v � 2�v D 0. Hence �2 � 2� D 0. Thus � D 2 or � D 0.

V D V2.x/˚ V0.x/˚ Rx D TxS
n�1 ˚ Rx

D TxM� ˚ .TxM�/? ˚ Rx:

One can reason along similar lines to find

Lemma 5. Let x 2 MC. Then the tangent space, TxMC D V1.x/ and the normal
space, .TxMC/? D V3.x/.

The behaviour of the curvature tensor of a submanifold, M , of a Riemannian
manifold, NM , can be understood via the second fundamental form. Recall the Levi-
Civita connection onM is the unique connection on the tangent bundle for which

(i) The metric is compatible, i.e., XhY;Zi D hrXY;Zi C hY;rXZi, for fields
X; Y;Z along M .

(ii) The connection is symmetric, i.e., rXY � rY X D ŒX; Y 
 for fields X; Y
along M .

If we set rXY D � NrXY
�k

then compatibility is clear. Moreover since ŒX; Y 
 lies

along M it follows
� NrXY

�k � � NrY X
�k D ŒX; Y 
. Thus rXY D � NrXY

�k
. Define

the second fundamental form, BXY D � NrXY
�?

. We have BXY � BYX D 0 and
hence BXY D BYX .
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Lemma 6. The second fundamental form is a symmetric tensor.

Proof.

hBX.f Y /;N i D h NrX.f Y /;N i
D �hf Y; NrXN i D �f hY; NrXN i
D f h NrXY;N i D hfBXY;N i:

Hence BX.f Y / D fBXY .

Exercise 6. The shape operator, SNX D � � NrXN
�k

, is tensorial.

Lemma 7. For each normal field, N , SN defines a symmetric endomorphism.

Proof.

hSNX; Y i D �h NrXN; Y i D hN; NrXY i D hN;BXY i D hN;BY Xi D hSNY;Xi:

Let n be a normal field to M�. Then fxxng D 0 for each x 2 M�. Take
the covariant derivative along MC in direction z. Here D denotes the covariant
derivative in V .

2fzxng C fxxDzng D 0:

hDzn; xi D �hn;Dzxi D �hn; zi D 0:

Dzn D Nrzn D � Nrzn
�
2

C � Nrzn
�
0

Hence

T .x/Dzn D 2
� Nrzn

�
2

D �2Snz:

Hence

2fzxng � 2Snz D 0; i.e. Snz D fnxzg:

Definition 5. Define the binary product, ı W V � V ! V by y ı z � fyxzg, relative
to x 2 M�.

The second fundamental form and the shape operator of M� are encoded by the
binary product, ı.
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2 CR/Contact CR Submanifolds of Kähler/Sasakian
Manifolds

A Kähler manifold is a Riemannian manifold, NM , equipped with an almost complex
structure, J , that is compatible with the metric and is parallel relative to the Levi-
Civita connection. Namely

J W T NM ! T NM such that J 2.X/ D �X for each vector, X;

hJX; Y i D �hX; J Y i; � NrXJ
�
.Y / D 0 for each pair of vectors, X; Y:

An almost complex structure can only exist on an even dimensional vector space.
Hence Kähler geometry can only take place on even dimensional manifolds. The
natural analogue for Kähler geometry in odd dimensions is Sasakian geometry. A
Sasakian manifold is a Riemannian manifold, S , equipped with a unit Killing field,
� , (i.e., j�j2 D 1, and h NrX�; Y i D �hX; NrY �i for vector fields X; Y ) such that

R.X; �/Y D hY; �iX � hX; Y i� (17)

for all vector fields, X; Y .
Note that the restriction of the covariant derivative of � , '.X/ D NrX� , defines

an almost complex structure when restricted to the distribution, �?.

Example 2. Consider S D S2n�1 � C
n. S1 D fz 2 C W jzj D 1g acts isometrically

on S via scalar multiplication on the left,

z.z1; z2; z3; : : : ; zn/ D .zz1; zz2; zz3; : : : ; zzn/:

The fundamental field of i under this action, � D .iz1; iz2; : : : ; izn/, is a unit length
Killing field. Equation (17) follows vacuously since this is the form of the curvature
tensor for a sphere. Hence standard odd dimensional spheres are Sasakian.

Exercise 7. Show that the quotient space, CPn�1 D S2n�1=S1, is equipped with
the Kähler structure,

J.��.x1; x2; x3; : : : ; xn// D ��.ix1; ix2; ix3; : : : ; ixn/;

for tangent vectors of the sphere, .x1; x2; x3; : : : ; xn/ ? � , where � is the natural
projection.

The above are the only examples we consider in these lectures.
We are interested in structure on submanifolds of Kähler and Sasakian manifolds.

A fine reference for much of this material is [30].

Definition 6. A contact CR submanifold, M , of a Sasakian manifold, S , is a
manifold equipped with a smooth distribution, D , of TM such that for each x 2 M
one has
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'.Dx/ � Dx (i.e., D holomorphic);

'.D?
x / � .TxM/? (i.e., D? anti-holomorphic)

where '.X/ � NrX� . When '.D?
x / D .TxM/? for each x the contact CR structure

is called generic.

In this treatment we also require the innocuous assumption that � is anti-
homomorphic, i.e., �x 2 D? for each x 2 M .

Proposition 4. The anti-holomorphic distribution of a contact CR-submanifold of
a Sasakian manifold is tangent to a foliation of the submanifold.

Proof. We show D? is involutive, i.e., show that for fields, U; V , that lie along D?
that ŒU; V 
 lies along D?. Recall that

� NrX'
�
Y D R.X; �/Y since � is a Killing

field.
Let Z lie along D .

� NrZ'
�
� D h�; �iZ � hZ; �i� D Z;

� NrZ'
�
� D Nr .'.�// � '. NrZ�/ D �'2.Z/:

Hence '2.Z/ D �Z for each Z 2 D . ' defines an almost complex structure on D .

hŒU; V 
; '.Z/i D h NrUV; '.Z/i � h NrV U; '.Z/i
D �h' � NrU V

�
; Zi C h' � NrV U

�
; Zi:

The Sasakian structure gives

hV; �iU � hU; V i� D NR.U; �/V D NrU .'.V // � ' � NrU V
�
:

Hence h' � NrU V
�
; Zi D h NrU .'.V // ; Zi.

Since '.V / is a normal it follows

h NrU .'.V // ; Zi D �h'.V /; NrUZi D �h'.V /; NrZU i:

hŒU; V 
; '.Z/i D h'.V /; NrZU i � h'.U /; NrZV i
D �hV; ' � NrZU

�i C hV; NrZ .'.U // D �hV; � NrZ'
�
.U /i:

Since
� NrZ'

�
.U / D hZ; �iU � hZ;U i� D 0 we conclude that ŒU; V 
 ? D . As

ŒU; V 
 is tangent to M if follows ŒU; V 
 lies along D? and D? is involutive.

Example 3. Let S D S4n�1 � H
n. Let

M D f.q1; q2; q3; : : : ; qn/ 2 S4n�1 W Nq1iq1 C Nq2iq2 C Nq3iq3 C : : :C Nqniqn D 0g:
(18)
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It follows

TqM D
�
.v1; v2; v3; : : : ; vn/ 2 H

n W Nv1iq1 C Nv2iq2 C Nv3iq3 C : : : Nvniqn is real
Nv1q1 C : : : Nvnqn is purely imaginary

�
:

(19)

Let

D?
q D f.q1v; q2v; : : : ; qnv/ W Re.v/ D 0g ˚ R.iq1; iq2; : : : ; iqn/:

We argue the above sum is orthogonal. If .v1; v2; : : : ; vn/ is in both sum-
mands, then vk D qkv D �iqk . Thus � Nqkiqk D v and thus nv D
� . Nq1iq1 C Nq2iq2 C Nq3iq3 C : : :C Nqniqn/ D 0. That is v D 0. vk D iqk givesP

k Nvkiqk D �1 is real and
P

k Nvkqk D 0 is purely imaginary. vk D qkv givesP
k Nvkiqk D �v �Pk Nqkiqk

� D 0 is real and
P

k Nvkqk D �v is purely imaginary.
Hence D? is a smooth distribution on TM.

Since '.�/ D 0 it suffices to show for V D .q1v; q2v; : : : ; qnv/ that '.V / 2�
TqM

�?
.

Let W 2 TqM be arbitrary. Then W D .w1;w2;w3; : : : ;wn/ and from (19),
Nw1iq1 C Nw2iq2 C Nw3iq3 C : : : C Nwniqn is real. Multiply on the right by v and
observe Nw1iq1v C Nw2iq2v C Nw3iq3v C : : : C Nwniqnv is purely imaginary, hence

Re. Nw1iq1v C Nw2iq2v C Nw3iq3v C : : :C Nwniqnv/ D 0. Namely '.V / 2 �
TqM

�?
.

Since dim
�
.TqM/?

� D 3 and dim
�
D?� D 4 it follows ' .D/ � D and M is a

generic contact CR submanifold.
As it happens this contact CR submanifold also occurs as the focal set of the

isoparametric hypersurface family discussed in Example 1. To see this let qk D
zk C wkj where zk;wk 2 C for k D 1; 2; 3; : : : ; n. Consider the map,

.q1; q2; q3; : : : ; qn/ 2 M 7! x D
�

z1 z2 z3 : : : zn
w1 w2 w3 : : : wn

�
2 M2�n.C/:

Nqkiqk D .Nzk � j Nwk/ i .zk C wkj / D .Nzk � j Nwk/ .izk C .iwk/j /

D Nzkizk � j Nwkizk C Nzkiwkj � j Nwk iwkj D �jzkj2 � jwkj2
�
i C .2Nzkwk/ ij:

Hence (18) implies

jz1j2 C jz2j2 C jz3j2 C : : :C jznj2 D jw1j2 C jw2j2 C jw3j2 C : : :C jwnj2 D 1

2

and

Nz1w1 C Nz2w2 C Nz3w3 C : : :C Nznwn D 0:
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Hence

xx� D
�

z1 z2 z3 : : : zn
w1 w2 w3 : : : wn

�
0
BBBBB@

Nz1 Nw1
Nz2 Nw2
Nz3 Nw3
:::
:::

Nzn Nwn

1
CCCCCA

D
�
1
2
0

0 1
2

�
:

Thus jxj2 D tr .xx�/ D 1
2

C 1
2

D 1 and fxxxg D 6xx�x D 3x. We conclude
M D MC from Example 1.

Example 4. Consider S D S15 � O
2, where O denotes the set of Cayley numbers.

Note O
2 has an almost complex structure defined by J.a; b/ � .�b; a/. Hence

we may take � D .�b; a/ at .a; b/ 2 S15.
Let

M � f.a; b/ 2 S15 W Nab is realg:

It follows

T.a;b/M D
�
.r; s/ 2 O

2 W NraC Nsb is purely imaginary;
Nrb C Nas is real

�
:

Let

D?
.a;b/ D f.av; bv/ W Re.v/ D 0g ˚ R.b;�a/ D T.a;b/M:

We show the sum is orthogonal. If .r; s/ is in both summands, then r D av D �b

so v D � Nab is both real and purely imaginary. Hence v D 0. Now .r; s/ D .av; bv/

has Nra C Nsb D �.v Na/a � .v Nb/b D �v.jaj2 C jbj2/ D �v by a Moufang identity,
hence Nra C Nsb is purely imaginary. Nrb C Nas D �.v Na/b C Na.bv/. Since Nab is real
b D �a for some � 2 R. NrbC Nas D � .�.v Na/aC Na.av// D �.�vjaj2Cjaj2v/ D 0

is real. If .r; s/ D .b;�a/ then Nra C Nsb D Nba � Nab D 0, since Nab is real, and
Nrb C Nas D �jbj2 C jaj2 is real. Hence D?

.a;b/ � T.a;b/M .
Note that for the anti-holomorphic field, V D .av; bv/, with Nab D � 2 R that

'.V / D .bv;�av/ D .�av;�av/:

Given another anti-holomorphic field, W D .aw; bw/ D .aw; �aw/, one has

h.aw; �aw/; .�av;�av/i D �Re .�.aw/.v Na/C .aw/.v Na// D 0:

Hence we have a generic contact CR structure. Note that, since D?
.a;b/ D T.a;b/M

for each .a; b/, that M is a totally real submanifold of S15.
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This example is the focal submanifold of an isoparametric hypersurface family
of FKM type. To see this consider maps, Pk.a; b/ � .�bek; aek/.

P 2
k .a; b/ D Pk.�bek; aek/ D .�.aek/ek; .�bek/ek/ D .�ae2k;�be2k/ D .a; b/:

Hence P 2
k D IdO2 . Consider v D ei C ej where e0; e1; : : : ; e6 is an orthonormal

basis for Im.H/ and i ¤ j . v2 D �2. Hence .�av2;�bv2/ D 2.a; b/.

.�av2;�bv2/

D .�.av/v; .�bv/v//

D .�.a.ei C ej //.ei C ej /; .�b.ei C ej //.ei C ej //

D .�.aei /ei ; .�bei /ei /C �
.�.aei /ej ; .�bei /ej /C .�.aej /ei ; .�bej /ei /

�
C .�.aej /ej ; .�bej /ej /

D .a; b/C �
.�.aei /ej ; .�bei /ej /C .�.aej /ei ; .�bej /ei /

�C .a; b/

D 2.a; b/C �
.�.aei /ej ; .�bei /ej /C .�.aej /ei ; .�bej /ei /

�
;

.�.aei /ej ; .�bei /ej /C .�.aej /ei ; .�bej /ei / D .0; 0/;

PiPj .a; b/C PjPi .a; b/ D .0; 0/:

Hence PiPj D �PjPi . Thus P0; P1; : : : ; P6 give an FKM system. Hence for
.a; b/ 2 MC we have

hPk.a; b/; .a; b/i D h.�bek; aek/; .a; b/i
D Re

�
.ek Nb/a� � Re ..ek Na/b/

D Re
�
ek. Nba/� � Re .ek. Nab//

D Re
�
ek. Nba � Nab/� D 0

for k D 0; 1; 2; : : : ; 6. Hence Im. Nba/ D 0. Namely Nab is real. Hence M D MC.

Example 5. Consider S19 � V D fx 2 M5�5.C/ W xT D �xg: U.5/ acts
isometrically on V via A � x � AxAT .

Exercise 8. Show that (10) defines an isoparametric triple on V and the action of
U.5/ is transitive on the levels of f .

Accordingly MC D ˚
x 2 V W 1

2
tr .xx�/ D 1 and fxxxg D 3x

�
.
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Consider x D 1p
2

0
BBBBB@

0 0 1 0 0

0 0 0 1 0

�1 0 0 0 0

0 �1 0 0 0
0 0 0 0 0

1
CCCCCA
: Then xx� D 1

2

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

1
CCCCCA
:

Hence fxxxg D 6xx�x D 3x and 1
2
tr .xx�/ D 1. Hence x 2 MC. To understand

the tangent and normal spaces to MC at x, recall from last lecture, amounts to
understanding the spectrum of the operator, T .x/ W V ! V , defined by

T .x/y D 2xx�y C 2xy�x C 2yx�x:

Let y D
�
A b

�bT 0
�

where A is an antisymmetric 4 � 4 matrix and b is a column

vector in C
4.

T .x/y D
�
I 0

0 0

�
y C y

�
I 0

0 0

�
C
�
J 0

0 0

�
y

�
J 0

0 0

�

D
�
A b

0 0

�
C
�
A 0

�bT 0
�

C
�

JA�J 0
0 0

�
D
�
2AC JA�J b

�bT 0

�

where J D

0
BB@
0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

1
CCA.

Hence the subspace, Dx D
��

0 b

�bT 0
��

� V1.x/ D TxMC. The map, A 7!
JA�J , is self adjoint,

hJA�J;Bi D tr..JAJ/B/ D tr..JA/.JB// D tr..JB/.JA//

D tr..JBJ/A/ D hJB�J;Ai:
Thus the eigenvalues of the map are real. Note that J.JA�J /�J D JJAJJ D A.
Hence the eigenvalues of this map are ˙1. The subspace,

D?
x D

��
A 0

0 0

�
W A is in the �1 eigenspace

�
;

is in V1.x/ D TxMC since on this subspace,

T .x/y D
�
2AC JA�J 0

0 0

�
D
�
2AC .�A/ 0

0 0

�
D
�
A 0

0 0

�
:
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For the C1-eigenspace,

T .x/y D
�
2AC JA�J 0

0 0

�
D
�
2AC A 0

0 0

�
D
�
3A 0

0 0

�
:

Now scalar multiplication by i in V induces the standard Sasakian structure on S19.

Note if y 2 Dx that iy D
�

0 ib
�ibT 0

�
2 Dx . Note if y 2 D?

x such that hy; ixi D
0, then hiy; xi D 0 and J.iA/�J D �JA�J D �.�A/ D A. Hence iy 2 V3.x/ D
.TxMC/?. Note dim

�
D?
x

� D dim
�
.TxMC/?

� C 1. Hence MC is a contact CR
submanifold of S19.

Definition 7. Let � W S ! B be a submersion between Riemannian manifolds.
Let V be the distribution defined by ker .��/. Since �� is onto this distribution is
tangent to a foliation, F , of S by submanifolds defined by pre-images of points of
B . Let H D V ?. � is said to be a Riemannian submersion if ��jH is a linear
isometry at each point,

i.e. h��.X/; ��.Y /i D hX; Y i

for fields, X; Y , orthogonal to the leaves of F (such fields are called horizontal).

It will be useful for us to consider the analogous structure equations for a
Riemannian submersion to those we considered for submanifolds earlier [27].

From here on out we will often have occasion to think about the projection
of vector fields onto distributions. Given a vector field, E, on M we denote its
projection onto the distribution, D , by DE.

Let QX; QY be horizontal fields such that ��. QX/ D X and ��. QY / D Y are vector
fields on B , such fields are called basic. For any vector field, X , on B there is a
unique basic field, QX , called its horizontal lift.

Proposition 5. For vector fields, X; Y , on B the connection defined by

r�
XY D ��

�r QX QY �

is the Levi-Civita connection.

Proof. We take r�
XY D ��

�r QX QY �. Check symmetry and compatibility.
Recall ��.ŒX; Y 
/ D Œ��.X/; ��.Y /
.

r�
XY � r�

XY D ��
�r QX QY � � ��

�r QY QX�
D ��

�r QX QY � r QY QX� D ��.Œ QX; QY 
/ D ŒX; Y 
:

XhY;Zi D QXh QY ; QZi D hr QX QY ; QZi C h QY ;r QX QY i D hH r QX QY ; QZi C h QY ;H r QX QY i
D h��.r QX QY /;Zi C hY; ��.r QX QZ/i D hr�

XY;Zi C hY;r�
XZi:
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Lemma 8. The operation on horizontal vector fields,

AXY D V rXY

is tensorial.

Proof. Let f W M ! R.

hAX.f Y /; V i D hrX.f Y /; V i D �hf Y;rXV i D �f hY;rXV i
D f hrXY; V i D hfAXY; V i:

Lemma 9. Let X be a basic vector field and V be vertical. Then ŒX; V 
 is vertical

Proof. ��.ŒX; V 
/ D Œ��.X/; ��.V /
 D Œ��.X/; 0
 D 0:

Lemma 10. For basic vector fields, X; Y , one has AXY D 1
2
V ŒX; Y 
.

Proof. hAXY; V i D hrXY; V i D �hY;rXV i D �hY; ŒX; V 
 C rV Xi D
�hY;rV Xi D �V hX; Y iChrV Y;Xi D hrV Y;Xi D hrY V;Xi D �hV;rY Xi D
h�AYX; V i: Hence AXY D �AYX .

Since rXY � rY X D ŒX; Y 
. The vertical part is

AXY � AYX D V ŒX; Y 
:

Thus 2AXY D V ŒX; Y 
.

Proposition 6. Suppose a Sasakian manifold, S , has that � generates a free S1-
action. Then the orbit space, S=� , is a Kähler manifold and � W S ! S=� is a
Riemannian submersion with totally geodesic circular fibres.

Proof. Define JX D ��.'. QX//. The proof is left as an exercise.

Definition 8. A CR submanifold, N , of a Kähler manifold, M , is a manifold
equipped with a smooth distribution, D , of TN such that for each x 2 N one has

J.Dx/ � Dx (i.e., D holomorphic );

J.D?
x / � .TxN /

? (i.e., D? anti-holomorphic ):

When '.D?
x / D .TxN /

? for each x the CR structure is called generic.

Exercise 9. Let M be a contact CR submanifold of a Sasakian manifold, S . Then
M=� is a CR submanifold of the Kähler manifold, S=� .

Lemma 11. The anti-holomorphic distribution, D?, of a CR submanifold is
tangent to a foliation.

The proof is analogous to that of Proposition 4.
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Lemma 12. The leaves of the integral foliation of D? are totally geodesic in the
CR submanifold if and only if

SJD?
D? � D? or equivalently SJD?

D � D :

Proof. Let U; V be anti-holomorphic fields. i.e., lie along D?. One has NrU JV D
J
� NrU V

�
. Let X be a normal field, i.e., lie along D .

hSJVU;Xi D �h NrU JV; Xi D �hJ � NrU V
�
; Xi D h NrUV; JXi

D hrU V; JXi D hTUV; JXi

where T denotes the second fundamental form of the leaves of F in the CR
submanifold.

Hence T D 0 if and only if SJD?
D? � D?. The equivalence of the remaining

condition is left as an exercise.

Lemma 13. A generic CR submanifold has that the leaves of the integral foliation
of D? are totally geodesic if and only if BDD? D 0.

Proof. Let X be a holomorphic vector field, U be anti-holomorphic and N be a
normal field. Since the CR-structure is generic there is an anti-holomorphic field,
V , with JV D N .

hBXU;N i D hBXU; JVi D hBUX; JVi D hSJVU;Xi. Hence BXU D 0 for
each holomorphic X and anti-holomorphic U precisely when the leaves are totally
geodesic by Lemma 12.

Lemma 14. For a CR submanifold the leaves of the integral foliation of D? are
totally geodesic in the ambient Kähler manifold if and only if the leaves are totally
geodesic in the submanifold and BD?

D? D 0.

Proof.

h NrU V;X CN i D h NrUV;Xi C h NrU V;N i
D hrUV;Xi C hBUV;N i D hTUV;Xi C hBUV;N i:

Thus the leaves are totally geodesic if and only if T D 0 and BD?
D? D 0.

Definition 9. The leaves of the integral foliation of D? for a generic contact CR
submanifold are totally contact geodesic precisely if

�UV D hU; �i'.V /C hV; �i'.U /

for each pair of anti-holomorphic fields U; V , where � denotes the second funda-
mental form of each leaf sitting in the ambient Sasakian manifold.
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Corollary 1. A contact CR submanifold has that the leaves of the integral foliation
of D? are totally contact geodesic if and only if the corresponding Kähler manifold
has that the leaves of its integral foliation of D? � TM are totally geodesic.

In discussions that follow it will be useful for us to consider manifolds that
are foliated in such a way that analogues of O’Neill’s structure equations for a
submersion hold in the absence of the existence a bonafide Riemannian submersion.
Much of the following material can be found in [25].

Definition 10. A foliation, F , of a Riemannian manifold, M , is said to be
equidistant if for any two leaves of F , L and L0, one has for any two points,
x; y 2 L, that the distance from x to L0 is the same as the distance from y to L0.

The following is a useful local characterisation of an equidistant foliation.

Proposition 7. A Riemannian foliation is equidistant if and only if one has that for
any field, V , tangent to F and any pair of fields, X; Y , normal to F that

hrXV; Y i D �hrY V;Xi: (20)

We will break up the proof into a string of Lemmata.

Lemma 15. The condition that for any field, V , tangent to F and any pair of fields,
X; Y , normal to F that

hrXV; Y i D �hrY V;Xi

is equivalent to the condition that LV gT D 0 where gT .E; F / � h.TF /?E;
.TF /?F i for each V tangent to F .

Proof. Assume LV gT D 0 where gT .E; F / � h.TF /?E; .TF /?F i for each V .
Let X; Y be fields normal to F . By assumption,

.LV gT / .X; Y / D V hX; Y i � hŒV;X
; Y i � hX; ŒV; Y 
i D 0:

Thus by symmetry

V hX; Y i � hrV X � rXV; Y i � hX;rV Y � rY V i D 0:

Hence

hrXV; Y i C hX;rY V i D V hX; Y i � hrV X; Y i � hX;rV Y i D 0

by metric compatibility. Thus (20) holds. Conversely

.LV gT / .E; F / D V hX; Y i � h.TF /?ŒV; E
; Y i � hX; .TF /?ŒV; F 
i
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where X; Y denote the components of E;F normal to F .
Let U denote the component of E tangent to F . Then ŒV; U 
 is tangent to F .

Hence

.LV gT /.E; F / D V hX; Y i � hŒV;X
; Y i � hX; ŒV; Y 
i
D .V hX; Y i � hrV X; Y i � hX;rV Y i/ C .hrXV; Y i C hX;rY V i/
D 0C 0 D 0

by metric compatibility and (20) respectively.

Definition 11. A vector field,X , is said to be basic with respect to the foliation, F ,
if it is normal to F and ŒX; V 
 is tangent to F for any vector field V tangent to F .

Lemma 16. LV gT D 0 for each field, V , tangent to F if and only if for each pair
of basic vector fields, X; Y , the function, hX; Y i, restricted to each leaf is constant.

Proof.

.LV gT / .E; F / D V hX; Y i � hŒV;X
; Y i � hX; ŒV; Y 
i:

For vectors, E;F , at a point, x, we may find basic vector fields, X; Y , that
are perpendicular components of E;F at the point, x. Hence .LV gT /.E; F / D
V hX; Y i D 0 by assumption. Conversely assume LV gT D 0 for each V tangent
to F . Let X; Y be basic fields. Then ŒV;X
 and ŒV; Y 
 are tangent to F .

0 D .LV gT / .E; F / D V hX; Y i � hŒV;X
; Y i � hX; ŒV; Y 
i D V hX; Y i:

Hence hX; Y i is constant along each leaf of F .

Lemma 17. If for each pair of basic vector fields, X; Y , the function, hX; Y i,
restricted to each leaf is constant, then each geodesic that meets a leaf orthogonally
meets all leaves in its path orthogonally.

Proof. There is a neighbourhood, U of x 2 L in for which there is a chart ' W
R
p�R

q ! U so that '.0/ D x and each '.Rp�fzg/ is the intersection ofU with an
open subset in a leaf. Let .x1; : : : ; xp; y1; : : : ; yq/ denote the coordinates. Suppose

X is basic. Then
h
@
@xi
; X
i

is tangent to TF . LetX D P
i Xi

@
@xi

CP
j

NXj @
@yj

. Then

this occurs if and only if NX D P
j

NXj @
@yj

has
h
@
@xi
; NX
i

is tangent to F . Now the

expression

	
@

@xi
; NX



D
X
j

@ NXj
@xi

@

@yj
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is transverse to F , so can only be basic if @ NXj
@xi

D 0. That is if the f NXj g depend

purely upon .y1; : : : ; yq/. Note that the perpendicular component, @
@yj

, of @
@yj

is
basic. Hence for X; Y basic we have

X D
X
j

NXj @

@yj
; Y D

X
j

NXj @

@yj
:

Assume that for each pair of basic vector fields, X; Y , the function, hX; Y i,
restricted to each leaf is constant. Define an associated Riemannian metric on R

q

by extending

�
@

@yi
;
@

@yj

�
�

�
*
@

@yi
;
@

@yj

+

Note that each field X� D P
j

NXj @
@yj

of Rq uniquely lifts to the basic vector field,

X D P
j

NXj @
@yj

.

Let x 2 L and v 2 .TxL/
?. Let c be a geodesic for h; i� starting at 0 2 R

q in
direction, Nv D .�2 ı'/�.v/. Let Qc be the unique lift of c starting at x with direction,
v, that is everywhere perpendicular to F . Let y be the other endpoint of Qc. Let Oc
be a geodesic starting with x and ending at y. L. Oc/ � L. Qc/ D L.c/ since both
Oc and Qc link x and y and the integral expressions for L.c/ and L. Qc/ are equal by
change of variables. However L.c/ � L.�2 ı' ı Oc/ � L. Oc/ as well since both c and
�2 ı' ı Oc share the same endpoints and Oc is a lift of �2 ı' ı Oc. Hence L. Oc/ D L. Qc/.
By uniqueness of the locally minimising curve, Oc D Qc, is the geodesic that starts
with direction, v, which we observe remains perpendicular to each leaf of F in its
trajectory. This gives the desired property.

Lemma 18. The condition that any geodesic that meets a leaf orthogonally meets
all leaves in its path orthogonally is equivalent to the condition that the leaves of
the foliation are equidistant.

Proof. Let x and y be two points of a leaf, L, and L0 be a nearby leaf. Connect x
and y by a path � W Œ0; 1
 ! L. Consider an appropriately parametrised constant
speed geodesic, cs W Œ0; 1
 ! M , that connects �.s/ to the nearest point of L0.
F W Œ0; 1
 � Œ0; 1
 ! M defined by F.s; t/ D cs.t/ defines a smooth variation of
geodesics. The arc-length, `.s/ D R 1

0
j Pcsjdt, defines the distance from �.s/ to L0.

The derivative is given via the first variation of arc-length.

d`

ds
D 1

`

��
@F

@s
.s; 1/; Pcs.1/

�
�
�
@F

@s
.s; 0/; Pcs.0/

�
�
Z 1

0

�
@F

@s
;r Pcs Pcs

�
dt

�
:

d

ds

�
1

2
`2
�

D
�
@F

@s
.s; 1/; Pcs.1/

�
�
�
@F

@s
.s; 0/; Pcs.0/

�
�
Z 1

0

�
@F

@s
;r Pcs Pcs

�
dt:
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Since cs are geodesics and cs meets L0 orthogonally we have

d

ds

�
1

2
`2
�

D �h� 0.s/; Pcs.0/i: (21)

Assuming the first condition in the statement, since cs meets L0 orthogonally it
must also meet L orthogonally. However � 0 must then be perpendicular to Pcs.0/.
Hence ` must be constant. If L0 is not nearby then we use the fact that we may
approximate the distance between x in L and L0 by broken geodesics that meet
each leaf orthogonally to make this local result global. We leave this as an exercise.

Conversely for nearby L0 we have (21). Assume ` is constant then d
ds

�
1
2
`2
� D 0

and � 0.0/ may be chosen to be an arbitrary vector of TxL to see that Pc.0/ is
perpendicular to L.

Lemma 19. If the leaves of a foliation are equidistant, then for any two basic fields,
X; Y , one has that hX; Y i is constant along each leaf.

Proof. Assume the leaves are equidistant. It suffices to show that for any basic field,
X , that jX j is constant along a leaf.

SupposeX is basic. Then for each vector field, V , along a leaf,L, we may locally
extend to a vector field, V , tangent to the foliation, F , with ŒX; V 
 D 0. Let t be
the flow of X and  s be the flow of V . Then t ı  s D  s ı t . Let x 2 L.
Then  s.x/ 2 L. Suppose t .x/ 2 Lt . Then t . s.x// D  s.t .x// 2 Lt . Thus
t .L/ � Lt . Note dist.x; Lt / D dist. s.x/; Lt / by hypothesis.

Let f .t/ D dist.x; Lt /. We compute f 0.0/. To do this it is simplest to think
in coordinates. Think of .TxL/? as a Euclidean subspace of TxM . For small t the
geodesic linking x to Lt for small t is entirely in exp.Br.0// where Br.0/ is a
Euclidean ball of small radius r about 0 in .TxL/?. Pulling the geodesics back gives
straight line segments secant to the curve, c, at 0 and c.t/ defined by fexp.c.t//g D
Lt \ exp.Br.0//. Hence f .t/ D jc.t/j. Now we have a standard calculation in
Euclidean space,

lim
t!0C

jc.t/j
t

D
ˇ̌
ˇ̌ lim
t!0C

1

t
c.t/

ˇ̌
ˇ̌ D jc0.0/j

Hence f 0.0/ D jc0.0/j. Consider a trivialisation of a neighbourhood of N of L
sending y to .a; b/ where fag D exp.Br.0// \ L0 and b is the point of L closest to
y. Then t .x/ is sent to .c.t/; �.t//. At time zero the tangent vector, Xx , is sent to
.c0.0/; 0/. Hence jXxj D jc0.0/j D f 0.0/. Likewise jX s.x/j D f 0.0/.

We conclude jXxj D jX s.x/j. Hence the result.

Lemma 20. For a contact CR submanifold, the condition that the leaves of the
integral foliation of D? are equidistant is equivalent to the condition that

DS'.V /'.X/ D D'.S'.V /X/
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for each anti-holomorphic field, V , perpendicular to � and each holomorphic
field, X .

Proof. Since hrX�; Y i D h'.X/; Y i D �hX; '.Y /i D �hX;rY �i it suffices to
consider V ? � .

hrXV; Y i D h NrXV; Y i D h NrX

��'2.V /� ; Y i D h' �� NrX'.V /
�
; Y i

D h' �S'.V /X� ; Y i:
hX;rY V i D hX; '.S'.V /Y /i D �h'.X/; S'.V /Y i D �hS'.V /'.X/; Y i:

Hence hrXV; Y i D �hX;rY V i for holomorphic X; Y and anti-holomorphic V if
and only if the D components of '

�
S'.V /X

�
and S'.V /'.X/ are equal.

Example 6. Consider MC 2 S19. Recall

Snz D n ı z D fnxzg D nx�z C xz�nC zn�x C zx�nC xn�z C nz�x:

Let x 2 MC be the specially chosen point as before. Note that nz�x D xz�n D 0.

Snz D .nx� C xn�/z C z.x�nC n�x/

D 1p
2

��AJ C JA� 0
0 0

��
0 b

�bT 0
�

C
�

0 b

�bT 0
�

1p
2

�
A�J � JA 0

0 0

�

D 1p
2

�
0 .�AJ C JA�/b

�bT .A�J � JA/ 0

�
2 Dx

since .�AJ C JA�/T D �J TAT C .A�/T J T D �JA � .AT /�J D �JA C A�J .
That is

�bT .A�J � JA/ D � �.�AJ C JA�/b
�T
:

Hence the leaves of the integral foliation of D? are totally geodesic. Note

Sn.iz/ D .nx� C xn�/.iz/C .iz/.x�nC n�x/

D i
�
.nx� C xn�/z C z.x�nC n�x/

� D iSnz:

Hence the leaves of the foliation are equidistant.

Exercise 10. Show that the leaves integral foliation of D? are totally contact
geodesic in S19.

Example 7. Consider the contact CR submanifold, M � S4n�1, defined in (18).
Recall

D?
q D f.q1v; q2v; : : : ; qnv/ W Re.v/ D 0g ˚ R.iq1; iq2; : : : ; iqn/:
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Hence

'

D?
q

�
D f.iq1v; iq2v; : : : ; iqnv/ W Re.v/ D 0g :

In the sphere the covariant derivative of '.W / D .iq1w; iq2w; : : : ; iqnw/ in
direction V D .q1v; q2v; : : : ; qnv/ is

.iq1vw; iq2vw; : : : ; iqnvw/

D Re.vw/.iq1; iq2; : : : ; iqn/C .iq1Im.vw/; iq2Im.vw/; : : : ; iqnIm.vw//:

Hence S'.W /V D �Re.vw/.iq1; iq2; : : : ; iqn/ D �Re.vw/� . Note

h'.W /; '.V /i D h.iq1w; iq2w; : : : ; iqnw/; .iq1v; iq2v; : : : ; iqnv/i D �Re.vw/:

Hence S'.W /V D h'.W /; '.V /i� . Hence the leaves of the foliation are totally
contact geodesic in the sphere.

Exercise 11. Show the leaves of the foliation are equidistant for this example.

3 n-Sasakian CR Submanifolds of Complex Projective Space

Recall the full curvature tensor of a manifold as an expression in the metric and
Levi-Civita connection is given by

hR.X; Y /Z;W i D hrXrY Z � rYrXZ � rŒX;Y 
Z;W i:

Using metric compatibility this may be written

hR.X; Y /Z;W i D XhrY Z;W i � hrY Z;rXW i � Y hrXZ;W i
C hrXZ;rY W i � hrŒX;Y 
Z;W i:

We need to collect some information about the curvature tensor of submanifolds and
submersed manifolds.

Proposition 8. The full curvature tensor of a submanifold, M � NM , is related to
the curvature tensors of NM by

h NR.X; Y /Z;W i D hR.X; Y /Z;W i � hBYZ;BXW i C hBXZ;BYW i

where B is the second fundamental form and X; Y;Z;W are fields tangent to the
submanifold.
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Proof. LetX; Y;Z;W be fields tangent to the submanifold andB denote the second
fundamental form of M � NM .

h NR.X; Y /Z;W i
D Xh NrY Z;W i � Y h NrXZ;W i � h NrŒX;Y 
Z;W i

� h NrY Z; NrXW i C h NrXZ; NrY W i
D XhrY Z;W i � Y hrXZ;W i � hrŒX;Y 
Z;W i

� hrY Z C BYZ;rXW C BXW i C hrXZ C BXZ;rY W C BYW i:
D XhrY Z;W i � Y hrXZ;W i � hrŒX;Y 
Z;W i

� hrY Z;rXW i � hBYZ;BXW i C hrXZ;rY W i C hBXZ;BYW i
D XhrY Z;W i � hrY Z;rXW i � Y hrXZ;W i C hrXZ;rY W i

� hrŒX;Y 
Z;W i � hBYZ;BXW i C hBXZ;BYW i
D hR.X; Y /Z;W i � hBYZ;BXW i C hBXZ;BYW i:

Proposition 9. The full curvature tensor of the total space of a Riemannian
submersion, � W M ! B , is related to the full curvature tensor of B via

hR.X; Y /Z;W i D hR�.X; Y /Z;W i � hAYZ;AXW i C hAXZ;AYW i
C 2hAXY;AZW i

where X; Y;Z;W are horizontal fields.

Proof. With no loss of generality assume X; Y;Z are basic fields.

hrY Z;rXW i D hr�
Y Z;r�

XW i C hAYZ;AXW i;
hrXZ;rY W i D hr�

XZ;r�
Y W i C hAXZ;AYW i;

ŒX; Y 
 D H ŒX; Y 
C V ŒX; Y 
 D H ŒX; Y 
C 2AXY:

hrŒX;Y 
Z;W i D hrH ŒX;Y 
Z;W i C 2hrAXY Z;W i
D hrH ŒX;Y 
Z;W i C 2hrZAXY C ŒAXY;Z
;W i
D hrH ŒX;Y 
Z;W i C 2hrZAXY;W i
D hrH ŒX;Y 
Z;W i � 2hAXY;rZW i
D hrH ŒX;Y 
Z;W i � 2hAXY;AZW i
D hr�

ŒX;Y 
Z;W i � 2hAXY;AZW i:
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hR.X; Y /Z;W i
D XhrY Z;W i � Y hrXZ;W i � hrŒX;Y 
Z;W i

� hrY Z;rXW i C hrXZ;rY W i
D Xhr�

Y Z;W i � Y hr�
XZ;W i � hr�

ŒX;Y 
Z;W i C 2hAXY;AZW i
� hr�

Y Z;r�
XW i � hAYZ;AXW i C hr�

XZ;r�
Y W i C hAXZ;AYW i

D hR�.X; Y /Z;W i � hAYZ;AXW i C hAXZ;AYW i C 2hAXY;AZW i:

Definition 12. The unnormalised sectional curvature of a Riemannian manifold is
given by K.X; Y / D hR.X; Y /Y;Xi.
From here on out, to avoid cluttered notation, we will often abuse notation and
denote a horizontal vector field and its projection under �� by the same symbol.

Corollary 2. The unnormalised sectional curvatures of the total and base spaces
of a Riemannian submersion, � W M ! B , are related by

K�.X; Y / D K.X; Y /C 3jAXY j2:

Proof. Let X; Y be horizontal fields.

hR.X; Y /Y;Xi
D hR�.X; Y /Y;Xi � hAY Y;AXXi C hAXY;AY Xi C 2hAXY;AY Xi
D K�.X; Y /C 3hAXY;AY Xi D K�.X; Y / � 3hAXY;AXY i
D K�.X; Y / � 3jAXY j2:

Example 8. Consider the natural Riemannian submersion, � W S2n�1 ! CPn�1.
Recall that AXY D hX; J Y i� and that K.X; Y / D jX j2jY j2 � hX; Y i2 for

S2n�1. Thus the unnormalised sectional curvature of CPn�1 is

K�.X; Y / D jX j2jY j2 � hX; Y i2 C 3hX; J Y i2:

Note that for jX j D jY j D 1 and hX; Y i D 0 we have sectional curvature,

��.X; Y / D K�.X; Y / D 1C 3hX; J Y i2:

When X D ˙JX then ��.X; Y / D 4, when Y ? X and Y ? JX then ��.X; Y / D
1. Namely CPn�1 has pinching 1

4
.

We now introduce the concept of an n-Sasakian manifold. This notion of the author
was first introduced in [15].
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Definition 13. A Riemannian manifold, M , is said to be n-Sasakian if it is foliated
by totally geodesic equidistant n-dimensional submanifolds such that

R.X; V /Y D hY; V iX � hX; Y iV

for all fields, X; Y , and each field, V , tangent to the foliation.

Proposition 10. Suppose thatM is a generic contact CR submanifold of the sphere
such that the integral leaves of D? are equidistant and totally contact geodesic in
the sphere. Then M=� is an n-Sasakian manifold where dim.D?/ D nC 1.

Proof. Let X; Y;Z and V be fields along M perpendicular to � and V be anti-
holomorphic. Assume the leaves of the foliation are totally contact geodesic. Then
it follows hBV X;N i D 0.

From the Gauss equation

h NR.X; V /Y;Zi D hR.X; V /Y;Zi C hBV Y;BXZi � hBXY;BV Zi
D hR.X; V /Y;Zi

as both BV Y D 0 and BV Z D 0 since the leaves of the foliation are totally contact
geodesic.

Now from the O’Neill structure equation it follows,

hR.X; V /Y;Zi D hR�.X; V /Y;Zi � hAV Y;AXZi C hAXY;AV Zi
C 2hAXV;AY Zi:

Note that

AV X D hrV X; �i� D h NrV X; �i� D �hX; NrV �i� D �hX; '.V /i� D 0:

Hence hR�.X; V /Y;Zi D hR.X; V /Y;Zi D h NR.X; V /Y;Zi D hY; V ihX;Zi �
hX; Y ihV;Zi. Thus R�.X; V /Y D hY; V iX � hX; Y iV .

To discuss other structure equations of a Riemannian submersion it is necessary
to extend the definition of the O’Neill tensor and second fundamental form of the
fibres.

Definition 14. Relative to the vector fields, E;F , the O’Neill and second funda-
mental form are defined by

AEF D V rH EH F C H rH EV F;

TEF D H rV EV F C V rV EH F

respectively.



Lectures on n-Sasakian Manifolds 85

Proposition 11. Suppose V is a vertical field and X is a horizontal field. Then the
unnormalised sectional curvature is related to the structure tensors by

K.X; V / D h.rXT /V V;Xi � jTV X j2 C jAXV j2:

Proof. Assume X is basic.

K.X; V /

D XhrV V;Xi � hrV V;rXXi � V hrXV;Xi C hrXV;rV Xi � hrŒX;V 
V;Xi
D XhTV V;Xi � hTV V;rXXi � hrV V;AXXi � V hAXV;Xi

C hAXV;rXV C ŒX; V 
i C hrXV; TV Xi � hTŒX;V 
V;Xi
D XhTV V;Xi � hTV V;rXXi C hAXV;AXV i � hTV rXV;Xi � hTŒX;V 
V;Xi
D hrX.TV V /;Xi � hTV rXV;Xi � hTrXV�rV XV;Xi C hAXV;AXV i
D hrX.TV V /;Xi � hTV rXV;Xi � hTrXV V;Xi C hTrV XV;Xi C jAXV j2

D h.rXT /V V /;Xi C hTTV XV;Xi C jAXV j2 D h.rXT /V V /;Xi
C hTV TV X;Xi C jAXV j2

D h.rXT /V V /;Xi � hTV X; TV Xi C jAXV j2 D h.rXT /V V /;Xi
� jTV X j2 C jAXV j2:

Corollary 3. Suppose � W M ! B is a Riemannian submersion with totally
geodesic fibres. Then the unnormalised sectional curvature is related to the O’Neill
tensor by

K.X; V / D jAXV j2:

Proposition 12. The O’Neill tensor of an n-Sasakian manifold has that the O’Neill
tensor induces an antisymmetric Clifford representation of the vertical space on the
horizontal space, i.e.,

AAXV W C AAXW V D �2hV;W iX

for any vertical fields, V;W , and any horizontal field, X .

Proof. Note that for any horizontal field, X , and vertical field, V , we have

jAXV j2 D hR.X; V /V;Xi D hhV; V iX � hX; V iV;Xi D jX j2jV j2:

jAX.V CW /j2 D jAXV C AXW j2 D jAXV j2 C 2hAXV;AXW i C jAXW j2

D jX j2jV j2 C 2hAXV;AXW i C jX j2jW j2:
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jX j2jV CW j2 D jX j2.jV j2 C 2hV;W i C jW j2/
D jX j2jV j2 C 2jX j2hV;W i C jX j2jW j2:

Hence

hAXV;AXW i D jX j2hV;W i:

hAXCY V;AXCY W i
D hAXV;AXW i C hAXV;AYW i C hAY V;AXW i C hAY V;AYW i
D jX j2hV;W i C hAXV;AYW i C hAY V;AXW i C jY j2hV;W i;

jX C Y j2hV;W i D .jX j2 C 2hX; Y i C jY j2/hV;W i
D jX j2hV;W i C 2hV;W ihX; Y i C jY j2hV;W i:

Hence

hAXV;AYW i C hAY V;AXW i D 2hV;W ihX; Y i:

Now

hAXV;AYW i D �hAYAXV;W i D hAAXV Y;W i D �hAAXV W; Y i:

Similarly hAY V;AXW i D �hAAXW V; Y i.

�hAAXV W; Y i � hAAXW V; Y i D 2hV;W ihX; Y i:

Hence

AAXV W C AAXW V D �2hV;W iX:

Proposition 13. LetM be a contact CR structure such that the integral foliation of
D? is equidistant. Then for each anti-holomorphic field, V , perpendicular to � and
holomorphic field, X , one has

AXV D DS'.V /'.X/ D D'.S'.V /X/:

Moreover if the leaves of the foliation are totally geodesic then

AXV D S'.V /'.X/ D '.S'.V /X/:
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Proof.

hAXV; Y i D hrXV; Y i D h NrXV; Y i D �h NrX'
2.V /; Y i D �h'. NrX'.V //; Y i

D h NrX'.V /; '.Y /i D �hS'.V /X; '.Y /i D h'.S'.V /X/; Y i:

The remainder is left as an exercise.

Corollary 4. Suppose that M is a contact CR submanifold of the sphere as
described in Proposition 10. Then the shape operator induces a symmetric Clifford
representation of '.D?/ on D , i.e.,

S'.V /S'.W /X C S'.W /S'.V /X D 2h'.V /; '.W /iX

for any anti-holomorphic fields, V;W , perpendicular to � and any holomorphic
field, X .

Proof.

AAXV W D S'.W /'.AXV / D S'.W /'.'.S'.V /X// D �S'.W /S'.V /X:

Since h'.V /; '.W /i D hV;W i it follows from Proposition 12 that

S'.V /S'.W /X C S'.W /S'.V /X D 2h'.V /; '.W /iX:

Definition 15. Let M � NM be a submanifold. Then the mean curvature vector of
M is

H D
X
i

BEiEi

where fEig is an orthonormal basis.

Lemma 21. The above definition is independent of the choice of basis, fEig.

Proof. Suppose fFig is another orthonormal basis. Then

Fi D
X
j

aijEj

where .aij/ is an orthogonal matrix.

X
i

BFi Fi D
X
i

X
j

X
k

aijaikBEj Ek D
X
j

X
k

 X
i

aijaik

!
BEj Ek

D
X
j

X
k

ıjkBEj Ek D
X
j

BEj Ej :
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Definition 16. A submanifold, M � NM , is called minimal if H D 0.

Proposition 14. Let M be a generic CR submanifold of complex projective space
with the integral foliation of D? with equidistant leaves that are totally geodesic in
complex projective space. Then M is a minimal submanifold of complex projective
space provided dim.D?/ > 1.

Proof. Since the leaves are totally geodesic on complex projective space BV V D 0

for each anti-holomorphic V . With this in mind we take a basis, fEig, that consists
of the union of a basis for D , fXig, and basis for D?, fVig. HenceH D P

i BXiXi .
LetN be a fixed unit normal vector. Since S2NX D X on D by Corollary 4 it follows
D is split into ˙1 eigenspaces of SN .

Since dim.D?/ > 1 there is a orthogonal unit normal vector, M . Hence by
Corollary 4 again,

SNSMX C SMSNX D 0

for X 2 D . That is SNSMX D �SMSNX . If X is in the C1-eigenspace of SN ,
then SNSMX D �SMX , i.e., SMX is in the �1-eigenspace of SN . However since
S2MX D X we have that SM is an isomorphism that exchanges the ˙1-eigenspaces
of SN . Thus take an orthogonal basis for D , fXig, that is the union of bases of the
two eigenspaces of SN , D˙. We have

h
X
i

BXiXi ; N i D
X
i

hSNXi ;Xi i D
X

Xi2D�

hSNXi ;Xi i C
X

Xi2D
C

hSNXi ;Xi i

D
X

Xi2D�

h�Xi ;Xi i C
X

Xi2D
C

hXi ;Xi i

D �dim.D�/C dim.DC/ D 0:

since DC and D� have equal dimension.
This is true of any normal N we chose. Hence H D 0.

Definition 17. The Ricci curvature of a Riemannian manifold is defined by

Ric.X; Y / D
X
i

hR.X;Ei /Ei ; Y i

where fEig is an orthonormal basis for the tangent space and X; Y are any vector
fields.

Exercise 12. Show the Ricci curvature does not depend on the basis chosen.

Definition 18. A Riemannian manifold is said to be Einstein if there is a constant,
�, such that



Lectures on n-Sasakian Manifolds 89

Ric.X; Y / D �hX; Y i

for any pair of vector fields, X; Y .

Lemma 22. A Riemannian manifold is Einstein if and only if

Ric.X/ � Ric.X;X/ D
X
i

K.X;Ei / D �jX j2

for each field, X , for some constant, �.

Proof. Suppose Ric.X;X/ D �jX j2 for each field, X .

Ric.X C Y;X C Y /

D
X
i

hR.X C Y;Ei /Ei ; X C Y i D
X
i

hR.X;Ei /Ei ; Xi

C
X
i

hR.X;Ei /Ei ; Y i C
X
i

hR.Y;Ei /Ei ; Xi C
X
i

hR.Y;Ei /Ei ; Y i

D Ric.X;X/C
X
i

hR.X;Ei /Ei ; Y i C
X
i

hR.X;Ei /Ei ; Y i C Ric.Y; Y /

D Ric.X;X/C 2Ric.X; Y /C Ric.Y; Y / D �jX j2 C 2Ric.X; Y /C �jY j2:

Whilst

�jX C Y j2 D �jX j2 C 2�hX; Y i C �jY j2:

Hence Ric.X C Y;X C Y / D �jX C Y j2 reduces to Ric.X; Y / D �hX; Y i. The
converse direction is vacuous.

Proposition 15. Let M be a generic CR submanifold of complex projective space
with the integral foliation of D? with equidistant leaves that are totally geodesic
in complex projective space and dim.D?/ > 1. Then the space of leaves of the
foliation is Einstein.

Proof. Let fXig be a orthonormal basis for D . Let X be a holomorphic field, i.e., a
horizontal vector field. Then the unnormalised sectional curvature ofM in complex
projective space is given by the Gauss equation.

K.X;Xi / D jX j2jXi j2 � hX;Xi i2 C 3hXi ; JXi2 C hBXX;BXiXi i � jBXXi j2

D jX j2 � hX;Xi i2 C 3hXi ; JXi2 C hBXX;BXiXi i � jBXXi j2:

hAXXi ; V i D �hXi ; AXV i D �hXi ; SJVJXi D �hBJXXi ; JVi:
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Hence jAXXi j2 D jBJXXi j2. It follows from O’Neel’s equation

K�.X;Xi / D K.X;Xi /C 3jAXXi j2 D jX j2 � hX;Xi i2 C 3hXi ; JXi2

C hBXX;BXiXi i � jBXXi j2 C 3jBJXXi j2:

Ric�.X/ D
X
i

K�.X;Xi / D dim.D/jX j2 � jX j2 C 3jJXj2 C hBXX;H i

�
X
i

jBXXi j2 C 3
X
i

jBJXXi j2:

X
i

jBXXi j2 D
X
i

X
j

hBXXi ;Nj i2 D
X
j

X
i

hXi ; SNj Xi2 D
X
j

jSNj X j2

D dim.D?/jX j2:

Hence Ric�.X/ D �
dim.D/C 2C 2dim.D?/

� jX j2.
Lemma 23. Let M � NM be a CR submanifold with the integral foliation of D?
with equidistant leaves. Then the space of leaves of the foliation is Kähler.

Proof. Define J�X � ��.J QX/. To see this is well defined note,

V hJ QX; QY i D hrV .J QX/; QY i C hJ QX;rV
QY i D 0;

since the leaves are equidistant. The Kähler condition comes from

h.r�
XJ�/Y;Zi
D hr�

X.J�Y /;Zi � hJ�.r�
XY /;Zi D hr QX.J QY /; QZi � hJ.Dr QX QY /; QZi

D h Nr QX.J QY /; QZi � hJ. Nr QX QY /; QZi D h. Nr QXJ / QY ; QZi D 0:

Definition 19. Let � W M ! B be a Riemannian submersion relative to the metric,
h; i, on M . Then the canonical variation metric, h; it , is defined by

hE;F it D hX; Y i C thU; V i

where t is a positive constant and X; Y and U; V are the respective horizontal
and vertical parts of E;F relative to � . � is also a Riemannian submersion
relative to h; it .
Exercise 13. Show that the Levi-Civita connection for h; it is given by

r t
EF D rEF C .t � 1/H .rEF � rXY /:
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We adopt the notation, �EF D H .rEF � rXY /.

The author proved the following useful Proposition in [14]:

Proposition 16. The unnormalised sectional curvature of h; it is related to that of
h; i via

Kt.E; F / D tK.E; F /C .1 � t /K�.X; Y /C t .1 � t /.h�EE; �F F i � j�EF j2/:

Proof.

Kt.E; F / D Ehr t
F F;Eit � hr t

F F;r t
EEit � F hrEF;Ei

C hr t
EF;r t

F Ei � hr t
ŒE;F 
F;Eit :

Ehr t
F F;Eit D EhrF F;Eit C .t � 1/Eh�F F;Xi

D tEhrF F;Ei C .1 � t /EhrF F;Xi C .t � 1/Eh�F F;Xi
D tEhrF F;Ei C .1 � t /EhH rY Y;Xi
D tEhrF F;Ei C .1 � t /XhH rY Y;Xi
D tEhrF F;Ei C .1 � t /Xhr�

Y Y;Xi:

Similarly

F hr t
EF;Eit D tF hrEF;Ei C .1 � t /Y hr�

XY;Xi:

hr t
EE;r t

F F it
D hrEE C .t � 1/�EE;rF F C �F F it
D hrEE;rF F it C .t � 1/.hrEE; �F F i C h�EE;rF F i/C .t � 1/2h�EE; �F F i
D thrEE;rF F i C .1 � t /hH rEE;H rF F i/C .t � 1/2h�EE; �F F i

C .t � 1/.hH rEE; �F F i C h�EE;H rF F i/
D thrEE;rF F i C .t � 1/h�EE; �F F i C .t � 1/2h�EE; �F F i

C .1 � t /hH rEE � �EE;H rF F � �F F i
D thrEE;rF F i C .1 � t /hH rXX;H rY Y i � t .1 � t /h�EE; �F F i
D thrEE;rF F i C .1 � t /hr�

XX;r�
Y Y i � t .1 � t /h�EE; �F F i:

Similarly

hr t
EF;r t

F Eit D thrEF;rFEi C .1 � t /hr�
XY;r�

Y Xi � t .1 � t /j�EF j2:
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hr t
ŒE;F 
F;Eit D hrŒE;F 
F;Eit C .t � 1/h�ŒE;F 
F;Xi

D thrŒE;F 
F;Ei C .1 � t /hH rŒE;F 
F;Xi C .t � 1/h�ŒE;F 
F;Xi
D thrŒE;F 
F;Ei C .1 � t /hH rH ŒE;F 
Y; Xi
D thrŒE;F 
F;Ei C .1 � t /hH rH ŒX;Y 
Y; Xi
D thrŒE;F 
F;Ei C .1 � t /hr�

ŒX;Y 
Y; Xi:

Collecting like terms one arrives at the formula.

Lemma 24. For a Riemannian submersion

hR.X; Y /X; V i D �h.rXA/XY; V i � 2hAXY; TV Xi

where X; Y are any horizontal fields and V is any vertical field. Moreover if the
fibres are totally geodesic then

hR.X; Y /X; V i D �h.rXA/XY; V i:

Proof. We assume X; Y are basic vector fields.

hR.X; Y /X; V i D XhrY X; V i � hrY X;rXV i � Y hrXX; V i C hrXX;rY V i
� hrŒX;Y 
X; V i

D XhAYX; V i � hrY X;AXV i � hAYX;rXV i C hrXX;AY V i
� hAH ŒX;Y 
X; V i � hTV ŒX;Y 
X; V i

D hrX.AY X/; V i � hrY X;AXV i C hrXX;AY V i
� hAŒX;Y 
X; V i � 2hTAXY X; V i:

hTAXY X; V i D �hTAXY V;Xi D �hTV AXY;Xi D hAXY; TV Xi:

hrY X;AXV i D hH rY X;AXV i D �hAXH rY X; V i
D hAH rY XX; V i D hArY XX; V i:

hrXX;AY V i D hH rXX;AY V i D �hAYH rXX; V i D �hAYrXX; V i:

hAŒX;Y 
X; V i D hArXY�rY XX; V i D hArXY X; V i � hArY XX; V i:
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Collecting like terms

hR.X; Y /X; V i D hrX.AY X/; V i � hArXY X; V i � hAYrXX; V i � 2hAXY; TV Xi
D h.rXA/Y X; V i � 2hAXY; TV Xi:

Definition 20. A Riemannian submersion, � W M ! B , with totally geodesic
fibres is said to be Yang-Mills if

X
i

V .rXiA/XiX D 0

for each horizontal field, X , where fXig is an orthonormal basis for the horizontal
space.

Proposition 17. For a Riemannian submersion,

hR.U; V /V;Xi D h.rU T /V V;Xi � h.rV T /U V;Xi

where U; V are any vertical fields and X is any horizontal field. Moreover if the
fibres are totally geodesic then hR.U; V /V;Xi D 0.

Proof.

hR.U; V /V;Xi
D U hrV V;Xi � hrV V;rUXi � V hrU V;Xi C hrU V;rUXi � hrŒU;V 
V; Xi
D U hTV V;Xi � hTV V;rUXi � hV rV V; TUXi � V hTUV;Xi

C hTUV;rUXi C hV rU V; TV Xi � hTŒU;V 
V;Xi
D hrU .TV V /;Xi � hV rV V; TUXi � hrV .TUV /;Xi C hV rU V; TV Xi

� hTrU V�TV U V;Xi
D hrU .TV V /;Xi C hTUV rV V;Xi � hrV .TUV /;Xi � hTV V rU V;Xi

� hTrU V ; Xi C hTrV U V;Xi
D hrU .TV V /;Xi � hTrU V V;Xi � hTV rU V;Xi

� .hrV .TUV /;Xi � hTrV U V;Xi � hTUrV V;Xi/
D h.rU T /V V;Xi � h.rV T /U V;Xi:

Proposition 18. Let � W M ! B be a Riemannian submersion with totally
geodesic fibres. Then there are two different Einstein metrics in the canonical
variation if and only if

.i/ � is Yang-Mills, the fibres and base are Einstein with respective constants,
O� > 0 and L� > 0.
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.ii/ There are constants, �; �, such that

X
i

jAXi V j2 D �jV j2;
X
j

jAXVj j2 D �jX j2

for each vertical field, V , and horizontal field, X , where fXig and fVj g are
respective orthonormal bases for the horizontal and vertical spaces,

.iii/ The inequality, L�2 � 4 O�.�C 2�/ > 0, holds.

Proof.

Kt.X C V;Xi / D tK.X C V;Xi /C .1 � t /K�.X;Xi /

C t .1 � t /.h�XCV .X C V /; �XiXi i � j�XCV Xi j2/:

�XiXi D H .rXiXi � rXiXi / D 0:

�XCV Xi D H .rXCV Xi � rXXi/ D H rV X D AXV:

K.X C V;Xi / D hR.X C V;Xi /Xi ; X C V i
D hR.X;Xi /Xi ; Xi C hR.X;Xi /Xi ; V i C hR.V;Xi /Xi ; Xi

C hR.V;Xi /Xi ; V i
D K.X;Xi /C 2hR.X;Xi /Xi ; V i CK.Xi ; V /

D K�.X;Xi / � 3jAXXi j2 C 2h.rXiA/XiX; V i C jAXi V j2:

Collecting like terms,

Kt.X C V;Xi / D K�.X;Xi / � 3t jAXXi j2 C 2th.rXiA/XiX; V i C t 2jAXi V j2:

Kt .X C V; Vj /

D tK.X C V; Vj /C t .1 � t /.h�XCV .X C V /; �Vj Vj i � j�XCV Vj j2/:

�Vj Vj D H .rVj Vj / D TVj Vj D 0;

�XCV Vj D H .rXCV Vj / D AXVj C TV Vj D AXVj :

K.X C V; Vj /

D hR.X C V; Vj /Vj ; X C V i
D hR.X; Vj /Vj ; Xi C hR.X; Vj /Vj ; V i C hR.V; Vj /Vj ; Xi C hR.V; Vj /Vj ; V i
D K.X; Vj /C 2hR.V; Vj /Vj ; Xi CK.V; Vj / D jAXVj j2 C OK.V; Vj /:
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Collecting like terms,

Kt.X C V; Vj / D t OK.V; Vj /C t 2jAXVj j2:

Note that the union of fXig and ft� 1
2 Vj g gives an orthonormal basis of tangent

vectors.

Rict .X C V / D
X
i

Kt .X C V;Xi /C
X
j

Kt .X C V; t� 1
2 Vj /

D
X
i

Kt .X C V;Xi /C
X
j

t�1Kt .X C V; Vj /

D
X
i

K�.X;Xi / � 3t
X
i

jAXXi j2 C 2t
X
i

h.rXiA/XiX; V i

C t 2
X
i

jAXi V j2 C
X
j

OK.V; Vj /C t
X
j

jAXVj j2:

One has

�jX C V j2t D �jX j2 C t�jV j2:

Assume conditions (i)–(iii).

X
i

jAXXi j2 D
X
i

X
j

hAXXi ; Vj i2 D
X
j

X
i

hAXVj ;Xi i2

D
X
j

jAXVj j2 D �jX j2:

Hence

Rict .X C V / D L�jX j2 � 3t�jX j2 C t 2�jV j2 C O�jV j2 C t�jX j2

D . L� � 2t�/jX j2 C . O�C t 2�/jV j2:

Thus for Einstein’s condition we require

� D L� � 2t� D
O�C t 2�

t
: (22)

i.e. L�t � 2t2� D O�C t 2�; or rather .�C 2�/t2 � L�t C O� D 0:
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Since� D L�2�4 O�.�C2�/ > 0 there are two real solutions for t . Since �C2� > 0,
O� > 0 and �L� < 0, these two real solutions are positive and hence by (22) give
positive Einstein constants.

Conversely assume there are two Einstein metrics in the canonical variation at
times, t1 and t2, with constants, �1 and �2, respectively.

�i jX j2 D Ric�.X/ � 3ti
X
i

jAXXi j2 C ti
X
j

jAXVj j2

D Ric�.X/ � 2ti
X
j

jAXVj j2

for i D 1; 2.
Hence taking one equation from the other

.�1 � �2/jX j2 D 2.t2 � t1/
X
j

jAXVj j2:

Hence

X
j

jAXVj j2 D �1 � �2
2.t2 � t1/ jX j2 D �jX j2:

Thus

Ric�.X/ D �i jX j2 C 2ti �jX j2 D .�i C 2ti �/jX j2 D L�jX j2:

Similarly

ti�i jV j2 D cRic.V /C t 2i

X
i

jAXi V j2

for i D 1; 2.
Hence taking one equation from the other

.t1�1 � t2�2/jV j2 D .t21 � t 22 /
X
i

jAXi V j2:

X
i

jAXi V j2 D t1�1 � t2�2
t21 � t 22

jV j2 D �jV j2:

Hence

cRic.V / D ti�i jV j2 � t 2i �jV j2 D ti .�i � ti�/jV j2 D O�jV j2

for i D 1; 2.
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So for i D 1; 2 we have

�i D L� � 2ti � D
O�C t 2i �

ti
:

Hence .�C 2�/t2i � L�ti C O� D 0 for i D 1; 2. Namely ti are distinct real solutions
to .�C 2�/t2 � L�t C O� D 0 and thus � D L�2 � 4 O�.�C 2�/ > 0. Note

Ricti .X C V / D Ricti .X/C 2ti
X
i

h.rXiA/XiX; V i C Ricti .V /

D �i jX j2 C 2ti
X
i

h.rXiA/XiX; V i C ti�i jV j2

must equal �i jX j2 C ti�i jV j2. Hence
P

i h.rXiA/XiX; V i D 0. We have confirmed
conditions (i)–(iii).

Proposition 18 is a result of Bérard Bergery that was never published but whose
statement appears in Besse’s book on Einstein manifolds [5]. Note that the statement
in Besse contains a misprint, the 3 in the statement ought to be a 4. This misprint has
had consequences that have propagated throughout the Einstein manifold literature
[6, 7, 15].

Proposition 19. Let M be a generic CR submanifold of complex projective space
with the integral foliation of D? with equidistant leaves that are totally geodesic
in complex projective space and dim.D?/ > 1. Then the foliation has two Einstein
metrics in its canonical variation.

Proof. Recall from Proposition 10 that M is n-Sasakian where n D dim.D?/.
Recall from Proposition 15 that the space of leaves is Einstein with Einstein
constant, L� D dim.D/C 2C 2dim.D?/. The leaves are n-dimensional space forms
and hence are Einstein with Einstein constant, O� D dim.D?/ � 1.

h.rXiA/XiX; V i D hR.X;Xi /Xi ; V i D hR.Xi ; V /Xi ; Xi
D hhXi ; V iXi � jXi j2V;Xi D 0:

Hence we have Condition (i).
Recall jAXV j2 D jX j2jV j2. Hence

P
i jAXi V j2 D P

i jV j2 D dim.D/jV j2
and

P
j jAXVj j2 D P

j jX j2 D dim.D?/. Hence we have Condition (ii) with

� D dim.D/ and � D dim.D?/.

�C 2� D dim.D/C 2dim.D?/;

4 O�.�C 2�/ D 4.dim.D?/ � 1/.dim.D/C 2dim.D?//;

L� D dim.D/C 2dim.D?/C 2:
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Recall that since M is dim.D?/-Sasakian that there is an antisymmetric Clifford
representation of D? on D . Hence we have

2.dim.D?/ � 1/ � dim.D/:

Hence since

4.dim.D?/ � 1/ � dim.D/C 2.dim.D?/ � 1/ < dim.D/C 2dim.D?/C 2

and

dim.D/C 2dim.D?/ < dim.D/C 2dim.D?/C 2

we have 4 O�.�C 2�/ < L�2. This yields Condition (iii) and we conclude that M has
two Einstein metrics in its canonical variation.

Definition 21. A submanifold, M , of a Kähler manifold, NM , is said to be anti-
invariant if J.TxM/ � .TxM/? for each x 2 M .

Abe showed that the only anti-invariant submanifolds of complex projective space
were real projective spaces [1].

Corollary 5. The leaves of the foliation in Proposition 18 are isometric to RPn,
where n D dim.D?/.

4 Relation Between Isoparametric Hypersurfaces
and n-Sasakian Structures

In the last two lectures we have seen some examples of n-Sasakian manifolds that
arise as circle quotients of the focal submanifolds of isoparametric hypersurface
families with four principal curvatures via a contact CR structure. This begs the
natural question: When is the focal set of an isoparametric hypersurface family with
four principal curvatures a contact CR structure?

To begin assume the Cartan polynomial on V D C
n is invariant under the action

of S1. That is for each z 2 C with jzj D 1 that

F.zx/ D F.x/:

Lemma 25. F is S1-invariant if and only if f.zx/.zx/.zx/g D zfxxxg.

Proof. Recall F.x/ D 3jxj4 � 2
3
hfxxxg; xi. Hence F is invariant precisely when

3jzxj4 � 2

3
hf.zx/.zx/.zx/g; zxi D 3jxj4 � 2

3
hfxxxg; xi:
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Since jzxj D jxj

hf.zx/.zx/.zx/g; zxi D hfxxxg; xi: (23)

Consider y(23)

4hf.zx/.zx/.zx/g; zyi D 4hfxxxg; yi: (24)

Hence hNzf.zx/.zx/.zx/g; yi D hfxxxg; yi: Thus Nzf.zx/.zx/.zx/g D fxxxg.
So f.zx/.zx/.zx/g D zfxxxg.
Conversely if f.zx/.zx/.zx/g D zfxxxg, then

3jzxj4 � 2

3
hf.zx/.zx/.zx/g; zxi D 3jzxj4 � 2

3
hzfxxxg; zxi

D 3jxj4 � 2

3
hfxxxg; xi:

Lemma 26. If F is S1-invariant, then � is tangent along M�.

Proof. � D ix is the fundamental field of the S1-action. Since f.zx/.zx/.zx/g D
zfxxxg differentiation with respect to � where z D ei� at � D 0 gives 3fxx.ix/g D
ifxxxg D i.6x/. Hence fxx.ix/g D 2.ix/, i.e., fxx�g;D 2� , namely � 2 V2.x/ D
TxM�.

Lemma 27. V�.zx/ D zV�.x/.

Proof. Let v 2 V�.zx/. Then hv; zxi D 0 and f.zx/.zx/vg D �v. It follows hNzv; xi D
0 and zfxx.Nzv/g D f.zx/.zx/vg D �v, i.e., fxx.Nzv/g D �Nzv. Hence Nzv 2 V�.x/ and it
follows v 2 zV�.x/. The converse follows in much the same fashion.

Corollary 6. The distribution, D , defined by Dx D V2.x/\V2.ix/ for each x 2 M�
has '.D/ � D .

Proof. Note that for v ? � that '.v/ D iv.

i.V2.x/ \ V2.ix// D iV2.x/ \ iV2.ix/ D V2.ix/ \ V2.i.ix// D V2.ix/ \ V2.x/:

For an inner product space, V , with subspace, W , we adopt the notation, V � W ,
for the orthogonal complement of W in V .

Corollary 7. M� has a contact CR structure if and only if

D?
x D .V2.x/ \ V0.ix//˚ R.ix/

for each x 2 M�.
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Proof. Suppose D?
x D .V2.x/ \ V0.ix//˚ R.ix/. Then

'.D?
x / D i .V2.x/ \ V0.ix// D V2.ix/ \ V0.x/ � V0.x/ D .TxM�/?:

Conversely assume '.D?
x / � .TxM�/? � V0.x/. Hence i.D?

x � R.ix// �
V0.x/. Hence D?

x � R.ix/ � iV0.x/ D V0.ix/. Hence D?
x � R.ix/ � iV0.x/ D

V2.x/ \ V0.ix/. That D?
x � R.ix/ 
 V2.x/ \ V0.ix/ is manifest.

Proposition 20. Let x 2 V , hx; xi D 1, fxxxg D 6x be a minimal tripotent. Then
for u�; v�;w� 2 V�.x/, where � D 0; 2, one has

u0 ı v0 D 0; u0 ı v2 2 V2.x/; u2 ı v2 D 2hu2; v2ix C .u2 ı v2/0 ; (25)

and moreover

fu0v0w0g D 2 .hu0; v0iw0 C hv0;w0iu0 C hw0; u0iv0/ ; (26)

fu0v0w2g D u0 ı .v0 ı w2/C v0 ı .u0 ı w2/ ; (27)

fu0v2w2g D hu0; v2 ı w2ix C .v2 ı .w2 ı u0/C w2 ı .v2 ı u0//0 C fu0v2w2g2;
(28)

fu2v2w2g D 2 .hu2; v2iw2 C hv2;w2iu2 C hw2; u2iv2/ (29)

� u2 ı .v2 ı w2/0 � v2 ı .w2 ı u2/0 � w2 ı .u2 ı v2/0 C fu2v2w2g0:
(30)

Exercise 14. Prove Proposition 20 by repeatedly differentiating (13).

Proposition 21. Suppose that the focal submanifold, M�, of a isoparametric
hypersurface family with four principal curvature is a contact CR submanifold of
the sphere. Then the leaves of the integral foliation of D? are equidistant.

Proof. Let w lie along D and v lie along D? perpendicular to � D ix. Recall

zfvxwg D f.zv/.zx/.zw/g:

Hence differentiation with respect to � with z D ei� at � D 0 gives

ifvxwg D f.iv/xwg C fv.ix/wg C fvx.iw/g:

Hence

i.v ı w/ D .iv/ ı w C if.iv/x.iw/g C v ı .iw/;
i.v ı w/ D .iv/ ı w C i ..iv/ ı .iw//C v ı .iw/:

Hence
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v ı w D �i..iv/ ı w/C .iv/ ı .iw/ � i .v ı .iw// : (31)

It follows from (25) that v ı w 2 V0.x/ ˚ Rx and v ı .iw/ 2 V0.x/ ˚ Rx. Hence
i.v ı .iw// 2 V0.ix/ ˚ R.ix/. Neither of these have a D component and we thus
conclude from (31) that .iv/ ı .iw/ and i..iv/ ı w/ have the same D component. It
follows

DS'.v/'.w/ D D'.S'.v/w/

and that the leaves are equidistant.

Lemma 28. Let x and v be minimal tripotents of an isoparametric triple, f: : :g on
V . Then v 2 V�.x/ if and only if x 2 V�.v/ where � D 0; 2:

Proof. Suppose v 2 V�.x/. Then hv; xi D 0 and thus x D x0 C x2 where x� 2
V�.v/ for � D 0; 2.

hfvvxg; xi D hfvvx0g C fvvx2g; xi D 2hx2; xi D 2jx2j2:
hfvvxg; xi D hfxxvg; vi D h�v; vi D �:

Hence 2jx2j2 D �. If � D 0, then x2 D 0, i.e., x 2 V0.v/. If � D 2, then jx2j D 1

and hence x0 D 0, i.e., x 2 V2.v/. The converse follows vertabim.

Proposition 22. Suppose that the focal submanifold, M�, of a isoparametric
hypersurface family with four principal curvature is a contact CR subman-
ifold of the sphere. Then the leaves of the integral foliation of D? have
S'.V /W D h'.V /; '.W /i� for each pair of anti-holomorphic fields, V;W , if and
only if they are totally geodesic in M�.

Proof. Let v and w lie along D? perpendicular to � . Suppose the technical
condition. Then .iv/ ı w D hiv; iwiix 2 D?. Thus the leaves are totally geodesic.

Conversely assume the leaves are totally geodesic. Let v and w lie along D?
perpendicular to � . It follows .iv/ ı w 2 .V2.x/ \ V0.ix// \ R.ix/ D D?

x . Let w0 be
an arbitrary vector lying along D? and perpendicular to � , i.e., w0 2 V2.x/\ V0.ix/
for each x 2 M�.

h.iv/ ı w;w0i D h.iv/;w ı w0i:

For w 2 V0.ix/ it follows that fwwwg D 6jwj2w. However since w 2 V2.x/ we have
fwwwg D 6jwj2w�j.wıw/0j2. Hence .wıw/0 D 0. Polarisation gives .wıw0/0 D 0.
Thus h.iv/ ı w;w0i D 0.

ifxxwg D 2f.ix/xwg C fxx.iw/g; i.2w/ D 2w ı .ix/:

Hence w ı ix D iw.
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h.iv/ ı w; ixi D h.iv/;w ı .ix/i D h.iv/; .iw/i:

Hence .iv/ ı w D h.iv/; .iw/i.ix/.
Lemma 29. Suppose that the focal submanifold,M�, of a isoparametric hypersur-
face family with four principal curvature is a contact CR submanifold of the sphere.
Then the leaves of the integral foliation of D? are totally contact geodesic in the
sphere if and only if they are totally geodesic in M�.

Proof. It is equivalent to show that CR submanifold, M�=� , of complex projective
space has totally geodesic leaves in M�=� precisely when the leaves are totally
geodesics in the ambient projective space. For this we only need show Bvv D 0 for
each v lying along D? perpendicular to � .

For v 2 V2.x/ \ V0.ix/ with jvj D 1 we have fvvvgv D 6v and v 2 V2.x/. It
follows from Lemma 28 that

Bvv D .v ı v/0 D fvvxg0 D .2x/0 D 0:

Lemma 30. Suppose that the focal submanifold,M�, of a isoparametric hypersur-
face family with four principal curvatures is a contact CR submanifold of the sphere
such that the leaves of the integral foliation of D? are totally geodesic inM�. Then
Dx � V2.q/ for each q 2 V2.ix/ \ V0.x/ D '.D?

x / with jqj D 1.

Proof. Let z 2 V2.x/ \ V2.ix/ and q 2 V2.ix/ \ V0.x/. Since the leaves are totally
geodesic in M� they are totally contact geodesic in the sphere. Hence M�=� is
n-Sasakian. Recall then that '.D?/ D V2.ix/\V0.x/ induces a symmetric Clifford
representation on D . Hence

fqqzg D 2q ı .q ı z/ D 2jqj2z D 2z:

Hence z 2 V2.q/. That is Dx � V2.q/ for each q 2 V2.ix/ \ V0.x/ D '.D?
x / with

jqj D 1.

Corollary 8. Suppose that the focal submanifold, M�, of a isoparametric hyper-
surface family with four principal curvature is a contact CR submanifold of the
sphere such that the leaves of the integral foliation of D? are totally geodesic in
M�. Then the contact CR structure is generic.

Proof. The contact CR structure gives the orthogonal splitting,

.TxM/? D .V0.x/ \ V2.ix// \ .V0.x/ \ V0.ix// :

Hence to see the structure is generic it suffices to show V0.x/ \ V0.ix/ D 0. Let
iv 2 V0.x/ \ V0.ix/ and iu 2 V0.x/ \ V2.ix/ with unit length. Since iv and iu
are orthogonal f.iu/.iu/.iv/g D 2.iv/. We also have v 2 V0.x/ \ V0.ix/. Hence
f.iu/.iu/vg D 2v. Thus v 2 V2.u/\V2.iu/. However V2.x/\V2.ix/ D V2.u/\V2.iu/
by Lemma 30. Hence v D 0.
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That the contact CR structure is generic is the key to the classification of which
focal sets give rise to n-Sasakian manifolds. Although the full argument involves
rather complicated algebra that make it unsuitable for an introductory lecture course
the basic idea is rather simple.

Definition 22. Given symmetric endomorphisms, P0; P1; : : : ; Pn, of V such that

PiPj C PjPi D 2ıijI

for each i; j we define an FKM triple to be the isoparametric triple associated with
the Cartan polynomial for the FKM system, F.x/ D jxj4�2PkhPk; xi2 and a dual
FKM triple to be associated with the Cartan polynomial, �F .

Proposition 23. Suppose that M� is a contact CR submanifold of the sphere with
the foliation of the integral leaves of D? totally geodesic. Moreover assume D at
each point contains at least one minimal tripotent. Then the original triple is a dual
Ferus-Karcher-Münzner triple on V with m2.V / D dim.D?/.

The way the above result is argued is that generic contact CR structure implies
that the shape operator induces a symmetric Clifford representation of the normal
bundle on D and to use general algebraic structure of the triple along with an old
Lemma of Dorfmeister and Neher, see [19], that under such hypotheses the normal
bundle, V0.x/, induces an symmetric Clifford representation on V itself via T .v; x/
where v 2 V0.x/. The representation theory places a very strong restriction in this
situation. Let n D m2 C 1 D dim.V0.x//. dim.D/ D 2`ı.m2/ and dim.V / D
2kı.m2/. Since the structure is generic

dim.V / D dim.D/C dim.D?/C dim.V0.x//C 1

D 2`ı.m2/C .m2 C 2/C .m2 C 1/C 1 D 2.`ı.m2/Cm2 C 2/:

Hence kı.m2/ D `ı.m2/ C m2 C 2 or rather m2 C 2 D .k � `/ı.m2/. Typically
ı.m2/ is much larger than m2 C 2. This restricts us to low multiplicities, namely
m2 D 0; 2; 6.

When D does not contain a minimal tripotent one falls into another interesting
situation. Strictly speaking the conclusion of the following is true up to covering.

Proposition 24. Suppose that M� is a contact CR submanifold of the sphere with
the foliation of the integral leaves of D? totally geodesic. Moreover assume D at
each point is spanned by maximal tripotents. Then the space of leaves of the foliation
is a complex projective space.

Proof. For z; y 2 Dx D V2.x/ \ V2.ix/ � V2.x/ it follows from (29) that

fzzyg2 D 4hz; yiz C 2jzj2y � 2z ı .z ı y/0 � y ı .z ı z/0:
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Since y 2 V2.x/,

hfzzyg; yi D 4hz; yi2 C 2jzj2jyj2 C 2j.z ı y/0j2 � h.z ı z/0; .y ı y/0i: (32)

Recall iy 2 Dx as well, hence it follows verbatim that

hfzz.iy/g; iyi D 4hz; iyi2 C 2jzj2jyj2 C 2j.z ı .iy//0j2 � h.z ı z/0; ..iy/ ı .iy//0i:
(33)

For any n 2 V0.x/ we have

h.iy/ ı .iy/; ni D hiy; n ı .iy/i D hiy; i.n ı y/i D hy; n ı yi D hy ı y; ni:

Hence ..iy/ ı .iy//0 D .y ı y/0.
As D consists of scalar multiples of maximal tripotents it follows fzzzg D 3jzj2z

and thus 3fzzyg D 6hz; yiz C 3jzj2y, i.e., fzzyg D 2hz; yiz C jzj2y by polarisation.
Hence

hfzzyg; yi D 2hz; yi2 C jzj2jyj2: (34)

Substitute (34) into (32) to find

4hz; yi2 C 2jzj2jyj2 � 2j.z ı y/0j2 � h.z ı z/0; .y ı y/0i D 2hz; yi2 C jzj2jyj2:

Which simplifies to

h.z ı z/0; .y ı y/0i C 2j.z ı y/0j2 D 2hz; yi2 C jzj2jyj2: (35)

Analogously it follows from considerations above and (33) that

h.z ı z/0; .y ı y/0i C 2j.z ı iy/0j2 D 2hz; iyi2 C jzj2jyj2: (36)

Subtract (36) from (35),

2j.z ı y/0j2 � 2j.z ı iy/0j2 D 2hz; yi2 � 2hz; iyi2:
Divide by 2 to find

j.z ı y/0j2 � j.z ı iy/0j2 D hz; yi2 � hz; iyi2: (37)

Subtract (37) from (35) to find

h.z ı z/0; .y ı y/0i � j.z ı y/0j2 C 3jz ı .iy//0j2 D jzj2jyj2 � hz; yi2 C 3hz; iyi2:
(38)

Hence substitution of (38) into the unnormalised sectional curvature gives
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K�.z; y/ D jzj2jyj2 � hz; yi2 C 3hz; iyi2 C h.z ı z/0; .y ı y/0i � j.z ı y/0j2

C 3jz ı .iy//0j2

D 2.jzj2jyj2 � hz; yi2 C 3hz; iyi2/:
Thus the space of leaves must be a complex projective space since it is a Kähler
manifold with pinching, 1

4
.

Corollary 9. Suppose that MC is a contact CR submanifold of the sphere with the
leaves of the integral foliation of D? totally geodesic. Moreover assume D at each
point is spanned by minimal tripotents. Then the space of leaves of the foliation is a
complex projective space.

Example 9. Consider Example 1 with r D 3. The triple is homogeneous with
isometry group U.2/ � U.3/. Hence it suffices to consider

x D 1p
2

�
1 0 0

0 1 0

�
:

To see that x 2 MC we compute

xx� D 1

2

�
1 0 0

0 1 0

�0
@1 00 1
0 0

1
A D 1

2

�
1 0

0 1

�
:

Thus fxxxg D 6xx�x D 6
�
1
2
x
� D 3x. Hence x 2 MC as expected.

Now we find the form of TxMC D V1.x/ and .TxMC/? D V3.x/.
Recall T .x/z D 2xx�z C 2zx�x C 2xz�x: We have

2xx�z D
�

z1 z2 z3
w1 w2 w3

�
; 2zx�x D

�
z1 z2 z3
w1 w2 w3

�0
@1 0 00 1 0

0 0 0

1
A D

�
z1 z2 0
w1 w2 0

�

and

2xz�x D
�
1 0 0

0 1 0

�0
@ Nz1 Nw1

Nz2 Nw2
Nz3 Nw3

1
A
�
1 0 0

0 1 0

�
D
� Nz1 Nw1 0

Nz2 Nw2 0
�
:

Adding these three expressions we find

T .x/z D
�
2z1 C Nz1 2z2 C Nw1 z3
2w1 C Nz2 2w2 C Nw2 w3

�
:

Write zk D xk C iyk and wk D ak C ibk to find
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T .x/z D
�
3x1 C iy1 2z2 C Nw1 z3
2w1 C Nz2 3a2 C ib2 w3

�
;

V1.x/ D
��

iy1 z2 z3
�Nz2 ib2 w3

��
; V3.x/˚ Rx D

��
x1 z2 0
Nz2 a2 0

��
:

Let

Dx D
��

0 0 z3
0 0 w3

��
; D?

x D
��

iy1 z2 0
�Nz2 ib2 0

��
:

Note it then follows that iD? D V3.x/˚ Rx hence '.D?/ D V3.x/ and hence we
have a generic contact CR structure.

We now check that Dx consists of scalar multiples of minimal tripotents. Let
z 2 D and jzj D 1,

zz� D
�
0 0 z3
0 0 w3

�0
@ 0 0

0 0

Nz3 Nw3

1
A D

� jz3j2 z3 Nw3
w3Nz3 jw3j2

�
:

zz�z D
� jz3j2 z3 Nw3

w3Nz3 jw3j2
��

0 0 z3
0 0 w3

�
D
�
0 0 jz3j2z3 C .z3 Nw3/w3
0 0 .Nz3w3/z3 C jw3j2w3

�

D
�
0 0 jz3j2z3 C jw3j2z3
0 0 jz3j2w3 C jw3j2w3

�
D
�
0 0 z3
0 0 w3

�
:

Hence fzzzg D 6zz�z D 6z as desired.

Example 10. Consider the generic CR submanifold, MC � S19, considered in
Example 5. Recall since the example is homogeneous it suffices to consider the
specific x discussed there. For this x recall that

Dx D
��

0 b

�bT 0
�

W b 2 C
4

�
:

We now check that Dx consists of scalar multiples of minimal tripotents. For z 2 Dx

we have

zz� D
�

0 b

�bT 0
��

0 Nb
� NbT 0

�
D
�
b NbT 0

0 bT Nb
�
:

zz�z D
�
b NbT 0

0 bT Nb
��

0 b

�bT 0
�

D
�

0 b NbT b
�bT NbbT 0

�
D jbj2

�
0 b

�bT 0
�
:

Hence fzzzg D 6zz�z D 6jzj2z as desired.
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In these situations where our spaces of leaves have positive sectional curvature there
are particularly strong implications for the existence of metrics of positive sectional
curvature on the associated n-Sasakian manifolds. To explore this we will need the
following,

Proposition 25. Let � W M ! B be a Riemannian submersion with totally
geodesic fibres. Then the sectional curvature of a canonical variation, h; it , has
positive sectional curvature for all 0 < t < t0 for some t0 if and only if the fibres
have positive sectional curvature and for any linearly independent horizontal fields,
X; Y and nonzero vertical field V one has

h.rXA/XY; V i2 < K�.X; Y /jAXV j2:

Proof. Suppose the sectional curvature of the canonical variation is positive for all
0 < t < t0 for some t0. Consider Kt.X; Y C V /.

Kt.X; Y C V / D tK.X; Y C V /C .1 � t /K�.X; Y / � t .1 � t /jAXV j2
D t .K.X; Y /C 2hR.Y;X/X; V i CK.X; V //C .1 � t /K�.X; Y /

� t .1 � t /jAXV j2

D t .K�.X; Y / � 3jAXY j2 C 2h.rXA/XY; V i C jAXV j2/
C .1 � t /K�.X; Y / � t .1 � t /jAXV j2

D K�.X; Y /� 3t jAXY j2 C 2t jV jh.rXA/XY; OV i C .t jV j/2jAX OV j2:

This must be positive for all t jV j thus the discriminant,

� D 4h.rXA/XY; OV i2 � 4jAX OV j2.K�.X; Y / � 3t jAXY j2/ < 0:

Hence

h.rXA/XY; OV i2 < jAX OV j2.K�.X; Y / � 3t jAXY j2/ � jAX OV j2K�.X; Y /:

Multiplication by jV j2 gives

h.rXA/XY; V i2 < K�.X; Y /jAXV j2:

The converse direction is more difficult and we omit its proof. Details can be found
in [16].

Corollary 10. Let � W S ! O be the foliation of an n-Sasakian manifold, S .
Then the sectional curvature of a canonical variation, h; it has positive sectional
curvature for all 0 < t < t0 for some t0 if and only if O has positive sectional
curvature.
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Proof.

h.rXA/XY; V i D hR.Y;X/X; V i D hR.X; V /Y;Xi
D hhY; V iX � hX; Y iV;Xi D 0:

jAXV j2 D K.X; V / D hR.X; V /V;Xi D hhV; V iX � hX; V iV;Xi D jX j2jV j2:

Hence h.rXA/XY; V i2 < K�.X; Y /jAXV j2 for linearly independent X; and V
nonzero if and only if K�.X; Y / > 0.

Thus the 3-Sasakian 7-manifold and 5-Sasakian 13-manifold discussed above have
associated canonical variation metrics with positive sectional curvature, cf. [3] and
[4] respectively.

Acknowledgements Thanks go to Daniele Grandini for his reading over drafts, Quo-Shin Chi for
his suggestions.
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On the Hopf Conjecture with Symmetry

Lee Kennard

The classical Gauss–Bonnet theorem relates the curvature of an orientable surface
to its Euler characteristic. For example, if the curvature has fixed sign, the
Euler characteristic does as well. In 1925, Hopf proved a generalization of the
Gauss–Bonnet theorem for even-dimensional hypersurfaces of Euclidean space
(see [11]). In the 1930s, Hopf made the following conjecture that bears his
name: An even-dimensional Riemannian manifold with positive (resp. nonnegative)
sectional curvature has positive (resp. nonnegative) Euler characteristic. For further
background on generalizations of the Gauss–Bonnet theorem and Hopf’s conjecture,
see [2, 18].

In dimensions two and four, the conjecture follows from the Gauss–Bonnet
theorem and its generalization to higher dimensions (see [5]). In dimensions six and
greater, there is further evidence in the Kähler case (see [3, 12, 13]) but no general
proof. Notably, the naive strategy of proving that the Gauss–Bonnet integrand takes
on the desired sign cannot work (see [7,16]). Finally, we mention that the conjecture
is satisfied by all manifolds that are known to admit positive (resp. negative)
sectional curvature (see Ziller [24]).

As with many constructions of, and classification problems concerning, posi-
tively curved manifolds, much progress on the Hopf conjecture has been made in
the presence of a large isometry group. For general surveys on this far-reaching
research program, see Grove [8], Wilking [23], or Ziller [25].

Since the isometry group of a compact Riemannian manifold is a compact Lie
group, one measure of its size is its rank, i.e., the dimension of a maximal torus.
In other words, we may consider the situation where a torus T acts isometrically
on M , a closed, even-dimensional, positively curved Riemannian manifold. The
results of [19, 20] show that �.M/ > 0 if dim.T / is bounded from below by
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some linear function in the dimension n. For example, the Hopf conjecture holds
if dim.T / � n�4

8
(for n ¤ 12), or if n �4 0 and dim.T / � n

10
. We are able to

improve these linear bounds in dimensions divisible by four (see [14]):

Theorem 1. Let Mn be a closed, positively curved manifold with n � 0 mod 4. If
a torus T acts effectively by isometries on M with dim.T / � 2 log2.n/ � 2, then
�.M/ > 0.

In fact, we show in [15] that at least some of the odd Betti numbers vanish. The
conjecture that all of the odd Betti numbers vanish for even-dimensional, positively
curved manifolds would follow from a combination of the Hopf conjecture and
another conjecture of Bott (see [9] and the surveys cited above).

Now let G be a compact Lie group. If G is a torus or a one-connected simple Lie
group, then the rank and dimension ofG satisfy the following, which can be checked
case by case (see, for example, [10]): rank.G/2 � 8

31
dim.G/, where equality holds

for the exceptional Lie group E8. Moreover, this inequality is preserved under
products, finite covers, and finite extensions, hence this inequality holds for all
compact Lie groups G. In particular, G has large rank if it has large dimension.
Additionally the cohomogeneity cohom.G/ D dim.M=G/ of the action is bounded
above by n � d only if dim.G/ � d . Theorem 1 therefore immediately implies the
following:

Corollary 1. Let Mn be a closed, positively curved manifold with n � 0 mod 4
and isometry group G. If dim.G/ � 16.log2 n/

2 or cohom.M/ � n � 16.log2 n/
2,

then �.M/ > 0.

Previous results in this direction include those in [22], which imply �.M/ > 0

if dim.G/ � 2n � 6 or cohom.M/ � p
n=18 � 1. In small dimensions, a result

in [18] concerning low cohomogeneity remains the best known: �.M/ > 0 if
cohom.M/ < 6.

1 Proof of Theorem 1

We now sketch the proof of Theorem 1 (see [14] for a complete proof). Since �1.M/

is finite for compact, positively curved manifolds, and since the universal cover of
M admits an effective, isometric torus action of the same rank, it suffices to prove
the theorem in the simply connected case.

The goal is to show that every component F of the fixed point setMT has singly
generated rational cohomology. In particular, this would imply that �.MT / > 0, as
each component of MT would have vanishing odd Betti numbers. Since �.M/ D
�.MT / (see [6,17]), and sinceMT is non-empty by a theorem of Berger, this would
imply the theorem.

To accomplish our goal, we fix a component F 	 MT . We show there exists
a subtorus H 	 T and a component N 	 MH which contains F and whose
rational cohomology ring is that of a CROSS. Now the T -action on M induces
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an effective T 0-action on N , where T 0 is the quotient of T by the kernel of the
induced action. Moreover F is a component of the fixed point setNT 0

. Results from
Smith theory (see [4], for example) imply that F too has the rational cohomology
ring of a CROSS.

The difficult part of the argument, therefore, is finding N and proving that it has
the desired rational cohomology ring. The first step here is to study the array of
fixed point sets MH , where H runs over subgroups of involutions in T . The goal
is to find components N , N1, and N2 of three such fixed point sets MH , MH1 , and
MH2 , respectively, such that F , N1, and N2 are contained in N , and such that N1
andN2 are submanifolds ofN which intersect transversely (inN ) and have average
codimension (in N ) at most dim.N /=4. Once this is done, the second step is to
prove the following theorem, which says that N has the rational cohomology ring
of a CROSS and hence completes the proof of the theorem:

Theorem 2. Let Nn be a closed, simply connected Riemannian manifold with
positive sectional curvature. If there exists a pair of transversely intersecting, totally
geodesic submanifolds Nn�k1

1 and Nn�k2
2 with n �4 0 and 2k1 C 2k2 � n, then

N has the rational cohomology ring of a sphere or a complex or quaternionic
projective space.

In the setting of Theorem 2, the connectedness theorem of Wilking implies a
certain periodicity in the integral cohomology ring of N . In Sect. 3, we describe
how we use the action of the Steenrod algebra to refine this periodicity with mod
p or rational coefficients. Theorem 2 is a simple consequence of these periodicity
statements and Poincaré duality.

2 A Graph of Involutions

To systematize the search for a subgroup H 	 T and a component N 	 MH with
the desired properties described in the last section, we make the following definition:

Definition 1. Define an abstract graph � by declaring the following:

• An involution � 2 T is a vertex in � if codF.�/ �4 0 and dim ker.T jF.�// � 1.
• Distinct vertices � and � 0 in � are connected by an edge if F.�/ \ F.� 0/ is not

transverse.

Here F.�/ denotes the F -component of M� , the fixed point set of � , and
dim ker.T jF.�// denotes the dimension of the kernel of the induced T -action on
F.�/. If, for example, � has four graph-theoretic components, then we have four
involutions �i whose fixed point sets have F -components F.�i / that mutually
transversely intersect. Letting ki D codF.�i / and supposing k1 � � � � � k4, we
have

2k1 C 2k2 �
X

ki D cod.F.�1/ \ � � � \ F.�4// � n;
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so Theorem 2 implies M has the rational cohomology ring a CROSS. In this case,
the desired N is, in fact, M .

One now considers the cases where � has three components, two components,
or one component. In each case, we attempt to show the existence of such a
submanifold N . In the cases where this attempt fails, we find another submanifold
P and a quotient T 0 of the torus T acting effectively on P with F 	 P 	 M and
dim.T 0/ � 2 log2.dimP / � 2. In this case, we can conclude by induction that the
result holds for P and, in particular, that F (being a component of PT 0

) has the
rational cohomology ring of a CROSS.

3 Proof of Theorem 2

We first recall Wilking’s connectedness theorem:

Theorem 3 (Connectedness Theorem, [21]). Suppose Mn is a closed Rieman-
nian manifold with positive sectional curvature.

(1) IfNn�k is connected and totally geodesic inM , then N ,! M is .n�2kC1/-
connected.

(2) If Nn�k1
1 and Nn�k2

2 are totally geodesic with k1 � k2, then N1 \ N2 ,! N2 is
.n � k1 � k2/-connected.

Recall an inclusion N ,! M is called r-connected if �i .M;N / D 0 for all
i � r . The following is a topological consequence of highly connected inclusions
(see [21]):

Theorem 4. Let Mn and Nn�k be closed, orientable manifolds. If N ,! M is
n � k � l connected with n � k � 2l > 0, then there exists e 2 Hk.M IZ/ such
that the maps Hi.M IZ/ ! HiCk.M IZ/ given by x 7! ex are surjective for
l � i < n � k � l and injective for l < i � n � k � l .

In the case l D 0, we observe that H�.M IZ/ is k-periodic up to degree n,
according to the following definition:

Definition 2. For a topological space M and a ring R, we say that x 2 Hk.M IR/
induces periodicity up to degree n if the mapsHi.M IR/ ! HiCk.M IR/ given by
multiplication by x are surjective for 0 � i < n�k and injective for 0 < i � n�k.
In this case, we also say that H�.M IR/ is k-periodic up to degree n.

We now apply these results to the situation of Theorem 2. We have totally
geodesic, transversely intersecting submanifolds Nn�k1

1 and N
n�k2
2 with 2k1 C

2k2 � n. We may assume k1 � k2. It follows that H�.N2IZ/ is k1-periodic
up to degree dim.N2/. The Bockstein sequence implies the same property with
Z2- and Z3-coefficients. One now applies the following lemma, which is a direct
generalization of Adem’s theorem on singly generated cohomology rings (see [1]):
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Theorem 5. Suppose M is a CW complex, and let p be an odd prime.

• If H�.M IZ2/ is k-periodic up do degree n with 2k � n, then it is 2r -periodic
up to degree n for some r � 0 such that 2r jk.

• IfH�.M IZp/ is k-periodic up to degree n with pk � n, then it is 2�ps-periodic
up to degree n for some s � 0 and � � 1 such that � divides p � 1 and 2�ps

divides k.

The proof uses the Steenrod cohomology operations, following the basic strategy
of Adem. Namely, one observes that elements Sqk of the Steenrod algebra decom-
pose when k is not a power of 2. Since the Z2-cohomology ring of M is a module
over the Steenrod algebra, these decompositions (i.e., these relations in the Steenrod
algebra) impose relations in H�.M IZ2/. The calculation is involved; however, the
upshot is that the minimal degree (homogeneous) element of H�.M IZ2/ which
induces periodicity has degree equal to a power of 2. The proof for odd primes is
similar.

Finally, one translates the conclusion of this lemma into conclusions about the
rational cohomology ring of M ; namely, one concludes that H�.M IQ/ is periodic
with two different periods, one of which is 2r and the other 4 � 3s . A simple
argument shows thatH�.M IQ/ is therefore periodic with period gcd.2r ; 4�3s/ D 4.
Combining this with Poincaré duality and the fact that n �4 0, we conclude
Theorem 2.
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An Introduction to Exterior Differential Systems

Gregor Weingart

1 Introduction

In a rather precise sense the study of exterior differential systems is equivalent to the
study of partial differential equations in the language of differential forms. Although
the change of language from partial derivatives to differential forms may appear
quite surprising nowadays, the concept developed in a time, when differential forms
offered the most convenient way to do calculations in differential geometry without
reference to local coordinates. Orthodox differential geometry has caught up in the
meantime and this initial advantage has been lost to a large extent. Nevertheless
exterior differential systems are still an interesting topic to study today, because they
unify language, method and results for several different kinds of partial differential
equations.

Studying partial differential equations in the unified framework of exterior
differential systems allows us to take advantage of the beautiful theory of Cartan–
Kähler about analytical solutions to analytical exterior differential systems, which
is the central topic of these notes. In essence the theory of Cartan–Kähler replaces
actual solutions to a given exterior differential system by formal power series
solutions, an idea already used successfully in the predecessor of the Cartan–
Kähler theory, the theorem of Cauchy–Kovalevskaya. Calculating the terms of a
formal power series solution term by term reduces a complicated partial differential
equation effectively to the problem of solving an inhomogeneous linear equation
at each order of differentiation. Although this reduction to linear algebra is very
appealing, a rather unpleasant problem arises in this approach: Inhomogeneous
linear equations need not have a solution in general. An exterior differential system
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is called formally integrable, if all the inhomogeneous linear equations encountered
at different orders of differentiation in calculating a formal power series solution
allow solutions.

A partial answer to the problem of verifying formal integrability is given by
the Spencer cohomology H �;ı.A / associated to an exterior differential system.
Spencer cohomology tells us that we can always solve the inhomogeneous lin-
ear equation at differentiation order k provided the Spencer cohomology space
Hk;2.A / D f 0 g vanishes, on the other hand we may still be able to solve the
inhomogeneous linear equation at differentiation order k in case Hk;2.A / ¤ f 0 g.
Despite being only a partial answer Spencer cohomology is a very useful tool in
practice, because it is usually much easier to calculate the Spencer cohomology
of an exterior differential system than to work with formal power series solutions
directly. Moreover the algebraic roots of Spencer cohomology in commutative
algebra ensure that only a finite number of problematic differentiation orders k exist
with Hk;2.A / ¤ f 0 g.

Among the several excellent text books on the exterior differential systems let us
point out the book [1], which can be seen as an authoritative reference on the topic.
In writing these introductory notes I wanted to complement [1] with its numerous
examples with a concise exposition of the theory of exterior differential systems and
its relationship to Spencer cohomology. Moreover I wanted to discuss some of the
points in more detail, which are treated rather superficially in the existing literature,
say, for example, the distinction between the reduced symbol comodule A and the
symbol comodule R and the precise definition of the Cartan character of an exterior
differential system. In this way I hope that even the reader well acquainted with the
Cartan–Kähler theory of exterior differential systems will find these introductory
notes worth reading, the more so a reader looking for a panoramic view on the
formal theory of partial differential equations.

Grosso modo these notes on exterior differential systems are structured into three
essentially independent parts. In Sect. 2 we will construct the contact systems on
three different kinds of jet bundles based on the notion of a canonical contact
form. Sections 3 and 4 are dedicated to a detailed study of Spencer cohomology:
Sect. 3 focuses on its general algebraic properties, whereas Sect. 4 links Spencer
cohomology to three classical statements about partial differential equations. Last
but not least the theory of Cartan–Kähler is the topic of Sect. 5, in which we
will discuss the general setup of exterior differential system and sketch a proof of
the Theorem of Cartan–Kähler about the analytical solutions to partial differential
equations with analytical coefficients.

2 Jets and Contact Systems

In essence jets and jet bundles are introduced to geometrize differential operators
and/or partial differential equations, splitting their study into algebraic and analyt-
ical problems. The resulting hybrid approach is the leitmotif of the formal theory
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of partial differential equations, which becomes the theory of exterior differential
systems when formulated in the language of differential forms and exterior calculus.
In this initial section we discuss the geometry of jets and jets bundle focusing
on the construction of the contact systems on three different kinds of jets, the jets of
smooth maps, the jets of sections of fiber bundles and the jets of submanifolds. In
Sects. 3 and 4 we will discuss the algebraic aspects of exterior differential systems,
before these two strands of the formal theory of partial differential equations are
united into the theory of Cartan–Kähler in Sect. 5.

In order to begin our study of jets let us introduce an equivalence relation on the
set of smooth maps from R

m to R
n by declaring two maps f W R

m �! R
n and

g W R
m �! R

n to be in contact f k;x g in a point x 2 R
m to order k 2 N0, if and

only if there exists a constant C > 0 such that the difference f � g is bounded by
the estimate

j f . � / � g. � / j � C j � � x jkC1

for all � in a compact neighborhood of x. Apparently this definition depends on the
choice of norms j � j on R

m and R
n and compact neighborhoods, different choices

of norms or neighborhood however only affect the constant, not the existence of the
estimate itself. The equivalence class of a given function f W R

m �! R
n under

contact k;x to the order k is called the kth order jet of f in x written jetkxf .
According to Taylor’s Theorem smooth maps f and g are in contact in x to the
order k, if and only if all their partial derivatives

@jAjf
@xA

. x / D @jAjg
@xA

. x / jAj � k (1)

up to order k agree in x. In this case there exists a unique polynomial  of degree
at most k on R

m with values in R
n, which is in contact to both f and g to the order

k in x. Thus the set Jetkx.R
m; Rn / of all kth order jets in x of smooth maps from

R
m to R

n is in bijection

Sym�k
R
m� ˝ R

n Š�! Jetkx. R
m;Rn /;  7�! jetkx  .� � x/ (2)

with the vector space Sym�k
R
m� ˝ R

n of polynomials of degree less than or equal
to k on R

m with values in R
n. The proper reason for including the translation

jetkx  .� � x/ instead of the seemingly simpler jetkx  .�/ is that in this way the jet
projections

pr W Jetk.Rm; Rn / �! Jet
Qk.Rm; Rn /; jetkxf 7�! jet

Qk
xf

defined for all k � Qk � 0 become just the standard projections for polynomials

pr W R
m � Sym�k

R
m� ˝ R

n �! R
m � Sym� Qk

R
m� ˝ R

n;
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.x;  / 7�! .x; pr /

forgetting all homogeneous components of  of degree larger than Qk. Although the
jet projections pr are defined in this way for all k � Qk � 0, only the two special
cases Qk D k�1 and Qk D 0 are of any practical importance. Singling out the latter jet
projection in notation, which becomes the evaluation map under the identification
Jet0.Rm; Rn / D R

m � R
n

ev W Jetk.Rm; Rn / �! R
m � R

n; jetkxf 7�! .x; f .x//

we may say that the notation pr virtually always refers to the jet projection with
Qk D k � 1.

In order to “globalize” the current definition of jets to smooth maps between
manifolds it is very convenient to observe that the second definition (1) of kth
order contact together with the general chain rule for iterated partial derivatives
of compositions provide us with a well-defined jet composition map on the fibered
product of two jet spaces

Jetk.Rm; Rn / �Rm Jetk.Rl ; Rm / �! Jetk.Rl ; Rn /;

. jetkyf; jetkxg / 7�! jetkx. f ı g /

provided the source y of jetkyf agrees y D g.x/ with the target g.x/ of jetkxg,
for this reason the composition map is only defined on the fibered product �Rm .
Defining the kth order jet of a smooth map f W M �! N between manifolds M
and N with respect to local coordinates x and y about p 2 M and f .p/ 2 N

simply as jetkx.p/.y ı f ı x�1/ we obtain

jetkQx.p/. Qy ıf ı Qx�1 / D jetky.f .p//. Qy ıy�1 / ı jetkx.p/. y ıf ıx�1 / ı jetkQx.p/. x ı Qx�1 /

for every other choice Qx and Qy of the local coordinates involved. With the jet
composition map being well-defined we conclude that for two smooth maps f W
M �! N and g W M �! N satisfying f .p/ D g.p/ the validity of an equality of
jets of the form

jetkx.p/. y ı f ı x�1 / D jetkx.p/. y ı g ı x�1 /

is independent of the local coordinates x and y of M and N employed in its
formulation:

Definition 2.1 (Jets of Smooth Maps). Two smooth maps f W M �! N and
g W M �! N between manifolds M and N are said to be in contact f k;p g in a
point p 2 M to the order k 2 N0 provided f .p/ D g.p/ and

jetkx.p/. y ı f ı x�1 / D jetkx.p/. y ı g ı x�1 /
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for some and hence every local coordinates x ofM and y ofN about p and f .p/ D
g.p/ respectively. The set of all equivalence classes of smooth maps from M to N
in contact

Jetk. M; N / WD f jetkpf j f W M �! N smooth g

to order k is a fiber bundle over M with projection � W Jetk.M; N / �!
M; jetkpf 7�! p; and over M � N under the evaluation ev W Jetk.M; N / �!
M �N; jetkpf 7�! . p; f .p/ /.

It should be hardly surprising to see that the preceding definition reduces the contact
relation for smooth maps between manifolds via a choice of local coordinates to the
contact relation for smooth maps between Euclidean spaces, after all the definition
of smoothness of maps between manifolds employs local coordinates in exactly
the same way. This very observation implies directly that the jet composition map
extends to:

Jetk.M; N / �M Jetk. L; M / �! Jetk. L; N /;

. jetkg.p/f; jetkpg / 7�! jetkp. f ı g / (3)

Using this generalized jet composition map we may define a second kind of jet
bundles, the jet bundles of sections of fiber bundles over a manifold M . Consider
therefore a smooth fiber bundle FM over a manifold M with projection � W
FM �! M . The jet composition map induces a well-defined map from the space
of jets of smooth maps M �! FM to

Jetk. M; FM / �! Jetk. M; M /; jetkpf 7�! jetkf .p/� ı jetkpf

which sends the kth order jet of a section f 2 �.FM / to jetkp.� ı f / D jetkpidM .
In turn we define the bundle of kth order jets of sections of FM as the following
submanifold

JetkFM WD fjetkpf j jetkf .p/� ı jetkpf D jetkp idM g � Jetk. M; FM /

of Jetk.M; FM / with the induced bundle projection � W JetkFM �!
M; jetkpf 7�! p. The jet projections pr W Jetk.M; FM / �! Jet

Qk.M; FM /

clearly restrict to jet projections

pr W JetkFM �! Jet
QkFM; jetkpf 7�! jet

Qk
pf

for all k � Qk � 0 with the special case ev W JetkFM �! FM; jetkpf 7�!
f .p/; singled out in notation to prevent ambiguities as discussed before. The jet
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projections pr and ev turn the jet bundles JetkFM; k � 0; associated to FM into
a tower of fiber bundles over M

: : :
pr�! Jet3FM

pr�! Jet2FM
pr�! Jet1FM

ev�! FM
��! M (4)

in the sense that every manifold in this tower is a smooth fiber bundle over every
manifold further down under the appropriate projection. It should be noted that the
two types of jet bundles we have defined so far are very closely related, in fact we
could have based all our considerations on the notion of jet bundles of sections.
In this approach the jet bundle of smooth maps M �! N becomes the bundle
Jetk.M; N / WD Jetk.N � M / of jets of sections of the trivial N -bundle N � M
over M , clearly a section n W M �! N � M is essentially the same thing as the
smooth map �N ı n W M �! N .

The geometry of the tower of jets bundles (4) associated to a fiber bundle
FM is governed by the structural property that all the fibers of the jet projection
pr W JetkFM �! Jetk�1FM are naturally affine spaces, more precisely the
fiber pr�1. jetk�1

p f / � JetkFM over jetk�1
p f is an affine space modelled on

the vector space SymkT �
p M ˝ Vertf .p/FM for all k � 1. This additional affine

structure is of the utmost importance for the formal theory of partial differential
equations, because it reduces non-linear partial differential equations effectively to
problems concerning affine linear maps, traditionally called symbol maps, which
are significantly easier to deal with. In particular the resulting symbolic calculus
allows us to climb up the tower (4) recursively one step at a time like we will do in
the proof of the Theorem of Cartan–Kähler in Sect. 5.

Ironically enough the construction of the canonical affine structure on the fibers
of the jet projection pr invariably involves a non-canonical choice, nevertheless this
ambiguity can be reduced significantly by using the concept of anchored coordinate
charts. A coordinate chart of a smooth manifold M anchored in a point p 2 M is
a smooth map ˆM W TpM �! M defined at least in some open neighborhood of
0 2 TpM such that ˆM. 0 / D p and such that the differential of ˆM in the point
0 2 TpM agrees with the identity of TpM :

ˆM�; p W TpM Š T0. TpM / �! TpM; X 7�! d

dt

ˇ̌
ˇ̌
0

ˆM . tX /
ŠD X

(5)

Evidently the concept of coordinate charts of a manifold M anchored in a point
p 2 M reflects the basic properties of the standard exponential maps studied in
affine differential geometry. For every smooth fiber bundle � W FM �! M over
a manifold M and for every given f0 2 Fp0M in the fiber over a point p0 2 M

we can easily find anchored coordinate charts ˆM W Tp0M �! M and ˆF W
Tf0FM �! FM anchored in p0 and f0 such that
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(6)

commutes wherever defined. Using such a pair of anchored coordinate charts we
define

jetkp0f C �f WD jetkp0


p 7�! ˆF

h
ˆF �1

. f .p/ / C �f . ˆM
�1
. p / /

i�
(7)

for all jetkp0f 2 Jetkp0FM evaluating to f .p0/ D f0 and all �f 2 SymkT �
p0
M ˝

Vertf0FM considered as homogeneous polynomials of degree k on Tp0M with
values in the subspace Vertf0FM � Tf0FM . The commutativity of the dia-
gram (6) ensures that the expression

M �! FM; p 7�! ˆF
h
ˆF �1

. f .p/ / C �f . ˆM
�1
. p / /

i

results in a locally defined section of FM . Needless to say this section depends on
the pair of anchored coordinate charts ˆF and ˆM used in its definition. Different
choices for ˆF and ˆM however will always lead to local sections in contact in the
point p0 2 M up to order k, because�f considered as a homogeneous polynomial
of degree k on Tp0M has all its partial derivatives of order less than k vanishing in
0 2 Tp0M .

Taking partial derivatives the first time converts a composition like ˆF ı �f ı
ˆM

�1
into a sum of products of partial derivatives of ˆF , �f and ˆM , all

subsequent partial derivatives are then calculated using the Leibniz rule for products.
Hence all partial derivatives of the compositionˆF ı�f ıˆM�1

of order less than
k in p0 vanish and the only the non-zero contributions to partial derivatives of order
k arise from choosing the critical factor �f in all subsequent applications of the
Leibniz rule. The net result is a sum of products of partial derivatives of �f of
order k in 0 2 Tp0M with only first order partial derivatives of ˆF and ˆM in
0 2 Tf0FM and 0 2 Tp0M . Exactly these first order derivatives however are fixed
by the characteristic property (5) of anchored coordinate charts!

Certainly a lot of work needs to be done to make the argument sketched in the
preceding paragraph precise, nevertheless we skip this problem for the time being
and conclude that the addition (7) does not dependent on the choice of the pair of
anchored coordinate chartsˆF andˆM used in its definition. Moreover the addition
satisfies the axioms of a group action for the additive group underlying the vector
space SymkT �

p0
M ˝ Vertf0FM :

jetkp0f C 0 D jetkp0f . jetkp0f C�f /C� Qf D jetkp0f C .�f C� Qf /
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Both verifications necessary are essentially trivial, but involve rather bombastic
formulas better omitted. Summarizing all our considerations on this topic we have
constructed for all k � 1 a canonical vector group bundle action on JetkFM fibered
over FM

C W JetkFM �FM .SymkT �M ˝ VertFM / �! JetkFM

in the sense that the fiber of the vector bundle over f0 2 FM acts on subset of jets
evaluating to f0. In the standard jet coordinates on JetkFM introduced later on it
is relatively easy to verify that the addition C is a natural affine space structure on
the fibers of the jet projection pr W JetkFM �! Jetk�1FM in the sense that it acts
simply transitively on each fiber.

Without doubt the most important use of jets is to provide us with a concise
definition of the intuitive notions of (non-linear) differential operators and par-
tial differential equations. In particular the geometrization of partial differential
equations brought about by jets can be used to reduce all possible kinds of
partial differential equations to a single standard normal form, namely an exterior
differential system. Before discussing this point let us point out very briefly that the
jet bundles JetkFM of a vector bundle FM over a manifold M are naturally vector
bundles again under the obvious choice of scalar multiplication and addition

� jetkpf WD jetkp. �f / jetkpf1 C jetkpf2 WD jetkp. f1 C f2 /

moreover the jet bundles JetkFM are also bundles of free modules over the algebra
bundle JetkRM of smooth k-jets of functions. Last but not least the vector bundle
structure on JetkFM can be used for an alternative construction of the affine space
structure on the fibers of the jet projection pr W JetkFM �! Jetk�1FM. In this
alternative construction the addition (7) is mediated by a canonical inclusion of
vector bundles

� W SymkT �M ˝ FM �! JetkFM;  p ˝ fp �! jetkp.  f / (8)

so that jetkpf C �f can be interpreted simply as the sum of jetkpf and �.�f / in

the vector space JetkpFM, note that Vertf0FM Š Fp0M are canonically isomorphic
for a vector bundle.

Definition 2.2 (Non-linear Partial Differential Equations). A smooth non-linear
differential operator of order k � 0 from sections of a fiber bundle FM over M
to sections of another fiber bundle EM is a map D W �.FM / �! �.EM /

between the sets of locally defined sections such that the value .Df /. p / 2 EpM of
the image of f 2 �.FM / in a point p 2 M depends only on jetkpf 2 JetkpFM .
In particular D induces a well-defined smooth map of fiber bundles over M called
the total symbol of D:

� total
D W JetkFM �! EM; jetkpf 7�! .D f /. p /



An Introduction to Exterior Differential Systems 125

A non-linear partial differential equation for local sections f 2 �.FM / is an
equation of the form Df D � with a distinguished global section � 2 �.EM / of
the target bundle.

This notion of non-linear partial differential equations may not be the most general
one, nevertheless it is sufficiently ample to illustrate the use of jets and comprises
the important subclass of linear partial differential equations. Naturally enough
a differential operator D of order k � 0 is called a linear differential operator
provided both the source and target bundle FM and EM are vector bundles over M
and D W �.FM / �! �.EM / is an R-linear map between the vector spaces of
sections, equivalently we may ask for its total symbol � total

D W JetkFM �! EM
to be a homomorphism of vector bundles over M . A linear partial differential
equation for sections f 2 �.FM / is in turn an equation of the form D f D 0

with a linear operator and the distinguished zero section 0 2 �.EM /. Given now
a partial differential equation Df D � of order k � 1 we may “solve” the equation
algebraically

EqkpM WD f jetkpf 2 JetkpFM j � total
D . jetkpf / D �p g � JetkpFM

in terms of jets in every point p 2 M . Evidently a local section f 2 �.FM / is
a solution to the partial differential equation Df D �, if and only if its image under
the jet operator

jetk W �.FM / �! �. JetkFM /; f 7�!

p 7�! jetkpf

�
(9)

takes values jetkpf 2 EqkpM in every point p 2 M . This observation motivates the
minimal regularity assumption imposed in the formal theory of partial differential
equations, namely we require that the family f EqkpM gp2M of subsets of JetkFM

assembles into a subbundle EqkM � JetkFM . A partial differential equation
failing to satisfy this minimal regularity assumption is outside the scope of the
formal theory and has to be treated differently.

Solving a partial differential equation algebraically in every point p 2 M

introduces the concept of formal solutions into the picture, sections of the fiber
bundle EqkM � JetkFM . Only those formal solutions f k 2 �.EqkM / though,
which are in the image of the jet operator, correspond to actual solutions f 2
�.FM /. Hence it makes sense to distinguish sections in the image of the jet
operator (9) from arbitrary sections of EqkM and call them holonomic sections. In
consequence the original partial differential equation Df D � has been reformulated
into the problem to find all holonomic sections of EqkM . In passing we remark that
the question, whether every section of EqkM is fiberwise homotopic to a holonomic
section or not, has sparked intensive research on Gromov’s h-principle [4].

Interestingly the holonomic sections jetkf 2 �. JetkFM / of a jet bundle are
exactly those sections of JetkFM , which satisfy a particular first order partial
differential constraint, the contact constraint. In the setup of exterior differential
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systems this contact constraint is formulated in terms of a canonical 1-form specific
to jet bundles, the canonical contact form. Restricting this canonical contact form
to the subbundle EqkM � JetkFM of algebraic pointwise solutions of a partial
differential equation Df D � induces an exterior differential system on the manifold
EqkM , whose solutions correspond bijectively to local solutions f 2 �.FM /

of the original partial differential equation Df D �. In this way every partial
differential equation satisfying the minimal regularity assumption is transformed
into an equivalent exterior differential system.

In order to construct the canonical contact form � contact on the jet bundle JetkFM

of sections of a fiber bundle FM we remark that every smooth curve c W R �!
JetkFM in the total space of a jet bundle can be written in the form c.t/ D jetkpt ft
with smooth curves t 7�! pt in the base M and a curve t �! ft in �.FM /.
Anticipating a Leibniz rule for such combined curves we can decompose every
vector tangent to JetkFM into two parts:

d

dt

ˇ̌
ˇ̌
0

jetkpt ft D d

dt

ˇ̌
ˇ̌
0

jetkpt f0 C d

dt

ˇ̌
ˇ̌
0

jetkp0ft (10)

Although this formula is entirely correct the decomposition on the right depends on
the specific representation of the given tangent vector on the left as a combination
of a curve t 7�! pt in the base and a curve t 7�! ft in the local sections of FM .
Essentially the problem is that the first summand picks up partial derivatives of order
k C 1 of f0 in form of the partial derivatives of jetkf0 in the direction of d

dt

ˇ̌
0
pt .

This problem is easily overcome using the jet projection pr and so we can define the
contact form � contact on JetkFM via:

� contact
 d

dt

ˇ̌
ˇ̌
0

jetkpt ft
�

WD d

dt

ˇ̌
ˇ̌
0

jetk�1
p0
ft 2 Vertjetk�1

p0
f0

Jetk�1FM

En nuce the contact form tells us, whether or not we are forced to change the local
section f0 in order to reproduce a given vector tangent to JetkFM . Thus every
holonomic section jetkf W M �! JetkFM; p 7�! jetkpf; with f 2 �.FM /

pulls back the contact form to:


.jetkf /�� contact

�  d

dt

ˇ̌
ˇ̌
0

pt

�
WD � contact

 d

dt

ˇ̌
ˇ̌
0

jetkpt f
�

D d

dt

ˇ̌
ˇ̌
0

jetk�1
p0
f D 0 (11)

In order to simplify this characterization of holonomic sections jetkf 2
�. JetkFM / of the jet bundle JetkFM it is convenient to replace the contact
form � contact, which is a 1-form on JetkFM with values in the slightly unwieldy
vector bundle pr�.Vert Jetk�1FM /, by its scalar components aka local sections of
the contact subbundle of T �JetkFM defined by:
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Contact JetkFM

WD im


pr�.Vert�Jetk�1FM / �! T �JetkFM; � 7�! h �; � contact i
�

Every contact form � 2 �.Contact JetkFM / is actually horizontal for the
projection pr to Jetk�1FM , because every pr-vertical tangent vector is �-vertical
as well and thus has a presentation d

dt

ˇ̌
0

jetkpft , in which the base point p 2 M does
not vary. A fortiori we get:

� contact
 d

dt

ˇ̌
ˇ̌
0

jetkpft
�

D d

dt

ˇ̌
ˇ̌
0

jetk�1
p ft D pr�

 d

dt

ˇ̌
ˇ̌
0

jetkpft
�

D 0

The horizontality of contact forms allows us to define the contact system on
JetkFM as the following sequence of vector subbundles of the cotangent bundle of
the jet bundle JetkFM

Contact JetkFM 	 Horizontal JetkFM 	 T �JetkFM (12)

where Horizontal JetkFM denotes the subbundle of horizontal 1-forms with
respect to pr.

The preceding calculations offer a good insight into the geometry of the contact
system, nevertheless some readers will certainly prefer a more down to earth
approach vindicating our findings explicitly in local coordinates on jet bundles. For
the time being we will restrict to the jet bundles Jetk.M; F / of smooth maps from
a manifold M to a manifold F , in any case the difference between Jetk.M; F /

and JetkFM virtually disappears in local coordinates for a fiber bundle FM over
M with model fiber F . Choosing local coordinates .x; U / on M and .f; V / on F
we may then define local coordinates on the subset

. Jetk. M; F / /.x;U /; .f;V / WD f jetkpf j p 2 U and f .p/ 2 V g

of kth order jets of maps f W M �! F with source in U and target in V by setting

x˛. jetkpf / WD x˛. p / f �
A . jetkpf / WD @jAjf �

@xA
. x1.p/; : : : ; xm.p/ /

for all ˛ D 1; : : : ; m, � D 1; : : : ; n and all multi-indices A on f1; : : : ; mg of order
jA j � k. The standard jet coordinates constructed in this way from smooth atlases
for both M and F define a smooth atlas for Jetk.M; F / turning it into a smooth
manifold of dimension:

dim Jetk.M; F / D mC n

 
mC k

m

!
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Standard jet coordinates are adapted to the projections pr W Jetk.M; F / �!
Jet

Qk.M; F / for all k � Qk � 0 in the sense that pr simply forgets all the coordinate
functions f �

A with jAj > Qk, this observation proves explicitly that (4) really is the
stipulated tower of smooth fiber bundles overM . Moreover standard jet coordinates
on Jetk.M; F / allow us to decompose every tangent vector d

dt

ˇ̌
0

jetkpt ft in the way
predicted by Leibniz’s rule

d

dt

ˇ̌
ˇ̌
0

jetkpt ft

D
mX
˛D1

h d

dt

ˇ̌
ˇ̌
0

x˛. jetkpt ft /
i @

@x˛
C

X
jAj�k
�

h d

dt

ˇ̌
ˇ̌
0

f �
A . jetkpt ft /

i @

@f �
A

D
mX
˛D1

ıx˛
h @

@x˛
C

X
jAj�k
�

 @

@x˛
@jAjf �

0

@xA

�
. x.p0/ /

@

@f �
A

i
C

X
jAj�k
�

ıf �
A

@

@f �
A

where ıx˛ WD d
dt

ˇ̌
0
x˛. pt / and ıf �

A WD d
dt

ˇ̌
0

@Af �t
@xA

. x.p0/ /. Evaluating
d
dt

ˇ̌
0

@jAjf �t
@xA

. x.pt / / for a multi-index A of highest order jAj D k we pick up
derivatives of f �

0 of order k C 1 as anticipated above, albeit only in the coefficients
of the basis vector @

@f �A
associated to A. For all multi-indices A of order jAj < k

on the other hand the value of the partial derivative . @
@x˛

@jAjC1f �0
@xAC˛ /. p0 / equals

f �
AC˛. jetkp0f0 / by construction and so we obtain eventually:

pr�
 d

dt

ˇ̌
ˇ̌
0

jetkpt ft
�

D
mX
˛D1

ıx˛
 @

@x˛
C

X
jAj<k
�

f �
AC˛. jetkp0f0 /

@

@f �
A

�

C
X

jAj<k
�

ıf �
A

@

@f �
A

Evidently the first part in this decomposition comes from the variation ıp WD
d
dt

ˇ̌
0
pt of the point p0 2 M , while the second part is caused by the variation

ıf WD d
dt

ˇ̌
0

jetkp0ft of the kth order jet of the smooth map f0 W M �! F . In

this decomposition the canonical contact form � contact on Jetk.M; F / is simply the
projection to the second part, so we conclude:

� contact.
@

@x˛
/ D �

X
jAj<k
�

f �
AC˛

@

@f �
A

� contact.
@

@f �
A

/ D C ıjAj<k
@

@f �
A
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More succinctly this explicit version of the canonical contact form � contact reads:

� contact D
X

jAj<k
�


df �A �

mX
˛D1

f �
AC˛ dx˛

�

„ ƒ‚ …
DW ��A

˝ @

@f �
A

D
X

jAj<k
�

��A ˝ @

@f �
A

In standard jet coordinates the contact system on Jetk.M; F / can thus be written

Contact Jetk.M; F / WD span f ��A j for all �; jA j < k g
Horizontal Jetk.M; F / WD span f dx˛; df �A j for all ˛; �; jA j < k g (13)

because Contact Jetk.M; F / and Horizontal Jetk.M; F / are respectively the
subbundles of scalar components of � contact and of horizontal forms with respect to
pr. For the calculations to come it is important to observe that the exterior derivative
of the scalar contact form ��A

d��A D �
mX
˛D1

df �AC˛ ^ dx˛

D �
mX
˛D1


��AC˛ C

mX
Q̨D1

f �
AC˛CQ̨ dx Q̨ � ^ dx˛

ŠD �
mX
˛D1

��AC˛ ^ dx˛

with a multi-index A of order jAj < k�1 lies in the ideal generated by all the scalar
contact forms taken together. This is no longer true for multi-indices A of highest
order jAj D k � 1, but at least d��A D � P

˛ df �AC˛ ^ dx˛ is an element of the
ideal generated by horizontal forms. In other words the contact system satisfies the
characteristic compatibility condition:

d W �.Contact Jetk.M;F / / �! �.Horizontal Jetk.M;F / ^T �Jetk.M;F / /

(14)

An illustrative example for the contact system, whose axiomatization has become
a topic of research by itself under the keyword contact manifolds, is the first order
jet bundle Jet1RM of the trivial real line bundle RM WD R � M over M , whose
sections correspond to smooth functions f W M �! R. Rather atypically this
bundle splits into the Cartesian product

Jet1RM
Š�! R � T �M; jet1pf 7�! . f . p /; dpf / (15)

which identifies the cotangent bundle T �M of the manifold M with the pointed
jet bundle T �M WD� Jet1RM of first order jets of functions evaluating to zero
ev. jet1pf / D . 0; p / in Jet0RM D R �M . From this point of view it is natural to
define the higher order cotangent bundle as the bundle of pointed kth order jets of
functions, compare for example [8]:

T �kM D �JetkRM WD f jetkpf j f W M �! R smooth and f . p / D 0 g
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More important for our present purpose is that the vertical tangent bundle of Jet0RM
is canonically the trivial line bundle Vert .R�M / D . T R /�M over R�M due
to T R Š R�R, the contact form thus becomes a scalar valued differential form on
Jet1RM :

� contact
 d

dt

ˇ̌
ˇ̌
0

jet1pt ft
�

D d

dt

ˇ̌
ˇ̌
0

jet0p0ft OD d

dt

ˇ̌
ˇ̌
0

ft . p0 /

Comparing this expression with the differential of the tautological function on
Jet1RM , which is just the projection f taut. jet1pf / WD f . p / to the first factor in
decomposition (15)

df taut
 d

dt

ˇ̌
ˇ̌
0

jet1pt ft
�

D d

dt

ˇ̌
ˇ̌
0

ft . pt / D d

dt

ˇ̌
ˇ̌
0

ft . p0 / C dp0f0

 d

dt

ˇ̌
ˇ̌
0

pt

�

we conclude that the contact form comprises � contact D df taut � pr�
T �M

� both
the differential of the tautological function f taut 2 C1. Jet1RM / and the
tautological 1-form � on T �M . Correspondingly we get in standard jet coordinates
. x1; : : : ; xm; f; f1; : : : ; fm / on Jet1RM the classical expression for contact forms
in Darboux coordinates for contact manifolds:

� contact D df �
mX
�D1

f� dx�

Besides higher order cotangent bundles we can also define higher order tangent
bundles:

Definition 2.3 (Higher Order Tangent Bundles). Recalling the definition of the
tangent bundle TM of a manifold M as the set Jet10.R; M / of equivalence classes
of smooth curves c W R �! M under the relation of first order contact in 0 2 R we
define the kth order tangent bundle as the set of equivalence classes of curves

T kM WD Jetk0. R; M /

under kth order contact in 0 with projection Jetk0.R; M / �! M; jetk0c DW
d�k

dt�k

ˇ̌
ˇ
0
c 7�! c.0/.

In difference to the classical tangent bundle TM D T 1M the higher order tangent
bundles T kM with k > 1 do not carry a natural vector bundle structure. The proper
way to think of this problem is to consider the canonical embedding ˆ W T kM �!
Hom . �JetkRM; RkM / of T kM into the bundle Hom . �JetkRM; RkM / of linear
maps from the kth order cotangent bundle T �kM D� JetkRM to the trivial vector
bundle R

kM with fiber Rk defined by:

ˆ
h d�k

dt�k

ˇ̌
ˇ̌
0

c
i
. jetkc.0/f / WD

 d1
dt1

ˇ̌
ˇ̌
0

.f ı c/; d
2

dt2

ˇ̌
ˇ̌
0

.f ı c/; : : : ; d
k

dtk

ˇ̌
ˇ̌
0

.f ı c/
�
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In the special case k D 1 the canonical embedding ˆ is of course a version of
the canonical pairing TM �M T �M �! RM between the tangent and cotangent
bundles TM and T �M , as such it induces an isomorphism of fiber bundles. In
general however the embedding ˆ looks in suitable coordinates on T kM and
Hom . �JetkRM; RkM / like the polynomial map

. t1; : : : ; tk / 7�! . t1; t
2
1 C t2; t

3
1 C 2 t1 t2 C t3; : : : /

from the set .TpM/k of k-tuples of vectors in TpM to the vector space
.Sym1�kTpM /k of k-tuples of polynomials of degree at most k without constant
term in TpM . Since not every quadratic polynomial is the square of a linear
polynomial, the embedding ˆ is not surjective for any k > 1, nor does it induce a
vector space structure on T kM .

Whereas the jets of smooth maps and jets of local sections are very similar and
virtually indistinguishable in local coordinates the third kind of jets we want to
discuss in this section are slightly different in nature, namely jets of submanifolds.
The jet bundles of submanifolds or generalized Graßmannians are introduced to deal
with geometrically motivated partial differential equations, which actually ask for a
submanifold solution, not a smooth map or local section, consider for example the
partial differential equations describing minimal or totally geodesic submanifolds.
Generalized Graßmannians can be used as well to describe multivalued solutions to
standard partial differential equations as submanifolds of a jet bundle as discussed
for example in [6].

In order to define the contact equivalence relation between submanifolds of a
given manifold M we recall that the higher order tangent bundles of a manifold

M are defined as the set T kpM WD Jetk0.R; M / of equivalence classes d�k

dt�k

ˇ̌
ˇ
0
c of

curves c W R �! M under contact to order k � 0 in the point 0 2 R. Thinking of
the higher order tangent bundle T kp N of a submanifold N � M in a point p 2 N

as a subset of the higher order tangent bundle of M

T kp N WD
n d�k

dt�k

ˇ̌
ˇ̌
0

c
ˇ̌
ˇ c W R �! N � M smooth curve with c. 0 / D p

o

� T kpM

we may say that two submanifolds N and QN are in contact up to order k � 0 in a
common point p 2 N \ QN provided T kp N D T kp

QN � T kpM , equivalently for every

curve c W R �! N with c.0/ D p there exists a curve Qc W R �! QN in contact to c
to order k and vice versa:

Definition 2.4 (Jets of Submanifolds and Graßmannians). Two submanifolds of
a manifoldM are said to be in contactN k;p

QN to order k � 0 in a common point
p 2 N \ QN , if their kth order tangent spaces in p agree T kp N D T kp

QN considered as
subsets of T kpM . The equivalence class of a submanifold N under contact to order
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k � 0 in a point p 2 N is called the kth order jetkpN of N in p, the set of all kth
order jets of submanifolds of dimension n defines the generalized Graßmannian:

GrknM WD f jetkpN j N an n–dimensional submanifold of M and p 2 N g

Two submanifolds N and QN sharing a point p 2 N \ QN are in contact to order
0 in p irrespective of their dimensions, because T 0pM is just the manifold M . The

0th order Graßmannian Gr0nM D M is thus not particularly interesting. The first
order Graßmannian Gr1nM on the other hand agrees with the fiber bundle of all
linear subspaces Grn.TM / of dimension n of the tangent bundle. In consequence
two submanifolds N and QN of different dimensions n ¤ Qn are never in contact to
first and thus never in contact to positive order k > 0 due to the existence of the by
now familiar tower of fiber bundles over M

: : :
pr�! Gr3nM

pr�! Gr2nM
pr�! Gr1nM

��! Gr0nM D M (16)

under the jet projections pr W GrknM �! Gr
Qk
nM; jetkpN 7�! jet

Qk
pN . Unlike the

towers of jet bundles we have discussed before there is no meaningful evaluation
ev W Gr1nM �! Gr0nM defined in this tower other than the fiber bundle projection � .

This minor difference between jet bundles and generalized Graßmannians is
reflected faithfully in local standard coordinates on GrknM . In fact for every k > 0

and every choice of local coordinates .x1; : : : ; xm/ on an open subset U � M we
may consider the subset

.GrknM /.x;U /

WD f jetkpN j p 2 U and dpx
1
ˇ̌
TpN

; : : : ; dpx
n
ˇ̌
TpN

linearly independent g

of the generalized Graßmannian GrknM consisting of the kth order jets of n-
dimensional submanifolds jetkpN such that the first n coordinate functions
x1; : : : ; xn restrict to local coordinates x1

ˇ̌
N
; : : : ; xnjN on N in a neighborhood

UN � N \ U of p. Upon restriction to N the other .m � n/ coordinate functions
xnC1; : : : ; xm thus become smooth functions of x1

ˇ̌
N
; : : : ; xnjN turning the

submanifold N into the graph of the smooth map

. xnC1
N ; : : : ; xmN / W R

n �! R
m�n;

. x1.q/; : : : ; xn.q/ / 7�! . xnC1.q/; : : : ; xm.q/ /

defined on .x1
ˇ̌
N
; : : : ; xnjN /. UN / by:

. xnC1
N ; : : : ; xmN / WD . xnC1; : : : ; xm / ı . x1 ˇ̌

N
; : : : ; xnjN /�1
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In this local description of submanifolds of M the difference between two n-
dimensional submanifolds N and QN becomes the difference between the associated
tuples .xnC1

N ; : : : ; xmN / and .xnC1
QN ; : : : ; xmQN / of functions of .x1; : : : ; xn/. Clearly

two n-dimensional submanifolds N and QN are in contact in a common point
p 2 N \ QN \ U to order k � 0, if and only if

@jAjxˇN
@xA

. x1.p/; : : : ; xn.p/ / D @jAjxˇQN
@xA

. x1.p/; : : : ; xn.p/ /

for all ˇ D nC1; : : : ; m and all multi-indicesA on f1; : : : ; ng of order jAj � k. With
this observation in mind we define the standard jet coordinates on .GrknM /.x;U / by
setting

x˛. jetkpN / WD x˛. p / x
ˇ
A. jetkpN / WD @jAjxˇN

@xA
. x1.p/; : : : ; xn.p/ /

for ˛ D 1; : : : ; n, for ˇ D n C 1; : : : ; m and A a multi-index on f1; : : : ; ng of
order jAj � k. Clearly the domains .GrknM /.x;U / � GrknM of these standard jet
coordinates associated to local coordinates .x; U / on M cover GrknM making it a
smooth manifold of dimension

dim GrknM D nC .m � n /
 
nC k

n

!

say dim Gr0nM D m and dim Gr1nM D m C .m � n/ n as expected. Moreover
these standard jet coordinates are well adapted to the jet projections pr W GrknM �!
Gr

Qk
nM and the projection � W GrknM �! M to the base manifold M proving

explicitly that the tower (16) of projections specifies a tower of smooth fiber bundles
over M .

Among the subtle differences between the jet bundles of smooth maps or sections
and the generalized Graßmannians GrknM the definition of the canonical contact
form is certainly the most significant. In fact we may not simply copy the definition
of the canonical contact form � contact we have used before, because a tangent vector
to GrknM written in the form

d

dt

ˇ̌
ˇ̌
0

jetkptNt 2 Tjetkp0N0
GrknM

implicitly requires pt 2 Nt for all t to be well-defined, so neither the expression
d
dt

ˇ̌
0

jetkp0Nt nor its counterpart d
dt

ˇ̌
0

jetkptN0 make any sense. For all k � 1

however we may lift the canonical inclusion �N W N �! M of an n-dimensional
submanifold N � M to the Graßmannian jetk�1�N W N �! Grk�1

n M; p 7�!
jetk�1

p N; in such a way that � ıjetk�1�N D �N . The differential of the lifted inclusion

jetk�1�N of the submanifold N in a point p 2 N
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. jetk�1
p �N /�; p W TpN 7�! Tjetk�1

p N Grk�1
n M;

d

dt

ˇ̌
ˇ̌
0

pt 7�! d

dt

ˇ̌
ˇ̌
0

jetk�1
pt
N

is thus an embedding, whose image in the tangent space Tjetk�1
p NGrk�1

n M turns

out to depend only on the kth order jet of the submanifold jetkpN 2 GrknM . In

consequence we can define the canonical contact form on GrknM simply by the
projection to the corresponding quotient:

� contact
 d

dt

ˇ̌
ˇ̌
0

jetkptNt
�

WD d

dt

ˇ̌
ˇ̌
0

jetk�1
pt
Nt C im . jetk�1

p0
�N0 /�; p0

Although significantly different in definition this contact form serves the same
purpose as before, namely it tells us, whether we are forced to vary the submanifold
in order to reproduce a given vector tangent to GrknM . In fact im . jetk�1

p0
�N0 /�; p0 is

precisely the subspace of tangent vectors, which can be realized without a variation
of the submanifold N0!

One advantage of the preceding definition of the canonical contact form on
GrknM is that it is evidently horizontal for the jet projection pr W GrknM �!
Grk�1

n M , because a tangent vector d
dt

ˇ̌
0

jetkptNt vertical under pr satisfies
d
dt

ˇ̌
0

jetk�1
pt
Nt D 0 by definition and thus vanishes under � contact. Due to this

horizontality we can extend the canonical contact form � contact to the contact system
on the generalized Graßmann bundle GrknM of order k � 1

Contact GrknM 	 Horizontal GrknM 	 T �GrknM (17)

where Horizontal GrknM denotes the subbundle of horizontal forms with respect to
pr and Contact GrknM the subbundle of scalar components of the canonical contact
form � contact:

ContactjetkpN
GrknM

WD im


Ann im .jetk�1�N /�; p �! T �
jetkpN

GrknM; � 7�! h �; � contact i
�

In order to find an explicit description of the canonical contact form in standard jet
coordinates . x˛; xˇA / on GrknM let us consider a submanifoldN � M of dimension
n with canonical inclusion �N W N �! M written locally as a graph of the smooth
map . xnC1

N ; : : : ; xmN /:

�N W .x1; : : : ; xn/ 7�! .x1; : : : ; xnI xnC1
N .x1; : : : ; xn/; : : : ; xmN .x

1; : : : ; xn//

The lift of the inclusion to the Graßmannian N �! Grk�1
n M; p 7�! jetk�1

p N; is
given by

jetk�1�N W .x1; : : : ; xn/ 7�! .x1; : : : ; xnI
n @jAjxˇN

@xA
. x1; : : : ; xn /

o
jAj<k; ˇ/
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hence its differential . jetk�1�N /�; p W TpN �! Tjetk�1
p NGrk�1

n M in a point p 2 N
satisfies:

. jetk�1�N /�; p W @

@x˛
7�! @

@x˛
C

X
jAj<k
ˇ

 @

@x˛
@jAjxˇN
@xA

�
. x1.p/; : : : ; xn.p/ /

@

@x
ˇ
A

On the other hand the definition of the standard jet coordinates . x˛; xˇA / on GrknM
becomes

x
ˇ
AC˛. jetkpN / D

 @

@x˛
@jAjxˇN
@xA

�
. x1.p/; : : : ; xn.p/ /

for all multi-indices of order jA j < k less than k, in consequence the image of the
differential . jetk�1�N /�; p depends only on the coordinates . x˛; xˇA / of the point
jetkpN in the generalized Graßmannian GrknM as claimed. Specifically we obtain
the following congruences

� contact
 @

@x˛

�
� �

X
jAj<k
ˇ

x
ˇ
AC˛

@

@x
ˇ
A

� contact
 @

@x
ˇ
A

�
� C ıjAj<k

@

@x
ˇ
A

modulo the would be image of the differential . jetk�1�N /�; p defined as the
subspace:

†. x˛; x
ˇ
A / WD “im . jetk�1�N /�; p”

D span
n @

@x˛
C

X
jAj<k
ˇ

x
ˇ
AC˛

@

@x
ˇ
A

ˇ̌
ˇ ˛ D 1; : : : ; n

o

It is comforting to know that the contact form � contact thus looks virtually the same
as before

� contact D
X

jAj<k
ˇ


dxˇA �

nX
˛D1

x
ˇ
AC˛ dx˛

�

„ ƒ‚ …
DW �ˇA

˝
 @

@x
ˇ
A

C †.x˛; x
ˇ
A /
�
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in standard jets coordinates on GrknM , in particular the contact system has the
familiar form:

Contact GrknM WD span f �
ˇ
A j for all ˇ; jA j < k g

Horizontal GrknM WD span f dx˛; dxˇA j for all ˛; ˇ; jA j < k g
With the construction of the canonical contact system we have established an
almost complete analogy between the generalized Graßmannian GrknM and the jet
bundles of maps or sections. What we are still lacking though is an analogue of
the addition (7), which turns the fiber of the jet projection pr W JetkFM �!
Jetk�1FM over a point jetk�1

p f into an affine space modelled on the vector space

SymkT �
p M ˝ Vertf .p/FM for all k � 1. Much to our chagrin the fiber of the

jet projection � W Gr1nM �! M is not an affine space, rather we may identify
it via jet1pN 7�! TpN with the compact Graßmannian Grn. TpM /. Despite this

disappointment we observe that the vertical tangent space of Gr1nM in a point
jet1pN D TpN

Vertjet1pN
Gr1nM D TTpNGrn. TpM / Š Hom . TpN; TpM=TpN / (18)

can be written in a form Hom . TpN; TpM=TpN / D Sym1T �
p N ˝ . TpM=TpN /

reminiscent of the vector space acting on the first order jet bundle Jet1FM . Some-
what more precisely the identification (18) of the tangent space of the Graßmannian
Grn. TpM / associates to a homomorphism A 2 Hom . TpN; TpM=TpN / the
following tangent vector in the point TpN

d

dt

ˇ̌
ˇ̌
0

im


id C tAlift W TpN �! TpM; X 7�! X C tAliftX
�

2 TTpNGrn. TpM /

whereAlift W TpN �! TpM is a linear lift ofA. Of course the curve t 7�! im. idC
tAlift / of n-dimensional subspaces of TpM defined for t sufficiently small depends
on the lift Alift chosen, nevertheless the tangent vector to this curve in t D 0 only
depends on A.

En nuce the principal idea of the identification (18) of the tangent spaces of the
Graßmannian Grn. TpM / is to replace a subspace TpN � TpM by its inclusion
TpN �! TpM , being an application the latter is more easy to deform. In the
context of jets of submanifolds we do not loose information in replacing similarly
a submanifold N � M by its canonical inclusion �N W N �! M , because jetkp�N
determines jetkpN completely, to wit the inclusion T kp N �! T kpM used to define

jetkpN is just the jet composition (3) with jetkp�N . In the same vein the addition (7)
of jets of smooth maps becomes an addition of jets of submanifolds

jetkpN C�N WD jetkp im

N �! M; q 7�! ˆM

h
ˆM

�1
.q/C�N.ˆN

�1
.q//

i�
(19)
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with homogeneous polynomials�N 2 SymkT �
p N˝TpM of degree k on TpN with

values in TpM . Although this addition is well-defined for all k � 1 independent of
the choice of the anchored coordinate charts ˆN and ˆM for N and M , a peculiar
problem arises in the case k D 1 singled out in our discussion above: The image of
the deformed smooth map is not even locally a submanifold of dimension n, because
we modify the linear inclusion TpN � TpM by linear terms. Evidently this problem
disappears for jet orders k � 2 and the equality jetk�1

p im �N D jetk�1
p N ensures that

our addition acts on the fibers of the projection GrknM �! Grk�1
n M in the sense

that jetkpN C�N still lies over jetk�1
p N .

Unluckily however the vector space SymkT �
p N ˝ TpM is too large to provide

us with a simply transitive group action on the fibers of the projection in analogy to
the addition (7) on jets of maps or sections. In order to understand this problem let
us have another look at the identification (18) of the tangent spaces of Graßmannian
Grn. TpM /. The construction of an explicit curve in Grn. TpM / representing the
tangent vector associated to a linear map A W TpN �! TpM=TpN required us
to lift A to Alift W TpN �! TpM . The representing curve depended on this lift,
but not the tangent vector itself. Changing the homogeneous polynomial �N 2
SymkT �

p N ˝ TpM used in the addition (19) by a homogeneous polynomial of
degree k on TpN with values in TpN similarly changes the image submanifold

im

N �! M; q 7�! ˆM

h
ˆM

�1
.q/ C �N.ˆN

�1
.q/ /

i �

but not its equivalence class under contact of submanifolds to order k in p. For
example we may always choose the anchored coordinate chart ˆM in such a
way that ˆM.TpN / � N holds true. For such a choice and arbitrary �N 2
SymkT �

p N ˝ TpN the smooth map

' W N �! N; q 7�! ˆM
h
ˆM

�1
.q/ C �N.ˆN

�1
.q/ /

i

is actually a local diffeomorphism (sic!) ofN due to jetk�1
p ' D jetk�1

p idN and k � 2

so that jetkpN D jetkpN C �N . Modifying this argument slightly to make it work

for changes of �N 2 SymkT �
p N ˝ TpM by a homogeneous polynomial of degree

k with values in TpN we conclude that the addition (19) descends to a well-defined
addition of jets of submanifolds

jetkpN C�N

WD jetkp im

N �! M; q 7�! ˆM

h
ˆM

�1
.q/C .�N/lift.ˆN

�1
.q//

i�
(20)

with�N 2 SymkT �
p N˝.TpM=TpN/ lifted arbitrarily to .�N/lift 2 SymkT �

p N˝
TpM . Although it seems difficult to verify the axioms of a group action for the
addition C directly due to the ambiguities in choosing ˆN and ˆM as well as the
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lift .�N/lift, this problem disappears in the local standard jet coordinates . x˛; xˇA /
on GrknM . As an additional bonus this local coordinate presentation makes it rather
obvious that SymkT �

p N ˝ .TpM=TpN/ acts simply transitive on the fibers of the

projection GrknM �! Grk�1
n M .

For the purpose of writing the addition (20) as a smooth group bundle action
on the Graßmannian GrknM of jets of submanifolds we recall that the tautological
vector bundle on Gr1nM D Grn.TM / is defined as the subbundle of the pull back
��TM of the tangent bundle of M via the projection � W Gr1nM �! M , whose
fiber in jet1pN 2 Gr1nM reads:

Tautjet1pN
Gr1nM WD TpN

Implicitly we have used the tautological vector bundle already in the identifica-
tion (18)

Vert Gr1nM D Taut�Gr1nM ˝

��TM=Taut Gr1nM

�

of the vertical tangent bundle of Gr1nM , in a similar vein the tautological vector
bundle appears in the definition of the canonical contact form � contact on Gr1nM as
the composition

T Gr1nM
�

��! ��TM
pr�! ��TM=Taut Gr1nN

of the differential of � W Gr1nM �! M with the projection to ��TM=Taut Gr1nM .
The tautological vector bundle pulls back from Gr1nM to a vector bundle on GrknM ,
in turn this pull back bundle allows us to write the addition (20) as a smooth group
bundle action

C W GrknM �Gr1nM
SymkTaut�Gr1nM ˝


��TM=Taut Gr1nM

�
�! GrknM

defined on GrknM for all k � 2, which preserves the fibers of the projection to
Grk�1

n M . With the construction of this group bundle action we have established
a complete analogy between the three types of jets discussed in this section: Jets
of maps, jets of sections of fiber bundles and jets of submanifolds. In particular
the contact systems associated to these three types of jets allow us to treat partial
differential equations for maps, for sections and for submanifolds in the unified
language of exterior differential systems.
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3 Comodules and Spencer Cohomology

A comodule over a symmetric coalgebra can be seen as the algebraic analogue
of a jet bundle in differential geometry, in a rather precise sense this analogy
dualizes the better known analogy between differential operators and modules over
polynomial algebras. In the formal theory of partial differential equations the latter
concept is usually studied under the key word D-modules, which is essentially a
proper subtheory of commutative algebra. From our point of view however it is the
former notion of a comodule, which fits nicely into the theory of exterior differential
systems, because the notion can be seen as a straightforward axiomatization of the
commutativity of partial derivatives.

In this section and Sect. 4 we will study the algebraic properties of comodules
over symmetric coalgebras in depth starting from their axiomatic definition in terms
of partial derivatives, introducing the important subclass of tableau comodules on
the way and ending with a detailed discussion of the three most important theorems
about tableau comodules from the point of view of partial differential equations.
Needless to say all the ideas, properties and theorems discussed in this context are
essentially dual to ideas, properties and theorems of commutative algebra. A good
complementary reading to these notes would thus be [2]. Nevertheless we hope that
the reader will find our reformulation of commutative algebra in terms of comodules
helpful for explicit applications in differential geometry:

Definition 3.1 (Comodules over SymT �). A comodule over the symmetric coal-
gebra SymT � is a graded vector space A � together with a bilinear map T �A � �!
A ��1; . t; a / 7�! @a

@t
; called the directional derivative such that the endomorphism

@
@t

W A � �! A ��1; a 7�! @a
@t
; of A � with a fixed direction t 2 T is homogeneous

of degree �1 and the endomorphisms @
@t1

and @
@t2

commute for all t1; t2 2 T :

@

@t1
ı @

@t2
D @

@t2
ı @

@t1

In consequence we may iterate the axiomatic directional derivatives of a comodule
A in order to obtain well-defined homogeneous endomorphisms like @2

@t1@t2
W

A � �! A ��2 etc.

Although intimidating in nomenclature the notion of a comodule is nothing but
an axiomatization of a very familiar concept, that of the directional derivatives of
functions on the vector space T . The example motivating this axiomatization is the
vector space Sym�T � ˝ V of polynomials on T with values in a vector space V
graded by homogeneity together with

T � Sym�T � ˝ V 7�! Sym��1T � ˝ V; . t;  / 7�! @ 

@t
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which associates to a polynomial  and a direction t 2 T the directional derivative:

@ 

@t
. p / WD d

d"

ˇ̌
ˇ̌
0

 . p C " t /

In this interpretation of comodules as an axiomatization of directional derivatives
it is natural to define the Spencer coboundary operator on alternating forms with
values in a comodule

B W A � ˝ƒıT � �! A ��1 ˝ƒıC1T �; ! 7�! B !

in analogy to the de Rham coboundary operator on differential forms by setting

. B ! /. t0; : : : ; tr / WD
rX

�D0
.�1/� @

@t�
!. t0; : : : ;bt�; : : : ; tr /

for an alternating r-form ! 2 A k˝ƒrT � with values in A k . EvidentlyB ! is then
an .r C 1/-form on T with values in A k�1, in this sense the Spencer coboundary
operator B is bihomogeneous of bidegree .�1;C1/. The axiomatic commutation of
directional derivatives ensures that the Spencer operator B satisfies the coboundary
condition, in other words

B2!. t0; : : : ; trC1 /

D
X

0��<��rC1
.�1/�C�  C @2

@t�@t�
!. t0; : : : ;bt�; : : : ;bt�; : : : ; trC1 /

� @2

@t�@t�
!. t0; : : : ;bt�; : : : ;bt�; : : : ; trC1 /

�

vanishes irrespective of !. In turn B defines a bigraded cohomology theory for
comodules:

Definition 3.2 (Spencer Cohomology of a Comodule). The Spencer cohomology
of a comodule A over the symmetric coalgebra SymT � of a vector space T is the
bigraded cohomology H �;ı.A / associated to the bigraded Spencer complex

: : :
B�! A �C1 ˝ƒı�1T � B�! A � ˝ƒıT � B�! A ��1 ˝ƒıC1T � B�! : : :

of alternating, multilinear forms on T with values in A :

H �;ı. A / WD ker. B W A � ˝ ƒıT � �! A ��1 ˝ ƒıC1T � /

im. B W A �C1 ˝ ƒı�1T � �! A � ˝ ƒıT � /
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In order to get some idea about Spencer cohomology theory let us calculate it for
some examples. Every graded vector space A � can be made a comodule A �

trivial by
declaring all its directional derivatives to vanish @a

@t
WD 0 for all a 2 A k and all

t 2 T . The Spencer cohomology of such a comodule aptly called trivial is certainly
given by:

H �;ı. Atrivial / D A � ˝ƒıT �

Somewhat more interesting are the free comodules Sym�T � ˝ V of polynomials
on T with values in a vector space V introduced before. The Spencer operator
associated to such a free comodule B W .Sym�T � ˝V /˝ƒıT � �! .Sym��1T � ˝
V /˝ƒıC1T � can be written as a sum

B D
nX

�D1

@

@t�
˝ idV ˝ dt�^

over a dual pair of bases t1; : : : ; tn and dt1; : : : ; dtn of T and T �. In order to calculate
the cohomology of the Spencer complex we introduce the operator of integration
along rays through the origin B� W Sym�T � ˝ V ˝ƒıT � �! Sym�C1T � ˝ V ˝
ƒı�1T � as the sum:

B� WD
nX

�D1
dt� � ˝idV ˝ t� y

After some more or less straightforward calculations we find that the formal Laplace
operator

� WD f B; B� g D B ı B� C B� ı B

is diagonalizable on .SymkT � ˝V /˝ƒrT � with eigenvalue kCr . In consequence
every closed Spencer cochain  2 .SymkT � ˝ V / ˝ ƒrT � of bidegree .k; r/
satisfying k C r > 0 is exact

 D 1

k C r
� D 1

k C r


B .B� / C B� . B /

�
D B

 1

k C r
B�  

�

by B D 0. Hence the Spencer cohomology of a free comodule Sym�T � ˝ V is
concentrated

H0; 0. SymT � ˝ V / D V

in comodule and form degrees 0. The preceding calculation of the Spencer
cohomology of free comodules is an elementary version of Hodge theory and
by no means restricted to this special case. Considered as a method to calculate
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the cohomology of a given coboundary operator B it relies on making a suitable
guess for the operator B� such that the formal Laplace operator � WD fB; B� g
is diagonalizable. The original complex then decomposes into a direct sum of
“eigensubcomplexes” under �, because � and B commute Œ �; B 
 D 0, however
all these eigensubcomplexes are exact except for the kernel subcomplex!

The limited stock of examples discussed so far can be augmented by simple
modifications of the underlying graded vector spaces. For example the shift in
grading by an integer d 2 Z

.A C d /� WD A �Cd

certainly results in the shift in grading H �;ı.A Cd / D H �Cd;ı.A / in Spencer
cohomology. A theoretically important variation of the shift is the twist of a
comodule A defined by

A �. d / WD A �Cd

for � � 0 with A �. d / WD f 0 g for all � < 0, here the directional derivatives
of A �. d / equal the directional derivatives of A in positive degrees � > 0 only.
In consequence the Spencer cohomology H �;ı.A . d / / vanishes in all comodule
degrees � < 0 and equals

H0;ı. A . d / / D .A d ˝ƒıT � /=
B.A dC1 ˝ƒı�1T � / (21)

in comodule degree � D 0, while H �;ı.A .d// D H �Cd;ı.A / as before in degrees
� > 0. Another interesting variation of the shift is the idea of a free comodule
A � D Sym�T � ˝ V � generated by a graded vector space V �, which is essentially
a direct sum of shifted free comodules with associated Spencer cohomology V �
concentrated in form degree ı D 0:

Sym�T � ˝ V � D
M
k2Z

Sym��kT � ˝ V k

Coming back to the general theory we observe that the Spencer operator B
commutes with the extended directional derivatives @

@t
˝ id on the graded vector

space A � ˝ ƒrT � of Spencer cochains of fixed form degree ı D r . In turn
the Spencer complex becomes a complex of comodules, the directional derivatives
induced on the Spencer cohomology however are all trivial due to the formal version
of Cartan’s Homotopy Formula

f B; . id ˝ t y / g WD B ı . id ˝ t y / C . id ˝ t y / ı B D @

@t
˝ id (22)
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which implies for every cohomology class Œ ! 
 2 H �;ı.A / with B ! D 0 and all
t 2 T :

@

@t
Œ ! 
 WD Œ .

@

@t
˝ id/ ! 
 D Œ B .id ˝ t y / ! C .id ˝ t y / B! 
 D 0

Although the induced comodule structure on Spencer cohomology is thus trivial,
the Spencer cohomology of a comodule H �;ı.A / carries an interesting algebraic
structure, namely the right multiplication of Spencer cochains with elements of
ƒıT � commutes with the Spencer coboundary operator B and thus descends to
a natural graded right ƒıT �-module structure. To see this point more clearly we
expand the Spencer coboundary operator into the sum

B D
nX

�D1

@

@t�
˝ dt� ^

over a dual pair of bases t1; : : : ; tn and dt1; : : : ; dtn of T and T � respectively
and conclude that right multiplication with ! 2 ƒıT � commutes with left
multiplication by dt� due to associativity. In the literature the additional module
structure onH �;ı.A / is hardly ever mentioned. Nevertheless it is not only practical
in explicit calculations, it is important for the theory as well: In quite precise a
sense we can reconstruct a comodule A from its Spencer cohomology H �;ı.A /

considered as a graded right module over ƒıT �.
A pleasant aspect of the very general and abstract Definition 3.1 of comodules

we have adopted in these notes is that it very easy to introduce the complementary
concept of homomorphisms of comodules. In general a homomorphism of degree
d 2 Z from a comodule A to a comodule B is a homogeneous linear map ˆ W
A � �! B�Cd between the underlying graded vector spaces, which intertwines the
directional derivatives

ˆ.
@

@t

ˇ̌
ˇ̌
A

a / D @

@t

ˇ̌
ˇ̌
B

. ˆa /

for all t 2 T . The set of all comodule homomorphisms ˆ W A � �! B�Cd of
fixed degree d 2 Z is evidently a vector space Hom d

SymT �

.A ; B /, in consequence
we can talk about the abelian category of comodules over the symmetric coalgebra
SymT � by defining the vector space of morphisms A �! B in this category as
the direct sum of all these vector spaces:

Hom �
SymT �

. A ; B / WD
M
d2Z

Hom d
SymT �

. A ; B /

This rather complicated definition of morphisms has the advantage of making the
following functor from the category of comodules to the category of graded vector
spaces representable:
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Definition 3.3 (Finitely Generated and Bounded Comodules). The space of
generators of a comodule A over the symmetric coalgebra SymT � of a vector
space T is the graded vector space of elements of A � constant under all partial
derivatives:

Gen�A WD
M
k2Z

GenkA GenkA WD
n
a 2 A k

ˇ̌
ˇ @a
@t

D 0 for all t 2 T
o

A comodule A is called finitely generated and bounded below in case Gen A is a
finite-dimensional vector space and A k D f 0 g vanishes for all sufficiently small
k � 0.

In passing we observe that the homogeneous subspaces of a finitely generated
comodule A bounded below are finite-dimensional dim A k < 1 for all k 2 Z

due to a straightforward induction based on A k D f 0 g for k � 0 and an induction
step using the exact sequence:

0 �! Gen�A ��! A � B�! A ��1 ˝ T �

In order to understand the significance of generators let us consider the real numbers
as a trivial comodule R

� concentrated in degree 0 with all directional derivatives
necessarily vanishing. The image of 1 2 R under a homomorphism ˆ W R

� �!
A �Ck of comodules homogeneous of degree k 2 Z is then a generator ˆ.1/ 2
GenkA of A of degree k due to

@

@t
ˆ. 1 / D ˆ.

@1

@t
/ D 0

and vice versa every a 2 GenkA defines the homomorphism ˆa W R
� �!

A �Ck; x 7�! xa. In other words the functor Gen� to the category of graded vector
spaces is represented by R:

Hom �
SymT �

. R; A /
Š�! Gen�A ; ˆ 7�! ˆ. 1 /

Using a suitable projective resolution of the representing comodule R it is then easy
to prove:

H �;ı. A / Š Extı;�SymT �

. R; A /

In consequence the Spencer cohomology calculates the derived functor
Extı;�SymT �

.R; �/ associated to the functor Gen� D Hom �
SymT �

.R; �/ from comodules
to graded vector spaces!

Remark 3.4 (Interpretation of Spencer Cohomology). In general it seems to be
difficult to say directly, what exactly a non-zero Spencer cohomology class tells
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us about the underlying comodule. Direct interpretations are available however for
the Spencer cohomology of a comodule A over SymT � in form degrees 0 and
n WD dim T , namely H �; 0.A / D Gen�A is true for ı D 0 by our preceding
discussion, whereas

H �; 0. A / D Gen�A H �; n. A / Š A �=spanf @a
@t

j a 2 A �C1 and t 2 T g

is satisfied in form degree ı D n by a straightforward and not too complicated
calculation.

Lemma 3.5 (Finiteness of Spencer Cohomology). Consider a finitely generated
comodule A bounded below. Every subcomodule B � A and every quotient
comodule A =B of A are likewise finitely generated and bounded below. In
particular the Spencer cohomology H �;ı.A / of A is a finite dimensional vector
space:

dim H �;ı. A / < 1

Needless to say the hard part in the proof of this lemma is the assertion
that a quotient A =B of a finitely generated comodule A bounded below by a
subcomodule B is finitely generated, all other assertions of the lemma are trivial or
direct consequences of this finiteness. For example the rather surprising conclusion
about the Spencer cohomology of a finitely generated comodule A bounded below
simply observes that the Spencer complex

: : :
B�! A �C1 ˝ƒı�1T � B�! A � ˝ƒıT � B�! A ��1 ˝ƒıC1T � B�! : : :

associated to A is a complex of finitely generated comodules A ˝ƒıT � bounded
below with generators Gen�.A ˝ ƒıT �/ D .Gen�A / ˝ ƒıT �. Assuming finite
generation of quotients the subquotient comodule H ı.A / of the finitely generated
comodule A ˝ƒıT � bounded below is itself finitely generated and bounded below,
on the other hand we have seen that H ı.A / is a trivial comodule in the sense that
all its directional derivatives vanish. In consequence

H �;ı. A / D Gen� H ı. A /

is finite-dimensional as claimed. All in all Lemma 3.5 reduces very easily to the
non-trivial statement that quotients of finitely generated comodule bounded below
are finitely generated.

In order to give at least a sketch of the principal argument leading to Lemma 3.5
let us consider a quotient A =B of a finitely generated comodule A bounded below.
For sufficiently large d � 0 the spaces of generators GenkCdA D f0g vanish for
all k � 0 due to the finite generation of A . Hence for all k � 0 the following
composition of injective maps
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A kCd �! T � ˝ A kCd�1 �! T � ˝ T � ˝ A kCd�2

�! : : : �! T � ˝ : : :˝ T �„ ƒ‚ …
k

˝A d

is injective itself for all k � 0 and factorizes by coassociativity over the embedding

A �. d / ��! Sym�T � ˝ A d (23)

by means of the comultiplication� (sic!), which is defined for a 2 A kCd as the sum

�a WD 1

kŠ

nX
�1;:::;�kD1

dt�1 � : : : � dt�k ˝ @ka

@t�1 : : : @t�k
(24)

over a dual pair t1; : : : ; tn and dt1; : : : ; dtn of bases. In consequence the twisted
quotient comodule .A =B/. d / embeds via � into a quotient of the free comodule
generated by A d :

.A =B /�. d / Š A �. d /=B�. d / �! Sym�T � ˝ A d =�.B�. d / /

All generators of A =B of degree at least d are thus generators of a quotient of
the free comodule SymT � ˝ A d as well. An upper bound for the dimension of
the space of generators of quotients of free comodules however can be calculated
quite effectively using the fundamental ideas underlying the construction of Gröbner
bases. On the other hand the quotient comodule A =B has finite dimensional
homogeneous subspaces and thus only a finite dimensional space of generators of
degrees less than d , hence we end up with a finite dimensional space Gen .A =B/
of generators of arbitrary degree.

In general the direct calculation of the Spencer cohomology of a comodule can
get quite involved. A convenient alternative, at least for a comodule A with a large
symmetry group, is to construct an initial free resolution of length r � 0 for A first,
this is an exact sequence

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

with suitable comodule homomorphisms ˆ0; : : : ; ˆr of degrees �d0; : : : ;�dr
respectively. The difference here to an actual free resolution of the comodule A
is that we do not ask for ˆr to be surjective. Comodules allowing an initial free
resolution of some length r � 0 are rather special of course, to the very least they
are isomorphic via ˆ0 to subcomodules of free comodules. In practice however it
is often easy to guess an initial free resolution and apply the following lemma to
obtain information about the Spencer cohomology:
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Lemma 3.6 (Initial Free Resolutions and Spencer Cohomology). Consider a
comodule A �, which allows an initial free resolution of length r � 0 of the form

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

with comodule homomorphisms ˆ0; : : : ; ˆr of degrees �d0; : : : ;�dr respectively.
Independent of whether the last comodule homomorphism ˆr is surjective or not
the only non-vanishing Spencer cohomology spaces of A of form degree ı � r at
most equal to r are:

Hd0;0. A / Š V0 Hd0Cd1�1;1. A / Š V1 : : : Hd0C:::Cdr�r;r . A / Š Vr

It is a pity that the only conceptual proof of this lemma I know of requires
some knowledge of spectral sequences, which is quite formidable a concept from
homological algebra for an introductory text like this one on exterior differential
systems. In essence however spectral sequences are just a highly efficient tool
to facilitate certain types of diagram chases. The spectral sequence accelerated
diagram chases proving the Lemma of Five, the Lemma of Nine and the Snake
Lemma for example are almost trivial. Perhaps our use of spectral sequences in
this section motivates the reader unacquainted with the concept to study spectral
sequences from this point of view to accelerate her or his future diagram chases.

Using spectral sequences the proof of Lemma 3.6 proceeds along the following
line of argument. In a first step we extend the given initial free resolution of length
r � 0 to the right by the projection onto the cokernel of ˆr in order to obtain an
exact sequence:

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

pr�! C ��d1�:::�dr �! 0

Thinking of this exact sequence of comodules as a complex with trivial homology
and taking Spencer cochains we obtain a double complex with columns given by
the Spencer complexes of the comodules involved, while the rows are all copies
of the original exact sequence tensored with ƒıT �. Of course we would prefer to
have the two coboundary operators in this double complex anticommuting instead
of commuting, the difference however plays a negligible role in the construction of
the two spectral sequences associated to a double complex.

By assumption the initial free resolution extended by the projection to the
cokernel comodule C of ˆr is exact everywhere, hence the rows first spectral
sequence associated to our double complex collapses at itsE1-term, simply because
it equals f 0 g everywhere, in consequence the columns first spectral sequence
necessarily converges to f 0 g as well. On calculating itsE1-term however we obtain
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the Spencer cohomology of A in the first column, the Spencer cohomology of C
in the last column with the vector spaces V0; : : : ; Vr in between in the first row
representing the Spencer cohomology of the free comodules forming the initial free
resolution of A . A spectral sequence with such an E1-term has only one chance
left to converge to f 0 g, namely the higher order coboundary operators must induce
isomorphisms

H �Cd0�s; s. A /
Š�! Œ Vs 
�Dd1C:::Cds

of graded vector spaces for all s D 0; : : : ; r as well as for all s > r isomorphisms:

H �Cd0�r�1; s. A /
Š�! H ��d1�:::�dr ; s�r�1. C /

Apropos spectral sequences by far the most useful spectral sequence in the theory
of comodules is not the spectral sequence discussed above, but the spectral sequence
arising from a peculiar double Spencer complex. In general the graded tensor
product Sym�T � ˝ A � of the free comodule Sym�T � with a comodule A � can be
turned into a comodule in two different ways with different directional derivatives.
Namely it can be considered as a free comodule Sym�T � ˝A �

trivial generated by the
graded vector space A �

trivial underlying A with directional derivatives @
@t

˝ idA or it
can be considered as a tensor product Sym�T � ˝A � of comodules with directional
derivatives dictated by the usual Leibniz rule:

 @

@t

�˝ WD @

@t
˝ idA C idSymT � ˝ @

@t

For a comodule A bounded below the resulting two comodules are actually
isomorphic via

exp P W Sym�T � ˝ A � Š�! Sym�T � ˝ A �
trivial;  7�!

X
r�0

1

rŠ
P r 

where P W Sym�T � ˝ A � �! Sym�C1T � ˝ A ��1 is defined as the sum over a
dual pair

P WD
nX

�D1
dt� � ˝ @

@t�

of bases t1; : : : ; tn and dt1; : : : ; dtn for T and T � respectively. In fact P is at least
locally nilpotent for a comodule A bounded below so that its exponential exp P is
well-defined, moreover the commutator Œ @

@t
˝ idA ; P 
 D idSymT � ˝ @

@t
commutes

with P and the identity
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.
@

@t
˝ idA / ı exp P D exp P ı . @

@t
˝ idA / C Œ .

@

@t
˝ idA /; exp P 


D exp P ı
 @

@t
˝ idA C idSymT � ˝ @

@t

�

shows that exp P is a homomorphism of comodules with inverse exp.�P /. In a
sense the resulting isomorphism Sym�T � ˝A � Š Sym�T � ˝A �

trivial of comodules
tells us that a general comodule A bounded below is not too different from a free
comodule. A convenient method to make this structural statement about comodules
bounded below precise is to consider the two spectral sequences associated to the
double Spencer complex

(25)

where B and b are the anticommuting Spencer operators for A and SymT �
respectively with the other factor merely serving as additional coefficients. The b-
first spectral sequence collapses at its E1-term, simply because it is concentrated in
forms degree ı D 0

ı�D0Dı A ◆

and so it is impossible that any of the higher coboundary operators are non-trivial.
Things are quite different for theB-first spectral sequence however, which turns into
an efficient algorithm to reconstruct a comodule A from its Spencer cohomology:

Lemma 3.7 (Standard Spectral Sequence of a Comodule). Every finitely gener-
ated comodule A bounded below carries a canonical complete filtration

A � � : : : � . F �1A /� � . F 0A /� � . FC1A /� � : : : � f0g
by the subcomodules F kA generated in degrees greater than or equal to k 2 Z in
the sense:

. F kA /� WD ker

A � ��! Sym��kC1T � ˝ A k�1 �

Whereas the b-first spectral sequence associated to the double Spencer complex (25)
collapses at its E1-term, the E1-term of the B-first spectral sequence reflects the
Spencer cohomology

Sym�T � ˝H ◆; ı. A / H) ııD0 . F ◆A =
F ◆C1A /�C◆
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of A and the spectral sequence converges to the successive quotients of the filtration
subcomodules F ◆A . In addition the coboundary operator B1 for the E1-term
is completely determined by the right ƒıT �-module structure on the Spencer
cohomology H ◆; ı.A /.

Perhaps the most striking application of the standard spectral sequence with a
very practical appeal is the following explicit formula for the dimensions of the
homogeneous subspaces of a finitely generated comodule bounded below, which
reflects the equality of the E1-Euler characteristics of the two spectral sequences
associated to the double Spencer complex (25):

Corollary 3.8 (Poincaré Function of a Comodule). The dimensions of the homo-
geneous subspaces A k; k 2 Z; of a finitely generated comodule A bounded below
can be calculated from the Betti numbers dim H �; ı.A / of its Spencer cohomology
and the dimension n WD dim T of the vector space T by means of the formula:

dim A k D
X

rD0;:::;n
d2Z

dCr�k

.�1/r
 
k � d � r C n � 1

n � 1

!
dim Hd; r . A /

In particular dim A k equals the value of a polynomial in k of degree at most n� 1
for all k > dmax, where dmax 2 Z is chosen so that Hd; r .A / D f 0 g for all
d > dmax and all r .

Proof. The two spectral sequences associated to the double Spencer complex (25)
arise from the two anticommuting Spencer coboundary operators B and b, which
are trihomogeneous of tridegrees . 0; �1; C1 / and .�1; 0; C1 / respectively with
respect to the trigrading on Sym�T � ˝ A ◆ ˝ ƒıT �. In particular both B and b
preserve the total grading so that the both spectral sequences actually decompose
into the direct sum of spectral sequences

Sym�T � ˝ A ◆ ˝ƒıT � D
M
k2Z


Sym�T � ˝ A ◆ ˝ƒıT � �

�C◆CıDk

parametrized by the total degree k 2 Z. The total degree k part of the b-first spectral
sequence collapses as before at its E1-term ı�D0Dı A k of Euler characteristic
dim A k . According to Lemma 3.7 the total degree k-part of the E1-term of the
B-first spectral sequence reads Symk�◆�ıT � ˝ H ◆; ı.A /, its Euler characteristic
is thus finite and given by

X
rD0;:::;n
d2Z

.�1/r dim Symk�d�rT � ˝Hd;r .A /

D
X

rD0;:::;n
d2Z

dCr�k

.�1/r
 
k � d � r C n � 1

n � 1

!
dim Hd;r .A /
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because H.A / is a finite-dimensional vector for the finitely generated comodule
A bounded below. The Euler characteristic of every complex on the other hand
equals the Euler characteristic of its cohomology, in turn the Euler characteristic is
constant all along a spectral sequence, which is in essence a sequence of coboundary
operators each defined on the cohomology of the previous operator. With the E1-
terms of the two spectral sequences arising from the double Spencer complex (25)
being isomorphic the stipulated formula for dim A k simply reflects the equality of
the two different E1-Euler characteristics.

The Spencer cohomology of the finitely generated comodule A bounded below
is a finite dimensional vector space according to Lemma 3.5, hence we may certainly
choose dmax 2 Z so that Hd; r .A / D f 0 g for all d > dmax and all r D 0; : : : ; n.
For all degrees k > dmax the original summation calculating dim A k can be
simplified to read

dim A k D
X

rD0;:::;n
d2Z

.�1/r
 
k � d � r C n � 1

n � 1

!
dim Hd; r . A / (26)

because all summands with d C r > k vanish automatically. In fact either d > dmax

or d � dmax < k, in the first case dim Hd;r .A / D 0, whereas
�
k�d�rCn�1

n�1
� D 0 in

the second case due to n�1 > k�d�rCn�1 � 0. The simplified summation (26)
however defines a polynomial of degree at most n � 1 in k equal to dim A k for
k > dmax. ut

Another direct application of the standard spectral sequence leads to a kind
of converse to Lemma 3.6. Consider a comodule A bounded below satisfying
the additional condition that its only non-vanishing Spencer cohomology in form
degrees ı D 0; : : : ; r is concentrated in

V0 WD Hd0; 0.A / V1 WD Hd0Cd1�1; 1.A / : : : Vr WD Hd0C:::Cdr�r; r .A /

for suitable integers d0; : : : ; dr 2 Z. The integers d1; : : : ; dr � 1 are then actually
positive except for d0 and the comodule A has an initial free resolution of length
r � 0 by free comodules linked by comodule homomorphisms ˆ0; : : : ; ˆr of
degrees �d0; : : : ;�dr

0 �! A �Cd0 ˆ0�! Sym�T � ˝ V0
ˆ1�! Sym��d1T � ˝ V1

ˆ2�! : : :
ˆr�! Sym��d1�:::�dr T � ˝ Vr

which are determined by the higher order coboundary operators of the standard
spectral sequence of Lemma 3.7. In particular the comodule homomorphism ˆ0
identifies A � with a subcomodule of the shifted free comodule Sym��d0T � ˝ V0
determined by the tableau:
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A d0Cd1 Š ker

ˆ1 W Symd1T � ˝ V0 �! V1

�

In the following section we will study the structure of such tableau comodules in
more detail.

4 Algebraic Properties of Tableau Comodules

In the algebraic analysis of exterior differential systems the comodules of interest are
usually tableau comodules, comodules which arise as the kernels of homogeneous
homomorphisms between free comodules. Tableau comodules and the partial
differential equations they represent are classified, albeit rather superficially, into
underdetermined, determined and overdetermined tableau comodules depending
on the ranks of the free comodules involved in their definition. Underdetermined
partial differential equations can usually be studied successfully with methods
from functional analysis, while integrability constraints will likely thwart such an
approach for a given overdetermined partial differential equation.

Perhaps the most interesting case of this superficial classification of partial
differential equations is the limiting case of both realms: The Euler–Lagrange
equations associated to a variational principle and the elliptic differential equations
studied in global analysis are always determined partial differential equations.
Mathematical physics for example favors determined partial differential equations
according to the following metaprinciple: Reasonable field equations should allow
for a unique solution for arbitrarily given Cauchy data. In this section we will discuss
the three classical statements about under- and overdetermined partial differential
equations from the point of view of their associated tableau comodules:

• Formal Integrability of underdetermined differential equations.
• Complex Characterization of finite type differential equations.
• Cartan’s Test for Involutivity of first order tableau comodules.

In order to begin our study of tableau comodules let us have a closer look at a
non-trivial homogeneous homomorphism ˆ W Sym�T � ˝ V �! Sym��dT � ˝ E

between free comodules. As a homomorphism of comodules ˆ maps the space V
of generators of the domain to generators of the codomain SymT � ˝ E including
0 so that d 2 N0 is necessarily non-negative. Moreover it is easily seen that ˆ
is completely determined by its restriction  to the subspace SymdT � ˝ V �
Sym�T � ˝V of elements of degree d . Conversely every linear map  W SymdT � ˝
V �! E extends in a unique way to a homomorphism of comodules

ˆ W Sym�T � ˝ V �! Sym��dT � ˝E
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of degree �d , which can be written in terms of directional derivatives as an
iterated sum

ˆ.  ˝ v / WD
nX

�1;:::;�dD1

@d 

@t�1 : : : @t�d
˝ 

 1

dŠ
dt�1 � : : : � dt�d ˝ v

�
(27)

over a basis t1; : : : ; tn of T and its dual basis dt1; : : : ; dtn of T �. In the spirit of partial
differential equations we may interpret the original linear map  W SymdT � ˝
V �! E as a linear differential operator D W C1. T; V / �! C1. T; E / of
order d defined by:

.D /. p / WD 
 nX

�1;:::;�dD1

1

d Š
dt�1 � : : : � dt�d ˝ @d  

@t�1 : : : @t�d
. p /

�
(28)

The associated partial differential equation D D 0 can be written as a system
of dim E scalar differential equations in the dim V unknown scalar components of
 2 C1. T; V /, for this reason the equation is called underdetermined, determined
or overdetermined respectively, if there are less, an equal number of or more
equations than unknown functions:

underdetermined: dim E � dim V

determined: dim E D dim V

overdetermined: dim E � dim V

(29)

The homomorphism ˆ W Sym�T � ˝ V �! Sym��kT � ˝ E of free comodules
associated to  is nothing else but the restriction of the operator D to the subspace
SymT � ˝V � C1. T; V / of polynomials on T with values in V . In particular its
kernel comodule agrees with the space of polynomial solutions  2 SymT � ˝ V

to the partial differential equation D D 0:

Definition 4.1 (Tableaux and Comodules). A tableau of order d � 1 is by
definition a subspace A d � SymdT � ˝ V of the vector space SymdT � ˝ V

of homogeneous polynomials of degree d on T with values in V . The tableau
comodule A � � Sym�T � ˝ V associated to a tableau A d is the kernel of the
homomorphism

0 �! A � ��! Sym�T � ˝ V
ˆ�! Sym��dT � ˝E

of free comodules induced by some linear map  W SymdT � ˝ V �! E

with kernel A d . A tableau comodule A is called underdetermined, determined or
overdetermined provided:

codimA d � dim V codimA d D dim V codimA d � dim V
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Of course one possible choice for the linear map  in the definition is simply the
canonical projection pr W SymdT � ˝ V �! SymdT � ˝ V=A d , other choices
however are convenient to avoid the typographical monster SymdT � ˝ V=A d .
Whatever the preferred choice the tableau comodule A does only depend on
A d D ker, for this reason its homogeneous subspaces A dC1; A dC2; : : : are
sometimes called the first and the second prolongation of A d etc. Of little concern
is the equality A k D SymkT � ˝V for k < d , because in general we are interested
in the behavior of A k at large degrees k � 0. According to Lemma 3.6 the non-
vanishing Spencer cohomology of a tableau comodule in form degrees ı D 0; 1

reads:

H0;0. A / D V Hd�1;1. A / D SymdT � ˝ V=
A d (30)

In order to reduce the complexity it seems like a good idea to replace the linear map
 from the complicated and high-dimensional vector space SymdT � ˝ V with its
localizations

� W V �! E; v 7�! . 1
dŠ
�d ˝ v /

at covectors � 2 T �. In this way we are interpreting the linear map  W SymdT � ˝
V �! E via the vector space isomorphism Hom .SymdT � ˝V; E / Š SymdT ˝
Hom . V; E / as a homogeneous polynomial of degree d on T � (sic!) with values
in Hom . V; E /. Motivated by this interpretation of  we define the characteristic
(projective) variety of a tableau A d by

Z . A d / WD f Œ � 
 2 PT � j � W V �! E is not surjective g (31)

this is � 2 T � is a characteristic covector, if and only if � fails to be surjective. Evi-
dently the tableau A d has to be underdetermined to allow some non-characteristic
covector:

Theorem 4.2 (Formal Integrability of Underdetermined Equations). Consider
a linear map  W SymdT � ˝ V �! E possessing at least one non-characteristic
covector � 2 T � in the sense that the localization � W V �! E; v 7�!
. 1

dŠ
�d ˝ v/; of  at � is surjective. The homomorphism of free comodules defining

the tableau comodule A associated to the tableau A d WD ker is surjective, too,
with associated short exact sequence:

0 �! A � ��! Sym�T � ˝ V
ˆ�! Sym��dT � ˝E �! 0

According to Lemma 3.6 the only non-vanishing Spencer cohomology spaces
of A are:

H0;0. A / D V Hd�1;1. A / D E



An Introduction to Exterior Differential Systems 155

By far the most important conclusion of this theorem is that underdetermined partial
differential equations have no Spencer cohomology of form degree ı D 2, in
consequence there are no obstructions at all to the recursive procedure discussed
in Sect. 5 to construct infinite order formal power series solutions for arbitrarily
specified Cauchy data. In other words Theorem 4.2 is exactly the reason, why the
term Spencer cohomology is never even mentioned in text books studying partial
differential equations in the language of Functional Analysis: Banach and Sobolev
spaces etc.

Despite its importance the proof of Theorem 4.2 is rather straightforward.
Fixing a non-characteristic covector � 2 T � with surjective localization � W
V �! E; v 7�! . 1

dŠ
�d ˝ v /; we try to construct a preimage of a vector

1
kŠ
˛k˝e 2 SymkT �˝E under the comodule homomorphismˆ W Sym�T �˝V �!

Sym��dT � ˝E extending  by making an ansatz

kX
�D0

1
.k��/Š ˛

k�� 1
.dC�/Š �

dC� ˝ v� 2 SymkCdT � ˝ V

with as yet unknown parameter vectors v0; : : : ; vk 2 V . Inserting this ansatz into
the definition (27) of the comodule homomorphism ˆ we get after some auxiliary
calculations:

ˆ
 kX

�D0
1

.k��/Š ˛
k�� 1

.dC�/Š �
dC� ˝ v�

�

D
kX
sD0

1
.k�s/Š ˛

k�s 1
sŠ
�s ˝ 

h sX
�D0_.s�d/

1
.s��/Š ˛

s�� 1
.dC��s/Š �

dC��s ˝ v�

i

D
kX
sD0

1
.k�s/Š ˛

k�s 1
sŠ
�s

˝

�vs C 

h s�1X
�D0_.s�d/

1
.s��/Š ˛

s�� 1
.dC��s/Š �

dC��s ˝ v�

i �

Due to the surjectivity of the localization � W V �! E at the non-characteristic
covector � we may thus choose the parameters v0; : : : ; vk 2 V of our ansatz
recursively to satisfy

�v0 D e

�v1 D �
h
1
1Š
˛1 1

.d�1/Š �
d�1 ˝ v0

i

�v2 D �
h
1
2Š
˛2 1

.d�2/Š �
d�2 ˝ v0 C 1

1Š
˛1 1

.d�1/Š �
d�1 ˝ v1

i
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etc. in order to obtain a preimage of 1
kŠ
˛k ˝ e 2 SymkT � ˝ E under ˆ. In this

argument ˛ 2 T � and e 2 E as well as k 2 N0 were all arbitrary so that ˆ is
surjective

im ˆ 
 span f 1
kŠ
˛k ˝ e j ˛ 2 T �; e 2 E; k 2 N0 g D SymT � ˝E

because the polarization formula says that the vectors 1
kŠ
˛k ˝ e span SymkT � ˝E.

Unluckily the other two classical statements about tableau comodules discussed in
this section are more difficult, in particular the following characterization of partial
differential equations of finite type as complex elliptic differential equations requires
confidence in multilinear algebra:

Theorem 4.3 (Complex Elliptic Partial Differential Equations). The homomor-
phism ˆ of free comodules extending a given linear map  W SymdT � ˝ V �! E

with kernel tableau A d WD ker has a finite-dimensional kernel comodule A

0 �! A � ��! Sym�T � ˝ V
ˆ�! Sym��dT � ˝E

if and only if only the complex localizations of  at complex valued linear forms
�C 2 T � ˝R C:

�C W V ˝R C �! E ˝R C; vC 7�! . 1
dŠ
�d
C

˝ vC /

are injective for every non-zero complex-valued linear form �C 2 T � ˝R C n f 0 g.

Essentially this theorem is a consequence of Hilbert’s Nullstellensatz in algebraic
geometry, although the necessary reformulation (37) can hardly be called obvious.
Nevertheless it is well worth the effort to try to understand the main idea of this
reformulation, because it provides us with a peculiar kind of upper bound on the
growth of a tableau comodule A in terms of the homogeneous ideal I � � Sym�T
defining the characteristic variety:

Z . A d / WD f Œ � 
 2 PT � j � W V �! E is not injective g (32)

Needless to say this definition is different to our previous definition (31) of
the characteristic variety, although we may reconcile both definitions by asking
for covectors � 2 T � such that � fails to be of the maximal possible rank
minf dim V; dim E g. In other words the redefinition (32) is specific to the study
of overdetermined partial differential equations.

Let us begin our discussion of Theorem 4.3 with a small side remark about the
rank of a linear map  W V �! E. The canonical isomorphism Hom . V; E / Š
V � ˝ E allows us to think of  as an element of the algebra ƒV � ˝ƒE with the
(untwisted) tensor product multiplication. Pairing powers of  in this algebra with
elements of the dual space we get

h 1
rŠ
r ; . v1 ^ : : : ^ vr /˝ � i D � .  v1; : : : ;  vr / (33)
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for all r � 1 and all v1; : : : ; vr 2 V , � 2 ƒrE�, in particular 1
rŠ
r D 0 is

equivalent to  being of rank less than r . Similarly we may interpret the linear map
 W SymdT � ˝V �! E defining the tableau A d as a homogeneous polynomial of
degree d on T � with values in Hom . V; E / or as an element  2 SymdT ˝V � ˝E
of the algebra SymT ˝ƒV � ˝ƒE. In direct generalization of Eq. (33) the powers
of  in this algebra satisfy

h 1
rŠ
r ; 1

.rd/Š �
rd ˝ . v1 ^ : : : ^ vr /˝ � i D � . �v1; : : : ; �vr / (34)

when paired with elements of the dual space SymrdT �˝ƒrV ˝ƒrE� with arbitrary
� 2 T �, v1; : : : ; vr 2 V and � 2 ƒrE�. Equation (34) implicitly characterizes the
covectors � 2 T �, for which the localization � W V �! E fails to have rank
at least r , in terms of the power 1

rŠ
r 2 SymrdT ˝ ƒrV � ˝ ƒrE. In order to

make this characterization somewhat more explicit let us consider the following
two rearrangements of the factors in (34)

�

r W ƒrV ˝ƒrE� �! SymrdT

�

r W ƒr�1V˝ƒrE� �! SymrdT˝V �

characterized as linear maps by:

� . �v1; : : : ; �vr / DW h �r . v1 ^ v2 ^ : : : ^ vr ˝ � /; 1
.rd/Š �

rd i
DW h �r . v2 ^ : : : ^ vr ˝ � /; 1

.rd/Š �
rd ˝ v1 i (35)

The localization � W V �! E of  W SymdT � ˝ V �! E at a covector � 2 T �
thus has rank less than r , if and only if � is a common zero of all polynomials in
im �


r � SymrdT and thus a common zero of all polynomials in the homogeneous

ideal generated by im �

r :

I  �
r WD h im �r i � Sym�T

In consequence the homogeneous ideal I  �
r ; r � 1; defines the projective algebraic

variety

Zr . A
d / WD f Œ � 
 2 PT � j  . � / D 0 for all polynomials  2 I r g

D f Œ � 
 2 PT � j � W V �! E has rank less than r g

associated to the linear map  W SymdT � ˝ V �! E or its tableau comodule
A , which is called the r th systolic variety in [7]. In particular the characteristic
variety (32) is defined by the homogeneous ideal I  �

N corresponding to N WD
dim V .

In the same vein we may consider the graded submodule M �
r WD h im�


r i �

Sym�T ˝ V � generated by the image of �r W ƒr�1V ˝ƒrE� �! SymrdT ˝ V �.
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Although the submodules M �
r � Sym�T ˝ V � seem to have no direct geometric

interpretation in terms of the characteristic variety, they possess an interesting
algebraic property in that they are upper bounds for the tableau comodule A
associated to the tableau A d D ker. To see this point clearly let us rewrite the
definition of �r W ƒr�1V ˝ƒrE� �! SymrdT ˝ V � in the form

h �r . v2 ^ : : : ^ vr ˝ � /; 1
.rd/Š �

rd ˝ v i
WD �. . 1

rŠ
�r ˝ v /; v2. 1

rŠ
�r /; : : : ; vr . 1

rŠ
�r / /

D h �; .  ^ v2 ^ : : : ^ vr /.�Œ 1
.rd/Š �

rd ˝ v 
 / i

where v W SymdT � �! E; 1
dŠ
�d 7�! . 1

dŠ
�˝v /; denotes the localization of  at

some v 2 V and� W SymrdT ˝V � �! .SymdT ˝V � /˝SymdT ˝ : : :˝SymdT

the comultiplication:

�Œ 1
.rd/Š �

rd ˝ v 
 WD . 1
dŠ
�d ˝ v /˝ . 1

dŠ
�d / ˝ : : :˝ . 1

dŠ
�d /„ ƒ‚ …

r�1 times

The decisive observation linking the tableau comodule A to the submodules
M


r ; r � 1; and eventually to the ideals I r ; r � 1; is that the comultiplication

� restricts to a map

� W A rd �! A d ˝ SymdT � ˝ : : :˝ SymdT �

simply because A is after all a comodule over the symmetric coalgebra SymT �.
Hence

h�r . v2 ^ : : : ^ vr ˝ � /; a i D h �; .  ^ v2 ^ : : : ^ vr /. �a / i D 0

vanishes for all a 2 A rd and all v2; : : : ; vr 2 V , � 2 ƒrE� due to the consequence
. ^ v2 ^ : : :^ vr /.�a / D 0 of the equality A d D ker. In turn the canonical
pairing between SymrdT ˝V � and SymrdT � ˝V vanishes hm; a i D 0 on all pairs
a 2 A rd and m 2 im�


r D .M


r /

rd, and this mutual annihilation property extends
immediately

h m; a i D 0 (36)

to all m 2 M
 �
r ; r � 1; and all a 2 A �, because the submodule M �

r �
Sym�T ˝ V � generated by im�


r is spanned by elements of the form 1

sŠ
t s �m with

t 2 T; s 2 N0 and m 2 im�

r , however all these elements satisfy h 1

sŠ
t s � m; a i D

hm; 1
sŠ

@s

@ts
a i D 0:

Corollary 4.9 (Upper Bound for Tableau Comodules). Consider the tableau
comodule A associated to a tableau A d � SymdT � ˝ V of order d � 1 and



An Introduction to Exterior Differential Systems 159

a linear map  W SymdT � ˝V �! E realizing A d in the sense ker D A d . The
powers of the linear map  2 SymdT˝V �˝E in the algebra SymT˝ƒV �˝ƒE
give rise to a sequence of linear maps�r W ƒr�1V ˝ƒrE� �! SymrdT˝V �; r �
1; with the property

A � AnnM
r WD f a 2 SymT � ˝ V j h m; a i D 0 for all m 2 M

r g

where M
r WD h im�


r i denotes the Sym�T -submodule of Sym�T ˝ V � generated

by im�

r .

The preceding lemma is certainly interesting for all r � 1, nevertheless it has an
additional twist for r equal to the dimension N WD dim V of V in that the inclusion
M


r � I


r ˝ V � becomes an actual equality M

N D I

N ˝ V � for this r . Choosing

a dual pair of bases v1; : : : ; vN and dv1; : : : ; dvN for the vector spaces V and V �
we may in fact reformulate the identity h�r . Qv2 ^ : : : ^ Qvr ˝ � /; � ˝ Qv1 i D
h �r . Qv1 ^ Qv2 ^ : : : ^ Qvr ˝ � /; � i derived from the definition (35) of �r and �r into
an expansion valid for all Qv2; : : : ; Qvr 2 V and all � 2 ƒrE�:

�r . Qv2 ^ : : : ^ Qvr ˝ � / D
NX
�D1

�r . v� ^ Qv2 ^ : : : ^ Qvr ˝ � /˝ dv�

This expansion tells us im�

r � im �


r ˝V � and soM

r � I

r ˝V � for all r � 1. The

penultimate exterior power ƒN�1V of V however is spanned by the multivectors
obtained by removing a factor vs from v1^ : : :^vN 2 ƒNV , the preceding equation
thus becomes

�r . v1 ^ : : : ^ bvs ^ : : : ^ vN ˝ � / D .�1/s�1 �r . v1 ^ : : : ^ vN ˝ � /˝ dvs

for these multivectors and all � 2 ƒNE�, s D 1; : : : ; N so that im�

N D

im �

N ˝ V � and in turn M

N D I

N ˝ V �. Combined with Corollary 4.9 this insight

establishes the direct link

A � � Ann. I  �
N ˝ V � / (37)

between the tableau comodule A associated to a tableau A d and the homogeneous
ideal I  �

N defining its characteristic variety Z .A d /. Before using this direct link
in the proof of Theorem 4.3 we want to state an alternative version of (37) in terms
of differential operators:

Corollary 4.5 (Scalar Differential Constraints). Consider a linear map  W
SymdT � ˝ V �! E realizing a tableau A d � SymdT � ˝ V of order d � 1

in the sense A d D ker. Equation (28) associates to  a linear differential
operator D W C1. T; V / �! C1. T; E / of order d , in complete analogy

every homogeneous element D 2 I kN � SymkT in the ideal I N defining the
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characteristic variety Z .A d / can be interpreted as a scalar differential operator
D W C1. T / �! C1. T / of order k. For every solution  2 C1. T; V / of the
differential equation D D 0 it holds then true that:

.D ˝ idV /  D 0

Solutions  2 C1. T; V / of the differential equation D D 0 are characterized
by the fact that the homogeneous pieces of their Taylor series taylorp 2 SymT �˝
V taken in an arbitrary point p 2 T are elements of A k for all k � 0. On the
other hand the value of the scalar differential operator associated to D 2 I kN on
 2 C1. T; V / is given by a sum


.D ˝ idV /  

�
.p/ D

NX
�D1


Dh dv�;  i

�
.p/ v� D

NX
�D1

hD ˝ dv�; taylorkp i v�

over a dual pair v1; : : : ; vN and dv1; : : : ; dvN of bases for V and V �. Equation (37)
thus tells us that the right hand side vanishes for a solution  of the equation
D D 0.

Proof of Theorem 4.3. According to Hilbert’s Nullstellensatz from algebraic geom-
etry every homogeneous polynomial  2 CŒ x1; : : : ; xn 
 of positive degree
vanishing on all points of a projective variety ZC, which is the vanishing variety
of some homogeneous ideal I

ZC D f Œ �C 
 2 PC
n j p. �C / D 0 for all p 2 I g

lies in the radical
p
I � CŒ x1; : : : ; xn 
 of I in the sense  e 2 I for sufficiently

large exponent e 2 N. Among the well-known consequences of this theorem is
that the radical of a homogeneous ideal I with empty vanishing variety ZC D ;
equals the “irrelevant” ideal

p
I D C

CŒ x1; : : : ; xn 
 consisting of all polynomials of
positive degree [5]. Exactly this particular consequence of Hilbert’s Nullstellensatz
is what Theorem 4.3 is all about.

Unluckily we have been working over the real numbers as of now and not over
the algebraically closed field C required by Hilbert’s Nullstellensatz. Multilinear
algebra however behaves nicely under complexification inasmuch as we have
canonical identifications

.SymT � /˝RC D Sym . T � ˝RC / .ƒV � /˝RC D ƒ.V � ˝RC /

of symmetric and exterior powers as well as tensor products etc. Of course we
could go about and repeat all our calculations and constructions for the complexified
linear map

˝Rid W Symd . T �˝RC /˝C . V˝RC / D .SymdT �˝V /˝RC �! E˝RC
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with complex localizations �C W V ˝R C �! E ˝R C; vC 7�! .  ˝R

id /. 1
dŠ
�d
C

˝ vC /; etc., however the upshot of all these calculations is that the
complex characteristic variety

ZC. A
d /

WD fŒ �C 
 2 P . T � ˝R C / j �C W . V ˝R C / �! .E ˝R C / is not injectiveg

can be defined by the complexified ideal I  �
N ˝R C � Sym�.T ˝R C/, while the

kernel of the extension .ˆ ˝R id / W .Sym�T � ˝ V / ˝R C �! .Sym��dT � ˝
E /˝R C of the complexified linear map  ˝R id to comodules over the symmetric
coalgebra Sym .T � ˝R C/ is nothing else but the complexification A � ˝R C of the
tableau comodule associated to .

Let us suppose now that the localization �C W V ˝R C �! E ˝R C at some
non-zero complex valued form �C 2 T � ˝R C is not injective and let vC 2 V ˝R

C be a non-zero vector in its kernel. With these choices made the product vector
1
kŠ
�k
C

˝ vC ¤ 0 is for all k � 0 a non-zero element of the kernel A k ˝R C of the
comodule extension ˆ˝R id of  ˝R id

.ˆ˝R id /. 1
kŠ
�k
C

˝ vC / D 1
.k�d/Š �

k�d
C

˝ .  ˝R id /. 1
dŠ
�d
C

˝ vC / D 0

so that dim A k � 1 for all k � 0 leading to the comodule A of infinite dimension.
Conversely suppose that all localizations �C W V ˝R C �! E ˝R C at non-zero
complex valued forms �C 2 T � ˝R C are injective. The vectors t1; : : : ; tn of a basis
for T considered as homogeneous polynomials of degree 1 on T � ˝R C trivially
vanish on the complex characteristic variety ZC.A d / D ; as it is empty, hence
Hilbert’s Nullstellensatz guarantees the existence of exponents e1; : : : ; en 2 N such
that the powers t e11 ; t

e2
2 ; : : : ; t

en
n 2 I


N of the basis vectors are real elements of the

homogeneous ideal I N ˝RC describing the complex projective variety ZC.A d /. In
turn the drawers principle asserts that every monomial t k1 : : : t kn in the basis vectors
t1; : : : ; tn of total degree k1 C : : :Ckn > e1 C : : :C en �n is an element of the ideal
I

N , because at least one of the basis vectors t� occurs with an exponent k� � e�.

Since the monomials in basis vectors span the symmetric powers we conclude

I
 �
N D Sym�T

and so A � D f 0 g for all � > e1 C : : : C en � n due to A � � Ann. I  �
N ˝

V � / D f 0 g according to the direct link (37) between A and I

N . With all

homogeneous subspaces of A � � Sym�T � ˝ V being finite dimensional we
conclude dim A < 1. ut

In the second part of this section we want to discuss the main ideas and their
ramifications related to Cartan’s Involutivity Test for first order tableaux A 1 �
T � ˝ V . In contrast to tableaux of higher order tableaux of first order d D 1

possess a very interesting discrete invariant, the so-called Cartan character, under
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the natural action of GLT � GLV on the subspaces of T � ˝ V D Hom . T; V /.
The nomenclature adopted by Cartan and his collaborators with respect to tableaux
alludes directly to the fact that this Cartan character, although usually written as a
decreasing sequence of non-negative integers, is actually a Young diagram, a very
interesting combinatorial structure with strong ties to the representation theory of
the general linear groups: A Young diagram with additional “filling” is traditionally
called a Young tableau (sic!) in representation theory.

A Young diagram is by definition a finite set Y � N
2 of tuples of natural

numbers with the property that for every tuple .r; c/ 2 Y all tuples . Qr; Qc/ 2
N
2 of natural numbers satisfying both inequalities Qr � r and Qc � c are

elements . Qr; Qc/ 2 Y, too. In the parlance of partially ordered sets and lat-
tices we may equivalently define a Young diagram as a finite lower subset
Y � N

2 with respect to the componentwise partial order � on N
2. It is much

more appropriate though to think of a Young diagram as a picture of little
squares neatly aligned in rows and columns in an arrangement similar to matrices:

�row

�
column

= { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(2, 1), (2, 2), (2, 3), (2, 4), (3, 1),
(3, 2), (4, 1), (4, 2), (5, 1), (6, 1) }

Due to this interpretation the elements of a Young diagram are called its boxes,
the number ]Y of boxes of a Young diagram Y is called its order. Say the Young
diagram depicted above has order 15 with boxes arranged in columns of lengths
6 � 4 � 2 � 2 � 1 and rows of lengths 5 � 4 � 2 � 2 � 1 � 1. Similarly every
Young diagram Y is completely determined by the lengths c1 � c2 � c3 � : : : of
its columns or the lengths r1 � r2 � r3 � : : : of its rows. The image of a Young
diagram Y � N

2 under the reflection along the main diagonal .r; c/ 7�! .c; r/

interchanging rows and columns is again a Young diagram of the same order called
the diagram Y� conjugated to Y. Moreover the finite set

YD. D / WD f Y � N
2 j Y is a Young diagram of order ]Y D D g

of all Young diagrams of fixed order D 2 N0 comes along with a partial order �
defined by:

Y � QY ,
sX

�D1
c� �

sX
�D1

Qc� for all s � 1 (38)

In other words Y � QY, if and only if Y has at least as many boxes in the first column
as QY, at least as many boxes in the first two columns together as QY and so on. Under
this partial order the set YD.D / of Young diagrams of orderD � 0 is actually a self
dual lattice with antimonotone involution � W YD.D / �! YD.D /; Y 7�! Y�.
Lacking a pretext we will not discuss these beautiful examples of self-dual lattices
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in more detail, because only the partial order � enters into the definition of the
Cartan character of a first order tableau A 1 � Hom . T; V /. Perhaps the reader
will enjoy studying the following Hasse diagram of YD. 11 / though, in which the
Young diagrams are ordered descendingly from left to right:

The similarity between Young diagrams and matrices mentioned before provides
the fundamental link between Young diagrams and tableaux. Recall from your first
semesters at university that the choice of bases t1; : : : ; tn for T and v1; : : : ; vN for
V turns the vector space Hom . T; V / into the vector space of all N � n-matrices
via the following linear map

mat W Hom . T; V /
Š�! MatN�nR; A 7�!

0
B@
dv1.At1 / : : : dv1.Atn /

:::
:::

dvN .At1 / : : : dvN .Atn /

1
CA

where dv1; : : : ; dvN 2 V � is the basis dual to v1; : : : ; vN . Modulo the choice of
bases for T and V every tableau A 1 � Hom . T; V / may thus be thought of as a
subspace of matrices, in turn the coefficient of the image matrix in row r and column
c becomes the linear functional:

matrc W A 1 �! R; A 7�! matrc. A / WD dvr.Atc /

It should be noted that the matrix coefficients matrc 2 A 1� span the space A 1� of
linear functionals on A 1 since mat W A 1 �! MatN�nR is injective. Hence we may
choose a basis f matrc g.r;c/2Y of A 1� consisting entirely of the matrix coefficients
indexed by a suitable subset Y � f1; : : : ; N g � f1; : : : ; ng. The remaining matrix
coefficients are then fixed linear combinations of the matrix coefficients in Y.

It may be somewhat surprising, but the preceding rather esoteric discussion
about the linear independence of matrix coefficients captures exactly what we do
automatically, whenever we specify a subspace of matrices. Consider for example
the following subspace

� �
a b

0 2a � b
� ˇ̌
ˇ a; b 2 R

�
D

� �
1
2
b C 1

2
d b

0 d

� ˇ̌
ˇ b; d 2 R

�
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of Mat2�2R. Although defining the same subspace the left and right hand side
definitions differ significantly in form, implicitly we have chosen the basis f a; b g of
matrix coefficients corresponding to f .1; 1/; .1; 2/ g on the left and the basis f b; d g
corresponding to f .1; 2/; .2; 2/ g on the right hand side. The subset f .1; 1/; .2; 2/ g
of matrix coefficients corresponds to a third alternative definition of the same
subspace of 2 � 2-matrices, whereas subsets containing .2; 1/ certainly do not
correspond to bases of matrix coefficients:

Definition 4.6 (Young Diagrams Presenting a Tableau). A Young diagram Y of
order D is said to present a first order tableau A 1 � Hom . T; V / of dimension
D WD dim A 1, if there exist some bases t1; : : : ; tn and v1; : : : ; vN of T and V
respectively such that the associated matrix coefficients matrc 2 A 1� indexed by
.r; c/ 2 Y

matrc W A 1 �! R; A 7�! dvr. Atc /

are a basis of A 1�. Schematically we may then write mat.A 1 / � MatN�nR in the
form

where the coefficients in Y can be assigned arbitrary values, the fixed linear
combinations of these values calculating the other coefficients characterize the
subspace mat.A 1 /.

In saying that a Young diagram Y of orderD presents a tableau A 1 � Hom . T; V /

of dimension D D dim A 1 we deliberately draw attention away from the bases
of T and V realizing this presentation. In this way the set of Young diagrams
presenting a given tableau A 1 of dimension D becomes an invariant of the tableau
under the natural action GLT � GLV on the Graßmannian of D-dimensional
subspaces of Hom . T; V /. It should not pass by unnoticed that this invariant
with values in the subsets of YD.D / has a compelling interpretation in terms of
the Plücker embedding GrD Hom . T; V / �! P.ƒDHom . T; V / /. According to
the representation theory of general linear groups [3] the domain of the Plücker
embedding decomposes under GLT � GLV into a direct sum of irreducible
subrepresentations

ƒDHom . T; V / D
M

Y�YD.D /
] rows�N
] columns�n

SchurY
�

T � ˝ SchurYV
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parametrized by all Young diagrams of order D with at most n WD dim T columns
and N WD dim V rows. The subset of Young diagrams Y presenting a tableau A 1

agrees with the subset of the irreducible subrepresentations in this decomposition, to
which the Plücker line in ƒDHom . T; V / associated to A 1 projects non-trivially.

Leaving the construction of invariants aside there is another good reason not to
spend too much importance on the bases of T and V used to write a given tableau
A 1 � Hom . T; V / as a subspace of matrices of sizeN �n in Y-schematical form:
This characteristic property does not pertain to the bases themselves, but actually to
their associated flags. Recall at this point that a complete flag on T is an increasing
sequence F� of subspaces

f0g DW F0 ¨ F1 ¨ : : : ¨ Fn�1 ¨ Fn WD T

satisfying dim Fs D s for all s D 1; : : : ; n. A basis t1; : : : ; tn of T is called adapted
to a complete flag F� provided ts 2 Fs n Fs�1 for all s D 1; : : : ; n. Evidently
every basis t1; : : : ; tn of T is adapted to exactly one complete flag defined by
Fs WD spanf t1; : : : ; ts g for all s, on the other hand there are certainly many different
bases adapted to a given flag. Nevertheless two bases t1; : : : ; tn and t 01; : : : ; t 0n
adapted to the same complete flag F� on T are necessarily related by an invertible
lower triangular matrix B 2 Matn�nR via:

t 0c D
cX
sD1

Bcs ts

For the matrix coefficients mat0rc 2 A 1� associated to the basis t 01; : : : ; t 0n this
becomes

mat0rc. A / D dvr


A.

cX
sD1

Bcsts /
�

D
cX
sD1

Bcs matrs. A /

so that the matrix coefficients mat0rc 2 A 1� for .r; c/ 2 Y are invertible linear
combinations of the matrix coefficients matrs 2 A 1� with .r; s/ 2 Y. A very similar
argument applies to changing the basis of V , while keeping the associated complete
flag on V unchanged. This dependence on flags is precisely the reason, why we are
not interested in arbitrary subsets of matrix coefficients, but in subsets specified by
Young diagrams.

Another way to understand the relationship between complete flags on T and
Young diagram presentations of a given first order tableau A 1 is to study its restric-
tions to subspaces F � T . The linear restriction map resF W Hom . T; V / �!
Hom . F; V /; A 7�! AjF ; associated to a subspace F � T gives rise in fact to a
short exact sequence of tableaux

0 �! A 1
F

��! A 1 resF�! resFA
1 �! 0 (39)
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where resFA 1 � Hom . F; V / is the image of A 1 � Hom . T; V / under resF and
A 1
F � A 1 is the subspace of all A 2 A 1 satisfying At D 0 for all t 2 F . In general

the dimensions of the two derived tableaux A 1
F and resFA 1 depend delicately on

the chosen subspace F � T , hence it makes sense to call a subspace F � T of
dimension s a regular subspace provided:

dim resFA
1 D max f dim res OFA

1 j OF � T is a subspace of dimension s g

In the opposite case F is a singular subspace with respect to the tableau A 1 �
Hom . T; V / in the sense that the dimension of the intersection A 1

F D A 1 \
Hom . T=F; V / is larger than it needs to be. After a little bit of multilinear algebra
of the kind we used to establish Eq. (36) above the latter characterization of singular
subspaces turns into an explicit space of polynomials on the Graßmannian GrsT
considered as an algebraic variety such that a subspace F � T of dimension s is
singular with respect to A 1, if and only if F 2 GrsT is a common zero of all these
polynomials. The complementary subset of regular subspaces of T in dimension s
is thus a non-empty Zariski dense subset:

Grreg
s T WD f F j F � T is an A 1–regular subspace of dimension s g 	 GrsT

Coming back to complete flags we conclude that the set of all complete flags F�
on T , which feature a regular subspace Fs 2 Grreg

s T in a given dimension s,
is a Zariski dense subset of the algebraic variety FlagT of all complete flags on
T . Finite intersections of Zariski dense subsets however are still Zariski dense, in
consequence the subset of regular flags on T

FlagregT WD f F� 2 FlagT j every Fs is A 1–regular in its dimension s g

is a Zariski dense subset of the algebraic variety FlagT of all complete flags on
T , in particular FlagregT is a non-empty, dense subset of FlagT with respect to
the manifold topology as well. The existence of regular complete flags for arbitrary
first order tableaux allows us to define the Cartan character YA of a tableau A 1 �
Hom . T; V / in the following way:

Lemma 4.7 (Cartan Character of First Order Tableaux). Associated to every
first order tableau A 1 � T � ˝ V of dimension D WD dim A 1 is the set of all
Young diagrams of order D presenting A 1. With respect to the partial order � this
subset of YD.D / has a unique maximal element called the Cartan character YA

of the tableau A 1, its column lengths cA1 � cA2 � : : : � cAn � 0 satisfy for all
s D 1; : : : ; n:

cA1 C cA2 C : : : C cAs WD max f dim resFA
1 j F 2 GrsT g

Proof. For the purpose of proof let us assume that the column lengths of the
Cartan character YA in spe of a fixed first order tableau A 1 � Hom . T; V /
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of dimension D � 0 are defined simply as a sequence of non-negative numbers
cA1 ; c

A
2 ; : : : ; c

A
n � 0 via:

cA1 C cA2 C : : : C cAs WD max f dim resFA
1 j F 2 GrsT g (40)

For every given Young diagram Y 2 YD.D / presenting A 1 we may choose bases
t1; : : : ; tn and v1; : : : ; vN of T and V respectively such that the matrix coefficients
A 7�! dvr.Atc/ indexed by .r; c/ 2 Y are a basis of A 1�. The specific matrix
coefficients matrc 2 A 1� indexed by boxes .r; c/ 2 Y in the first s D 1; : : : ; n

columns with c � s actually come from the restriction of A 1 to the subspace
Fs 2 GrsT spanned by f t1; : : : ; ts g in the sense matrc.A/ WD dvr. ŒAjFs 
 tc/.
Hence the image of the adjoint .resFsA

1/� �! A 1� of the restriction A 1 �!
resFsA

1; A 7�! AjFs ; to Fs contains the c1 C : : :C cs linearly independent matrix
coefficients indexed by boxes .r; c/ 2 Y in the first s columns and so:

c1 C c2 C : : : C cs � dim resFsA
1

� max f dim resFA
1 j F 2 GrsT g

D cA1 C cA2 C : : : C cAs

Since this inequality is true for all s D 1; : : : ; n, we conclude that Y � YA

provided we can show that the non-negative numbers cA1 ; : : : ; c
A
n � 0 are actually

the column lengths of a Young diagram YA presenting the tableau A 1.
For this purpose let us fix a regular flag F� 2 FlagregT for the tableau A 1 and an

adapted basis t1; : : : ; tn for T satisfying Fs D spanf t1; : : : ; ts g for all s D 1; : : : ; n.
Evidently the kernel A 1

Fs
� A 1 of the restriction to Fs consists of those A 2 A 1 �

Hom . T; V / satisfying A t� D 0 for all 1 � � � s, this simple observation gives
rise to the short exact sequences

0 �! A 1
Fs

��! A 1
Fs�1

@
@ts�! A 1

Fs�1
ts �! 0 (41)

for all s D 1; : : : ; n, where @
@ts
A WD A ts and A 1

F0
WD A 1 in case of doubt. In

consequence

dim resFsA
1 D dim A 1 � dim A 1

Fs
D cA1 C : : : C cAs

dim A 1
Fs�1

ts D dim A 1
Fs�1

� dim A 1
Fs

D cAs

where the first equation simply reflects the regularity of the chosen flag
F� 2 FlagregT with respect to the tableau A 1 and the second the short exact
sequence (41).

The crucial observation to be made at this point is that the sequence of subspaces
A 1
Fs�1

ts; s D 1; : : : ; n; of dimensions cAs is actually a monotonely decreasing
filtration
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V � A 1
F0
t1 � A 1

F1
t2 � A 1

F2
t3 � : : : � A 1

Fn�1
tn � f 0 g (42)

so that the non-negative integers cA1 ; : : : ; c
A
n � 0 we have been using up to now

are monotonely decreasing cA1 � cA2 � : : : � cAn � 0 as appropriate for the
column lengths of a Young diagram YA of order cA1 C : : : C cAn D dim A 1. By
the our choice of a regular flag F� 2 FlagregT all the subspaces Fs 2 Grreg

s T are
regular in their dimension s with respect to the tableau A 1. With regularity being a
Zariski open condition we conclude that for an arbitrary deformation vector t 2 T

the deformation F "
s WD Fs�1 ˚ R.ts C "t/ with " sufficiently close to 0 is still a

regular subspace F "
s 2 Grreg

s T . Comparing the short exact sequence (41) for Fs
with the short exact sequence constructed similarly for F "

s

0 �! A 1
F "s

��! A 1
Fs�1

�! A 1
Fs�1

. ts C " t / �! 0

we observe that the regularity of F "
s is equivalent to dim A 1

Fs�1
.ts C "t/ D

dim A 1
Fs�1

ts , hence sufficiently close to 0 the curve " 7�! A 1
Fs�1

.ts C "t/ is a
smooth curve in the Graßmannian of subspaces of V of dimension cAs . In particular
the trivial inclusion of subspaces

A 1
Fs
t D A 1

Fs
. ts C " t / 	 A 1

Fs�1
. ts C " t /

valid for all " ¤ 0 continues to hold true for " D 0 by the way the topology is
defined on the Graßmannians. In consequence A 1

Fs�1
ts � A 1

Fs
t for all s D 1; : : : ; n

and an arbitrary deformation vector t 2 T , in particular A 1
Fs�1

ts � A 1
Fs
tsC1 in

filtration (42).
Last but not least we complement the chosen basis t1; : : : ; tn for T adapted to

the regular flag F� 2 FlagregT by a basis v1; : : : ; vN of V adapted to the decreasing
filtration (42) in the sense that for all s D 1; : : : ; n the filtration subspace A 1

Fs�1
ts is

spanned by the first cAs basis vectors v1; : : : ; vcAs . In order to show that the special
matrix coefficients matrc 2 A 1� indexed by boxes .r; c/ 2 YA with respect to
these bases are actually a basis of A 1� it is sufficient to verify that they generate
A 1�, in other words we need to prove that every A 2 A 1 satisfying matrc. A / D 0

for all .r; c/ 2 YA necessarily vanishes A D 0.
Due to A 2 A 1 D A 1

F0
the vector At1 2 A 1

F0
t1 is a linear combination of the

first cA1 basis vectors v1; : : : ; vcA1 2 V , hence the assumption matr1. A / D 0 for

all .r; 1/ 2 YA implies At1 D 0 or equivalently A 2 A 1
F1

. Iterating this argument
we find that At2 2 A 1

F1
t2 is a linear combination of the first cA2 basis vectors of V

and conclude At2 D 0 or A 2 A 1
F2

as before from the assumption matr2. A / D 0

for all .r; 2/ 2 YA . Continuing in this way we eventually arrive at the conclusion
A 2 A 1

Fn
D f 0 g or equivalently A D 0. Summing up this argument we conclude

that the matrix coefficients matrc 2 YA indexed by the boxes .r; c/ 2 YA are a
basis of A 1� so that YA presents the tableau A 1. ut
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Theorem 4.8 (Cartan’s Involutivity Test for Tableaux). Every Young diagram
Y presenting a first order tableau A 1 � Hom . T; V / with associated tableau
comodule A over the symmetric coalgebra SymT � of a vector space T of
dimension n WD dim T provides us with an a priori estimate on the dimension
of the first prolongation A 2 � Sym2T � ˝ V of the tableau in terms of its column
lengths c1 � c2 � : : : � cn � 0

dim A 2 � c1 C 2 c2 C 3 c3 C 4 c4 C : : : C n cn

which may only be sharp for the Cartan character YA of A 1. If this estimate is in
fact sharp for the Cartan character, then the Spencer cohomology of the comodule
A is concentrated in comodule degree zero with H �;ı.A / D f 0 g for � ¤ 0.
Moreover the dimensions of A k and H0;r .A / can be calculated for all k; r > 0

from the column lengths of YA via:

dim A k D C
 
k � 1
0

!
cA1 C

 
k

1

!
cA2 C : : :C

 
k C n � 2
n � 1

!
cAn

dim H0; r .A / D
 
n

r

!
dim V �

 
n � 1
r � 1

!
cA1 �

 
n � 2
r � 1

!
cA2 C : : : �

 
0

r � 1

!
cAn

Last but not least the comodule A has a canonical resolution by free comodules of
the form:

0 �! A � ��! Sym�T �˝H0;0.A / �! Sym��1T �˝H0;1.A /

�! Sym��2T � ˝H0;2.A / �! : : : �! Sym��nT � ˝H0;n.A / �! 0

Without doubt Cartan’s Involutivity Test is the most beautiful gem in the theory of
exterior differential systems, although or perhaps because it is in essence a theorem
of commutative algebra. Involutivity of a tableau is a notion actually defined by the
theorem: A first order tableau A 1 � Hom . T; V / is called an involutive tableau
provided it passes Cartan’s Test positively with dim A 2 D cA1 C2 cA2 C: : :Cn cAn ,
in consequence the associated Spencer cohomology is concentrated in comodule
degree � D 0 with H �; ı.A / D f 0 g for all � ¤ 0. The converse of is statement is
true as well, although we will not prove this fact: A first order tableau A 1, whose
Spencer cohomology is concentrated in comodule degree zero, necessarily passes
Cartan’s Test dim A 2 D cA1 C 2 cA2 C : : :C n cAn positively. The proof presented
below of the direct implication of Theorem 4.8 relies heavily on the following
technical lemma:

Lemma 4.9 (Technical Lemma for Cartan’s Involutivity Test). Consider for a
given comodule A over the symmetric coalgebra SymT � of a vector space T the
subcomodule A �

Rt � A � of elements constant in the direction of a fixed vector
t 2 T :
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A �
Rt WD ker

 @

@t
W A � �! A ��1; a 7�! @a

@t

�

In case the directional derivative @
@t

W A kC1 �! A k in the direction t is surjective
for some k 2 Z the inclusion A �

Rt �! A � induces a surjection on the level of
Spencer cohomology:

Hk; ı. ARt / �! Hk; ı. A /; Œ ! 
 7�! Œ ! 


If in addition to @
@t

W A kC1 �! A k being surjective the following Spencer
cohomology spaces

HkC1; 0. A / D 0 HkC1; 1. A / D 0 Hk; 2. ARt / D 0

of A and ARt vanish, then the directional derivative @
@t

W A kC2 �! A kC1 is
surjective again.

The first statement is an almost trivial consequence of Cartan’s Homotopy Formula.
Starting with an arbitrary representative ! 2 A k ˝ ƒrT � of a cohomology
class Œ ! 
 2 Hk; r .A / we use the surjectivity of the directional derivative @

@t
W

A kC1 �! A k and the algebraic analogue of Cartan’s Homotopy Formula (22) to
find a cochain !pre 2 A kC1 ˝ƒrT � satisfying:

! D .
@

@t
˝ id / !pre D f B; . id ˝ ty / g !pre

WD . id ˝ ty / B !pre C B . id ˝ ty / !pre

In consequence . id ˝ ty / B !pre � ! modulo imB is still closed and represents
the same cohomology class Œ . id ˝ ty / B !pre 
 D Œ ! 
 2 Hk; r .A /, however its
directional derivative

.
@

@t
˝ id /


. id ˝ ty / B !pre

�
D . id ˝ ty / B


.
@

@t
˝ id / !pre

�

D . id ˝ ty / B ! D 0

in the direction of t vanishes, recall that ! is assumed to represent a cohomology
class and so it is necessarily closed B ! D 0. The modified representative . id ˝
ty / B !pre 2 A k

Rt ˝ƒrT � is thus constant in the direction of t and provides us with
the looked for preimage of Œ ! 
 under the map Hk; r .ARt / �! Hk; r .A / induced
by the inclusion A �

Rt �! A �. Turning to the proof of the second statement we
study the commutative diagram
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(43)

whose rows and columns are all complexes. By assumption the row complexes
are exact on the diagonal A kC1, A kC1 ˝ T � and A k

Rt ˝ ƒ2T �, while the
column complexes are exact on the parallel diagonal A k ˝ T �, A k ˝ ƒ2T � and
A k�1

Rt ˝ƒ3T � due to the definition of the comodule ARt and our assumption that the
directional derivative @

@t
W A kC1 �! A k is surjective. A very delightful diagram

chase all over this diagram proves that the directional derivative @
@t

W A kC2 �!
A kC1 on the left is surjective as well.

Proof of Theorem 4.8: Once and for all let us fix a first order tableau A 1 �
Hom . T; V / of dimension D � 0 on vector spaces T and V of dimensions n
and N respectively. On the set of Young diagrams of order D with at most n
columns we define the weighted sum jj � jj W YDn.D / �! N0 of the column lengths
c1 � c2 � : : : � cn � 0 of the argument by:

jjY jj WD c1 C 2 c2 C : : : C n cn

D . nC 1 /D � . c1 / � . c1 C c2 / � : : : � . c1 C c2 C : : :C cn /

Using the second expression for the weighted sum jj � jj and the definition (38) of
the partial order � on the lattice YD.D / we conclude directly that Y � QY implies
jjY jj � jj QY jj with equality, if and only if Y D QY. Every Young diagram presenting
A 1 has at most n columns of course and the maximality of the Cartan character
YA among the diagrams presenting A 1 implies that jj � jj attains its minimum in
and only in the Cartan character:

jjYA jj D min f jjY jj j Y 2 YDn.D / presents the tableau A 1 g (44)

In the following paragraphs we will provide two different arguments to establish the
a priori estimate dim A 2 � jjY jj for the dimension of the first prolongation A 2 in
terms of a Young diagram Y presenting A 1. Whereas the first argument is rather
explicit and is intended to provide the reader with a meaningful interpretation (46)
for the weighted sum jj � jj, the second argument is more elegant and provides us
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with the a useful description of the equality case dim A 2 D jjY jj, on which the
inductive proof of the main statement is based.

Consider an arbitrary Young diagram Y presenting the tableau A 1 and corre-
sponding bases t1; : : : ; tn and v1; : : : ; vN for T and V respectively so that the matrix
coefficients matrc. A / WD dvr.Atc/ indexed by the boxes .r; c/ 2 Y are a basis of
A 1�. Recall that the directional derivative in the tableau comodule A � associated
to A 1 agrees with insertion @

@t
W A 1 �! V; A 7�! At; in comodule degree � D 1,

this observation allows us to generalize the matrix coefficients matrc 2 A 1� to
matrix coefficients defined on A 2 by:

matrI Ncc W A 2 �! R; a 7�! dvr

 @2

@t Nc @tc
a
�

It is well known that these generalized matrix coefficients matrI Ncc with their
symmetry matrI Ncc D matrI c Nc taken into account are a basis of the vector space dual
to Sym2T � ˝ V , hence they certainly generate A 2� due to A 2 � Sym2T � ˝ V .
On the other hand we know that the matrix coefficients matNr Nc 2 A 1� indexed by
. Nr; Nc/ … Y are fixed linear combinations

matNr Nc D
X

.r;c/2Y
C rcNr Nc matrc (45)

of the matrix coefficients indexed by .r; c/ 2 Y, where the constants C rcNr Nc 2 R

are characteristic for the tableau A 1, the trivial identity matNrI s Nc. a / D matNr Nc. @a@ts /
thus implies matNrI s Nc D P

.r;c/2Y C rcNr Nc matrI sc for every s D 1; : : : ; n as well. In the
light of the symmetry matrI c Nc D matrI Ncc we conclude that the generalized matrix
coefficients matrI Ncc indexed by triples .r I Nc; c/ satisfying c � Nc � 1 and .r; c/ 2 Y
already generate all of A 2�, hence:

dim A 2 � jjY jj D ] f . r I Nc; c / j r � 1; c � Nc � 1 and . r; c / 2 Y g
(46)

Somewhat more elegantly the a priori estimate dim A 2 � jjY jj can be established
using the complete flag F� associated to the chosen basis t1; : : : ; tn 2 T with Fs WD
spanf t1; : : : ; ts g. Associated to this complete flag is a descending filtration of the
tableau A 1 by subtableaux

A 1 D A 1
F0

� A 1
F1

� A 1
F2

� : : : � A 1
Fn�1

� A 1
Fn

D f 0 g

which in turn define tableau comodules A �
Fs

for all s D 1; : : : ; n. The most
important observation to be made at this point is that these tableau comodules are
interrelated by
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A �
Fs

D ker
 @

@ts
W A �

Fs�1
�! A ��1

Fs�1
; a 7�! @a

@ts

�
DW .A �

Fs�1
/R ts

(47)

valid for all s D 1; : : : ; n. In fact the tableau comodule A �
Fs�1

� Sym�T � ˝ V is
more or less by definition the subspace of polynomials  on T with values in V ,
whose differential Bp W T �! V; t �! @ 

@t
. p /; is an element of the subspace

A 1
Fs�1

� Hom . T; V / in every point p 2 T . Clearly such a polynomial is constant
in the direction of ts , if and only if its differential in every point kills the vector ts
and thus lies in the subspace A 1

Fs
. The resulting equality (47) between the tableau

comodule A �
Fs

and the kernel of @
@ts

in the tableau comodule A �
Fs�1

for all s D
1; : : : ; n for all s D 1; : : : ; n implies the exactness of the sequences:

0 �! A 2
Fs

��! A 2
Fs�1

@
@ts�! A 1

Fs�1
(48)

Combining this exactness with the estimate dim A 1
Fs

D D�dim resFsA
1 � csC1C

: : : C cn established in the proof of Lemma 4.7 to obtain the a priori estimate as a
telescope sum

dim A 2 D
nX
sD1


dim A 2

Fs�1
� dim A 2

Fs

�
�

nX
sD1

dim A 1
Fs�1

� jjY jj

telescoping to dim A 2
F0

� dim A 2
Fn

D dim A 2 according to A 1
F0

D A 1 and
A 1
Fn

D f 0 g.
For the second part of the proof let us assume that the a priori estimate is actually

sharp dim A 2 D jjYA jj for the Cartan character YA . Under this assumption all
inequalities in the preceding argument must be equalities, in particular dim A 1

Fs
D

cAsC1 C : : : C cAn holds true for all s D 1; : : : ; n and all the exact sequences (48)
are surjective on the right and thus short exact. This simple observation provides the
basis in k D 1 for an inductive argument to the end that we have for all k � 1 and
all s D 1; : : : ; n short exact sequences:

0 �! A kC1
Fs

��! A kC1
Fs�1

@
@ts�! A k

Fs�1
�! 0 (49)

In the induction step from k to k C 1 we apply the first statement of the technical
Lemma 4.9 to all tableau comodules A �

Fs
D .A �

Fs�1
/Rts in turn to obtain a chain of

surjections

Hk;ı.AFn / �! Hk;ı.AFn�1 / �! : : : �! Hk;ı.AF1 / �! Hk;ı.AF0 /

in Spencer cohomology, in which the first term Hk;ı.AFn / D f 0 g vanishes due to
k > 0, after all the tableau comodule A �

Fn
D ı�D0 V is concentrated in degree zero.

In consequence



174 G. Weingart

HkC1; 0. AFs / D f 0 g HkC1; 1. AFs / D f 0 g Hk; 2. AFs / D f 0 g

vanish for all s D 0; : : : ; n, in fact we just have finished proving the third assertion,
whereas the first two are true for every first order tableau comodule according to
Eq. (30) and the assumption k > 0. All requirements of the second statement of
Lemma 4.9 are thus met, and we conclude that the short exact sequences one degree
higher up are exact

0 �! A kC2
Fs

��! A kC2
Fs�1

@
@ts�! A kC1

Fs�1
�! 0

on the right for all s D 1; : : : ; n completing thus the induction. More or less as
a by-product we have proved that the Spencer cohomology H �; ı.AFs / D f 0 g
vanishes in comodule degrees � ¤ 0 for all comodules AFs ; s D 0; : : : ; n and thus
for A D AF0 as well. With such a Spencer cohomology theE1-term of the standard
spectral sequence of Lemma 3.7

Sym�T � ˝H ◆; ı. A / H) ı◆D0Dı A �

is concentrated in degrees ◆ D 0. Hence this spectral sequence has only one chance
left to converge to the original comodule A : The coboundary operators leading to
the E2-term have to link up to form a resolution of A by the free comodules with
basisH0; ı.A /, in particular the standard spectral sequence collapses at itsE2-term
equal to A .

The short exact sequences (49) valid for all k � 1 and s D 1; : : : ; n allow us to
calculate the dimension of the homogeneous subspaces A k

Fs
of the comodules AFs

as telescope sums

dim A k
Fs

D
X
��1


dim A k

FsC��1
� dim A k

FsC�

�
D

X
��1

dim A k�1
FsC��1

for all k � 2. Straightforward induction on k � 1 using this equation in the
induction step and the equality dim A 1

Fs
D cAsC1 C : : :C cAn established as a direct

consequence of the assumption dim A 2 D jjYA jj as induction base thus proves
the proves the explicit formula

dim A k
Fs

D
n�sX
�D1

 
k � 2C �

� � 1

!
cAsC�

for all k � 1 and s D 0; : : : ; n, which becomes the stipulated formula for dim A k

in the special case s D 0. Eventually the Betti numbers dim H0; r .A / of the
comodule A can be calculated by binomial inversion from the following identity,
which is obtained by equating the preceding formula for dim A k with the formula
from Corollary 3.8:
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nX
sD1

 
k � 2C s

s � 1

!
cAs D

X
rD0;:::;n

.�1/r
 
k � r C n � 1

n � 1

!
dim H0; r . A /

ut
Perhaps the reader may have wondered, why we took the time to prove the a

priori estimate dim A 2 � jjY jj for the dimension of the first prolongation of a
tableau A 1 � Hom . T; V / in terms of a Young diagram Y presenting A 1. The
point is that the argument using matrix coefficients generalizes to all degrees k � 1

in the formulation that the matrix coefficients

matrI c1:::ck . a / WD dvr

 @k

@tc1 : : : @tck
a
�

indexed by tuples . r I c1; : : : ; ck / satisfying ck � : : : � c1 � 1 and .r; ck/ 2 Y
generate A k�. For the Cartan character Y D YA of an involutive tableau A 1 �
Hom . T; V / however the formulas for dim A k in terms of the column lengths of
YA imply

dim A k D ] f . r I c1; : : : ; ck / j r � 1; ck � : : : � c1 � 1 and . r; ck / 2 YA g

so that these special matrix coefficient are a basis of A k�. In a sense this statement
can be seen as an interpolation formula, because it implies that for every choice of
real constants arI c1:::ck 2 R for every tuple with r � 1 and ck � : : : � c1 � 1

as well as .r; ck/ 2 Y there exists a unique element a 2 A k of the comodule
satisfying:

matrI c1:::ck . a / D arI c1:::ck

In other words there exists an essentially algorithmic way to calculate all elements of
the tableau comodule A corresponding to an involutive tableau A 1 � Hom . T; V /

in terms of its structure constants C rc
Qr Qc of Eq. (45), although it seems difficult to

write an actual computer program to implement this algorithm. In light of this
interpolation property of involutive tableaux, it is very interesting to know that every
finitely generated comodule A bounded below becomes eventually an involutive
tableau comodule:

Theorem 4.10 (Twisted Comodules and Involutivity). Consider a finitely gener-
ated comodule A bounded below and let dmax < 1 be the maximal comodule
degree � realized by a non-trivial Spencer cohomology space H �; ı.A / ¤ f 0 g
in its finite dimensional Spencer cohomology, this is Hd;r .A / D f 0 g for all
d > dmax and all r . For all d � dmax the twist A �. d / � Sym�T � ˝ A d

associated to A is an involutive tableau comodule associated to the “prolonged”
tableau B.A dC1 / � Hom . T; A d / with:



176 G. Weingart

B. A dC1 / WD f B a W T �! A d ; t 7�! @a
@t

j a 2 A dC1 g

Its Cartan character YA .d/ has columns of length cA .d/
1 � c

A .d/
2 � : : : � c

A .d/
n �

0 given by:

cA . d /
s D

X
rD0;:::;n
l2Z

.�1/r
 
nC d � s � l � r

n � s

!
dim Hl; r .A /

where
�
x
m

�
denotes the binomial polynomial 1

mŠ
x .x � 1/ � � � .x � m C 1/ for all

m 2 N0. In passing we note the identity dim A d D c
A . d /
1 C dim Hd;n.A / valid

for all d � dmax.

The Prolongation Theorem is actually a recompilation of all the properties we have
discussed in the last two sections, for this reason we will not go into the details of its
proof. Perhaps the strangest conclusion of Theorem 4.10 is that the Betti numbers of
every finitely generated comodule A bounded below satisfy the following a priori
inequalities for all s D 1; : : : ; n

X
rD0;:::;n
l2Z

.�1/r
 
nC dmax � s � l � r � 1

n � s

!
dim Hl; r . A / � 0

which reflect the standard column length inequalities for the Cartan character
YA .dmax/.

5 Cartan–Kähler Theory

In essence the notion of an exterior differential system studied in this section
can be seen as an axiomatization of the contact systems on the jet bundles of
maps or section and the similar contact system on the generalized Graßmannians
constructed in Sect. 2. Exaggerating somewhat we may say that exterior differential
systems axiomatize the very concept of partial differential equations itself. En nuce
the Cartan–Kähler theory of exterior differential systems is based on the simple
idea to replace the submanifold solutions passing through a point by their infinite
order Taylor series in this point, an idea already present in the beautiful theorem
of Cauchy–Kovalevskaya for underdetermined partial differential equations. The
purpose of this section is to sketch a proof of the formal version of the theorem
of Cartan–Kähler, which generalizes the theorem of Cauchy–Kovalevskaya to other
partial differential equations, while linking the topic to the Spencer cohomology of
comodules discussed in Sects. 3 and 4.
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Certainly the most striking feature common to both the contact system (12) on
the bundle of jets of maps or sections and the contact system (17) on the generalized
Graßmannians is the existence of a filtration of the cotangent bundle of the total
space M by subbundles

0 	 CM 	 HM 	 T �M

such that the characteristic compatibility condition d �.CM / � �.HM ^ T �M /

holds true:

Definition 5.1 (Exterior Differential Systems). An exterior differential system on
a manifold M is a filtration of the cotangent bundle T �M by subbundles CM and
HM called the bundles of contact and horizontal forms respectively

0 	 CM 	 HM 	 T �M

such that the exterior derivative of every contact form � 2 �.CM / is a section of the
ideal bundle d� 2 �.HM ^ T �M / generated by HM. The annihilator subbundles

C?M WD Ann CM D f Xp 2 TM j �. Xp / D 0 for all � 2 CpM g � TM

andH?M WD Ann HM defining the reciprocal filtration of the tangent bundle ofM

TM � C?M � H?M � f 0 g

are called the vector bundles of admissible and vertical vectors on M respectively.

The reader may well wonder how such a definition may be used to treat partial
differential equations in the language of differential forms, this question however
is as futile as asking for the proper meaning of an answer 42 without knowing the
question exactly. In other words the preceding definition is pretty useless without
being accompanied by the complementary notion of a solution to a given exterior
differential system CM 	 HM 	 T �M :

Definition 5.2 (Solutions to Exterior Differential Systems). A solution to an
exterior differential system CM � HM on a manifold M is a submanifold N � M

of dimension n WD dim HM � dim CM such that every vector tangent to N is both
admissible TpN � C?

p M and non-vertical TpN \ H?
p M D f 0 g. In every point

p 2 N the tangent space TpN is thus a linear complement to the vertical in the
admissible vectors:

C?
p M D TpN ˚ H?

p M

Whatever else exterior differential systems and their solutions may be good for,
their raison d’être is to unify different types of partial differential into a common
framework formulated in the language of differential forms. For this reason let us
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postpone the development of the general theory for the moment in order to verify
that the solutions to the contact systems discussed in Sect. 2 faithfully represent our
intuitive understanding of what a solution to a partial differential equation should
be. For convenience we will only consider the contact system on the generalized
Graßmannian GrknM , the reader is invited to repeat this analysis with the contact
systems on Jetk.N; M / and/or JetkFM .

Recall to begin with that the standard jet coordinates on the generalized
Graßmannian GrknM associated to local coordinates . x1; : : : ; xm / on M take the
form . x˛; x

ˇ
A / with indices ˛ D 1; : : : ; n and ˇ D nC 1; : : : ; m as well as multi-

indices A on f 1; : : : ; n g of order jA j � k. Moreover the scalar components of the
canonical contact form � contact on GrknM are indexed by ˇ D n C 1; : : : ; m and
multi-indices A of order jA j < k and read:

�
ˇ
A WD dxˇA �

nX
˛D1

x
ˇ
AC˛ dx˛

Augmented by horizontal forms the contact system (17) on GrknM can thus be
written:

C.GrknM / WD span f �
ˇ
A j for all ˇ; jA j < k g

H.GrknM / WD span f dx˛; dxˇA j for all ˛; ˇ; jA j < k g

In particular the annihilator subbundles of the reciprocal filtration of TGrknM are
given by

H?.GrknM / WD span f @

@x
ˇ
A

j for all ˇ; jA j D k g
C?.GrknM / WD span f @

@x
ˇ
A

; d
dx˛ j for all ˛; ˇ; jA j D k g

where the total derivatives d
dx˛ associated to the jet coordinates . x˛; xˇA / are

defined by:

d

dx˛
WD @

@x˛
C

X
jA j<k
ˇ

x
ˇ
AC˛

@

@x
ˇ
A

With a view on the calculations to come we remark that in this special
exterior differential system the dual quotient bundles H.GrknM /=C.GrknM /

and C?.GrknM /=H?.GrknM / are spanned by the dual classes represented by
dx1; : : : ; dxn and d

dx1
; : : : ; d

dxn . Every linear complement to the vertical in the

admissible vectors in a point p 2 GrknM is of the form
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span
n d

dx˛

ˇ̌
ˇ
p

C
X

jA jDk
ˇ

x
ˇ
A; ˛

@

@x
ˇ
A

ˇ̌
ˇ
p

o
� C?

p . GrknM / (50)

with suitably chosen constants xˇA; ˛ 2 R defined for all ˛; ˇ and multi-indices A of
order jA j D k. According to this description of all linear complements possible in
p 2 GrknM the differentials dpx1; : : : ; dpxn of the coordinate functions x1; : : : ; xn

stay linearly independent upon restriction to the tangent space TpN of a solution
submanifoldN � GrknM passing through p, henceN can be written at least locally
as the graph of a smooth map

. x1; : : : ; xn / 7�! . x1; : : : ; xn; x
ˇ
A. x

1; : : : ; xn / /

with parameter functions xˇA. x
1; : : : ; xn / to be specified for all ˇ and all multi-

indices A of order jA j � k. In terms of these parameter functions the tangent space
TpN can be written

TpN D span
n @

@x˛

ˇ̌
ˇ
p

C
X

jA j�k
ˇ

@ x
ˇ
A

@x˛
. x1; : : : ; xn /

@

@x
ˇ
A

ˇ̌
ˇ
p

o

and comparing coefficients with the general form (50) of linear complements to
the vertical in the admissible vectors we obtain the following constraints on the
functions xˇA. x

1; : : : ; xn /

x
ˇ
AC˛. x

1; : : : ; xn / D @x
ˇ
A

@x˛
. x1; : : : ; xn / x

ˇ
A; ˛ D @x

ˇ
A

@x˛
. x1; : : : ; xn /

for all ˛; ˇ and all multi-indices A of order jA j < k respectively jA j D k.
By a straightforward induction all solutions to these constraints are completely
determined by the parameter functions xˇ. x1; : : : ; xn / corresponding to the empty
multi-index via the expected formula:

x
ˇ
A. x

1; : : : ; xn / D @jAjxˇ

@xA
. x1; : : : ; xn / x

ˇ
A; ˛ D @jAjC1xˇ

@xAC˛ . x1; : : : ; xn /

(51)
In consequence every solution submanifold N � GrknM to the contact system on
the generalized Graßmannian GrknM is holonomic in the sense that there exists at
least locally a submanifold Nbase � M of dimension n with the property N D
f jetk�.p/Nbase j p 2 N g. Concluding our excursion to jet coordinates we recall

that the exterior derivative of the scalar component �ˇA of the contact form � contact

indexed by a multi-index A of order jA j < k � 1



180 G. Weingart

d �
ˇ
A D �

X
˛


�
ˇ
AC˛ C

X
Q̨
x
ˇ

AC˛CQ̨ dx Q̨ � ^ dx˛
ŠD �

X
˛

�
ˇ
AC˛ ^ dx˛

lies in the ideal generated by the components of � contact, because
P
x
ˇ

AC˛CQ̨ dx Q̨ ^
dx˛ D 0 vanishes due to symmetry. For multi-indices A of order jA j D k � 1 on
the other hand the exterior derivative d�ˇA D � P

dxˇAC˛ ^ dx˛ of �ˇA restricts to a
non-trivial 2-form

.d�
ˇ
A/p

 d

dx Q̨
ˇ̌
ˇ
p

C
X

j QA jDk
Q̌

x
Q̌
QA; Q̨

@

@x
Q̌
QA

ˇ̌
ˇ
p
;

d

dx Ǫ
ˇ̌
ˇ
p

C
X

j OA jDk
Ǒ

x
Ǒ
OA; Ǫ

@

@x
Ǒ
OA

ˇ̌
ˇ
p

�

ŠD x
ˇ

ACQ̨; Ǫ � x
ˇ

AC Ǫ ; Q̨ (52)

on a general linear complement of the vertical in the admissible vectors in a point
p 2 GrknM written in the form (50) with suitably chosen constants xˇA; ˛ 2 R.

A partial differential equation of order k � 1 for submanifolds of dimension
n of a manifold M is in essence the same as the associated subset EqkM �
GrknM of algebraic solutions. In practice EqkM is usually a smooth subbundle
of the fiber bundle � W GrknM �! M , although in principle it could arbitrarily
complicated. Partial differential equations satisfying this regularity assumption can
be transformed into an equivalent exterior differential system on the manifold EqkM
simply by restricting the differential forms comprising the contact system on GrknM
to the submanifold EqkM . Exterior differential systems of general type for example
can be reduced to an exterior differential system in the sense of Definition 5.1,
because they are invariably first order partial differential equations for submanifolds.

A peculiar consequence of the observation (52) is that the tangent space TpN of
a solution N to an exterior differential system CM 	 HM 	 T �M on a manifold
M has to satisfy additional quadratic constraints besides being a linear complement
to the vertical in the admissible vectors, namely the exterior derivative of every
contact form � 2 �.CM / needs to vanish .d�/pjTpN�TpN D 0 when restricted
to TpN . More precisely � jTpN D 0 for every contact form � 2 �.CM /, because
every vector tangent toN is admissible and hence inC?

p M , in terms of the inclusion
�N W N �! M we may write this ��N� D 0 and obtain

��N . d� / D d . ��N� / D 0 H) . d� /p
ˇ̌
TpN�TpN D 0 (53)

using the naturality of the exterior derivative. Recall now that the linear comple-
ments to the vertical in the admissible vectors correspond directly to sections of the
short exact sequence

0 �! H?
p M

��! C?
p M

pr�! C?
p M=H?

p M
�! 0 (54)
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namely the image of a section s W C?
p M=H

?
p M �! C?

p M is a linear complement
and every linear complement T equals the image of a unique section sT W
C?
p M=H

?
p M �! C?

p M . Sections of a short exact sequence like (54) on the other
hand form an affine space modelled on the vector space .HpM=CpM/˝H?

p M of
linear maps �s W C?

p M=H
?
p M �! H?

p M . Only the images of those sections
s W C?

p M=H
?
p M �! C?

p M qualify as candidates for the tangent space of a
solution N passing through p 2 M , which satisfy the quadratic constraint

. d� /p. s X; s Y / D 0 (55)

for every contact form � 2 �.TM / and allX; Y 2 C?
p M=H

?
p M . In due course we

will analyze this quadratic constraint in more detail, in particular a description of the
set of all possible solutions s W C?

p M=H
?
p M �! C?

p M is given in Corollary 5.6.
Leaving the analytical description of exterior differential systems aside and

turning to the associated algebraic theory of comodules we begin by casting the
characteristic compatibility condition d �.CM / � �.HM ^ T �M / between
contact and horizontal forms into more manageable terms. Multilinear algebra tells
us that ideal H ^ ƒı�1T � � ƒıT � in the exterior algebra of alternating forms on
a vector space T generated by a subspace H � T � equals the ideal of alternating
forms vanishing on all tuples of arguments in H? � T :

H ^ƒı�1T � D f � 2 ƒıT � j �. V1; : : : ; Vı / D 0 for all V1; : : : ; Vı 2 H? g

More succinctly this statement reads ƒıH? D .H ^ ƒı�1T � /? in terms of the
duality between ƒıT and ƒıT �, in particular it can be seen as the supersymmetric
analogue of the statement that a polynomial � 2 SymT � on T lies in the ideal
generated by H � T �, if and only if it vanishes identically on the subspace H? �
T . In consequence the characteristic compatibility condition imposed on an exterior
differential system is equivalent to

d�. V1; V2 / D 0 (56)

for every contact form � 2 �.CM / and all vertical vector fields V1; V2 2
�.H?M /. Replacing one of the two vertical vector fields by an admissible vector
field A 2 �.C?M / we obtain an expression †. �; A; V / WD d�.A; V / 2
C1.M/, which does only depend on the class represented by A in the sections of
the quotient bundle C?M=H?M . Despite first appearance †. �; A; V / depends
C1.M/-linearly not only on the vector fields A and V , but on the contact form
� 2 �.CM / as well, because �.A/ D 0 D �.V / both vanish so that:

†. f �; A; V / D . df ^ � /. A; V / C f d�. A; V / D f † . �; A; V /

for every smooth function f 2 C1.M/ and every contact form � 2 �.CM /:
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Definition 5.3 (Symbol of an Exterior Differential System). The symbol of an
exterior differential system CM 	 HM 	 T �M on a manifold M is the C1.M/-
trilinear map † W �.CM / � �.C?M=H?M / � �.H?M / �! C1.M/

defined for a contact form � 2 �.CM / and vector fields A 2 �.C?M / and
V 2 �.H?M / by:

†. �; A; V / WD d�. A; V /

Being C1.M/-trilinear the symbol † can be thought of as a homomorphism of
vector bundles in many different ways, the preferred interpretation for exterior
differential system reads:

†p W H?
p M �! .HpM=CpM /˝ C �

pM;

Vp 7�!

Ap ˝ �p 7�! .d�/p.A; V /

�

Even more important than the symbol of an exterior differential system CM 	
HM 	 T �M on a manifold M are the two Sym.HpM=CpM/-comodules
associated to † in a point p 2 M :

Definition 5.4 (Symbol and Reduced Symbol Comodule). Consider an exterior
differential system CM 	 HM 	 TM on a manifold M . The reduced symbol
comodule of this exterior differential system in a point p 2 M is the tableau
comodule A �

p � Sym�.HpM=CpM / ˝ C �
pM associated to the image of †p

considered as a tableau:

A 1
p WD im †p � .HpM=CpM /˝ C �

pM

The symbol comodule R�
p in the point p 2 M is the kernel of the composition

Sym�.HpM=CpM /˝H?
p M

id˝†p�! Sym�.HpM=CpM /˝ .HpM=CpM /˝ C �
pM

B˝id�! Sym��1.HpM=CpM /˝ƒ2.HpM=CpM /˝ C �
pM

of comodule homomorphisms involving the Spencer coboundary operator B of
Sect. 3.

Interestingly the symbol comodule Rp of a general exterior differential system
is never even mentioned in the otherwise authoritative reference [1] on exterior
differential systems. The most important reason for this strange omission seems
to be that the symbol comodule Rp and its reduced counterpart Ap are related by
the very simple short exact sequence

0 �! Sym�.HpM=CpM /˝ ker †p
��! R�

p

id˝†p�! A �
p . 1 / �! 0 (57)
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of comodules and thus have very similar Spencer cohomologies. In addition †p is
injective for many interesting examples so that not only the Spencer cohomology
of Rp and Ap , but the comodules themselves are easily confounded. It is symbol
comodule Rp though, which has the direct bearance on the solution space of an
exterior differential system erroneously attributed to the reduced symbol comodule
in [1]. In any case the family of subspaces ker†p � H?

p M � TpM parametrized
by p 2 M appears in [1] in the guise of the so-called special Cauchy characteristic
vector fields �.ker†/ � �.TM /.

In order to justify the short exact sequence (57) linking the two symbol
comodules associated to an exterior differential system we recall from Theorem 4.10
that the twist Ap. 1 / of the tableau comodule Ap is again a tableau comodule, in
fact it is the tableau comodule arising from the tableau A 2

p � .HpM=CpM/˝A 1
p .

In turn this tableau can be written as the kernel of the Spencer coboundary operator
B ˝ id in the exact sequence

0 �! A 2
p

��! .HpM=CpM/˝ A 1
p

B˝id�! ƒ2.HpM=CpM/˝ C �
pM

due to the generic property H0; 2.Ap / D f 0 g D H1; 1.Ap / of tableau comodules
established in Eq. (30). In consequence the twist A �

p . 1 / of the reduced symbol
comodule A �

p can be written as the kernel of the following homomorphism of free
comodules:

Sym�.HpM=CpM /˝ A 1
p

B˝id�! Sym��1.HpM=CpM /˝ƒ2.HpM=CpM /˝ C �
pM

With A 1
p WD im†p the symbol comodule R�

p is thus by its very definition the
preimage of the subcomodule A �

p . 1 / � Sym�.HpM=CpM/ ˝ .HpM=CpM/ ˝
C �
pM under the homomorphism id ˝ †p W Sym�.HpM=CpM/ ˝ H?

p M �!
Sym�.HpM=CpM/ ˝ .HpM=CpM/ ˝ C �

pM of free comodules induced by †p
so that the sequence (57) is short exact.

With the machinery of symbol and symbol comodules at our disposal let us
now come back to the discussion of the quadratic constraint (55) characterizing
the set of linear complements to the vertical in the admissible vectors, which are
proper candidates for the tangent spaces TpN of solutions N passing through
p 2 M . Modifying the section s W C?

p M=H
?
p M �! C?

p M of the short exact
sequence (54) corresponding to an arbitrary linear complement by a linear map
�s W C?

p M=H
?
p M �! H?

p M we obtain for all vectors X; Y 2 C?
p M=H

?
p M

.d�/p. .s C�s/X; .s C�s/ Y /

D .d�/p. s X; s Y / C .d�/p. s X; .�s/ Y / � .d�/p. s Y; .�s/X /

D .d�/p. s X; s Y / C †p. �p; X; .�s/ Y / � †p. �p; Y; .�s/X /
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because .d�/p vanishes on two vertical arguments due to the reformulation (56) of
the axiomatic compatibility condition d �.CM / � �.HM ^ T �M / between the
contact and the horizontal forms. The modified section s C �s is a solution to the
quadratic constraint (55), if and only if �s satisfies the following inhomogeneous
linear equation:

†p. �p; X; .�s/ Y / � †p. �p; Y; .�s/X / D � .d�/p. s X; s Y / (58)

Our preferred interpretation †p W H?
p M �! .HpM=CpM/ ˝ C �

pM

of the symbol †p on the other hand allows us to write the trilinear form
.X; Y; �p / 7�! †p. �p; Y; .�s/X / as the image of �s considered as an element
of .HpM=CpM/˝H?

p M under the linear map:

id ˝†p W .HpM=CpM /˝H?
p M �! .HpM=CpM /˝ A 1

p

In addition the skew-symmetrization of this trilinear form on the left hand side of
the linear equation (58) for�s implements a special case of the Spencer coboundary
operator

h B
h
. id ˝†p /. � s /

i
. X; Y /; �p i

D †p. �p; X; .�s/ Y / � †p. �p; Y; .�s/X /

namely B W .HpM=CpM/ ˝ A 1
p �! ƒ2.HpM=CpM/ ˝ A 0

p with A 0
p WD

C �
pM by definition, the most difficult problem here is to convince oneself of

the correctness of the sign. Since every section of the short exact sequence (54)
can be written in the form s C �s for an arbitrarily chosen base section s W
C?
p M=H

?
p M �! C?

p M and a suitable modification �s we conclude that the
linear complements T to the vertical vectorsH?

p M in the admissible vectors C?
p M

satisfying the quadratic constraint (55) correspond via sT D s C �s bijectively to
the solutions �s 2 .HpM=CpM/˝H?

p M of the inhomogeneous linear equation

B

. id ˝†p /. � s /

�
D �‚p. s / (59)

with right hand side given by h ‚p.s/.X; Y /; �p i WD .d�/p. sX; sY /, compare
the original equation (58). In turn this inhomogeneous linear equation gives rise to
the concept of torsion:

Definition 5.5 (Torsion). Consider an exterior differential system CM 	 HM 	
TM on a manifold M . The torsion of this exterior differential system in a point
p 2 M is the Spencer cohomology class

Œ ‚p. s / 
 2 H0; 2. Ap /

WD

ƒ2.HpM=CpM /˝ C �

pM
�
=
B

.HpM=CpM/˝ A 1

p

�
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represented by the 2-form‚p. s / 2 ƒ2.HpM=CpM/˝C �
pM with values in C �

pM

defined for an arbitrary section s W C?
p M=H

?
p M �! C?

p M of the short exact
sequence (54) by:

h ‚p. s /. X; Y /; �p i WD .d�/p. sX; sY /

A classical theorem of linear algebra asserts that the inhomogeneous linear equa-
tion (59) characterizing the candidates im. s C �s / � C?

p M for the tangent
spaces of solution submanifolds N � M passing through p 2 M has a solution
�s 2 .HpM=CpM/ ˝ H?

p M , if and only if �‚p.s/ lies in the image of the
Spencer coboundary operator B , if and only if the torsion vanishes. After all
id ˝ †p W .HpM=CpM/ ˝ H?

p M �! .HpM=CpM/ ˝ A 1
p is surjective by

definition, hence the vanishing Œ ‚p.s/ 
 D 0 of the torsion implies that every
preimage �s 2 .HpM=CpM/ ˝ H?

p M of an element of .HpM=CpM/ ˝ A 1
p

making �‚p. s / exact is a solution to the inhomogeneous equation (59). A very
similar argument implies that the torsion is actually independent of the section used
to define the representative ‚p.s/ due to the identity ‚p. s C �s / D ‚p. s / C
BŒ .id ˝†p/.�s / 
:

Corollary 5.6 (Significance of Torsion). No solution submanifold N � M to
an exterior differential system CM 	 HM 	 T �M on a manifold M passes
through a point p 2 M , unless the torsion Œ ‚p.s/ 
 2 H0; 2.Ap / vanishes for
one and hence every section s W C?

p M=H
?
p M �! C?

p M of the short exact
sequence (54). In the latter case the linear complements T to the vertical in the
admissible vectors satisfying the constraint .d�/p. sT X; sT Y / D 0 for all contact
forms � 2 �.CM / and all X; Y 2 C?

p M=H
?
p M form an affine space modelled on

the vector space R1
p .

Somewhat surprisingly it is the homogeneous subspace R1
p of the symbol comodule

Rp , which parametrizes the possible candidates for the tangent spaces TpN of
solution submanifolds N � M in the case of vanishing torsion Œ ‚p.s/ 
 D 0 in the
point p 2 M , not a homogeneous subspace of the more prominent reduced symbol
comodule Ap . The reason for this is simple: By its very definition R1

p equals the
kernel of the linear map B ı .id ˝ †p/ and thus acts naturally on the solutions to
the inhomogeneous linear equation (59).

The generalization of Corollary 5.6 to higher orders of differentiation forms the
cornerstone of the Cartan–Kähler theory of exterior differential systems. Similar
to its historic precursor, the theorem of Cauchy–Kovalevskaya the Cartan–Kähler
theory tries to reconstruct the solution submanifolds from their infinite order Taylor
series in a given point, a notion made precise by the projective limit Gr1

n M of the
tower (16) of Graßmannians:

: : :
pr�! Gr3nM

pr�! Gr2nM
pr�! Gr1nM

��! Gr0nM D M

In such a power series approach we are inevitably led to consider jet solutions of
sorts:
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Definition 5.7 (Jet Solutions and Semisolutions). A jet solution of order k � 1

to an exterior differential system CM 	 HM 	 T �M on a manifold M is a kth
order jet of a submanifold jetkpN 2 GrknM , whose tangent space in p is a linear
complement TpN � C?

p M to the subspace H?
p M of vertical vectors, such that

jetk�1
p . ��N � / D 0 D jetk�1

p . ��N d� /

for all contact forms � 2 �.CM /. Similarly a jet semisolution of order k � 1

is an element jetkpN 2 GrknM represented by a submanifold N � M satisfying

C?
p M D TpN ˚H?

p M and jetk�1
p . ��N� / D 0 for all � 2 �.CM /. Solutions and

semisolutions assemble into the sets:

EqkpM WD f jetkpN j jetkpN 2 GrknM is a jet solution of order k g
Eq

k

pM WD f jetkpN j jetkpN 2 GrknM is a jet semisolution of order k g

In light of the identification jet1pN $ TpN of the generalized Graßmannian

Gr1nM with the Graßmann bundle Grn.TM / of n-dimensional subspaces of TM
the preceding definition of jet solutions and jet semisolutions faithfully reflects our
considerations above for order k D 1. Jet semisolutions of order k D 1 say are
simply linear complements TpN to the vertical in the admissible vectors, while jet
solutions are linear complements satisfying the quadratic constraint jet0p. �

�
Nd� / D

.d�/pjTpN�TpN D 0. Hence Eq
1

pM is always the affine space of sections of the

short exact sequence (54), while Eq1pM is described by Corollary 5.6 as an affine
space modelled on R1

p in the case of vanishing torsion, otherwise it is empty. This
classification of jet solutions and jet semisolutions of order k D 1 generalizes to
the picture at higher orders of differentiation k � 1, which is best remembered as a
tower

(60)

we need to climb up one step at a time. The diagonal projections pr W
Eq

kC1
p M �! EqkpM are always surjective with fiber an affine space modelled

on SymkC1.HpM=CpM/˝H?
p M , while the rows in this tower are “exact” in the

following sense: There exists a jet solution jetkC1
p N 2 EqkC1

p M over a jet solution



An Introduction to Exterior Differential Systems 187

jetkpN 2 EqkpM , if and only if the higher torsion tork W Eq
kC1
p M �! Hk;2.Ap /

vanishes on some and hence on every jetkC1
p N 2 Eq

kC1
p M lying over jetkpN .

Interestingly all obstructions against formal integrability live in the Spencer
cohomology H �;2.Ap / of the reduced symbol comodule of form degree ı D 2.

A more detailed study of the tower (60) has to wait a little bit until we have
clarified the subtle interplay between the jets of submanifolds and the jets of
differential forms, on which Definition 5.7 is based. Conceptually it is easier in
this endeavor to consider the more general case of smooth maps ' W N �! M

between manifolds N and M and specify to canonical inclusions �N W N �! M

of submanifolds later on. A smooth map ' W N �! M can be written in local
coordinates . x1; : : : ; xn / and . y1; : : : ; ym / around a point p 2 N and its image
'.p/ 2 M as m smooth functions of n variables, namely the pull backs of:

'�y� DW y�. x1; : : : ; xn / H) '�dy� D
nX

˛D1

@y�

@x˛
. x1; : : : ; xn / dx˛

In this local coordinate description the pull back of a general differential form reads:

'� h f . y1; : : : ; ym / dy�1 ^ : : : ^ dy�r
i

D
nX

˛1;:::;˛rD1
f . y1.x/; : : : ; ym.x/ /

@y�1

@x˛1
. x / : : :

@y�r

@x˛r
. x / dx˛1 ^ : : : ^ dx˛r

In consequence the partial derivatives up to order k of the coefficients of the right
hand side with respect to the monomial basis dx˛1 ^ : : :^ dx˛r depend on the partial
derivatives of the original coefficient f .y1; : : : ; ym/ up to order k and on the partial
derivatives of the functions y� up to order k C 1 only. In other words we have a
well-defined linear map of vector spaces

ŒŒ jetkC1
p ' 

 W Jetk'.p/ƒ

ıT �M �! Jetkpƒ
ıT �N; jetk'.p/! 7�! jetkp. '

�! /
(61)

which only depends on jetkC1
p ' 2 JetkC1

p .N; M /. In a similar vein we recall that
the exterior derivative d is a linear first order differential operator, its composition
jetk�1 ı d is thus a linear differential operator of order k, whose total symbol map
in the sense of Definition 2.2 induces for every point p 2 N a linear map of the jet
fiber vector spaces

d formal W Jetkpƒ
ıT �N �! Jetk�1

p ƒıC1T �N; jetkp! 7�! jetk�1
p . d! /

as well as its analogue d formal W Jetk'.p/ƒ
ıT �M �! Jetk�1

'.p/ƒ
ıC1T �M , such that

the diagram
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(62)
commutes due to the naturality d. '�! / D '�. d! / of the exterior derivative. In
passing we remark that the principal symbol of the differential operator jetk�1 ı
d , which is by definition the restriction of its total symbol d formal to the symbol
subspace defined in (8)

SymkT �
p N ˝ƒıT �

p N D ker


pr W Jetkpƒ
ıT �N �! Jetk�1

p ƒıT �N
�

(63)

agrees with the Spencer coboundary operator B defined in Sect. 3. Of course this is
the conditio sine qua non for the usefulness of Spencer cohomology in the study of
exterior differential systems.

A rather surprising aspect of the commutative diagram (62) should not pass
by unnoticed, the linear map ŒŒ jetk' 

 does only depend on the jet of ' of order
k, whereas ŒŒ jetkC1' 

 invariably involves the partial derivatives of ' of order
k C 1. In order to resolve this apparent contradiction to the commutativity of (62)
we observe that the only terms in the partial derivatives of the coefficients of
'�Œ f .y1; : : : ; ym/ dy�1 ^ : : :^dy�r 
 of order up to k, which actually involve partial
derivatives of the functions y� of order k C 1, can be written:

f . '.p/ /
 nX
˛D1

@jAjC1y�1
@AC˛x

dx˛
�

^ '�
pdy

�2 ^ : : : ^ '�
pdy

�r

C f . '.p/ / '�
pdy

�1 ^
 nX
˛D1

@jAjC1y�2
@AC˛x

dx˛
�

^ : : : ^ '�
pdy

�r C : : :

Quite remarkably this expression looks like a derivation applied to f .'.p// dy�1 ^
: : : ^ dy�r ! The change in the pull back of jets of differential forms resulting
from a modification of the highest order partial derivatives of ' by adding �' 2
SymkC1T �

p N ˝ T'.p/M thus reads

ŒŒ jetkC1
p ' C�' 

. jetkp! / D ŒŒ jetkC1

p ' 

. jetkp! /C B

.id ˝ '�

p/.�' y !'.p/ /
�

(64)

where the additional term involves the Spencer coboundary operator B and the
composition

ƒıT �
'.p/M

�' y�! SymkC1T �
p N ˝ƒı�1T �

'.p/M
id˝'�

p�! SymkC1T �
p N ˝ƒı�1T �

p N
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applied to the value !'.p/ 2 ƒıT �
'.p/M of the differential form ! in '.p/. Since the

Spencer coboundary operator equals d formal on the symbol subspace, the additional
term in (64) lies in the kernel of d formal and is thus irrelevant to the commutativity
of (62).

Specializing the preceding observations to the inclusion maps �N W N �! M

of submanifolds of M we remark that jetkp�N 2 Jetk.N; M / and jetkpN 2 GrknM
encode essentially the same object, the jet of a submanifold, hence we may write in
a shorthand notation

ŒŒ jetkpN 

 W Jetk�1
p ƒıT �M �! Jetk�1

p ƒıT �N; jetk�1
p ! 7�! jetk�1

p . ��N! /

for the restriction maps appearing prominently in Definition 5.7 of jet solutions
and semisolutions. Feeling somewhat uneasy with the fact that the target vector
space depends on the representative submanifold N we sooth our conscience by
observing that for every two submanifoldsN1 andN2 representing jetkpN1 D jetkpN2
there exists a distinguished class jetkp' 2 Jetkp.N1; N2 / represented by those
diffeomorphisms ' W N1 �! N2, which satisfy

d�k

dt�k

ˇ̌
ˇ̌
0

c D d�k

dt�k

ˇ̌
ˇ̌
0

. ' ı c / 2 T kpM

for every curve c W R �! N1. For every diffeomorphism ' in this class jetkp�N1 D
jetkp.�N2 ı '/ so that the two realizations of ŒŒ jetkpN 

 are intertwined by the well-
defined isomorphism:

ŒŒ jetkp' 

 W Jetk�1
p ƒıT �N2

Š�! Jetk�1
p ƒıT �N1; jetk�1

p ! 7�! jetk�1
p . '�! /

Although these comments may look rather pedantic, they are directly related
to a delicate subtlety, which has bothered the author for quite a while. If we
modify the highest order partial derivatives of jetkC1

p N 2 GrkC1
n M by an element

�N 2 SymkC1T �
p N ˝ .TpM=TpN/ using the addition (20), then the modification

formula (64) tells us

ŒŒ jetkC1
p N C�N 

.jetkp!/

D ŒŒ jetkC1
p N 

.jetkp!/C B


.id ˝ resT �

p N
/..�N/lift y !p/

�
(65)

the additional term on the right however depends on the lift .�N/lift 2
SymkC1T �

p N ˝ TpM we need to chose in the addition (20). The resolution to

this paradox is that a representative submanifold QN for jetkC1
p N C�N is in contact

with N to order k in p only, hence we no longer sport a distinguished vector space

isomorphism ŒŒ jetkC1
p ' 

 W Jetkpƒ

ıT � QN Š�! Jetkpƒ
ıT �N . Cum grano salis the

modification formula still makes sense: The ambiguity in choosing .�N/lift given
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�N is countered exactly by the ambiguity of lifting the distinguished class jetkp' of

diffeomorphisms ' W N �! QN to a vector space isomorphism ŒŒ jetkC1
p ' 

.

Let us now put the formulas derived above to the test and study the tower (60)
of jet solutions and jet semisolutions in more detail. In a first step we observe

that every jet semisolution jetkC1
p N 2 Eq

kC1
p M of order k C 1 projects under

pr W GrkC1
n M �! GrknN to a jet solution jetkpN . By assumption jetkp. �

�
N� / D 0

vanishes for every contact form � 2 �.CM /, thus

prŒ jetkp. �
�
N d� / 
 D jetk�1

p . ��N d� / D d formal


jetkp. �
�
N� /

�
D 0

for all � 2 �.CM / as claimed. In this way we have proved the first statement of the
lemma:

Lemma 5.8 (Lifting Jet Solutions to Semisolutions). Every jet semisolution
jetkC1

p N of order k C 1 of an exterior differential system CM 	 HM on a manifold

M projects under pr W GrkC1
n M �! GrknM to a jet solution jetkpN of order k.

Conversely the set of all jet semisolutions lying over a given solution jetkpN of

order k � 1 is a non-empty affine subspace of pr�1. jetkpN / modelled on the vector
subspace:

SymkC1T �
p N ˝H?

p M � SymkC1T �
p N ˝ . TpM=TpN /

Proof. Consider a submanifold N � M of dimension n representing a given jet
solution jetkpN of order k � 1. By definitionN represents a jet semisolution of order

kC1, if and only if the R-linear map‚ W �.CM / �! JetkpT
�N; � 7�! jetkp. �

�
N� /;

is trivial. In light of our discussion above ‚ depends on the representative
submanifold N only through jetkC1

p N :

‚. � / WD ŒŒ jetkC1
p N 

. jetkp� / WD jetkp. �

�
N� /

Since N represents a jet solution of order k, we find prŒ jetkp. �
�
N� / 
 D

jetk�1
p . ��N� / D 0, hence �.CM / gets mapped under ‚ into the kernel of the

jet projection, the symbol subspace SymkT �
p N ˝ T �

p N of observation (63). In
particular ‚ is C1.M/-linear with

‚.f � / D jetkp. �
�
Nf ^ ��N� / D jetkp. �

�
Nf / ^ jetkp. �

�
N� / D f . p / jetkp. �

�
N� /

for all f 2 C1.M/, where we use the natural algebra structure induced on the
jet fiber of the algebra bundle ƒıT �N in the second and jetk�1

p . ��N� / D 0 in the
third equality. Due to C1.M/-linearity ‚. � / depends on the value of � in p only,
moreover the composition



An Introduction to Exterior Differential Systems 191

CpM
‚�! SymkT �

p N ˝ T �
p N

B�! Symk�1T �
p N ˝ƒ2T �

p N

vanishes, because the Spencer coboundary B agrees with d formal on the symbol
subspace:

BŒ ‚. �p / 
 D d formalŒ jetkp. �
�
N� / 
 D jetk�1

p . d ��N� / D jetk�1
p . ��Nd� / D 0

The calculation of the Spencer cohomology of free comodules on the other hand
implies that

0 �! SymkC1T �
p N

B�! SymkT �
p N ˝ T �

p N
B�! Symk�1T �

p N ˝ƒ2T �
p N

is exact for k � 1. In consequence there exists a unique ‚pre 2 SymkC1T �
p N ˝

C �
pM with

B. h ‚pre; �p i / D ‚. �p / D jetkp. �
�
N� /

What remains to do, now that the existence of ‚pre is established, is to write the
standard short exact sequence associated to the 3-step filtration TpN � C?

p M �
TpM with a view

0 �! H?
p M �! TpM=TpN �! C �

pM �! 0 (66)

on the canonical isomorphisms TpM=C?
p M Š C �

pM and H?
p M Š C?

p M=TpN .

The element ‚pre 2 SymkC1T �
p N ˝ C �

pM can thus be lifted to �N 2
SymkC1T �

p N˝.TpM=TpN/, although not uniquely, and all lifts satisfy the decisive
property �N y �p D h ‚pre; �p i. Together with the modification formula (65)
this property implies that the modification jetkC1

p N � �N 2 GrkC1
n M is a jet

semisolution of order k C 1 lying over jetkpN due to:

ŒŒ jetkC1
p N � �N 

. jetkp� / D jetkp. �

�
N� / � B . �N y �p / D 0

Last but not least the exactness of the sequence (66) tells us that the difference of
two lifts of ‚pre corresponds exactly to an element of SymkC1T �

p N ˝H?
p M . ut

Lemma 5.9 (Obstructions against Formal Integrability). Consider a jet semiso-

lution jetkC1
p N 2 Eq

kC1
p M of order k C 1 to an exterior differential system on a

manifold M . There exists a jet solution jetkC1
p

QN 2 EqkC1
p M of order k C 1 lifting

the jet solution jetkpN D jetkp QN , if and only if kC 1 recursively defined obstructions

BrC1
h
‚pre. jetkC1

p N /
i

2 Symk�rT �
p N ˝Hr; 2. Ap /
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vanish for all r D 0; : : : ; k. In the latter case the set of all possible jet solutions
jetkC1

p N over the jet solution jetkpN form an affine space modelled on the vector

space RkC1
p .

In a very precise sense the statement of this lemma reflects the standard spectral
sequence of Lemma 3.7, the operators BrC1 say are exactly the higher order
coboundary operators of this spectral sequence. In particular the obstructions are
defined strictly recursively in the sense that BrC1 Œ‚pre.jetkC1

p N / 
 is only defined,

if the preceding obstructions B1 Œ‚pre. jetkC1
p N / 
; : : : ; Br Œ‚

pre. jetkC1N / 
 D 0

all vanish. For this reason in particular it is rather difficult to calculate these
integrability obstructions explicitly.

Proof. In order to begin we choose a representative submanifold N � M for

the given jet semisolution jetkC1
p N 2 Eq

kC1
p M of order k � 0 and consider the

associated the R-linear map ‚ W �.CM / �! Jetkp ƒ
2T �N; � 7�! jetkp. �

�
Nd� /,

whose triviality characterizes jetkC1
p N as a jet solution of order kC1. We recall that

jetkC1
p N projects to a jet solution jetkpN

pr Œ jetkp. �
�
Nd� / 
 D jetk�1

p . d ��N� / D d formal. jetkp. �
�
Nd� / / D 0

so that the image of ‚ lies in the symbol subspace SymkT �
p N ˝ ƒ2T �

p N �
Jetkpƒ

2T �N defined in (63). In consequence the R-linear map ‚ is actually
C1.M/-linear with

‚.f � / D jetkp. �
�
N . df ^ � C f d� / /

D jetkp. �
�
N df / ^ jetkp. �

�
N� / C jetkp. �

�
Nf / ^ jetkp. �

�
Nd� /

D f . p / jetkp. �
�
Nd� /

for all f 2 C1.M/, because jetkp. �
�
N� / D 0 as well as jetk�1

p . ��Nd� / D 0. We

may thus think of ‚ as a linear map CpM �! SymkT �
p N ˝ ƒ2T �

p N with the
additional property that

CpM
‚�! SymkT �

p N ˝ƒ2T �
p N

B�! Symk�1T �
p N ˝ƒ3T �

p N

vanishes as a linear map, after all B agrees with d formal on the symbol subspace (63)
and so:

BŒ ‚. �p / 
 D d formalŒ jetkp. �
�
Nd� / 
 D jetk�1

p . ��N d2� / D 0

Up to this point we have followed the proof of Lemma 5.8 closely with only minute
changes in the argument, but now we have to deviate from the path laid out above.
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Although we may still choose a preimage ‚pre 2 SymkC1T �
p N ˝ T �

p N ˝C �
pM of

‚ with the property

B. h ‚pre; �p i/ D ‚. �p / D jetkp. �
�
Nd� /

this preimage is no longer unique, because B W SymkC1T �
p N ˝ T �

p N �!
SymkT �

p N ˝ ƒ2T �
p N is no longer injective, to wit its kernel equals the image of

SymkC2T �
p N under B .

Keeping an eye on this non-uniqueness problem of the chosen preimage ‚pre we
observe that the restriction resTpN W HpM �! T �

p N is surjective due to TpN \
H?
p M D f 0 g with kernel equal to CpM by TpN � C?

p M , in other words it
induces a canonical isomorphism

HpM=CpM
resTpN�! T �

p N (67)

equivalently TpN � C?
p M is a complete set of representatives for the quotient

C?
p M=H

?
p M . This canonical isomorphism by restriction allows us to interpret the

tableau A 1
p as a subspace of T �

p N ˝ C �
pM Š .HpM=CpM/˝ C �

pM , in turn we
will consider the class

Œ ‚pre 
 2 SymkC1T �
p N ˝

h
T �
p N ˝C �

pM=A 1
p

i
D SymkC1T �

p N ˝H0; 1. Ap /

represented by ‚pre. The vector space on the right is one the trihomogeneous
subspaces of the E1-term of the standard spectral sequence for the reduced symbol
comodule Ap

Sym�T �
p N ˝H ◆; ı. Ap / H) ııD0D◆ A �

p

constructed in Lemma 3.7. More precisely the total degree kC2 part of theE1-term
reads

in form degree 0; 1 and 2, where B1 is the coboundary operator for the E1-term
and the higher order coboundary operators B2; : : : ; BkC1 relevant for our argument
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have been indicated, although they are defined only on the kernel of all preceding
coboundary operators. In consequence the standard spectral sequence results in kC1
recursively defined obstructions

BrC1 Œ ‚pre 
 2 Symk�rT �
p N ˝Hr; 2. Ap /

which are independent of the preimage ‚pre chosen for ‚, because the resulting
ambiguity of the class Œ ‚pre 
 lies in the image of the left coboundary operator B1.

Because the standard spectral sequence converges to f 0 g in all positive form
degrees, the class Œ ‚pre 
 lies in the image of the left B1 coboundary operator, if
and only if all the recursively defined obstructions BrC1Œ‚pre 
 D 0 vanish for all
r D 0; : : : ; k. Under this assumption we can modify our chosen preimage to a
possibly different preimage of ‚ with:

‚pre 2 SymkC1T �
p N ˝ A 1

p � SymkC1T �
p N ˝ T �

p N ˝ C �
pM (68)

Recall now that the set of jet semisolutions of order k C 1 lying over jetkpN is

an affine space modelled on SymkC1T �
p N ˝ H?

p M according to Lemma 5.8,
where H?

p M serves as a set of representatives for the subspace C?
p M=TpN �

TpM=TpN .
In case that we can chose a preimage ‚pre of ‚ of the special form (68),

equivalently in case that all recursively defined obstructions vanish, we can lift such
a ‚pre to a preimage �N 2 SymkC1T �

p N ˝ H?
p M under the surjective symbol

map id ˝ †p . Since the symbol map †p is based on the idea of inserting vertical
vectors V 2 H?

p M into the exterior derivatives

resTpN

V y . d� /p

�
D � resTpN


†p. �p; � ; V /

�
D �†p. �p; � ; V /

of contact forms, every �N chosen in this way satisfies the decisive equation:

.id ˝ resTpN /. �N y . d� /p / D �†p. �p; � ; �N / D � h ‚pre; �p i

Note that the restriction resTpN implements the canonical isomorphism

HpM=CpM
Š�! T �

p N only and can be dropped from notation. For all contact
forms � 2 �.CM / we thus find:

ŒŒ jetkC1
p N C�N 

. jetkp. d� / /

D jetkp. �
�
N d� / C B


.id ˝ resTpN /. �N y . d� /p /

�

D jetkp. �
�
N d� / � B h ‚pre; �p i D 0

In consequence the modification jetkpN C�N 2 EqkC1
p M is a jet solution of order

kC1 lying over jetkpN . Being the kernel of .B˝ id/ı .id ˝†p/ in SymkC1T �
p N ˝
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H?
p M the homogeneous subspace RkC1

p of the symbol comodule Rp parametrizes

the possible choices for the difference element �N 2 SymkC1T �
p N ˝H?

p M . ut
Unluckily Lemma 5.9 does not exclude the possibility of an infinite

number of obstructions against formal integrability occurring at arbitrarily high
orders of differentiation. Only the last of the recursively defined obstructions
BkC1Œ‚pre. jetkC1

p N / 
 however appears to convey genuine information, the
preceding obstructions are simply partial derivatives of the obstructions at lower
order of differentiation. This intuitive idea gives rise to the conjecture:

Conjecture 5.10 (Vanishing Criterion for Obstructions). Consider an exterior dif-
ferential system CM 	 HM 	 T �M on a manifold M . If the sets EqkM and
Eqk�1M of jet solutions of order k and k � 1 form a smooth subtower

of the tower (16) of Graßmannians in a neighborhood of a point p 2 M , then all

the recursively defined obstructions on Eq
kC1
p M vanish except possibly the last, the

higher torsion:

tork W Eq
kC1
p M �! Hk; 2. Ap /

For the time being the author has been unable to prove this conjecture, nevertheless
he is quite convinced of its validity. The point is that the conjecture is definitely
true in an essentially dual formulation of the formal theory of partial differential
equations, however this proof appears to require the use of so-called semiholonomic
jets and is thus not easily translated into the language of exterior differential systems.
Assuming the validity of this conjecture and climbing up the tower (60) one step at
a time using Lemmas 5.8 and 5.9 alternatingly the reader will find no difficulties to
prove the following version of the Theorem of Cartan–Kähler inductively starting
with the fact that Eq1M �! M is a smooth subbundle of the tower of generalized
Graßmannians in the case of vanishing torsion:

Theorem 5.11 (Formal Version of Cartan–Kähler). Consider an exterior differ-
ential system CM 	 HM 	 T �M on a manifold M . In a given point p 2 M

we choose dmax so that the Spencer cohomology of the reduced symbol comodule
vanishes Hd; 2.Ap / D f 0 g in form degree ı D 2 for all d > dmax. If the
torsion maps

tork W Eq
kC1
p M �! Hk;2.Ap /
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all vanish for k D 0; : : : ; dmax, then EqkC1
p M is an affine fiber bundle over EqkpM

with fiber modelled on RkC1
p for all k � 0. In particular there exist as many formal

submanifold solutions in Gr1
n M as predicted by the dimensions of the homogeneous

subspaces of Rp .

In its original formulation the theorem of Cartan–Kähler treats involutive reduced
symbol comodules only, for which we may choose dmax D 0 according to
Lemma 4.8, the theorem of Cauchy–Kovalevskaya for underdetermined partial
can be seen as the case, where dmax D �1 is already sufficient. In general a
formal solution to a given exterior differential system need not correspond to a
real submanifold solution, under the additional assumption that M is an analytical
manifold and both CM and HM are analytical subbundles of the cotangent bundle
T �M however, every formal solution defines an actual submanifold solution within
its radius of convergence. Under this analyticity assumption the theorem of Cartan–
Kähler extends to the statement that there exist as many formal solutions with
positive radius of convergence as predicted by the dimensions of the homogeneous
subspaces of Rp .
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