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Abstract Open cell metal foams can be represented by a network of beams. Due
to the heterogeneity of the geometry, the length scale of the representative volume
element is often nearly of the same order as the length scale of structures made of
metal foam. Therefore, classical homogenization techniques for the computation of
effective properties can not be applied. Statistical volume elements lead to apparent
material properties that depend on the boundary conditions. Here, we introduce a
model for structures made of metal foam that consists of two domains, an interior
region and a boundary region. For both regions, unique random fields are identified
by simulations of the microstructure. The model is validated by comparison with
Finite Element simulations and experiments.

Keywords Metal foam • Stochastic analysis • Multiscale method • Modal
analysis

1 Introduction

For heterogeneous materials, the size of the representative volume element can
be quite large (Dirrenberger et al. 2014). In this case, the assumption of scale
separation is not valid anymore. For metal foams, the representative volume element
is estimated to consist of about 1,000 cells (Kanaun and Tkachenko 2007).
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Fig. 1 Overview of the proposed computational procedure

If scale separation can not be assumed, it is still possible to compute apparent
material properties (Huet 1990) and to provide a macroscopic description by
random fields (Guilleminot et al. 2011). However, the apparent material properties
depend on the boundary conditions. Therefore, a unique random field for the
apparent material properties does not exist (Ostoja-Starzewski 2011). Recently,
Di Paola (2011) proposed an averaging method that leads to unique boundary effect
independent apparent properties. In this method, material properties are obtained
by averaging over a volume that is smaller than the volume element on which the
boundary conditions are applied.

Since the basic deformation mechanism is bending dominated, the mechanical
model of metal foam is a three dimensional network of connected Timoshenko type
beams with the material properties of the solid structure (Gibson and Ashby 1997).
Averaging over a volume inside a beam network would predict a stiffer behavior
than averaging over the whole volume element, due to the free, unconnected ends
of the beams at the boundary of the volume element. Therefore, averaging over
volumes smaller than the volume element will be valid only in the interior of
a structure. For these reasons, a model for structures made of metal foam that
consists of two domains – an interior region and a boundary region – is introduced
and investigated here. In the interior region, a unique random field is identified
that represents boundary effect independent apparent properties. For the boundary
region, a random field is obtained by applying appropriate boundary conditions.
The proposed approach allows to work with a uniquely defined random field by
introducing a slightly more complex structural model.

For structures made of metal foam, uncertainties are mainly due to the hetero-
geneous geometry. By introducing suitable statistical volume elements, applying
boundary conditions and an averaging procedure, uncertainties are propagated from
the geometry to the material properties and to macroscopic structural behavior.
This propagation process is sketched in Fig. 1. It applies also to other types of
heterogeneous materials and macroscopic properties than those studied in this
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paper. This paper is organized along the propagation process as follows: the next
section discusses the microstructure model, Sects. 3 and 4 treat the generation and
analysis of mesoscale volume elements. In Sect. 5, predictions are compared with
experiments for an open cell copper foam and in Sect. 6, conclusions are drawn.

2 Microstructure

2.1 CT Analysis

As an example of application we investigate a Duocel® copper foam. A stochastic
microstructure model is developed and adapted to the geometric characteristics
estimated from three-dimensional �CT images. For that purpose, ten cubes of
25 mm side length were imaged by CT with a voxel edge length of 38:15 �m.
A visualization of one of the samples is shown in Fig. 2. The volume fraction
of copper was on average 12.6 %. Foam cells have been reconstructed by the
following procedure (Ohser and Schladitz 2009): First, the images were binarized
using a global threshold. On the resulting binary images, the Euclidean distance
transform was applied which assigns to each cell pixel its distance to the nearest
strut. Ideally, the resulting image has local maxima at the cell centers. In practice,
however, additional maxima may appear due to discretization effects and irregular
cell shapes. These were removed using an adaptable h-maxima transform. Finally,
the watershed algorithm was applied to the inverted distance images to separate the
single cells. All image processing steps were performed using the MAVI software
package (Fraunhofer ITWM, Department Image Processing (Hrsg.) 2006).

Fig. 2 Visualizations of a CT image of the Cu Duocel® foam (left) and the model (right).
Visualized are 5003 voxels
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Table 1 Cell properties
obtained from CT analysis Property Mean

Standard
deviation

Diameter 5.09 mm 0.30 mm
Surface area 80.19 mm2 9.58 mm2

Volume 49.64 mm3 9.12 mm3

Facets 13.90 1.48

From the reconstructed cell systems, the geometric quantities summarized in
Table 1 were estimated using minus-sampling edge correction (Ohser and Schladitz
2009). The mean number of cells per 1;000 mm3 was 20.15. The mean cell diameters
in the coordinate directions indicated an anisotropy in the cell structure. Although
this can be included in the microstructure model (Redenbach 2009), a simplified
model assuming isotropy of the microstructure was used here.

2.2 Microstructure Generation

Solid foams show a high variability in cell sizes and shapes, which influences
their elastic properties (Zhu et al. 2000). This variability cannot be represented
by deterministic models. Random tessellations (Stoyan et al. 1995) proved to be
a suitable model class in this regard.

An important class of random tessellation models are Voronoi tessellations gen-
erated from realizations of random point processes. Voronoi tessellations generated
by hard-core point processes are of particular interest for the modelling of foam cells
due to their relatively regular cell shapes. However, the adaptability of the size dis-
tribution of the tessellation cells to the estimated size distribution is limited. To over-
come this problem, weighted Voronoi tessellations can be considered. For modelling
foam cells, Laguerre or power-tessellations (Aurenhammer 1987) are a promising
model class. This model is defined as follows: given a set S of spheres, the Laguerre
cell C.s.x; r/; S/ of a sphere s.x; r/ in S with center x and radius r is defined as

C.s.x; r/; S/ D fy 2 R
3 W ky � xk2 � r2 � ky � x0k2 � r 02; 8s.x0; r 0/ 2 Sg; (1)

where k�k denotes the Euclidean norm. The Laguerre tessellation is the set of all
non-empty Laguerre cells of spheres in S . It forms a space-filling system of convex
polytopes. If all spheres have equal radii, the Voronoi tessellation is obtained.

If the set S forms a system of non-overlapping spheres, each sphere is completely
contained in its Laguerre cells. Consequently, the volume distribution of the spheres
can, to a certain degree, be used to control the volume distribution of the cells.
A method for adapting Laguerre tessellations generated by hard sphere packings to
real foams based on the statistical analysis of CT images is presented in Redenbach
(2009). The superiority of Laguerre tessellations over Poisson and hard-core
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Voronoi tessellations has been shown in Lautensack (2008) and Hardenacke and
Hohe (2010). Laguerre tessellations were used to determine the elastic properties of
a representative volume element of metal foam in Kanaun and Tkachenko (2008)
and Hardenacke and Hohe (2009).

Based on the data shown in Table 1, a Laguerre tessellation was fit to the
foam structure using the procedure introduced in Redenbach (2009). A system of
non-overlapping spheres simulated by the force-biased algorithm was chosen to
reproduce the regularity of the observed cell shapes. The lognormal distribution
provided a good fit to the cell volume distribution of the foam. Therefore, it was
also chosen for the volume distribution of the generating spheres. The probability
density function of this distribution family is given by

p.r/ D
exp

�
� .log r � m/2

2�2

�
p

2��r
; r � 0; (2)

with parameters m 2 R and � > 0.
To determine the model parameters, the geometric characteristics of the foam

cells were compared to the characteristics of the tessellation cells using the
following distance measure. Denote by bci , i D 1; : : : ; 8, the eight quantities given in
Table 1 and let ci .m; �/, i D 1; : : : ; 8, be estimates of these quantities obtained from
Laguerre tessellations with parameters m and � for the sphere volume distribution.
The optimal parameters are those, for which the relative distance

dm;� D
vuut 8X

iD1

� Oci � ci .m; �/

Oci

�2

(3)

is minimized. In the application, the optimal parameters for the volume distribution
were found to be m D 1:0508 and � D 0:2849. Visualizations of one of the CT
images and of the fitted model are shown in Fig. 2.

Until now, we only considered the cell system of the foam. In a second modeling
step, the actual open- or closed-cell foam model is derived from the edges or
facets of the tessellation model by morphological operations (Soille 1999). When
modeling open-cell foams, the cross-section thickness along the strut is usually kept
constant.

Locally variable strut thickness was considered by Kanaun and Tkachenko
(2008) and Liebscher and Redenbach (2013). Here, the strut thickness is modeled
as a polynomial of the distance x from the strut center to the adjacent nodes. In
Liebscher and Redenbach (2013) it turned out that a polynomial of the form

p.x/ D ax8 C bx4 C cx2 C d; (4)

a; b; c; d 2 R results in the best model for the strut thickness.



176 M. Geißendörfer et al.

3 Determination of Linear Elastic Properties

3.1 Stiffness Tensor

In order to compute the linear elastic properties of metal foam, mesoscopic volume
elements were created with the microstructure generator and boundary conditions
yielding an upper (kinematic uniform boundary conditions, KUBC) and a lower
bound (static uniform boundary conditions, SUBC) for the compliance tensor
(Hazanov and Huet 1994) were applied. This procedure is often utilized in the
context of homogenization techniques (see e.g. Kanit et al. 2003; Ostoja-Starzewski
2007), but mainly for the determination of the size of a statistically representative
volume element (RVE). The size of the RVE is defined by the element size, for
which these two bounds converge against the same value. Therefore, the mechanical
properties of the RVE are theoretically deterministic – in the sense of being accurate
enough to represent the mean constitutive response (Drugan and Willis 1996).

It is well known that these homogenization techniques are based on the condition
that the scale of the microstructure and the scale of the observed mechanical
properties can be separated due to a large difference in their characteristic lengths.
Unfortunately, the characteristic length scale of metal foam is in many applications
not much smaller than the characteristic length scale of the structure to be
investigated. For these reasons, homogenization schemes can not be applied. One
has to consider stochastic volume elements (SVE) instead. In this case the above
mentioned method of loading different boundary conditions can still be adopted
yielding so-called apparent properties (Huet 1990)

� 0 D CSUBC
apparent < � >;

< � > D CKUBC
apparent�0; (5)

where < : > denotes the volume average, � and � the stress and strain tensor
and � 0 and �0 the imposed stresses and strains according to SUBC and KUBC,
respectively. When ensemble averaged, the apparent properties yield bounds for the
effective material properties of interest. For a larger SVE the bounds become closer
and their scatter smaller (Ostoja-Starzewski 2007). Here, the aim is not to compute
effective properties, but to model the scatter in the stiffness tensor and to predict its
consequences on the natural frequencies. Under assumption of the Hill condition,
the following inequality holds for the apparent stiffness tensor Capp (Hazanov and
Huet 1994):

CSUBC
apparent � Capp � CKUBC

apparent; (6)

100 SVEs with a side length of 25 mm are generated and each SVE is loaded by
different load cases for the boundary conditions mentioned above and solved with
the help of the finite element method. After that, the apparent material parameters
are calculated from the results.
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Fig. 3 Isotropic-orthotropic behavior: Young’s modulus in different spatial directions

3.2 Material Symmetry

Additionally, the symmetry of the elastic properties can be investigated. It turns out
that the symmetry properties depend on the size of the SVE: for a small size, cubic
symmetry with three independent linear elastic material parameter is obtained, while
for a larger SVE size, isotropic behavior is found. This can be illustrated graphically
by projecting the ensemble averaged compliance tensor on space directions d D
Œx; y; z�T and inverting in order to obtain a directional dependent Young’s modulus:

E.d/ D Œ.d ˝ d/ W S W .d ˝ d/��1 : (7)

While a cube represents cubic symmetry, a sphere means isotropic symmetry.
Figure 3 shows the relative deviation of the directional dependent Young’s modulus
from the average value in the three space directions,

1

3

�
E.Œ1; 0; 0�T / C E.Œ0; 1; 0�T / C E.Œ0; 0; 1�T /

�
: (8)

It indicates that there is a mixture of both symmetries for the mentioned SVEs with
a side length of 25 mm.
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Fig. 4 Definition of the partial volume element (PVE) and the behavior of the relative Young’s
modulus as a function of ratio d=D

3.3 Partial Volume Averaging

As discussed in Sect. 3.1 we obtain a lower and upper bound of the stiffness tensor.
For the determination of an apparent boundary effect free stiffness tensor, the
influence of the boundary conditions has to be eliminated. In order to omit the border
areas of the SVE, which are mainly influenced by the boundary conditions, strains
and stresses are averaged over an inner partial volume of the SVE. The center point
of the partial volume element (PVE) coincides with that of the SVE.

Defining the edge length D of the SVE and d of the PVE, the behavior of the
relative Young’s modulus as a function of the ratio d=D is illustrated in Fig. 4.
By reducing the ratio rdD D d=D, the influence of the boundary conditions is
minimized and as a result the stiffness tensors for SUBC and KUBC converge
against the same value.

Contrary to the expectation that the upper bound should become lower by
increasing rdD , both bounds first increase and then approach for rdD < 0:9. The
reason for this characteristic curve lies in the microstructure of the foam. The SVE
is cut out from a surrounding network causing cut struts in the border area. This
reduces the stiffness in that area. In the inner part of the SVE struts are not cut and
the interior is stiffer than the exterior. This leads us to a paradox: On the one hand
we want to determine the material parameters without influence of the boundary
conditions and on the other hand we have to consider the boundary effect because
of the difference of the stiffness tensor in the inner and outer part of a SVE.

The same 100 SVEs of Sect. 3.1 are used to interpolate the results from the finite
element method to the predefined side surfaces of the PVE. The interpolated results
are used to calculate the material parameters inside the PVE.
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3.4 Two Section Model

Due to the difference in stiffness shown in the interior and exterior of a SVE, it is
not completely correct to determine material parameters by averaging over the entire
volume. This would be associated with the assumption that the stiffness is constant
over the volume.

For a more accurate mapping of real foams, the apparent stiffness tensor Capp

which is assumed as the mean value of CSUBC
apparent and CKUBC

apparent is interpreted as the
mean value of the stiffness tensor of the outer and inner part. For the interior the
stiffness is calculated at rdD D 0:2 in Fig. 4. The boundary between the interior and
exterior is determined by the average length of the cut struts. The stiffness in the
border area is calculated with the model of springs connected in series. The Young’s
modulus is then described by the formula

1

ESVE
D pi

Einterior
C 1 � pi

Eexterior
; (9)

where pi is the percentage of the inner edge length and ESVE is Young’s modulus
obtained from Capp.

3.5 Variable Strut Thickness

In reality, the thickness of each strut varies and can be described by a polynomial.
Therefore every strut is now divided in several beams. The thickness of each beam
is adapted to the polynomial in Eq. (4).

For the Duocel© copper foam eight beams for every strut are used to find a
compromise between the accuracy of modeling and calculation time.

4 Statistical Evaluation of Material Properties

4.1 Determination of the Distribution Function

Relative frequencies for the boundary effect free apparent material properties are
shown in Fig. 5. From the relative frequencies, empirical distribution functions can
be obtained.

4.2 Determination of the Correlation Functions

As the linear-elastic material parameters and the mass density will serve as input
parameters for structural computations, they are represented as random fields. The
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Fig. 5 Histogram of the boundary effect free Young’s modulus

random fields are assumed to be homogeneous as a consequence of the homogeneity
of the generated microstructure geometry. In order to find the correlation functions
for the linear-elastic material parameters, 15 beam structures (100 � 10 � 10 mm)
made of foam are analyzed by a method of moving SVEs: SVEs of the same size
are cut out of each of these beams at different positions along the longitudinal axis.
For each SVE the material parameters are calculated as functions of the center point
coordinate x on the longitudinal axis.

For the computation of the autocorrelation function, the 15 realizations are made
mean free and scaled to unit variance. After that, the autocorrelation function is
obtained by taking the mean value over all 15 realizations at each distance �.
The results for the Young’s modulus E, shear modulus G, bulk modulus K and
mass density � are shown in Fig. 6. It can be seen from these results that the
autocorrelation functions approach zero with increasing distance. Moreover, the
correlation length is rather small.

Figure 6 also indicates that the autocorrelation functions reveal a similar
behavior. Therefore, the autocorrelation functions have been fitted to the expression

C.x/ D e�cjxj .1 � cjxj/ ; (10)

which has been proposed in Liebscher et al. (2012). In Fig. 7 the fitted autocorrela-
tion function is plotted.
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Fig. 6 Estimated autocorrelation functions
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In the same manner, the crosscorrelation functions can be obtained. It turns out
that the material parameters are almost uncorrelated.

The random fields for the material parameters and the mass density are described
by the empirical distribution functions and the autocorrelation functions. They are
discretized by a truncated KLE. Samples of the random variables involved in the
KLE are generated iteratively by adapting the empirical marginal distribution. For
this, a procedure described in Phoon et al. (2005) is applied.

5 Validation of the Implemented Model

5.1 Comparison with Finite Element Method

The bending eigenfrequencies from foam beams calculated by the finite element
method (FEM) are compared with the results obtained from the method presented
in this article. 100 Duocel© copper foam beams are generated with the dimensions
255 � 15 � 15 mm. Their eigenfrequencies are calculated with the help of the FEM-
software ABAQUS©. The mean values and the coefficient of variation of the results
are listed in Table 2.

As the next step, a SVE with side length 15 mm is cut out of each generated
copper foam beam, so that from 100 SVEs the material parameters can be calculated
using the presented method in Sect. 3.1. With the obtained material parameters
the eigenfrequencies of beams are calculated using Timoshenko theory and Monte
Carlo simulation. This procedure is named one section model (OSM), because
stresses and strains are averaged over the whole volume of a SVE.

To investigate the effects of the two section model (TSM) from Sect. 3.4, the
material parameters are calculated using the PVE. The percentage of the inner edge
length pi from Eq. (9) is 0:8613. In a Monte Carlo simulation the bending stiffness
EI is split for the interior and exterior of the foam beam. The results of these three
methods are summarized in Table 2.

OSM and FEM yield similar results for the first two bending eigenfrequencies.
The deviation between these two methods becomes larger for higher bending modes.

Table 2 Young’s modulus and Eigenfrequencies using FEM, OSM and TSM

ESVE Einterior Eexterior

MPa (c.o.v.) 615 .10:2 %/ 977 .7:9 %/ 193 .22:9 %/

Bending frequencies [Hz] (c.o.v.)

FEM OSM TSM

1st bending mode 173 .1:6 %/ 173 .1:4 %/ 175 .1:1 %/

2nd bending mode 468 .1:4 %/ 465 .1:7 %/ 474 .1:1 %/

3rd bending mode 897 .1:1 %/ 881 .1:7 %/ 900 .1:5 %/

4th bending mode 1;432 .1:4 %/ 1;398 .1:7 %/ 1;444 .1:5 %/
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Table 3 Material parameters
for Cu Duocel®

Property � � COV (%)

Young’s modulus 737 MPa 42 MPa 5.7
Shear modulus 239 MPa 13 MPa 5.3
Mass density 1,047 kg/m3 53 kg/m3 5

Table 4 Comparison for the beam of Cu Duocel® (250 � 25 � 25 mm)

Bending frequencies [Hz] (c.o.v.)

OSM TSM VST Experiments

1st bending mode 334 (1.4 %) 332 (1.5 %) 320 (1.3 %) 314 (2.8 %)
2nd bending mode 861 (1.9 %) 866 (2.0 %) 827 (2.2 %) 761 (3.4 %)

Nevertheless the error remains less than 4 %. Also the coefficient of variation
becomes larger for the OSM. The TSM is consistent to FEM even for higher
frequencies with an error less than 2 %. It behaves stiffer than the OSM which is
due to the stiff interior region. The coefficient of variation is relatively low for all
three methods, because the deviations of the material parameter average out along
the longitudinal axis of the beam.

Obviously the disctinction between the different stiffnesses in the foam beam
become more important for higher bending modes. The remaining error between
FEM and TSM may attributed to the inaccuracy of the determination of the
transition between the interior and exterior of the beam.

5.2 Comparison with Experiments

In this section, the natural frequencies of beams made of Cu Duocel® are predicted
by OSM, TSM, a model using the variable strut thickness (VST) and compared
with experimental values. To this end, 25 beams of size 25 � 25 � 250 mm are
investigated experimentally in two ways. First, the density is determined via optical
measurements and second, experimental modal analysis was performed.

The linear-elastic material properties of Cu Duocel® and the mass density were
calculated with the proposed mesoscopic model. The input parameter to this model
were

• The material data of copper,
• The geometric characteristics estimated from the CT data of 10 Cu Duocel®

cubes of length 25 mm,
• The cross section shape of the beam network.

The result of the mesoscopic modeling is given in Table 3. Table 4 compares the first
two bending frequencies obtained from Monte Carlo simulations and experiments.
The mean values obtained by OSM and TSM are larger than the experimentally
determined mean values. This is due to the constant strut thickness. The results
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between OSM and TSM does not differ significantly because the influence of the
border area from the TSM is low compared to the cross-sectional area from the
beam. The VST using the polynomial from Sect. 2.2 results in a better accordance.

The remaining difference between VST and experiments could be related to
experimental conditions and the simplified microstructure geometry of the model
(e.g. ignoring the anisotropy).

6 Conclusions

In this paper, a novel model for structures made of metal foam is developed. It
consists of an interior region and a boundary region. For both regions, non-Gaussian
random fields are identified by averaging stresses and strains on statistical volume
elements that represent the heterogeneous network of struts.

Comparisons of simulations with the novel two region model and numerical as
well as experimental results demonstrate that highly accurate dynamical properties
can be obtained with the proposed model. Moreover, it has been shown that the
random variation of the strut thickness constitutes an important parameter that has
to be taken into account in order to produce accurate predictions of macroscopic
properties.

The proposed model can be refined to take the anisotropy of the network
geometry into account. It can be applied to the study of other macroscopic
properties of metal foams, notably their damping and crushing behavior. Finally,
the proposed model can be applied to other classes of materials with heterogeneous
microstructure as well.
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