
Chapter 5
Determinism, Chaos and Reductionism

Everything that is necessary is also easy. You just have to
accept it.

F. Durrenmatt

5.1 General Remarks on Determinism

The term determinism has often been used in fields other than physics, such as
psychology and sociology, causing some bewilderment. For instance, Popper (1992)
feared a strictly deterministic world as a nightmare, because it would have meant that
our universe is like a big robot, inwhichwemerely play the role of small cogwheels or,
at best, of sub-automata.1 To avoid such misunderstandings, and because, at times,
determinism has been improperly associated with reductionism,2 we are going to
briefly review the correct notion of determinism, which is used in physics. For a
brilliant and exhaustive discussion on this subject, we refer the reader to Kojeve
(1990).

One can readily acknowledge that a completely indeterminate world, whose
phenomena obey no rules, would present totally uncorrelated facts and sequences of
events, and we would have no chance of ever understanding it. For this reason, words
such as disorder and chaos sound rather pejorative or disruptive to the ideal natural
order usually associated with the idea of the “cosmos” since the beginning of Greek
philosophy (Thuillier 1991). The historical development of science could be seen
as the struggle against disorder, in an attempt to find regularity in phenomena that
appear to be irregularly changing. This struggle reached its apogee with the mecha-

1 This parallels with the totalitarian views is expressed in a paradigmatic way by two classical books
of the period (Bauman 2000) by Orwell (1949) and Huxley (1932).
2 For instance, Popper (1992) argued that a deterministmust be a reductionist, although a reductionist
is not necessarily a determinist; while others identify reductionism with determinism.
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nistic determinism shaped in the Enlightenment era, by the belief that the world is a
sort of cosmic clock and thus completely predictable.

Our opinion is that themost interesting question is not the determinism of the laws
of physics— something that, as we shall see, seems destined to remain unanswered,
even neglecting the problemsposed byquantummechanics—but rather the discovery
of apparently simple deterministic systems that behave in very irregular fashions.
Furthermore, the theory of deterministic chaos has shown that complex behaviours
are not the exclusive prerogative of systems of many interacting components, but
may also be found in the dynamics of simple systems with few degrees of freedom.
Because of this, scientists eventually abandoned the idea that the observed complexity
of the world necessarily arises from the cooperation of many elementary building
blocks.

But how is the theory of deterministic chaos relevant, in a book on the reduction
of theories and the role of singular limits? First of all, recall the important message
implied by Lorenz’s work on simplified deterministic models of the atmosphere’s
dynamics (Lorenz 1963): the postulated “elementary building block” is often not
elementary at all, and the effort to understand a given system by analyzing the equa-
tions governing its parts or constituents may fail. Then, observe that deterministic
and stochastic descriptions are deeply different ontologically, but strong similarities
can nevertheless be found between certain behaviours of deterministic chaotic sys-
tems and processes governed by stochastic laws. Such similarities are relevant on
the practical level, e.g. when modeling complex systems. On the other hand, chaos
presents both ontic and epistemic questions3 which may generate confusion about
the real conceptual relevance of chaos. We shall see that chaos allows us to unam-
biguosly introduce probabilistic concepts in a deterministic world. Such a possibility
is not merely the consequence of our limited knoweledge of the state of the system
of interest. Indeed, in order to account for this limited knowledge, one usually relies
on a coarse-grained description, which requires a probabilistic approach, and finds
that many important features of the dynamics do not depend on the scale ε of the
graining, if it is fine enough. At the same time, many results for the ε → 0 limit do
not apply to the cases with ε = 0. Therefore, the probabilistic description of chaotic
systems reveals one more instance of singular limits.

In the following, we would like to clarify some aspects of deterministic chaos
which, in our opinion, are often misunderstood, leading to scientifically, as well
as philosophically, questionable and confused claims. We begin by considering the
relationship between determinism and predictability. Then, we shall consider the role
of chaos in the statistical description of complex phenomena, for which statistical
mechanics providing an important setting.

3 We shall see how determinism refers to ontic descriptions, while predictability (and in some sense
chaos) has an epistemic nature.
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5.1.1 Determinism and Predictability

Among the aspects ofmechanicism that have continued to influence scientific thought
up to the present day, the impact of Laplace’s statement reported in Chap. 3 is remark-
able. This statement is a milestone of scientific thought, whose legacy has survived
despite the advent of the quantum description of physical phenomena. Unfortunately,
it has also often been misunderstood, in its technical and conceptual content cf.
(Gleick 2008).

We believe that a fair interpretation of Laplace’s “mathematical intelligence” was
likely due to his desire to stress the importance of prediction in science, as it appears
from a famous anecdote, probably apocryphal but frequently cited. We report here
the version given by Cohen and Stewart (1994). After seeing Laplace’s masterpiece,
Méchanique Céleste, Napoleon addressed Laplace saying:

[t]hey tell me you have written this large book on the system of the universe, and have never
even mentioned its Creator. Laplace answered: Sire, I have no need of this assumption.
To that Napoleon replied: Ah! That is a beautiful assumption, it explains many things, and
Laplace: This hypothesis, Sire, explains everything, but does not permit the prediction of
anything. As a scholar, I must provide you with works permitting predictions.

The Laplace’s ideas (sometimes distorted) in the nineteenth century originated a
widely accepted view of the science based on three elements (Kojeve 1990):

(a) Determinism: the metaphysical assumption of a deterministic causal structure
of nature.4 In mathematical terms, Laplace assumed that every phenomenon is
described by a vector X (the system state) that evolves according to a deter-
ministic law: i.e. if the state X(0) at the initial time, t = 0, is knonwn, then
the state at every later instant X(t), t > 0, is uniquely determined. In modern
terms, determinism is assured, in a world governed by Newtonian mechanics, by
Cauchy’s theorem on the existence and uniqueness of the solution of ordinary
differential equations.5

(b) Exact predictability: the practical possibility of making predictions through
mathematical laws. This is a delicate point, because it requires an explicitly
computable rule for the evolution of X(t), once the initial state X(0) is known
with arbitrary accuracy.

(c) Mechanistic reductionism: the possibility of explaining (at least in principle) any
phenomenon from the motion of its elementary constituents, thought to interact
through suitable forces.

4 The idea of causality explicitly enters Laplace’s as well as our reasoning. Indeed, the strict notion
of “causality” leads to considerable difficulties from epistemological and ontological points of view.
This does not concern us. In its evolution, classical mechanics has developed a principle of legal
determinism, in which the notions of cause and effect are not explicitly invoked. The idea was
anticipated by Kant, who stated that the geschiet (the effect) presupposes an antecedent (worauf )
from which it follows according to a rule. The adjective “causal” is still used in the same sense.
5 We stress the importance of identifying the state vector X which fully describes the phenomenon
under investigation. For instance, in classical mechanics, X is given by the positions and velocities
of particles. This is a fundamental step which took a long time to be understood. For instance, in
Aristotelian physics only the positions were considered.
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Together, items (a), (b) and (c) summarise Laplace’s view, which can be called
mechanistic determinism. The followers of mechanistic determinism are reduction-
ists and expect a scientific theory to describe reality in mathematical terms. Given the
equations ruling the temporal evolution of a system, and given its initial conditions,
the knowledge of the system at any future time can then be obtained. It is important
to stress that Newtonian mechanics, which was founded on such premises, was not
restricted to a small class of phenomena; it was believed capable, in principle, of
yielding predictions in all conceivable phenomena: from the orbit of the moon to the
motion of falling apples. This fundamental idea is the very essence of mechanistic
(or causal) determinism.

Unfortunately, except for extremely simple cases such as the motion of two
gravitationally interacting bodies, or the periodic behaviour of pendulums, the time
evolution of a system is typically hard to determine explicitly. However, in principle,
the equations of motion can be solved, with more or less complicated mathemati-
cal calculations. Indeed, generations of astronomers have computed with incredible
patience and perseverance the orbits of planets and asteroids, from the equations of
classical mechanics. Their successes were numerous, beginning with the derivation
of Kepler’s laws from the principles of mechanics and the universal law of gravita-
tion, which was given by Newton himself. After obtaining strong agreement between
the theoretical calculations and the observations, this approach was systematically
confirmed in astronomy. One of its sensational successes was the discovery of the
planet Neptune in the nineteenth century. A series of observations indicated a signif-
icant deviation of the motion of Uranus from the positions predicted by Newtonian
mechanics. Assuming that this discrepancy was not due to a shortcoming of the
Newtonian theory, but the presence of an unknown planet, the laws of dynamics and
of gravitation led astronomers to calculate the position of this hypothetical planet
which, sure enough, was observed by telescope a short while later.

In less rhetorical terms, the essence of Laplace’s famous statement is that the
laws of classical physics are perfectly deterministic: if the state of a system at a
given time is known exactly, its subsequent evolution is uniquely determined. The
calculations that took years in the past, when astronomers could only rely on pen and
paper, are today performed very rapidly on computers, which determine with great
precision the motion of celestial bodies and artificial satellites. The successful use of
modern computers in the exploration of space can be seen as another confirmation
of Laplace’s idea. At least, indeed, popular writers have taken it to be this way.

In 1867, after 20 years of pen-and-paper work, the French astronomer Delaunay
completed the calculation of the position of the moon as a function of time, with
an accuracy never reached before. In 1970, Deprit, Henrard and Rom checked that
calculation with one of the earliest computer algebra systems. The verification took
twenty hours and foundonly threeminormistakes. It is interesting that computers first
allowed people to find Delaunay’s minor errors, while today the roles are reversed:
the analytical calculation of the great astronomer is used to check the accuracy of
the new computer algebra systems1 (Pavelle et al. 1981).

Despite its undisputed success, however, the mechanistic deterministic approach
appears to contradict everyday evidence, where there is no way of predicting many
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events. Consider the evolution of the weather, falling leaves, or a stone rolling down a
slope. How can we reconcile the fundamental assumptions made by Laplace with the
apparent irregularity of most phenomena? The simplest way is to think that irregular
phenomena appear so only because they require the solution of a very large number
of equations, which may also be very complicated. In such cases, which are actually
very frequent, it is not possible to solve the problem by pen and paper, and one may
think that a sufficiently powerful computer could provide the answer with the desired
accuracy.

It is therefore necessary to distinguish the questions concerning the deterministic
nature of the laws of physics from those posed by the possibility of making pre-
dictions. This is essential to avoid confusion. For example, unlike the majority of
physicists and mathematicians, by deterministic system Popper (1992) means a sys-
tem governed by a deterministic evolution law, whose evolution can be in principle
predicted with arbitrary accuracy.

Determinism amounts to the metaphysical doctrine that same events always fol-
low from same antecedents. But, as Maxwell had already pointed out in 1873, it
is impossible to confirm this fact, because nobody has ever experienced the same
situation twice:

It is a metaphysical doctrine that from the same antecedents follow the same consequences.
No one can gainsay this. But it is not of much use in a world like this, in which the same
antecedents never again concur, and nothing ever happens twice... The physical axiomwhich
has a somewhat similar aspect is “that from like antecedents follow like consequences”. But
here we have passed .... from absolute accuracy to a more or less rough approximation.6

In these few lines, Maxwell touches on issues which will be later investigated,
and anticipates their solution. The issues are:

1. the impossibility of proving (or refuting) the deterministic character of the laws
of nature;

2. the practical impossibility of making long-term predictions for a class of phe-
nomena, referred to here as chaotic, despite their deterministic nature.

About 30 years after Maxwell, Duhem (1991), making a remark on a result
obtained by Hadamard, concerning a case of what is currently called deterministic
chaos, reached the same conclusion. Very similarly toMaxwell, he noted that mathe-
matical deductions are not useful to physicists if they merely state that a proposition,
rigorously true, implies the exact truth of another. To be useful to physicists, the
mathematical argument must also prove that the second proposition approximately
holds if the first is only approximately verified. More formally, Duhem stressed the
importance of the fact that solutions of differential equations enjoy a continuous
dependence on initial and boundary data, if they have to be of practical interest e.g.
in physics.

6 From the conference Does the progress of Physical Science tend to give advantage to opinion of
Necessity (or Determinism) over that of the Contigency of Events and the Freedom of the Will?,
cf. Campbell and Garnett (1882) Chap. XIV.
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After the development of quantum mechanics, many think that discussing the
deterministic nature of the laws of physics is too academic an exercise to deserve seri-
ous consideration. For instance, in a speech motivated by the heated controversy on
chaos and determinism between philosophers and scientists, Kampen (1991) bluntly
said that the problem does not exist, as it is possible to show that:

the ontological determinism à la Laplace can neither be proved nor disproved on the basis
of observations.7

While we fully agree with this statement, we think that the dichotomy concerning
determinism and chaos deserves attention well beyond mere scholarly discussions.
For instance, there are uncountably many situations lacking a solid mathematical
model, such as those common in biology, in which our question has practical impli-
cations.

Popper (1992) was an avowed non-determinist, in the sense that he did not accept
what he called “scientific determinism”: the doctrine according to which the world
can be rationally predicted, to any desired degree of accuracy, if a sufficiently precise
description of past events, alongwith all the laws of nature is available. But it is worth
remarking that the Popperian definition of “determinism” is different from the one
commonly used in physics, because it includes an arbitrarily precise predictability,
not required in physics. Apart from questions of terminology, which can be clarified,
Popper has made a very important contribution to the issues related to determinism
and predictability, since he has convincingly shown that a possible determinism of
the laws of nature would not suffice to produce a forecast from “inside”. In other
words, assuming that Laplace’s infinitely capable Intelligence is part of our world, it
should predict itself: but no Intelligence can predict all the results of its own forecasts.
Nevertheless, a prediction by an external agent remains possible, requiring that the
Laplacian Intelligence be placed outside the world, hence requiring that it does not
affect the evolution of the world. The discovery of deterministic chaos gave new
impulse to these questions.

We have thus argued that determinism and predictability constitute two quite
distinct issues, and the former does not imply the latter.

Roughly speaking, determinism can be traced back to a vision of the nature of
causality and can be cast in mathematical terms, by saying that the laws of nature
are expressed by ordinary differential equations. It is fair to say that most macro-
scopic phenomena can be described in this way, as confirmed, for instance, by the
impressive successes of astronomy in the past and by technological realisations today.
However, as noted by Maxwell, the objectively ontological determinism of the the
laws of nature cannot be proven; but one might find it convenient to use deterministic
descriptions. Moreover, even at a macroscopic level, many phenomena are chaotic

7 In brief, van Kampen’s argument is the following. Suppose the existence of a world A which
is not deterministic and consider a second world B obtained from the first using the following
deterministic rule: every event in B is the copy of an event occurred one million years earlier in A.
Therefore, all the observers in B and their prototypes live the same experiences despite the different
natures of the two worlds.
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and, in some sense, appear to be “random”. The meaning of these terms will be clar-
ified shortly. On the other hand, the microscopic phenomena described by quantum
mechanics, fall directly within a probabilistic framework. They appear ontologically
and epistemologically non-deterministic.

Concerning predictability, the presence of “chaos” in phenomena governed by
deterministic laws and the logical aporia proposedbyPopper shows that predictability
is far from trivial. Two main issues arise: are deterministic phenomena always
predictable? And what does prediction mean?

5.2 An Excursus on Chaos

Ironically, in spite of the success of Newtonian mechanics in the discovery of Nep-
tune, the first clear example of what today we call chaos was found in celestial
mechanics, the science of regular and predictable phenomena par excellence. This
is the case of the long standing three-body problem: the motion of three gravitation-
ally interacting bodies, such as the moon, Earth and sun, which was a nightmare
for many great early mathematicians as Newton, Euler and Lagrange. In spite of
its deterministic nature, Poincaré (1982) found that the evolution of the three-body
system can be chaotic, meaning that small perturbations in the initial state, such as a
slight change in the initial position of one of the three objects, may lead to dramatic
differences in the later states of the system. As a vivid example of sensitivity to
initial conditions, we mention the effect of a very distant single electron on massive
bodies (Berry 1978). An electron at the limit of the observable universe (a distance
of O(1010) light years) will lead in just a few collisions to a complete breakdown of
the predictability of systems of billiard balls.

There is a widespread vulgate, see e.g. Gleick (2008), which claims that the
line of scientific research opened by Poincaré remained basically neglected until
1963, when meteorologist Lorenz rediscovered deterministic chaos while studying
the evolution of a simple model of the atmosphere. Therefore, it is often claimed that
the new paradigm of deterministic chaos originated in the sixties. This is not true;
mathematicians never forgot Poincaré’s legacy, although it was not so well known
to physicists, (Aubin and Dalmedico 2002).

Here, we briefly recall the essential characteristics of a deterministic chaotic sys-
tem8:

(i) the evolution is given by a deterministic rule, for example, by a set of differential
equations;

(ii) solutions sensitively depend on the initial conditions: i.e. two initially almost
identical states X(0) and X′(0), characterised by a very small initial displace-
ment |X(0) − X′(0)| = δ0, separate at an exponential rate:

|X(t) − X′(t)| ∼ δ0eλt , (5.1)

8 We consider systems whose phase space is bounded.
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where λ is positive and is called the Lyapunov exponent9;
(iii) the evolution of the state X(t) is not periodic and appears quite irregular, similar

in many respects to that of random systems.

Let us start from point (iii) and its relevance to the issue of reductionism. In
the deterministic mechanistic approach, the undeniable irregularity of many natural
phenomena is thought to be only “apparent”. For instance, it is seen as due to a very
large number of causes, which are individually thought to be simple. An example
of this interpretation of irregular phenomena, which we might call the philosophy
of the “simple elementary brick”, is afforded by Landau’s theory of the onset of
turbulence (Landau 1944). This theory states that the very complicated behaviour of
a turbulent fluid arises from the superposition of many periodic oscillations, whose
individual behaviour is simple by definition. This influential philosophical point of
view was, however, refuted by the discovery made by Lorenz (1963), one of the
pioneers of the modern theory of chaos. While investigating a minimal model for the
dynamics of the atmosphere, he unequivocally realised that the erratic behaviour,
typical of turbulent fluids, is not necessarily due to a large number of variables, since
it can be found in quite simple and low dimensional dynamics, as a consequence of
deterministic chaos. This led to the important conclusion that the elementary bricks
are not always “simple”. Within this new vision, Ruelle and Takens (1971) showed
some years later that the onset of turbulence was not due to a superposition of simple
oscillations.

The sensitive dependence on the initial conditions drastically limits the potential
to make predictions: if the initial state is known with a certain uncertainty δ0, the
evolution of the system can be accurately predicted with precision Δ only up to a
time that depends on the Lyapunov exponent. This quantity is inherent in the system
and does not depend on our ability to determine the initial state; hence, recalling
5.1, the time within which the error on the prediction does not exceed the desired
tolerance is given by:

Tp ∼ 1

λ
ln

Δ

δ0
. (5.2)

Deterministic systems, which are often fairly goodmodels for macroscopic phenom-
ena, can display a behaviour which is chaotic. Their sensitivity to initial conditions
introduces an error in predictions which grows exponentially in time. As the expo-
nent is an intrinsic characteristic of the system, predictions remain meaningful only
within a time given by 5.2. It is well evident, therefore, that a deterministic nature
does not imply the possibility of an arbitrarily accurate prediction.

Furthermore, this major result holds even for simple low-dimensional systems,
which leads to a second major conclusion: the reductionistic idea that complex sys-
tems can be analysed as an agglomerate of simple elements is incorrect. In general,
complex systems cannot be reduced to a sum of simple elementary constituents.

9 Equation (5.1) holds for infinitesimal distance. Because the phase space is bounded, the distance
between the two trajectories cannot grow forever and reaches its maximum in a finite time.



5.3 Chaos and Complexity 107

5.3 Chaos and Complexity

We have seen that chaos has major consequences for predictability. However, noting
that Tp, Eq. (5.2), could be made arbitrarily large by reducing δ0, though at great
costs, because of the slow divergence of the logarithm, it might seem that the problem
is only of practical order and not intrinsic to chaotic evolutions. In other words, the
limitations on predictability may appear simply epistemological and not ontological,
which would imply that the transformation of a deterministic mechanistic problem
into a probabilistic one has to be blamed only on our technical inability to sufficiently
reduce the error on the initial conditions.10 This a point of crucial importance.

We shall give some evidence of the impossibility of circumventing this problem,
simply by asserting that a deterministic system is, in principle, predictable, on the
grounds that the desired accuracy at any given (finite) time t merely requires suffi-
ciently accurate knowledge of the initial conditions with the necessary (finite) pre-
cision. Let us consider a deceptively simple dynamical system:

x(t + 1) = 2x(t) mod 1. (5.3)

This system is chaotic and its Lyapunov exponent is λ = ln(2). This means that
a small error in the initial conditions doubles at every step. Suppose that x(0) is a
known real number in the interval [0, 1], it can be expressed by an infinite sequence
of 0 and 1, because it can be written as

x(0) = a1
2

+ a2
4

+ · · · + an

2n
+ · · ·

where every an takes either the value 0 or the value 1. It is also interesting to note
that the above binary notation allows us to determine the time evolution by means of
a very simple rule: at every step, move the “binary point” of the binary expansion of
x(0) by one position to the right and eliminate the integer part. For example, take

x(0) = 0.11001010010110010010100101110 . . . (5.4a)

Then

x(1) = 0.1001010010110010010100101110 . . . (5.4b)

x(2) = 0.001010010110010010100101110 . . . (5.4c)

x(3) = 0.01010010110010010100101110 . . . (5.4d)

10 It is worth stressing how dramatically chaos affects our predictions. Because of the logarithm
in 5.2, increasing the predictability time Tp by a factor 5 increases the required precision of the
initial conditions by five orders of magnitude, e.g. from metre-order precision to micrometre-order
precision. For all relevant phenomena this is and will forever remain impossible to be achieved.
This is why our local weather forecast are restricted to 5–7 days predictions (roughly speaking the
time given by the Lyapunov exponent) and one cannot hope to greatly improve on that by making
more accurate measurements of the initial conditions.
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and so on. In terms of the sequence {a1, a2, . . . , an, . . .}, it becomes quite clear how
crucially the temporal evolution depends on the initial condition.

Let us now make a brief digression on the notion of “complexity” of a binary
sequence. Generally speaking, different types of sequences are possible, for example
consider the following ones:

11111111111111 . . . (5.4)

10101010101010 . . . (5.5)

00101000110100 . . . (5.6)

Onewould presumably state that sequences (5.4) and (5.5) appear to be “ordered”,
whereas sequence (5.6) seems “complex”. Why should one classify the sequences
in this way?

In the case of (5.4) and (5.5) the knowledge of the first n values a1, a2, a3, . . . , an

appears to be sufficient to predict the following values an+1, an+2, . . .. This is not
true for sequence (5.6), which seems to be generated by a stochastic, rather than
a deterministic, rule. In this case, one could think that the sequence of 0 and 1
is generated tossing a coin, and writing 1 for heads and 0 for tails. One way to
formalise this intuitive concept of “complex” behaviour is to associate it with the
lack of a constructive rule; then the cases of (5.4) and (5.5) are not complex because
they can be generated by means of very simple rules. On a computer, for instance,
(5.4) can be generated through a single statement:

WRITE 1 N TIMES

and similarly for (5.5):

WRITE 10 N/2 TIMES.

By contrast, (5.6) seems to require a program of the kind:

WRITE 0 WRITE 0 WRITE 1 WRITE 0 WRITE 1 . . .

A precise mathematical formalisation of the complexity of a sequence has been
proposed independently in 1965 by Kolmogorov, Chaitin and Solomonoff (Li and
Vitanyi 1992). Given the sequence a1, a2, a3, . . . , an , among all possible programs
which generate this sequence, one considers that with the smallest number of instruc-
tions. Denoting by K (N ) the number of these instructions, the algorithmic complexity
of the sequence is defined by

K = lim
N→∞

K (N )

N
. (5.7)
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Therefore, if there is a simple rule, which can be expressed by a few instructions, the
complexity vanishes. If there is no explicit rule, which is not just the complete list
of 0 and 1, the complexity is maximal, that is 1. Intermediate values of K between
0 and 1 correspond to situations with no obvious rules, but such that part of the
information necessary to do a given step is contained in the previous steps.

To give an intuitive idea of the concept of complexity, let us consider a situation
related to the transmission of messages (Chaitin 1990): A friend on Mars needs the
tables of logarithms.11 It is easy to send him the tables in binary language; thismethod
is safe but would naturally be very expensive. It is cheaper to send the instructions
necessary to implement the algorithm which computes logarithms.

However, if the friend is not interested in mathematics, but rather in football or
the lottery, and wants to be informed of the results of football matches or the lottery
draw, there is no way of compressing the information in terms of an algorithm
whose repeated use produces the relevant information for the different events; the
only option is the transmission of the entire information.

To sum up: the cost of the transmission of the information contained in the
algorithm of logarithms is independent of the number of logarithms one wishes
to compute. On the contrary, the cost of the transmission of football or lottery results
increases linearly with the number of events. One might think that the difference is
that there are precise mathematical rules for logarithms, but not for football matches
and lottery drawings, which are then classified as random events.

Let us now analyse the problem of transmission, with accuracy Δ, of a sequence
x(t), 0 < t < T , generated by the rule (5.3). At first glance, the problem seems
similar to sending the tables of logarithms, and we could opt for transmitting x(0)
and the rule (5.3), which costs a number of bits independent of T . The friend onMars
would then be left with the task of generating the sequence x(1), x(2), . . . , x(T ).
However, we must also choose the number of bits to which x(0) should be specified.
From (5.2), the accuracy Δ at time T requires accuracy δ0 ∼ 2−T Δ for x(0), hence
that the number of bits specifying x(0) grows with T . Again, we have to tackle the
problem of the complexity of a sequence of symbols, {a0, a1, . . .}. The fact is that
there are “simple” initial conditions, of the type (5.4) or (5.5), which can be specified
by a number of instructions independent of the length of the sequence, but there are
complex sequences as well.

The determination of the algorithmic complexity of a sequence is impossible, as
implied by Gödel’s incompleteness theorem. Notwithstanding this impossibility, a
result of Martin-Löf (1966) shows that “almost all” binary sequences, which express
the real numbers in [0, 1], are complex. Therefore, the major conclusion is that the
details of the time evolution are well hidden in the initial condition and that, in
general, is complex.

The immediate and striking consequence of these facts is that determining with
arbitrary precision of the initial conditions is hopeless. Hence, long-term predic-
tions with the desired accuracy are impossible in principle, despite seeming quite

11 In the pre-computer age, numerical computations relied on tabulated numbers for, e.g. logarithmic
and trigonometric functions.
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reasonable for such a simple time evolution. Insisting nonetheless on following such
a path, one faces an infinite regression12 and ineluctably runs into an impossibility
which is not merely practical (Li and Vitanyi 1992).

So far, we have observed that deterministic systems, even with just a few degrees
of freedom, may exhibit chaos (that is, a sensitive dependence on initial conditions).
This fact strongly impacts on the possibility of making accurate predictions beyond a
certain predictability time Tp. In turn, most initial conditions are complex, hence the
predictability of chaotic systems is intrinsically limited in time. One may then state
that predictable deterministic systems and chaotic unpredictable ones are related
by a singular limit. Indeed, as mentioned earlier, the conclusions one may draw
for vanishing and for arbitrarily small, but finite errors, are completely different.
This singularity highlights the relevance of chaos to reductionism. It also shows that
elementary constituents of a given object may indeed have very complex behaviour
themselves. Moreover, this singularity clarifies how, in many situations, stochastic
macroscopic properties emerge from chaos. We will return to this point at the end of
the chapter.

5.4 Chaos and Probability

Because of their irregular behaviour, deterministic chaotic systems share many fea-
tures with stochastic processes. In particular, the unpredictability of a chaotic system
calls for statistical or probabilistic approaches, analogously to the case of stochastic
processes. For instance, trying to predict the motion of a fluid particle in a turbu-
lent flow is meaningless, while it is possible and appropriate to predict its statistical
features such as its average velocity, kinetic energy, etc. This fact is very interesting
from a practical point of view, but it is rather subtle and can lead to confusion. An
important characterisation of the dynamics, on a coarse-grained scale, is given the
Kolmogorov–Sinai (K–S) entropy, defined as follows.13

Let A = {A1, . . . , AN } be a finite partition of the phase space, made up of the
N disjoint sets Ai , and consider the sequence of points

{x(0), x(1), x(2), . . . , x(n), . . .} (5.9)

which constitutes the trajectory with initial condition x(0). This trajectory can be
associated with the symbol sequence

{σ(x(0)), σ(x(1)), σ(x(2)), . . . ,σ(x(n)), . . .} = {i0, i1, i2, . . . , in, . . .} (5.10)

12 In philosophical language the classical trilemma of Agrippa: if we are asked to prove how we
know something, we can provide a proof or an argument. Nonetheless, a proof of the proof can be
then asked and so on, leading to an infinite process which never ends.
13 For the sake of simplicity, we restrict ourselves to the case of discrete-time dynamical systems,
but continuous systems may be treated analogously.
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where in ∈ {1, 2, . . . , N } and σ(x(k)) = ik if x(k) ∈ Aik . The coarse-grained
properties of chaotic trajectories can be therefore studied through the discrete time
sequence (5.10). Let Cm = (i1i2 . . . im) be a “word” of length m and probability
P(Cm). The quantity

Hm(A ) = −
∑

Cm

P(Cm) ln P(Cm) (5.11)

is called the block entropy of the m-sequences.14 In the limit of infinitely long
sequences, the asymptotic entropy increment

hS(A ) = lim
m→∞(Hm+1 − Hm)

is called the Shannon entropy, and depends on the partition A . Taking the largest
value over all possible partitions we obtain the so-called Kolmogorov–Sinai entropy:

hK S = sup
A

hS(A ).

Amore tractable and intuitive definition of hK S starts from the partitionAε made of
a grid of hypercubes of sides of length ε, and takes the following limit:

hK S = lim
ε→0

h(Aε).

Although hK S and K are conceptually very different characterisations of a symbol
sequence,15 their numerical values are simply related:

hK S = lim
N→∞

〈K (N )〉
N ln 2

, (5.12)

where 〈.〉 denotes an average over all sequences of length N . This leads to the
following maxim:

Complex = Incompressible = Unpredictable.

14 Shannon (1948) showed that, once the probabilities P(Cm) are known, the entropy (5.11) mea-
sures, under natural conditions, the surprise or information carried by {Cm}.
15 Consider the following two m-sequences, produced by tossing a fair coin:

01010101010 . . . 010101

01001010110 . . . 101001

One finds that the first sequence is compressible, while the second appears to be stochastic, in
spite of the fact that both occur with probability 2−m . This shows that algorithmic complexity,
which characterises a single sequence, and information, which amounts to a probabilistic notion,
are conceptually different.
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which is valid for stochastic processes, e.g.Markov chains, aswell. In the final section
of this chapter, we will return to this similarity of chaotic deterministic systems and
random sequences.

We conclude this section noting that initial conditions play a key role even in
deterministic chaotic dynamics, just as they do in the problem of irreversibility. In
Chap. 4, we saw that reversible large mechanical systems display an irreversible
behaviour, for almost all nonequilibrium initial conditions. Analogously, in deter-
ministic chaotic systems, unpredictable evolutions arise for almost all initial condi-
tions, apparently in conflict with the deterministic nature of the dynamics. Hence,
both chaotic systems and systems with many degree of freedoms enjoy a complex
nature, requiring probabilistic approaches. Both are characterised by the transition
to a complex probabilistic state through a singular limit, which is ε → 0 for chaotic
systems and N → ∞ for systems with many degree of freedom.

5.5 Quarrels on Chaos and Determinism: Chaos and Probability
Revisited

The discovery of chaos, in particular the impossibility of making long-term
predictions for deterministic systems, has generated a debate about determinism, ran-
domness and,more generally, complexity. The debate has often been heated (Amster-
damski et al. 1990). Here, it suffices to recall some of its most interesting aspects. In
his long-lasting diatribe against Prigogine, the father of catastrophe theory, the math-
ematician Thom, argues in uncompromising terms that being attracted by the charm
of randomness is the symptom par excellence of an anti-scientific attitude, since it
largely proceeds from admiration to confusion. According to Thom, humanists could
be forgiven for such an attitude, but not scientists, who should be accustomed to the
rigour of scientific rationality. He insists with great determination that randomness is
a negative concept, hollow, and devoid of any scientific interest, whereas determinism
is an object of fascinating richness (Amsterdamski et al. 1990).

Although not in complete agreement with all positions taken by Thom, we share
the concern that chaos could be used as some sort of anti-science passkey. Unlike
what some may think, deterministic chaos, and its inability to make predictions,
does not provide any proof of the weakness of “classical” or “standard” science,
which would have been eventually forced to abandon determinism. Chaos provides
no evidence of the inability of official science to deal with the complexity of the real
world; nor does it highlight any difficulty that calls for an alternative science.

The impossibility for a deterministic science to make long-term, arbitrarily
accurate predictions, is indeed a consequence of deterministic chaos, but by nomeans
does it lead to the impossibility of any form of accurate prediction. In particular,
according to Thom, any model of a real phenomenon must be deterministic, in order
to teach us something.

http://dx.doi.org/10.1007/978-3-319-06361-4_4
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Because of chaos, the role of probability in physics takes further meanings. In
the nineteenth century, this role was acknowledged by Maxwell and Boltzmann in
relation to thermodynamics. To understand the properties of a gas starting from the
microscopic details of the dynamics of its molecules is not only hard but is also
misleading; only a statistical description, which takes advantage of the huge number
of particles involved, and describes the gas in terms of a few macroscopic variables
such as pressure, temperature, etc. is appropriate. Indeed, in Chap. 3 we observed
that a system containing a very large number of particles is described by particular
emerging laws: the so-called statistical laws, which are due to the large number
of particles constituting the body,16 and which cannot in any way be derived from
purely mechanical laws. Although the elementary constituents of a system with a
large number of degrees of freedom obey the same laws of mechanics as those of
a system with a small number of degrees of freedom, the large number implies
qualitatively different new laws (Landau and Lifshitz 1980).

As a consequence of the large number of particles, the macroscopic level is
characterised by a sort of “statistical determinism”, as in transport equations: the
Navier-Stokes equations for the velocity of a fluid, Fourier’s law for the temperature,
Fick’s law for diffusion are all deterministic, and result from the fact that the statis-
tical analysis is exact with such large numbers of interacting objects. An example
of “statistical determinism” in our daily lives is the sweeping of dust with a broom.
In order to collect the dust into a corner, one tries to push the dust grains with the
broom horsehair. Of course, the single hair cannot push a grain. However, the broom
has lots of hair, so sweeping many times eventually achieves the goal.

Regardless of the rivers of ink shed in philosophical controversies, perhaps the
greatest technical significance of the discovery of deterministic chaos is that it reveals
that the statistical approach is necessary also in systemswith few degrees of freedom.
A statistical approach is obviously necessary if the number of degrees of freedom is
very large, but in the presence of deterministic chaos it is necessary, independent of
the number of variables involved.

An example is given by the Lorentz gas, further idealised by the Sinai Billiard,
in which a particle moves with constant speed bouncing over fixed circular obsta-
cles (Dorfman 1999), see Fig. 5.1.

Because the dynamics is unstable, the motion looks very similar to Brownian
motion. Indeed, with regard to diffusion in the long-time limit, it is possible to prove
that the particle in the Sinai billiard enjoys exactly the same statistical properties
as a Brownian particle. In the latter case the irregularity of the motion is due to the
presence of many fluid molecules randomly colliding with it; the motion in the Sinai
billiard has no randomness, but trajectories are chaotic, due to the instability. The
overall effect, as far as diffusion is concerned, is the same.

As observed above about the statistical description of both thermodynamic and
chaotic systems, the probabilistic approach could be considered asmerely amethod to
copewith our limited ability to accurately control the systems of interest. In statistical

16 To be rigorous, this is true for particles interacting through a potential, i.e. in all cases of physical
interest.

http://dx.doi.org/10.1007/978-3-319-06361-4_3
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Fig. 5.1 Examples of trajectories of particles bouncing over fixed circular obstacles; note the
divergence of initially close trajectories

mechanics, the difficulty is due to the large number of degrees of freedom, whereas
in chaotic systems it arises from the sensitive dependence on initial conditions. By
contrast, quantum mechanics is intrinsically stochastic; the position and momentum
of the system cannot be determined with arbitrary precision, because a bound is
imposed byHeisenberg’s uncertainty principle. Hence, probabilities are unavoidable.

However, in light of our arguments, it seems fair to claim that the vexed question
of whether the laws of physics are deterministic or probabilistic has, and will have,
no definitive answer. On the sole basis of empirical observations, it does not appear
possible to decide between these two contrasting arguments:

(i) Laws governing the universe are inherently random, and the determinism that is
believed to be observed is in fact a result of the probabilistic nature implied by
the large number of degrees of freedom;

(ii) the fundamental laws are deterministic, and seemingly random phenomena
appear so due to deterministic chaos.

Basically these two positions can be viewed as a reformulation of the endless debate
on quantummechanics: thesis (i) expresses the inherent indeterminacy claimed by the
Copenhagen school, whereas thesis (ii) illustrates the hidden determinism advocated
by Einstein (Pais 2005).
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5.6 Concluding Remarks

By way of conclusion, we would like to make a few remarks on the importance of
chaos from a conceptual point of view and in the context of present-day research.

The most important findings are the following:

1. Deterministic systems, even with just a few degrees of freedom, may be sensitive
to initial conditions, hence unpredictable except in the short term.

2. Chaotic systems are complex. Complexity can be rigorously defined in terms of
algorithmic complexity, which is a notion of incompressibility hence of unpre-
dictability. Moreover, almost all initial conditions of a generic deterministically
chaotic system are complex, hence almost all trajectories are complex.

3. The elementary bricks of complex systems may have far from elementary behav-
iour, and be complex themselves.

4. A probabilistic description is needed both for chaotic systems and for systems
with many degrees of freedom. In both cases, new statistical laws emerge from
the underlying deterministic framework.

5. If a given phenomenon appears irregular or disordered, it is practically impossible
to check whether this is due to chaos, to the presence of many interacting degrees
of freedoms, or to some intrinsic randomness.

6. Analogously to the case of the singular limit of statistical mechanics, the singular
nature of the chaotic limit allows neither practically nor conceptually the reduction
of chaotic macroscopic phenomena to deterministic mechanistic laws. From a
philosophical perspective, this is another case of strong emergence.

The discovery of an irregular chaotic behaviour in systems with few degrees of
freedom and apparently innocent evolution laws seems to contradict the supporters of
the “elementary brick” philosophy. A revealing example of the difficulties faced by
this philosophy is givenbyLorenz’s celebratedmodel: ifwe reduce the hydrodynamic
equations to elementary, or simple, structures we do not necessarily find simple
behaviour, hence we do not necessarily increase our understanding of (for example)
turbulence. This teaches us two general lessons, which are of practical importance:

(a) complex (unpredictable) behaviours are not necessarily producedby complicated
structures, such as structures made of many components, but are common in
simple and low dimensional dynamics;

(b) the methodological approach [“micro-reductionism” in the words of Smith
(1998)], which seeks to understand and control dynamics by determining the
equations ruling the interactions of its parts, can fail. We may say that: know-
ing the Navier-Stokes equation does not solve the problem of understanding
turbulence.

It is a matter of fact that finding solutions, or merely approximate solutions, to the
classical “initial value” problem (i.e. to differential equations once the initial state
is given) is not a viable approach in many interesting situations characterised by
complex (or complicated) behaviour. Evenwhen detailed knowledge of the evolution
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laws is given, or presumed to be given, the presence of chaos and/or large numbers
of degrees of freedom foils the initial value problem, because an unlimited amount
of information on the initial state would be required.

Therefore, rather than considering the properties of specific trajectories originat-
ing from given initial states, one is forced to adopt a new strategy based on the
statistical information carried by an ensemble of trajectories. This task is usually
accomplished with the aid of computers, which have thus played a key role in devel-
oping the theory of dynamical systems and chaos. Indeed, the wealth of behaviour
of nonlinear systems has been unveiled and systematically and quantitatively char-
acterised thanks only to the fast computations and visualisations made possible by
computers. Understanding the practical and conceptual problems posed by chaotic
dynamics has led to a shift towards probabilistic or, at times, qualitative approaches,
in science.

To better appreciate this recent shift in approach, consider the paradigmatic exam-
ple of pre-chaos approaches to complex systems, constituted by von Neumann’s
belief that powerful computers and a clever use of numerical analysis would even-
tually lead to accurate forecasts, and even to the control, of weather and climate:

The computer will enable us to divide the atmosphere at any moment into stable regions and
unstable regions. Stable regions we can predict. Unstable regions we can control.17

The great scientist von Neumann was wrong, but he did not know the phenomenon
of deterministic chaos.

Despite the exponentially fast growth of computing power, the forecasting ability
of even the largest weather forecasting centres advances rather slowly (Yoden 2007).
Modern weather forecasters have two goals: ever more accurate and detailed predic-
tions, and advances in cognition and qualitative understanding. However, even the
standard activity is carried out with perspectives different from von Neumann’s. The
intrinsic limitations on predictability, inherent in the chaotic nature of the atmosphere,
require meteorologists to run series of forecasts, known as ensemble forecasts, each
member of which starts from a slightly different initial condition, in order to produce
data for a probabilistic concept of the forecasts. Is this surrendering before the tasks
of prediction and detailed description of weather and climate? In fact, we simply
believe that this change of perspective is dictated by the evidence that, in the field of
complex systems, one may only investigate problems that are physically well-posed.

Because detailed predictions are impossible in chaotic systems, one wonders
whether the study of oversimplified chaotic models of physical phenomena improves
our understanding of the behaviour of real-world systems, or is irrelevant to that end.
This raises, in turn, the general question of the relationship between scientific theories
and the part of the real world they aim to describe, including, in particular, the role
played in this relationship by mathematical models and numerical simulations.

Roughly speaking, we can identify two main categories of numerical simulation,
although their boundaries are sometimes blurred:

17 Cited in Dyson (2009).
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(i) Accurate numerical simulations which approximate the solution of equations
representing, or thought to represent, a given phenomenon.

(ii) Numerical implementations of models which, retaining the basic features of
a real system, are crude simplifications, or phenomenological caricatures of
“realistic” models.

Class (i) includes, for example, standard direct numerical simulations of the Navier-
Stokes equations, or the full N -body gravitational problem in celestial mechanics.
This computational approach is themost obvious, and reflects the etymological origin
of the term “computer”: from the Latin computare “to count”, “to sum up”. The
idea underlying this use of computers is that systems can be completely known
and reproduced in silico, once the equations representing their properties are solved
numerically.

Class (ii), instead, presupposes some kind of modelling activity. As an explicit
connection between models and reality is not available or, more generally, is not
even required, the results of numerical computations only concern the abstract math-
ematical structures of the model. As such, they can be considered as mere metaphors
for of the original phenomenon. Typical examples are: Lorenz’s model, which is a
caricature of Boussinesq’s equation; coupled map lattices that constitute a prototype
for spatially extended systems, but are far from representing any of them; the Lotka-
Volterra equations, that describe some basic mechanisms of competition between
prey and predator species, whose real dynamics is unknown (Cencini et al. 2009).

One should also beware of the possible confusion between ontic and epistemic
descriptions, when studying the problems of chaos.

Determinism simply means that: given the same initial state X(0), one always
finds the same evolved state X(t), at any fixed later time t > 0. Therefore, determin-
ism refers exclusively to ontic descriptions, and it does not deal with predictions.
This has been clearly stressed by Atmanspacher, in a paper by the rather eloquent
title Determinism is ontic, determinability is epistemic, (Atmanspacher 2002). This
distinction between ontic and epistemic descriptions was obvious to Maxwell; after
having noted the metaphysical nature of the problem of determinism in physics, he
stated that:

There are certain classes of phenomena... in which a small error in the data only introduces a
small error in the result...There are other classes of phenomena which are more complicated,
and in which cases of instability may occur.18

On the contrary, Popper (1992) confused determinism and prediction:

Scientific determinism is the doctrine that the state of any closed physical system at any
future instant can be predicted.

In the previous section, we considered arguments, e.g. by van Kampen, which deny
that determinismmay be decided on the basis of observations. This conclusion is also

18 From the conference Does the progress of Physical Science tend to give advantage to opinion of
Necessity (or Determinism) over that of the Contingency of Events and the Freedom of the Will?,
see Campbell and Garnett (1882).
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reached from detailed analyses of sequences of data produced by the time evolutions
of interest. Computing the so-called ε-entropy and the Finite-Size Lyapunov Expo-
nents, at different resolution scales ε, one cannot distinguish potentially underlying
deterministic dynamics from stochastic ones. The analysis of temporal series can
only be used, at best, to pragmatically classify the stochastic or chaotic character of
the observed signal, within certain scales (Cencini et al. 2009).

At first, this could be disturbing: not even themost sophisticated time-series analy-
sis that we could perform reveals the “true nature” of the system under investigation,
the reason simply being the unavoidable finiteness of the resolution we can achieve.
More sophisticated instruments, with the much higher resolution that can be envis-
aged for the future, will not change this fact, as their resolutions will nevertheless
always be finite. On the other hand, one may be satisfied with a non-metaphysical
point of view, in which the true nature of the object of investigation is not at stake.
The advantage is that one may choose whatever model is more appropriate or conve-
nient to describe the phenomenon of interest, especially considering the fact that, in
practice, one observes and wishes to account for only a limited set of coarse-grained
properties. These properties are typically equivalently obtained from a variety of
different underlying dynamics.

Chaotic systems and, more precisely, those which are ergodic, naturally lead to
probabilistic descriptions in the presence of deterministic dynamics. In particular,
ergodic theory justifies the frequentist interpretation of probability, according to
which the probability of a given event is defined by its relative frequency. Therefore,
assuming ergodicity, it is possible to obtain an empirical notion of probability which
is an objective property of the trajectory (von Plato 1994).

There is no universal agreement on this issue; for instance, Popper (2002) believed
that probabilistic concepts are extraneous to a deterministic description of the world,
while Einstein held the opposite view, as expressed in his letter to Popper:

I do not believe that you are right in your thesis that it is impossible to derive statistical
conclusions from a deterministic theory. Only think of classical statistical mechanics (gas
theory, or the theory of Brownian movement).19

Naively, onemight consider the statistical properties of chaotic systems to be illusory,
because they only result from observational limitations. Apparently, such a conclu-
sion is confirmed by the fact that important measures of the dynamical complexity,
such as theLyapunov exponentλ and theKolmogorov–Sinai entropyhK S , are defined
via finite, albeit arbitrarily high, resolutions. For instance, in the computation of λ
one considers two trajectories, which are initially very close |X′(0)−X(0)| = δ0 and
diverge in time from each other. Similarly, hK S is computed introducing a partition of
the phase space, whose elementary cells have a finite size ε. However, in the small-ε
limit, the value of hK S asymptotically tends to a value that no longer depends on
ε, as happens to λ in the small-δ0 limit. Therefore, these measures of the chaotic
properties of given dynamics can be considered intrinsic properties of the dynamics
themselves: they do not depend on our observation ability, provided it is finite, i.e.
provided ε and δ0 do not vanish.

19 The letter is reprinted in Popper (2002).
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According to Primas (2002),measures of stability, such as theLyapunov exponent,
concern ontic descriptions, whereas measures of information content or information
loss, such as the Kolmogorov–Sinai entropy, relate to epistemic descriptions. We
agree as far as stability is concerned.

Regarding the epistemic character of hK S , we observe that the Shannon entropy
of a sequence of data, as well as the Kolmogorov–Sinai entropy, enjoy an epistemic
status from a certain viewpoint, but not from another. The epistemic status arises from
the fact that information theory deals with transmission and reception of data, which
is necessarily finite. On the other hand, hK S is definitely an objective quantity, which
does not depend on our observational limitations, as demonstrated by the fact that
it can be expressed in terms of Lyapunov exponents.20 Therefore, the Kolmogorov–
Sinai entropy can be considered as a concept which links deterministic and stochastic
descriptions.
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