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Preface

Over the last few years, the intense research activity at microscale and nanoscale
reflected the need to account for disparate levels of uncertainty from various
sources and across scales. As even over-refined deterministic approaches are not
able to account for this issue, an efficient blending of stochastic and multiscale
methodologies is required to provide a rational framework for the analysis and
design of materials and structures. The purpose of the Symposium was to promote
achievements in uncertainty quantification combined with multiscale modeling and
to encourage research and development in this growing field with the aim of
improving the safety and reliability of engineered materials and structures.

The Symposium took place from September 9 to September 11, 2013 in Santorini
Island, Greece and has been attended by 39 participants from 12 countries. Special
emphasis was placed on multiscale material modeling and simulation as well as
on the multiscale analysis and uncertainty quantification of fracture mechanics
of heterogeneous media. The homogenization of two-phase random media was
also thoroughly examined in several presentations. Various topics of multiscale
stochastic mechanics, such as identification of material models, scale coupling,
modeling of random microstructures, analysis of CNT-reinforced composites and
stochastic finite elements, have been analyzed and discussed. A large number of
papers were finally devoted to innovative methods in stochastic dynamics.

This book consists of 20 chapters which are extended versions of selected
papers presented at the Symposium. The chapters are grouped into the following
five thematic topics: Damage and fracture, homogenization, inverse problems–
identification, multi-scale stochastic mechanics and stochastic dynamics.

The editors would like to express their deep appreciation to all contributors for
their active participation in the Symposium and for the time and effort devoted to
the completion of their contributions to this volume. Special thanks are also due to
the reviewers for their constructive comments and suggestions which enhanced the
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quality of the book. Finally, the editors would like to thank the Scientific Committee
of the Symposium and the personnel of Springer for their most valuable support
during the publication process.

Athens, Greece Manolis Papadrakakis
March 2014 George Stefanou
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Part I
Damage and Fracture



Fracture Simulations of Concrete Using Discrete
Meso-level Model with Random Fluctuations
of Material Parameters

Jan Eliáš, Miroslav Vořechovský, and Jia-Liang Le

Abstract The paper presents numerical simulations of concrete fracture performed
on beams of variable size and notch depth using the stochastic meso-level discrete
model. The model includes a substantial part of randomness in concrete hetero-
geneity by accounting for the largest grains when assembling the lattice geometry.
The remaining randomness, caused by finer particles and the non-uniformity of
the mixing process, is introduced by random fluctuations of material parameters
represented by a random field. The results of the stochastic meso-level discrete
model are compared with published fracture experiments performed on concrete
beams loaded in three-point bending. The effects of randomness in connection with
different beam size and notch depth are discussed, as well as observed differences
in dissipated energy.

Keywords Lattice-particle model • Concrete • Random field • Strength •
Fracture energy • Size effect

1 Introduction

The reliability of reinforced concrete components is crucial for modern engineering
structures. The need to understand the phenomenon of concrete failure has resulted
in the development of complex numerical models that can predict the strength
and post-critical behavior of concrete components. It is generally agreed that
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the failure process in concrete and similar quasibrittle materials (ceramics, ice,
etc.) is characterized by the gradual release of stress within a fracture process
zone (FPZ) ahead of the crack tip. This gradual release is understood to be
a consequence of concrete heterogeneity (van Mier 1997). This belief has led to
attempts to include heterogeneity in the developed model. Although this can be
achieved using continuous material description (Caballero et al. 2006), meso-level
modeling of concrete fracture is usually performed using discrete models. The least
phenomenological of them are probably the classical lattice models (Herrmann et al.
1989; Schlangen and Garboczi 1997; van Mier et al. 1997; Man and van Mier
2008; van Mier 2013) with elasto-brittle lattice elements and lattice geometry that is
independent of the considered material heterogeneity. However, such fine-resolution
models are, due to their high computational cost, suitable for small specimens only.
A reasonable compromise seems to be to use a less dense lattice with each node
corresponding to one mineral grain (Bažant et al. 1990; Jirásek and Bažant 1994;
Cusatis et al. 2003; Cusatis and Cedolin 2007; Cusatis et al. 2011). These models are
referred to as the lattice-particle models. Their disadvantage is more complicated
and phenomenological constitutive law; however, one can use them for analysing
substantially larger volumes of concrete.

Gaining an understanding of the fracture process is further complicated by the
presence of random fluctuations in the material. This randomness comes from
several sources, such as the randomness of the concrete constituents themselves
(material properties, geometric properties), from mixing the constituents together
(grain locations, non-homogeneous distribution of water, cement, finer grains
and additives), from non-uniform drying, etc. Material randomness is quite often
ignored. Meso-level models have the advantage that a substantial part of randomness
is included through the consideration of the meso-level structure of material. To
improve the stochastic description of concrete, further random fluctuations of model
parameters are typically used. Fluctuations are then usually included in the form of
a stationary autocorrelated random field (Vořechovský and Sadílek 2008; Grassl
and Bažant 2009; Grassl et al. 2013). Each source of randomness naturally has its
own characteristics such as correlation length, distribution type and coefficient of
variation.

The lattice-particle model, enhanced by random fluctuations, was used here to
simulate an extensive experimental series of three-point-bended beam tests carried
out at Northwestern University by Hoover et al. (2013). The experimental series
included four different beam sizes (with a size ratio of 1:12.5) and variable notch
depths (from no notch at all up to a notch extending to 30 % of beam depth). The
experiments were controlled by crack mouth opening displacement (CMOD), so it
was also possible to measure the post-peak behavior.

The deterministic model parameters were identified from the peak loads and the
dissipated energies of the beams with the deepest notch only. Stochastic parameters
were unfortunately not identified but only fabricated. The main objective was to
demonstrate the ability of the model to closely match and (after identification of its
parameters) also predict experimental results. Furthermore, the influence of size and
boundary conditions on energy dissipation in the model was studied as well as the
effect of randomness.
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The paper is structured as follows. A brief introduction of the deterministic
model, followed by a description of the introduced randomness, is presented in
Sect. 2. A description of the published experimental series as well as the identifi-
cation of model parameters can be found in Sect. 3. The results of the deterministic
(and stochastic) model are compared with the results of experiments in Sect. 4 (and
Sect. 5, respectively). Finally, the energy dissipation is discussed in Sect. 6.

2 Model Description

The modeling of material by using an assembly of discrete units has become a
well established approach with several advantages, such as the relative simplicity
of constitutive law formulation, the ability of representing material inhomogeneity,
the automatic weakening of the modeled material only in directions perpendicular to
cracks, etc. On the other hand, extensive computer resources are often needed to use
such models. The present study is based on the meso-level discrete lattice-particle
model developed by Cusatis and Cedolin (2007), which is an extension of Cusatis
et al. (2003, 2006). Information regarding the further development of the model can
be found in Cusatis et al. (2011).

2.1 Deterministic Model

The material is represented by a discrete three-dimensional assembly of ideally
rigid cells. The cells are created by a tessellation according to the pseudo-random
locations and radii of computer generated spheres – virtual mineral aggregates of
concrete. Every cell contains one aggregate (Fig. 1a, b). Rigid cells are connected
through their common facets, where nonlinear (cohesive) constitutive laws are
applied. Damage done to the facets then represents cracking in the matrix and
interfacial transition zone between two aggregates. The single damage variable
! controls the loss of material integrity both in the normal and the tangential
directions of the facet. It depends on facet strains and previous loading history. For
a detailed description of the model’s features, see Cusatis and Cedolin (2007). The
confinement effect (present in the full version of the model) is not implemented
here.

To save computer time, the lattice-particle model only covered the regions in
which cracking was expected. The other regions of the beams were assumed to
remain linear elastic and were therefore modeled by standard 8-node isoparametric
finite elements and connected to the discrete model via auxiliary zero-diameter
particles (Eliáš and Bažant 2011). Elastic constants for these elements might
be found via the fitting of a displacement field of a continuous homogeneous
model to displacements of the particle system when subjected to low-level uniaxial
compression.
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Fig. 1 (a) Concrete meso-structure simulated by the random placement of grains; (b) tessellation
providing rigid cells around every grain; (c) elements between adjacent cells assumed in the
common facet center; (d) constitutive relations assigned to the interparticle elements – elastic
envelope (bottom) and exponential softening (top), both dependent on the direction of straining;
(e) Weibull-Gauss probability distribution used for randomization of element parameters; (f) a
random field of model parameters generated on a regular grid and projected to the model elements;
(g) specimen shape and boundary conditions

2.2 Stochastic Extension of the Model

Since the stochastic extension of the model was not included in Cusatis and Cedolin
(2007), it is elucidated here in greater depth. Material parameters are assigned at
each inter-particle connection according to a stationary autocorrelated random field.
The value of the c-th realization of the discretized field at a spatial coordinate x
is denoted H c.x/. For a given coordinate x0, H .x0/ is a random variable H of
cdf FH.h/. Since the random field is stationary, cdf FH.h/ is identical for any
position x0.

The strength of components made of quasibrittle material is typically governed
by the material’s strength and fracture energy. Realistic fracture models should
therefore incorporate the random spatial variability of at least these two variables.
We consider the material strength fully correlated (with a correlation coefficient of
one) with the fracture energy (Grassl and Bažant 2009). Furthermore, the lattice-
particle model also includes the shear strength fs and fracture energy in shear Gs ,
which are again assumed to be fully correlated with the tensile strength ft and
fracture energy in tension Gt . Assuming identical distribution type and identical
variance (and also higher statistical moments), we can use the same random field to
generate values for both material strengths and both fracture energies. When any of
the four aforementioned mechanical properties are substituted for X , one can write

X.x/ D NXH.x/; (1)
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where NX stands for the mean value of the particular property. The mean value of the
(field) random variableH equals 1.

Papers by Bažant and Pang (2007), Le et al. (2011), and Le and Bažant (2011)
have suggested approximating the strength distribution of a quasibrittle material
using a Gaussian cdf onto which a Weibullian tail is grafted from the left hand side.
We use this distribution for ourH variable.

FH.h/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

rf

�
1 � e�hh=s1i

m
�

h � hgr (2)

pgr C
rf

Z h

hgr

e
� .h��G/

2

2ı2G dh

ıG
p
2�

h > hgr (3)

where h�i D max.�; 0/, s1 D s0r
1=m

f , m is the Weibull modulus (shape parameter)
and s0 is the scale parameter of the Weibull tail, �G and ıG are the mean value and
standard deviation of the Gaussian distribution that describes the Gaussian core and
pgr D FH.hgr/ is the grafting probability. The Weibull-Gauss juncture at point
at hgr requires equality in the probability density: .dFH=dh/j

h
C

gr
D .dFH=dh/jh�

gr
;

here, rf is a scaling parameter normalizing the distribution to satisfy the condition
FH.1/ D 1. The distribution has four independent parameters in total.

The spatial fluctuations of the field are characterized through an autocorrelation
function. It determines the spatial dependence pattern between the random variables
at any pair of nodes. The correlation coefficient �ij between two field variables at
coordinates xi and xj can be assumed to obey the squared exponential function

�ij D exp

2

4�
 �
�xi � xj

�
�

d

!2
3

5 : (4)

It introduces a new parameter, d , called the autocorrelation length.
To produce the random fieldH of a non-Gaussian variableH , the most frequent

procedure is to generate the Gaussian field OH and then transform it via the
isoprobabilistic (memoryless) transformation

H .x/ D F �1H .˚. OH.x/// ; (5)

where ˚ stands for the cdf of the Gaussian field. Such a transformation distorts
the correlation structure of the field H . Thus, when generating the underlying
Gaussian field OH , the correlation coefficients must be modified in order to fulfil
the desired pairwise correlations of the non-Gaussian field H . This is performed
using an approximation to the Nataf model (Li et al. 2008).

There are several methods of generating a Gaussian random field. One simple
way is to use the Karhunen–Loève expansion based on the spectral decomposition
of the covariance matrix C of mutual correlation coefficients (principal component
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analysis). The realizations of the random field need to be evaluated at every shared
facet center of the lattice-particle model. This can be computationally demanding for
a large number of facets, because the covariance matrix is then large as well. In our
simulation, we might have about 200,000 inter-particle connections. To overcome
this computational cost, the expansion optimal linear estimation method – EOLE
(Li and Der Kiureghian 1993), is adopted. This method can significantly reduce
the time required for random field generation. The field is initially generated on
a regular grid of nodes with spacing d=3 (see Fig. 1) instead of at the facet centers.
Therefore only about 800 grid nodes are needed. The values of the random field at
the model facets are then obtained from the expression

OH c
.x/ D

KX

kD1

�ckp
�k
 T
k C xg ; (6)

where � and  are the eigenvalues and eigenvectors of the covariance matrix of the
grid nodes, and C xg is a covariance matrix between the facet center at coordinates x
and the grid nodes. �k are independent standard normal variables. After the Gaussian
random field values at facet centers are obtained by EOLE (Eq. 6), they need to be
transformed to the non-Gaussian space by Eq. 5.

Besides significant time savings, another advantage of using EOLE is that one
can simply use the same field realization for several different granular positions. By
keeping the c-th realization of the decomposed independent variables �c unchanged,
the field realization can be adapted for any configuration of the facets in the discrete
model.

3 Experimental Series and Identification of Model
Parameters

The experimental series was tested at Northwestern University by Hoover et al.
(2013) and Hoover and Bažant (2013). Three-point-bended beams with or without
a notch were loaded by a prescribed displacement. The tests were controlled via
CMOD, which also allowed the measurement of the descending branch of load-
CMOD response. The series contains beams with four different depths D of 500,
215, 93 and 40 mm, denoted by the upper-case letters A, B, C and D, respectively.
The thickness t D 40mm was the same for all the specimens and the span was
2:176 � D. Notch depth varied from no notch to a notch cut to 30 % of specimen
depth. Five notch depths were tested: ˛0 D a0=D0= 0, 0.025, 0.075, 0.15 and 0.3.
These are denoted by the lower-case letters a (˛0 D 0:3), b, c, d and e (˛0 D 0)
in test descriptions. All the size-notch depth combinations were tested except the
shallowest notch b and the two smallest beam sizes, C and D.
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Identification of material parameters is based on simple minimization of the
difference between the experimentally measured and simulated responses. There
is no attempt to specify model parameters from information about the material
composition. The only important parameter for modeling is the maximum grain
size, which is 10 mm. Instead of a real sieve curve, which was not available, the
aggregate diameters were considered to be distributed according to the Fuller curve.

3.1 Identification of Deterministic Parameters

In the first step of identification, only deterministic parameters were found. The
deterministic model has several adjustable parameters; however, most of them
were kept unchanged since they are either related to a different mode of failure
(compressive strength, compressive hardening) or are hard to identify from the
available limited set of experiments (shear strength and fracture energy, asymptote
of the hyperbolic elastic envelope). Only four free parameters were considered to be
identified: elastic modulus of matrix Ec , parameter ˛ determining the macroscopic
Poisson ratio, tensile strength ft and fracture energy in tension Gt . The remaining
parameters were considered (based on Cusatis and Cedolin 2007) to be as follows:
elastic modulus of grains Ea D 3Ec , shear strength fs D 3ft , shear fracture energy
Gs D 16Gt , compressive strength fc D 16ft , initial slope of compressive hardening
Kc D 0:26Ec, slope of elastic envelope hyperbola asymptote � D 0:2, parameter
of compressive hardening nc D 2, and parameter of compressive elastic envelope
ˇ D 1.

For the identification of deterministic parameters, only the responses of beams
with the deepest notch (Aa, Ba, Ca, Da) were used. There are two reasons for this:
(i) the presence of a strong stress concentrator such as a deep notch minimizes
the effect of spatial randomness on the mean response (Eliáš et al. 2013; Eliáš
and Vořechovský 2013); (ii) to test whether the model can provide reasonable
predictions by simulating remaining beam geometries and comparing the results
to experimental data that were not used in the identification process.

The macroscopic Poisson’s ratio was considered to be 0.19, which roughly
corresponds to parameter ˛ D 0:29. The elastic modulus of matrixEc was found by
trial-error fitting of the elastic part of the load-CMOD curves to be approximately
25GPa. The corresponding macroscopic modulus of finite elements was found via
fitting of the displacement of particles under low-strain uniaxial compression via the
use of linear elasticity theory of continuum.

The tensile strength and fracture energy were identified through the simple
automatic minimization of objective function Fo. The function was formulated as
the maximum relative difference between measured and simulated peak loads and
areas under load-opening curves. The mean values of the experimentally measured
maximal load NP exp and areas under the load-opening curve up to opening 0.15 mm
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Fig. 2 Comparison of experimental load-CMOD curves and simulated responses as obtained by
automatic optimization

NAexp were calculated, and represent the values we would like to exactly reproduce.
The corresponding simulated values (P sim, Asim) were evaluated for every iteration
of the optimization algorithm. The error represented by the objective function is
calculated as

Fo D max

 
j NAexp

c �Asim
c j

NAexp
c

;
j NP exp
c � P sim

c j
NP exp
c

!

for c 2 fAa; Ba; Ca; Dag : (7)

For the sake of saving computational time, the simulated results Asim and P sim were
calculated using the deterministic model with one (constant) grain position only. For
more reliable identification, one should perform several simulations with different
grain positions for every evaluation of the objective function. The diagrams resulting
from the optimization process are shown in Fig. 2. The minimum objective function
value found was 0.067 (6.7 %).

3.2 Identification of Stochastic Parameters

In the second step, at least some of the stochastic parameters were expected to be
identified. (i) It was assumed that it would be possible to identify the coefficient
of variation of H from the deep notch results. As was shown in Eliáš et al. (2013)
and Eliáš and Vořechovský (2013), the spatial fluctuations of local strengths and
fracture energies have a negligible effect on the response if the crack initiates from
a deep notch. One can separate the local properties of the randomness (distribution
FH ) from the spatial properties (correlation length d ) by introducing a strong stress
concentrator. By matching the variability of experimental responses for a deep
notch, it should be theoretically possible to estimate the coefficient of variation
of the random field. (ii) Once this was done, one could identify the correlation
length by matching the peak loads of the unnotched beams. As was shown in the
aforementioned papers (Eliáš et al. 2013; Eliáš and Vořechovský 2013), the mean
value of the peak load strongly depends on the correlation length.
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Unfortunately, this theoretical procedure was not applied in the current study for
two reasons. First, the experimental scatter for deep notch beams was already very
close to the statistical scatter of the deterministic model, where the randomness is
only present via the location of grains. The coefficient of variation of H should
therefore be considered to be close to zero. Second, introducing the randomness
into no-notch simulation can only lead to a decrease in mean peak loads. However,
the deterministic model already exhibited lower peak loads for no-notch beams than
was experimentally measured. It again suggests that any randomness other than that
caused by the location of the largest grains was negligible in these tests. We therefore
decided to consider the variability present in the deterministic model to be sufficient
for reproduction of the variability in the experimental series. Instead of using the
random field to get closer to the measured data, we performed the numerical study
with an artificially excessive coefficient of variation (0.25) in order to further study
the effect of randomness on the model.

The following local parameters of the random field were used: Weibull modulus
m D 24; s1 D 0:486MPa; grafting point hgr D 0:364MPa; standard deviation of
the Gaussian core ıG D 0:25MPa. These parameters provided the overall mean
value �H D 1; standard deviation ıH � 0.25, and grafting probability FH.hgr/ �
10�3. The probability density function of this distribution is shown in Fig. 1e.

For the stochastic study, two correlation lengths d were considered: the shorter
length d4 D 40mm (as found in Grassl and Bažant 2009) and the longer length
d8 D 80mm (as found in Vořechovský and Sadílek 2008).

4 Deterministic Modeling

The simulations of all the experimental beam geometries were performed using
the parameters identified for the deep notch beams, and without randomness. Ten
simulations with differing in the random location of grains were calculated for
each geometry. CMOD control is pointless for shallow to no-notch beams, since the
crack may initiate outside the midspan. However, in the simulation one can simply
measure the opening at several short intervals along the beam span and control
the simulation using the largest of these openings. If there is no gap between the
intervals, the crack must initiate inside one of them and the CMOD is obtained. This
is, however, only rarely possible in real experiments. Therefore, the opening was
measured over only one longer interval by one gauge with a the hope that a crack
would initiate inside it. This gauge opening was extracted from the simulations as
well to make comparison possible.

The experiment-model comparison of responses is shown in Fig. 3. Each sub-
graph has the mean value and standard deviation of peak load plotted in its top right
corner, the number at the same position gives the relative difference between the
mean peak loads of the model and the experiment. Identification was performed
for the leftmost column only; all the other columns are model predictions. The
correspondence seems to be sufficient. However, some differences are present:
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Fig. 3 Responses obtained by the deterministic model compared to the responses recorded during
experiments

• The model systematically underestimates the peak loads for almost all the
geometries. This shows that the identification is not perfect. Consideration of
other beam geometries for identification would improve the model’s responses,
but evaluation of the model’s predictive capabilities would be lost.

• The elastic parts of the experimental and model response differ for the smallest
unnotched geometry De. One possible explanation is that the length of the
measuring interval differs between the model and experiment as well.

• Two of the largest unnotched geometries (Ae and Be) had convergence problems
right after the peak due to the large snap back present in the load-deflection
record.

Figure 4 shows some damage patterns obtained by the deterministic model. One
can see that no-notch simulations predict a wide zone of distributed cracking (which
occurs prior to reaching the peak load). However, after the localization that occurs
when reaching the peak load, the crack looks more or less the same as in the case
of the deep notch geometries. Another interesting point is the clear dependence of
post-peak macro-crack width on the specimen size. The larger the specimen, the
wider the damage area. This was previously reported in Eliáš and Bažant (2011).
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Fig. 4 Some damage patterns obtained by the deterministic lattice-particle model

5 Effects of Spatial Randomness

As stated in Sect. 3, the application of spatial randomness is not meant to bring the
model behavior closer to that of the experiments. It is performed here in order to
study the effects of randomness on the model’s behavior.

For every geometry and every correlation length, 24 simulations were performed
differing in both random grain positions and random field realizations. However, the
24 random field realizations for each geometry were obtained from the same 24 grid
realizations. The resulting load-gauge opening curves are plotted in Fig. 5, as well
as the means and standard deviations of the peak loads in the upper right corner of
every subplot.

For the deeply notched specimens, the application of additional randomness leads
only to an increase in response variance. The average peak load does not change
compared to the deterministic model. Moreover,the observed increase in variance
looks more or less independent of the correlation length. It was planned that this
expected behavior would be used to identify the coefficient of variation ofH .

A different situation appears for unnotched geometries. In contrast to the deeply-
notched specimens, in which the crack always starts to propagate from the notch tip,
the unnotched specimens are free of any stress concentrator, allowing the crack to
initiate anywhere along the bottom surface. Therefore, the region with the worst
combination of stress and local strength will serve as an initiation point. Since
the crack will systematically start in weak regions, the peak value must decrease
compared to the value in the deterministic simulation. The larger the area where
the crack may initiate and the shorter the correlation length, the weaker the region
that may appear. One can therefore see that the difference between deterministic
and stochastic peak load increases with increasing size and decreasing correlation
length.

The shallow notches induce weak stress concentrations which, in most cases,
suffice to force cracks to initiate from the notch tip. However, it may happen that,
due to randomness, a crack initiates outside the shallow notch. Such a case is
documented in Fig. 6 for geometry Bd. Also, as the crack may start far from the
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Fig. 5 Responses obtained by the stochastic model (for two different correlation lengths) com-
pared to the responses recorded during experiments

midspan, the gauge length may not cover the crack position. This is why some of
the responses for notches d and e exhibit decreasing gauge opening after reaching
the peak load.

6 Analysis of Energy Dissipation

It is interesting to study energy dissipation during the simulation. This is done
here via variable g, which represents the energy needed to propagate a crack by
unit surface. It is calculated by summing the energies Gi dissipated at individual
elements i within a horizontal strip of width 2� . For any vertical coordinate y, one
finds all the elements i with vertical coordinate yi within interval hy� �; yC�i and
sums their released energies. This number is then normalized by specimen thickness
t and strip width 2� .

g.y/ D
X

i W jyi�yj��

Gi

2t�
(8)
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Figure 7 shows the energy variable g along the specimen depth for all the
geometries. Deterministic simulations are shown on the left hand side, whereas
the right hand side displays the stochastic results. The mean value (bold line) and
standard deviation (shaded area) of g is evaluated from 10 deterministic or 24
stochastic realizations.

• Note that besides increased standard deviation, there is no difference between the
stochastic and deterministic results or between stochastic results with different
correlation length. Only in the deterministic case do unnotched specimens exhibit
a large area of distributed cracking prior to reaching peak load, which is visible
in the graph as increased energy dissipation close to the bottom surface. The
stochastic model lacks the distributed cracking because the pre-peak cracking is
already localized into weak regions only. Therefore, no increase in g can be seen.

• The maximal values of g are located close to the notch tip. As we proceed to
the upper parts of the specimen, g initially slightly decreases. Then, it decreases
rapidly because the simulation was stopped before the stress-free crack reached
this depth; g had not reached its final value yet. Nevertheless, the final value of
g is about the same irrespective of notch depth. However, it was shown in Eliáš
and Bažant (2011) that the final value of g may significantly decrease for extreme
notch depths of ˛0 � 0:7.
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Fig. 7 Energies g dissipated at specific beam depths until the end of the simulations. The thick
line refers to the average value and the shaded area shows standard deviation. Left: deterministic
model; right: stochastic models with correlation length d D 40 and 80 mm

• One can see that smaller beams also have smaller final values of g. This is
attributed to the increasing stress gradient that constrains the development of
the fracture process zone for decreasing size. The same effect is responsible for
the slight decrease in g with increasing depth which is described in the previous
item.

7 Conclusions

The discrete lattice-particle model with identified parameters was employed to
reproduce an extensive series of experiments. The comparison confirmed the
robustness of the model by showing reasonable agreement between simulated and
experimental responses, verifying the predictive capabilities of the model. The
deterministic version of the model (which contains randomness due to the random
locations of the largest concrete grains) seems to be already sufficient to produce
the variations measured in the experiment.

The stochastic study with artificially chosen parameters confirmed the previously
observed effects of randomness. These effects strongly depend on the initial notch
depth.
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Vořechovský M, Sadílek V (2008) Computational modeling of size effects in concrete specimens

under uniaxial tension. Int J Fract 154(1–2):27–49



Sequentially Linear Analysis of Structures
with Stochastic Material Properties

George Stefanou, Manolis Georgioudakis, and Manolis Papadrakakis

Abstract This paper investigates the influence of uncertain spatially varying
material properties on the fracture behavior of structures with softening materials.
Structural failure is modeled using the sequentially linear analysis (SLA) proposed
by Rots (Sequentially linear continuum model for concrete fracture. In: de Borst R,
Mazars J, Pijaudier-Cabot G, van Mier J (eds) Fracture mechanics of concrete struc-
tures. Balkema, Lisse, 2001, pp 831–839), which replaces the incremental nonlinear
finite element analysis by a series of scaled linear analyses and the nonlinear stress-
strain law by a saw-tooth curve. In this work, SLA is implemented in the framework
of a stochastic setting. The proposed approach constitutes an efficient procedure
avoiding the convergence problems encountered in regular nonlinear FE analysis.
The effect of uncertain material properties (Young’s modulus, tensile strength,
fracture energy) on the variability of the load-displacement curves and crack paths is
examined. The uncertain properties are described by homogeneous stochastic fields
using the spectral representation method in conjunction with translation field theory.
The response variability is computed by means of direct Monte Carlo simulation.
The influence of the variation of each random parameter as well as of the coefficient
of variation and correlation length of the stochastic fields is quantified in a numerical
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example. It is shown that the load-displacement curves, the crack paths and the
failure probability are affected by the statistical characteristics of the stochastic
fields.

Keywords Softening materials • Sequentially linear analysis • Stochastic field •
Response variability • Monte Carlo simulation

1 Introduction

Several numerical techniques have been recently developed to model the failure of
structures in the framework of the finite element method (FEM). For structures made
of softening materials, a realistic representation of the softening behavior requires
the accurate description of stiffness degeneration due to damage. This description
can be achieved in a unified manner using damage mechanics approaches that
have been proven advantageous for modeling failure phenomena due to their
numerical efficiency. The damage mechanics approach permits the incorporation
of the description of damage into the constitutive equations, as well as the
combination with different more specific simulation methods, such as the embedded
finite element method (Oliver 1996; Oliver et al. 2012), extended finite element
method (Moës et al. 1999; Mariani and Perego 2003) and non-local theories (Jirásek
1998).

It is also known in failure mechanics that material softening is often responsible
for unstable structural behavior (Bažant and Cedolin 2010). This instability can
lead to secondary equilibrium states or bifurcation of the equilibrium path, which
require more elaborate incremental/iterative solution schemes (De Borst et al.
2012). As a consequence, the robustness of the numerical procedure used for
solving the nonlinear problem is strongly affected. In order to overcome these
problems, an alternative method, called sequentially linear analysis (SLA), has been
introduced by Rots (2001). This method replaces the incremental nonlinear FE
analysis by a series of scaled linear analyses and the nonlinear stress-strain law
by a saw-tooth curve. The advantage of this replacement is that the secant linear
(saw-tooth) stiffness is always positive and the analysis does always converge. The
method is generally applicable for materials with nonlinear softening behavior,
but it is particularly beneficial when brittle fracture causes convergence issues.
In this paper, SLA is implemented in the framework of a stochastic setting. The
proposed approach constitutes an efficient procedure for investigating the influence
of uncertain spatially varying material properties on the fracture behavior of
structures with softening materials (Georgioudakis et al. 2014).

A benchmark structure (double-edge notched specimen) is analyzed and compar-
isons with nonlinear analysis results are provided. The effect of uncertain variables
such as Young’s modulus, tensile strength and fracture energy on the variability of
the load–displacement curves and crack paths is examined. The uncertain properties
are described by homogeneous stochastic fields using the spectral representation
method in conjunction with the translation field theory (Shinozuka and Deodatis
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1996; Grigoriu 1998). The response variability is computed by means of direct
Monte Carlo simulation (MCS). The influence of the variation of each random
parameter as well as of the coefficient of variation and correlation length of the
stochastic fields is quantified. It is shown that the response statistics and the failure
probability of the structure are affected by the statistical characteristics of the
stochastic fields.

2 Sequentially Linear Analysis (SLA)

When analyzing material failure with standard nonlinear FE analysis, problems are
often encountered such as bifurcation and divergence of the solution. In particular,
cases subjected to tension softening tend to encourage the emergence of multiple
equilibrium paths. In order to overcome these problems, the SLA has been devel-
oped to address specifically the difficulty of modeling snap-back behavior (Rots
2001), typical in full-scale concrete and masonry structures (DeJong et al. 2009).
While generally applicable for materials with nonlinear softening branches, it is
particularly beneficial when brittle fracture causes convergence issues.

In SLA, a series of linear analyses are used to model the nonlinear behavior
of the structure while the modeling proceeds by directly capturing brittle events,
rather than trying to iterate around these critical points in a Newton-Raphson
scheme. Hence extensive iterations within the load or displacement increment can
be avoided. Furthermore, in this approach, a tensile softening curve of negative slope
is replaced by a saw-tooth curve which maintains a positive tangent stiffness (see
Fig. 1). The incremental/iterative Newton-Raphson method is no longer required
since a series of linear analyses are performed, each with a reduced positive stiffness,

Gf/h

Fig. 1 Stress-strain curve for linear softening and saw-tooth model definitions
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Algorithm 1 Sequentially linear analysis
1: repeat
2: KNdN D P! �tpr
3: for element D 1; :::; TotalElements do
4: for GaussPoint D 1; :::; TotalGPperElement do

5: Calculate
f

C

ti

�tpr
and find �crN D maxf f

C

ti

�tpr
g

6: end for
7: end for
8: Scale displacements and stress resultants .�N ; dN / by factor �crN
9: for element D 1; :::; TotalElements do

10: for GaussPoint D 1; :::; TotalGPperElement do
11: Find new f

C

tiC1
; EiC1 according to Section 2.2

12: end for
13: end for
14: Update structure stiffness matrix KNC1 KN

15: until damage has spread sufficiently into the structure

until the global equilibrium position is achieved. It has been shown that this event-
by-event strategy is robust and reliable (Rots and Invernizzi 2004), and circumvents
bifurcation problems, in contrast to standard nonlinear FE analysis. A more detailed
description of the SLA procedure is provided in the following subsections.

2.1 General Procedure

The structure is discretized in the framework of FEM, using standard continuum
elements and all material properties (Young’s modulus E , Poisson’s ratio v, initial
strength ft , as well as fracture energy Gf ) are assigned to them. Subsequently, the
following steps are carried out sequentially without the need of changing the initial
mesh (see Algorithm 1).

Initially, a linear elastic FE analysis is performed (KN : stiffness matrix of the
structure and dN : vector of unknown displacements in analysis step N ) with a
reference proportional load P (line 2). After the calculation of maximum principal
tensile stresses (�tpr ) through the linear elastic analysis, a loop over all integration
points for all elements is performed in order to find the critical element for which
its current strength f Cti divided by the maximum principal tensile stress is the
highest in the whole structure (lines 3–7). Subsequently (line 8), the reference
load P (along with the corresponding displacements and stress resultants) is
scaled proportionally by the critical load multiplier �crN belonging to the critical
integration point. Finally (lines 9–13), the damage in the critical integration point
is increased by reducing the stiffness E and strength ft according to the saw-tooth
tensile-based constitutive relation (see Sect. 2.2). The aforementioned procedure is
repeated sequentially, until the damage has spread sufficiently into the structure.

In this way, the nonlinear response is extracted by linking consecutively the
results of each cycle. The smoothness of P � ı curves depends on the smoothness
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(number Nt of teeth) of the saw-tooth model (see Sect. 2.2). The SLA procedure
allows only one integration point to change its status from elastic to softening at
each time, while in nonlinear FE analysis, the use of load increments implies that
multiple integration points may crack simultaneously and the local stiffnesses at
these points switch from positive to negative, following the softening constitutive
laws for quasi-brittle materials.

2.2 Saw-Tooth Model

Several saw-tooth approximations could be specified by adjusting the stiffness,
maximum strain and strength of each consecutive saw-tooth. However, the approx-
imation must yield results that are mesh independent. Rots and Invernizzi (2004)
investigated several saw-tooth approximations and concluded that any approxima-
tion must conserve the dissipated energy, i.e. the area under the softening curve,
Gf =h (see Fig. 1).

In this work, the generalized tooth size approach (MODEL C) (Rots et al. 2008) is
adopted, which does not require special techniques to handle mesh-size objectivity
in order to obtain objective results with respect to the mesh as well as to overcome
the lack of consistency. The way in which the stiffness and strength of the critical
elements are progressively reduced at each “event”, is shown schematically in Fig. 1
where the softening curve of negative slope in the constitutive stress-strain relation
is replaced by a discretized, saw-tooth diagram of positive slopes which provides the
correct energy dissipation. The linear tensile softening stress-strain curve is defined
by the Young’s modulus E , the tensile strength ft and the area under the saw-tooth
diagram. This area (see Fig. 1) is always equal to the fracture energy Gf , which is
considered here as a material property, divided by the crack bandwidth h, which is
associated with the size, orientation and integration scheme of the finite element.

In case of linear softening, ultimate strain 	u is given by:

	u D 2Gf

fth
(1)

Both Young’s modulus E and strength ft can be reduced at the same time in the
sequentially linear strategy by a factor a, according to:

Ei D Ei�1
a
; for i D 1; 2; : : : ; N (2)

where i and i�1 denote the current and previous step, respectively, in the saw-tooth
diagram. To find the rule of reducing Young’s modulusE as well as strength ft , by
ratio ai in step i according to Fig. 1, we have:

f �t i D f Ct i � 2pft (3)
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EiC1 D f �t i
	i

(4)

aiC1 D Ei

f �t i
	i D f Ct i

f �t i
D f Ct i
f Ct i � 2pft

(5)

Thus, for the case of linear softening (Fig. 1) the value of f Ct i can be easily
defined as:

f Ct i D 	Cu Ei
D

Ei CD
(6)

where,

	Cu D 	u C p
ft

D
(7)

and D is the tangent to the tensile stress-strain softening curve. The number Nt of
teeth is automatically evaluated, depending on the user specified parameter p. For
smaller values of p, a higher Nt is needed to cover the softening branch, leading to
more exact results. The procedure ends, regarding the corresponding Gauss point,
when the difference between the sum of positive triangles above the real curve and
the sum of negative triangles below the real curve vanishes, as shown in Fig. 1.

3 Representation of Uncertain Material Properties

3.1 Non-Gaussian Translation Fields

As the Gaussian assumption for variables bounded by physical constraints (e.g.
material properties that should be strictly positive) may lead to a non-zero prob-
ability of violation of these constraints, the simulation of non-Gaussian stochastic
processes and fields has received considerable attention in the field of computational
stochastic mechanics.

Since all the joint multi-dimensional density functions are needed to fully
characterize a non-Gaussian stochastic field, a number of studies have been focused
on producing a more realistic (approximate) definition of a non-Gaussian sample
function from a simple transformation of some underlying Gaussian field with
known second-order statistics. Thus, if g.x/ is a homogeneous zero-mean Gaussian
field with unit variance and spectral density function (SDF) Sgg.�/, or equivalently
autocorrelation functionRgg.�/, a homogeneous non-Gaussian stochastic field f .x/
with power spectrum STff .�/ can be defined as:

f .x/ D F�1 � ˚Œg.x/
 (8)
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where ˚ is the standard Gaussian cumulative distribution function and F is the
non-Gaussian marginal cumulative distribution function of f .x/. The transform
F�1 � ˚ is a memory-less translation since the value of f .x/ at an arbitrary point
x D .x; y/ depends on the value of g.x/ at the same point only and the resulting
non-Gaussian field is called a translation field (Grigoriu 1998).

Translation fields can be used to represent various non-Gaussian phenomena
and have a number of useful properties such as the analytical calculation of
crossing rates and extreme value distributions. They also have some limitations,
the most important one from a practical point of view is that the choice of the
marginal distribution of f .x/ imposes constraints to its correlation structure. In
other words, F and STff .�/, or RTff .�/, have to satisfy a specific compatibility
condition derived directly from the definition of the autocorrelation function of the
translation field (Grigoriu 1998). If F and STff .�/ are proven to be incompatible,
there is no translation field with the prescribed characteristics. In this case, one has
to resort to translation fields that match the target SDF approximately (Shields et al.
2011).

3.2 The Spectral Representation Method

In this paper, Eq. (8) is used for the generation of non-Gaussian translation sample
functions representing the uncertain material properties of the problem. Sample
functions of the underlying homogeneous Gaussian field g.x/ are generated using
the spectral representation method (Shinozuka and Deodatis 1996). For a two-
dimensional stochastic field, the i -th sample function is given by:

g.i/.x; y/ D p
2

N1�1X

n1D0

N2�1X

n2D0
ŒA.1/n1n2cos.�1n1x C �2n2y C �.1/.i/n1n2

/C

C A.2/n1n2cos.�1n1x � �2n2y C �.2/.i/n1n2
/
 (9)

where �.j /.i/n1n2 , j D 1; 2 represent the realization for the i -th simulation of the
independent random phase angles uniformly distributed in the range Œ0; 2�
. A.1/n1n2 ,
A
.2/
n1n2 have the following expressions

A.1/n1n2 D
q

2Sgg.�1n1; �2n2/�1�2 (10a)

A.2/n1n2 D
q

2Sgg.�1n1;��2n2/�1�2 (10b)

where

�1n1 D n1�1 �2n2 D n2�2 (11)
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�1 D �1u

N1
�2 D �2u

N2
(12)

n1 D 0; 1; : : : ; N1 � 1 and n2 D 0; 1; : : : ; N2 � 1 (13)

Nj ; j D 1; 2, represent the number of intervals in which the wave number axes
are subdivided and �j u; j D 1; 2, are the upper cut-off wave numbers which define
the active region of the power spectrum Sgg.�1; �2/ of the stochastic field. The last
means that Sgg is assumed to be zero outside the region defined by

� �1u � �1 � �1u and � �2u � �2 � �2u (14)

The SDF used in the numerical example (see Sect. 5) is of square exponential type:

Sgg.�1; �2/ D �2g
b1b2

4�
exp

h
� 1

4
.b21�

2
1 C b22�

2
2/
i

(15)

where �g denotes the standard deviation of the stochastic field and b1, b2 denote
the parameters that influence the shape of the spectrum, which are proportional to
the correlation lengths of the stochastic field along the x; y axes, respectively. The
squared exponential model is a realistic correlation model for softening materials
(e.g. concrete) suggested by the Joint Committee on Structural Safety (JCSS 2001)
and used in several publications, e.g. Vořechovský (2008), Yang and Xu (2008), and
Eliáš et al. (2014). The SDF of the translation field will be slightly different from
Sgg due to the spectral distortion caused by the transform of Eq. (8) (Papadopoulos
et al. 2009).

4 Stochastic Finite Element Analysis

It is assumed that the Young’s modulus E , tensile strength ft and fracture energy
Gf of the material are represented by two dimensional uni-variate (2D-1V)
homogeneous stochastic fields. The variation of E is described as follows:

E.x; y/ D E0Œ1C f .x; y/
 (16)

where E0 is the mean value of the elastic modulus and f .x; y/ is a zero-mean
homogeneous stochastic field. The two other properties are varying in a similar
way. The stochastic stiffness matrix is derived using the midpoint method, i.e. one
integration point at the centroid of each finite element is used for the computation
of the stiffness matrix. This approach gives accurate results for relatively coarse
meshes keeping the computational cost at reasonable levels (Stefanou 2009).

Using the procedure described in Sect. 3, a large number NSAMP of sample
functions are produced, leading to the generation of a set of stochastic stiffness
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matrices. The associated structural problem is solvedNSAMP times and the response
variability can finally be calculated by obtaining the response statistics of the
NSAMP simulations.

5 Numerical Example

The double-edge notched specimen under tension (Shi et al. 2000; Nguyen 2008)
shown in Fig. 2 is used as a numerical example. The specimen is fixed in both
directions at the bottom edge, and in horizontal direction at the top edge. Four-node
linear quadrilateral elements under plane stress conditions and a 2 � 2 Gaussian
integration rule are used in the numerical analyses. The uncertain parameters of
the problem are the Young’s modulus E , tensile strength ft and fracture energy
Gf of the material with mean values equal to 24 GPa, 2.4 MPa and 0.059 N/mm,
respectively.

The spatial fluctuation of the uncertain parameters is described by 2D-1V
homogeneous lognormal translation fields, sample functions of which are generated
using Eqs. (8) and (9). A Weibull distribution could be adopted for the tensile
strength ft and fracture energy Gf , as in Vořechovský (2008) and Yang and Xu
(2008), without leading to significant differences in the results. Three different
values (b D 1:2; 12; 120) of the correlation length parameter b proportional to
the dimensions of the structure are used, corresponding to stochastic fields of low,
moderate and strong correlation (all values of b are in mm). Sample functions of

60 mm

10 mm
2 mm 5 mm

60 mm

60 mm

Fig. 2 Double-edge notched specimen (Geometry and FE mesh with 1,950 nodes and 1,850
elements)
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Fig. 3 Realizations of a lognormal field for � D 20% and (a) b D 1:2, (b) b D 120

a b

Fig. 4 Statistical convergence for (a) mean and (b) standard deviation of the peak load (E , ft ,Gf
fully correlated with � D 10% and b D 120)

a lognormal field for � D 20% and b D 1:2, b D 120 are shown in Fig. 3a, b,
respectively. The case of anisotropic correlation (b1 ¤ b2) has also been examined
to highlight its effect on the response variability, which is computed using direct
MCS with a sample size equal to 500. The statistical convergence achieved within
this number of samples is illustrated in Fig. 4 where the mean value and standard
deviation of the peak load are plotted as a function of the number of simulations.
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Fig. 5 Load-displacement curves for stochastic parameterE with (a) � D 10% and (b) � D 20%
(b = 120)

Fig. 6 Load-displacement curves for stochastic parameter Gf with (a) � D 10% and (b) � D
20% (b = 120)

Figures 5 and 6 show the load-displacement curves obtained from different
stochastic simulations with variable E , Gf . Comparisons with the deterministic
nonlinear solution of Nguyen (2008) are provided in these figures. As shown in
Fig. 5, the variation of E affects the stiffness of the structure. The results obtained
with the assumption of anisotropic correlation were very similar and therefore
isotropic correlation (b D b1 D b2) is finally adopted. As a final step, two cases
of combined variation of E , ft , Gf are considered. In the first case, the lognormal
stochastic fields representing the three parameters are fully correlated while in the
second case there is no cross-correlation between them. The corresponding load-
displacement curves shown in Fig. 7 are highly variable and thus lead to a large
probability of failure pf of the structure (defined as the probability of the peak load
not exceeding that of the deterministic solution, which means that the structure fails
at a smaller load). For b D 1:2, the peak load of all realizations is smaller than the
deterministic one, while pf is equal to 87 and 61 % for b D 12 and 120, respectively
(case of fully correlated properties).
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Fig. 7 Load-displacement curves for combined variation of the three parameters for � D 10%
(b = 120): (a) E , ft , Gf fully correlated, (b) E , ft , Gf uncorrelated

Fig. 8 Crack paths for a randomly selected realization and for different values of correlation length
b (E , ft , Gf fully correlated)

Finally, crack paths for a randomly selected realization and for different values
of correlation length b are shown in Fig. 8 (the crack paths are formed by elements
with zero stiffness at the end of SLA). The unrealistic crack pattern obtained for
b D 1:2 is due to the high variability of the elastic modulus in this case which leads
to neighboring elements with substantially differentE .
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6 Conclusions

In this work, the sequentially linear analysis is implemented in the framework
of a stochastic setting to investigate the influence of uncertain spatially varying
material properties on the fracture behavior of structures with softening materials.
The proposed approach constitutes an efficient procedure avoiding the convergence
problems encountered in regular nonlinear FE analysis. The uncertain properties
are described by homogeneous stochastic fields using the spectral representation
method in conjunction with translation field theory. The response variability is
computed by means of direct MCS. The influence of the variation of each random
parameter as well as of the coefficient of variation and correlation length of the
stochastic fields has been quantified. The analysis of a benchmark structure has
shown that the load-displacement curves, the crack paths and the probability of
failure are affected by the statistical characteristics of the stochastic fields. The
extension of SLA to the stochastic framework offers an efficient means to perform
parametric investigations of the fracture behavior of structures with variable material
properties. The possibility of using variability response functions as an alternative to
MCS for computing the response variability of structures with softening materials
in the framework of SLA is currently under investigation.
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Homogenization



A Coupling Method for the Homogenization
of Stochastic Structural Models

Régis Cottereau

Abstract We describe a numerical homogenization method that yields the beam
parameters corresponding to a homogenized stochastic solid model in a slender
domain. This method is based on a novel volume coupling technique for random
solid models and deterministic beam models, in the Arlequin framework, that is
also described in this paper. The homogenization technique allows to use beam
models, that are more practical from a numerical point of view for many industrial
applications, constrained by information obtained at the micro-structure level, where
beam mechanics cannot be reasonably applied. Two approaches are presented,
extending the classical Kinematical and Statical Uniform Boundary Conditions used
in classical numerical homogenization.

Keywords Stochastic homogenization • Multiscale mechanics • Euler-Bernoulli
beam model • Arlequin method

1 Introduction

Thin and elongated structures are widely encountered in the industry. Beams in the
construction industry and shells and plates in the automotive and aeronautical indus-
tries are typical examples. Their modeling with the Finite Element (FE) Method
is expensive when using a classical formulation, based on the straightforward
volume momentum equation and 3D displacement fields. Indeed, the constraint
on the aspect ratio of the finite elements implies that the small thickness of the
physical domain controls the minimum size of the elements overall. The cost of
solving the corresponding FE system may then become prohibitive. This difficulty
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can be circumvented by starting from formulations specifically designed for thin
elements. Based on appropriate kinematical hypotheses on the displacement fields,
such as assuming rigid sections for a beam, lower-dimensional formulations can
be obtained. Hence a 3D elasticity problem in an elongated domain becomes a
1D beam problem over the mid-fiber. Likewise, a 3D elasticity problem in a flat
domain becomes a 2D shell problem over the mid-surface. In these theories, the
structural parameters (e.g. mass per unit length, moment of inertia) are analytically
derived from the solid parameters (e.g. Young’s modulus, Lamé parameters) and
the geometry. In the sense that the full-scale 3D elastic model is transformed into
a lower-dimensionality structural model, this transformation can be seen as an
upscaling process.

When the solid parameters are heterogeneous, the derivation of a homogenized
structural model is not so obvious. Analytical solutions exist for specific structures,
such as periodic (Caillerie and Nedelec 1984; Kohn and Vogelius 1984; Buannic
and Cartraud 2001; Cecchi and Sab 2002; Cartraud and Messager 2006; Grédé et al.
2006; Mistler et al. 2007; Mercatoris et al. 2009) or laminated (Hohe and Becker
2001; Rabczuk et al. 2004; Liu et al. 2006). However, these techniques work well
for specific structures and in a particular range of application (for instance, when
the mechanical functions of the core and faces of a composite structure are well
differentiated). When the fluctuations of the parameters do not present any such
simple structure (as in concrete for example), computational homogenization can
still be used (Coenen et al. 2010). It is a direct extension of the classical numerical
techniques for approximating homogenized coefficients in solid mechanics. The
main difference lies in the geometry of the samples, which imposes that the
typical sample spans the entire structure along the small dimension(s) and the test
boundary conditions (Dirichet, Neumann or periodic) are only applied along the
large dimension(s). Finally, when the heterogeneous parameters are modeled as
random fields, to the best of our knowledge, there has been no proposal in the
literature as to how to treat homogenization of structural models. This case would
be the equivalent for solid-to-beam homogenization of the classical solid-to-solid
random homogenization problem (Papanicolaou and Varadhan 1981; Huet 1990;
Sab 1992; Bourgeat and Piatnitski 2004; Tartar 2009).

This papers aims at proposing a numerical homogenization technique that yields
the homogenized parameters of a structural model from the given stochastic fields
of parameters of an underlying solid model. It should be pointed out that the
method proposed works for solid-to-beam homogenization in all the cases discussed
above (homogeneous and heterogeneous, deterministic and stochastic). The main
idea is to start from a chosen (a priori erroneous) set of homogenized parameters
for the parameters of a structural model, and couple this model to a solid model
with the input (stochastic) set of parameters, in a simple geometrical and loading
numerical setup. If the coupled system yields the same solution as a mono-model
structural parameter with the same set of (chosen) parameters, it is assumed to
mean that the chosen model does correspond to the homogenized model. Else, a
new set of structural parameters is chosen and the same experiment is repeated
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until convergence. This method is an application, for structural models, of a
numerical homogenization technique introduced recently (Cottereau 2013a,b) for
more classical random homogenization of solid models.

The core of this homogenization technique is a coupling method for structural
and solid models. Many of those have been developed in the past: enforcing directly
the structural hypothesis of rigid sections at the interface between the two models
through so-called transition elements (Surana 1980; Bathe and Bolourchi 1980;
Cofer and Will 1991; Gmür and Schorderet 1993; Dávila 1994), possibly adding
some elasticity to the interface (Osawa et al. 2007; Xue et al. 2009; Song and Hodges
2010), enforcing continuity of the mechanical work at the interface (McCune et al.
2000; Shim et al. 2002), or using the Arlequin method in which the coupling is
localized in a volume rather than over a surface (Ben Dhia 1998; Ben Dhia and
Rateau 2001; Rateau 2003; Ben Dhia and Rateau 2005; Ben Dhia 2008; Barthel
and Gabbert 2010; Rousseau et al. 2010; Qiao et al. 2011; Ghanem et al. 2013). The
“weakness” of the coupling (in the sense of the strength of the kinematical constraint
imposed by the homogeneous structural model onto the heterogeneous solid model)
is essential for the success of the homogenization experiment, so we will consider
here the Arlequin coupling.

The next section (Sect. 2) describes the two models that will be used in
our method: (i) the stochastic heterogeneous solid model that we are trying to
homogenize over an elongated domain, and (ii) the deterministic homogeneous
beam model that is the target model. We will limit ourselves in this paper to a beam
model, but extension to shell and plate models is expected to be straightforward.
The following section (Sect. 3) describes the Arlequin coupling method for these
two models. It is somehow a union of previous papers on the Arlequin coupling
of deterministic beam and solid models (Rateau 2003; Ben Dhia and Rateau 2005;
Barthel and Gabbert 2010; Rousseau et al. 2010; Qiao et al. 2011; Ghanem et al.
2013) on the one hand, and deterministic and stochastic solid models (Cottereau
et al. 2010, 2011; Zaccardi et al. 2013; Le Guennec et al. 2013; Cottereau 2013b)
on the other hand. Although this coupling method is not the main objective of this
paper, and because no similar method can be found in the literature, we believe it is
interesting to describe it to some level of detail. Finally, Sect. 4 describes the core
of the paper, which is the homogenization method.

2 Description of the Mono-models

In this section, we describe the two models that will be considered: a stochastic
continuum mechanics (solid) model and a deterministic Timoshenko beam model.
We also highlight the kinematical hypothesis that allows to go from the solid
model (when it is assumed deterministic and homogeneous) to the beam model.
Throughout, we will indicate quantities related to the solid model with an ‘s’ index,
and the quantities related to the beam model with a ‘b’ index.
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2.1 Stochastic Solid Model

Let ˝s be a domain of R3 with a smooth boundary @˝s , separated into a partition
@˝s D �D [�N . The domain˝s is filled with an elastic and isotropic solid, loaded
in the bulk by f s and on the surface �N by gs (both assumed deterministic), and
kinematically constrained along �D . The Lamé parameters � and � of the solid
are modeled as positive, second-order, mean-square continuous stochastic fields
indexed on R

3, and defined on probability spaces .�;A ; P /, where � is a set of
events, A is a �-algebra of elements of � and P is a probability measure over
A . Under a small perturbations hypothesis, the weak formulation of the stochastic
boundary value problem reads: find us 2 Vs such that:

E

�Z

˝s

� Œus
 W "Œvs 
dx
�

D
Z

˝s

f s �EŒvs
dxC
Z

�N

gs �EŒvs 
dx; 8vs 2 Vs; (1)

where "Œu
 D 1=2.ru C rT u/ is the infinitesimal strain tensor, the superscript T

denotes the transpose operator, � Œu
 D �Tr"Œu
I C 2�"Œu
 is the Cauchy stress
tensor, I is the identity tensor, and Tr denotes the trace operator. Equivalently,
one can use the Young’s modulus E and the Poisson’s ratio � instead of the Lamé
constants. These pairs of parameters are linked through:

� D E�

.1C �/.1� 2�/
; � D E

2.1C �/
: (2)

The functional space is Vs D L 2.�;H 1
0 /, with H 1

0 D fv 2 .H 1.˝s//
3; vj�D D 0g.

Endowed with the appropriate inner product and norm, Vs is a Hilbert space. Using
Lax-Milgram theorem, it can be proved that the problem (1) has a unique solution us
(see for instance Babuška et al. 2004). An approximation of that solution can then
be obtained, for example, by using a Stochastic FE method (Ghanem and Spanos
1991; Stefanou 2009) or a Monte Carlo approach (Robert and Casella 2004).

2.2 Deterministic Beam Model

A beam is a structure whose axial extension is much larger than any dimension
orthogonal to it. The cross-sections are defined by intersecting the beam with planes
orthogonal to its axis. We define the neutral fiber of this beam as the line joining the
centers of mass of all the sections. For simplicity, we consider here a beam whose
neutral fiber Fb is straight and with constant sections, that we denote S . The beam
occupies the domain ˝b D Fb � S 2 R

3. Under the hypotheses of homogeneous
symmetric cross-sections, the geometrical centers are coincident to the centers of
mass and inertia (see Fig. 1a for an illustrative example). We assume throughout
that the neutral fiber is aligned along e1 at rest. A Cartesian reference system is
adopted, with base vectors ei 1 � i � 3, and corresponding coordinates x 2 Fb
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e3

e1

e2

neutral fiber

a b

Fig. 1 An example of straight beam with a rectangular cross-section and of a coupled solid-beam
model in 2D. (a) Beam model. (b) Beam-solid model

and .y; z/ 2 S . Any vector v can be developed into its axial and section parts as
v D v1e1 C v?. We limit ourselves all along to small transformations around the
initial position.

The classical Timoshenko beam theory (Timoshenko 1922; Oñate 2013) assumes
that the cross-sections behave as rigid bodies, although they do not necessarily
remain perpendicular to the neutral fiber. This kinematical hypothesis leads to
parameterize the 3D displacement field ub.x; y; z/ of the beam as a function of two
1D functions: the displacement of the neutral fiber u0.x/ and the rotation vector of
the cross-sections �.x/:

ub.x; y; z/ D u0.x/C �.x/ � x?; (3)

where x? D Œ0 y z
T gives the location of a point in a cross-section.
The beam is subjected to a linear force f l and moment c l (that would be equal

respectively to
R
S f sdx C R

@S gsdx and
R
S x? � f sdx C R

@S x? � gsdx if
the beam were modeled as a solid). On the Neumann extremities of the mean fiber
FN
b , force F b and moment C b loads are also enforced (that would correspond

to
R
S gsj�N dx and

R
S gsj�N � x?dx, respectively). Assuming an isotropic and

elastic behavior, the balance of momentum for each section leads to the following
weak formulation: Find u0 D u1e1 C u? 2 Vb and � D �1e1 C �? 2 Vb such that
for all v0 D v1e1 C v? 2 Vb and � D �1e1 C �? 2 Vb:

• Axial momentum equation

Z

Fb

EbSu01v01dx D
Z

Fb

f1v1dx C .Fb1v1/@Fb
I (4)

• Torsion momentum equation

Z

Fb

�bJ1�
0
1�
0
1dx D

Z

Fb

c1�1dx C .Cb1�1/@Fb
I (5)
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• Bending momentum equation

Z

Fb

EbJ�
0
? � � 0? CGbS.u0? C e1 � �?/ � .v0? C e1 � �?/dx

D
Z

Fb

f l � vc? C cl � �?dx C .F b? � v? C C b? � �?/@Fb
; (6)

where all the integrals are one-dimensional and the notation a0 denotes the derivative
of a quantity a with respect to the variable x. The geometrical parameters are

S D
Z

S
dx; J D

Z

S
.jjx?jj2I � x? ˝ x?/dx; (7)

and J1 D J W .e1 ˝ e1/ D R
S jjx?jj2dx, where I is the identity tensor in

R
3. If the beam formulation were derived from a solid model with homogeneous

mechanical parameters, the beam mechanical parameters would be Eb D E ,
�b D � and Gb D ��, where � is a shear reduction parameter accounting for the
non-uniformity of the shear stress along the cross-section (Oñate 2013). For a non-
homogeneous solid model, the derivation of the parameters of the corresponding
beam model is not obvious. Assuming (for notational simplicity) homogeneous
Dirichlet boundary conditions for both the displacement and rotation fields, the
functional space is Vb D fv 2 .H 1.Fb//

3; v@Fb
D 0g. We also define Wb D

fw D u C � � x?; u 2 Vb; � 2 Vbg. Endowed with the inner product of
H 1.˝b/, .w1;w2/b D R

˝b
w1 � w2 C rw1 W rw2dx, and the corresponding norm,

Wb is a Hilbert space. Using Lax-Milgram theorem (Ern and Guermond 2004),
the problem (4)–(6) can be shown to have a unique solution .u0;�/ 2 Wb . This
unique solution can be approximated by the Finite Element method (Hughes 1987;
Zienkiewicz and Taylor 2005).

3 Coupling Method in a Stochastic Framework

In this section, we consider a mechanical problem posed over a domain ˝ 2 R
3,

and a quantity of interest that can be estimated using the stochastic heterogeneous
solid model described in Sect. 2.1. Further, we assume that the complexity of
this model is only required over a limited region in order for the quantity of
interest to be well evaluated. Hence, we propose to use a coupled model: (i) fine-
scale stochastic heterogeneous model over part of the domain, and (ii) coarser
deterministic homogeneous beam model over the rest of the domain. The coupled
model is developed in the Arlequin framework. This framework is based on three
ingredients: (i) splitting of the domain into overlapping subdomains to which
different models are attached, (ii) introduction of weight functions to dispatch the
global energy among the models, (iii) imposition of a weak compatibility constraint
between the solutions of the different models.
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3.1 Arlequin Formulation

The domain˝ is divided into two overlapping subdomains˝s and ˝b D Fb � S
such that ˝s [ ˝b D ˝ (see Fig. 1b). We select a coupling volume ˝c � .˝s \
˝b/ 2 R

3, over which the two models are assumed to exchange information, and
introduce its mean fiber Fc such that ˝c D Fc � S . For notational simplicity, we
assume Dirichet boundary conditions only on the beam model �D � @Fb . Forces
are imposed in the bulk f s and on the boundary gs (on �N � @˝s) for the solid
model and along Fb for the beam model (f l and c l ). The mixed Arlequin problem
reads: find .us;ub;˚/ 2 Vs � Wb � Wc such that

8
ˆ̂
<

ˆ̂
:

as.us; v/C C.˚;˘ .v// D `s.v/; 8v 2 Vs

ab.ub; vb/� C.˚; vb/ D `b.vb/; 8vb 2 Wb

C.� ;˘ .us/ � ub/ D 0; 8� 2 Wc

; (8)

where the forms as W Vs � Vs ! R, ab W Wb � Wb ! R, C W Wc � Wc ! R are
defined by:

as.u; v/ D E

�Z

˝s

˛s � Œu
 W "Œv
dx
�

; (9)

ab.ub; vb/ D
Z

Fb

˛b
˚
EbSu01v01 C �bJ1�

0
1�
0
1 C EbJ�

0? � � 0?

CGbS.u0? C e1 � �?/ � .v0? C e1 � �?/
�
dx (10)

with ub D .u1e1Cu?/C.�1e1C�?/�x? and vb D .v1e1Cv?/C.�1e1C�?/�x?,
and

C.ub; vb/ D E

�Z

˝c

.ub � vb C �"Œub
 W "Œvb
/ dx
�

(11)

where � is a constant essentially introduced for dimensionality purposes (Ben Dhia
and Rateau 2005). Note that for functions ub and vb of Wc , decomposed as above,
we have

C.ub; vb/ D
Z

Fb

E
�
Su1v1CSu? � v?CJ1�1�1CJ�? � �?C� 	Su01v01 C J1�

0
1�
0
1

CJ� 0? � � 0? C S.u0? C e1 � �?/ � .v0? C e1 � �?/

�
dx: (12)

The projector˘ W Vs ! Wc is defined by

˘ .v/ D hvi C hr � v C 1

2
.r � .e1 � w//e1i � x? (13)
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where hvi D R

S v.x/dx=S for any scalar, vector, or tensor v. Note that any rigid
body displacement field in the form u0.x/ C �.x/ � x? is conserved by the
projection. The linear forms `s W Vs ! R and `b W .Vb/2 ! R are defined,
respectively, by

`s.v/ D
Z

˝s

f s � EŒvs 
dx C
Z

�N

gs � EŒvs
dx ; (14)

and (see Sect. 2.2 for the definition of the linear forces and moments)

`b.v;�/ D
Z

Fb

˚
fl;1v1 C cl;1�1 C f l;? � vc? C cl;? � �?

�
dx (15)

The weight functions ˛s.x; y; z/ and ˛b.x/ in Eqs. (9) and (10) are chosen such that:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

˛s D 1 in˝sn˝b

˛s.x; y; z/ D Q̨s.x/ in˝s \˝b;

Q̨s ; ˛b > 0 in˝s \˝b;

Q̨s C ˛b D 1 in˝s \˝b:

(16)

The functional spaces are Vs D L 2.�; .H 1.˝s//
3/ and Vb D fv;� 2 .H 1.Fb//

3,
vj�D D � j�D D 0g, and the so-called mediator space Vc is defined as:

Vc D ˚
.v.x/C �T /C .�.x/C �R/ � x? j v;� 2 .H 1.Fc//

3;

�T ; �R 2 .L 2.�;R//3
�
: (17)

This choice of mediator space ensures that the resulting mixed formulation (8) is
well-posed. The restriction of Vs to the coupling zone would be another possible
option. The resulting mixed formulation would equally be well-posed, but the
condition C.� ;us � .u0 C � � x?// D 0 would be imposed in a much stronger
manner, since the dimensionality of the mediator space when discretizing would be
much larger. In particular, this would force the average of the solid solution to follow
the kinematics of the beam model, which is not desirable because the mechanical
parameters of the solid model are heterogeneous, so that it is not reasonable to
assume that the sections remains rigid.

One can consider that the system (8) consists of three equations: (i) one
governing the behavior of the stochastic solid model, weighted by ˛s.x/ and with
a loading arising in the coupling volume ˝c embodied in the operator C ; (ii) one
governing the behavior of the beam model, weighted by ˛b.x/ and with a loading
opposite to the previous in the coupling volume˝c ; and (iii) one enforcing the weak
compatibility between the two solutions us.x/ and ub D u0.x/C � � x?.
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3.2 Finite Element Discretization

Based on the previous continuous weak formulation (8), we now consider the
discretization and the resulting matrix system. The domain˝s is split into elements
Es giving a mesh Ts with ns degrees of freedom (DOFs). The beam fiber Fb

is split into elements Eb to form a mesh Tb with nb DOFs. Finally, Fc is split
into elements to form a mesh Tc with nc DOFs. All the fields in System (8) are
approximated by fields that are globally continuous and polynomials by parts over
the elements of the relevant meshes. In particular, we consider the following finite-
dimensional functional spaces: H 1;H .˝s/ D fv 2 C 0.˝s/; v 2 P

1.Es/g, H 1;H D
.H 1;H .˝s//

3, V H
s D L 2.�;H 1;H /, H 1;H .Fb/ D fv 2 C 0.Fb/; v 2 P

2.Eb/g,
V H
b D fv;� 2 .H 1;H .Fb//

3; vj�D D � j�D D 0g, H 1;H .Fc/ D fv 2 C 0.Fc/; v 2
P
2.Ec/g, and V H

c D f.v C �T /C .� C �R/ � x?; v;� 2 .H 1;H .Fc//
3; �T ; �R 2

.L 2.�;R//3g, where P1.A/ and P
2.A/ represent, respectively, the sets of linear and

quadratic polynomials over domain A. The consideration of quadratic polynomials
over the beam elements simplifies the discretization of the projection operator
˘ . Note that we discretize here only along the space dimension, because we
will use the Monte Carlo method (Robert and Casella 2004) for the random
dimension. The (scalar) bases associated respectively with H 1;H .˝s/, H 1;H .Fb/

and H 1;H .Fc/, are denoted by: fvsi .x/g1�i�ns , fvbi .x/g1�i�nb , and fvci .x/g1�i�nc .
After space discretization, the mixed system (8) may be written:

EŒA.�/U .�/
 D F (18)

where � indicates dependency on � , and where

A D

2

6
6
6
6
6
4

As.�/ 0 PC PC � 0

0 Ab �C �C � 0

.PC /T �C T 0 0 S Tc
.PC �/

T �C T
� 0 0 0

0 0 S c 0 0

3

7
7
7
7
7
5

: (19)

In that matrix, we have, for the stiffness matrix of the solid model, for 1 � i; k � ns
and 1 � j; ` � 3:

As;.ij;k`/.�/ D
Z

˝s

˛s� Œv
s
iej 
 W "Œvske`
dx ; (20)

and, the stiffness matrix of the beam model:

Ab D

2

6
6
4

EbSA
1s
b 0 0 0

0 GbSA
1
b 0 GbSA

1v
b

0 0 �bJ1A
1s
b 0

0 GbSA
1vT
b 0 GbSA

0
b CEb.JA/

1
b

3

7
7
5 ; (21)
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with, for 1 � i; k � nb , and 2 � j; ` � 3, A1s
b;ik D R

Fb
˛b.vbi /

0.vbk/0dx,

A0
b;.ij;k`/ D .e` � ej /

R
Fb
˛bvbi v

b
kdx, A1

b;.ij;k`/ D .e` � ej /A1s
b;ik , A1v

b;.ij;k`/ D
.e` � ej / � e1

R
Fb
˛b.vbi /

0vbkdx and .JA/1b;.ij;k`/ D J W .e` ˝ ej / A
1s
b;ik . Note

that the transpose sign in Eq. (21) is defined in the sense that A1vT
b;.ij;k`/ D A1v

b;.k`;ij /.
The coupling matrix for the beam model is given by

C D

2

6
6
4

SC s
1 0 0 0

0 SC 1 0 SC v
1

0 0 J1C
s
1 0

0 SC vT
1 0 SC 0 C .JC /1

3

7
7
5 (22)

with, for 1 � i; k � nc , and 2 � j; ` � 3, C s
1;ik D R

Fb
vbi v

b
k C �.vbi /

0.vbk/0dx,

C 1;.ij;k`/ D .e` � ej /C s
1;ik , C 0;.ij;k`/ D .e` � ej /

R
Fb

vbi v
b
kdx, C v

1;.ij;k`/ D .e` � ej / �
e1
R
Fb
.vbi /

0vbkdx and .JC /1;.ij;k`/ D J W .e` ˝ ej /C
s
1;ik . Observe that the structure

of the coupling matrix is very close to that of the beam stiffness matrix, with unit
material parameters and an additional block diagonal contribution. We additionally
introduce the projection matrix

P D ŒPu1 Pu
? P�1 P�

? 
 (23)

where Pu1
.ij;k/ D .ej � e1/hvsi .xk;x?/i, Pu

?

.ij;k`/ D .ej � e`/hvsi .xk;x?/i, P�1
.ij;k/ D

hr � vsi .xk;x?/.e1 � ej /i=2, and P�
?

.ij;k`/ D hr � vsi .xk;x?/.ej � e`/i. We also get
C � by summing the coordinates of C over all the DOFs in the columns (because �T
and �R are constant functions (in space) over the coupling domain).

The vector S c in Eq. (19) is used to remove the over-parameterization of the
functional space Vc . Indeed we note that the subspace of constant (in space)
deterministic functions of Vc can be described either only with v or �T . We therefore
impose a condition that

R
Fc

vdx D 0. It is also possible to impose rather EŒ�T 
 D 0

but this would be less trivial in a Monte-Carlo-based simulation. Likewise, there
is redundancy between the elements � � x? and �R � x?, and we imposeR
Fc
�dx D 0. We therefore obtain S c by summing C along all the DOFs of the

lines.
The load vector is F T D ŒF s F b 0 0 0
, where

F s;.ij / D
Z

˝s

˛sv
s
if s � ej dx C

Z

�N

˛sv
s
igs � ej dx; (24)

and

F T
b D ŒF

u1
b F

u
?

b F
�1
b F

�
?

b 
; (25)
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with F u1
b;i D R

Fb
˛bvbi f1dx, F u

?

b;.ij / D R
Fb
˛bvbi f l � ej dx, F �1

b;i D R
Fb
˛bvbi c1dx

and F �
?

b;.ij / D R

Fb
˛bvbi cl � ej dx for 1 � i � nb and 2 � j � 3. Finally the

unknown vector is decomposed as:

U .�/T D ŒU s.�/ U b U c U �.�/ �
 (26)

where U T
b D ŒU

u1
b U

�1
b U

u
?

b U
�

?

b 
, U
T
c D ŒU u1

c U �1
c U u

?

c U �
?

c 
 and U T
� D

ŒU �T U �R 
.
The System (18) can then be solved by the Monte Carlo approach, or through a

condensation technique of the deterministic part of A onto its random part. More
details on these two approaches can be found in Cottereau et al. (2011) and Le
Guennec et al. (2013). The approximate solution of the solid model is then:

us.x; �/ D
nsX

iD1

3X

jD1
U s;ij .�/v

s
i .x/ej ; (27)

and the approximate solution of the beam model ub.x/ D u0.x/C �.x/ � x? is:

ub.x/ D
nsX

iD1
vsi .x/

(

U
u1
b;ie1 CU

�1
b;ie1 � x? C

3X

jD2

�
U

u
?

b;.ij /ej C U
�

?

b;.ij /ej � x?
�
)

:

(28)

4 Homogenization of a Stochastic Solid Model
into a Beam Model

In the previous section, we have described a way of coupling a solid model with
stochastic fluctuating mechanical parameters to a beam model with deterministic
mechanical parameters. Supposedly, the parameters of the beam model are an
upscaled version of the solid parameters. However, as discussed in the introduction,
it is not clear how to define the parameters of the deterministic beam given the
parameters fields of the solid model. This section aims at proposing a method to
do so.

The criterion that we will consider for selecting the upscaled model (the beam
model) is based on the idea that its behavior would be the same if considered alone
or coupled to its micro-scale version (the solid model). In some sense, if the beam
model is well chosen, its mechanical behavior at the macro-scale (for quantities of
interest relative to the beam model) should not feel any difference if coupled or not
to the solid model it upscales. Note that we do not pretend that this criterion ensures
uniqueness of the upscaled model, although it does seem reasonable. The technique
we propose here is an extension of the technique proposed in Cottereau (2013a,b).
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Fig. 2 Coupling configuration for the homogenization problem: the beam model is present
everywhere Fb �S D ˝, and the sample microstructure ˝s is placed in the middle

In terms of implementation, we propose a very simple iterative approach. Starting
from an initial guess of parameter vector pb D ŒEb �b Gb


T , we choose a set of
boundary conditions, and we compute for each boundary conditions:

1. The solution of a coupled beam-solid model numerically using the Arlequin
technique presented in the previous section (Fig. 2); and

2. The solution of a beam model alone, analytically.

The two solutions are then compared in terms of energies and the values of the
parameter vector pb are updated in order to decrease that difference, for instance
using the Nelder-Mead technique (Lagarias et al. 1998).

As in the classical numerical homogenization technique, the set of boundary
conditions that is chosen influences the homogenized vector that is obtained after
convergence. At least two approaches can be proposed, using Dirichlet or Neumann
boundary conditions, generalizing classical results of homogenization in elastic
media. Finally, the choice of initial condition for the parameter vector might also
influence the convergence value, or at least the rate of convergence. Two reasonable
initial choices would be

(
pb D ŒEŒE
 EŒ�
 �EŒ�



pb D ŒEŒE�1
�1 EŒ��1
�1 �EŒ��1
�1

(29)

generalizing the classical Hashin and Shtrikman bounds in linear elasticity (Huet
1990). The general pattern of the numerical homogenization scheme is summarized
in Algorithm 1, considering Dirichlet boundary conditions and arithmetic averages
for the mechanical parameters.

5 Conclusion

We have proposed in this paper a new coupling technique and a new homoge-
nization method. The coupling technique deals with a stochastic solid model and
a deterministic beam model, while the homogenization method allows to upscale
a stochastic solid beam into a deterministic beam model. Numerical simulations
of the proposed homogenization technique will have to be performed in order to
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Algorithm 1: Algorithmic description of the proposed iterative technique for the
numerical homogenization of a random solid model into a beam model

Data: N realizations of random solid parameters (E(x,ξ), m(x,ξ)) and choice of τ
Result: Dirichlet Arlequin estimate of parameters of the beam model pb∗ = [Eb

a, mb, Gb]T

Initialization: pb
0 ←− [E[E ] E[m] τE[m]];

While ‖ pb
i − pb

i−1 ‖ > criterion do
set the beam parameters: [Eb

a, mb, Gb]T ←− pb
i ;

estimate ub;
solve (analytically) the (mono-model) beam problem to get ub

beam
 ;

end
Store estimate: pb∗ = pb

i.

update pb
i+1 to minimize   b

arl [ub] −  bbeam [ub
beam] (using Nelder-Mead technique)

solve the Arlequin coupled system (8) with Dirichlet boundary conditions on   b to

discuss the influence of the various numerical parameters involved (choice of initial
parameters, boundary conditions). Extension to nonlinear beam models will also
be considered, in the context of seismic engineering. Indeed, numerical studies at
the micro-scale have shown that strong apparent damping appears in free vibrations
of heterogeneous concrete beams (Jehel and Cottereau 2012). Understanding the
upscaling of such a micro-scale nonlinear solid model into a beam nonlinear
model would allow to reduce significantly the numerical costs associated with the
simulation of full-scale buildings.
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Adaptive Strategy for Stochastic
Homogenization and Multiscale Stochastic
Stress Analysis

Sei-ichiro Sakata

Abstract This paper discusses the probabilistic analysis of a multiscale problem
of heterogeneous materials, such as composite materials, for estimating the prob-
abilistic characteristics of their homogenized equivalent elastic properties and
their macroscopic and microscopic stress fields. For this purpose, a function
approximation-based stochastic homogenization method or a perturbation-based
multiscale stochastic analysis method is employed. When using these methods
for the probabilistic analyses, an appropriate set of samples must be selected for
the approximation and the approximation order must be appropriately determined.
For this problem, to improve the accuracy of a lower-order approximation-based
analysis, some adaptive strategies for the multiscale stochastic analysis are intro-
duced. One is based on the approximation of a response function with the adaptive
weighted least-squares method and the other is a piecewise linear approximation
with the adaptive expansion of a response function. As a numerical example,
a stochastic homogenization and multiscale stochastic stress analysis of a glass
particle-reinforced composite material is solved. On the basis of the results, the
effectiveness of the proposed approaches is discussed.

Keywords Stochastic homogenization • Multiscale stochastic stress analysis •
Adaptive strategy • Perturbation • Function approximation • Composite material

1 Introduction

Recently, uncertainty quantification for heterogeneous materials has become an
important topic in the field of mechanical engineering. Because heterogeneous
advanced materials such as composites have complex microstructures, the analysis
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of uncertainty propagation through different scales plays an important role in the
reliability evaluation of a composite structure. Furthermore, this analysis is a key
process in the verification and validation of numerical simulations based on com-
putational mechanics. This type of problem is called a stochastic homogenization
problem or a multiscale stochastic stress analysis problem, and several studies
related to these problems have been published.

In the early stages of research in this field, the Monte Carlo simulation was
sometimes used for analysis (Kaminski and Kleiber 1996; Sakata et al. 2010a).
Because the Monte Carlo simulation does not require much assumption about the
analysis problem, an acceptable result is obtained under most problem settings.
However, it is known that the Monte Carlo simulation generally involves excessive
computational resources, such as CPU time or storage, and that it includes a bias in
the estimated result; therefore, a more efficient method needs to be developed.

For example, the perturbation-based stochastic homogenization method was
reported (Kaminski and Kleiber 2000; Sakata et al. 2008a). This method has
been extended to thermal conductivity problems (Kaminski 2001), thermoelastic
problems (Sakata et al. 2010b, 2013), multiscale stress analysis problems (Sakata
et al. 2011) and multiscale failure probability analyses (Sakata et al. 2012).
Moreover, several other approaches were proposed (e.g. Xu and Brady 2006;
Xu et al. 2009; Tootkaboni and Brady 2010). In other studies, an approxi-
mate stochastic homogenization method with kriging (Sakata et al 2008b) and
a polynomial-based approximation (Kaminski 2009) were proposed to enable
multiscale stochastic analysis by using existing commercial or in-house simulation
software.

These methods for stochastic homogenization analysis or multiscale stochas-
tic homogenization analysis have aimed to provide more accurate and efficient
analyses, but a more accurate method can sometimes be more complex. For
example, some methods are based on an approximation theory, and a higher
order approximation or a complex series with many terms may provide a more
accurate estimation. However, such a complex method or higher order approx-
imation is sometimes instable or difficult to use; therefore, a simple approach
should also be studied, e.g., a lower order perturbation-based or polynomial-based
approximation. In general, a lower-order approximation is more robust and easier
to use.

From this viewpoint, in this study, simple approaches were developed for
improving the accuracy of analysis with a lower-order approximation. One approach
is based on the approximation of a response function with the adaptive weighted
least-squares method and the other is a piecewise linear approximation with the
adaptive expansion of a response function.

In this paper, these adaptive methods are introduced, in addition to the
perturbation- or polynomial approximation-based approaches. A numerical example
is provided of the stochastic homogenization and multiscale stochastic stress
analysis of a glass particle-reinforced composite material. In accordance with the
results, the effectiveness of the proposed approach is discussed.
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2 Methodology

2.1 Homogenization Method

For the multiscale stochastic analysis of the elastic problem of a composite structure,
the homogenization theory is employed in this study. From a general formulation
of the homogenization theory (Guedes and Kikuchi 1990), a homogenized macro-
scopic elastic tensor, EH , can be computed as

EH D 1

jY j
Z

Y

E

�

I � @	

@y



dY; (1)

where E is an elastic tensor of a microstructure, the superscript H indicates a
homogenized quantity, jYj is the volume of a unit cell, I is a unit tensor, and dY
is a small volume element in the microstructure. 	 is a characteristic displacement,
which can be obtained as a solution of the following characteristic equation:

@

@y
E
@	

@y
dY D @

@y
EdY: (2)

Additionally, the microscopic stress, ¢ , can be computed from

¢ D E

�

I � @	

@y



"macro; (3)

where the superscript macro indicates a macroscopic quantity. The macroscopic
strain, "macro, is computed from a conventional single-scale elastic analysis by using
the homogenized equivalent elastic properties of a composite material obtained from
Eq. 1.

2.2 Monte Carlo Simulation for Multiscale Stochastic Analysis

In multiscale stochastic analyses, it is assumed that a microscopic quantity such as
the elastic property or geometry of a microstructure has a certain random variation.
In this case, realization of the microscopic random variable, X, can be expressed by
the following equation:

X� D .1C ˇ/ �X0; (4)

where the superscript 0 means the expected value, * indicates an observed value of
X, and ˇ is the normalized random variable, and it is assumed that ˇ is distributed
according to Gaussian distribution.
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If a microscopic quantity such as an elastic property of a component material
includes a random variation, the observed value of the homogenized elastic tensor
can be expressed as a probabilistic response of the microscopic random variation as
follows:

EH� D 1

jY j
Z

Y

E�
�

I � @	�

@y



dY; (5)

The realization of the characteristic displacement against the microscopic ran-
dom variable can be obtained by solving the characteristic equation, which,
considering the stochastic response, can be rewritten as

@

@y
E�

@	�

@y
dY D @

@y
E�dY; (6)

Similarly, the observed value of the microscopic stress can be computed from the
following equation:

¢� D E�
�

I � @	�

@y



"macro�; (7)

The observed value of the macroscopic strain is computed from the single-scale
stochastic stress analysis against the microscopic random variation; therefore, both
the stochastic homogenization analysis and the conventional single-scale stochastic
stress analysis will be needed for the microscopic stochastic stress analysis.

As examples of the probabilistic characteristics, the expectation or variance of
the homogenized elastic tensor can be expressed as

E
�
EH�� D

Z 1

�1
EH�f

	
EH



dEH ; (8)

Var
�
EH�� D

Z 1

�1
	
EH� � E

�
EH��
2f

	
EH



dEH ; (9)

where E[EH *] and Var[EH *] are the expectation and variance of the homogenized
elastic tensor, and f (EH) is the probabilistic density function of the homogenized
elastic tensor.

In the Monte Carlo simulation, the observed value of the homogenized elastic
tensor becomes a function of the normalized random variable ˇ, and the expected
value, Exp[ ], and variance, Var[ ], of the homogenized elastic tensor can be
approximately computed as

Exp
�
EH�� � 1

n

X

i

EH� .ˇi /; (10)
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Var
�
EH�� � 1

n � 1

X

i

	
EH� .ˇi / � Exp

�
EH��
2; (11)

where n is the number of trials.
From these quantities, the coefficient of variance CV[] can be computed as

CV
�
EH�� D

p
Var ŒEH�
=Exp

�
EH�� ; (12)

When assuming the Gaussian random variable, the random number is generated
with the following formula:

ˇ D
p

�2s2 logU1 � sin 2�U2; (13)

where 0<U1 � 1 and 0 � U2 � 1 are observed values of a uniform random variable
and s is the standard deviation of the random variable ˇ.

2.3 Multiscale Stochastic Analysis with a Function
Approximation Method

2.3.1 Perturbation-Based Multiscale Stochastic Analysis

Because the computation of Eqs. 10 and 11 involves a huge number of trials,
an approximation-based stochastic homogenization and multiscale stress analysis
method has been proposed. In this study, the perturbation-based stochastic homog-
enization method is employed as the analysis method with single-point expansion.

If random variation of a material property or geometrical parameter of a
microstructure is taken into account, Eq. 5 can be approximated by applying the
asymptotic expansion of the random response as follows:

EH� � EH0 CEH1ˇ C � � � CEHiˇi C � � �
D 1

jY j
Z

Y

	
E 0 C � � � CE iˇi C � � � 
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I � @
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	0 C � � � C 	iˇi C � � � 


�

dY;

(14)

where the superscript i indicates the ith order perturbation term. To obtain the
perturbation terms of the characteristic displacement, the following simultaneous
equation is solved:

KY 0	0 D F Y 0

	
KY1	0 CKY 0	1


 D F Y1

:::

9
>=

>;
; (15)

where KY and FY are the microscopic stiffness matrix and load vector, respectively,
for the characteristic equation obtained from Eq. 2.
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Substituting the first-order approximation of the microscopic elastic tensor and
the characteristic displacement into Eq. 14, and comparing the coefficients of the
same order random variables with each other, the perturbation terms of the homog-
enized elastic tensor can be obtained. For example, the first-order perturbation term
of the homogenized elastic tensor and the microscopic stress for material property
variation can be computed as

EH1 D 1

jY j
Z

Y

E 1

�

I � @	0

@y



dY � 1

jY j
Z

Y

E 0 @	
1

@y
dY ; (16)
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"macro0; (17)

With these perturbation terms, the expectation and variance of the homogenized
elastic property or microscopic stress of a composite material considering a micro-
scopic random variation can be approximately computed with the first-order second
moment method. For example, the expectation and variance of the microscopic
stress can be estimated as follows:

Exp
�
EH�� D EH0

Var
�
EH�� D

X

i

X

j

�
EH1�

i

�
EH1�

j
cov

�
ˇi ; ˇj

�

9
=

;
; (18)

2.3.2 Polynomial Approximation Approach

For a highly nonlinear response function, the perturbation-based approach may
sometimes be inefficient. For this reason, a multipoint approximation-based
approach was developed. To construct a surrogate model for the stochastic
homogenization analysis, when using a polynomial-based model, a set of
coefficients of the polynomial function can be conventionally determined by
minimizing an approximation error. The optimization problem in the case of the
homogenized Young’s modulus approximation can be written as follows:

find ci .i D 0; 1; : : : ; m/

to minimize Fobj D
kX

jD1
wj
�
bEH�

j �EH
	
ˇj

�2

s:t: bEH�
j D

mX

iD0
ciˇ

i
j

9
>>>>>>=

>>>>>>;

; (19)

where EH(ˇj) shows an observed value of the stochastic response function at the jth
sampling location of the random variable ˇj, k is the number of samples, m is the
order of approximation function, wj is the weighting coefficient for each sample,
and in a general least-squares method, wj D 1.
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After constructing the polynomial-based surrogate model, the Monte Carlo
simulation or the first-order second moment method can be used for the multiscale
stochastic analysis by using the surrogate at a lower computational cost.

2.3.3 Piecewise Linear Approximation Approach

Because a higher-order polynomial-based approximation sometimes fluctuates, a
low-order function is preferable for stability. In this study, a piecewise linear
approximation is employed for the multiscale stochastic analysis. For example, the
observed microscopic stress can be simply represented with a piecewise linear form
as

�� D � .ˇ/ � �0i C �1iˇ .ˇi � ˇ � ˇiC1/ ; (20)

where �0
i and �1

i are the zero and first-order perturbation terms for the ith interval,
namely,

�0i D �0
ˇ
ˇ
ˇDˇi ; �1i D �1

ˇ
ˇ
ˇDˇi ; (21)

After obtaining each term of the piecewise linear approximations of the micro-
scopic stresses, their probabilistic properties can be estimated. The expectation
and variance of the microscopic stress can be computed with the piecewise linear
approximation as follows:

E
�
��
� �

Z p1

p0

	
�00 C �10ˇ



f .ˇ/ dˇ C

Z p2

p1

	
�01 C �11ˇ



f .ˇ/ dˇ; (22)
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C
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�01 C �11ˇ � Exp

�
�H�

�
2
f .ˇ/ dˇ C � � �; (23)

where Pi D [pi, piC 1], p0 	�ˇ , pnC 1 
�ˇ , pi is the ith expansion point, �ˇ is the
expected value of the normalized microscopic random variable of ˇ.

3 Adaptive Strategies for Approximation-Based Multiscale
Stochastic Analysis

Multipoint approximation-based multiscale stochastic analysis methods, like the
approximation function approach or the piecewise linear approximation approach,
have the potential to improve the accuracy and efficiency of multiscale stochastic
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analyses, but some problems still exist. One is the determination of the appropriate
approximation order or the location of expansion points. In general, these are
problem dependent, and a better computational condition should be chosen for
different problem settings. For this problem, adaptive strategies are introduced for
the approximate multiscale stochastic analysis.

3.1 Polynomial-Based Approximate Stochastic
Homogenization with Adaptive Weight

When using the polynomial-based approximate stochastic homogenization method,
Eq. 19 must be solved to determine a set of appropriate coefficients of the
approximated response function. In general, this minimization yields a surrogate
model having the minimum average approximation error at the sample point.
However, the approximation error is not independently referred to each sample
point; therefore, the approximation error distribution is not controlled. On the other
hand, in the approximate stochastic analysis, the probabilistic density of a random
variable is given, which means that the appearance frequency depends on location.
Because of this, the estimation error should be smaller when the probabilistic
density is higher. For this purpose, sampling location and density can be optimized.

However, the computation of sampling values requires additional computational
costs, and resampling for a more accurate estimation or different computational con-
ditions will be expensive. From this viewpoint, an adaptive strategy for constructing
a polynomial based surrogate is developed.

As explained previously, the weight wj D 1 is adopted in a conventional least-
squares method. In this study, this weight is assumed to control the distribution of
the approximation error and is determined to be adaptive to the probabilistic density
of the microscopic random variable.

In this case, a Gaussian distribution-based weight according to the probabilistic
density function of the random variable, which is called the adaptive weight,
as expressed by Eq. 24 is applied to the approximate stochastic homogenization
analysis.

wj D w
	
ˇj

 D

8

<̂

:̂

1p
2 s

exp

 

� ˇ2j

2s2

!2

W ˇj ¤ 0

1 W ˇj D 0

; (24)

Figure 1 shows an example of the approximation error between the exact and
approximated function values. A linear approximation is constructed with using
the weight wj D 1 and Eq. 24 for expressing a relationship between an equivalent
Young’s modulus and the Poisson’s ratio of the resin of a particle-reinforced
composite material. According to Fig. 1, an approximation error becomes smaller
around the expected value of the microscopic random variable (ˇD 0) when using
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the adaptive weight, whereas the approximation error is larger near the expected
value when using the conventional least-squares method. With this approach, the
stochastic homogenization analysis is attempted in this study.

3.2 Adaptive Strategy for the Perturbation-Based Multiscale
Stochastic Analysis

The response function of a multiscale stochastic problem becomes nonsmooth
in some cases. In this case, an approximation function-based approach with a
smooth function, such as the polynomial approximation or Taylor series expansion,
is not appropriate as a surrogate model and the aforementioned piecewise linear
approximation may be applicable.

The dense division of Pi in Eqs. 22 and 23 will provide a more accurate esti-
mation of the variance, but the computational cost is higher. For this reason, fewer
expansion points are preferred in terms of computational efficiency. In this case, the
selection of an appropriate expansion point is important for improving accuracy. For
this purpose, an adaptive strategy for the piecewise linear approximation approach is
developed to estimate the coefficient of variance (CV) of the stress for a microscopic
random variation.

This study considers a piecewise linear approximation for a nonsmooth contin-
uous response function. In this case, estimating the nonsmooth point is important
for the determination of the expansion points, so as to construct a better surrogate
model. The algorithm of the proposed adaptive approach for this problem is
summarized in the following.

1. Compute the perturbation term of the microscopic stresses for the expected
microstructure.

2. Construct a surrogate model for estimating the stresses for an arbitrary value of
the microscopic random variable.
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3. Search the maximum value of the stress for constructing the approximation at the
first region. This approximated function is called the first approximation.

4. From the set of surrogate models, the element for which stress becomes larger
than the first approximation is searched. The approximated function of the stress
in the element is called the second approximation.

5. Investigate the intersection point of the first and second approximations, and
compute the perturbation term for the second approximation at the intersection
point.

6. Iterate steps 3 and 4, and the intersection point is updated until converged.
7. After convergence, construct the second approximation with the perturbation

term at the converged intersection points.
8. Search a larger stress, estimated with the surrogate with the perturbation term of

another element, and iterate steps 3–6 until an element having larger stress is not
found.

Figure 2 shows a conceptual view of the presented adaptive piecewise linear
approximation.

4 Numerical Examples

4.1 Problem Settings

In this study, the stochastic homogenization and multiscale stochastic stress analysis
problems of a particle-reinforced composite material are considered. Probabilistic
properties are estimated, such as expectation, variance, and CV of equivalent elastic
properties and microscopic stresses in a particle-reinforced plastic. A schematic
view of the composite and a finite-element model of the unit cell of the microstruc-
ture are shown in Fig. 3.

The properties of the employed particle and matrix correspond to E-glass and
epoxy resin. The volume fraction of particle (Vp) is 0.5 in this example. The elastic
properties of the component materials are listed in Table 1.
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Table 1 Elastic properties of
each component material

Young’s modulus [GPa] Poisson’s ratio

Epoxy 4.5 0.39
E-glass 73.0 0.22

4.2 Stochastic Homogenization of Particle-Reinforced
Composite Material with the Polynomial Approximation

For the stochastic homogenization analysis of a particle-reinforced composite
material, the polynomial approximation-based stochastic homogenization method
is employed. In this case, Young’s modulus and Poisson’s ratio of resin (Em, �m)
are considered as the microscopic random variables and the proposed approach
is applied to the stochastic homogenization analysis of the particle-reinforced
composite material.

Figure 4 shows the relative estimation errors between the approximation-based
stochastic homogenization methods and the Monte Carlo simulation. In this case,
the CV of the microscopic random variable is 0.05. Figure 4a shows the relative
error in CV estimations of the equivalent elastic properties and estimated results
for Em variation; Fig. 4b shows those for �m variation. In the legend, “no weight,”
“single weight,” “perturbation,” and “adaptive” refer to the results obtained from
the approximated functions, generated by a general least-squares method using
wj D 1, a single-point weight w D 1 at ˇD 0, a single-point approximation with
the perturbation method, and the proposed adaptive weight, respectively.
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Fig. 4 Relative error in the estimated CVs of the equivalent elastic properties (a) For Em variation,
(b) For �m variation

According to Fig. 4a, all methods produce accurate results for Em variation by
using first, second, and third-order approximations, whereas the estimated CVs with
the general least-squares method, single-point weighted least-squares method, and
perturbation include large errors for �m variation, especially when using the first-
or second-order approximations as shown in Fig. 4b. On the other hand, the
proposed adaptive strategy–based approach provides more accurate results than the
others when lower-order approximations are used. Although all methods provide
an accurate estimation with the third-order approximation, the proposed adaptive
approach is effective for lower-order approximation-based stochastic homogeniza-
tion analysis.
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4.3 Multiscale Stochastic Stress Analysis
of Particle-Reinforced Composite Material
with the Piecewise Linear Approximation

The stochastic analysis of the maximum stress in the particle-reinforced composite
material provides an example of multiscale stochastic stress analysis having a
nonsmooth response function. In this case, �m variation is considered to be a
microscopic random variable. A unidirectional load or enforced displacement is
applied to the rectangular composite structure in macroscale. The estimated CVs and
the relative error in CV estimation of the maximum microscopic stress between the
conventional first-order perturbation-based method and the Monte Carlo simulation
are illustrated in Fig. 5. The legend “constload” and “constdisp” mean the cases that
a constant load or enforced displacement is applied, respectively. As shown in this
figure, the CV estimation of the maximum �x includes a large error.

To discuss one reason for this inaccuracy, the response function of the maximum
�x for �m variation is illustrated in Fig. 6. As shown in Fig. 6, the response function
is nonsmooth; a reason for this nonsmoothness is that the finite element having
the maximum stress alters according to the variation in �m. In this case, a smooth
function is not appropriate as a basic function of a surrogate and a single-point
approximation cannot accurately estimate the response.

For this problem, the proposed adaptive piecewise linear approach is applied.
Because the adaptive method requires some iteration steps for improving accuracy,
the transition of the estimated CV of the maximum stress is illustrated in Fig. 7.
The estimated CV with the first-order perturbation and the Monte Carlo simulation
are also shown. As shown in Fig. 7, the proposed adaptive approach improves
the estimation accuracy after four iterations and the final relative estimation error
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between the CVs obtained by the Monte Carlo simulation and the proposed
approach is 3 %. This result shows the effectiveness of the proposed adaptive
piecewise linear approximation approach for a multiscale stochastic problem having
a nonsmooth response function.

5 Conclusion

This paper discusses the stochastic homogenization and multiscale stochastic stress
analysis of composite materials. In particular, adaptive strategies are introduced
for improving the accuracy of the approximation-based stochastic homogenization
and multiscale stochastic stress analyses. The aim of the adaptive strategy for each
problem is the improvement of accuracy by using a lower-order approximation. One
is the weighted least-squares method, in which weights are determined adaptive
to the distribution of the microscopic random variable. The other is the adaptive
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piecewise linear approximation, which determines an expansion point with iterative
computation of the perturbation terms.

In the numerical examples, the stochastic homogenization and multiscale
stochastic stress analyses are solved for a particle-reinforced composite material
by considering a random variation of the elastic properties of a component material.
On the basis of the numerical results, it is confirmed that the accuracy is efficiently
improved with the proposed approaches. This kind of lower-order approximation
with these adaptive methods will be helpful when performing a multiscale stochastic
analysis.
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Strength Properties of Porous Materials
Influenced by Shape and Arrangement of Pores:
A DLO Investigation Towards Material Design

Sebastian Bauer and Roman Lackner

Abstract The prediction of strength properties of porous materials, which in
general are random in nature with varying spatial distribution and variation of pores
and matrices, caused by the manufacturing processes, plays an important role with
regard to the reliability of materials and structures. The recently developed discon-
tinuity layout optimisation (DLO) and adaptive discontinuity layout optimisation
(ADLO), which was used for determination of strength properties of materials and
structures, are included in a stochastic limit analysis framework, using random
variables. Therefore, different material properties influencing the overall strength of
the porous material (e.g. matrix strength, shape, number, and distribution of pores)
within a considered two-dimensional RVE are assumed to follow certain probability
distributions. A sensitivity study for the identification of material parameters
showing the largest influence on the strength of the considered porous materials is
performed. The obtained results provide first insight into the nature of the reliability
of strength properties of porous materials, paving the way to a better understanding
and finally improvement of effective strength properties of porous materials.

Keywords Discontinuity layout optimization • Probability • Limit-analysis •
Upscaling • Homogenisation of strength properties

1 Introduction

As engineering materials, such as composites and heterogeneous high
strength – low weight materials, are continuously improving in engineering
applications (e.g. aerospace, mechanical-engineering, civil-engineering, etc.),
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allowing their use in high-performance structures (e.g. airplanes, lightweight cars,
high-rise buildings), the proper identification and understanding of the underlying
effective strength properties are of crucial importance. Since the microstructure
of these matrix-inclusion materials (e.g. ultra-high performance concrete, carbon
fibre-reinforced materials, etc.) is in general random in nature with varying spatial
distribution, size, and shape of pores, particles, matrices, and matrix-inclusion
interfaces, a statistical framework becomes necessary for model-based analyses
and finally prediction of material properties, see for instance (Koutsourelakis 2006,
2007; Al-Ostaz et al. 2007; Díaz et al. 2003; Dong et al. 2010; Du and Ostoja-
Starzewski 2006; Frantziskonis 1998; Graham-Brady et al. 2006; Guilleminot et al.
2011; Guilleminot and Soize 2012; Liu et al. 2013; Mehrez et al. 2012). Hereby, the
description of the random microstructure defines the quality of the employed model
and, hence, strongly influences the obtained results. In addition to the volume
fractions of considered inclusions (e.g. pores, particles, and fibres), their shape
and more importantly their spatial arrangement are thought to strongly affect the
strength properties of composite materials (Segurado and LLorca 2006).

The finite element method (FEM), employing nodes and finite elements for the
spatial description of the material system under consideration, offers the possibility
to represent the microstructure of composite materials in an appropriate manner.
Accordingly, the FEM was successfully applied e.g. in Antretter and Fischer (2001)
to determine the stress distribution inside the pore of RVEs containing a number
of randomly oriented elliptical inclusions, and in Chakraborty and Rahman (2008)
for the representation of microstructures with varying particle content and locations
following a stochastic description in order to determine the fracture behaviour of
functionally-graded materials. In Wriggers and Moftah (2006), the same approach
was chosen for determination of the damage behaviour of concrete using a model
with random aggregate arrangement at the mesoscopic level. Disadvantages of the
FEM such as the dependency of the results on the underlying discretization and
unsatisfactory modelling of the interface behaviour between inclusions and the
matrix material were highlighted in Wriggers and Moftah (2006). In contrast to
the numerical approach of the FEM, a continuum micromechanics-based approach,
employing the concept of limit stress states, is proposed in Maghous et al.
(2009), taking into account a random two-phase heterogeneous microstructure,
giving access to the effective yield function and, hence, to strength properties of
composite materials. However, neither the spatial arrangement of the inclusions
within the RVE, nor the variation of shape of the inclusions are considered in this
approach.

As a remedy, the application of the recently developed discontinuity layout
optimisation (DLO) (Smith and Gilbert 2007) and adaptive discontinuity layout
optimisation (ADLO) (Bauer and Lackner 2011) is proposed in this paper, taking
the detailed microstructure of random heterogeneous materials into account. As a
probabilistic extension of the ADLO towards material design, a framework using
stochastic limit analysis for porous materials with varying material properties
and morphologies (e.g. matrix strength, number, shape, and distribution of pores)
following certain probability distributions is employed. The so-obtained results
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provide first insight into the nature of strength properties of porous materials with
different volume fractions of circular and elliptical pores and varying properties
of the pores, paving the way to a better understanding and finally improvement of
effective strength properties of porous materials.

In the following section, the recently developed ADLO (Bauer and Lackner
2013, 2011) used within this work to predict the strength properties of porous
materials and its extension towards a probabilistic framework is described. The so-
obtained results are presented and discussed in Sect. 3. Finally, the work closes with
conclusions and a brief outlook towards future work on material design.

2 Methodology

Within the DLO, the material system is represented by a random set of n nodes,
where m discontinuities are generated as lines between these nodes by delaunay
triangulation (de Berg et al. 2008). In addition to the discontinuity layout obtained
from triangulation as shown in Fig. 1a (single layout), the double layout (Bauer
and Lackner 2013) introducing additional diagonals as discontinuities is considered
in this work (see Fig. 1b). The so-obtained discontinuity layout exhibits a larger
variety of angles and, therefore, a larger variety of possible failure modes. The
Mohr-Coulomb material model with the cohesion c and the friction angle ' is
assigned to every discontinuity, taking different material properties for the matrix
and pores into account. Every discontinuity may be a potential failure discontinuity
and, thus, contribute to the failure mode. Considering the energy balance of the
problem restricting it to live loads only, the objective is to minimize the internal
energy E int (dissipated energy along the failed discontinuities), which results in

a b

Fig. 1 Random DLO layouts for RVEs with seven pores with equal node density: (a) single layout
and (b) double layout
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the minimization of the external work Eext associated with the live load, yielding
(Smith and Gilbert 2007; Bauer and Lackner 2013):

min Eext D min E int ! min �fTLd D gT p: (1)

By employing linear programming, the set of failed discontinuities is calculated
which yields the minimized internal energy of the material system, resulting in
an upper-bound (UB) formulation with the following linear programming (LP)
problem (for details, see Smith and Gilbert 2007; Bauer and Lackner 2011, 2013):

min �fTLd D gT p;

subject to

Bd D 0; (2)

fTLd D 1;

Np � d D 0;

p � 0;

where fL [N] (2m) contains the shear and normal component for live load, � is the
failure load-factor, g [N] (2m) contains the product of length ` [m] and cohesive
shear strength c [N/m] of the discontinuities, B Œ�
 is a (2n � 2m) compatibility
matrix, and N Œ�
 is a (2m � 2m) plastic-flow matrix. In Eq. (2), d and p represent
the unknowns of the LP problem, where d [m] is a (2m) vector of discontinuity
displacements, and p [m] is a (2m) vector of plastic multipliers.

2.1 Probabilistic Formulation

In this work, the parameters of the matrix material such as cohesion c and the
friction angle ', the shape and the volume fraction fa of the pores are chosen to be
deterministic. The orientation � in case of elliptical pores and the size and spatial
arrangement of the pores, on the other hand, are random variables. The pores are
generated randomly within a two-dimensional RVE of size L � L, with L � 9r0:3,
with r0:3 as the radius of circular pores corresponding to a volume fraction of
fa D 0:3. Pores are placed one by one within the RVE, avoiding overlap with
existing pores. Parts of pores intersecting the boundary of the RVE are considered
at the opposite boundary of the material system, giving a periodic geometry.

For the following studies reported in this work, 500 different randomly-generated
RVEs with 7 pores and a matrix material with ' D 0ı and c D 0:5 subjected to
uniaxial tension were considered for each set of parameters:
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a b c

Fig. 2 RVEs with seven circular pores: (a) fa D 0:05, sr =Nr D 0:01, (b) fa D 0:15, sr =Nr D 0:1,
and (c) fa D 0:3, sr =Nr D 0:2

a b

d

c

Fig. 3 RVEs with seven elliptical pores: (a) fa D 0:05, E D 2, (b) fa D 0:15, E D 7, (c)
fa D 0:3, E D 4, and (d) definition of axes and orientation of elliptical pore

• In the first study, considering varying volume fraction of the pores fa and pore-
size distribution sr= Nr , the tensile strength of ft=f Mt of RVEs with circular,
randomly-distributed pores is predicted. Hereby, fa is varied from 0.05 to 0.3
and sr= Nr from 0.01 to 0.6, with sr as the standard deviation and Nr as the mean
value of the radii. Figure 2 shows three different layouts for the RVE.

• In a second study, considering variations in volume fraction of the pores fa
and the ellipse eccentricity E , effective strength properties of an RVE with
elliptical, randomly-distributed, and randomly-oriented pores are determined
(see Fig. 3a–c); fa is varied from 0.05 to 0.3, and the ellipse eccentricity E from
1 to 7 (see Piat et al. 2006), where E D a=b, with a for the major semi-axis and
b for the minor semi-axis (see Fig. 3d).
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• Finally, considering varying volume fraction of the pores fa and pore-size
distribution sa= Na, the influence on the effective strength of RVEs with elliptical,
randomly-distributed, and randomly-oriented pores is investigated. Hereby, fa
is varied from 0.05 to 0.3 and sa= Na from 0.01 to 0.6, where sa is the standard
deviation and Na the mean value of the semi-major axes.

3 Results and Discussion

In this section, the proposed stochastic framework for strength homogenisation is
applied to three different aspects of porous materials: First, the effective strength
properties of materials with circular pores of varying size are investigated, followed
by the identification of the effective strength properties of materials with elliptical
pores with different volume fractions. Finally, materials with elliptical pores with
varying sizes are considered. The effective strength properties are illustrated by
the mean value and the 5 % lower quantile of the calculated strength distribution,
in analogy to specifications of existing codes (e.g. DIN EN 1990:2010-12 2010)
as a characteristic/nominal design value for material properties. The variation
of the strength properties is presented in terms of the standard deviation and a
dimensionless standard deviation, with the latter being obtained from relating the
standard deviation to the mean value.

3.1 Circular Pores: Variation of Size

Similar to the investigation in Bauer and Lackner (2013), Fig. 4a shows the mean
value of ft=f Mt of the effective tensile strength distribution as a function of fa for

a
b

Fig. 4 Circular pores: (a) mean value and (b) standard deviation of ft=f M
t as a function of sr =Nr

and fa (f M
t : tensile strength of the matrix material)
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a
b

Fig. 5 Circular pores: (a) 5 % lower quantile value and (b) dimensionless standard deviation of
ft =f

M
t as a function of sr =Nr and fa (f M

t : tensile strength of the matrix material)

a b

Fig. 6 Circular pores: failure mechanisms of RVEs with fa D 0:3 and sr =Nr D 0:01, (a) high-
strength and (b) low-strength configuration

different values of sr= Nr . As expected, strength properties decrease with increasing
volume fraction of the pores fa. The small values of the standard deviation of
ft=f

M
t (Fig. 4b), being one order of magnitude smaller than the mean values, results

in an ftq5=f Mt distribution similar to the mean value (see Fig. 5a).
The dimensionless standard deviation increases almost linearly with increasing

fa, as illustrated in Fig. 5b, reflecting the increased variability in failure mechanisms
introduced by the increasing pore space. The variation of the pore radii, on the
other hand, has no influence of the dimensionless standard deviation of the strength
properties. The failure mechanism corresponding to the maximum and minimum
value of the effective strength of RVEs with fa D 0:3, circular pores, and varying
sr= Nr are shown in Figs. 6 and 7.
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a b

c d

Fig. 7 Circular pores: failure mechanisms of RVEs with fa D 0:3 and sr =Nr D 0:2, (a) high-
strength and (b) low-strength configuration, and sr =Nr D 0:6, (c) high-strength and (d) low-strength
configuration

3.2 Elliptical Pores: Variation of Volume Fraction

Figure 8a shows the mean value of the effective tensile strength distribution for
the investigated porous RVEs with varying fa and E . Hereby, the increase of both
E and fa result in a decrease of the effective strength properties. Both observations
can be explained by the reduction of the effective cross-section area within the RVE,
giving lower values for the effective strength. Similar to the previous study, the small
values of the standard deviation of ft=f Mt (Fig. 8b), being one order of magnitude
smaller than the mean values, result in an ftq5=f M

t distribution similar to the mean
value (see Fig. 9a).

In Fig. 9b, the dimensionless standard deviation is given, showing an almost
linear increase of the dimensionless standard deviation with increasing fa and E .
This behaviour reflects the increased variability in failure mechanism introduced
by the increasing pore volume, on the one hand, and the additional degree of
freedom introduced by the eccentricity, on the other hand. Exemplarily, the failure
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a b

Fig. 8 Elliptical pores: (a) mean value and (b) standard deviation of ft =f M
t as a function of E

and fa (f M
t : tensile strength of the matrix material)

a b

Fig. 9 Elliptical pores: (a) 5 % lower quantile value and (b) dimensionless standard deviation of
ft =f

M
t as a function of E and fa (f M

t : tensile strength of the matrix material)

mechanisms corresponding to the maximum (in case of low porosity) and minimum
value (in case of high porosity) of the effective strength of RVEs with elliptical
pores characterized by an eccentricity of E D 7 are shown in Fig. 10. Whereas
the weakening effect on the cross-section in case for low porosities depends on
the orientation and arrangement of the pores, a significant reduction of cross-
section is obtained for almost all pore configurations in case of high porosities. The
latter behaviour is reflected by the standard deviation given in Fig. 8b, showing its
minimum value for high values of E and fa.

Figures 11–13 show the failure mechanisms for high- and low-strength con-
figurations for a volume fraction fa D 0:05 with increasing E , illustrating the
weakening effect of pores on the cross-section. For high values ofE , this weakening
effect strongly depends on the orientation and the arrangement of the pores, resulting
in a high variation of strength properties (see Fig. 8b); for low values of E , the
weakening effect depends mainly on the arrangement of pores, resulting in a lower
variation of strength properties (see Fig. 9b).
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a b

Fig. 10 Elliptical pores: failure mechanisms of RVEs with E D 7 with (a) fa D 0:05 (maximum
value for ft =f M

t ) and (b) fa D 0:3 (minimum value for ft=f M
t )

a b

‘

Fig. 11 Elliptical pores: failure mechanisms of RVEs with E D 2 and fa D 0:05, (a) high-
strength and (b) low-strength configuration

a b

Fig. 12 Elliptical pores: failure mechanisms of RVEs with E D 4 and fa D 0:05, (a) high-
strength and (b) low-strength configuration
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a b

Fig. 13 Elliptical pores: failure mechanisms of RVEs with E D 7 and fa D 0:05, (a) high-
strength and (b) low-strength configuration

a b

Fig. 14 Elliptical pores with fa D 0:15: (a) mean value and (b) standard deviation of ft=f M
t as

a function of sa=Na and E

3.3 Elliptical Pores: Variation of Size

Figures 14a and 16a show the mean value of ft=f Mt and the 5 % lower quantile
value of the effective tensile strength distribution, ftq5=f Mt , as a function of E
for different values of sa= Na considering a constant volume fraction of fa D 0:15.
As shown in the previous study, the strength properties decrease with increasing
eccentricity of the pores E , which is explained by the decrease in the effective
cross-section of the matrix material caused by longer pores (see Figs. 16 and 17).
The standard deviation of ft=f M

t as a function of E and sa= Na is shown in Fig. 14b,
following the same trend as the mean value for E > 3, decreasing with increasing
E , while the variation of sa= Na has only a minor influence on the standard deviation
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a b

Fig. 15 Elliptical pores with fa D 0:15: (a) 5 % lower quantile value and (b) dimensionless
standard deviation of ft=f M

t as a function of sa=Na and E

a b

Fig. 16 Elliptical pores: failure mechanisms of RVEs with fa D 0:15 and sa=Na D 0:01, (a)
high-strength and (b) low-strength configuration

of the tensile strength. The dimensionless standard deviation in Fig. 15b exhibits
an almost linear increase with increasing E , where sa= Na shows again only a minor
influence on the dimensionless standard deviation of ft=f Mt .

For low values of sa= Na, the arrangement of the pores among one another
influences the weakening of the cross-section (see Fig. 16); for high values of sa= Na,
on the other hand, the weakening of the cross-section is caused by larger pores
(see Fig. 17) and depends on their arrangement. For both cases, the cross-sections
and the length of the failure modes are similar, resulting in a similar standard
deviation.
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a b

c d

Fig. 17 Elliptical pores: failure mechanisms of RVEs with fa D 0:15 and sa=Na D 0:3, (a) high-
strength and (b) low-strength configuration and sa=Na D 063, (c) high-strength and (d) low-strength
configuration

4 Conclusions and Outlook

In this work, a statistical framework using stochastic limit analysis was proposed
for investigating the effect of randomly distributed/oriented circular and elliptical
pores, on the effective strength properties, discontinuity layout optimisation was
employed. Based on the results of the performed studies, the following conclusions
can be drawn:

• The mean value of the effective strength of the considered heterogeneous porous
material mainly depends on the length of the failure mode. An increase in
length may be accomplished by the decrease of pore content and/or avoidance
of elliptical pores with high eccentricity ratio.

• The 5 % lower quantile value showed similar dependence as the mean value,
which was explained by the small values of the standard deviation of ft=f M

t ,
being one order of magnitude smaller than the respective mean values.
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a b

c

Fig. 18 Comparison of numerical solution and approximation: (a) circular pores: variation of size
(Study 1), (b) elliptical pores: variation of volume fraction (Study 2), and (c) elliptical pores:
variation of size (Study 3)

• A significant influence on the material properties caused by the variation of the
size of the pores, while keeping the porosity and eccentricity constant, could not
be observed.

Having identified the porosity and the eccentricity constant as the main two
parameters controlling the effective strength, the influence of fa and E on ft=f Mt
is approximated by the following relations (see Fig. 18) using the least square
regression:

Study1 Wft=f Mt D 5:5f 2a � 3:82fa C 0:93 (3)

Study2 Wft=f Mt D 8:19f 2a C 0:005E2 � 4:5fa � 0:09E C 0:99 (4)

Study3 Wft=f Mt D 0:007E2 � 0:11E C 0:51 (5)
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a b c

Fig. 19 Optimization strategies: (a) Case 1: reduction of fa , E D const., (b) Case 2: fa D const.,
reduction of E , (c) Case 3: reduction of both fa and E

Table 1 Strength increase (in [%]) using different optimization strategies characterized by
variation of fa and E

Reduction of fa # 7:07%
fa E fa E and E # 7:07% Optimum

0.1 2 6:37 3:07 6:63 7.05 (fa # 8.91 % E # 4.54 %)
0.1 5 9:92 7:16 11:93 12.08 (fa # 7.99 % E # 6.02 %)
0.2 2 10:77 5:51 11:24 11.97 (fa # 8.99 % E # 4.38 %)
0.2 5 29:97 22:95 36:41 36.86 (fa # 7.99 % E # 6.02 %)

Alternatively, the relation representing the numerical results of Study 3 may be
obtained from Eq. (4) by setting fa D 0:15, giving

ft2=f
M
t D 0:005E2 � 0:09E C 0:50; (6)

agreeing very well to the relation given in Eq. (5).
Figure 19 shows three optimization strategies for the improvement of the strength

properties of the considered porous materials by varying pore-space properties: (i)
reduction of pore content by fa (Fig. 19a), (ii) reduction of eccentricity by E
(Fig. 19b), and (iii) a combination of the two cases (Fig. 19c). As a result of the
optimization considering an overall change of pore-space properties fa and E
of 10 %, reading

R D 10% D 100

s
�
fa

fa

2

C
�
E

E

2

; (7)

the strength increase related to the original strengthft=ft is given in Table 1. In the
last column of Table 1, the maximum strength increase is given with the respective
change of fa and E given in parentheses.

Figure 20 shows the strength increase/decrease for a variation of fa and E
using the initial value of fa D 0:2 and E D 5. Hereby, the light grey region
indicates a strength increase, while the darkgrey region is characterized by a
decrease of strength properties; additionally, two optimization paths are given as
illustration.
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Fig. 20 Optimization for fa D 0:2 and E D 5 for optimum (ft D 36:86) and equal reduction
(ft D 36:86)
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Homogenization of Random Heterogeneous
Media with Inclusions of Arbitrary Shape

George Stefanou, Dimitris Savvas, Manolis Papadrakakis,
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Abstract In this paper, the effective properties of random heterogeneous (two-
phase) media with arbitrarily shaped inclusions are computed in the framework of
the extended finite element method (XFEM) coupled with Monte Carlo simulation
(MCS). The implementation of XFEM is particularly suitable for this type of
problems since there is no need to generate a new finite element mesh at each MCS.
The inclusions are randomly distributed and oriented within the medium while
their shape is implicitly modeled by the iso-zero of an analytically defined random
level set function, which also serves as the enrichment function in the framework
of XFEM. Homogenization is performed based on Hill’s energy condition and
MCS. The homogenization involves the generation of a large number of random
realizations of the microstructure geometry based on a given volume fraction of the
inclusions and other parameters (shape, spatial distribution and orientation). The
influence of the inclusion shape on the effective properties of the random media is
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highlighted. It is shown that the statistical characteristics of the effective properties
can be significantly affected by the shape of the inclusions especially in the case of
large volume fraction and stiffness ratio.

Keywords Random media • Homogenization • Level set • XFEM • Monte
Carlo simulation

1 Introduction

The mechanical behavior of heterogeneous and in particular of composite materials
is governed by the mechanical properties of their individual components, their
volume fractions and other parameters defining their spatial and size distribution.
Although only the macroscopic mechanical behavior is of interest in many cases,
the microstructure attributes of this type of materials are extremely important for a
better understanding of their intrinsic properties. This is the reason for which the
linking of micromechanical characteristics with the random variation of material
properties at the macro-scale has gained particular attention during the last years
(e.g. Torquato 2002; Ostoja-Starzewski and Wang 1999; Kamiński and Kleiber
2000; Xu and Graham-Brady 2005; Yvonnet et al. 2008; Hiriyur et al. 2011; Ma
et al. 2011; Greene et al. 2013; Clément et al. 2013). In this framework, it is possible
to explore in detail the impact of each assumption made at the microlevel on the
structural behavior of the macroscopic continuum.

A complete deterministic analysis of a heterogeneous medium taking its
microstructure into account would involve excessive computational effort and
may not be feasible even with today’s available computing power. It is therefore
necessary to approximate the complex microstructures with equivalent effective
homogeneous material properties. To obtain the effective homogeneous properties
of composite materials, various methods have been proposed, either analytical (e.g.
Torquato 2002) or numerical (e.g. Miehe and Koch 2002; Yuan and Fish 2008;
Charalambakis 2010; Geers et al. 2010; Ma et al. 2011). A stochastic approach to
homogenization accounts for the fact that a particular microstructure is just a single
sample realization from a specified spatial random process. Monte Carlo based
stochastic homogenization involves the computational analysis of a large number of
randomly generated realizations of the composite medium. The results from these
analyses are used to derive the effective properties of an equivalent homogeneous
medium and quantify their inherent uncertainties.

Classical finite element (FE) methods are commonly used to analyze complex
microstructures. In this case, the mesh conforms to the internal material interface
boundaries that cause the strong or weak discontinuities in the displacement solution
field. While fast meshing algorithms are available to discretize a domain with
such internal features, this step still involves a significant computational effort.
This is especially true when large number of simulations are to be performed to
quantify the probability distributions involved, with reasonable confidence. The
development of the extended finite element method (XFEM) (Moës et al. 1999)



IUTAM Symposium 2013 87

offers the possibility to use a regular mesh which does not have to be adapted
to the internal details (cracks or material interfaces) of each random realization
of the microstructure. XFEM is therefore particularly suitable to model the local
heterogeneous material structure in a representative volume element (RVE) for the
application of homogenization techniques (Belytschko et al. 2009; Lian et al. 2013).
It is worth noting that some issues have been recently identified with regard to the
accuracy of the estimated local fluxes in the vicinity of the interface when XFEM is
applied to diffusion problems in a multi-phase setup (Diez et al. 2013).

This paper deals with the homogenization of random heterogeneous (two-phase)
media with arbitrarily shaped inclusions in the framework of XFEM coupled with
Monte Carlo simulation (MCS). In particular, the influence of the inclusion shape
on the effective properties of the random media is highlighted. The inclusions are
randomly distributed and oriented within the medium and their shape is implicitly
modeled by the iso-zero of an analytically defined random level set function,
which also serves as the enrichment function in the framework of XFEM. The
analytical function used is a random “rough” circle defined by a set of indepen-
dent identically distributed (i.i.d.) random variables and deterministic constants
governing the roughness of the shape (Stefanou et al. 2009). Homogenization is
performed based on Hill’s energy condition and MCS (Miehe and Koch 2002). The
homogenization involves the generation of a large number of random realizations
of the microstructure geometry based on a given volume fraction of the inclusions
and other parameters (shape, spatial distribution and orientation). It is shown that
the statistical characteristics of the effective properties can be significantly affected
by the shape of the inclusions especially in the case of large volume fraction and
stiffness ratio.

2 Modeling Inclusions of Arbitrary Shape with XFEM

2.1 Problem Formulation

Consider a medium which occupies a domain ˝ � R
2 whose boundary is repre-

sented by � . Let prescribed traction Nt applied on surface �t � � (natural boundary
conditions) and prescribed displacements Nu applied on �u � � (essential boundary
conditions). The medium contains an inclusion which occupies the domain˝C and
is surrounded by the internal surface �incl � � such that ˝ D ˝C [ ˝� and
� D �t [ �u [ �incl (Fig. 1). The governing equilibrium and kinematic equations
for the elastostatic problem of the medium ignoring the body forces is:

div� D 0 in ˝ (1a)

u D Nu in �u (1b)

� � n D Nt in �t (1c)

�� � nincl� D 0 in �incl (1d)



88 G. Stefanou et al.

Fig. 1 Schematic of a
medium which occupies a
domain ˝ D ˝C [˝�,
contains an inclusion .˝C/

and is subjected to essential
and natural boundary
conditions on surfaces �u and
�t respectively

where n and nincl are the unit normals to �t and �incl, respectively. Note that Eq. (1d)
implies traction continuity along the material interface �incl.

2.2 XFEM Discrete System

The weak form of the discrete problem, obtained from the differential equation (1a)
through its transformation into a suitable variational form, can be stated as:

find uh 2 Uh � U such that 8vh 2 V h � V;

a
	
uh; vh


 D l
	
vh

 (2)

where the trial function u and the test function v are represented as a linear
combination of the same interpolation functions, and h stands for the characteristic
size of the elements in the mesh. Note that to accurately capture a non-smooth
solution resulting from material interfaces, the traditional FE method requires
a mesh that conforms to the inclusion geometry. On the contrary, the XFEM
eliminates the requirement of a conforming mesh by enriching the traditional
FE approximation with a suitably constructed enrichment function. The XFEM
displacement approximation for the trial and test functions can be decomposed into
the standard FE part and the enriched part as follows:

uh .x/ D uhfem .x/C uhenr .x/ D
X

i2I
Ni .x/ ui C

X

j2J
Nj .x/ f .x/�  

	
xj

g˛j

vh .x/ D vhfem .x/C vhenr .x/ D
X

i2I
Ni .x/ vi C

X

j2J
Nj .x/ f .x/�  

	
xj

gˇj

(3)
where I is the set of all nodes in the mesh and J is the set of nodes that are
enriched with the enrichment function  that satisfies the local character of the
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displacement field. A detailed description of the stochastic enrichment function
that has been developed for arbitrarily shaped inclusions is provided in Sect. 2.3.
To satisfy partition of unity, the enrichment function is enveloped by the original
shape functionsNj and additional to the standard nodal variables ui or vi , enriched
nodal variables ˛j or ˇj are introduced in the approximation equations for uh or vh,
respectively. In order for the extended FE approximations to retain the Kronecker-ı
property of the standard FE approximations so that at node j, uh

	
xj

 D uj, a shifted

enrichment function S .x/ D  .x/ �  
	
xj



is used which was first suggested in
Belytschko et al. (2001). By this shifting operator, the enrichment terms vanish at
all nodes j 2 J. Substituting Eq. (3) into the weak form of Eq. (2), we get a discrete
system of algebraic equations:

�
Kuu Ku˛

K˛u K˛˛

� �
u
˛

�

D
�
Fu

F˛

�

(4)

where ŒKuu
ij D a
	
Ni;Nj



, ŒK˛˛
ij D a

	
SNi ; SNj



and ŒKu˛
ij D ŒK˛u
j i D

a
	
Ni ; SNj



are the stiffness matrices associated with the standard FE approxima-

tion, the enriched approximation and the coupling between them, respectively. The
forces are expressed as ŒFu
i D l .Ni/ and ŒF˛
j D l

	
SNj



. From the solution of

the system, we finally obtain the nodal displacements u and enriched variables ˛.

2.3 Enrichment Function

Inclusions into a medium introduce a weak discontinuity in the displacement field
(due to change in material properties) which shows a kink at the interface and
a discontinuous first derivative. For modeling such fields in the framework of
XFEM, usually a ramp function in the form of absolute distance function is used to
enrich the approximation field (Krongauz and Belytschko 1998). XFEM is typically
combined with the level set approach where a level set function � is used to
implicitly describe random inclusion geometry (Sukumar et al. 2001; Lang et al.
2013). While the level set method is often used to track moving interfaces on a fixed
mesh (Sethian 1999), it is used herein to define the location of the inclusion interface
and its stochastic variation. The location of the interface �incl .�/ is implicitly
defined by the iso-zero of the following random level set function representing a
“rough” circle, which is taken as the signed radial distance function to the curve:

� .x; �/ D kx � ck �R .˛ .x/ ; �/ (5)

where x is the spatial location of a point in the meshed domain, c is the center of
the rough circle, R .˛ .x/ ; �/ is a random field representing the radius of the rough
circle, ˛ .x/ 2 Œ0; 2�
 is the polar angle at position x and � denotes the randomness
of a quantity (Fig. 2).
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Fig. 2 Schematic
representation of a rough
circle

In this study, the following equation is used for the random radius (Stefanou et al.
2009):

R .˛; �/ D 0:2C 0:03Y1.�/C 0:015fY2.�/cos.k1˛/
C Y3.�/sin.k1˛/C Y4.�/cos.k2˛/C Y5.�/sin.k2˛/g (6)

where the i.i.d. uniform random variables Yi .�/ 2 U
�
�p

3;
p
3
�

, i D 1; : : : ; 5.

k1, k2 are deterministic constants which define the period of oscillations of the
random rough circle around the shape of the reference (perfect) circle. Finally
the enrichment function which is used in Eq. (3) is formulated as the modified
enrichment function proposed in Sukumar et al. (2001). This is the absolute value
of the random level set function discretized according to the FE mesh of the spatial
domain:

 .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ

X

i2I
Ni .x/ �i

ˇ
ˇ
ˇ
ˇ
ˇ

(7)

where �i is the value of the level set function of Eq. (5) at node i and Ni .x/
are the FE nodal basis functions. Another choice for the enrichment function was
introduced by Moës et al. (2003). This enrichment function has been used in Savvas
et al. (2014) and leads to an improvement of the accuracy and convergence of the
XFEM solution.

2.4 Convergence Study of XFEM Solution for Single Inclusion

In this section, three RVE models containing a single centered inclusion with differ-
ent geometry are simulated both with the XFEM and standard FEM. Equations (5)
and (6) are used for the construction of the inclusions where parameters .k1; k2/
are chosen as .0; 0/, .0; 3/ and .0; 6/. All RVEs have a unit cell geometry with
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Fig. 3 Schematic of
displacement type boundary
conditions on RVE model

Fig. 4 Comparison of displacement fields obtained from XFEM and FEM for RVE with inclusion
.k1 D 0; k2 D 6/: (a) XFEM mesh, (b) XFEM displacements, (c) FEM mesh and (d) FEM
displacements

dimensions 10 � 10mm and a volume fraction (vf) of inclusions 30 %. In the
case of XFEM, a structured mesh of bilinear quadrilateral elements is used where
the inclusions are implicitly described through the enrichment function. The same
type of elements is used for FEM but in this case the mesh must conform to the
boundaries of the inclusions (see Fig. 4). The RVEs are subjected to displacement
type boundary conditions as shown in Fig. 3. A uniform strain N" is imposed on the
right edge of the models.
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Fig. 5 Effect of elastic
moduli ratio on the accuracy
of the XFEM solution

The matrix and the inclusions are modeled using linear elastic isotropic materials
with Young’s moduli Em D 1 and Eincl D 1;000GPa, respectively. The Poisson
ratio for both materials is set equal to 0.3. Figure 4 displays the mesh and
the displacement field obtained from XFEM and FEM for the RVE model with
k1 D 0; k2 D 6. As it can be observed from the comparison of XFEM and
FEM displacement fields, the results agree very well to each other. A convergence
study with respect to the matrix-inclusion stiffness ratio is also conducted for the
three RVE models described previously. Both stiff .Eincl > Em/ and compliant
.Em > Eincl/ inclusions are considered for stiffness ratio values (Eincl=Em or
Em=Eincl) ranging from 5 to 10,000. In Fig. 5, the relative difference between
the XFEM and FEM solution in terms of strain energy … is plotted against the
corresponding ratio of elastic moduli. The relative error of the two solutions seems
to increase as the stiffness ratio increases and is more significant for the case of stiff
inclusions. For the elastic moduli ratio 103 used in the numerical examples (Sect. 4),
the differences between XFEM and reference FEM solutions are at most 4.12 %.

3 Homogenization

3.1 Generation of Random Microstructures

In order to proceed to the stochastic homogenization procedure in the framework of
MCS (Sect. 3.2), the first step is to generate a large number of random realizations
of the microstructure geometry of the RVEs. For this purpose an efficient algorithm
was used in Hiriyur et al. (2011), which has been appropriately modified here
to account for arbitrarily shaped inclusions. A specific volume fraction (vf) and
number of inclusions nincl is assigned to each RVE with dimensions X1 � X2. For
the generation of arbitrarily shaped inclusions, Eqs. (5) and (6) are used with specific
deterministic constants k1, k2 and random variables Yi.�/ produced according to a
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Fig. 6 Sample realizations of generated random microstructures with vf = 30 % and parameters
k1 D 0 and k2 D 3

prescribed uniform PDF fYi . The random boundary curve �incl.�/ of an inclusion is
constructed using N discrete points as follows:

�incl.�/ W fx D c CR .˛; �/ .cos˛ � e1 C sin˛ � e2/g (8)

where e1, e2 are the unit vectors of the Cartesian coordinate system (Fig. 2). For each
inclusion, a set of random coordinates representing the center of the rough circle
and its random orientation angle are also generated according to prescribed uniform
distributions fc and fˇ . In Fig. 6, a set of RVE realizations are shown, generated
using the algorithm mentioned above. These RVEs have a volume fraction vf = 30 %
and contain different number of inclusions with parameters k1 D 0 and k2 D 3.

3.2 Homogenization in the Framework of MCS

The homogenization scheme adopted in this paper is based on the fundamental
assumption of statistical homogeneity of the heterogeneous medium (Hashin 1983)
which means that all statistical properties of the state variables are the same
at any material point and thus a representative volume element (RVE) can be
identified. Effective homogeneous material properties, corresponding to the random
microstructures generated by the algorithm in Sect. 3.1, are obtained by MCS.
For this purpose, a sufficiently large number of elastic analyses are conducted
where the RVEs are subjected to the displacement boundary conditions shown in
Fig. 3. Although there is a constant homogenized material property within the RVE,
this property changes from realization to realization making it a random variable.
Assuming that the resulting homogeneous material will remain linear and isotropic,
the effective Young’s modulus Eeff and Poisson ratio �eff are the only parameters to
be defined through the stochastic homogenization procedure.

Miehe and Koch (2002) proposed a computational procedure to exclusively
define the overall macroscopic stresses and tangent moduli of a typical microstruc-
ture from the discrete forces and stiffness properties on the boundary nodes of
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the meshed RVE model. Following this procedure, a prescribed strain tensor N"
is applied on the boundary of the microstructure models through displacement
boundary conditions in the form:

uq D D
T
q N" (9)

where Dq is a geometric matrix that depends on the coordinates of the nodal point
q which lies on the boundary of the model, defined by

Dq D 1

2

2

4
2x1 0

0 2x2
x2 x1

3

5 (10)

where .x1; x2/ 2 Y . The overall macroscopic stress N� is then calculated in an
average manner from the nodal reaction forces f q obtained by XFEM analysis as

N� D 1

jV j
MX

qD1
Dqf q (11)

where V is the volume of the RVE and M is the number of boundary nodes q. The
macroscopic stress is related to the imposed macroscopic strain by a linear isotropic
elastic constitutive matrix in the form

2

4
N�11
N�22
N�12

3

5 D
2

4
Ceff Deff 0

Deff Ceff 0

0 0 Geff

3

5

2

4
N"11
N"22
N"12

3

5 (12)

where

Ceff D

8
ˆ̂
<̂

ˆ̂
:̂

Eeff

1 � �2eff

plane stress

	
1 � �eff



Eeff

	
1C �eff


 	
1 � 2�eff


 plane strain

(13)

Deff D

8
ˆ̂
<̂

ˆ̂
:̂

�effEeff

1 � �2eff

plane stress

�effEeff
	
1C �eff


 	
1 � 2�eff


 plane strain
(14)

and Geff D Eeff

2
	
1C �eff


 (15)
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The computation of the effective Young’s modulus and Poisson ratio is accom-
plished by imposing the macrostrain vector N" D Œ1 0 0
T in form of displacements
(see Fig. 3). Thus Ceff D N�11= N"11 and Deff D N�22= N"11 can be calculated from which
Eeff and �eff are derived for each Monte Carlo sample.

4 Numerical Examples

The probability distribution of the effective elastic modulus and Poisson ratio for
a plane-stress medium containing inclusions of arbitrary shape is obtained using
the approach described in previous sections. As already stated, a linear isotropic
material model is considered for both matrix and inclusions with Poisson ratio
�m D �incl D 0:3. Eeff , �eff are computed through the coupled XFEM-MCS
homogenization approach of Sect. 3.

A unit cell of size 10�10mm subjected to the displacement boundary conditions
shown in Fig. 3, is used in the analyses. To achieve statistical convergence, a total of
1,000 Monte Carlo simulations are performed for each volume fraction of inclusions
considered ranging from 0.2 to 0.4. The number of inclusions in each MC sample
is fixed to 15. Parametric investigations with respect to the stiffness ratio Eincl=Em
are conducted to highlight its effect on the results. It is noted that the computedEeff

is in all cases within the upper and lower bounds defined by the Voigt and Reuss
models, respectively.

For stiffness ratio Eincl=Em D 10 (stiff inclusions) or Em=Eincl D 10 (compliant
inclusions), the effect of the inclusion shape is negligible in all cases of shape
roughness as the difference in the mean value of the effective elastic modulus
between .k1 D 0; k2 D 0/ (perfect circle) and .k1 D 0; k2 D 6/ (arbitrary shape) is
less than 5 % for both the stiff and compliant inclusions.

The influence of the inclusion shape on the effective properties becomes more
pronounced in the case of large stiffness ratios. Figure 7 displays the histograms
of Eeff for stiffness ratio Eincl=Em D 1;000, three values of vf and different cases
of inclusion shape roughness. The differences in the mean value of the effective
elastic coefficient Ceff for various inclusion shapes and volume fractions are given
in Table 1. An increase of about 30 % in Ceff can be observed in the case of vf = 0.4
between .k1 D 0; k2 D 0/ and .k1 D 0; k2 D 6/. The shape of the histograms is
significantly affected by the volume fraction and shape of the inclusions.

As shown in Fig. 8, a reduction of the effective elastic modulus occurs with the
increase of shape roughness in the case of compliant inclusions (Em=Eincl D 1;000).
The effect of volume fraction and inclusion shape on the histograms of Eeff is less
pronounced than in the case of stiff inclusions. The differences in the mean value of
Ceff are still significant (Table 2). A decrease of about 16 % in Ceff can be noticed in
the case of vf = 0.4 between .k1 D 0; k2 D 0/ and .k1 D 0; k2 D 6/.
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Fig. 7 Stiff inclusions (Eincl=Em D 1;000) histograms of Eeff : (a) .k1 D 0; k2 D 0/, (b) .k1 D
0; k2 D 3/, (c) .k1 D 0; k2 D 6/ and (d) .k1 D 3; k2 D 6/ for vf = [0.2, 0.3, 0.4]

Table 1 Effect (% increase) of shape roughness .k1; k2/ on mean.Ceff / for stiff inclusions
.Eincl=Em D 1;000/

vf .0; 0/� .0; 3/ .0; 0/� .0; 6/ .0; 3/� .0; 6/ .0; 0/� .3; 6/
0.2 2.71 7:64 4:80 4:44

0.3 3.86 15:15 10:87 7:39

0.4 5.82 29:33 22:22 13:38

5 Conclusions

In this paper, the homogenization of random heterogeneous media with arbitrar-
ily shaped inclusions was performed in the framework of XFEM coupled with
Monte Carlo simulation. In particular, the influence of the inclusion shape on
the effective properties of the random media was studied. The inclusions were
randomly distributed and oriented within the medium and their shape was implicitly
modeled by the iso-zero of an analytically defined random level set function
(“rough” circle), which also served as the enrichment function in the framework of
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Fig. 8 Compliant inclusions (Em=Eincl D 1;000) histograms of Eeff : (a) .k1 D 0; k2 D 0/, (b)
.k1 D 0; k2 D 3/, (c) .k1 D 0; k2 D 6/ and (d) .k1 D 3; k2 D 6/ for vf = [0.2, 0.3, 0.4]

Table 2 Effect (% decrease) of shape roughness .k1; k2/ on mean.Ceff / for compliant inclusions
.Em=Eincl D 1;000/

vf .0; 0/� .0; 3/ .0; 0/� .0; 6/ .0; 3/� .0; 6/ .0; 0/� .3; 6/
0.2 3.26 5.03 1.83 1.75
0.3 5.39 9.57 4.42 4.78
0.4 7.00 15.95 9.62 8.91

XFEM. The formulation exploits the characteristic features of XFEM avoiding the
regeneration of a new finite element mesh at each Monte Carlo simulation leading
to accelerated computations. Parametric investigations with respect to the inclusion-
matrix stiffness ratio and the inclusion volume fraction have been conducted. The
numerical results have shown that the statistical characteristics of the effective
properties can be significantly affected by the shape of the inclusions especially
in the case of large volume fraction and stiffness ratio.
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Inverse Problems–Identification



Using Experimentally Determined Resonant
Behaviour to Estimate the Design Parameter
Variability of Thermoplastic Honeycomb
Sandwich Structures

Stijn Debruyne and Dirk Vandepitte

Abstract Honeycomb panels combine a high specific strength and stiffness with
a low areal mass. Consequently, these structures are ideally suited for ground
transportation vehicle purposes. They have a complex but regular geometry.

This paper describes the full process of estimating the variability of some of the
panel design parameters of thermoplastic honeycomb structures. The uncertainty
of the various stiffness parameters of the core and skin is estimated from the
experimentally determined modal behaviour of a set of honeycomb beam and panel
samples. This work thus deals with uncertainty quantification by considering an
inverse problem. Variability analysis are carried out at different scales in order to
obtain a full scope of the impact and origin (from the manufacturing process) of
honeycomb design parameter variability.

Keywords Thermoplastic honeycomb sandwich panels • Finite element model
update • Random field modelling • Epistemic uncertainty

1 Introduction

The use of composite materials has increased enormously during the past decades.
Rising energy costs, finite material resources and a demanding market drive
designers to shift from traditional materials to ‘tailor made’ structural materials
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Fig. 1 Honeycomb panel
structure

like composites, laminates and sandwiches (Zenkert 1997). Within this group of
materials, honeycomb sandwich structures are widely used and appreciated.

Honeycombs are geometrically complex but regular structures. They consist of
a honeycomb core that is bonded to skin face sheets. The structure of a typical
honeycomb panel is shown in Fig. 1.

The honeycomb core is most often very light and only has significant strength
and stiffness in the out-of-plane direction of a considered panel (Gibson and Ashby
1988). The skin faces are usually thin and have high membrane strength and
stiffness. The combination of these types of core and skin yields a panel structure
with a low areal mass but yet a very high specific bending stiffness.

Thermoplastic honeycomb panels consist of a thermoplastic core and skin. In
this research, Monopan

®
(http://www.monopan.nl/) sandwich panels are used as

test and modelling objects. These panels are entirely made from thermoplastic
polypropylene (pp). The honeycomb core has cylindrical tubular cells and is
attached to the skin faces by fusion bonding, using a welding foil. To increase the
strength and stiffness of the skin faces, these are glass fibre weave reinforced using
balanced 2/2 twintex

®
twill. The outer surfaces of these panels are smoothened by

means of a pp finishing sheet.
In the last decade much research is carried out on the analytical prediction

of natural frequencies of honeycomb beams and panels and in the finite element
numerical modelling of the dynamic deformation of honeycomb structures. The
elastic mechanical properties of a typical honeycomb core are described and
analytically calculated by Gibson and Ashby (1988). They propose formulae for
the calculation of the in-plane and out-of-plane elastic moduli and Poisson ratios
of the core. The main work on the dynamics of sandwich panels is related to
conventional foam-core structures. Nilsson and Nilsson (2002) tried to analytically
predict natural frequencies of a honeycomb sandwich plate with free boundary
conditions using Blevins (1984) formula in which areal mass and equivalent bending
stiffness are frequency dependent. Another, more practical way to predict natural
frequencies and mode shapes of a honeycomb panel is by means of finite element
analysis (FEA). In recent years, different new approaches have been developed
which incorporate high order shear deformation of the core. Work in this area has
been carried out by Topdar (2003) and Liu (2001, 2002, 2007). The latter stated that
the shear moduli of the core are important factors in the determination of the natural
frequencies and the sequence of mode shapes, especially at high frequencies. At
low frequencies natural frequencies are mostly determined by the bending stiffness
of the panel.

http://www.monopan.nl/
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The use of vibration measurement data for the identification of elastic material
properties is studied by Lauwagie (2005). This work discusses in detail how Young’s
moduli, shear moduli and Poisson ratios of laminated materials can be obtained from
modal data as resonance frequencies and mode shapes.

However, when modelling complex structures with many design variables there
is always a discrepancy between the outcome of the numerical predictions and
the experimental observations. In real life design parameters of a structure exert
some variability evolving from the manufacturing process. Once the product is
manufactured the parameter variability is untraceable in many cases. This of course
reflects in some uncertainty on the elastic behaviour of the considered structure,
static or dynamic. Since there are many uncertain design parameters involved with
honeycomb panels, their dynamic behaviour can be regarded as an uncertain or
stochastic process (Schuëller and Pradlwarter 2009). In recent years there has been
a growing interest in the relation between the outcome of stochastic processes
and their underlying governing parameters (Schenk and Schuëller 2005). Different
analyzing methods have been developed to estimate the statistics of stochastic
processes, systems and structural behaviour. In this area, little research is done on
the uncertainty of the dynamic behaviour of honeycomb sandwich structures and
the relation with the scatter on the various design variables involved.

The first part of this paper highlights the basic terminology on uncertainty
quantification. It outlines the different types of uncertainty studied in this research
and motivates the use of the random field method.

The second part briefly describes the test samples that are used throughout the
research. It indicates that some of the beam and panel parameters show a significant
scatter which influences the dynamic behaviour of the structures.

Part three deals with the process of experimental modal analysis (EMA).
Considerations on boundary conditions and excitation methods are made and the
process of modal parameter estimation is outlined.

Part four deals with the numerical modelling of the considered dynamic
behaviour. The choice of the shell-volume-shell finite element model (SVS) as a
homogenization method for the real honeycomb structure is motivated. Results
of the numerically calculated resonance frequencies and mode shapes for the
considered honeycomb beams and panels are discussed and compared with their
experimental counterparts. Furthermore, this part discusses the updating process of
the finite element models. This part also discusses the uncertainty involved and the
need for stochastic model updating.

The sixth part discusses the results of applying the random field method to the
various databases obtained through finite element model updating. For both skin and
core of the considered beams and panels the relation between their real geometrical
parameters and the parameters of the homogenized models is discussed in detail.

The last part summarizes the work and general conclusions are made. It discusses
the shortcomings of the work done and gives some research prospects.
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2 Uncertainty Quantification

When analyzing or simulating a process or system, one should always consider
the impact of uncertain parameters. Uncertainty quantification (UQ) (Loeve 1997;
Moens and Vandepitte 2005a; Pradlwarter and Schuëller 1997; Schuëller and
Pradlwarter 2009) deals with the propagation of process parameter variability
through the process mechanism. Recently, there is a growing interest in studying the
uncertainty of process parameters through observations of the process variability.
Such an inverse UQ is addressed in this research.

Related to this research, uncertainty can generally be divided in two different
types. The first kind of uncertainty is uncertainty that can be reduced as more
knowledge about the process or its governing parameters becomes available. This is
referred to as the epistemic uncertainty. In this research, the epistemic uncertainty
is directly related to the limited amount of experimental data that is available.
This is both due to the low number of test specimens and the limited number of
measurement points on a specific sample. The second type of uncertainty is the
physical or intrinsic uncertainty. This is also referred to as aleatory uncertainty. This
uncertainty is inherent to the physics of any process or system. Neither an exact
process model nor the exact governing parameters of the process exists. Unlike the
epistemic uncertainty, aleatory uncertainty cannot be reduced by gathering more
information on the process of its parameters.

Uncertainty quantification (UQ) studies the impact of uncertain data and errors
to end up with more reliable predictions of physical problems.

Experimental results and process observations always show some random char-
acteristics. Statistical and probabilistic methods are developed for a rational treat-
ment and analysis of these uncertainties. According to Schenk and Schuëller (2005;
Pradlwarter and Schuëller 1997), different types of uncertainty exist. Modelling
uncertainties can be reduced by gathering more knowledge on the physics of the
process or system. The physical uncertainties, inherent to the system or process,
cannot be reduced through this however. Uncertainty on material properties and
boundary conditions, geometry imperfections and load fluctuations are most often
not considered or not known. Each uncertain parameter is marked by a probability
of occurrence, quantified by a probability density function (PDF). Its characteristics,
such as mean value and variance, can be estimated by statistical procedures.
Many methods have been developed to deal with uncertainty. The most prominent
approach is to treat the deterministic system or process to be a stochastic one
(Schuëller and Pradlwarter 2009; Robert and Casella 2004; Yang 2009; Cooker
1990).

The generalized polynomial chaos method (GPC) is a recently developed gener-
alization of the classical polynomial chaos (Ghanem 1991). This method expresses
stochastic process or system characteristics as orthonormal polynomials. It comes
down to a spectral projection (Schenk and Schuëller 2005) of the process or system
in a random space. Generalized polynomial chaos is a widely used method and will
be used in this research as a tool for stochastic modelling.
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Fig. 2 Indication of a zone in a honeycomb beam sample

A random field (RF) can be regarded as an extension of a stochastic process. The
index parameter t of expression (1) is related to a one-dimensional space (e.g. time).
In case of random fields this index is expanded to multi-dimensional spaces.

F.t/; t 2 D � <n; t D

8
ˆ̂
<̂

ˆ̂
:̂

t1
t2
:::

tn

9
>>>=

>>>;

(1)

In this research, the quantities of interest are the elastic properties of the
homogenized skin and core of honeycomb sandwich beams and plates. The dynamic
behaviour of the considered honeycomb structures can be regarded as a stochastic
process, governed by a set of random variables which are the various elastic
constants. Recently, advanced methods using the random field methodology have
been developed. Ghanem (1991, 2006), Desceliers and Soize (Desceliers et al. 2007;
Arnst et al. 2010; Soize 2010) have contributed much to the development of these
methods.

The low number of available test structures induces a high epistemic uncertainty.
Mehrez and Doostan (2012a, b) applied methods to accurately estimate this
uncertainty. The purpose of applying the random field method here is twofold.
The first concern is to estimate the true probability density distributions of the
considered databases and to exclude all variability that is not directly related
to the real physically related variability. The second purpose is to estimate the
epistemic uncertainty caused by the limited amount of experimental data available.
The various parameters of interest are modelled as independent random fields. For
example, consider the results of vibration tests on a set of honeycomb beams. The
set consists of 22 specimens of the type, shown in Fig. 2.
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Each specimen is considered to be a one-dimensional structure divided in 17
equal zones. For each considered design parameter the updated finite element model
yields a database, with dimensions M � Nexp, with M being the sample size and Nexp

the number of intervals in a specimen. Each database represents the discrete values
of a stochastic random field.

The covariance matrix [CF] of such a database is spectrally decomposed using the
Karhunen-Loève (KL) series expansion (Schenk and Schuëller 2005). Therefore the
eigenvalues and corresponding eigenvectors of [CF] need to be calculated, leading
to the corresponding eigenvalue system described by (2).

�
C QF
�
'k D �k'k;8k W 1 � k � Nexp (2)

The KL-series expansion (3) expresses the variability F � QF of the discretized

random field F against its mean QF using the eigenvalues and eigenvectors of the

covariance matrix and using a finite set of random variables �(k) with zero mean and
generally non Gaussian distribution.

F � QFN D
NexpX

kD1
�.k/

p
�k'k (3)

For reasons of computational efficiency this series expansion is truncated after
a number of terms that is smaller than Nexp. Based on a convergence study of the
normalized sum of the set of eigenvalues, the series can be truncated after � terms.
In this study this number is chosen so that the first � eigenvalues of the covariance
matrix cover at least 95 % of the variance.

Modelling the random field comes down to determining the statistics of the
random vector �µ D f�(k)g which has a zero mean and the ��� identity matrix
as covariance matrix. The joint density of �µ however is not known and has to
be estimated from the available random field realisations (experimental data). This
estimation process uses a Hermite polynomial chaos (PC) expansion with Bayesian
Inference (Schenk and Schuëller 2005; Schuëller and Pradlwarter 2009; Ghanem
1991, 2006; Desceliers et al. 2007; Arnst et al. 2010). Expression (4) estimates the
samplesb�.k/ of the random variables �(k) as a one-dimensional Hermite polynomial
chaos.

b�
.k/ D

1X

˛D1
�.k/˛ H˛ .�k/ �

qX

˛D1
�.k/˛ H˛ .�k/; k D 1; : : : ; � (4)

The polynomial chaos expansion (PCE) of (4) is truncated after q terms,
corresponding to the order of the PCE. The coefficients of the polynomial chaos
are estimated using a Bayesian Inference scheme (BI) with a Metropolis-Hastings
Markov Chain Monte Carlo algorithm (Mehrez and Doostan 2012a, b).
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3 Thermoplastic Honeycomb Sandwich Samples

In this research different sets of MonoPan
®

(http://www.monopan.nl/) honeycomb
beams and panels are used as test objects. Table 1 gives an overview of the
nominal dimensional properties of the different samples. A set of seven panels is
available. For the beam samples, 22 are available.

The MonoPan
®

structure is a sandwich structure with its different components
originating from the production process. Geometrically seen, the skin consists of
three layers: the outer finishing foil, the inner welding foil and the glass fibre weave
reinforced layer in between. Two different materials are used in the skin: glass fibre
and polypropylene (PP). Since there is no specific data available on the different
materials, it is assumed that all PP used in the skin has identical properties. In
particular, all parameters that exhibit a significant spatial variability at macro level
(order of a whole panel) rather than at meso level (order of a unit cell) are of interest
in this research.

As a first example, the skin thickness of honeycomb beam samples is experi-
mentally determined. Using a vernier calliper a set of measurements is carried out,
covering 650 measurements. Figure 3 shows the histogram of this experiment.

A mean skin thickness of 1.13 mm and a coefficient of variation (COV) of 7.23 %
is obtained.

A second characteristic parameter is the orientation of the weft and warp fibre
yarns of the skin’s weave.

Table 1 Dimensional properties of the test panels

Sample
thickness (mm)

Sample
length (mm)

Sample
width (mm) Honeycomb core Skin faces

Mass
(kg/m2)

25 830 50 Cylindrical, PP80 1 mm, PP, Twintex
twill 2/2 0.7 mm

5.3

25 2,500 1,200 Cylindrical, PP80 1 mm, PP, Twintex
twill 2/2 0.7 mm

5.3

Fig. 3 Histogram of measured skin thickness

http://www.monopan.nl/
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Fig. 4 Orientation of weft yarns: panel upper left corner

Altering the warp or weft yarn orientation of the weave affects the resulting
stiffness properties of the skin face. By means of a sector the mean orientation angle
of the weft yarns was determined at 21 evenly spaced locations on rectangular test
panels. Across the test panels, COV’s of 30 % are obtained for both warp and weft
angles. Different zones of the panels show a large warp angle deviation. This is
illustrated in Fig. 4.

Furthermore, this research studies panel parameters like sample thickness and
honeycomb core cell geometry.

4 Experimental Modal Analysis

The relation between the design parameters of such a panel and its dynamic
behaviour is calculated through finite element modelling (FEM). In order to validate
the various numerical models, reliable experimental data is needed for comparison.
The resonance frequencies and mode shapes of beams and panels under free-free
boundary conditions describe the dynamic behaviour of interest.

Hammer excitation is used for the beam samples while an electro dynamic shaker
excites the large panel samples. Structural responses are captured with lightweight
accelerometers and a laser vibrometer respectively. Table 2 gives an overview of the
measurement grids for both types of test samples.

Table 3 gives an overview of the obtained natural frequencies of the beam and
panel samples.

Since experimental modal analysis makes use of both experimental and numer-
ical techniques, there are two main sources that may cause errors on the finally
obtained (or estimated) modal parameters of interest. First of all there are the errors
(Moens and Vandepitte 2004, 2005b; De Gersem et al. 2005) that arise from the
measurement itself. These can be traced indirectly by monitoring the coherence
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Table 2 Overview of measurement grids

Test
structure type

Structure
dimensions

# measurement
points # grid rows

# grid
columns

# excitation
points

# response
points

Beam 1D 17 1 17 17 2

Panel 2D 273 13 21 1 273

Table 3 Mean and standard deviation for the first eight resonance frequencies of honeycomb
sandwich beam and panel samples

Beam mode 1 2 3 4 5 6 7 8

Mean (Hz) 117:8 296:8 520:3 759:3 1006:5 1258:8 1516:1 1758

Stdev 1:56 3:21 5:67 9:31 13:15 14:58 17:67 20:68

COV (%) 1:33 1:08 1:09 1:23 1:31 1:16 1:17 1:18

Panel mode 1 2 3 4 5 6 7 8

Mean (Hz) 10:45 11:43 23:68 31:96 45:50 57:93 61:89 72:39

Stdev 0:17 0:61 0:53 1:36 1:33 0:31 0:24 0:76

COV (%) 1:66 5:32 2:26 4:27 2:92 0:54 0:39 1:05

function (Ewins 1986; Heylen et al. 2003). The second type of errors is related to
the process of modal parameter estimation (Cauberghe 2004; Randall 1987; LMS
International) and can also be estimated. The mean resulting COV on experimentally
obtained mode shapes is 0.21 % in case of the beam samples and 0.16 % in case
of the panel samples. This variability has to be taken into account during further
uncertainty quantification.

5 Numerical Modal Analysis and Model Updating

The finite element (FE) method is a well-known numerical method for static
and dynamic numerical analysis of mechanical structures. In this research, FE
models calculate resonance frequencies and mode shapes of honeycomb sandwich
structures under free-free boundary conditions.

There are several methods of modelling honeycomb sandwich structures. The
main difference between them is the degree of homogenization of the models. The
method which is found to be suitable for this research homogenizes both skin faces
and honeycomb core as uniform, orthotropic materials, having equivalent elastic
(along the orthotropy axes) and mass properties as the original core and skin.
According to Daniel and Ishai (2006), Mares et al. (2006), Berthelot (1996) and
Govers and Link (2010), a fibre weave reinforced material can be modelled as a
three layered sandwich.

The skins are modelled as shells while the honeycomb core is modelled as a
volume. This modelling method is known as the shell-volume-shell method (SVS).
In order to obtain realistic estimates for the homogenized core and skin elastic
properties, a mixed experimental numerical approach is used.
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Table 4 Comparison between EMA and FEM resonance frequencies and mode for beam and
panel samples (mean values for all test samples)

Beam
mode

Frequency
(FEM, Hz)

Frequency
diff. (%) MAC (%)

Panel
mode

Frequency
(FEM, Hz)

Frequency
diff. (%) MAC (%)

1 110:2 2:71 99.13 1 10.25 5:46 96.43
2 282:3 �1:23 97.94 2 11 3:28 94.67
3 703:3 1:43 97.33 3 23.5 18:54 99.48
4 748:4 2:15 94.20 4 31 0:32 96.11
5 1004 0:73 91.16 5 44.5 9:50 99.53
6 1261 4:57 90.25 6 57.75 �13:36 91.07
7 1518 3:27 86.53 7 62 �9:09 94.54
8 2026 2:89 81.76 8 72.5 1:79 91.55

Fig. 5 Obtained values for Gc after FE model update (beam samples)

Table 4 compares the numerically and experimentally obtained modal parameters
for both beams and panels. Natural frequencies are compared; the experimental-
numerical mode shape pairs are validated using the MAC (Ewins 1986; Heylen
et al. 2003; Cauberghe 2004; Randall 1987; LMS International).

For the considered honeycomb sandwich structures the in-plane stiffness moduli
of the skin faces and the out-of-plane shear stiffness of the (homogenized) honey-
comb core are important elastic parameters that determine the modal parameters
of interest. The mean Finite Element models of the beam and panel samples are
therefore updated with respect to these skin and core properties. This is done for
all 22 beam samples and 7 panel samples using the experimentally determined
natural frequencies and mode shapes. Referring to Table 2, the numerical models
are divided into a number of zones, centered around the measurement points. In
each zone the considered elastic parameters have a constant value. For each model
zone, the model updating process yields values for the skin stiffness and core
shear moduli. These are the updating parameters. Figure 5 illustrates the obtained
parameter values for the core shear stiffness. Taking into account all test beams and
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Table 5 Mean values for obtained updating variability of considered update variables, compared
with their database variability (panel samples)

Update
parameter

Lower
skin E1s

Lower
skin E2s

Upper
skin E1s

Upper
skin E2s Core Gc13 Core Gc23

Model updating
COV (%)

1.52 1.62 1.40 1.58 1.23 1.30

Model database
COV (%)

7.79 5.24 5.16 7.93 3.16 3.84

all model zones, databases containing 22 by 17 stiffness values are obtained. Note
that in this case no distinction is made between the stiffnesses of the two opposed
skin faces.

For the panel samples, the two skin faces of a panel are considered as two
separate entities. In this case the updating process of the Finite Element models
yields databases for four orthotropic in-plane skin stiffness and two out-of-plane
core shear stiffness (Berthelot 1996) properties. Taking into account all seven test
panels, the database of each elastic property counts 240 by 7 elements. In the
panel case, the discrepancy between the number of modal reference data (10 natural
frequencies and 10 mode shapes) and the number of updating parameters (240 by 6)
introduces uncertainty (Manan and Cooper 2010; Soize 2003; Schultz et al. 2007)
of the updating results (elastic properties of skin and core). In order to quantify this
uncertainty, stochastic model updating (Mares et al. 2002; Friswell and Mottershead
1995; Friswell et al. 2001; Chen and Guedes Soares 2008; Moens and Vandepitte
2006; Siemens) is needed. According to Zarate and Caicedo (2008), Ibrahim (1997)
and Mares et al. (2006), there are mainly two ways of dealing with this problem.

The applied solution here is based on the idea of correlating multiple, perturbed
numerical models to one set of experimental data (resonance frequencies and
mode shapes in this case). In fact, this comes down to stochastic FE model
updating.

This approach perturbes the initial values of the FEM updating parameters with
respect to their nominal value. In this case, this perturbation is purely random; each
parameter is consequently normally distributed in a certain interval. Each perturbed
FE model is solved for the considered modal parameters and then updated. In fact,
this comes down to the application of Monte Carlo stochastic FEM updating (Govers
and Link 2010; Van Benthem 1976; Carmola and Chimowitz 1990; Kappagantu
and Feeny 1999; Bultheel 2006). This procedure enables to study the sensitivity of
the estimated optimized FE model to the set of initial values of the FEM updating
parameters.

Table 5 compares the model updating uncertainty in case of the panel samples
with the database variability for all considered elastic properties. Both are expressed
as a COV.

Table 5 shows that the database variability is much higher than the model
updating uncertainty. However, the updating uncertainty is not negligible and has
to be considered in further stochastic processing of the databases.
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6 Random Field Modelling of Panel Parameter Variability

In this research, the different considered elastic properties are treated as (indepen-
dent) stochastic processes, modelled with the random field (RF) method (Loeve
1977; Ghanem and Doostan 2006; Ghanem et al. 2005; Desceliers et al. 2006,
2007b).

Figure 6 illustrates the obtained probability density functions (PDF) of the out-
of-plane core shear modulus in case of the beam samples. For comparison the data
originating from the finite element model updating process is shown. A third order
RF is used here.

Since the amount of experimental validation data (natural frequencies and mode
shapes, number of test samples) is very limited, the epistemic uncertainty involved
has to be estimated. It is represented by the random character of the estimated
coefficients of the polynomial chaos decomposition. In this study the method
presented in (Soize 2010; Mehrez and Doostan 2012a, b) is followed. If enough test

Fig. 6 Obtained PDF’s for Gc (MPa) at zones 2, 6, 10, 14 and 17 (beam samples)
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Table 6 95 % confidence
intervals for the standard
deviations of the estimated
probability densities of Es

and Gc for all considered
model zones (beam samples)

FE model zone 2 6 10 14 17

Es mean stdev (GPa) 0.46 0.45 0.49 0.59 0.49
Es stdev 2.5 % (GPa) 0.32 0.32 0.34 0.41 0.33
Es stdev 97.5 % (GPa) 0.61 0.59 0.64 0.77 0.65
Gc stdev (MPa) 2.61 1.52 2.22 1.73 2.33
Gc stdev 2.5 % (MPa) 1.83 1.09 1.53 1.07 1.54
Gc stdev 97.5 % (MPa) 3.5 2.02 2.95 2.27 3.15

samples are observed, the distributions of the different estimated PC coefficients
approach a multivariate normal distribution of which the covariance matrix is the
inverse of the Fisher information matrix (Scott 2002).

Assuming normal distributions, Table 6 compares the mean standard deviations
of the estimated PDF’s with their corresponding epistemic uncertainty, expressed as
a 95 % confidence intervals (CI) on the PDF standard deviations.

For Es, the mean CI width caused by the epistemic uncertainty is approximately
3.3 % and for Gc approximately 4 %. The epistemic uncertainty is small, compared
to the stated variability of the elastic parameters. The same methodology is applied
in case of the panel samples. Due to the lower number of test samples here, the
epistemic uncertainty is approximately five times higher than in case of the beam
samples.

In this research, a specific point of interest is the characterization of the spatial
variability of the considered elastic skin and core parameters. Due to the nature of
the panel production process, one might expect significant patterns when studying
spatial variability. The correlation function (5) defines a periodical spatial variability
with period p and correlation length �, using the off-diagonal terms of the estimated
correlation matrices. The ‘noise’ term �2 is a culmination of the uncertainty from
the experimental and numerical modal analysis.

K
	
xi ; xj


 D �2 C �i�j e
�kxi�xjk=� cos

��
�xi � xj

�
�� 2�=p

�
(5)

In case of the beam samples, correlation lengths of 640 and 2,520 mm are
estimated for parameters Es and Gc respectively.

For the skin stiffness modulus Es there is a clear periodicity (265 mm) which is
smaller than the sample length; this is not the case for Gc.

7 General Conclusions

The goal of this research is to study the main elastic parameters of thermoplastic
honeycomb sandwich structures by means of their experimentally determined
dynamic behaviour. More specifically, the elastic parameter variability is the main
issue of interest in this work. This research work is a mix of numerical simulations
and experiments.
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The variability of the most important elastic parameters of honeycomb beam
and panel sandwich structures is estimated. The general random field method is
successfully applied to estimate probability density functions of these parameters at
different zones (intervals) in the structures. Apart from estimating the physically
inherent (or aleatory) uncertainty, the epistemic uncertainty due to a lack of
sufficient experimental data, has also been quantified. In case of the studied panel
structures, of which only seven samples are available, this uncertainty is found to
be high. The covariance matrices of all considered elastic parameters have been
thoroughly studied to gather useful information on correlation length and periodicity
of the observed and stated parameter variability.

However, this research is not an ending point. Some assumptions have been
made for simplicity. For example, it is assumed that the different considered elastic
parameters are independent. In reality they are not. Future work may focus on
applying the necessary parameter relations. The associated parameter variability
may then be described by multi-dimensional random fields. The ultimate sequel to
this research could be the direct random field description of geometric parameters
of the skin faces and the honeycomb core, starting from vibration measurements.
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Identification of a Mesoscale Model with
Multiscale Experimental Observations

M.T. Nguyen, C. Desceliers, and C. Soize

Abstract This paper deals with a multiscale statistical inverse method for
performing the experimental identification of the elastic properties of materials
at macroscale and at mesoscale within the framework of a heterogeneous
microstructure which is modeled by a random elastic media. New methods
are required for carrying out such multiscale identification using experimental
measurements of the displacement fields at macroscale and at mesoscale performed
with only a single specimen submitted to a given external load at macroscale. In this
paper, for a heterogeneous microstructure, a new identification method is presented
and is formulated within the framework of the three dimensional linear elasticity.
It permits the identification of the effective elasticity tensor at macroscale and the
identification of the stochastic tensor field modeling the apparent elasticity at the
mesoscale. A validation is presented with experimental measurements simulated
with a numerical model with a 2D plane stresses hypothesis.

Keywords Multiscale identification • Heterogeneous microstructure • Random
elasticity field • Mesoscale • Multi scale experiments

1 Introduction

The inverse methods for the experimental identification of the elastic properties
of materials at the macroscale and/or mesoscale have been extensively studied.
The experimental identification of microstructural morphology by image analysis
began in the 1980s (see for instance Jeulin 1987, 1989, 2001) and it has led
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to significant advances in the identification of mechanical properties (see, for
instance Avril and Pierron 2007; Avril et al. 2008a,b; Baxter and Graham 2000;
Besnard et al. 2006; Bonnet and Constantinescu 2005; Bornert et al. 2009, 2010;
Calloch et al. 2002; Chevalier et al. 2001; Constantinescu 1995; Geymonat et al.
2002; Geymonat and Pagano 2003; Graham et al. 2003; Hild 2002; Hild et al.
1999, 2002; Hild and Roux 2006, 2012; Madi et al. 2007; Rethore et al. 2008;
Roux and Hild 2008; Roux et al. 2002, 2008). Concerning the identification of
stochastic models, the methodologies for statistical inverse problems in finite and
infinite dimension are numerous and have given rise to numerous studies and
publications. These methods make extensive use of the formulations and the tools of
the functional analysis of boundary value problems as well as those of probability
theory, including mathematical statistics (finite and infinite dimensional cases).
Concerning the mathematical statistics, one can refer to Lawson and Hanson (1974)
and Serfling (1980) and Collins et al. (1974), Kaipio and Somersalo (2005), Walter
and Pronzato (1997), and Spall (2003) for the general principles on the statistical
inverse problems. Early work on the statistical inverse identification of stochastic
fields for random elastic media, using partial and limited experimental data, have
primarily be devoted to the identification of statistical parameters of prior stochastic
models (such as the spatial correlation scales and the level of statistical fluctuations)
(Arnst et al. 2008; Das et al. 2008, 2009; Desceliers et al. 2006, 2007; Guilleminot
et al. 2009; Soize 2010; Ta et al. 2010). Those probabilistic/statistical methods are
able to solve the statistical inverse problems related to the identification of prior
stochastic models for the apparent elastic fields at mesoscale. Nevertheless, such
experimental identification, which is carried out using measurements on a single
specimen submitted to a given external load at macroscale and using measurements
of the displacement fields at macroscale and mesoscale, requires new methods for
identifying the statistical mean value of the random apparent elasticity tensor and the
other parameters controlling its prior stochastic model as, for instance, the spatial
correlation lengths and the parameters allowing the statistical fluctuations of the
stochastic field to be controlled.

In this paper, a new identification method is presented. A statistical inverse
multiscale method is formulated for a heterogeneous microstructure within the
framework of the three-dimensional linear elasticity. This method permits both the
identification of the effective elasticity tensor at macroscale and the identification of
the stochastic tensor field which modelizes the apparent elasticity field at mesoscale.
It is assumed that the experimental measurements of the displacement field are
available at macroscale and at mesoscale. The prior stochastic model is a non-
Gaussian tensor-valued random field adapted to the properties of the 3D-elasticity
field and to the corresponding stochastic elliptic boundary value problem. The
parameters of the prior stochastic model of the apparent elasticity random field
at mesoscale, are its statistical mean value, its spatial correlation lengths and
its level of statistical fluctuations. This identification of the stochastic model at
mesoscale requires the knowledge of the effective elasticity tensor of macroscale
and measurements of the displacements field at the two scales simultaneously for
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one given specimen submitted to a given static external loads. Thus, the proposed
method is new. The theory will be presented for the 3D case and a numerical
validation will be presented for the 2D plane stress in the framework of experimental
measurements obtained by optical measurements (but, in the present paper, the
validation will be performed with simulated experiments).

2 Multiscale Experimental Configuration

The specimen (whose microstructure is complex and heterogeneous at microscale)
occupies a bounded macroscopic domain ˝macro in R3. Surface forces, f macro, are
applied on a part †macro of the boundary @˝macro of ˝macro. The other part � macro

of @˝macro is fixed such that there is no rigid body displacement. At macroscale on
˝macro, the measured displacement field is denoted as umacro

exp and its associated strain
tensor is denoted as "macro

exp .
Let ˝meso be a subdomain of the specimen at mesoscale (a REV) and let @˝meso

be the boundary of ˝meso. Let umeso
exp be the experimental measurement on ˝meso of

the displacement field at mesoscale. The associated strain tensor is denoted as 3meso
exp .

It is assumed that the experimental measurements of umeso
exp are obtained only for one

subdomain˝meso related to one specimen. The volume average at mesoscale, 3meso
exp ,

of 3meso
exp is introduced such that

3meso
exp D 1

j˝mesoj
Z

˝meso
3meso
exp .x/ dx : (1)

The statistical fluctuations level of the experimental linearized strain field at
mesoscale around the volume average, 3meso

exp , is estimated by ımeso
exp which is

defined as

ımeso
exp D

p
V meso

exp

k 3meso
exp kF ; (2)

in which

V meso
exp D 1

j˝mesoj
Z

˝meso
k 3meso

exp .x/� 3meso
exp k2F dx (3)

and where kT kF is the Frobenius norm such that, for any second-order tensor T D
fTij gij , one has

kT k2F D
3X

iD1

3X

jD1
T 2ij : (4)
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3 Multiscale Statistical Inverse Problem

At macroscale, a deterministic boundary value problem is introduced for a 3D linear
elastic medium, which modelizes the specimen in its experimental configuration
(geometry, surface forces and Dirichlet conditions). At macroscale, the constitutive
equation involves a prior model for the elasticity tensor Cmacro.a/ which is
parameterized by a vector a. For the 3D anisotropic elasticity, a represents the
21 constants of the elasticity tensor. The boundary value problem is formulated
in displacement and the solution is denoted as umacro (deterministic macroscale
displacement field). The linearized strain tensor associated with umacro is denoted
as "macro. Tensor Cmacro.a/ is unknown and must experimentally be identified,
which means that parameter a must be identified using the measurements of the
displacement field at macroscale. Consequently, a first numerical indicator I1.a/ is
introduced in order to quantify the distance between "macro

exp and "macro. For a fixed
value of parameter a, this indicator is defined by

I1.a/ D jjj"macro
exp � "macro.a/jjj2 ; (5)

in which

jjj"macro
exp � "macro.a/jjj2 D

Z

˝macro
k"macro

exp .x/ � "macro.xI a/k2F dx : (6)

At mesoscale, two additional numerical indicators, I2.b/ and I3.a; b/, are con-
structed to identify the parameters b involved in the prior stochastic model of the
apparent elasticity random field Cmeso.b/ which is considered as the restriction to
subdomain˝meso of a statistically homogeneous random field fCmeso.xI b/; x 2 R3g.

Concerning the construction of the second numerical indicator I2.b/, a random
boundary value problem is introduced for a 3D linear elastic random media
occupying subdomain ˝meso and for which the apparent elasticity random field
is Cmeso.b/. This random boundary value problem is formulated in displacement
and the solution is denoted as Umeso (displacement random field) with the Dirichlet
condition Umeso D umeso

exp on boundary @˝meso. The random linearized strain
tensor field associated with Umeso is denoted as 3meso. For any given parameters
b, numerical indicator I2.b/ is defined as

I2.b/ D
Z

˝meso
.ımeso.xI b/� ımeso

exp /
2 dx ; (7)

in which

ımeso.xI b/ D
p
V meso.xI b/

k 3meso.b/kF ; (8)
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where

3meso.b/ D 1

j˝mesoj
Z

˝meso
3meso.xI b/ dx ; (9)

and

V meso.xI b/ D Efk 3meso.xI b/� 3meso.b/k2F g ; (10)

It should be noted that, for all b, 3meso.b/ D 3meso
exp . The third numerical indi-

cator I3.a; b/ depends on a and b since this numerical indicator quantifies the
distance between the elasticity tensor Cmacro.a/ used in boundary value problem
at macroscale and the effective tensor Ceff.b/ calculated by homogenization of the
stochastic model at mesoscale on the REV, which depends on b only. We then have

I3.a; b/ D kCmacro.a/� EfCeff.b/gk2F : (11)

The identification of parameters a and b that describe the stochastic model of the
apparent elasticity random field Cmeso.b/ at mesoscale is obtained by solving a
multi-objective optimization problem for the three indicators I1.a/, I2.b/ and
I3.a; b/.

4 Validation of the Method in 2D Plane Stresses

The validation is performed within the framework of the linear elasticity in 2D
plane stresses. It should be noted that the two directions are observed when the
displacement fields are measured at macroscale and at mesoscale with a camera.

4.1 Prior Stochastic Model of the Apparent Elasticity
Random Field in 2D Plane Stresses

At mesoscale, the prior stochastic model of the apparent elastic random field Cmeso

is indexed by subdomain ˝meso which is assumed to be a REV. A representation
of Cmeso with a minimum of parameters and adapted to elliptic problems is used.
Parametric stochastic models have been proposed for scalar-valued stochastic fields
(Babuska et al. 2005, 2007; Desceliers et al. 2012; Graham et al. 2003) and for
non-Gaussian tensor-valued stochastic fields in the framework of the heterogeneous
anisotropic linear elasticity (Clouteau et al. 2013; Soize 2006, 2008; Ta et al.
2010), with important enhancements to take into account the material symmetry
and the existence of elasticity bounds (Guilleminot and Soize 2011, 2012a,b, 2013).
Hereinafter, the stochastic model is based on Soize (2006).
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In using the Voigt notation, the fourth-order elasticity tensor Cmeso.x/ can be rep-
resented by a .6�6/ real matrix. The strain vector is then denoted as ."11; "22; 2 "12,
"33; 2 "23; 2 "13/ and the associated stress vector is denoted as .�11; �22; �12; �33,
�23; �13/. Such numbering of those vectors, which is not usual, has been chosen
for the sake of simplicity in 2D plane stresses, for which the .3 � 3/ compliance
matrix ŒS2D.x/
 corresponds to the first .3 � 3/ block of the .6 � 6/ compliance
matrix ŒSmeso.x/
 D ŒCmeso.x/
�1 .

The prior stochastic model of Cmeso is then constructed in choosing ŒSmeso
 D
fŒSmeso.x/
 ; x 2 ˝mesog in the set SFEC (Soize 2006, 2012) of non-Gaussian
second-order stochastic fields with values in the set of all the positive-definite
symmetric .6 � 6/ real matrices, for which the mean value is a given matrix
ŒSmeso
 D EfŒSmeso.x/
g for all x in ˝meso. As a result, the matrix-valued random
field fŒSmeso.x/
; x 2 ˝mesog is described as a function of the entries of matrix
ŒSmeso
, of three spatial correlation lengths `1, `2, `3 and of one parameter ı which
controls the level of dispersion.

In the case of 2D plane stresses, random matrix ŒS2D.x/
 (the left upper .3 � 3/
block matrix of ŒSmeso.x/
) can be written as a function of the entries of matrix
ŒS2D
 (left upper .3 � 3/ block matrix of ŒSmeso
), one spatial correlation length
` D `1 D `2 and dispersion parameter ı. The prior model of the apparent elasticity
random field ŒC2D
 D fŒC2D.x/
 ; x 2 ˝mesog with values in the set of the .3 � 3/

real matrices is then constructed, for all x in ˝meso, as the inverse of the random
matrix ŒS2D.x/
. We then have

ŒC2D.x/
 D ŒS2D.x/
�1 ; a:s : (12)

Consequently, the parameter b of the prior stochastic model of the apparent elasticity
random field ŒC2D.b/
 are b D .ı; `; entries of ŒS2D
). It should be noted that
random fields ŒC2D.b/
 and ŒS2D.b/
 do not belong to the set SFEC of non-Gaussian
second-order stochastic fields with values in the set of all the positive-definite
symmetric .3 � 3/ real matrices.

4.2 Construction of a Simulated “Experimental” Database

To validate the methodology, “experimental” measurements at macroscale and at
mesoscale are both simulated in using a computational model. The 2D domain
˝macro in the plane .Ox1x2/, is defined as a square whose dimensions are h D
10�2 m. At mesoscale, the material is heterogeneous, anisotropic and linear elastic.
A line force directed along �x2, with an intensity of 5 � 10�2 N/m, is applied on
the edge x2 D h. The edge x2 D 0 is fixed. A 2D plane stress state is assumed.
At mesoscale, the 2D apparent elasticity field is constructed as a realization of the
prior stochastic model of ŒC2D.b/
 with ` D 1:25 � 10�4 m, ı D 0:4 and where the
entries of ŒS2D
 are defined below. It is assumed that the elastic medium is transverse
isotropic which yields
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Fig. 1 Description of the methodology for the construction of the simulated experimental
measurements in using the finite element method at macroscale and at mesoscale: FE model of the
specimen at macroscale with a mesoscale resolution (left), component f11g of the strain field at
macroscale with a mesoscale resolution (center), component f11g of the strain field at macroscale
with a macroscale resolution (upper right) and component f11g of the strain field at mesoscale
with a mesoscale resolution (lower right)
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whereEL D 15:8� 109 Pa, ET D 9:9� 109 Pa, GL D 5:2� 109 Pa, �L D 0:31 and
�T D 0:38. Consequently, we have

ŒS2D
 D

0

B
@

1
ET

� �T
ET

0

� �T
ET

1
ET

0

0 0
2.1C�T /
ET

1

C
A : (14)

Consequently, the vector b of parameters is then written as b D .ı; `; ET ; �T /. At
mesoscale, the realization of the apparent elasticity random field is simulated on the
whole domain˝macro.

A computational model is constructed with the finite element method and a
regular finite element mesh with one million quadrangle elements (1;000 along x1
and 1;000 along x2, see Fig. 1, left). The strain field is numerically simulated in
using a finite element interpolation in a regular grid of nodes with a mesoscale
resolution on the whole domain ˝macro (see Fig. 1, center). Measurements of
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Fig. 2 Component f"macro
exp g22 of the simulated experimental strain field at macroscale with a

resolution 10� 10

the strain field "macro
exp is simulated at macroscale in extracting the values of the

displacement field in a regular grid of 10 � 10 nodes and in using a finite element
interpolation (see Fig. 1, upper right). In addition, in the subdomain defined as a
square with dimension 10�3 m (mesoscale), the measurements of the strain field
"meso

exp are simulated at mesoscale in extracting the values of the displacement field
in a regular grid of 100 � 100 nodes and in using a finite element interpolation (see
Fig. 1, lower right).

Figure 2 shows the values of f"macro
exp g22 for the simulated experimental strain field

at macroscale with a resolution 10 � 10. The square in black dashed line represents
the considered mesoscale subdomain. Figure 3 shows the values of f"meso

exp g22 for the
simulated experimental strain field at mesoscale with a resolution 100� 100.

4.3 Multi-objective Optimization Problem

The identification of parameter b is carried out in searching for the optimal values
amacro and bmeso which solve the following multi-objective minimization problem

.amacro; bmeso/ D arg min
a2A macro ; b2Bmeso

I .a; b/ ; (15)

where A macro and Bmeso are the sets of the admissible values for a and b, and
where the components I1.a/, I2.b/ and I3.a; b/ of vector I .a; b/ are defined by
Eqs. (5), (7) and (11).
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Fig. 3 Component f"meso
exp g22 of the simulated experimental strain field at mesoscale with a

resolution 100� 100

The multi-objective optimization problem defined by Eq. (15) is solved in using
a genetic algorithm with an initial population size of 50. Less than 100 generations
has been enough for constructing the Pareto front which is iteratively constructed,
at each generation of the genetic algorithm. The initial value of parameter a has
been set to a.0/ and corresponds to the solution of the following partial optimization
problem: a.0/ D arg min I1.a/ for a 2 A macro, which is solved with the simplex
algorithm. Actually, the value of amacro is almost unchanged through the iterations
when the multi-objective problem is solved. The optimal value bmeso is chosen as
the point on the Pareto front that minimizes the distance between the Pareto front
and the origin.

4.4 Numerical Results and Validation

At macroscale, the prior model of the material is chosen as a transverse isotropic
model. Consequently, in 2D plane stress, parameter a D .Emacro

T ; �macro
T / is made up

of the transverse Young modulus and the transverse Poisson coefficient. The optimal
value of a D .Emacro

T ; �macro
T / is amacro D .9:565 � 109 Pa; 0:3987/.

Table 1 shows the values of b D .`; ı; ET ; �T / for each point of the Pareto front
displayed in Fig. 4. The optimal values correspond to the points 5, 6, 7, 8 and 9
where points 6 and 7 are close. The optimal value bmeso is such that `meso D 9:66 �
10�5 m, ımeso D 0:37, Emeso

T D 1:023� 1010 Pa, �meso
T D 0:376. This result yields a
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Table 1 Optimization in using the genetic algorithm

k I2.b/ I3.a; b/ ` ı ET �T

1 5.006529�10�9 2.311672e-01�10�1 1.886667�10�4 0.400000 1.023000�1010 0.392667
2 5.006529�10�9 9.477024�10�2 2.500000�10�4 0.400000 1.023000�1010 0.392667
3 5.010827�10�9 9.469903�10�2 9.666667�10�5 0.366667 1.023000�1010 0.376200
4 5.132208�10�9 9.201960�10�2 1.273333�10�4 0.383333 1.023000�1010 0.392667
5 5.240100�10�9 3.467300�10�2 9.666667�10�5 0.366667 1.023000�1010 0.359733
6 5.259407�10�9 2.455275�10�2 5.066667�10�5 0.350000 8.943000�109 0.293867
7 5.259407�10�9 2.455275�10�2 9.666667�10�5 0.366667 1.023000�1010 0.376200
8 5.386876�10�9 2.064010�10�2 5.066667�10�5 0.350000 8.943000�109 0.310333
9 5.490529�10�9 1.968774�10�2 5.066667�10�5 0.350000 1.237500�1010 0.293867
10 6.57386�10�9 1.962839�10�2 2.193333�10�4 0.400000 1.023000�1010 0.392667
11 6.895467�10�9 1.885624�10�2 2.500000�10�4 0.383333 1.023000�1010 0.392667
12 7.254986�10�9 1.759584�10�2 2.500000�10�4 0.333333 1.023000�1010 0.392667
13 7.567184�10�9 1.688894�10�2 9.666667�10�5 0.383333 1.023000�1010 0.392667
14 7.996816�10�9 1.623193�10�2 2.000000�10�5 0.350000 8.943000�109 0.310333
15 9.129340�10�9 1.507042�10�2 2.500000�10�4 0.366667 1.023000�1010 0.392667
16 9.368447�10�9 1.333442�10�2 1.273333�10�4 0.266667 1.023000�1010 0.392667
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Fig. 4 Pareto front for the numerical indicators I2.b/ and I3.a; b/
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validation of the proposed methodology since this identified optimal value bmeso is
very close to the value b that has been used to construct the simulated experimental
database and for which ` D 1:25�10�4 m, ı D 0:4,ET D 9:9�109 Pa, �T D 0:38.

5 Conclusions

A multiscale inverse statistical method has been presented for the identification, in
the framework of the 3D linear elasticity and in using experimental measurements
at macroscale and at mesoscale, of the stochastic model of the apparent elasticity
random field at mesoscale for a heterogeneous microstructure. A prior stochastic
model depending of vector-valued parameter has been proposed for the apparent
elasticity random field at mesoscale in the case of 2D plane stress. The identification
has been formulated as a multi-objective minimization problem with respect to
the parameter of the prior stochastic model. The optimal value of the parameter
corresponds to the point that minimizes the distance of a Pareto front to the
origin. The proposed statistical inverse method has been validated with a simulated
experimental database.
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Stochastic Multiscale Coupling of Inelastic
Processes in Solid Mechanics

Hermann G. Matthies and Adnan Ibrahimbegović

Abstract Here we consider the inelastic nonlinear response of heterogeneous
materials, possibly undergoing localised failure. We regard the material to be
heterogeneous on many scales, but for simplicity we only look at one scale
transition. The micro-scale is regarded as incompletely known and hence uncertain,
therefore modelled probabilistically. Two alternative approaches are discussed: one
for localised regions where a rather detailed micro-description is necessary to
capture relevant effects, and the other in domains where it is accurate enough to
define phenomenological models of ‘generalised standard materials’ on the macro-
scale, which have to be identified via micro-scale computations. Apart from a proper
transfer of mechanical quantities across scales, the same has to be achieved for the
stochastic part of the model. Several main ingredients of the proposed approaches
are discussed in detail, including micro-structure approximation with a structured
mesh, random field representation, and Bayesian updating.

Keywords Uncertainty quantification • Multiscale • Inelastic deformation • Size
effect

1 Introduction

We follow Ibrahimbegović and Matthies (2012) in addressing several issues related
to the numerical analysis of irreversible or inelastic processes in heterogeneous
materials, chief among them how to account for heterogeneities of real materials
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and how to transfer the appropriate information provided from fine scales. Most
examples and detailed illustrations of ideas pertaining to heterogeneities and related
uncertainties are given for cement-based composite materials such as concrete or
mortar, certainly the most widely used man-made materials.

The mechanical behaviour of heterogeneous materials can be represented at
different scales, depending upon the objectives and the physical mechanisms that
are important to account for. The choice of scale is also closely related to the
corresponding uncertainty description.

Given computational resources for typical engineering applications, most fre-
quently we ought to perform an analysis at the structure scale, or macro-scale.
At this scale cement-based materials—in contrast to most situations involving
geological materials—might be considered as homogeneous, and their properties
obtained by using the key concept of Representative Volume Element (RVE, see
Bornert et al. 2001; Kanit et al. 2003) to retrieve homogeneous phenomenological
models of inelastic behaviour (e.g. see Ibrahimbegović 2009). Those models are
well known for their robustness and lead to relatively moderate computational cost.
Due to these two main points, phenomenological approaches are widely used. Such
models are based on a set of ‘material parameters’ which need to be identified (e.g.
see Kučerová et al. (2009) by minimising some kind of error measure between
predicted and observed response) mainly from experiments providing unique load
paths and boundary conditions. In simple idealised situations this homogenisation
can be performed analytically.

Hence this methodology leads to a set of parameters which is linked to the chosen
load-path. As they are not adapted to another path, the predictive features of those
phenomenological macro-models is difficult to assess. The main reasons for this is
that the macro-scale is not the right scale to consider with the aim to model failure of
heterogeneous materials. Many authors have tried to overcome this major drawback
by furnishing micro-mechanical bases to the macroscopic model set of parameters
(see Markovič and Ibrahimbegović 2004; Ladevèze et al. 2001; Zohdi and Wriggers
2005) and provide more predictive macro-scale models. One possible way to achieve
such a goal is to adopt homogenisation methods which lead to accurate results
for linear problems. In the presence of non-linearities such methods are usually
not capable to provide good estimates for the effective (macroscopic) properties
(see Gilormini 1995). Moreover, such an approach does not take into account the
inherent uncertainties attached to heterogeneous materials and structures.

The homogenisation process just alluded to aims at producing a spatially
homogeneous material model, under the assumption that the small heterogeneous
scales are infinitesimally small compared to the macro-scale, so that only the mean
response is of interest and all response variability due to heterogeneity on small
scales has been averaged away. There are several situations where this philosophy
underlying the homogenisation process ceases to be valid. One is when the scales
are not so well separated and significant variability due to small scale uncertainty
is still present at the macro-scale. Another situation occurs when small scale
variations cause large scale effects, like in the behaviour of brittle and quasi-brittle
materials where cracks and local material failures may have severe macroscopic
consequences.
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At scales smaller than the macroscopic one, cement based materials appear to
be heterogeneous, exhibiting an important variability on all relevant scales. For
geological materials this is actually mostly the case also at the macro-scale, and
the ‘homogenisation process’ described above is of questionable validity. This
variability might be viewed from the geometrical point of view, considering the
arrangement (positions, shapes) of the different phases, as well as the actual
properties of the different phases. Here we propose to take account of the meso-scale
variability in order to compute the macroscopic (i.e. effective) properties’ statistics
for a heterogeneous porous medium made of a non-linear matrix. Moreover, we
show how simple statistics (mainly the correlation length through the covariance
function) might be used at the macroscopic level to model particular features such
as the size effects.

The material parameters at the meso-scale could be assumed to be deterministic,
so that the variability is only related to the size and the positions of the voids
in the porous media, or they can be considered as uncertain as the geometrical
descriptors and modelled as random fields. In order to solve this stochastic problem
and compute the statistical moments for the response quantities, the Monte Carlo
method is the most widely known approach. Because of their promise of higher
speed and accuracy, we explore approaches which solve the stochastic problem with
a so-called functional approximation (e.g. Matthies (2007a,b, 2008)), which in many
cases can lead to drastically lower computational requirements.

To lower the computational cost for the necessary evaluation of samples with
different geometries and avoid repeated re-meshing, we propose a model based on
a regular mesh which is not constrained by the physical interfaces. This model
relies on either finite element or discrete element representations of the material
micro-structure, whose kinematic description is enriched by the use of strain and
displacements discontinuities in order to represent different phases (Hautefeuille
et al. 2009).

The simultaneous approach is the first we propose (Ibrahimbegović and Matthies
2012)—it could also be referred to as an online procedure—, where the response
of the meso-structure can not be precomputed as in the sequential approach (to
be described in the following). Here the interaction between macro- and meso-
scale is considered so strong that it is not possible, or rather not meaningful, to
try and precompute all possible responses. This may happen in regions where
severe irreversible material processes occur, such that the deformation path of
the macro-scale, which is imposed onto the meso-scale, influences the meso-scale
response in some profound way. Our idea is that this approach can actually be
combined with the sequential approach described later. The sequential approach
is regarded as the ‘standard’ way of transferring the meso-scale properties to the
macro-scale. But in the circumstances just alluded to—severe meso-scale material
irreversibility—the simultaneous approach could be switched on like a magnifying
‘zoom lens’ (Hautefeuille et al. 2008), and the meso-scale simulation can run
simultaneously coupled with the macro-scale computation. As the meso-scale is
modelled probabilistically, this probabilistic content or uncertainty has also to be
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Fig. 1 Tensile test behaviour: (a) Typical quasi-brittle failure pattern, (b) Quasi-brittle material
1D model

transferred between the scales. The response at the meso-scale can then be used
not only to identify the properties of macro-scale phenomenological models as in
the sequential approach to be described next, but the macro-scale state of the system
itself. Thus the state of the macro-scale is transferred or updated through a Bayesian
procedure directly from the meso-scale.

The sequential approach is the second one we propose (Ibrahimbegović and
Matthies 2012)—it could also be referred to as an offline procedure—, where the
results obtained at the fine scale are used to define the probabilistic variation of the
phenomenological model parameters used at the macro-scale. The key advantage
of the sequential approach is to provide the appropriate probabilistic description in
agreement with the given material microstructure.

Another very important issue is the ability to provide a sound explanation of the
size effect (Colliat et al. 2007) encountered in failure phenomena of engineering
structures built from quasi-brittle materials. The approach to failure analysis
we propose (Ibrahimbegović and Matthies 2012) is placed within a stochastic
framework, which provides a very good basis for taking into account the intrinsic
randomness of the heterogeneities of real building materials: concrete, mortar, soils,
or any other geo-material. Such materials have a particular mechanical behaviour,
known as “quasi-brittle”, which can be seen as a sub-category of softening materials
(see Ibrahimbegović 2009). As a typical failure pattern we should be able to
represent the fracture process zone (FPZ) along with the macro-crack that is a
final threat for the structural integrity (see Fig. 1a). In the context of a simple 1D
model interpretation, this behaviour can be described with four material parameters
(e.g. see Ibrahimbegović and Brancherie 2003 or Brancherie and Ibrahimbegović
2009): Young’s modulus E , the yield stress �y which induces micro-cracking or
the FPZ creation, and the failure stress �u which induces macro-cracking after
the sudden coalescence of the micro-cracks leading to a softening behaviour (see
Fig. 1b). The last parameter is the fracture energyGf , which represents the amount
of energy necessary to create and open a macro-crack. Several theories exist on how
to model failure in quasi-brittle materials, and most of them link the phenomenon of
coalescence of micro-cracks to a size effect, a dependency on the size of a structure
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to its specific failure load. The aim of all those theories is to combine continuum
damage mechanics (CDM), where the failure stress does not depend on the size
of the structure, to linear fracture mechanics (LFM), where a size effect appears
naturally, as the logarithm of the failure stress depends linearly on the logarithm of
the size of the structure (see Fig. 10). It can be experimentally demonstrated that
even if purely brittle materials follow LFM, quasi-brittle materials do not. They
rather follow a non-linear relationship between the logarithm of the failure stress
and the logarithm of the size of the structure. These materials exhibit a different size
effect than the one encountered for purely brittle materials.

Both on the meso-scale level as well as on the macro-scale level, we see that
mechanical models with a probabilistic description have to be dealt with both in
a modelling aspect as well as numerically. As described here, on the meso-scale
‘geometric’ uncertainties as well as uncertainties in the values of properties have to
be considered. These uncertainties, modelled probabilistically, induce uncertainties
on the macro-scale. Hence on the macro-scale the continuum mechanics material
description is probabilistic. For more details and a general overview of these general
modelling and numerical aspects, see e.g. Matthies (2007a,b, 2008).

Due to considerations of space, in the following many of these issues can
not be discussed in detail—these may be found in Ibrahimbegović and Matthies
(2012) and in the references given. The outline of this chapter is as follows: Sect. 2
contains a short overview on numerical meso-structure modelling, the Sect. 2.1 is
concerned with modelling random geometries with regular meshes, which can make
computation of samples much easier. Some aspects of the probabilistic description
of heterogeneous materials are given in Sect. 2.2. Turning to the actual computation,
in Sect. 3 we present the simultaneous approach, whereas Sect. 4 is devoted to the
description of the sequential approach. Concluding remarks are given in Sect. 5.

2 Meso-scale Model of Material Heterogeneities

Meshing is one of the major issues in modelling heterogeneous materials. The possi-
bly high number of phases and their complex shapes frequently might lead to a quite
high number of degrees-of-freedom and also quite distorted meshes. Moreover, the
meshing process itself might consist in a complex and time-consuming algorithm.

2.1 Mechanical Meso-Scale Model

The objective of this first part is to indicate how to employ structured meshes in
order to simplify the meshing process of heterogeneous materials. Hence this section
presents the main ideas leading to regular meshes which are not constrained by the
physical interfaces between the different phases. The key ingredients to provide
such models are field discontinuities introduced inside the elements in which the
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Fig. 2 Meso-structure geometry (a), corresponding structured mesh (b)

physical interfaces are present. These kinematic enhancements might be developed
within the framework of the Incompatible Modes Method (see Wilson et al. 1973;
Ibrahimbegović and Wilson 1991).

2.1.1 Structured Mesh and Element Kinematics Enhancements

As an example at the meso-scale consider a heterogeneous material in 2D built
of different phases and assume that each of these phases is described by the
inclusions positions and shapes. A typical situation is shown in Fig. 2a. In order
to model such material with a structured mesh as in Fig. 2b, it is clear that one
has to have the ability to represent different phases in one element. Those two
phases are introduced through two types of discontinuities (see Ibrahimbegović
and Melnyk 2007), namely a discontinuity of the strain field and a discontinuity
of the displacement field, both of them lying at the same position (prescribed by
the known physical interface between the two phases). The strain discontinuity
permits the proper strain representation of two different sets of elastic properties
corresponding to each phase. The displacement discontinuity leads to the possibility
to model de-bonding or any failure mechanism at the interface. For the latter, two
failure mechanisms are considered: one corresponding to the opening of the crack
in the normal direction, and the second one to the sliding in the tangent direction
(see Simo et al. 1993). Both of these discontinuities are introduced by using the
Incompatible Modes Method (see Wilson et al. 1973; Ibrahimbegović and Wilson
1991). The key advantage of this method is to lead to a constant number of global
degrees-of-freedom.

Both of those kinematics enhancements are added on top of the standard constant
strain triangle (CST) element. Hence this element is divided into two parts by
introducing an interface whose position is obtained by the intersection of the chosen
structured mesh with the inclusions placed within the structure. One of the most
important and well-known features of strong (displacement field) discontinuity
models is their capability to be independent from the mesh, even for softening laws
(Ibrahimbegović and Brancherie 2003). This ability is based in the fact that the
dissipation process occurs on a line (i.e. the interface) and not in the whole volume.
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However, different elastic-plastic or elastic-damage behaviour laws with positive
hardening might be chosen for each of the two sub-domains split by the interface
with different elastic properties (see Ibrahimbegović and Markovič 2003).

2.1.2 Operator Split Solution Procedure

Deriving from the Incompatible Modes Method for the two kinds of discontinuities
added on top of the classical CST element (strain field and displacement field),
the total system to be solved consists of four equilibrium equations, the global
equilibrium equation for the element nodal degrees of freedom (DOFs) ue , and
the local ones corresponding to normal ˛I DOFs and tangential ˇI DOFs for
displacement discontinuities, and strain discontinuities DOFs ˛II . The consistent
linearisation (e.g. see Ibrahimbegović 2009) of this set of equations leads to a linear
system, in incremental matrix form:
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The right hand side (rhs) are the corresponding residua. The expanded form for
each block can be found in Hautefeuille et al. (2009). The operator split strategy
consists in first solving the local equations of system Eq. (1) (namely the last three
for .
˛I ;
ˇI ;
˛II / at each numerical integration point) for fixed global DOFs

ue . The second step is then to carry out a static condensations (e.g. see Wilson
1974). These static condensations leads to the effective stiffness matrix (see Simo
and Taylor 1985; Hautefeuille et al. 2009)—the Schur complement—and residua
for the global system of equations.

One of the key points to note is that the total number of global unknowns remains
the same as with the standard CST element, which is a major advantage of the
‘Incompatible Modes Method’. Simple illustrative examples dealing with the use of
structured meshes might be found in Hautefeuille et al. (2009).

A Comparison between structured and unstructured mesh computations is
shown in Fig. 3. For this we consider a porous material made of a perfectly plastic
matrix with circular voids of different sizes. The first case (Fig. 3a) presents an
adapted mesh obtained by using the software GMSH. Obviously, in this case each
element contains only one phase (namely the matrix or the “voids”). Moreover
several elements are strongly distorted and they exhibit quite different sizes. For
these two reasons the stiffness matrix is poorly conditioned. The second case
(Fig. 3b) relies on a structured mesh which is based on a regular grid as described
above. Figure 3 shows the axial displacement contour plot (with an amplification
factor of 100) for both unstructured and structured meshes. Note that both cases
are providing very close results, but with a gain of computing time in favour



142 H.G. Matthies and A. Ibrahimbegović

a b

Fig. 3 Longitudinal displacement for adaptive mesh (a) and regular mesh (b)

of the structured mesh strategy (this point is mainly due to the tangent matrix
optimal conditioning). Combined with a meshing process which is much easier,
the structured mesh way appears to be a good and accurate method to model
heterogeneous materials, especially in the context of many realisations that have
to be analysed. This last point is one of the key issues considering probabilistic
aspects for heterogeneous materials.

2.2 Probabilistic Aspects of Heterogenous Materials

At a finer scale than the macroscopic one, cement-based materials obviously appear
to be heterogeneous. As an example, at this meso-scale mortars are made of at least
three phases: two solid ones (the grains and the cement paste) and voids. It is well-
known from experimental data that macroscopic properties of such materials are
strongly linked to the (at least) meso-scale constituents. In Yaman et al. (2002) the
authors gathered some experimental results showing the very important decrease of
macroscopic mechanical strength (in tension or compression) along the increasing
void volume fraction. Moreover, considering a constant porosity, the voids shapes
and positions also have a major influence on the macroscopic properties, especially
for small specimens. This key point is linked to the statistical RVE size (see e.g.
Kanit et al. 2003), which has to be determined along a prescribed macroscopic error
tolerance.

Here we only sketch briefly how heterogeneous materials may be modelled
probabilistically. More details may be found in Ibrahimbegović and Matthies (2012)
and the references quoted therein.

Probabilistic characterisation at the macro-scale is necessary for the sequential
approach, and uses random fields as its main tool (Vanmarcke 1988; Matthies
2007b). Mechanical properties, be they scalar- or tensor-valued, are modelled as
random fields. This covers both the elastic properties such as the bulk modulus,
as well as the inelastic ones, which are also described by parameters like yield
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stress and ultimate stress in the simplest case (Rosić and Matthies 2008, 2011).
One peculiarity is that most of these quantities have to be at each point and for each
realisation positive scalars or positive definite tensors. In the usual approximations
of random fields, which rely on interpolation or similar linear processes, this is
not always easy to ascertain. One possibility is to approximate the logarithm of
the quantity, this has also advantages in the identification process which has to be
performed—and will be sketched later—to obtain the actual macro-values from the
micro-scale (Rosić et al. 2013).

So let �.x; !/ be a positive random field, where x 2 G is a point in the spatial
domainG � R

n, and! 2 � is a sample in the probability space� of all realisations,
equipped with a probability measure P. One well-known approximation is the
Karhunen-Loève expansion (KLE) q.x; !/ D log�.x; !/ D P

m �m.!/�m.x/,
where

R

G �k.x/�m.x/ dx D •k;m and
R

�
�k.!/�m.!/P.d!/ D E .�k�m/ D •k;m

are orthonormal, or, in probabilistic parlance, uncorrelated (see e.g. Matthies
2007b). To express everything in independent variables, we expand each �m.!/ D
P

i �
i
m i.�.!// (e.g. a polynomial chaos expansion, see e.g. Matthies 2007b) in

known functions  i of independent RVs �.!/ D Œ�1.!/; : : : ; �j .!/; : : : 
 to obtain

q.x; !/ D log�.x; !/ D
X

m;i

�im i.�.!// �m.x/: (2)

Probabilistic characterisation at the meso-scale has to be more detailed than
Eq. (2). Usually it is not efficient to model the meso-scale variability just as a
variability of mechanical properties. One has to try and model the different phases
probabilistically fitting to the mechanical modelling in Sect. 2.1. This means that
the geometric arrangement of the micro-structure has to be considered as uncertain,
as hence random. In the simplest case the locations of the inclusions can be
regarded as a Gibbs process, where a location is chosen randomly (Markovič
and Ibrahimbegović 2004; Hautefeuille et al. 2008, 2012) according to a Poisson
process, but the inclusion is only inserted if it ‘fits’, i.e. if there is no overlap with
an inclusion which is already present.

A further refinement of this is to allow the sizes of the inclusions to vary accord-
ing to some probability law, and also possibly the shapes from some parametrically
defined family, like e.g. ellipsoids. As this gives only limited possibilities for the
random shapes of inclusions, another, more general approach is to model each phase
through a phase field. This is a random field 'A.x; !/—and can be approximated
as in Eq. (2)—which describes the presence or absence of a phase by saying that
location x 2 G is in phase ‘A’ if 'A.x; !/ 2 H, where H is the so-called ‘hitting-
set’. In the simplest case 'A is a scalar field and H D ŒA;1Œ� R is just a
level set. The geometry of random sets thus defined can be very complex, but it
can nevertheless be described mathematically through topological invariants (Adler
2008).
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3 Simultaneous Approach to Multi-scale Analysis

This approach is given in Ibrahimbegović and Matthies (2012), and in more detail
in Ibrahimbegović and Markovič (2003), Markovič and Ibrahimbegović (2004), and
Hautefeuille et al. (2008, 2012); some theoretical background in Markovič et al.
(2005), and the computational setup including the software coupling in Niekamp
et al. (2009).

We see the simultaneous approach as a way to fully resolve the meso-structural
processes, without having to carry an excessive number of DOFs on the macroscopic
level. In this respect this is a reduced order model. When the material experiences
large strain or stress gradients, or if the pre-computed phenomenological responses
on the macro-scale do not cover the material response adequately any more, e.g.
when material instabilities, localisation, or cracks start developing, this is the case
where the simultaneous approach comes into play.

3.1 Mechanical Two-Scale Coupling

A general mathematical approach for multi-scale coupling—but mainly aimed
at homogenisation—has been described in Engquist (2003) and Abdulle and
Nonnenmacher (2009). One approach is to have the meso-scale (or small-scale)
evaluation each time a finite element on the macro-scale wants to evaluate a material
response, i.e. in each Gauss-point. This has become known as the ‘FE2-method’
(Feyel 1999; Feyel and Chaboche 2000), and has already been used extensively
(e.g. Miehe and Koch 2002; Temizer and Zohdi 2007; Temizer and Wriggers 2008,
2011). As a Gauss-point has no extension, there is no way in this method to allow
for scale-effects—the small scale is assumed to be infinitely smaller than the macro-
scale—and hence it is only applicable when there is a really large separation of
scales.

Here we want to allow for the scale effect and do not want to assume a
separation of scales. The key idea is to have a finite element on the macro-scale as
an ‘empty hull’ or ‘window’, to be filled with a meso- or small-scale discretisation
(see Fig. 4). Of course now the two meshes do not fit, and have to be coupled
together. The simplest and most effective method is to just allow linear variations
of the displacements along the meso-scale element boundaries (Ibrahimbegović and
Markovič 2003; Markovič and Ibrahimbegović 2004; Markovič et al. 2005) and use
Lagrange multipliers. This is reminiscent of hybrid finite elements (Pian and
Sumihara 1984), and can be performed in a completely analogous manner. The
inner small-scale mesh is effectively under displacement control, which makes the
computations simple and stable. The theory is described in Markovič et al. (2005),
and the computational coupling in Niekamp et al. (2009).

If one wants to allow higher order strain patterns to propagate through the
small-scale boundaries, a more elaborate set-up is required. This problem also
occurs when structures with different meshes are coupled, and one way to treat
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Fig. 4 Macro- and meso-scale finite element model of a simple structure

Fig. 5 Meso-scale discrete model with inclusions, shown with and without matrix and with
discrete bonds

this is with localised Lagrange multipliers (Park and Felippa 2000; Park et al.
2002), and this approach has also been adopted here. A similar approach—but not
with localised Lagrange multipliers—is the so-called ‘Arlequin-method’ (Ben Dhia
1998; Ben Dhia and Rateau 2005), and another multi-scale coupling approach may
be found in Ladevèze et al. (2001) and Ladevèze and Nouy (2003). Our adaptation of
the localised Lagrange multiplier method may be found in Hautefeuille et al. (2008,
2012), and a typical meso-model with a discrete—non-continuum mechanics—
meso-structure is depicted in Fig. 5, as well as the de-bonding between the phases
and a macro-crack developing across the macro-element in Fig. 6 in one of the tests
computed.

The localised Lagrange multiplier method (Park and Felippa 2000; Park et al.
2002; Hautefeuille et al. 2008) produces upon discretisation and linearisation a
system analogous to Eq. (1), just with a different interpretation of the quantities:
ue are again the macro-displacements to be retained in the global system, ˛I are
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Fig. 6 Meso-model failure, showing displacements, and de-bonding (broken bonds)

the displacements of the meso-scale, ˇI are the rigid body modes of the meso-
scale, and ˛II are the localised Lagrange multipliers. And again the variables
.
˛I ;
ˇI ;
˛II / are condensed out for each meso-structure independently—and
possibly in parallel—so that on the global level only the macro-displacements ue
appear. To the outside world this looks like a—maybe internally complicated—
completely normal finite element which returns a macro-residual and a tangential
macro-stiffness, and may be used as such in any code. The global system only
carries the displacements of the ‘window frame’, and is hence relatively small—
all the meso-scale details have been condensed away.

3.2 Probabilistic Scale Coupling

As was already mentioned, both the macro-scale as well as the small meso-scale
are to be considered as uncertain, and hence are modelled in a probabilistic manner.
The coupling described in the previous section describes really only the mechanical
coupling, but the probabilistic information on both scales has to be coupled as well.

On both the meso-scale and the macro-scale the relevant quantities such as
displacements, stresses or residua, or internal variables, are modelled as random
variables (RVs), or rather random fields (RFs). In the functional approximation
approach this means that, for example, the meso-displacements ˛I .�1; : : : ; �M / D
P

i ai i.�1; : : : ; �M / are expressed in some meso-structure related independent
RVs .�1; : : : ; �M / through a linear combination of some known functions  i, e.g.
a polynomial chaos expansion (PCE). The meso-structure variables .�1; : : : ; �M /
describe the uncertainty for an individual meso-patch.
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If these are carried to the global level through the relations alluded to in the
previous Sect. 3.1, so that we obtain ue D P

i ui i.�1; : : : ; �M /, there will be
typically far too many RVs to describe just a few global variables, and some model
reduction process should be carried out; the best known of these is the proper
orthogonal decomposition (POD), which in the stochastic context is known under
the name Karhunen-Loève expansion (KLE). But there is also another possibility,
and this is the use of Bayes’s theorem. This idea has already been suggested
in Koutsourelakis and Bilionis (2010).

On each scale we regard the respective other scale as an essentially ‘black
box’, which we try to approximate with the probabilistic description given on
the scale on which we are sitting. It is then quite natural to use conditional
expectation to perform the transfer (Rosić et al. 2013). Conditional expectation
corresponds to a projection (Rosić et al. 2012), computed efficiently with the
functional approximation, avoiding very time consuming Monte Carlo (MC) within
Monte Carlo as, for example, in the Markov Chain Monte Carlo (MCMC) method,
see Rosić et al. (2013) for a general description of computational possibilities. The
quantities describing the state of the system are identified, i.e. displacements and
forces or stresses and strains. Of course a tangent matrix may also be identified if
needed in the computational procedure, e.g. in Newton’s method.

3.3 Computational Coupling

After the mathematics of the coupling has been sketched, we turn to the code
coupling required for the simulation. This was performed with the component
framework already mentioned in Niekamp and Matthies (2004), Niekamp et al.
(2009), Krosche et al. (2003), and Krosche and Matthies (2008), which is called
‘Component Template Library (CTL)’, and the computational structure as used in
this application is depicted in Fig. 7.

In Markovič et al. (2005) on each of the scales a version of FEAP (or rather
coFEAP) (Zienkiewicz et al. 2005; Kassiotis and Hautefeuille 2008) was used, and
the small scale just appeared as a new kind of finite element on the macro-scale.
This is particularly convenient as all the technology already present in FEAP (like
iterative non-linear solvers, etc.) may be continued to be used.

Another aspect which can be handled on a coarse-grained basis by the com-
ponent framework is parallelisation. From Fig. 7 one may easily glean that each
component—using its own resources—may run concurrently with all the other
components, while all the necessary synchronisation due to the information being
passed around is being taken care of by the CTL (Niekamp and Matthies 2004;
Niekamp et al. 2009). Each component may be a parallel code on its own, and also
use a parallel processor in this coupled computations. This may be regarded as a
fine-grained parallelisation, so that we have a multi-scale parallel computation to
execute the multi-scale mechanical problem, a curious duplicity.
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Fig. 7 Task distribution scheme on different processors. The component on top is the macro-scale
component, and the ‘satellites’ at the bottom represent the meso-scale components. The codes
which solve the macro-problem and the ones which solve the small-scale problem may be different,
all that is required is that they look like a component

4 Sequential Approach to Multi-scale Analysis

At the macro-scale, the major mechanisms which are present at the meso-structure
level have to be represented as well. On taking an ‘energetic’ look, one sees
that there has to be at least an energy storage functionality for the reversible
part of the material behaviour—represented through a stored energy function—
and an energy dissipating functionality for the mechanically irreversible material
behaviour, represented through a dissipation function. This corresponds to the
description of ‘generalised standard materials’. Here it is well-known that these
functions can act as thermodynamic potentials resp. pseudo-potentials (see e.g.
Lemaître and Chaboche 1988; Lubliner 1990; Ibrahimbegović 2009; Matthies
1991), and are thus sufficient to describe the behaviour alluded to.

4.1 Macro-scale Characterisation of Heterogeneous Materials

To achieve a probabilistic description for such a phenomenological model, it is then
conceptually sufficient to model these two functions as random variables—or rather
the parameters in these functions as random fields to take account of the spatial
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variation, as sketched in Sect. 2.2. In this short overview for the extension towards
the stochastic situation we will follow the development as outlined in Matthies and
Rosić (2008), Rosić and Matthies (2008, 2011), and Rosić et al. (2009).

On the macro-scale one wants to end up with—disregarding for a moment the
probabilistic aspect—a conventional continuum mechanics description (Ibrahim-
begović 2009). We look at an elasto-plastic material as the simplest instance of a
rate-independent description. Rate dependent irreversible mechanisms can be dealt
with similarly and are actually mathematically simpler. The elasto-plastic material
may serve as a model problem, as other dissipative mechanisms can be formally
treated in a completely analogous manner (Matthies 1991).

We look at a quadratic stored energy function (Matthies and Rosić 2008; Rosić
and Matthies 2011). For the beginning it is sufficient to just consider a material point
x 2 D. Denote the stress tensor by �x , the total strain due to some displacement u
by 	x.u/, the plastic strain by 	px , and the hardening variables by �x . From these
quantities we construct the generalised plastic strain Epx D .0; 	px; �x/, and the
generalised total strain Ex D .	x.u/; 	px; �x/. Herewith we define the stored energy
bilinear form

ax.Ex;E
0
x/ WD .	x.u/� 	px/ W Cx W .	0x.u/� 	0px/C h�x;Hx�

0
xix; (3)

where Cx is the fourth-order elasticity tensor at x,Hx a hardening modulus, and the
bilinear form h�; �ix an appropriate duality pairing depending on the specifics of the
hardening variables (Matthies and Rosić 2008; Rosić and Matthies 2011). From this
a Helmholtz free energy may be defined by  x.Ex/ WD 1

2
ax.Ex;Ex/.

Now if the macro-scale point x 2 D corresponds to some meso-structure ensem-
ble and RVE, all quantities in Eq. (3) have to be modelled as random quantities,
effectively making the stored energy a random quantity. It can be shown (Matthies
and Rosić 2008; Rosić and Matthies 2011), that a probabilistic plasticity problem at
a material point may be formulated with the averaged quantities, i.e. the expected
values of those in Eq. (3): ax.Ex;E 0x/ WD E

	
ax.Ex;E

0
x/


. To develop an equation

for the whole body, these quantities have to be integrated over the body, i.e. the
domain G, to give the probabilistic bilinear form for the whole body

a.E;E0/ WD
Z

G
E
	
ax.Ex;E

0
x/



dx: (4)

A completely analogous extension has to be performed for the dissipation func-
tional, see Matthies and Rosić (2008) and Rosić and Matthies (2011). Having
obtained stochastic versions of the Helmholtz free energy and the dissipation
function, one ‘only’ has to formally follow the normal derivation of evolution
equations for generalised standard materials to obtain a stochastic version of
the elasto-plastic problem with hardening (Matthies and Rosić 2008; Rosić and
Matthies 2011). In Fig. 8 results of such a stochastic computation of a—in this case
non-linear—elasto-plastic material are shown.
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Fig. 8 Deformations (a) and exceedance probability of a shear stress level (b) for a stochastic
elasto-plastic model

To actually compute the solution (Matthies and Rosić 2008; Rosić and Matthies
2011), developments which parallel the stochastic FEM (Matthies 2007a, 2008)
have to be carried out, including a stochastic form of the closest point projection
so well-known in computational plasticity. With the ability to perform such
stochastic computations for inelastic materials, these may now serve as a macro-
scale representations for heterogeneous media as explained before. What is needed
additionally is the macro-scale identification of random material parameters.

4.2 Macro-scale Properties Identification

The probabilistic identification of macroscopic properties to represent the hetero-
geneous random meso-structure will follow Bayes’s rule, which is the preferred
way of incorporating information into a stochastic model. In Rosić et al. (2012,
2013) this is described for the case where the identification is performed through
measurements—although in that publication the measurements were ‘virtual’ ones.

The Bayesian update in its original form produces an updated, more precisely
conditional (conditioned on the observation), probability measure. A closely con-
nected alternative (Rosić et al. 2012, 2013) is to use the conditional expectation
of that conditional probability measure to update the random variable directly.
The Bayesian update for a random variable with finite variance boils down to an
orthogonal projection onto the subspace of all (measurable) functions generated
by a possible measurement. By sacrificing some information gained from the
measurement, this can be approximated by a simpler linear—projecting only on
the linear functions of the measurement—update which is reminiscent of the well-
known Kalman filter—actually the Kalman filter can be shown (Rosić et al. 2012)
to be the low-order part of this new linear update.

Here we use the example of Fig. 8 to try and identify the shear modulus from
observations of the displacement under shear loading. Again no real experiments
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Fig. 9 Identification of shear
modulus through Bayesian
update

were performed, the experiments were ‘virtual’, i.e. computations. In Fig. 9 one
may see the probability density functions prior to any identification and after a
measurement—the posterior one.

For an identification of macro-scale properties we proceed similarly. We want
to identify properties on the macro-scale, and we replace the measurement by a
meso-structure computation, and the identification proceeds completely in the same
manner. What was shown in Fig. 9 for a single parameter (the shear modulus,
although we identify the logarithm of the shear modulus) can be performed for
all random fields needed here, i.e. Cx and Hx which appear in the internal energy
bilinear form Eq. (3)—or rather their logarithms. In the same manner the random
fields describing the dissipation function or equivalently the yield criterion can be
identified. This identification, as may be gleaned from Fig. 9, leaves some residual
uncertainty in the macro-model, due to uncertainties in the micro-model, incomplete
identification, and a possible inability of the macro-model to represent all detail of
the micro-model.

4.3 Size Effect Representation

Size effects for quasi-brittle materials can be experimentally demonstrated at macro-
scale, and several ways exist of dealing with its modelling. Most of them are linking
the micro-cracks coalescence phenomenon, which consists in the failure process as
a first step, to such a size effect. An extensive literature exists on that topic—it has
already been noted by Leonardo da Vinci and Galileo Galilei (e.g. Jaramillo and
Héctor 2011)—from the early studies of Weibull (see Weibull 1951) dealing with
infinite chains built from brittle links (theory of the weakest link), to the current
two concurrent theories of Bažant on the one side and of Carpinteri on another.
The first one tends to describe the size effect as a deterministic theory of strength
redistribution in a Fracture Process Zone (FPZ), the size of which is proportional to
a characteristic length, that leads to energetic dissipation. At some level the micro-
cracks coalesce and that induces both heterogeneous behaviour and some kind of
localisation, and is strongly intricate to the size effect. Hence, a way to study the
fracture of quasi-brittle materials is to study the size effect. Recently, Bažant has
developed a new theory as a combination of this previous theory with Weibull’s one
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leading to the so called energetic-statistical size effect (see Bažant 2004). Another
theory combining a non-local model and a stochastic approach has been developed
in Sab and Lalaai (1993). On the other hand, Carpenteri’s theory is based on the
study of quasi-brittle materials seen as materials with a fractal micro-structure (see
Carpenteri 2003).

Our goal is to stress the possibility to model the size effect, taking place at the
macro-scale, with the use of correlated random fields for macroscopic properties.
With some basic assumptions, such macroscopic random fields are in the simplest
case characterised by their marginal (point-wise) distributions as well as their spatial
mean and covariance function, which of course have to match the first two moments
of the marginal distribution. Adding an isotropy condition, this covariance function
might be parameterised using, for example, a unique scalar value: the correlation
length Lc . This length plays a key role in the context of size effects. Contrary to
classical macroscopic models which are based on the RVE concept only,Lc actually
defines a scale to which the whole structure size is compared. In that sense such
correlated fields naturally incorporate size effects. Moreover, to some extent such a
correlation lengthLc might be considered as the ‘characteristic length’ which needs
to be defined when using well-known macroscopic non-local models (Pijaudier-
Cabot and Bažant 1987). Contrary to this characteristic length for which there is
a lack of physical interpretation, the correlation length Lc as well as the marginal
distribution necessary to characterise random fields for the macroscopic properties
might be retrieved from a two-scale analysis as the one presented in the previous
section.

The macro-model we consider here is based on a strong discontinuity model (see
Ibrahimbegović and Melnyk 2007) which leads to the possibility to couple diffuse
plasticity or damage (describing the volumetric dissipation due to the homogeneous
micro-cracking which takes place in the FPZ) with surface dissipation at the macro
cracks. The latter drives the stress to zero without any mesh dependency.

Considering tensile tests as shown in Fig. 10, three different lengths have been
treated under displacement control (0:01, 0:1 and 1m truss), keeping the correlation
length equal to Lc D 0:01m. These three cases will be called respectively small,
medium and large. It is worth to note that for the small case, the bar is the same size
as the correlation length (see Fig. 10a).

Figure 10b presents the cumulative density functions for the maximum load.
Considering a given percentile of broken bars, it is worth to note that the smaller the
bar is, the higher is its ultimate stress, e.g. 3:68MPa for the small truss, 3:3MPa for
the medium one, and upto 2:87MPa for the large one. In other words, the strength
of the structure is directly linked to its size. The larger the structure is compared
to the correlation length, the weaker it is. Hence, this stochastic way of modelling
quasi-brittle failure naturally reveals the size effect.

Clearly, the correlation length here plays the key role. Comparable to the
characteristic length which appears in the non-local theory, it can be linked to the
size of the Fracture Process Zone (FPZ) where micro-cracking occurs. The more
the size of the FPZ prevails relative to the global size of the structure (which is the
case for the small bar), the more similar to continuum damage mechanics (CDM)
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Fig. 10 (a) Short, medium and large bar, (b) Ultimate stress cumulative distribution (c) Proba-
bilistic size effect diagram, (d) Standard size effect illustration

is the structure’s behaviour. On the opposite, if the FPZ size is negligible with
respect to the size of the structure (i.e. the large bar), its influence on the global
behaviour of the structure is small. Thus a macro-crack occurs following linear
fracture mechanics (LFM). Modelling the behaviour of quasi-brittle materials is an
attempt to link these two limiting behaviours (LFM and CDM).

5 Concluding Remarks

In order to improve predictive modelling of failure of quasi-brittle materials, the
meso-scale has been chosen here as the one to describe failure mechanisms. At
this scale, cement-based composite materials (concrete, mortar etc.) are properly
interpreted as heterogeneous and a special structured mesh methodology has been
developed. Any such structured mesh relies on a regular grid where elements are
not constrained to the physical interfaces between the different phases and can also
contain phase interface.

With such an efficient failure modelling tool in hand we presented how to
take into account the variability of the geometrical description of a heterogeneous
material at the meso-scale level, as well as the modelling of material properties as
random fields.
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Finally, based on the macroscopic properties, we showed that the proposed
macro-model might provide a straight-forward modelling for the size effect. Such
size effects are a major issue in modelling quasi-brittle failure like for cement-
based materials, and bridge two limited cases, the continuum damage mechanic
one and linear fracture mechanics such as in Weibull’s theory. In between, several
authors have proposed size effects laws corresponding to different kind of structures
and loading paths, or tried to model this particular feature. One attempt consists
in using nonlocal models and retrieve size effects through their characteristic
lengths, although this length has no physical basis. Here, we showed that the use
of macroscopic correlated random fields naturally leads to size effects.

Another key ingredient of our development pertains to a phenomenological
model that can account for both the fracture process zone (FPZ) and the localised
failure introducing the displacement discontinuity and softening. This particular
feature leads to the possibility to retrieve the size effect governed response that
remains valid anywhere between the two limit cases: the one described by contin-
uum damage mechanics, where the FPZ is the dominant failure mechanism, and
another defined by linear fracture mechanics, where the displacement discontinuity
quickly takes over failure leaving a negligible FPZ. This method might be viewed
as an extension of Weibull’s theory which can be retrieved considering uncorrelated
random field.
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Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy
for highly heterogeneous structures. Int J Numer Methods Eng 52:121–138

Lemaître J, Chaboche JL (1988) Mécanique des Matériaux solides. Dunod, Paris
Lubliner J (1990) Plasticity theory. Macmillan, New York
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and applications. In: Ibrahimbegović A, Kožar I (eds) Extreme man-made and natural hazards
in dynamic of structures. Springer, Dordrecht

Matthies HG (2007b) Uncertainty quantification with stochastic finite elements. In: Stein E,
de Borst R, Hughes TRJ (eds) Encyclopedia of computational mechanics. Wiley, Chichester.
doi:10.1002/0470091355.ecm071/pdf. http://dx.doi.org/10.1002/0470091355.ecm071/pdf

Matthies HG (2008) Stochastic finite elements: computational approaches to stochastic par-
tial differential equations. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM)
88:849–873
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A Note on Scale-Coupling Mechanics
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Abstract After two decades of rapid growth, multiscale research is currently
undergoing a transition from an initial surge of excitement to a more rational stage.
The major hindrance in multiscale modeling is continuous use of classical scale-
separation theories in conflict with scale-coupling phenomena, and often a price
to pay is we end up with some physically inconsistent models or parameters, e.g.
non-local theory in damage mechanics, negative mass or moduli in elastodynamics.
In this note we propose development of new scale-coupling theories as the most
important direction of multiscale research. In Sect. 2, a conceptual distinction is
made between scale-separation and scale-coupling strategies. In Sect. 3, a scale-
coupling mechanics theory is introduced in a format that leads to derivation of
non-local and gradient theories. Conclusion is made at the end.
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gradient

1 Introduction

Multiscale research began to formally emerge in science and engineering fields in
early 1990s, not by coincidence, around the time when the first carbon nanotubes
were discovered leading to the birth of nanotechnology. After two decades of rapid
growth, multiscale research is currently undergoing a transition from an initial surge
of excitement to a more rational stage.
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In this note, we emphasize lack of scale-coupling mechanics theories as the
most critical issue. When classical scale separation theories are obstinately or
incautiously applied to scale-coupling phenomena, a price to pay is we often end
up with some physically inconsistent models or parameters, e.g. non-local theory
in damage mechanics, negative mass or moduli in elastodynamics, etc. In Sect. 2,
a conceptual distinction is made between two fundamental multiscale strategies,
i.e. scale-separation (or homogenization) and scale-coupling. In Sect. 3, a scale-
coupling mechanics theory is introduced in a format that leads to derivation of
non-local and gradient theories. Conclusion is made at the end.

2 Scale Coupling or Decoupling

2.1 Classical Modeling Methodologies

Before proceeding to a discussion about multiscale strategies, let us have a brief
overview of modeling methodologies in mechanics of materials. There are two
classical and fundamental modeling methodologies, i.e. phenomenological and
micro-macro, as shown in Fig. 1. A phenomenological modelling process typically
consists of the following basic steps:

1. Define a number of state variables and parameters (e.g. constitutive parameters);
2. Formulate a mathematical model using the defined variables and parameters to

describe the observed phenomenon;
3. Find the parameters and validate the model experimentally.

Modeling Methodologies

Phenomenological
Modeling

Micro-Macro
Modeling

Multiscale
Modeling

Statistical
Modeling

Thermodynamics

Plasticity

Fracture Mech.

etc.

Micromechanics

Homogenization

Renormalization

etc.

Scale-Separation
Strategy 

Scale-Coupling
Strategy

Fig. 1 Diagram of modeling methodologies
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Most models developed in science and engineering are phenomenological ones,
e.g. thermodynamics, plasticity, fracture mechanics, etc. A major drawback of the
methodology lies in its lack of incorporation of micro-mechanisms and thereby of
in-depth physical insights. When dealing with a complex phenomenon involving
nonlinearity, multiple scales, high dimension, or uncertainty, a typical pitfall in
phenomenological modelling is the number of variables and parameters can rise to a
level that is hardly amenable theoretically. In an extreme case, by purely using curve
fitting parameters a phenomenological model degenerates to an entirely statistical
model with no any input or understanding of underlying physical mechanisms. For
example, when a constitutive model of an unsaturated soil contains many parameters
with unclear physical meaning, the applicability and generality of the model can
be severely restricted, and the model is practically close to a statistical one. On
the other hand, it should be noted that statistical modeling remains to be the most
essential approach to tackle highly complex phenomena of which we have primitive
understanding, e.g. in the field of life science.

Micro-macro methodology pertains to analytical or numerical derivation of
macro-scale laws or properties based on certain validated micro-scale laws and
properties. In general there are no special assumptions or experimentally fitted
parameters, and in this case a micro-macro model can also be called a first
principle or ab initio model. For example, given the Newton’s laws of motion
and the inter-atomic potential, macroscopic thermodynamics properties of an ideal
gas can be numerically predicted by using molecular dynamics. Compared with
phenomenological modelling, micro-macro modelling has two major advantages:

1. An explicit micro-macro relation becomes known, thereby allowing optimization
of micro-scale (geometric, physical, chemical) properties to achieve certain
desired macro-scale laws or properties;

2. Analytical or numerical implementation can be frequently used to substitute
more expensive physical testing, and to resolve many otherwise experimentally
challenging or prohibitive problems.

The so-called micro-scale and macro-scale are two scales relative to each other
with a wide scale separation in either space or time. For example, the grain
scale is a micro-scale with respect to a specimen of steel bar, but a macro-
scale with respect to the iron atoms. Two famous micro-macro models in early
stage of modern science are statistical mechanics and Brownian motion. Due to
technological limitation in small scale physical measurement, early micro-macro
models such as statistical mechanics and Brownian motion, adopt the top-down
strategy, i.e. derivation of micro-scale properties from macro-scale measurement.
A simple example is we can estimate the variance of molecular velocity in the
air by measuring a mercury thermometer. Since 1950s, the bottom-up strategy
emerged, with three representative micro-macro theories developed in mechanics,
mathematics, and physics, respectively:

• Micromechanics theory based on a Representative Volume Element concept
• Homogenization theory based on a periodic unit cell concept
• Renormalization theory based on a scale-invariance or self-similarity concept
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2.2 Multiscale Methodology

With the fast growth of computing technology and rising of nanotechnology,
multiscale modeling has emerged as a new methodology since 1990s. While
multiscale methodology can be alternatively treated as an extension of classical
micro-macro methodology (Fig. 1), it does contain several important new features
as follows.

1. Classical micro-macro models deal with scale separation or scale-invariance
problems, with the results normally obtained analytically. In a scale-coupling
problem whereas the scales are not well separated, in general there is no
analytical solution available and the problem has to be resolved numerically by
using a certain multiscale computational model. It is therefore not surprising that
most of complicated unsolved problems in mechanics are scale-coupling ones,
from classical problems such as turbulence, boundary layer, fatigue cracks to
novel applications like MEMS, metamaterials, etc.;

2. Classical micro-macro models deal with two scales only with no consideration of
intermediate scales, except for renormalization theory treating an infinite number
of intermediate scales self-similarly. Multiscale methodology enables modeling
of microscopic effects propagating across multiple discrete scales explicitly. For
example, a micro-crack initiated from atomistic defects gradually extends into
a macro-crack with its length comparable to the width of a beam specimen. In
this example there are three scales involved, namely, atomistic scale, crack length
scale, and specimen size scale. A multiscale model based on hybrid of molecular
dynamics and finite element method can be used to simulate the above crack
propagation;

3. Classical micro-macro models have been developed in individual traditional
scientific and engineering disciplines. Many such models in different research
fields are actually quite similar, overlapping, or complementary to each other,
simply due to disciplinary barriers. New multiscale models have been developed
with synergistic efforts crossing disciplinary boundaries.

According to the condition of scale separation or scale coupling, there are two
distinctive multiscale strategies, i.e. scale-decoupling and scale-coupling. Classical
mechanics theories are formulated based on scale separation, e.g. elasticity, ther-
modynamics, and density functional theory, in which the effect of uncertainty is
minimized in the process of energy summation according to the central limit theo-
rem. There are however many unsolved challenging issues, e.g. turbulence, fractal
fracture, fatigue failure, critical phenomena, etc., which are typically characterized
with complexity of amplified uncertainty amid scale-coupling interactions, even
subjected to questioning of computability (Belytschko and Mish 2001). The major
hindrance, in our opinion, is continuous use of classical scale-separation theories
in conflict with scale-coupling phenomena that dominate the above unsolved
problems. Lack of rigorous scale-coupling mechanics theories is considered to be
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Fig. 2 Missing scale-coupling theories across scales

the most critical issue in the field of multiscale modeling. In Fig. 2, this critical issue
is illustrated along with uncertainty propagating through theory, physical testing,
and virtual testing of engineering systems.

3 A Scale-Coupling Mechanics Theory

3.1 Existing Methods to Address Scale Coupling Effect

Little theoretical work has been specifically devoted to scale-coupling problems.
The only existing relevant theoretical framework is generalized continua theory
(or mixtures theory) originated from the idea of Cosserat continua and developed
by Eringen (1999), Toupin (1962), Mindlin (1964), Germain (1973) from different
perspectives. Generalized continua theory attempts to explicitly account for scale-
coupling effects of microstructure by introducing additional degrees-of-freedom or
internal variables (e.g. a spin field in micropolar continua, a micro-displacement
field in micromorphic continua) into a continuum framework.

While generalized continua theory is mathematically sound, its application
to engineering problems remains very limited and the theory itself has been
subjected to considerable debates. Main reasons are attributed to lack of clarity and
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experimental methods surrounding unconventional higher order variables, issues
related to boundary conditions for higher order tensors such as couple forces
and couple stresses, and difficulties of resolving boundary layer effects (see e.g.
Kunin 1983). Many relevant works on generalized continua factually degenerate
into purely mathematical endeavors, and the specific area becomes largely occupied
by mathematicians, with one exception on the strain gradient plasticity. The strain
gradient plasticity theory, with its fundamental roots in generalized continua theory,
has been developed with a close tie to phenomenological size effect of plasticity.
Following the first proposal of the theory (Aifantis 1984), further development has
been made with phenomenological modeling (Fleck and Hutchinson 1997; Nix and
Gao 1998, etc.). As microstructure information have not yet been directly taken into
account, the major issues of the theory center on the interpretation of the internal
length scale (Evans and Hutchinson 2009).

Relevant to the above strain gradient theory, non-local constitutive laws have
been proposed in elasticity, damage, and plasticity (Rogula 1982; Eringen 1983;
Bazant and Pijaudier-Cabot 1988, etc.). As shown next, the non-local and strain
gradient formulations are convertible from each other. A major issue for the non-
local theory is lack of physical ground in determination of the non-local kernel,
while the choice of the latter affects the modeling results significantly.

3.2 Scale Coupling Mechanics Formulation

In (Xu 2009) variational principles are formulated for scale-coupling elastic com-
posites, based on which a Green-function-based multiscale method is developed to
compute scale-coupling boundary value problems (BVPs) (Xu et al. 2009). Below
the proposed scale coupling mechanics (SCM) theory is presented in a form leading
to derivation of non-local and strain gradient theories.

3.2.1 Derivation of the Non-local Constitutive Law

An elasticity BVP characterized with spatially heterogeneous moduli L(x) in
domain D reads

r � ¢ C f D 0 (1a)

¢ D L .x/ e (1b)

BC u D Qu @Du (1c)

BC ¢ � n D Qt @Dt (1d)
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which can be decomposed into a slow-scale BVP with spatially homogeneous
moduli L0

r � ¢0 C f D 0 (2a)

¢0 D L0e0 (2b)

BC u0 D Qu @Du (2c)

BC ¢0 � n D Qt @Dt (2d)

and a fast scale BVP

r � ¢� C r � p D 0 (3a)

¢� D L0e� (3b)

BC u� D 0 @Du (3c)

BC ¢� � n D 0 @Dt (3d)

with the stress polarization

p .x/ D ŒL .x/� L0
 e .x/ (4)

The fast scale BVP solution is given in terms of Green function G

u� .x/ D
Z

D

G
	
x; x0


r � p
	
x0


dx0 (5)

which yields

e� .x/ D �
Z

D

�
	
x; x0



p
	
x0


dx0 (6)

with the modified Green function

�ijkl
	
x; x0


 D 1

2

�
@2Gik .x; x0/
@xl@xj 0

C @2Gjk .x; x0/
@xl@xi 0



:

By substituting (6) into (4), the stress polarization (4) thus can be expanded as an
infinite series

p D .L �L�L CL�L�L � � � � / e0 (7)
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where a contracted notation is used and L D L � L0. The stress therefore can be
expressed in terms of the slow-scale strain e0

¢ D Le0 C Le�
D Le0 � L�p
D .L � L�L C L�L�L � L�L�L�L � � � � / e0 (8)

which shows that the stress is non-local with respect to e0. In the non-local theory
formulated as

¢ .x/ D
Z

D

K
	
x; x0



e0
	
x0


dx0 (9)

the non-local kernel K is always assumed empirically, e.g. an exponential function.
This kernel issue is considered to be the major drawback of the non-local theory.
The above result (8) provides the rigorous mathematical expression for the non-
local kernel as

K D L � L�L C L�L�L � L�L�L�L � � � � (10)

In engineering practice, since the microstructure information in domain D is always
incomplete, the strain in a BVP domain is conventionally obtained by using
certain “effective” moduli, corresponding to the slow scale strain e0. With such an
“apparent” strain to represent the true strain at a particular location, as Eq. (8) shows,
the constitutive law at this location becomes non-local.

Remark The above result also explains clearly why certain regularization, such
as the non-local or gradient formulation, should be necessarily taken to prevent
spurious mesh dependence of material softening problems. For a BVP even initially
characterized with homogeneous moduli, increase of the loading upon it will
eventually yield microcracks leading to a heterogeneous field L(x), and the
consequent non-local kernel K Eq. (10).

3.2.2 Representative Volume Element

b�
1
ijkl .Ÿ/D 1

�0jŸj4
"

jŸj2
4

	
ıik�j �lCıil�j �kCıjk�i �lCıjl �i �k


� 3�0 C �0

3�0 C 4�0
�i �j �k�l

#

(11)

Consider a subdomain D0 in which the slow scale strain e0 is approximately
constant, e.g. a linear finite element domain. If the subdomain size l � L the slow
scale strain wave length and the boundary effect is negligible, the modified Green
function can be approximated as the free space modified Green function �1 with
its closed-form solution available in Fourier space
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where �0,�0 denote the bulk and shear moduli, respectively, and Ÿ the vector of the
wave number. The volume average of the stress in the subdomain D0 is therefore
expressed as

h¢i D .hLi � hL�1LiChL�1L�1Li�hL�1L�1L�1Li � � � � / e0
(12)

In the scale separation case, a well-known name for the subdomain D0 in
micromechanics is Representative Volume Element (RVE). When the scales are
coupling, i.e. ` is not significantly smaller than l, the results for all the terms on the
right hand side of Eq. (8) become size-dependent. In this scale coupling case, size-
dependence of so-called stochastic or statistical RVE can be numerically assessed,
e.g. in (Xu and Chen 2009).

3.2.3 Derivation of Strain Gradient Formulation

By employing Taylor expansion for the slow scale strain

e0
	
x0

 D e0 .x/C 	

x0 � x

 � re0 .x/C 1

2

	
x0 � x


 	
x0 � x


r2e0 .x/C � � � (13)

and substituting it into the non-local formulation Eq. (9), it leads to a strain gradient
form

¢ .x/ D L .x/ e0 .x/C L.3/ .x/re0 .x/C L.4/ .x/r2e0 .x/C � � � (14)

where the two higher order constitutive tensors

L.3/ .x/ D
Z

D

K
	
x; x0


 	
x0 � x



dx0 (15)

L.4/ .x/ D 1

2

Z

D

K
	
x; x0


 	
x0 � x


 	
x0 � x



dx (16)

where the bracket denotes the volume average. When the subdomain size l, is
much greater than the characteristic length ` of the microstructure, the (n C 1)-th
term on the right hand side of Eq. (8) involves n-fold free-space modified Green
function and (n C 1)-th order correlation function, which is convergent to a tensor
result independent of the ratio between ` and l, as long as the scale separation
condition `� l is satisfied. For example, by invoking the ergodicity assumption and
denoting by the overbar the statistical average, the 3rd term hL�1�L�1�Li D
L�1�L�1�L involves the 3rd-order correlation function and can be analytically
simplified into explicit results in terms of a bulk parameter and a shear parameter
between 0 and 1 (see Milton and Phan-Thien 1982; Xu 2011).
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The above strain gradient formulation is first derived by Drugan and Willis (1996)
by using the statistical average of stress and strain, while the statistical average
concept is not directly linked to the existing strain gradient theory. Hereby Eq. (14)
shows that, by using the slow-scale strain, no statistical average is needed and all the
higher order constitutive tensors of the strain gradient theory are exactly derivable
from the SCM formulation.

Remark As shown in Eq. (14) the main ingredient of generalized continua theory
is also recovered from the SCM formulation. In fact the fast-scale and slow-scale
variables employed in the SCM theory correspond to micro- and macro-volume
defined in Mindlin’s work (1964). It is thought that the decomposition made in Eqs.
(1, 2 and 3) and the use of Green function are theoretically clearer and simpler than
the original formulation developed in generalized continua theory.

4 Conclusion

In this note the scale-coupling issue is emphasized as the most critical research
direction of multiscale research. By using an elasticity scale-coupling BVP as a
benchmark model, three types of scale coupling/decoupling conditions are demon-
strated:

3. The scale-coupling effect is always present within a boundary layer with its
thickness about the minimum RVE size as quantified in (Xu and Chen 2009).

The above conditions based on spatial length scales equally apply to wave
propagation in complex media. There are also scale coupling problems in time
domain, e.g. in stochastic dynamics the use of white noise input is an important
scale separation assumption with respect to the relaxation time or the natural period
of the system, which leads to nice analytical results. When the characterization
time length of an excitation is close to the natural period of the system, a so-called
“probabilistic resonance” phenomenon occurs, as noted in a recent report (Xu 2014).
The scale-coupling effect in one-dimensional time domain is expected to be much
more amplified than in three-dimensional spatial domain, especially with regard to
propagation of uncertainty, e.g. in chaotic systems.

Acknowledgement This material was supported by National Science Foundation of China
(11132003).

1. The RVE size should be much smaller than the slow scale strain wave length, i.e.
l � L;

2. The characteristic length of microstructure should be much smaller than the RVE
size, i.e. `� l;
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Statistical Volume Elements for Metal Foams

M. Geißendörfer, A. Liebscher, C. Proppe, C. Redenbach, and D. Schwarzer

Abstract Open cell metal foams can be represented by a network of beams. Due
to the heterogeneity of the geometry, the length scale of the representative volume
element is often nearly of the same order as the length scale of structures made of
metal foam. Therefore, classical homogenization techniques for the computation of
effective properties can not be applied. Statistical volume elements lead to apparent
material properties that depend on the boundary conditions. Here, we introduce a
model for structures made of metal foam that consists of two domains, an interior
region and a boundary region. For both regions, unique random fields are identified
by simulations of the microstructure. The model is validated by comparison with
Finite Element simulations and experiments.

Keywords Metal foam • Stochastic analysis • Multiscale method • Modal
analysis

1 Introduction

For heterogeneous materials, the size of the representative volume element can
be quite large (Dirrenberger et al. 2014). In this case, the assumption of scale
separation is not valid anymore. For metal foams, the representative volume element
is estimated to consist of about 1,000 cells (Kanaun and Tkachenko 2007).
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Fig. 1 Overview of the proposed computational procedure

If scale separation can not be assumed, it is still possible to compute apparent
material properties (Huet 1990) and to provide a macroscopic description by
random fields (Guilleminot et al. 2011). However, the apparent material properties
depend on the boundary conditions. Therefore, a unique random field for the
apparent material properties does not exist (Ostoja-Starzewski 2011). Recently,
Di Paola (2011) proposed an averaging method that leads to unique boundary effect
independent apparent properties. In this method, material properties are obtained
by averaging over a volume that is smaller than the volume element on which the
boundary conditions are applied.

Since the basic deformation mechanism is bending dominated, the mechanical
model of metal foam is a three dimensional network of connected Timoshenko type
beams with the material properties of the solid structure (Gibson and Ashby 1997).
Averaging over a volume inside a beam network would predict a stiffer behavior
than averaging over the whole volume element, due to the free, unconnected ends
of the beams at the boundary of the volume element. Therefore, averaging over
volumes smaller than the volume element will be valid only in the interior of
a structure. For these reasons, a model for structures made of metal foam that
consists of two domains – an interior region and a boundary region – is introduced
and investigated here. In the interior region, a unique random field is identified
that represents boundary effect independent apparent properties. For the boundary
region, a random field is obtained by applying appropriate boundary conditions.
The proposed approach allows to work with a uniquely defined random field by
introducing a slightly more complex structural model.

For structures made of metal foam, uncertainties are mainly due to the hetero-
geneous geometry. By introducing suitable statistical volume elements, applying
boundary conditions and an averaging procedure, uncertainties are propagated from
the geometry to the material properties and to macroscopic structural behavior.
This propagation process is sketched in Fig. 1. It applies also to other types of
heterogeneous materials and macroscopic properties than those studied in this
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paper. This paper is organized along the propagation process as follows: the next
section discusses the microstructure model, Sects. 3 and 4 treat the generation and
analysis of mesoscale volume elements. In Sect. 5, predictions are compared with
experiments for an open cell copper foam and in Sect. 6, conclusions are drawn.

2 Microstructure

2.1 CT Analysis

As an example of application we investigate a Duocel® copper foam. A stochastic
microstructure model is developed and adapted to the geometric characteristics
estimated from three-dimensional �CT images. For that purpose, ten cubes of
25 mm side length were imaged by CT with a voxel edge length of 38:15 �m.
A visualization of one of the samples is shown in Fig. 2. The volume fraction
of copper was on average 12.6 %. Foam cells have been reconstructed by the
following procedure (Ohser and Schladitz 2009): First, the images were binarized
using a global threshold. On the resulting binary images, the Euclidean distance
transform was applied which assigns to each cell pixel its distance to the nearest
strut. Ideally, the resulting image has local maxima at the cell centers. In practice,
however, additional maxima may appear due to discretization effects and irregular
cell shapes. These were removed using an adaptable h-maxima transform. Finally,
the watershed algorithm was applied to the inverted distance images to separate the
single cells. All image processing steps were performed using the MAVI software
package (Fraunhofer ITWM, Department Image Processing (Hrsg.) 2006).

Fig. 2 Visualizations of a CT image of the Cu Duocel® foam (left) and the model (right).
Visualized are 5003 voxels
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Table 1 Cell properties
obtained from CT analysis Property Mean

Standard
deviation

Diameter 5.09 mm 0.30 mm
Surface area 80.19 mm2 9.58 mm2

Volume 49.64 mm3 9.12 mm3

Facets 13.90 1.48

From the reconstructed cell systems, the geometric quantities summarized in
Table 1 were estimated using minus-sampling edge correction (Ohser and Schladitz
2009). The mean number of cells per 1;000mm3 was 20.15. The mean cell diameters
in the coordinate directions indicated an anisotropy in the cell structure. Although
this can be included in the microstructure model (Redenbach 2009), a simplified
model assuming isotropy of the microstructure was used here.

2.2 Microstructure Generation

Solid foams show a high variability in cell sizes and shapes, which influences
their elastic properties (Zhu et al. 2000). This variability cannot be represented
by deterministic models. Random tessellations (Stoyan et al. 1995) proved to be
a suitable model class in this regard.

An important class of random tessellation models are Voronoi tessellations gen-
erated from realizations of random point processes. Voronoi tessellations generated
by hard-core point processes are of particular interest for the modelling of foam cells
due to their relatively regular cell shapes. However, the adaptability of the size dis-
tribution of the tessellation cells to the estimated size distribution is limited. To over-
come this problem, weighted Voronoi tessellations can be considered. For modelling
foam cells, Laguerre or power-tessellations (Aurenhammer 1987) are a promising
model class. This model is defined as follows: given a set S of spheres, the Laguerre
cell C.s.x; r/; S/ of a sphere s.x; r/ in S with center x and radius r is defined as

C.s.x; r/; S/ D fy 2 R
3 W ky � xk2 � r2 � ky � x0k2 � r 02;8s.x0; r 0/ 2 Sg; (1)

where k�k denotes the Euclidean norm. The Laguerre tessellation is the set of all
non-empty Laguerre cells of spheres in S . It forms a space-filling system of convex
polytopes. If all spheres have equal radii, the Voronoi tessellation is obtained.

If the set S forms a system of non-overlapping spheres, each sphere is completely
contained in its Laguerre cells. Consequently, the volume distribution of the spheres
can, to a certain degree, be used to control the volume distribution of the cells.
A method for adapting Laguerre tessellations generated by hard sphere packings to
real foams based on the statistical analysis of CT images is presented in Redenbach
(2009). The superiority of Laguerre tessellations over Poisson and hard-core
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Voronoi tessellations has been shown in Lautensack (2008) and Hardenacke and
Hohe (2010). Laguerre tessellations were used to determine the elastic properties of
a representative volume element of metal foam in Kanaun and Tkachenko (2008)
and Hardenacke and Hohe (2009).

Based on the data shown in Table 1, a Laguerre tessellation was fit to the
foam structure using the procedure introduced in Redenbach (2009). A system of
non-overlapping spheres simulated by the force-biased algorithm was chosen to
reproduce the regularity of the observed cell shapes. The lognormal distribution
provided a good fit to the cell volume distribution of the foam. Therefore, it was
also chosen for the volume distribution of the generating spheres. The probability
density function of this distribution family is given by

p.r/ D
exp

�

� .log r �m/2

2�2



p
2��r

; r � 0; (2)

with parametersm 2 R and � > 0.
To determine the model parameters, the geometric characteristics of the foam

cells were compared to the characteristics of the tessellation cells using the
following distance measure. Denote by bci , i D 1; : : : ; 8, the eight quantities given in
Table 1 and let ci .m; �/, i D 1; : : : ; 8, be estimates of these quantities obtained from
Laguerre tessellations with parameters m and � for the sphere volume distribution.
The optimal parameters are those, for which the relative distance

dm;� D
v
u
u
t

8X

iD1

� Oci � ci .m; �/

Oci
2

(3)

is minimized. In the application, the optimal parameters for the volume distribution
were found to be m D 1:0508 and � D 0:2849. Visualizations of one of the CT
images and of the fitted model are shown in Fig. 2.

Until now, we only considered the cell system of the foam. In a second modeling
step, the actual open- or closed-cell foam model is derived from the edges or
facets of the tessellation model by morphological operations (Soille 1999). When
modeling open-cell foams, the cross-section thickness along the strut is usually kept
constant.

Locally variable strut thickness was considered by Kanaun and Tkachenko
(2008) and Liebscher and Redenbach (2013). Here, the strut thickness is modeled
as a polynomial of the distance x from the strut center to the adjacent nodes. In
Liebscher and Redenbach (2013) it turned out that a polynomial of the form

p.x/ D ax8 C bx4 C cx2 C d; (4)

a; b; c; d 2 R results in the best model for the strut thickness.
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3 Determination of Linear Elastic Properties

3.1 Stiffness Tensor

In order to compute the linear elastic properties of metal foam, mesoscopic volume
elements were created with the microstructure generator and boundary conditions
yielding an upper (kinematic uniform boundary conditions, KUBC) and a lower
bound (static uniform boundary conditions, SUBC) for the compliance tensor
(Hazanov and Huet 1994) were applied. This procedure is often utilized in the
context of homogenization techniques (see e.g. Kanit et al. 2003; Ostoja-Starzewski
2007), but mainly for the determination of the size of a statistically representative
volume element (RVE). The size of the RVE is defined by the element size, for
which these two bounds converge against the same value. Therefore, the mechanical
properties of the RVE are theoretically deterministic – in the sense of being accurate
enough to represent the mean constitutive response (Drugan and Willis 1996).

It is well known that these homogenization techniques are based on the condition
that the scale of the microstructure and the scale of the observed mechanical
properties can be separated due to a large difference in their characteristic lengths.
Unfortunately, the characteristic length scale of metal foam is in many applications
not much smaller than the characteristic length scale of the structure to be
investigated. For these reasons, homogenization schemes can not be applied. One
has to consider stochastic volume elements (SVE) instead. In this case the above
mentioned method of loading different boundary conditions can still be adopted
yielding so-called apparent properties (Huet 1990)

� 0 D CSUBC
apparent < � >;

< � > D CKUBC
apparent�0; (5)

where < : > denotes the volume average, � and � the stress and strain tensor
and � 0 and �0 the imposed stresses and strains according to SUBC and KUBC,
respectively. When ensemble averaged, the apparent properties yield bounds for the
effective material properties of interest. For a larger SVE the bounds become closer
and their scatter smaller (Ostoja-Starzewski 2007). Here, the aim is not to compute
effective properties, but to model the scatter in the stiffness tensor and to predict its
consequences on the natural frequencies. Under assumption of the Hill condition,
the following inequality holds for the apparent stiffness tensor Capp (Hazanov and
Huet 1994):

CSUBC
apparent � Capp � CKUBC

apparent; (6)

100 SVEs with a side length of 25 mm are generated and each SVE is loaded by
different load cases for the boundary conditions mentioned above and solved with
the help of the finite element method. After that, the apparent material parameters
are calculated from the results.
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Fig. 3 Isotropic-orthotropic behavior: Young’s modulus in different spatial directions

3.2 Material Symmetry

Additionally, the symmetry of the elastic properties can be investigated. It turns out
that the symmetry properties depend on the size of the SVE: for a small size, cubic
symmetry with three independent linear elastic material parameter is obtained, while
for a larger SVE size, isotropic behavior is found. This can be illustrated graphically
by projecting the ensemble averaged compliance tensor on space directions d D
Œx; y; z
T and inverting in order to obtain a directional dependent Young’s modulus:

E.d/ D Œ.d ˝ d/ W S W .d ˝ d/
�1 : (7)

While a cube represents cubic symmetry, a sphere means isotropic symmetry.
Figure 3 shows the relative deviation of the directional dependent Young’s modulus
from the average value in the three space directions,

1

3

	
E.Œ1; 0; 0
T /C E.Œ0; 1; 0
T /CE.Œ0; 0; 1
T /



: (8)

It indicates that there is a mixture of both symmetries for the mentioned SVEs with
a side length of 25 mm.
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Fig. 4 Definition of the partial volume element (PVE) and the behavior of the relative Young’s
modulus as a function of ratio d=D

3.3 Partial Volume Averaging

As discussed in Sect. 3.1 we obtain a lower and upper bound of the stiffness tensor.
For the determination of an apparent boundary effect free stiffness tensor, the
influence of the boundary conditions has to be eliminated. In order to omit the border
areas of the SVE, which are mainly influenced by the boundary conditions, strains
and stresses are averaged over an inner partial volume of the SVE. The center point
of the partial volume element (PVE) coincides with that of the SVE.

Defining the edge length D of the SVE and d of the PVE, the behavior of the
relative Young’s modulus as a function of the ratio d=D is illustrated in Fig. 4.
By reducing the ratio rdD D d=D, the influence of the boundary conditions is
minimized and as a result the stiffness tensors for SUBC and KUBC converge
against the same value.

Contrary to the expectation that the upper bound should become lower by
increasing rdD , both bounds first increase and then approach for rdD < 0:9. The
reason for this characteristic curve lies in the microstructure of the foam. The SVE
is cut out from a surrounding network causing cut struts in the border area. This
reduces the stiffness in that area. In the inner part of the SVE struts are not cut and
the interior is stiffer than the exterior. This leads us to a paradox: On the one hand
we want to determine the material parameters without influence of the boundary
conditions and on the other hand we have to consider the boundary effect because
of the difference of the stiffness tensor in the inner and outer part of a SVE.

The same 100 SVEs of Sect. 3.1 are used to interpolate the results from the finite
element method to the predefined side surfaces of the PVE. The interpolated results
are used to calculate the material parameters inside the PVE.
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3.4 Two Section Model

Due to the difference in stiffness shown in the interior and exterior of a SVE, it is
not completely correct to determine material parameters by averaging over the entire
volume. This would be associated with the assumption that the stiffness is constant
over the volume.

For a more accurate mapping of real foams, the apparent stiffness tensor Capp

which is assumed as the mean value of CSUBC
apparent and CKUBC

apparent is interpreted as the
mean value of the stiffness tensor of the outer and inner part. For the interior the
stiffness is calculated at rdD D 0:2 in Fig. 4. The boundary between the interior and
exterior is determined by the average length of the cut struts. The stiffness in the
border area is calculated with the model of springs connected in series. The Young’s
modulus is then described by the formula

1

ESVE
D pi

Einterior
C 1 � pi
Eexterior

; (9)

where pi is the percentage of the inner edge length and ESVE is Young’s modulus
obtained from Capp.

3.5 Variable Strut Thickness

In reality, the thickness of each strut varies and can be described by a polynomial.
Therefore every strut is now divided in several beams. The thickness of each beam
is adapted to the polynomial in Eq. (4).

For the Duocel© copper foam eight beams for every strut are used to find a
compromise between the accuracy of modeling and calculation time.

4 Statistical Evaluation of Material Properties

4.1 Determination of the Distribution Function

Relative frequencies for the boundary effect free apparent material properties are
shown in Fig. 5. From the relative frequencies, empirical distribution functions can
be obtained.

4.2 Determination of the Correlation Functions

As the linear-elastic material parameters and the mass density will serve as input
parameters for structural computations, they are represented as random fields. The
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Fig. 5 Histogram of the boundary effect free Young’s modulus

random fields are assumed to be homogeneous as a consequence of the homogeneity
of the generated microstructure geometry. In order to find the correlation functions
for the linear-elastic material parameters, 15 beam structures (100 � 10 � 10mm)
made of foam are analyzed by a method of moving SVEs: SVEs of the same size
are cut out of each of these beams at different positions along the longitudinal axis.
For each SVE the material parameters are calculated as functions of the center point
coordinate x on the longitudinal axis.

For the computation of the autocorrelation function, the 15 realizations are made
mean free and scaled to unit variance. After that, the autocorrelation function is
obtained by taking the mean value over all 15 realizations at each distance .
The results for the Young’s modulus E , shear modulus G, bulk modulus K and
mass density � are shown in Fig. 6. It can be seen from these results that the
autocorrelation functions approach zero with increasing distance. Moreover, the
correlation length is rather small.

Figure 6 also indicates that the autocorrelation functions reveal a similar
behavior. Therefore, the autocorrelation functions have been fitted to the expression

C.x/ D e�cjxj .1� cjxj/ ; (10)

which has been proposed in Liebscher et al. (2012). In Fig. 7 the fitted autocorrela-
tion function is plotted.
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Fig. 6 Estimated autocorrelation functions
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In the same manner, the crosscorrelation functions can be obtained. It turns out
that the material parameters are almost uncorrelated.

The random fields for the material parameters and the mass density are described
by the empirical distribution functions and the autocorrelation functions. They are
discretized by a truncated KLE. Samples of the random variables involved in the
KLE are generated iteratively by adapting the empirical marginal distribution. For
this, a procedure described in Phoon et al. (2005) is applied.

5 Validation of the Implemented Model

5.1 Comparison with Finite Element Method

The bending eigenfrequencies from foam beams calculated by the finite element
method (FEM) are compared with the results obtained from the method presented
in this article. 100 Duocel© copper foam beams are generated with the dimensions
255� 15� 15mm. Their eigenfrequencies are calculated with the help of the FEM-
software ABAQUS©. The mean values and the coefficient of variation of the results
are listed in Table 2.

As the next step, a SVE with side length 15mm is cut out of each generated
copper foam beam, so that from 100 SVEs the material parameters can be calculated
using the presented method in Sect. 3.1. With the obtained material parameters
the eigenfrequencies of beams are calculated using Timoshenko theory and Monte
Carlo simulation. This procedure is named one section model (OSM), because
stresses and strains are averaged over the whole volume of a SVE.

To investigate the effects of the two section model (TSM) from Sect. 3.4, the
material parameters are calculated using the PVE. The percentage of the inner edge
length pi from Eq. (9) is 0:8613. In a Monte Carlo simulation the bending stiffness
EI is split for the interior and exterior of the foam beam. The results of these three
methods are summarized in Table 2.

OSM and FEM yield similar results for the first two bending eigenfrequencies.
The deviation between these two methods becomes larger for higher bending modes.

Table 2 Young’s modulus and Eigenfrequencies using FEM, OSM and TSM

ESVE Einterior Eexterior

MPa (c.o.v.) 615 .10:2%/ 977 .7:9%/ 193 .22:9%/
Bending frequencies [Hz] (c.o.v.)

FEM OSM TSM

1st bending mode 173 .1:6%/ 173 .1:4%/ 175 .1:1%/
2nd bending mode 468 .1:4%/ 465 .1:7%/ 474 .1:1%/
3rd bending mode 897 .1:1%/ 881 .1:7%/ 900 .1:5%/
4th bending mode 1;432 .1:4%/ 1;398 .1:7%/ 1;444 .1:5%/
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Table 3 Material parameters
for Cu Duocel®

Property � � COV (%)

Young’s modulus 737 MPa 42 MPa 5.7
Shear modulus 239 MPa 13 MPa 5.3
Mass density 1,047 kg/m3 53 kg/m3 5

Table 4 Comparison for the beam of Cu Duocel® (250 � 25� 25mm)

Bending frequencies [Hz] (c.o.v.)

OSM TSM VST Experiments

1st bending mode 334 (1.4 %) 332 (1.5 %) 320 (1.3 %) 314 (2.8 %)
2nd bending mode 861 (1.9 %) 866 (2.0 %) 827 (2.2 %) 761 (3.4 %)

Nevertheless the error remains less than 4 %. Also the coefficient of variation
becomes larger for the OSM. The TSM is consistent to FEM even for higher
frequencies with an error less than 2 %. It behaves stiffer than the OSM which is
due to the stiff interior region. The coefficient of variation is relatively low for all
three methods, because the deviations of the material parameter average out along
the longitudinal axis of the beam.

Obviously the disctinction between the different stiffnesses in the foam beam
become more important for higher bending modes. The remaining error between
FEM and TSM may attributed to the inaccuracy of the determination of the
transition between the interior and exterior of the beam.

5.2 Comparison with Experiments

In this section, the natural frequencies of beams made of Cu Duocel® are predicted
by OSM, TSM, a model using the variable strut thickness (VST) and compared
with experimental values. To this end, 25 beams of size 25 � 25 � 250mm are
investigated experimentally in two ways. First, the density is determined via optical
measurements and second, experimental modal analysis was performed.

The linear-elastic material properties of Cu Duocel® and the mass density were
calculated with the proposed mesoscopic model. The input parameter to this model
were

• The material data of copper,
• The geometric characteristics estimated from the CT data of 10 Cu Duocel®

cubes of length 25 mm,
• The cross section shape of the beam network.

The result of the mesoscopic modeling is given in Table 3. Table 4 compares the first
two bending frequencies obtained from Monte Carlo simulations and experiments.
The mean values obtained by OSM and TSM are larger than the experimentally
determined mean values. This is due to the constant strut thickness. The results
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between OSM and TSM does not differ significantly because the influence of the
border area from the TSM is low compared to the cross-sectional area from the
beam. The VST using the polynomial from Sect. 2.2 results in a better accordance.

The remaining difference between VST and experiments could be related to
experimental conditions and the simplified microstructure geometry of the model
(e.g. ignoring the anisotropy).

6 Conclusions

In this paper, a novel model for structures made of metal foam is developed. It
consists of an interior region and a boundary region. For both regions, non-Gaussian
random fields are identified by averaging stresses and strains on statistical volume
elements that represent the heterogeneous network of struts.

Comparisons of simulations with the novel two region model and numerical as
well as experimental results demonstrate that highly accurate dynamical properties
can be obtained with the proposed model. Moreover, it has been shown that the
random variation of the strut thickness constitutes an important parameter that has
to be taken into account in order to produce accurate predictions of macroscopic
properties.

The proposed model can be refined to take the anisotropy of the network
geometry into account. It can be applied to the study of other macroscopic
properties of metal foams, notably their damping and crushing behavior. Finally,
the proposed model can be applied to other classes of materials with heterogeneous
microstructure as well.
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Stochastic Characterisation of the In-Plane Tow
Centroid in Textile Composites to Quantify the
Multi-scale Variation in Geometry

Andy Vanaerschot, Brian N. Cox, Stepan V. Lomov, and Dirk Vandepitte

Abstract Optical imaging is performed to quantify the long-range behaviour of
the in-plane tow centroid of a 2/2 twill woven textile composite produced by resin
transfer moulding. The position of the carbon fibre tow paths is inspected over
a square region of ten unit cells and characterised by decomposing the centroid
data into a non-periodic non-stochastic handling effect and non-periodic stochastic
fluctuations. A significantly different stochastic behaviour is observed for warp and
weft direction. Variability of the in-plane coordinate, identified by the standard
deviation, is found to be six times higher in weft direction. The spatial dependency
of deviations along the tow demonstrates a correlation length of ten unit cells for
warp tows, which is twice the length computed for weft tows. The observed bundling
behaviour of neighbouring tows of the same type is quantified by a cross-correlation
length. Warp tow deviations affect neighbouring centroid values within the unit cell
dimension, while this effect exceeds the unit cell size for weft tows. The stochastic
information reflects the difference in tow tensions during the weaving of the fabric.
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1 Introduction

Fibre reinforced composite materials are subjected to a significant amount of scatter
in the geometrical structure, leading to a remarkable variability in performance.
The nominal periodicity in the tow reinforcement of a textile composite, prescribed
by the manufacturer, is only approximated in real samples. Different work already
demonstrated that the tow paths in textile composites should not be represented
as deterministic, but as stochastic entities where deviations are fluctuating around
a mean trend (Desplentere et al. 2005; Endruweit et al. 2006; Gan et al. 2012).
Mapping the variation in geometry and material properties will support material
design and certification of structural composites (Rousseau et al. 2012; Zhu 1993).
It increases the reliability of numerical analyses of composite structures.

Almost all published research deals with randomness of local properties without
considering the correlation of a property at different positions along a tow, or
correlation between different properties at the same position on a tow. Although,
experimental work Mehrez et al. (2012) already has demonstrated that spatial
variability must be considered to achieve an accurate description of the material.
Also the sources of variability remain poorly understood and the inadequacy of
experimental data (Charmpis et al. 2007; Vandepitte and Moens 2009) result in
assumptions for the input probability density functions of numerical modelling
techniques. Further, only a few tools are available to partially model the geometrical
variation of textile reinforcements (Cox and Yang 2006). Significant advances in
realistic material modelling can be achieved by Charmpis et al. (2007): (i) collecting
sufficient experimental data on the spatially correlated random fluctuations of the
uncertain tow path parameters and (ii) deriving probabilistic information for the
macroscopic properties from the lower scale mechanical characteristics. This work
is part of a series of papers following the approach of Charmpis et al. (2007). The
objective is to create virtual specimen of polymer reinforced composites possessing
the same statistical information as observed in experimental samples. Such random
composite structures are subsequently used to define the spatial variability in the
mechanical properties caused by geometrical variation in the tow path.

Variation in the geometry is a multi-scale phenomenon in textiles: geometrical
scatter should be investigated on the short range, i.e. deviations correlated over
distances less than or compared to the size of the unit cell, complemented with long
range information, i.e. spanning several unit cells. The methodology is tested on
a carbon-epoxy 2/2 twill woven composite produced with resin transfer moulding
(RTM). Short range tow path data are already quantified in Vanaerschot et al.
(2013a), while this paper reports and analyses the collection of the long range
deviations of the in-plane position.

While data about the out-of-plane centroid and cross-sectional variations demand
the investigation of the internal geometry, in-plane centroid information can be
deduced from scans performed of the top view of the composite. It does not require
sectioning or need a full three-dimensional representation. Optical imaging of the
surface of textile composites has already been applied to characterise the in-plane
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geometrical variations for several woven and stitched composites. Endruweit et al.
(2006) links fabric irregularities with permeability variations. Optical images are
taken of several woven fabrics to inspect the scatter in tow width, tow spacing and
inter-tow angle. Depending on the structure of the fabric, higher or limited fibre
tow mobility is allowed. Skordos and Sutcliffe (2008) investigated the influence
of fibre architectural parameters on the forming of woven composites. Variability
in tow directions and unit cell size are quantified for a pre-impregnated carbon-
epoxy satin weave textile using the Fourier transform of a grey-scale image. A
two-dimensional spectrum with directional structure is obtained which corresponds
to the physical tow directions. This methodology is found to be effective, but
does not permit to analyse the local centroid coordinate along the tow. Gan et al.
(2012) used an optical technique to quantify the variability of three different glass
reinforcement structures. The translucent property of glass fibres is exploited to
set up an automated characterisation procedure using Matlab. Samples spanning
several unit cells are quantified in areal weight variations, with additional local
tow orientations, tow spacings and widths for the periodic reinforcements. This
automated procedure can however not be applied for carbon fibres due to its opacity.

A full characterisation of the in-plane centroid of the 2/2 twill woven textile
is obtained by scanning the top surface of the impregnated composite. Local and
correlated information of the tow centroids are investigated over a region spanning
multiple unit cells. The objectives of the paper are to (i) perform optical imaging
with derivation of the in-plane tow centroid of a one-ply 2/2 twill woven carbon
epoxy composite, (ii) develop a procedure to define the in-plane centroid deviations
(iii) compute the mean trend and statistical information of the deviations in terms of
standard deviation and correlation length. The statistical information is prepared to
be used as input in a stochastic multiple unit cell modelling technique.

2 Material

The inspected tow reinforcement is a 2/2 twill woven Hexcel fabric (G0986 injectex)
(HexForce 2014). The unit cell topology is given in Fig. 1 with �x and �y , respec-
tively the periodic length in warp (x-axis) and weft (y-axis) direction. Nominal
areal density measures 285 g/m2 with an ends/picks count of 3.5 resulting in unit
cell dimensions of 11.4 by 11.4 mm. Two one-ply reinforcements of this fabric,
spanning a region of 13 unit cells by 13 unit cells, are impregnated with epoxy resin
in a RTM process. The production of one-ply samples is more challenging than
multiple-ply samples but offers the advantage to obtain a high contrast between
tow and resin regions for the image processing step. Characterisation of the in-
plane centroid on these multiple unit cell samples provides new information of the
geometrical scatter on the long range. Deviations correlated over distances less than
or compared to the size of the unit cell are already quantified using laboratory micro-
computed tomography in Vanaerschot et al. (2013a). The tow path is statistically
characterised for the centroid location (in- and out-of-plane), area, aspect ratio and
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Fig. 1 WiseTex model of a 2/2 twill woven reinforcement. The x-axis and y-axis of the coordinate
system are respectively parallel to the warp and weft direction

orientation in cross-section. The reference period collation method (Bale et al. 2012)
is applied, where each tow parameter is decomposed in non-stochastic, periodic
systematic trends and non-periodic stochastic fluctuations. Average behaviour of
the tow parameter is represented by the systematic trend, while the stochastic
characteristics are given in terms of the standard deviation and correlation length.
The procedure and statistical information is described in Vanaerschot et al. (2013a).

The investigation of short range variations pointed out that only the in-plane
centroid component of the tow path possesses a long range effect, indicated by
the correlation length along the tow which exceeds the unit cell dimensions. The
out-of-plane centroid and tow cross-sectional properties vary within the unit cell
dimensions.

3 Image Processing and Analysis

An optical scan of the in-plane dimension of both the samples (sample 1 & sample 2)
is performed with a resolution of 1,200 dots per inch (DPI). The obtained image of
the first sample is shown in Fig. 2. A region of 10 unit cells by 10 unit cells is
indicated where the in-plane tow data are analysed. This area of interest is chosen
away from the edges to minimise possible edge effects and large enough, roughly
one magnitude larger than the short range data.

The freeware image processing tool GIMP is used to extract the centroid line of
the tow reinforcement in order to quantify the in-plane position of warp and weft
tows. In a first step, boundaries of the tows are marked based on visual recognition
for prescribed grid spacings of 125 pixels in x (warp) and y (weft) direction. These
distances correspond to the nominal tow spacing of a 2/2 twill weave. In a second
step, the centroid locations are computed as half the tow width at each grid location.
Typical patterns in the centroid positions are further investigated to quantify the
global deformation of the fabric.
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Fig. 2 Optical scan of a one-ply 2/2 twill woven carbon fibre fabric impregnated with epoxy resin.
Warp tows are oriented horizontally, while weft tows are positioned in vertical direction

Table 1 Unit cell periods obtained from long range data, short range data and manufacturer’s data

� (mm)
sample 1

� (mm)
sample 2

� (mm)
combined

� (mm) short range
(Vanaerschot et al.
2013a)

� (mm)
manufacturer
(HexForce 2014)

Warp direction 11.43 11.53 11.48 11.55 11.40
Weft direction 11.38 11.37 11.38 11.48 11.40

The discrete representations of the tows are given as input to Matlab. Before
further inspection, data are translated to a global axis system and rotated. Average
warp and weft angles are computed to verify if a rotation of the entire data set is
required to compensate a possible shift in the sample data due to manual placement
in the scanning device. A continuous representation of the discrete tow data is
afterwards obtained by cubic spline interpolation.

Using the same approach as for the unit cell sample in Vanaerschot et al. (2013a),
the unit cell periods can be defined by a minimisation algorithm. Table 1 compares
the periodic lengths (i) obtained from the considered long range samples, (ii) derived
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Table 2 Tow width and
spacing of the one-ply 2/2
twill woven fabric

Warp tows Weft tows

wtow – mean (mm) 2.64 2.49
wtow – COV (%) 4.96 7.17
sptow – mean (mm) 2.86 2.90
sptow – COV (%) 3.62 8.73

from the unit cell sample and (iii) given by the manufacturer. The experimental data
for the short and long range demonstrate that the unit cell period of the warp tows
is slightly longer than the weft tows.

Geometrical characteristics of the single ply 2/2 twill woven fabric, such as tow
spacing sptow and width wtow, can be defined from the in-plane dimensional image.
These parameters are derived from the boundary points and centroid locations of the
tows and presented in Table 2. Weft tows have on average a smaller width, while the
tow spacing is similar for warp and weft tows. The variation is higher for the weft
direction.

The digital image also allows to quantify the open gaps between neighbouring
tows. Pattern of these gaps originates from the fluctuating in-plane centroid of
the tow path over the experimental sample and represent regions fully occupied
by resin. After thresholding of the digital image, characterisation of the gaps is
further performed automatically in Matlab to define the location and shape. The
approximated rectangular shape of the gaps is represented by the width and height at
each gap location. To eliminate disturbances due to e.g. dust particles in the image,
a gap is considered to be significant if it has at least an area of 16 pixels2 with a
width and/or height of at least 4 pixels. Maps of the significant gaps located over
the sample dimension can be constructed such as presented in Fig. 3 for sample 1.
Each gap size is categorised in one of the five considered intervals of the gaps area
as indicated by the legend. Such mapping of gaps demonstrates bundling behaviour
of the tows, which is more noticeable for the weft tows. Local shifts in a tow affects
neighbouring tows over a certain distance. The fluctuations along a single tow spans
several unit cells, but do not persist over the entire length of the tow. This is reflected
by the open gaps which occur in bands over the entire sample.

Statistics of the gaps (width wgap , height hgap and area Agap) are described in
Table 3 in terms of sample mean value and coefficient of variation (COV). Individual
gap dimensions are Weibull distributed with a scale parameter approximating the
zero value and shape parameter between 1.2 and 1.9. The width of the gaps wgap (x-
or warp direction) is 2–2.5 times the height of the gaps hgap (y- or weft direction).
This reflects the larger variability in the weft in-plane tow path compared to the
warp tows, as will be discussed in Sect. 4. A higher width leads to significant gaps
between neighbouring weft tows in the warp direction. The amount of gaps in the
one-ply sample is less than 1 % of the entire area, which dominates the through-
thickness permeability. It can be used to optimise flow simulation in accurately
describing the local flow and minimising the number of voids.
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Fig. 3 Map of gaps distributed over sample 1. The area of the significant gaps (mm2) are indicated
and categorised in five intervals

Table 3 Sample mean and
coefficient of variation of the
gaps in sample 1 (N D 1;762)
and sample 2 (N D 1;862)

Sample 1 Sample 2

wgap – mean (mm) 0:418 0:451

wgap – COV (%) 61:46 53:49

hgap – mean (mm) 0:184 0:177

hgap – COV (%) 56:85 59:18

Agap – mean (mm2) 0:075 0:080

Agap – COV (%) 84:93 83:35

Porosity full sample (%) 0:56 0:65

4 Statistical Characterisation of the In-Plane Centroid

Figures 2 and 3 demonstrate that the in-plane tow centroid does not follow straight
paths with equal tow spacing. These in-plane undulations and shifts in tow spacing
are quantified by comparing the experimental tow paths with an ideal lattice
description. Tows of this lattice are represented as straight lines, with nominal
spacing equal to ı D �y=4 and ı0 D �x=4 respectively for the warp and weft
spacing (�x; �y taken from the experimental unit cell periods in Table 1). A best-fit
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Fig. 4 Procedure to define the in-plane centroid deviations applied on sample 1. (a) Detail image
of best-fit grid to the experimental cross-over locations. (b) Deviations pattern of all warp tows
after subtraction of the experimental cross-over data from the grid values

of this grid with the experimental cross-over locations of the tows is searched by a
minimisation algorithm reducing the overall standard deviation of the fluctuations
from the grid. This procedure is shown in detail in Fig. 4a, where the lattice is fitted
to the centroid data of the left bottom side.

4.1 Analysis of the In-Plane Deviations

Deviations from the nominal architecture are determined by computing the differ-
ence between the experimental tow path and the lattice at each grid location. The
in-plane warp and weft fluctuations are considered respectively in y- and x-direction.
This procedure results in a deviations pattern for the warp tows, combination of
sample 1 and 2, as given in Fig. 4b.

The obtained deviations are further represented as ".j;t;s/i , with i the grid location
(i D 1 : : : Ni and Ni D 40), j the tow index (j D 1 : : : Nf and Nf D 40) in each
direction, t = warp or weft tows and s = 1 or 2 referring to the sample. The in-plane
centroid deviations along the different tows have a particular non-periodic trend.
This pattern is shown for the warp tows in Fig. 5a, by considering the mean value
per grid point< ".j;t;s/i >. The lack of periodicity signifies that this tendency should
not be interpreted as a systematic trend, representing the repetitive mean behaviour
of the tow path, but as an effect due to handling. Variability already originates in
the in-plane centroid before production due to storage and handling of dry fabrics,
e.g. unwinding of the fabric from the pulley and preparing the stacking sequence
in the RTM mould. This kind of variation should not be considered as stochastic,
but as an added deterministic effect. Subtracting the handling pattern per sample
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Fig. 5 Deviations trend of warp tows decomposed in (a) handling effect and (b) stochastic
deviations

< "
.j;t;s/
i > in Fig. 4a from the deviation values ".j;t;s/i in Fig. 4b, results in stochastic

variations �.j;t;s/i which are attributed only to the loom itself. Decomposition of in-
plane deviations in a deterministic and stochastic part is summarised as

"
.j;t;s/
i D< ".j;t;s/i > C�.j;t;s/i (1)

The deviations �.j;t;s/i are presented in Fig. 5b for the warp tows.
Equal results can also be obtained following the reference period method (Bale

et al. 2012; Vanaerschot et al. 2013a). The proposed procedure uses a similar
approach by defining the nominal tow spacing, expressed as ı in the ideal lattice,
equal to �=4. The periodic lengths �x and �y are experimentally obtained using the
same minimisation algorithm. The similarity is indicated in Fig. 5a where the cross
marks indicate the systematic trend obtained using the reference period technique.
However, this systematic curve should be interpreted as a handling effect.

The transformed deviations �.j;t;s/i are further analysed to obtain stochastic
information about the geometrical scatter of the in-plane tow centroid. Both
sample deviations are grouped in one data set, which is permitted since no special
relationship is expected between the different samples after subtraction of the mean
trend. The warp and weft deviations approximately follow a normal distribution.
The normal probability plot of the in-plane deviations of the warp tows (Fig. 6a)
show good agreement, except for the tails where a lower frequency of deviations
is present. The weft deviations on the other hand do show significant differences
from normality (Fig. 6b), with a higher frequency of values in the left tail of the
distribution and a higher frequency of deviations values around the zero mean.
The weft fluctuations behaviour could be depicted as a combination of two normal
distributions: one with low standard deviation (peaked curve) and one with high
standard deviation (wide curve). However, there is no physical reason why these
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Fig. 6 Normal probability plot for (a) warp and (b) weft tow deviations showing approximately
normal behaviour of the in-plane deviations

Fig. 7 Definition of spatial dependencies of deviations demonstrated for two weft tows: auto-
correlation (along the tow) and cross-correlation (between neighbouring tows)

fluctuations would follow such a distribution. Therefore, the experimental data are
considered for now as if they are normally distributed.

The random behaviour of the in-plane position is described in terms of standard
deviation and correlation length. These statistics are required to generate virtual
random specimen possessing the same statistical information as the experimental
samples. Correlation of the centroid is considered along a single tow, further called
auto-correlation, but also between neighbouring tows of the same type, named cross-
correlation (Fig. 7). The latter correlation type is not observed for the other tow
properties in the short range data (Vanaerschot et al. 2013a), but is significantly
present for the in-plane centroid as indicated by the bundling of tow positions in
Figs. 2 and 3.
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Table 4 Standard deviation
of warp and weft tows for the
combined data set

Sample 1 Sample 2 Combined

�warp (mm) 0.108 0.105 0.106
�weft (mm) 0.701 0.515 0.615

4.2 Standard Deviation

The standard deviation � for the combined data set of warp and weft tows are
presented in Table 4. Weft in-plane centroids are subjected to a much larger variation
which can be explained by the production process. Warp tows are put under
tension during fabrication of the fabric, while weft tows are inserted. Weft tows are
therefore less restricted in their in-plane movement. Similar results are obtained by
Skordos and Sutcliffe (2008) for a carbon epoxy five harness satin weave where the
variability in local tow orientations, which can be related to the in-plane deviations,
is higher for the weft direction.

4.3 Correlation Information

Correlation information is summarised by evaluation of the Pearson’s moment
correlation parameter for pairs of data taken at distinct locations on a single tow,
spaced by kı (auto-correlation Cauto), and pairs of data on neighbouring tows but
fixed at the same grid location on a tow, spaced by kı0 (cross-correlationCcross). The
correlation parameter for computing the auto-correlation is given by:

C
.j;t;s/
auto .k/ D

Pn�k
iD1 �

.j;t;s/
i �

.j;t;s/

iCk
q
Pn�k

iD1 .�
.j;t;s/
i /2

q
Pn�k

iD1 .�
.j;t;s/

iCk /2
(2)

with k the lag index (k D 1 : : : Ni � 1 in warp and weft direction), and ı, ı0 the grid
spacings in warp and weft direction.

Next, exponential functions are fitted to represent the computed correlation
information and to estimate the correlation length �. The objective is not to find the
optimal function perfectly representing the experimental correlation information,
but to consider conventional functions which are physically reasonable and give a
good estimate of the centroid behaviour. However, when more data are collected
an optimal correlation function can be searched. In this work, only two types of
exponential functions are considered which approximately represent the correlation
information. These are functions of � D jx2 � x1j D kı (or replace by kı0 in case
of cross-correlation):
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Fig. 8 Correlation graphs of the warp tows for the (a) auto-correlation and (b) cross-correlation.
The data points in lighter colour are not considered for the fitting procedure

Cexp.�/ D e
� j� j

� D e
� kı� (3)

Csq;exp.�/ D e
� j� j

2

�2 D e
� .kı/2

�2 (4)

Both functions are fitted in a least-square sense to the correlation graphs, also
called correlograms, which represent the correlation values in function of the lag
kı. For this procedure, a maximum of 20 data points are considered, corresponding
to the first 20 lags or a length of five unit cells. Correlation information of larger
point spacings are not used for fitting since these correlation data are based on a
smaller data set size leading to a larger variability. In the case that the correlation
data cross the zero-correlation before 20 lags are reached, no further data points
are considered since negative correlation is not expected but can be present in the
data due to a larger variation. To obtain the optimal fit, the sum of squares of the
residuals Eres at each lag between the experimental correlation data cdata;i and the
fitted correlation data cf it;i should be minimised:

Eres D
nX

iD1
.cdata;i � cf it;i /2 (5)

Figures 8 and 9 respectively present the correlation information of the warp and
weft tows. The most appropriate function is evaluated by considering the sum of
squares error estimate Eres and observation of the correlation graphs. The deduced
correlation lengths are described in Table 5. It is demonstrated that either the
exponential or square exponential function is preferred with an error Eres less than
or equal to 1 %.

The warp auto- and cross-correlation information are well represented by an
exponential correlation function Cexp . The correlation length along the warp tow
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Fig. 9 Correlation graphs of the weft tows for the (a) auto-correlation and (b) cross-correlation.
The data points in lighter colour are not considered for the fitting procedure

Table 5 Auto- and cross-correlation lengths obtained from exponential and squared exponential
function fitting for the warp and weft tows using the combined data set

�exp (mm) Eres (%) �sq;exp (mm) Eres (%)

Warp tows – Cauto 114.89 0.5 70.03 8.9
Warp tows – Ccross 4.49 0.3 4.55 6.8
Weft tows – Cauto 75.72 18.6 52.89 1.0
Weft tows – Ccross 13.89 6.7 13.16 0.6

is found to be very high and of similar size of the area of interest: around ten unit
cells. This value reflects the straightness of the warp tows, which corresponds to the
production process of a 2/2 twill fabric where the warp tows are kept straightened.
The observation of the cross-correlation data shows that shifts of the in-plane warp
centroid only affect near-neighbouring tows within one unit cell distance. The
auto- and cross-correlation of the weft tows have a squared exponential correlation
behaviour Csq;exp . In-plane deviations along the weft direction seem to persist
between four and five unit cells. This corresponds to only half the warp auto-
correlation length, caused by the larger variability in the weft tow path. This is
already reflected in the high standard deviation of this tow type (Table 4) and the
higher COV in tow width and spacing (Table 2). The cross-correlation length of
the weft tows shows an influence exceeding the unit cell size. Positions of the weft
tows are less restricted due to the lack of tensioning during production. This affects
near- and further-neighbouring tows, causing the band behaviour to appear in the
composite tow paths as mentioned in Sect. 3 and shown by the gaps distribution in
Fig. 3.

A different dependency structure is present than for the tow orientations of a five
harness satin weave (Skordos and Sutcliffe 2008). There, a higher auto-correlation
is observed for the weft tows, while auto- and cross-correlation of the warp tow
orientations are negligible. These dissimilarities can be attributed to the differences
in the manufacturing process of the weave.
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5 Towards Virtual Modelling of Realistic Multiple
Unit Cell Structures

A full characterisation of the short and long range deviations of the different tow
path parameters enables to construct realistic descriptions of the tow geometry. All
statistical information is given as input to a stochastic multi-scale modelling strategy
which has the objective to generate random reinforcements that possess the same
statistical information as quantified by the experiments.

Virtual specimens are build by combining the systematic and handling trends
with zero-mean deviations. The systematic trends at the short-range and handling
effect at the long-range can be taken directly from the experimental data. The zero-
mean stochastic deviations need to be generated such that they represent the sample
standard deviation and correlation lengths of each tow parameter.

Different generator techniques are used to represent the full randomness of the
tow reinforcement at the meso- and macro-scale. Tow path parameters which vary
within the unit cell size (out-of-plane centroid, tow area and tow aspect ratio)
are generated using a Monte Carlo Markov Chain algorithm for textile structures,
recently proposed by Blacklock et al. (2012) and already successfully applied in
the generation of random unit cell structures of the 2/2 twill woven composite
(Vanaerschot et al. 2013b). Generation of the long-range in-plane centroid devia-
tions requires a different approach due to the occurrence of cross-correlation. For
this purpose, a methodology described by Vor̆echovský (2008) is applied where
series expansion methods based on Karhunen-Loève decomposition produce cross-
correlated Gaussian random fields. The in-plane position of each tow is represented
by a single random field, sharing an identical auto-correlation structure for all tows,
which is cross-correlated at the same time with neighbouring tows of the same type.

More details and results of this generation of multiple unit cell structures is ongo-
ing work and will be addressed in future publications. The realistic representations
of internal geometry can be applied to (i) improve the understanding of damage
progression in textile composites and (ii) obtain a quantitative measure of the spatial
variation of the mechanical properties over the extend of composite components
caused by variation in the reinforcement structure.

6 Conclusions

The long range statistical behaviour of the in-plane centroid of a one ply 2/2 twill
woven carbon epoxy composite is investigated over a region of ten unit cells by ten
unit cells. The in-plane position is decomposed in a mean trend and stochastic zero-
mean deviations. The mean trend represents the handling effect of the fabric before
it is impregnated with resin and is distinct for each individual sample. No periodic
systematic pattern is present for the in-plane centroid. The scatter around the mean
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trend shows significant differences in warp and weft direction. The weft tows are
subjected to a much larger variability, quantified by the standard deviation which is
six times higher compared to the warp direction. Also the spatial dependency of the
deviations significantly differs. Correlation of the in-plane centroid along the tow
path (auto-correlation) is found to be twice as high for the warp tows, spanning ten
unit cells. The correlation of deviations between different tows (cross-correlation)
demonstrates that the neighbouring warp tows are only affected within the unit
cell dimension, while this effect exceeds the unit cell size for the weft tows. This
results in bundling behaviour which is mainly present for the weft tows. A possible
explanation for the difference in scatter can be attributed to the manufacturing
process of the weave, where the warp tows are kept in tension, while the weft tows
are inserted by handles. The stochastic information is prepared such that it can be
used as input for a stochastic multiple unit cell modelling procedure.
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A Variability Response-Based Adaptive SSFEM

Dimitris G. Giovanis and Vissarion Papadopoulos

Abstract The present work sets up a methodology that allows the estimation of the
spatial distribution of the second-order error of the response, as a function of the
number of terms used in the truncated Karhunen-Loève (KL) series representation
of the random field involved in the problem. For this purpose, the concept of the
variability response function (VRF) is adopted, as it is well recognized that VRF
depends only on deterministic parameters of the problem as well as on the standard
deviation of the random parameter. The criterion for selecting the number of KL
terms at different parts of the structure is the uniformity of the spatial distribution
of the second-order error. This way a significantly reduced number of polynomial
chaos (PC) coefficients, with respect to classical PC expansion, is required in order
to reach a target second-order error.

Keywords Karhune-Loève expansion • Variability response function • Spectral
stochastic finite element • PC expansion

1 Introduction

Over the last two decades, the importance of stochastic approach to engineering
problems has been recognized by the scientific community and has received
significant attention. The majority of research work has focused on developing
stochastic finite element methodologies which, with the aid of powerful computing
resources and technologies can be applicable to realistic engineering systems. In the
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context of stochastic finite element analysis (SFEM), the spectral stochastic finite
element method (SSFEM), introduced by Ghanem and Spanos is a powerful tool
for treating systems with uncertain input parameters. In this approach, the classical
finite element discretization is combined with the Karhunen-Loève (KL) decom-
position of the input random fields. Then, the system’s response is represented by
a set of polynomials of the basic random variables, namely the polynomial chaos
expansion (PC). The coefficients of the PC are obtained using a Galerkin scheme
that leads to a system of coupled deterministic equations. However, solving this
coupled system is the main computational burden of the method which, becomes
more challenging as the size of the physical system and the level of uncertainty
grows.

2 Variability Response Function

The major difficulties in quantifying uncertainty are a lack of available data and
the inability to accurately simulate complex random fields. In light of the afore-
mentioned limitations, the variability response function (VRF) was introduced by
Shinozuka in the late 1980s. The VRF is a deterministic function dependent on the
structure, its boundary conditions, and loading. It is independent of the distributional
and spectral characteristics of the uncertain system parameters. It identifies the
influence of the correlation structure of the uncertain parameters on the variability
of the response. Different aspects and applications of the VRF were introduced
in Wall and Deodatis (1994), Deodatis et al. (2003), Papadopoulos et al. (2005),
Papadopoulos and Deodatis (2006), Miranda and Deodatis (2010), and Arwade and
Deodatis (2010). A development of this approach was presented in Papadopoulos
and Deodatis (2006), where the existence of closed-form integral expressions for
the variance of the response displacement of the form

VarŒu
 D
1Z

�1
VRF.x; !; �ff /Sff .!/d! (1)

was demonstrated for linear stochastic finite element systems under static loads
using a flexibility-based formulation. In these works it was demonstrated that
the VRF depends on deterministic parameters of the problem as well as on the
standard deviation �ff of the random parameter but appears to be independent of
the functional form of the spectral density function (SDF) Sff modeling the random
property. For statically determinate structures, VRF is independent of �ff as well
(Miranda and Deodatis 2010). The variability response function can be estimated
numerically using a fast Monte Carlo simulation (FMCS) approach.
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2.1 Fast Monte Carlo Simulation

The basic steps of the fast Monte Carlo simulation (FMCS) are described next

1. Generate N sample functions of a random sinusoid with standard deviation �ff

and wave number ! modeling a stochastic field f .x/ that describes the elastic
modulus:

fj .x/ D p
2�ff cos.!x C �j / j D 1; 2; : : : ; N (2)

where �j are random phase angles uniformly distributed in the range Œ0; 2�
.
Rather than picking up the �j ’s randomly in Œ0; 2�
, they can be selected at N
equal intervals in Œ0; 2�
 for significant computational savings.

2. Using theseN generated sample functions fj .x/, it is straightforward to compute
the corresponding N displacement responses either analytically or numerically.
Then, the mean value of the response "Œu.x/
! and its variance VarŒu.x/
! can be
easily determined for the specific value of ! considered by ensemble averaging
the N computed responses.

3. The value of the variability response function (VRF) at wave number ! and for
standard deviation �ff is computed from

VRF.x; !; �ff / D VarŒu.x/
!
�2ff

(3)

Steps 1–3 are repeated for different values of the wave number ! of the random
sinusoid. Consequently VRF.x; !; �ff / are computed over a wide range of wave
numbers, wave number by wave number. The entire procedure can be eventually
repeated for different values of the standard deviation �ff and for different locations
over the domain (if necessary).

3 Karhunen-Loève Series Representation

The Karhunen-Loève (KL) expansion (Loève 1977; Huang et al. 2001; Grigoriu
2006) of a multi-dimensional random field f .x; �/ is written as:

f .x; �/ D �.x/C
1X

iD1

p
�i�i .�/�i .x/ (4)

x being a position vector and � the random event. In Eq. (4) �.x/ is the mean
value of the random field, �i and �i .x/ are the eigenvalues and eigenfunctions of
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its covariance function C.x1; x2/, which may be calculated, in the domain D of
the random field f .x; �/, from the solution of the homogeneous Fredholm integral
equation of the second kind given by:

Z

D

C.x1; x2/�i .x1/ D �i�i .x2/ (5)

and �i .�/ is a set of uncorrelated Gaussian random variables with mean and
covariance given by:

EŒ�i .�/
 D 0

EŒ�i .�/�j .�/
 D ıij (6)

For all practical purposes, the KL series expansion of Eq. (4) is approximated by a
finite number of M terms, giving

Of .x; #/ D �.x/C
MX

iD1

p
�i�i .�/�i .x/ (7)

4 Spectral Stochastic Finite Element Method

The spectral stochastic finite element method – SSFEM has been introduced by
Ghanem and Spanos (1990) as an extension of the deterministic finite element
method for the solution of boundary value problems with random material proper-
ties. The Young’s modulus of a structure is considered to vary randomly over space
with a Gaussian distribution function. The Karhunen-Loève decomposition of the
random field reads (see Sect. 3)

f .x; �/ D �.x/C
1X

iD1

p
�i�i .x/�i .�/ (8)

In this context, the stochastic matrix of a finite element .e/ has the following form:

k.e/.�/ D k.e/0 C
1X

iD1
k.e/i �i .�/ (9)

where k.e/0 is the mean value of k.e/.�/, k.e/i are deterministic matrices given by

k.e/i D
p
�i

Z

˝e

�i .x/BTD0Bd˝e (10)



A VRF-Based Adaptive SSFEM 207

B is the strain-displacement matrix and D0 is the mean value of the constitutive
matrix. Assuming deterministic loading, the finite element equilibrium equation has
the form:

 1X

iD0
Ki �i .�/

!

� U.�/ D F (11)

In the context of SSFEM, the vector U.�/ is expanded in a series of random Hermite
polynomials f�j .�/g1jD0 D f�j ..�1.�/; : : : ; �M .�///g1jD0 as follows

U.�/ D
1X

jD0
Uj �j .�/ (12)

and the final equilibrium equation reads:

 1X

iD0
Ki �i .�/

!

�
 1X

jD0
Uj�j .�/

!

D F (13)

A finite number of terms is finally retained in both expansions for practical purposes
(say M+1 terms in the KL expansion and P�1 terms in the polynomial chaos
expansion – PCE), leading to a residual 	M;P that has to be minimized in the mean
square sense in order to obtain the optimal approximation of the exact solution U.�/
in the space HP spanned by the polynomials f�kgP�1kD0 (Galerkin approach)

	M;P D
MC1X

iD0

P�1X

jD0
KiUj �i .�/�j .�/� F (14)

EŒ	M;P � �k
 D 0; k D 0; 1; : : : ; P � 1 (15)

where, P D .MCp/Š
MŠpŠ

and p is the order of chaos polynomials. After some algebraic
manipulations the following system of equations is obtained

K � U D F (16)

where,

cijk D EŒ�i�j�k
 (17)
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K D

2

6
6
6
6
6
6
6
6
6
6
6
4

MP

iD0
ci;0;0Ki

MP

iD0
ci;1;0Ki � � �

MP

iD0
ci;P�1;0Ki

MP

iD0
ci;0;1Ki

MP

iD0
ci;1;1Ki � � �

MP

iD0
ci;P�1;1Ki

:::
:::

: : :
:::

MP

iD0
ci;0;P�1Ki

MP

iD0
ci;1;P�1Ki � � �

MP

iD0
ci;P�1;P�1Ki

3

7
7
7
7
7
7
7
7
7
7
7
5

U D �
U0; U1; � � � ; UP�1

�T

F D �
F0; F1; � � � ; FP�1

�T

After solving this system for U D fUk; k D 0; : : : ; P � 1g, U.�/ is expressed as:

U.�/ D
P�1X

jD0
Uj �j .�/ (18)

5 Adaptive SSFEM based on VRF

The proposed work is conducted in two phases

Phase 1: Error estimation

1. Estimate the variability response function VRF.x; !/, numerically with FMCS
over a wide range of wave numbers.

2. For a target autocorrelation function with corresponding two sided power
spectrum Sff .!/ calculate an “exact” value for the response variance as

VarT Œu.x/
 D 2 �
1Z

0

VRF.x; !/ � Sff .!/d! (19)

3. Generate zero mean Gaussian sample functions of the stochastic field using
Karhunen-Loève expansion for various number of terms M and estimate the
corresponding SDF of the sample function in an ensemble average sense as
follows:

SMff .!/ D 1

2�L

ˇ
ˇ
ˇ
ˇ
ˇ

LZ

0

fM .x/e�i!xdx

ˇ
ˇ
ˇ
ˇ
ˇ

2

(20)

where L is the length of the sample functions of the random field.
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4. Calculate the variance of the displacement from:

VarM Œu.x/
 D 2 �
1Z

0

VRF.x; !/ � SMff .!/d! (21)

5. Estimate the error:

ErrorM .xi / D
ˇ
ˇ
ˇVarTŒu.x/
 � VarM Œu.x/


ˇ
ˇ
ˇ

VarTŒu.x/

� 100.%/ (22)

Repeat steps 3–5 with increasing number of terms M until the error of Eq. (22)
reaches a target value (e.g. <10 %). In general, a different number Mi will be
required in different parts of the domain in order to have a uniform error distribution
over all the domain.

Phase 2: Building a sparse PC coefficient matrix

1. For every element of the position vector x estimate the number of terms P
required in the PC expansion of the corresponding displacement

2. Assemble the corresponding sparse PC coefficient matrix and solve the linear
system.

6 Numerical Example

The proposed method is implemented in the 2-D plain stress plate of Fig. 1. The
two-dimensional domain is a rectangle of length Lx D 1m and width Ly D 1m,
with holes in the center of the domain of radius R D 0:1m and two symmetric cut-
offs at the middle, with dimensions a D b D 0:33m. The domain is divided with a
mesh of 20�20 quadrilateral elements. The model is subjected to a constant uniform
load p D 25KN/m along its boundary at its upper side. The values of � D 0:1 and
b D 1 are selected for this example.

The variability response function VRF.xi ; �/ i D 1; : : : ; 15 is estimated
numerically at 15 points on the model (Figs. 2 and 3). The VRFs are computed
in the range ! 2 Œ0; !u
 with a step of dk D 0:66, !u being an upper cut-off
frequency, taken equal to 20 rad/m. Plots of the VRFs calculated at various points
xi are depicted in Figs. 2 and 3.

Figure 4 presents the plots of SMff for various values ofM computed via Eq. (20),
together with the target SDF. Inspection of this figure reveals once again that the
error of the variance depends not only on the number M but also on the values
of the VRF at the frequencies that are not well represented in the power spectral
density due to the Karhunen-Loève truncation.
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Fig. 1 VRF points xi

Fig. 2 VRF at points xi i D 6�9; 12�15
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Fig. 3 VRF at points xi i D 1�5; 10; 11

Fig. 4 SDFs obtained from KL expansion for different number of terms M and target SDF

This error behavior for this case is presented in Fig. 5 for three representative
locations of the domain, namely the points x5, x9 and x13, as a function of M .
This figure plots the .%/ error computed via Eq. (22). Figure 6 depicts the sub-
domains with equal M values required to reach a target error of about 20%. More
specifically, for points x5; x1; x2 and x3 in sub-domain I the value of MI = 15 is
required, for points x10 and x4 in sub-domain II we need MII=12, while for all the
other points in sub-domain III,MIII=10 is satisfying the requirement for a uniform
error.
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Fig. 5 Standard deviation error .%/ as a function of M for three different points

Fig. 6 Sub-domains with equal M values required to reach a target error of about 20%
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Table 1 Standard PC
expansion

.M; p/ Uy.�10�3/ Std.�10�4/ Error.M/.%/

(15,2) 1:24839 1:2809 30.16
(12,2) 1:24812 1:2845 30.55
(10,2) 1:24795 1:3205 32.44

Table 2 Adaptive PC expansion

.MI ;MII ;MIII ; p/ Uy.�10�3/ Std.�10�4/ Errorrel .%/ Sparsity

(15,12,10,2) 1:24291 1:2884 0.58 +31.3

The problem is initially solved three times using the classical PC methodology with
M = 10, M = 12 and M =15 all over the domain. The displacement of the upper-
right node along the y-axis is monitored. The results are gathered in Table 1.

The same calculation is now repeated using the proposed adaptive sparse PC
methodology. For this calculation the different values of M = 15, 12 and 10, for
p D 2 are used for sub-domains (I), (II) and (III) respectively (see Fig. 6). As we
can see in Table 2 the results of the proposed methodology coincide with the ones
obtained with the classic PC. Indeed, the .%/ relative error, with respect to the
classical PC method for M = 15 in the entire domain is 0:58% while the sparsity
increase is 31:3%.

7 Conclusions

In this work a methodology is described to construct an adaptive sparse polynomial
chaos (PC) expansion of the response of stochastic systems whose input parameters
are modeled with random fields. The proposed methodology adopts the concept of
variability response function (VRF), as it is well recognized that VRF depends only
on deterministic parameters of the problem as well as on the standard deviation of
the random parameter. This way an a priori inexpensive estimation of the spatial
distribution of the second-order error of the response as a function of the number
of terms used in the truncated Karhunen-Loève (KL) series representation of the
random fields involved in the problems is achieved. As a result a spatial adaptation
of the number of terms used for describing the random field is achieved in order
to obtain a uniform error distribution, leading to a significant reduction of the
number of PC coefficients and to an increase in the sparsity of the corresponding
deterministic matrix. This sparsity increase is expected to improve significantly
the computational performance of the SSFEM. The benefits of the aforementioned
sparsity increase in the computational efficiency of PC are expected to be significant
especially if a preconditioned conjugate gradient (PCG) solver is used with a
block diagonal preconditioner (Papadrakakis and Babilis 1994; Chung et al. 2005;
Ghanem and Kruger 1996; Stavroulakis and Papadrakakis 2009; Papadrakakis and
Kotsopoulos 1999).
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Monte Carlo Simulation vs. Polynomial Chaos
in Structural Analysis: A Numerical
Performance Study

George Stavroulakis, Dimitris G. Giovanis, Manolis Papadrakakis,
and Vissarion Papadopoulos

Abstract The present work revisits the computational performance of non-
intrusive Monte Carlo versus intrusive Galerkin methods for large-scale stochastic
systems in the framework of high performance computing environments. The
purpose of this work is to perform an assessment of the range of the relative
superiority of these approaches with regard to a variety of stochastic parameters. In
both approaches, the solution of the resulting algebraic equations is performed with
a combination of primal and dual domain decomposition methods implementing
specifically tailored preconditioners.

Keywords Spectral stochastic finite element method • Monte Carlo methods •
High performance computing • Primal–dual domain decomposition • FETI
method

1 Monte Carlo Simulation in High Performance
Computing Environments

MC methods require the solution of problems of the form

Kiui D f .i D 1; : : : ; nsim/ (1)

where Ki is the stiffness matrix corresponding to the stochastic realization of the
i th simulation, ui is the corresponding vector of unknown nodal displacements,
nsim is the number of Monte Carlo simulations and f is the vector of nodal loads.
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The size of the stiffness matrix and the corresponding vectors is equal to the size
of the equivalent deterministic problem. Thus, if K0 is the stiffness matrix of the
deterministic problem with dimensionsN �N , Eq. (1) can be written as

.K0 CKi /ui D f ; i D 1; : : : ; nsim (2)

which specifies a set of near-by problems.
If the uncertainties in the input parameters are modeled by Gaussian random

fields then the truncated KL expansion is defined as (Grigoriu 2006; Huang et al.
2001):

Oa.x; �/ D a0.x/C
MX

iD1

p
�i�i .�/�i .x/ (3)

where, a0.x/ denotes the mean value of the random field, �i .�/ is a set of
uncorrelated zero mean Gaussian random variables, � being the random event.
�i and �i .x/ are the eigenvalues and mutually orthogonal eigenfunctions of its
covariance function C.x1; x2/ which may be calculated in the domain D of the
random field a.x; �/, from the solution of a homogeneous Fredholm integral
equation of the second kind.

Thus, in the case of Gaussian random fields Eq. (2) can be written as

 

K0 C
MX

jD1
Kj �j .�/

!

u.�/ D f (4)

Kj are deterministic and are given by:

Kj D K.
p
�j �j .x// j D 1; : : : ;M (5)

These repeated solutions can be performed either with a standard direct method
based on Cholesky factorization or with preconditioned iterative methods. In high
performance computing environments iterative schemes are more advantageous
since they manage to harness the computational power of such environments while
being more easily custom tailored to the particular properties of the equilibrium
equations arising in the context of the numerical simulation used. In this work,
we have further improved two variants of the MC-PCG-Skyline method previously
proposed in Papadrakakis and Kotsopulos (1999) and Charmpis and Papadrakakis
(2005).
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Table 1 The PCG algorithm

Solution estimate xk D xk�1 C �k�1pk�1

Residual vector rk D rk�1 � �k�1qk�1

Preconditioned residual vector zk D QA�1
rk

Search vector Using re-orthogonalization pk D zk �Pk�1
iD0

zk
T

qi

pkT qi
pi

A matrix product vector qk D Apk

� estimation Using re-orthogonalization �k D pk
T

rk

pkT qk

1.1 The MC-PCG-Skyline Method

The PCG algorithm, when solving a linear system of the form Ax D b with a
preconditioner QA, is depicted in Table 1 for iteration k.

• Initialization phase: r0 D b�Ax0 z0 D QA�1r0; p0 D z0; q0 D Ap0; �0 D p0
T

r0

p0T q0
,

• Repeat for k D 1; 2 : : : until convergence.

The PCG algorithm equipped with a preconditioner following the rationale of
incomplete Cholesky preconditioning features an error matrix Ei . This matrix is
dependent on the discarded elements of the lower triangular matrix produced by the
incomplete Cholesky factorization procedure, which do not satisfy a specified
magnitude or position criterion (Papadrakakis 1993). Considering the near-by
problems of the form (2), if matrix Ei is taken as Ki , the preconditioning
matrix becomes the initial matrix QA D K0. The PCG algorithm equipped
with the latter preconditioner throughout the entire solution process constitutes
the MC-PCG-Skyline method for the solution of the nsim near-by problems of
Eq. (2).

The original MC-PCG-Skyline algorithm proposed in Charmpis and Papadrakakis
(2005) uses a Cholesky direct solver for performing the proconditioning step, where
K0 is factorized to LLT at the beginning of the Monte Carlo simulation procedure
and each evaluation of the preconditioned residual vector is carried out by a forward
substitution, a vector operation and a backward substitution. In the present work,
each evaluation of the preconditioned residual vector is carried out using a PFETI
solver (Fragakis and Papadrakakis 2003), optimized for multiple right-hand sides
(Fragakis and Papadrakakis 2004), as described in the following section, adhering
to the rationale of the PCG method where the preconditioning step is performed
with the FETI method (Papadrakakis and Kotsopulos 1999).
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1.2 Optimizing the Solution with Multiple Right-Hand Sides

When using the PCG algorithm to solve problems with multiple right-hand sides,
convergence can be accelerated by utilizing appropriately information accumulated
during the previous solutions. In particular, given a sequence of linear systems with
a constant left-hand side matrix A and multiple right-hand side vectors of the form

Axi D bi ; i D 1; � � � ; j; j C 1; � � � ; na (6)

where na is the number of solutions required, the number of PCG iterations required
for each linear system may be reduced using the Krylov subspaces generated from
search vectors p during the previous solutions. For the solution of the linear system
j C 1, the following first solution estimate is considered:

x0jC1 D Pnpxp (7)

with

Pnp D Œp1 � � � pn0


xp D
�

QT
np

Pnp
��1

PTnpbjC1Qnp (8)

Qnp D APnp D ŒAp1 � � � Apn0
 D Œq1 � � � qn0


Given that search vector p and matrix product vector q using a re-orhtogonalization
procedure are ensured to be A-orthogonal, the evaluation of xp is trivial since
QT
np

Pnp has values only in its diagonal. Moreover, the search vector evaluation step
can be carried out using not necessarily all but a fraction of the vectors stored from
all the accumulated solutions.

In this work, we have used the first 600 search vectors, achieving a reduction
between 90 and 95 % of the required iterations for each PFETI solution when com-
pared to solving the same problems without using the aforementioned technique.

2 SSFEM in High Performance Computing Environment

In the SSFEM approach, the system response is projected in a PC basis as follows

u.�/ D
Q�1X

jD0
uj‰j .�/ (9)

where f‰j .�/gQ�1jD0 D f‰j ..�1.�/; : : : ; �M .�///gQ�1jD0 is the PC basis, consisting of
the M�dimensional zero mean and orthogonal Hermite polynomials of order p.
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The value of Q in Eq. (9) is determined by the following formula

Q D .M C p/Š

M ŠpŠ
(10)

If the stochastic field is Gaussian Eq. (4) can be written

 
MX

iD0
Ki �i .�/

!

�
 
Q�1X

jD0
uj‰j .�/

!

D f (11)

while for a lognormal stochastic field

 
Q�1X

iD0
Ki‰i .�/

!

�
 
Q�1X

jD0
uj‰j .�/

!

D f (12)

After solving the augmented system for u D fuk; k D 0; : : : ;Q � 1g, the required
u.�/ is computed from:

u.�/ D
Q�1X

jD0
uj‰j .�/ (13)

Once the coefficients uj of the expansion are computed, approximate statistics
of the solution can be derived by MC simulations. In this case however, the MC
simulation computational effort is trivial since it is applied directly to the polynomial
representation of Eq. (13) without the need of solving a system of equations at each
simulation.

2.1 Solution of the Augmented Systems

The augmented systems that are generated when using SSFEM are suitable candi-
dates for iterative solvers since they are flexible enough to be custom tailored to
the particular architecture of the augmented systems while they are amenable to
be efficiently implemented in high performance computing environments. Solution
techniques are based on either Gauss-Jacobi (Anders and Hori 2001; Chung et al.
2005; Ghanem and Spanos 1990; Li et al. 2006) or PCG (Chung et al. 2005;
Desceliers et al. 2005; Fraunfelder et al. 2005; Ghanem and Kruger 1996; Ghosh
et al. 2008; Keese and Matthies 2005; Matthies and Keese 2005; Panayirci 2010;
Pellissetti and Ghanem 2000) iterative solvers for addressing this problem. In this
work two specialized preconditioners that take advantage of the properties of the
augmented SSFEM linear systems are proposed which were found to be effective
for both Gaussian and log-normal distributions.
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Consider the preconditioning matrix for the case of Gaussian distribution of the
form

QA D

2

6
6
6
6
6
4

a1K0 0 � � � 0

0 a2K0 � � � 0

:::
:::

: : :
:::

0 0 � � � anK0

3

7
7
7
7
7
5

(14)

where an are the coefficients as calculated from the PC bases. For each evaluation
of the preconditioned residual vector, the same K0 matrix needs to be “inverted” n
times, as in the case of the MC-PCG-Skyline method. This matrix “inversion” is
implemented as the solution of n linear systems. Since matrix QA is block diagonal,
the solution process can be pipelined as the successive solution of n linear systems
with multiple right-hand sides. The PCG algorithm equipped with preconditioning
matrix QA and utilizing the FETI method for solving the successive linear systems is
proposed in Ghosh et al. (2008, 2009). A variant of this approach is tested in this
work by employing PFETI for the solution of the repeated linear systems involved in
the preconditioning steps of PCG. This algorithm is abbreviate as SSFEM-PCG-B
for the solution of the augmented linear system that occurs from SSFEM.

The second preconditioner is based on the SSOR-type preconditioning matrix. In
particular, the augmented matrix K is decomposed into the diagonal component D
as it appears in Eq. (14), and a strictly lower triangular component L of the form:

L D

2

6
6
6
6
6
4

0 0 0 0

K21 0 � � � 0

::: Km2

: : :
:::

Kn1 Kn2 � � � 0

3

7
7
7
7
7
5

(15)

Using this decomposition, the SSOR-type preconditioner is of the form:

QA D .D � L/D�1.D � LT / , QA�1 D .D � LT /�1D.D � L/�1 (16)

The evaluation of the preconditioned residual vector of the PCG algorithm is
implemented as follows:

1. Solve:

.D � L/zk1 D rk (17)

2. Evaluate:

zk2 D Dz1 (18)
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3. Solve:

.D � LT /zk D zk2 (19)

The PCG algorithm equipped with the above block-SSOR preconditioner and
utilizing the PFETI method for solving the linear systems occurring at each step of
the occurring forward and backward substitutions, constitutes the SSFEM-PCG-S
method for the solution of the augmented linear system that occurs from SSFEM.

2.2 A Full Block Preconditioning Scheme

The existence of a number of linear combinations of the deterministic matrix
with stochastic ones at the block diagonal part of the augmented stiffness matrix,
for the log-normal case, can really deteriorate the convergence rate of both the
preconditioner of the SSFEM-PCG-B method and the preconditioner of the SSFEM-
PCG-S method, especially at large input covariances where the magnitude of the
stochastic matrices is comparable to the magnitude of the deterministic one.

In order to overcome this deficiency, a MC-PCG-PFETI solver is used instead
of a regular PFETI solver, in order to evaluate the preconditioned residual of
each iteration of the SSFEM-PCG-B solver. Thus the MC-PCG-PFETI solver
takes into account the full linear combination of the block diagonal, enhancing
the convergence rate of the SSFEM-PCG-B and SSFEM-PCG-S solvers, instead
of taking into account only K0 matrix which gives an approximation to the
preconditioned residual.

As in the case of the Monte Carlo simulations, the repeated solutions required
for the preconditioning step of the MC-PCG-PFETI algorithm can be treated as
problems with multiple right-hand sides, since the entries in the residual vector are
updated at each PCG iteration k of each block diagonal part of the coefficient matrix.

The SSFEM-PCG-B algorithm equipped with this preconditioner and utilizing
the MC-PCG-PFETI method constitutes the SSFEM-PCG-BF variant for the solu-
tion of the augmented linear system that occurs from the SSFEM.

In the same fashion, the PCG algorithm equipped with the block SSOR pre-
conditioner of the SSFEM-PCG-S method and utilizing the MC-PCG-Skyline
method for solving the linear systems occurring at the preconditioned residual
vector evaluation, constitutes the SSFEM-PCG-SF variant for the solution of the
augmented linear system that occurs from the SSFEM.

3 Numerical Test

Numerical tests are performed for stochastic finite element analysis implementing
the proposed versions of SSFEM and MC. The computer platform used is an Intel
Core i7 X980 with 6 physical cores at 3.33 GHz with 24 GB of RAM.
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Fig. 1 Domain decomposition of a quarter of the deterministic soil problem with 10k dof.
(a) Element mesh (b) Subdomain mesh

In order to assess the computational efficiency of the MC and SSFEM methods
for the analysis of systems with uncertain properties, a soil cube of 10 � 10 � 20

meters with uncertain Young modulus E under load in the center of its upper surface
due to a large footing was considered, resulting to a finite element mesh of 10k dof
approximately (Fig. 1).

Three test cases regarding coefficients �E are examined: (a) �E D 15%
(Gaussian), (b) �E D 30% (log-normal) and (c) �E D 80% (log-normal).
Moreover, four correlation length values are assumed: (a) b = 0:1a, (b) b = 1a,
(c) b = 10a and (d) b = 100a, with a being the height of the cube. Setting a D 20m,
the correlation lengths that were examined for this example were 2, 20, 200
and 2;000m.

3.1 Solver Assessment Procedure

In order to set an objective basis for assessing the computational performance of
the numerical algorithms discussed, a parametric study was conducted, regarding
different values for standard deviation �E and correlation length b. For the
computation of the second moments of the response field, the following procedure
was followed:

1. A series of Monte Carlo analyses of 100k simulations was carried out, using
M D 1 as the order of the KL expansion, in order to estimate the necessary
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Fig. 2 Step 1: COV.%/ convergence error of MC for the Gaussian field with �E D 15%

number of simulations for a convergence error of less than 1% for each value of
�E and b examined. This error is computed as the normalized difference of the
COV .%/ at each simulation with respect to the COV .%/ computed at the end
of the 100k simulations.

2. Assuming that the convergence behavior of the previous step remains invariant
for increasing M , another series of Monte Carlo analyses was carried out, in the
range of M D 2 to M D 12, in order to estimate the appropriate order of the
KL expansion for a convergence error of less than 1%. In this case an “exact”
solution was assumed at M D 12 in order to compute the relative error .%/ for
differentM .

Using the results of the previous step, the same procedure was carried out
performing SSFEM analyses, in order to estimate the appropriate order of the
PC expansion required for convergence to the corresponding MC results.

3.2 Computation of the Second Moments of the Response Field

Figures 2–4 show the convergence error for each field as per step 1 of the
assessment procedure. Based on these figures, the number of simulations necessary
for evaluating the second moments of the response field are shown in Table 2.

Following step 2, Figs. 5–7 show the convergence error for each field as per step 3
of the assessment procedure for the selection of PC expansion order (p) required for
the SSFEM to converge at an error less than 1% using the KL expansion ordersM
shown in Table 3. This relative error is computed with respect to the corresponding
MC simulations with the same parameterM .
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Fig. 3 Step 1: COV.%/ convergence error of MC for the log-normal field with �E D 30%

Fig. 4 Step 1: COV.%/ convergence error of MC for the log-normal field with �E D 80%

Table 2 Required number of
MC simulations for achieving
a COV error less than 1%

Correlation
length b �E D 15% �E D 30% �E D 80%

0;1a 20,000 10,000 53,000
1a 25,000 18,000 28,000
10a 23,000 23,000 34,000
100a 50,000 43,000 45,000
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Fig. 5 Step 3: COV.%/ convergence error of the SSFEM for the Gaussian field with �E D 15%
and p D 2; 4

Fig. 6 Step 3:COV.%/ convergence error of the SSFEM for the log-normal field with �E D 30%
and p D 2; 3; 4

Table 4 summarizes the convergence of the SSFEM (relative error %) with
respect to MC, for all cases considered.

It is worth noting that for the case of b = 0:1a, the SSFEM failed to provide a
solution within the acceptable error margin when compared to the MC solution.
While increasing the p-order of the PC expansion, the SFFEM method was asymp-
totically converging to a solution which exhibited a 30% error when compared to
the corresponding Monte Carlo solution.
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Fig. 7 Step 3 : COV.%/ convergence error of the SSFEM for the log-normal field with �E D
80% and p D 2; 3; 4

Table 3 Step 2: COV.%/ convergence errors for the various KL expansion orders

�E D 15% �E D 30% �E D 80%Correlation
length b M Error .%/ M Error .%/ M Error .%/

0:1a 12 “exact” 10 0.43 4 0:75

1a 6 0.93 4 0.75 4 0:57

10a 2 0.36 2 0.85 4 0:26

100a 2 0.48 2 0.53 4 0:96

Table 4 Convergence errors for the SSFEM

�E D 15% �E D 30% �E D 80%Correlation
length b p Error .%/ p Error .%/ p Error .%/

0:1a 2 0.23 2 0.07 6 30:00

1a 4 0.09 4 0.69 6 0:52

10a 2 0.03 3 0.36 4 0:68

100a 4 0.36 3 0.74 6 0:88

3.3 Performance of the Proposed Solution Procedures

Using all previous numerical data (number of simulations, KL expansion order
and PC expansion order), a series of numerical tests were performed in order to
assess the performance of the various solution techniques discussed and proposed
in this work. For all cases considered the normalized solution accuracy was set to
10�7 while for the computation of the preconditioned residual vector, the required
accuracy was set to 10�3.
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Table 5 Performance of the various MC-PCG-Skyline variants for the MC for evaluating the
second moments of the response field for �E D 30% in sequential and parallel implementation

�E D 30% Correlation length b 0:1a 1a 10a 100a

MC simulations 10,000 18,000 23,000 43,000
PCG iterations 110,100 221,531 114,541 153,825

MC-PCG-Skyline Time (s)-sequential 18,922 105,391 161,203 241,235
Time (s)-parallel 2,783 15,499 23,706 35,476

MC-PCG-FETI FETI iterations 314,475 107,198 23,442 37,087
(1,761,600) (3,544,496) (1,832,656) (2,461,200)

Time (s)-sequential 33,053 32,437 22,189 38,625
Time (s)-parallel 4,861 4,770 3,263 5,680

MC-PCG-PFETI PFETI iterations 294,235 99,478 21,777 34,375
(1,761,600) (3,544,496) (1,832,656) (2,461,200)

Time (s)-sequential 25,337 24,956 17,393 30,080
Time (s)-parallel 3,726 3,670 2,558 4,423

Table 6 Performance of the various MC-PCG-Skyline variants for the MC for evaluating the
second moments of the response field for �E D 80% in sequential and parallel implementation

�E D 80% Correlation length 0:1a 1a 10a 100a

MC simulations 53,000 28,000 34,000 45,000
PCG iterations 1,193,825 695,100 272,340 253,350

MC-PCG-Skyline Time (s)-sequential 205,082 68,030 370,320 400,378
Time (s)-parallel 30,159 10,004 54,459 58,879

MC-PCG-FETI FETI iterations 3,413,444 1,624,400 72,507 56,799
(19,101,200) (11,121,600) (4,357,440) (4,053,600)

Time (s)-sequential 358,806 97,472 65,108 60,159
Time (s)-parallel 52,765 14,334 9,575 8,847

MC-PCG-PFETI PFETI iterations 3,265,860 1,530,760 67,320 52,650
(19,101,200) (11,121,600) (4,357,440) (4,053,600)

Time (s)-sequential 281,182 75,286 50,653 46,932
Time (s) -parallel 41,350 11,071 7,449 6,902

Tables 5 and 6 show the performance of proposed MC-PCG-PFETI solver for the
evaluation of the second order moments of the response field using the MC method,
in comparison to MC-PCG-Skyline and MC-PCG-FETI. The PFETI and FETI
iterations correspond to the sum of the PFETI and FETI iterations needed for all the
MC simulations using the A-orthogonalization technique, while in parentheses the
corresponding PFETI and FETI iterations without A-orthogonalization are given.
These numbers show a drastic decrease of iterations ranging from one to two orders
of magnitude as a result of the A-orthogonalization procedure. Moreover, from
these tables, it is evident that the PFETI variant outperforms the FETI one in all
tests, showing a 1.25� speedup. This performance increase occurs for two reasons:
(i) PFETI needs �10% less iterations when compared to FETI. (ii) The cost for
each reorthogonalization of the PFETI method is about 35% less when compared
to the FETI method. This stems from the fact that the interface problem of the
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Table 7 Performance metrics for the log-normal case (�E D 80% covariance)

Log-normal 80%

Correlation
length b 0:1a 1a 10a 100a

SSFEM-PCG-B MC simulations 53,000 28,000 34,000 45,000
PCG iterations 48 89 33 58
PFETI iterations 685 1,010 523 584
Total time

(s)-sequential
266,702 272,836 14,171 321,161

Total time (s)-parallel 46,799 49,175 2,447 55,380
Total time cached

(s)-sequential
112,142 114,721 9,443 134,402

Total time cached
(s)-parallel

1988 2079 131 2393

SSFEM-PCG-BF PCG iterations 47 117 47 82
PFETI iterations 2,827 12,393 423 467
Total time

(s)-sequential
273,786 280,083 19,072 452,675

Total time (s)-parallel 48,047 50,475 3,291 78,050
Total time cached

(s)-sequential
12,246 12,563 1,237 1,885

Total time cached
(s)-parallel

21,495 22,580 2,130 32,538

SSFEM-PCG-S PCG iterations 16 186 36 59
PFETI iterations 528 1,167 414 338
Total time

(s)-sequential
177,970 368,937 28,790 651,255

Total time (s)-parallel 31,236 66,484 4,968 112,289
Total time cached

(s)-sequential
74,930 154,271 18,473 276,205

Total time cached
(s)-parallel

13,180 27,807 3,189 47,624

SSFEM-PCG-SF PCG iterations 12 25 13 20
PFETI iterations 461 449 273 228
Total time

(s)-sequential
133,533 276,818 10,529 220,894

Total time (s)-parallel 23,430 49,887 1,818 38,096
Total time cached

(s)-sequential
56,253 115,818 6,803 92,094

Total time cached
(s)-parallel

9,879 2,087 1,175 15,888

PFETI method is based on the boundary dof of each subdomain while the interface
problem of the FETI method is based on the lagrange multipliers which, due to
the existence of a considerable number of subdomains crosspoints, are significantly
larger in quantity than the boundary dof.

Table 7 presents the performance metrics for the log-normal case with 80%
covariance. As previously, the SSFEM-PCG-S and SSFEM-PCG-SF variants
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Table 8 Monte Carlo vs. SSFEM for the Gaussian case (15% covariance)

Gaussian 15%

Correlation length b 0:1a 1a 10a 100a

MC PCG iterations 184,398 196,875 114,715 144,592
PFETI iterations 425,281 124,133 20,157 35,761
Time (s)-sequential 36,771 28,076 16,443 30,590
Time (s)-parallel 5,407 4,129 2,418 4,498

SSFEM PCG iterations 3 4 3 4
PFETI iterations 377 269 74 74
Time (s)-sequential 1,026 1,178 77 100
Time (s)-parallel 179 204 13 17

Table 9 Monte Carlo vs. SSFEM for the log-normal case (30% covariance)

Log-normal 30%

Correlation length b 0:1a 1a 10a 100a

MC PCG iterations 110,100 221,531 114,541 153,825
PFETI iterations 294,235 99,478 21,777 34,375
Time (s)-sequential 25,337 24,956 17,393 30,080
Time (s)-parallel 3,726 3,670 2,558 4,423

SSFEM PCG iterations 4 5 4 4
PFETI iterations 403 260 100 79
Time (s)-sequential 1,568 2,884 162 132
Time (s)-parallel 277 498 28 23

Table 10 Monte Carlo vs. SSFEM for the log-normal case (80% covariance)

Log-normal 80%

Correlation length b 0:1a 1a 10a 100a

MC PCG iterations 1,194,328 695,100 272,340 253,350
PFETI iterations 3,265,860 1,530,760 67,320 52,650
Time (s)-sequential 281,182 75,286 50,653 46,932
Time (s)-parallel 41,350 11,071 7,449 6,902

SSFEM PCG iterations – 89 13 20
PFETI iterations – 1,010 273 228
Time (s)-sequential – 114,721 6,803 92,094
Time (s)-parallel – 20,679 1,175 15,888

outperform the SSFEM-PCG-B and SSFEM-PCG-BF methods, showing a speedup
up to 2.8�. For this covariance of the log-normal case, the proposed caching
scheme proves to be quite efficient, providing up to 3� speedup when compared to
the corresponding uncached method.

Tables 8–10 compare the performance of the MC and SSFEM when using the
most computationally efficient solution method for evaluating the second order
moments of the response field. It can be seen that for the Gaussian input field the
SSFEM outperforms Monte Carlo method. The same conclusion can be reached
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for the log-normal case with 30% covariance. For the log-normal case with 80%
covariance MC method outperforms SSFEM in all cases except for the b = 10a
correlation length. This is due to the small order of p D 4 required by the PC
expansion, compared to the other cases which required an expansion of orderp D 6.
For the b = 0:1a case, SSFEM fails to converge.

4 Conclusions

An investigation of high performance solution techniques amenable to paralleliza-
tion has been made in the context of stochastic problems solved with the finite
element method. In order to address the stochastic part of the problem, both Monte
Carlo and spectral finite element methods have been explored. The numerical
performance of their solution methods has been demonstrated utilizing primal
and dual domain decomposition methods with enhanced preconditioners, custom
tailored to the specific numerical properties of the corresponding formulation of the
stochastic problem with no loss of parallel scalability.

When comparing the novel solution techniques proposed for the MC procedure,
a speedup of 1.25� was exhibited while for the SSFEM, a speedup of 3� was
exhibited when utilizing the block-SSOR preconditioning combined with caching
techniques with respect to the diagonally block preconditioning, making the SSFEM
even more attractive for solving large scale stochastic problems in high performance
computing environments.

Acknowledgements This work has been supported by the European Research Council Advanced
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Effects of POD-Based Components of Turbulent
Wind on the Aeroelastic Stability of Long Span
Bridges

Vincenzo Sepe and Marcello Vasta

Abstract In this paper the effects of low-frequency wind speed fluctuations on the
aeroelastic stability of long span bridges are analyzed and discussed. The spatial-
temporal field of wind turbulence is described by means of orthogonal loading
components representing the eigenfunctions of the cross power spectral density
function (cpsdf) of the wind process. The stability condition, derived through
stochastic averaging technique and moment stability method, are finally applied to
a bridge designed for crossing the Messina Strait (Italy).

Keywords Long span bridges • Aeroelastic stability • Stochastic averaging •
POD wind representation

1 Introduction

The effects on the aeroelastic stability of long span bridges of low-frequency
wind speed fluctuations, i.e. those components of the atmospheric turbulence
characterized by frequencies below 0.2 Hz and by a strong along-span coherence,
has been dealt with in previous papers of the writers, under simplifying assumptions
on the turbulence model (Sepe and Vasta 2005a, b; Sepe and D’Asdia 2003).

Namely, in Sepe and D’Asdia (2003), it was shown that the effects of low-
frequency wind-speed fluctuations can be modeled as a perturbation of the critical
state of the 1-dof system (flutter mode) representing the 3D oscillations (vertical,
transversal and torsional) of the bridge under a non-turbulent critical wind-speed.

From a mathematical point of view, the contribution of the low-frequency
turbulence introduces parametric excitations, both on the stiffness and on the
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damping terms of the equation describing the time-evolution of the flutter mode.
As a consequence, if frequency and coherence of the fluctuating part of the wind
speed are unfavorably tuned with the bridge characteristics, they can make the
critical state unstable.

To evaluate in a closed form the worst effects that can ever be expected as
a consequence of this kind of turbulence, in Sepe and Vasta (2005a) only low-
frequency wind speed fluctuations strongly correlated along the span were taken
into account, according to Sepe and D’Asdia (2003); namely, the longitudinal
shapes of the components significant from the dynamic point of view were assumed
as deterministic sine waves along the bridge span, whose wavelength increases
for a decreasing time-frequency of the turbulence component; in such a way, the
beneficial effects due to loss of coherence along the span were neglected (or at least
underestimated).

Developing the approach described in Sepe and D’Asdia (2003), where the
stability conditions were derived taking into account only the effects of the
parametric excitation related to the angular speed (i.e. assuming the aeroelastic
behaviour depending only on the “total equivalent damping”, as is typical for
flutter under non turbulent wind), in Sepe and Vasta (2005b) the effects of both the
damping and stiffness terms were considered and the stability condition was derived
through stochastic averaging technique and moment stability method; this requires
an appropriate application of the stochastic averaging technique, that extends the
results known for stochastically independent forcing components to the case, of
interest for the present problem, of strongly correlated forcing terms.

However, the procedure developed in Sepe and Vasta (2005a, b) and Sepe and
D’Asdia (2003) still assumes a deterministic longitudinal shape of the turbulence
components, with both frequency and coherence unfavorably tuned (and therefore
worse than any realistic wind field).

In this paper, such simplifying hypothesis on the spatial correlation of turbulence
components is removed. Indeed, the spatial-temporal field of wind turbulence is
described by means of orthogonal loading components representing the eigenfunc-
tions of the cross power spectral density function (cpsdf) of the process, according
to a POD-based representation (e.g. Carassale 2005; Carassale et al. 2007; Fiore
and Monaco 2009; Di Paola and Gullo 2001), so obtaining a more realistic wind
turbulence field.

The stability conditions derived in the paper are finally analyzed and discussed
with reference to a bridge designed for crossing the Messina Strait (Italy).

2 Forced Oscillations Near the Critical Conditions

Let ˛(z, t), h(z, t) denote the rotation and the vertical displacement of the deck at the
time t and abscissa z (Fig. 1). If a constant wind speed is assumed along the bridge
span (i.e. wind turbulence neglected), as typical for aeroelastic instability analyses, a
critical value can be found U(z, t)  Uc that makes the structure oscillate with a fixed
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Fig. 1 Displacements and
aeroelastic forces on the deck

shape (“flutter mode”), with prevalent vertical and torsional components, behaving
as an undamped 1-dof system with critical angular frequency!c (Simiu and Scanlan
1996).

In this case, denoting as f˛(z), fh(z) the components of the flutter mode and by '
the phase-lag among them, it results (Sepe and D’Asdia 2003)

˛ .z; t/ D f˛.z/A.t/ D f˛.z/A0 cos!ct

h .z; t/ D fh.z/H.t/ D fh.z/H0 cos .!ct C '/ (1)

with H0 Dˇ BA0 where B denotes the deck width, ˇ a non-dimensional coefficient,
A(t) the torsional amplitude and H(t) the flexural amplitude, related each other as

PH.t/ D ˇB cos' PA.t/ � ˇB!c sin' A.t/ (2)

Equation (2) maintains its validity if the oscillation amplitude varies slowly in
time; therefore Eq. (2) will be used also for a wind speed slightly different from Uc

U .z; t/ D Uc Œ1C  0 C  .z; t/
  0 << 1  .z; t/ << 1 (3)

where a variation  0Uc of the mean speed is separated from the fluctuations
 (z, t) Uc. For this fluctuating wind speed, therefore, the motion is still described by
a single scalar function, with a constant spatial shape assumed as equal to the flutter
mode.

Under these conditions the aeroelastic moment and lift acting on the deck (Simiu
and Scanlan 1996) can be expressed as (D’Asdia and Sepe 1998; Sepe et al. 2000)

Mse D �U 2
c B

2

2
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�
1 .K/
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�
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(4)

respectively, where A*
i , H*

j are the aeroelastic derivatives evaluated by means of
wind-tunnel tests or CFD (computational fluid dynamics) simulations (Simiu and
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Scanlan 1996; Lin 1996), � the air density and K, Kc the reduced frequencies

K .z; t/ D B!c

U .z; t/
; Kc D B!c

Uc
(5)

In particular, it turns out

Mse D Mse
.0/ CMseI Lse D Lse

.0/ CLse (6)

where Mse
(0), Lse

(0) and  Mse, Lse denote the aeroelastic actions corresponding
to the critical wind speed Uc and to the difference Uc [ 0 C (z, t)], respectively.

Under these assumptions and linearising the aeroelastic derivatives A*
i , H*

j with
respect to the reduced velocity v D 2�/K, around the critical value vc D 2�Uc/(B!c),
the equation governing the motion becomes (Sepe and D’Asdia 2003)

I RAC Œ��1ˇB cos' .‰˛h0 C‰˛h.t// � �2 .‰˛˛0 C‰˛˛.t//
 PA
C �

I!c
2 C �1ˇB!c sin ' .‰˛h0 C‰˛h.t// � �3 .‰˛˛0 C‰˛˛.t//

�
A D 0

(7)

where I is the generalised inertia of the bridge and with the positions

‰˛h0 D  0

Z

L

f˛.z/fh.z/d z D  0F˛h ‰˛˛0 D  0

Z

L

f˛
2.z/d z D  0F˛˛

‰˛h.t/ D
Z

L

 .z; t/ f˛.z/fh.z/d z ‰˛˛.t/ D
Z

L

 .z; t/ f˛
2.z/d z

(8)

The constants �1,�2,�3 depends on the geometry and the aerodynamic charac-
teristic of the bridge

�1 D ��UcB
2a�1 ; �2 D ��UcB

3a�2 ; �3 D ��U 2
c B

2Kca
�
3 (9)

where

a�i D
�
d

dv
A�i


vDvc

; i D 1; 2; 3 (10)

Equation (7) can be written as

RAC
h
2 Q�!c C �.t/

i PAC !2c

h
1C "C Q�.t/

i
A D 0 (11)
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with

Q� D � 1

2I!c
Œ�1ˇB cos' ‰˛h0 C �2‰˛˛0
 (12)

�.t/ D � 1
I
Œ�1ˇB cos' ‰˛h.t/C �2‰˛˛.t/
 (13)

Q�.t/ D �1ˇB!c sin' ‰˛h.t/ � �3‰˛˛.t/

I!2c
(14)

" D 1

I!2c
Œ�1ˇB!c sin ' ‰˛h0 � �3‰˛˛0
 (15)

Notwithstanding the presence of ", Eq. (11) can be recast in standard form by
setting

!c D p
1C " !c; �.t/ D

Q�.t/
1C "

; � D
Q�p
1C "

(16)

to obtain (Sepe and Vasta 2005b)

RAC Œ2 � !c C �.t/
 PAC !c
2 Œ1C �.t/
 A D 0 (17)

The constant " in Eq. (15) depends only on the variation of the mean speed
 0 and can be iteratively evaluated, as in the sample case of Sect. 6, to estimate
the correction on the frequency !c due to  0; as a simplifying approach, in Sepe
and Vasta (2005a, b) and Sepe and D’Asdia (2003) the correction on the frequency
was neglected, resulting "<< 1 ("D 0.05 for the example in Sect. 6), referring to
Eq. (11) with � D Q�, �.t/ D Q�.t/ and "D 0 (i.e. !c D !c).

Equation (17) describes a problem of parametric excitation, with both coeffi-
cients of PA and A depending on time.

In (Sepe and Vasta 2005b) the stability condition was derived through stochastic
averaging technique and moment stability method (Lin and Cai 1995). Denoting
with S��(!) and S��(!) the power spectral densities of the parametric excitations �
and �, respectively, and by S��(!) their cross power spectral density, the stability of
the second order amplitude moment requires that

� >
�!c

2
S�� .2!c/C �

8!c

�
2S�� .2!c/C 4S��.0/C 7!cIm

	
S�� .2!c/


�
(18)

Equation (18) will be used in the numerical example to derive the stability
conditions of a designed bridge undergoing critical conditions.
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3 Modeling of the Wind Field

The wind velocity field can be described as the sum of a mean value, function of
the position, and of zero mean stationary fluctuations, function of the position and
of the time (Simiu and Scanlan 1996).

For the sake of simplicity, the wind actions are considered applied only to the
deck and orthogonal to the bridge axis, neglecting the across-wind components of
turbulence

U .z; t/ D U C u .z; t/ (19)

with the mean value U .h/ depending on the height h on the ground, and therefore
approximately constant in the case here considered (the bridge deck is almost
horizontal).

According to Simiu and Scanlan (1996), the turbulence along wind in a given
point is described by means of the Kaimal spectrum

Su .!/ D u2�
200f

n.1C 50f /5=3
I f D !h

2�U
(20)

where n is the frequency,¨ is the circular frequency, u* the friction velocity (Simiu
and Scanlan 1996) and h is the height (constant) of the bridge deck.

The cross power spectral density of the wind turbulence in different points,
assumed as real according to Carassale and Solari (2002), is described by means
of a “coherence function” that introduces an exponential decay factor

Su
	
z; z0; !


 D Su .!/ Cohu
	
z; z0; !



(21)

Cohu
	
z; z0; !


 D e�
Cuzjz�z0j
2�U

j!j (22)

Denoting by � k(z,!) and � k(!) the eigenfunctions and eigenvalues of the
cpsdf Su(z, z0,!), respectively, the spectral proper transformation SPT allows the
following representation of the wind velocity fluctuations u(z, t) (Carassale 2005;
Carassale et al. 2007; Fiore and Monaco 2009; Di Paola and Gullo 2001)

Su
	
z; z0; !


 D
NsX

kD1
�k .z; !/ �

�
k

	
z0; !



�k .!/ (23)

where NS denotes the number of significant terms.
According to Carassale and Solari (2002), the eigenfunctions and the eigenvalues

of the cpsdf can be represented in the following approximate closed form
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�k .z; !/ D Ak .˛/ sin

�
k� � 2"k .˛/

L
z C "k .˛/

�

(24)

�k .!/ D Su .!/
2

˛
cos2 Œ"k .˛/
 (25)

with L the overall bridge length and

˛ D CuzL

2�U
j!j I "k .˛/ D arctan

�
�k .˛/

˛

�

I 2 cot .�k/ D �k

˛
� ˛

�k
(26)

Ak .˛/ D
s

2 .k� � 2"k/
sin .2"k/C k� � 2"k (27)

4 Simplified Flutter Mode Shape

For a large span bridge the flutter mode can be approximated (Sepe and D’Asdia
2003) by sinusoidal functions with n half-wavelength, here normalised so to have a
unitary generalised torsional inertia in the main span (with length L)

f˛.z/ D fh.z/ D
s

2

IL
sin

n�z

L
(28)

where I is the torsional inertia per unit length.
With these assumptions it results

‰˛h.t/ D ‰˛˛.t/ D
Z

L

 .z; t/ f˛
2.z/d zI ‰˛h0 D ‰˛˛0 (29)

In the equation of motion (cf. Eq. 17)

RAC Œ2�!c C �.t/
 PAC !2c Œ1C �.t/
 A D 0 (30)

a constant “damping” coefficient can be observed, defined as (see Eqs. 12, 13,
14, 15 and 16, with I D 1)

� D � 1

2!c
.�1ˇB cos' C �2/‰˛˛0 (31)

and therefore positive if the mean wind speed is reduced ( 0 < 0) with respect to
Uc (cf. Eq. 3), and two parametric forcing terms
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�.t/ D �k�‰˛˛.t/; �.t/ D k�

!2c
‰˛˛.t/ (32)

with k� D�1ˇB cos'C�2, k� D�1ˇB!c sin ' ��3 and ", defined in Sect. 2,
iteratively evaluated as in the sample case in Sect. 6 (or neglected, as in Sepe and
Vasta (2005b), being "<< 1). The parametric forcing terms depend therefore both
on the forcing function ‰˛˛(t), with

‰˛˛.t/ D
Z

L

 .z; t/ f˛
2.z/d z; ‰˛˛ .!/ D

Z

L

 .z; !/ f˛
2.z/d z (33)

Around the critical wind speedU D Uc , the power spectral density of the forcing
function can be therefore rewritten as

S‰˛˛‰˛˛ .!/ D ‰˛˛ .!/‰
�̨
˛ .!/ D

“

L L

 .z; !/  �
	
z0; !



f˛

2.z/f˛
2
	
z0


d zd z0

D
“

L L

S  
	
z; z0; !



f˛

2.z/f˛
2
	
z0


d zd z0

(34)

where S  (z, z0,!) represents the cpsdf of the normalized turbulence u(z, z0, t)/UC

(see Eq. 19), whose SPT representation is as follows (see Eq. 23)

S  
	
z; z0; !


 D 1

U 2
C

NsX

kD1
�k .z; !/ �

�
k

	
z0; !



�k .!/ (35)

The psd of the forcing term acting on both the terms of the governing equation
can be therefore written as follows

S‰˛˛‰˛˛ .!/ D 1

U 2
C

NsX

kD1
�k .!/

Z

L

�k .z; !/ f
2
˛ .z/d z

Z

L

��k
	
z0; !



f 2
˛

	
z0


d z0

D
NsX

kD1

�k .!/

U 2
C

‚k .!/ ‚
�
k .!/ (36)

where the contribution of the wind-mode � k on the flutter mode f˛ is represented by
mixed wind-structure coefficients‚k(!) defined as

‚k .!/ D
Z

L

�k .z; !/ f
2
˛ .z/d z (37)
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The frequency content of ‰˛˛(t), and so the frequency content of parametric
excitations �(t) and �(t), depend in fact both on the frequency content of the
turbulence  (z, t) and on the shape f˛(z) of the flutter mode.

The psd of the forcing term S‰˛˛‰˛˛ .!/ can conveniently be expressed as

S‰˛˛‰˛˛ .!/ D c .!/

I
2
S  .!/ (38)

by introducing a multiplying factor c(!) denoted in the following as “shape
coefficient”, that for each frequency component ! of the turbulence describes the
“similarity” between along-span variation of that turbulence component and the
flutter mode.

With these notation, the psd of the parametric forcing terms can be rewritten as

S�� .!/ D k2�

I
2
c .!/ S  .!/; S�� .!/ D k2�

I
2
!4c

c .!/ S  .!/ ;

S�� .!/ D � k�k�

I
2
!2c

c .!/ S  .!/ (39)

The parametric excitations �(t) and �(t) are proportional to each other and then
Im(S��) D 0; the stability equation becomes therefore

� 0 > �

I

 
k2�

k�!
2
c

C k�

2

!

c .2!c/ S  .2!c/C �

I
k�S  .0/ (40)

S  .2!c/ represents the psd of the turbulence evaluated for a frequency ! D
2!c , twice than the critical one (with the correction factor

p
1C " due to the

variation of the mean wind speed  0, see Sect. 2).
For S  (0) in the Kaimal model, the following expression is assumed (see Simiu

and Scanlan (1996), with the normalisation factor U2
c of Eq. (3))

S  .0/ D 1

U 2
c

4u2Lxu
U

(41)

where U D Uc .1C  0/ is the average speed, u2 D 6u2� is the mean square value of
the wind-speed fluctuations, and Lx

u the integral length of longitudinal turbulence.
When turbulence has a non negligible low-frequency content S  .2!c/ > 0,

therefore, aeroelastic stability can be assured only if the mean wind speed is lowered
with respect to critical value, i.e.  0 < 0 (that introduces a positive damping),
meaning that the aeroelastic stability requires a reduction of the average wind speed
with respect to the critical value Uc defined in Sect. 2, as shown in previous papers
for a different turbulence (Sepe and Vasta 2005a, b).
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Fig. 2 Multi-box deck of the
Messina bridge

Fig. 3 Wind modes: eigenvalues

Fig. 4 Wind modes: eigenvectors # 1-2-3-4 (¨ [rad/s])

5 Example

As an example, it is considered a case (Fig. 2) already studied in previous papers
(Sepe and D’Asdia 2003; D’Asdia and Sepe 1998; Sepe et al. 2000). The example
considered is the bridge designed for crossing the Messina Strait (Italy), with a
main span of L D 3,300 m and a multi-box deck optimized through wind tunnel
tests (Fig. 2).

It results also (Sects. 2 and 3)
L D 3,300 m, h D 100 m, B D 60.4 m, I D 2:8 � 107 kgm2=m, u* D 3.3 m/s,

Lu D 200 m, Cuz D 10,
Uc D 94 m/s, !c D 0.418 rad/s, n D 2, ˇD 2.33, 'D 59.9ı, �1 D 3 � 105 kg s-1,

�2 D � 1.5 � 107 kg m s-1, �3 D 2.1 � 107 kg m s- 2

Eigenvalues and eigenvectors of the wind turbulence, described according to
Sect. 3, are reported in Figs. 3 and 4, respectively. The “shape coefficient” c(!) in
Fig. 5, obtained with the contribution of ten wind modes, is indeed “dominated” for
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Fig. 5 Shape coefficient
c(¨): 10 wind modes; the
relevant contribution at
frequency
2!cŠ 0.84 rad/s is
c(!)D 0.07

the sample case here considered by the first wind mode and only marginally affected
by the 3rd and 5th ones (with even modes irrelevant for the assumed flutter mode
shape). As shown in Fig. 5, the value of c(!) at the relevant frequency !D 2!c

(see Sect. 4) is about 0.07; according to the stability equation (Eq. 40), aeroelastic
stability can be assured only if the mean wind speed is lowered with respect to
critical value, (that introduces a positive damping); in the sample case discussed
here, a reduction  0 D � 0.042 of mean wind speed is required with respect to
“ideal” value UC.

After few iterations, the coefficient " due to the variation of the mean wind speed
 0 and affecting the actual frequency !c D !c

p
1C " (Eqs. 15 and 16 of Sect. 2)

has been evaluated as "D 0.05.

6 Concluding Remarks

The paper describes the effects on the aeroelastic stability of long span bridges due
to low-frequency wind speed fluctuations. The spatial-temporal field of wind tur-
bulence is described by means of orthogonal loading components representing the
eigenfunctions of the cross power spectral density function (cpsdf) of the process,
according to a POD-based representation. It is shown that for turbulent wind the
aeroelastic stability can be assured only if the infinite-time average of the wind speed
is appropriately lowered. In a sample case (Messina bridge), about 4 % reduction of
mean wind speed is required with respect to the “ideal” value UC, but reduction is
expected to be more relevant for bridges with worse aeroelastic behavior
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Part V
Stochastic Dynamics



PDEM-Based Response Analysis of Nonlinear
Systems with Double Uncertainties

Jian-Bing Chen, Pei-Hui Lin, and Jie Li

Abstract Large degree of uncertainties may exist simultaneously in system param-
eters and external excitations of engineering structures. To capture the performance
of such nonlinear multi-degree-of-freedom structures is still a great challenge in
stochastic dynamics. In the present paper, the probability density evolution method
is adopted and extended to reduce the dimension of parametric FPK equation
of an uncertain-parameter structure subjected to additively white noise process.
Numerical examples validate the proposed algorithm. Problems to be further studied
are discussed.

Keywords Nonlinear systems • Dimension reduction • FPK equation •
Probability density evolution method (PDEM)

1 Introduction

Engineering structures in service will almost unavoidably be attacked by random
disastrous dynamic actions such as earthquakes, strong wind etc. Simultaneously,
the system parameters (e.g., the strength parameters and stiffness parameters)
usually could not be captured exactly. Therefore, to grasp the performance of an
engineering structure we have to deal with the randomness involved in both external
loadings and system parameters (Li 1996; Li and Chen 2009). To stress this we
call it a structure with double uncertainties. Moreover, generally the system will
exhibit nonlinear behaviors under such extreme disastrous actions (Roberts and
Spanos 1990). The analysis of such systems involving coupled double randomness
and nonlinearity is still a challenging problem (Wen 2004; Goller et al. 2013).
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Traditionally, the randomness is dealt with separately in stochastic dynamics,
resulting in the random vibration theory and the stochastic structural analysis theory
(or stochastic finite element method as in some literature) (Li 1996; Lutes and
Sarkani 2004). In random vibration, the methods for analysis of linear systems
were well developed. Actually, there are elegant transfer relationships between the
moments and/or power spectral density (PSD) function of input to the counterparts
of output (Li and Chen 2009). However, in nonlinear problems the so-called closure
problem exists (Lutes and Sarkani 2004). In the level of probability density, the
FPK equation was derived nearly one century ago but the solution is available still
only for some special simple systems, mainly approximate, stationary, and for only
single-degree-of-freedom systems (Caughey and Ma 1982). The solution for multi-
degree-of-freedom (MDOF) nonlinear systems is still a great challenge, although
some important progress has been made in the past two decades (Soize 1994; Naess
and Moe 2000; von Wagner and Wedig 2000; Zhu 2006). The situation for stochastic
structural analysis where the uncertainty in system parameters is dealt with is
similar: the methods for linear systems were well developed but there are almost
no effective approaches for the problems involving nonlinearity in MDOF systems
encountered in engineering practice (Schuëller 1997). Actually the difficulty arising
in the above two branches is essentially of the same origin, i.e., the coupling of
nonlinearity and randomness in MDOF systems could not be broken in the tradi-
tional framework of stochastic dynamics when a lot of state variables are involved
simultaneously. When the randomness is involved in both external loadings and sys-
tem parameters, the investigations were extremely seldom (Li 1996). It seems that
only the Monte Carlo simulation is available in these cases if the prohibitively large
computational efforts are not cared about (Shinozuka 1972; Au and Beck 2001).

Under such background, the development of the probability density evolution
method (PDEM) in the past decade paved a new path for nonlinear stochastic
dynamics (Li and Chen 2009; Li et al. 2012a). This method deals with the
randomness on a unified basis by invoking the random event description of the
principle of preservation of probability and the embedded physical mechanism. By
doing so, a completely decoupled partial differential equation, i.e., the generalized
density evolution equation was derived and the numerical methods were extensively
studied. Most recently, it was extended to reduce the dimension of FPK equations
(Chen and Yuan 2014; Chen and Lin 2014). In the present paper, a further step is
made by constructing the equivalent flux of probability so that when the randomness
is involved in both system parameters and external loadings a one-dimensional
partial differential equation still exists.

2 Probability Density Evolution Method (PDEM)

As mentioned, in engineering practice the uncertainties will be exhibited both in
system parameters and in external excitations. To be specific, in the present paper
we only consider the structure subjected to earthquake excitations. In this case, the
equation of motion of a generic MDOF system is
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M RX C C PX C f .‚k;X/ D �MI RXg.t/ (1)

where M and C are the n by n mass and damping matrices, respectively, f is the
n by 1 internal force vector, ‚k D .‚1;k; � � � ; ‚sk;k/ is the basic random vector
characterizing the randomness involved in the restoring forces, I is a column vector
with all the components being 1, RXg.t/ is the stochastic ground motion acceleration.

The response information of the system (1) could be captured by PDEM (Li
and Chen 2009) where a generalized density evolution equation (GDEE) is derived
and solved. To this end, firstly the stochastic ground acceleration RXg.t/ should
be represented by an explicit function of the basic random variables rather than
a function of the abstract sample points. This could be implemented by the physical
stochastic model for ground motions (Wang and Li 2011; Li et al. 2012b), or could
also be represented by the summation of stochastic harmonic functions (Chen et al.
2013) if the PSD, say the Kanai-Tajimi spectrum, is given. Finally, we have

RXg.t/ D F
	
‚g; t



(2)

where ‚g D 	
‚1;g; � � � ; ‚sg;g



is the basic random vector characterizing the

randomness involved in the stochastic ground acceleration, F(�, t) is an explicit
known function of ‚g and t, determined by either the physical stochastic model
or by the stochastic harmonic functions.

By doing so, Eq. (1) becomes

M RX C C PX C f .‚k;X/ D �MIF
	
‚g; t



(3)

For notational convenience, we denote ‚D (‚k,‚g) D (‚1, � � � ,‚s) as the
basic random vector with known joint probability density function (PDF) p‚(�),
where �D (�1, � � � , � s), and s D sk C sg is the total number of the involved random
variables.

If some physical quantities related to the system (2), denoted by Z D (Z1, � � � , Zm),
are of concern, then these physical quantities could be captured by solving Eq. (3)
and then adopting the connection between them and the displacement and velocity
vector, e.g. the geometric matrix and constitutive law via the finite element
assembling. Thus, finally the solution of Z could be expressed as the function of
the basic random vector‚ and t, i.e.

Z D H .‚; t/ (4)

where H D (H1, � � � , Hm). Note that all the randomness involved in the system
(4) comes from ‚. The augmented system (Z(t),‚) is consequently probability
preserved and thus the joint PDF of (Z(t),‚), denoted by pZ‚(z,� , t), should satisfy

d

dt

Z

�t���
pZ‚ .z;� ; t/ dzd� D 0 (5)
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for any arbitrary � � �� 2 �Z � �‚, where �Z is the value domain of Z(t) and
�‚ is the distribution domain of ‚ (e.g., the support of p‚(�)). By a series of
manipulations on Eq. (5) we are led to (Li et al. 2012a)

Z

��

0

@
@pZ‚ .z;�; t/

@t
C

mX

jD1
PZj .�; t/ @pZ‚ .z;�; t/

@zj

1

A d� D 0 (6)

which could finally be reduced to the following generalized density evolution
equation (GDEE) (Li and Chen 2008, 2009)

@pZ‚ .z;�; t/
@t

C
mX

jD1
PZj .�; t/ @pZ‚ .z;� ; t/

@zj
D 0 (7)

because of the arbitrariness of �� .
If we are only interested in one single physical quantity, i.e., m D 1, Eq. (7)

becomes a one-dimensional partial differential equation

@pZ‚ .z;�; t/

@t
C PZ .�; t/ @pZ‚ .z;� ; t/

@z
D 0 (8)

Equations (7) and (8) are quite different from the traditional equations such
as the FPK equation because the dimension of GDEE is completely untied from
the original dynamical system (1). This is because the source of randomness was
involved together with the physical quantities of concern. In other words, the
embedded physical mechanism is incorporated in the partial differential equation.

After solving Eq. (8) the PDF of Z(t) could be given by

pZ .z; t/ D
Z

�‚

pZ‚ .z;�; t/ d� (9)

The initial condition of Eq. (8) is usually specified by pZ‚(z,� , t)jtD 0 D ı(z � z0)
p‚(�) if z0 is the deterministic initial value of Z(t). Here ı(�) is Dirac’s delta
function. For instance, if Z(t) is the displacement, then z0 could take zero in most
cases, whereas if Z(t) is the stress at a crucial point, then z0 is the initial stress mainly
due to the weight of structure before the earthquake action is exerted.

3 FPK-Like Equation and Its Dimension Reduction

If we introduce Y D
� PXT;XT

�T D .Y1; � � � ; Y2n/T, then the system (1) could be

transformed into a state equation

PY D A .‚k;Y; t/C B RXg.t/ (10)
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where A D (A1, � � � , A2n)T and B D (B1, � � � , B2n)T could be obtained according to the
transform. If the earthquake ground motion RXg.t/ is idealized as a white noise pro-
cess with the mean E

� RXg.t/
� D 0 and correlation functionE

� RXg.t/ RXg .t C �/
� D

Dı .�/, then Eq. (10) could be understood as an Itô stochastic differential equation
for given ‚k. In this case, the joint PDF of (Y,‚k), denoted by pY‚k .y;�k; t/,
follows the FPK equation

@pY‚k .y;�k; t/

@t
D �

2nX

jD1

@

@yj

h
pY‚k .y;�k; t/ Aj .�k; y; t/

i

C 1

2

2nX

iD1

2nX

jD1
�ij
@pY‚k .y;�k; t/

@yi@yj
(11)

where � ij is the component of � D DBBT.
Equation (11) could of course be understood as a parametric FPK equation for a

given �k. If we marginalize Eq. (11) in terms of y,�k excludes y`, i.e., let

pY` .y`; t/D
Z 1

�1
� � �
Z 1

�1
� � �
Z

�‚k

pY‚k .y;�k; t/ dy1 � � �dy`�1dy`C1 � � �dy2nd�k

(12)

then integrating on both sides of Eq. (11) in terms of y1, � � � , y`� 1, y`C 1, � � � , y2n,�k

yields

@pY` .y`; t/

@t
D �@J .y`; t/

@y`
C 1

2
�``
@pY` .y`; t/

@y2`
(13)

where the flux of probability related to drift effect

J .y`; t/ D
Z 1

�1
� � �
Z 1

�1

Z

�‚k

pY‚k .y;�k; t/ A` .�k; y; t/

� dy1 � � �dy`�1dy`C1 � � �dy2nd�k (14)

Equation (13) is in the form a one-dimensional partial differential equation.
However, the flux of probability related to drift in Eqs. (13) and (14) involves
a high-dimensional integral related to the original high-dimensional joint PDF
pY‚k .y;�k; t/, which is unknown and is what we want to circumvent due to its high
dimension. This forms a loop that could not be broken in the traditional theoretical
frame. Some researchers have made efforts to obtain the needed information by
involving a linearized solution of the marginalized part state vector for white noise
excited systems without parametric uncertainty (Er 2011).
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For the FPK equation without �k, an equivalent flux of probability was proposed
recently (Chen and Yuan 2014; Chen and Lin 2014; Yuan et al. 2012) by invoking
the solution of GDEE to construct the flux due to drift. This is established on the
basis of the equivalence between the state space description and the random event
description of the principle of preservation of probability. For the parametric FPK
equation, similar ideas could be adopted. In this case, Eq. (14) is replaced by

J .y`; t/ D
Z

�‚e

Z

�‚k

pY`‚k‚e .y`;�k;�e; t/bA` .�k;�e; t/ d�kd�e

D
Z

�‚

pY`‚ .y`;�; t/
bA` .�; t/ d� (15)

where pY`‚ .y`;�; t/ is the solution of GDEE (8) when Z is replaced by Y`, and
bA` .�; t/ is given by bA` .�; t/ D PY` .�; t/ � B`F

	
�g; t



as the component of Eq.

(10), in which F(�g, t) is specified by Eq. (2) as‚g D�g.
Once the information of the flux of probability related to drift is known from Eq.

(15), the one-dimensional partial differential equation (Eq. (13)) could be solved at
least easily by numerical methods.

4 Numerical Examples

To verify and validate the proposed method for the evaluation of stochastic systems
with double uncertainties, two numerical examples with both stochastic excitation
and random system parameters are investigated.

Example 1: First-Order Nonlinear System Consider a first-order stochastic differ-
ential equation

PX D 1

2

	
�X � X3 � ˛X5


C b�.t/ (16)

where � is a random parameter uniformly distributed over [�1, �2] and �(t) is
a Gaussian white noise with zero mean, unit variance and correlation function
E[�(t)�(t C �)] D ı(�); ˛ is a deterministic nonlinear factor and b is the diffusion
coefficient. The exact stationary PDF of X(t) is known if � is deterministic (Er 2000)
and thus the stationary PDF of the stochastic process X(t) is given by

pX.x/ D 1

�2 � �1

Z �2

�1

C .�/ exp

�
1

2b2

�

�x2 � x4

2
� ˛x

6

3

�

d� (17)

where C .�/ D
�Z 1

�1
exp

�
1

2b2

�

�x2 � x4

2
� ˛

x6

3

�

dx

��1
is a normalization

factor.



PDEM-Based Response Analysis of Nonlinear Systems with Double Uncertainties 253

Fig. 1 Probability information of the first-order nonlinear system with double uncertainties. (a)
Standard deviation of stochastic process. (b) Typical PDF of stochastic process (left: in ordinary
coordinate system; right: in logarithmic coordinate system). (c) PDF evolution surface. (d) PDF
contour

In the present example, we take �1 D 0.9, �2 D 1.1, ˛D 1/20 and b D 1. Through
the proposed approach, one can get the evolution of PDF and other statistical
information. In the numerical solving process, the spectral representation method
is employed and the Sobol’ set is chosen as the representative point set in order to
generate representative time histories of Gaussian white noise. The time step takes
t D 0.001 sec. A total number of 1,000 representative time histories are employed.
The results by the proposed approach and the exact stationary solution of standard
deviation computed by Eq. 17 are plotted in Fig. 1. The results include: (a) standard
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deviation of X(t); (b) typical PDFs of X(t) in ordinary coordinate and logarithmic
coordinate systems; (c) PDF surface evolving with time; and (d) the contour of PDF
surface. Clearly, it is seen that the proposed approach is of fair accuracy.

Example 2: A 9-Story Shear Frame Consider a linear 9-story shear frame subjected
to Gaussian white noise excitation. The lateral inter-story stiffness from top to
bottom are defined as a uniform distributed random variable k � U(2.664,3.256)
(�107 N/m) and the lumped masses of each story are deterministic with the
same value of 9.78 � 104 kg. Rayleigh damping is used, i.e. C D aM C bK,
where a D 0.2150 and b D 0.0088. Similarly, the spectral representation method is
employed and the Sobol’ set is adopted as the representative point set to generate
representative time histories. The standard deviation of the seismic excitation is
taken as 0.1 g. The time step takes t D 0.002 s. A total number of 2,000
representative time histories are employed here. Through the proposed approach,
the probability information of the top floor velocity is obtained. Again, the
corresponding exact solution is computed for comparison. The standard deviation,
typical PDFs, the PDF evolution surface and the corresponding contour are shown
in Fig. 2. Again, it is seen that the results by the proposed approach accord quite
well with the exact solutions.

5 Concluding Remarks

In the present paper, the structures with double randomness, i.e., uncertain structures
subjected to stochastic excitations, are studied. The probability density evolution
method is adopted to construct the equivalent flux of probability in the marginalized
parametric FPK equation. The major results include:

1. For additively white-noise excited system, the parametric FPK equation could
be reduced to a one-dimensional partial differential equation and then solved by
combining the solution of the generalized probability density evolution equation
and the reduced flux-equivalent equation;

2. Two numerical examples, including a one-dimensional system and a MDOF
system, are studied. The results show the feasibility of the proposed method.

There are problems to be further studied: (1) Extension of the proposed method
to multiplicatively excited systems; (2) More robust numerical algorithm for one-
and higher-dimensional flux-equivalent probability density evolution equation; (3)
Extension of the method from the macro-scale structural systems to multi-scale
structural systems.
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Fig. 2 Probability information of the 9-story shear frame with double uncertainties. (a) Standard
deviation of the top floor velocity. (b) Typical PDF at three different time instants (left: in ordinary
coordinate system; right: in logarithmic coordinate system). (c) PDF evolution surface. (d) Contour
of the PDF surface
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The Probabilistic Solutions of the Cantilever
Excited by Lateral and Axial Excitations
Being Gaussian White Noise

G.K. Er and V.P. Iu

Abstract The multi-degree-of-freedom system with both external and parametric
excitations is formulated with Galerkin’s method from the typical problem of the
cantilever excited by both lateral excitation and axial excitation being correlated
Gaussian white noises. The probabilistic solution of this multi-degree-of-freedom
stochastic dynamical system is obtained by the state-space-split method and expo-
nential polynomial closure method. The way for selecting the sub-state vector in
the dimension reduction procedure with the state-space-split method is given for
the analyzed cantilever. The solution procedure with the state-space-split method
is presented for the system excited by both external excitation and parametric
excitation being correlated Gaussian white noises. Numerical results are presented.
The results obtained with the state-space-split method and exponential polynomial
closure method are compared with those obtained by Monte Carlo simulation and
Gaussian closure method to verify the effectiveness and efficiency of the state-
space-split method and exponential polynomial closure method in analyzing the
probabilistic solutions of the multi-degree-of-freedom stochastic dynamical systems
with both external excitation and parametric excitation similar to that formulated
from the cantilever excited by both lateral excitation and axial excitation being
correlated Gaussian white noises.
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1 Introduction

The random vibrations of the cantilever excited by external Gaussian white noise
and parametric Gaussian white noise can be found its application in modeling the
tall buildings excited by both horizontal ground motion and vertical ground motion.
The horizontal ground motion can cause lateral excitation on the structure and the
vertical ground motion can cause axial excitation on the structure. There are both
external or additive excitation due to lateral excitation and parametric or multiplica-
tive excitation due to axial excitation in the dynamical system describing the motion
of the cantilever. When both the external excitation and the parametric excitation
exist, it was a challenging problem in obtaining the analytical probabilistic solution
of the system when the system is modeled as multi-degree-of-freedom (MDOF)
system. In this paper, the probabilistic solution of this structure is analyzed. It is
known that the equation of motion of the cantilever is a partial differential equation
in time and space. With Galerkin’s method, the partial differential equation is
reduced to a MDOF stochastic dynamical system. Many other real problems can
also be modeled with the similar MDOF stochastic dynamical systems. It is known
that no exact solutions of this type of MDOF stochastic dynamical systems are
obtainable. Therefore, two methods can be used for the approximate solutions
of the MDOF stochastic dynamical systems with both external excitation and
parametric excitation. One of them is by using moment equations which can be
solved to obtain the moments of the responses of the linear oscillator with both
external excitation and parametric excitation being Gaussian white noise (Soong
1973; Iyengar and Dash 1978; Sun and Hsu 1987; Baratta and Zuccaro 1994).
Another method applicable for analyzing this kind of stochastic dynamical systems
is Monte Carlo simulation (MCS) method which is for the numerical solution
of stochastic differential equations (Harris 1979; Kloeden and Platen 1995). The
moment equation method only works well for single-degree-of-freedom system
since huge number of equations in terms of moments needs to be formulated and
solved when high order moments of the system responses are needed for MDOF
systems. The number of moment equations increases exponentially as the number of
degrees of freedom and the moment order increase. MCS can be used for analyzing a
lot of MDOF stochastic dynamical systems, but the computational effort needed by
MCS is huge when the system is large or the small probability of system responses
is needed. Identifying the conditions about the numerical convergence, stability,
round-off error, and the requirement for large sample size are also challenges
for MCS method in analyzing MDOF stochastic dynamical systems. It is known
that directly solving the Fokker-Planck-Kolmogorov (FPK) equation governing the
probabilistic solution of the system in high dimensions is a challenge (Risken 1989;
Gardiner 2009). Recently, a new method named state-space-split (SSS) method was
proposed for obtaining the probabilistic solutions of MDOF stochastic dynamical
systems or solving the FPK equations in high dimensions (Er 2011; Er and Iu 2011).
The SSS method makes the problem of solving the FPK equation in high dimensions
reduced to the problem of solving the FPK equations in low dimensions. Then,
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the FPK equations in low dimensions are solved with the exponential polynomial
closure (EPC) method (Er 1998). The SSS-EPC method was extended to analyze
the probabilistic solutions of stretched Euler-Bernoulli beam excited by lateral
Poissonian white noise (Er and Iu 2012) or filtered Gaussian white noise (Er
2013). In this paper, the SSS-EPC method is further extended to analyze the
probabilistic solutions of the vertical cantilever excited by Gaussian white noises
both horizontally and vertically. The system formulated in this case is the MDOF
system excited by fully correlated external excitation and parametric excitation
being Gaussian white noise. The results obtained with the SSS-EPC method are also
compared with those from MCS and Gaussian closure to show the effectiveness of
the SSS-EPC method in this case. It can be concluded that the results obtained with
the SSS-EPC method are close to MCS when the system excitation is under the
reasonable level of real situation.

2 Dynamical System of the Cantilever Excited by Correlated
External and Parametric Gaussian White Noises

Consider the cantilever excited by inclined ground motion as shown in Fig. 1. Under
the action of the inclined ground acceleration, the motion of the vertical cantilever
is governed by the following equation.

�A RY .x; t/C c PY .x; t/C EI
@4Y.x; t/

@x4
C �A

�
@2Y.x; t/

@x2
.L � x/ � @Y.x; t/

@x

�

ŒcvW.t/C g
 D �AchW.t/ (1)

where Y.x; t/ is the deflection of the cantilever; L is the length of the cantilever; E
is Young’s modulus; I is the moment of inertia of the cross section of the cantilever;
A is the area of the cross section of the cantilever; �.kg=m3/ is the mass density;
c is the damping constant; W.t/ is Gaussian white noise representing the ground
acceleration; g is gravitational acceleration; ch D cos � and cv D sin � where �
is the angle between horizontal line and the direction of ground acceleration. The
boundary condition of the cantilever is

Y.0; t/ D @Y.0; t/

@x
D @2Y.L; t/

@x2
D @3Y.L; t/

@x3
(2)

Approximately express the solution of the cantilever by

Y.x; t/ D
mX

iD0
Ai .t/�i .x/ (3)
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Fig. 1 Cantilever excited by
inclined ground acceleration

where �i .x/ is the i th linear mode function of the cantilever which is given by

�i .x/ D cos˛ix � cosh˛ix � cos˛iLC cosh˛iL

sin˛iLC sinh ˛iL
.sin ˛ix � sinh˛ix/ (4)

in which ˛1 D 1:875=L, ˛2 D 4:694=L, ˛3 D 7:855=L, and ˛i D .i � 0:5/�=L

for i � 4.
With Galerkin’s method, the following stochastic dynamical system is obtained

for the deflection Y0.x0; t/ D Pm
iD1 Ai .t/�i .x0/ at x D x0 if the damping ratio is

the same for each mode.

RY0 C 2�!1 PY0 C EI

�A

mX

kD1
˛4k�k.x0/Ak C

mX

jD1

mX

kD1
ekj �k.x0/Aj ŒcvW.t/C g


D W.t/

mX

kD1
fk�k.x0/ (5)
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RAiC2�!i PAiC!2i AiC
mX

jD1
eij Aj ŒcvW.t/C g
 D fiW.t/ i D 2; 3; : : : ; m (6)

where !i D ˛2i
p
EI=.�A/, � is the damping ratio of the system, eij D .Lcij �

bij � dij /=ai i , fi D dich=ai i , di D R L
0
�i.x/dx, aii D R L

0
�2i .x/dx, bij D

R L
0 �i .x/�

0
j .x/dx, cij D R L

0 �i .x/�
00
j .x/dx, Dij D R L

0 x�i .x/�
00
j .x/dx, and

A1 D ��11 .x0/ŒY0 �Pm
kD2 Ak�k.x0/
.

3 Dimension Reduction with State-Space-Split Method

Equations 5 and 6 formulate a coupled m-degrees-of-freedom system with both
external excitation and parametric excitation being Gaussian white noise. No exact
solution is available for this system. Many systems similar to Eqs. 5 and 6 can
be formulated from real problems in science and engineering. In order to solve
the problem, a single-degree-of-freedom stochastic dynamical system is formulated
with Eqs. 5 and 6 by setting m D 1. Another multi-degree-of-freedom stochastic
dynamical system is formulated with Eqs. 5 and 6 by setting m D 16 since
further increasing the number of shape functions cannot make the solution further
changed obviously. The solution corresponding to m D 16 can be considered
as converged solution. In the case of m D 16, the original FPK equation is
in 32 dimensions. The joint probability density function (PDF) of the deflection
and the velocity on the top of the cantilever at x D L is analyzed with the
SSS method and EPC method based on Eqs. 5 and 6. The state variables in the
first sub vector is taken to be fY0.L; t/; PY0.L; t/g 2 <2 in formulating the two-
dimensional approximate FPK equation with the dimension reduction procedure
of SSS method (Er 2011; Er and Iu 2011). The MCS is also conducted to verify
the effectiveness of the SSS-EPC method in solving the FPK equations in high
dimensions or analyzing the PDF solution of the multi-degree-of-freedom systems
excited by the external excitation and parametric excitation being Gaussian white
noise. The results obtained with Gaussian closure are also given for comparison in
the following numerical analysis.

4 Numerical Analysis

In the numerical analysis, the cantilever which models a tower and is excited by
correlated horizontal and vertical ground acceleration is analyzed. The material of
the cantilever is reinforced concrete and the cross section of the cantilever is a ring
with outer diameter 7m and inner diameter 6m. The parameters in the formulated
system are given as L D 300m, E D 2:55 � 1010 N=m2, A D 10:20m2, I D
54:21m4, � D 2:3 � 103 kg=m3, � D 0:01, S D 10m2=s5, and � D 85ı. In solving
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Fig. 2 PDFs of top deflection in Case 1

the two-dimensional FPK equations obtained with SSS method, the sixth degree
polynomial is used in the EPC solution procedure (Er 1998). The sample size in the
procedure of MCS is 108.

4.1 Case 1. SDOF System

When m D 1, the system is a SDOF system. The relevant FPK equation is
in two dimensions. In the case of � D 85ı, the acceleration is almost vertical.
ch D cos 85ı D 0:087 and cv D sin 85ı D 0:996. The vertical component of the
ground acceleration is much greater than the horizontal component in order to show
the influence of the parametric excitation on the system response. It is known that the
vertical acceleration causes axial excitation or parametric excitation in the system.
Obtained with SSS-EPC, MCS, and Gaussian closure, the PDFs of the deflection
and velocity on the top of the cantilever are shown in Figs. 2 and 4. In view that
the tails of the PDF plays an important role in the system reliability analysis, the
logarithms of the PDFs are also shown and compared in Figs. 3 and 5. It is seen from
Figs. 2 to 5 that both the top deflection and velocity are far from being Gaussian in
this case, particularly in the tails of the PDFs, though the system is linear and the
excitation is Gaussian. The non-Gaussian behaviour of the deflection and velocity
is caused by the parametric excitation or the axial excitation on the cantilever. By
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Fig. 5 Logarithm of PDFs of top velocity in Case 1

comparison it is observed that the results obtained with SSS-EPC are close to those
obtained with MCS while the results from Gaussian closure deviate a lot from MCS.

The mean up-crossing rate (MCR) �C is a quantity that is frequently used in
system reliability analysis. It is defined as

�C.y0/ D
Z C1

0

Py0p.y0; Py0/d Py0 (7)

where p.y0; Py0/ is the joint PDF of Y0 and PY0. The MCRs and logarithmic MCRs
of the top deflection are also shown and compared in Figs. 6 and 7. It is seen that
the MCR obtained with SSS-EPC is also in good agreement with that obtained with
MCS.

4.2 Case 2. 16-DOF System

As the number of shape functions used in formulating the stochastic dynamic
systems increases to 16, i.e., m D 16, the formulated system is a 16-DOF system.
The relevant FPK equation is in 32 dimensions. Further increasing the number of
shape functions cannot make the PDFs of top deflection and velocity obviously
changed, so the solution corresponding to m D 16 is considered as converged
solution. Still consider the case of � D 85ı. In this case, there are both external
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Fig. 6 MCRs of top deflection in Case 1
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Fig. 8 PDFs of top deflection in Case 2
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Fig. 9 PDFs of top velocity in Case 2

and parametric excitations in the formulated system. Obtained with SSS-EPC and
polynomial degree being six in the EPC procedure, MCS, and Gaussian closure,
the PDFs of the deflection and velocity on the top of the cantilever are shown in
Figs. 8 and 9. The MCRs of the top deflection is shown in Fig. 10. The logarithms
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Fig. 11 Logarithm of PDFs of top deflection in Case 2

of the PDFs and MCRs are also shown and compared in Figs. 11–13. It is seen
from these figures that both the top deflection and velocity are far from being
Gaussian in this case though the system is linear and the excitation is Gaussian. The
non-Gaussian behavior of the deflection and velocity is caused by the parametric
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excitation or the axial excitation on the cantilever. It is observed that the results
obtained with SSS-EPC are close to those obtained with MCS, but the computational
time needed with SSS-EPC is about 200 s mainly spent on solving the moment
equations with 2 s spent on the SSS-EPC procedure and the computational time
needed with MCS is 1,060 s for this 16-DOF linear system in the same computer
and running environment. It is seen that the PDF solutions obtained with the 16-
DOF system in Case 2 is close to those obtained with the SDOF system in Case 1.
It means that the solution from the SDOF system in Case 1 is accurate enough for
this cantilever.

5 Conclusions

Under the action of correlated lateral and axial excitations being fully correlated
Gaussian white noises, the equations of motion of the cantilever is given to be
a partial differential equation in time and space. With Galerkin’s method, this
partial differential equation is reduced to be a SDOF or MDOF system with both
external and parametric excitations being Gaussian white noise. The FPK equation
governing the PDFs of the responses of the MDOF system with both external and
parametric excitations can be reduced to two-dimensional FPK equations by the
SSS method for obtaining the PDFs of the displacement and its corresponding
velocity. The formulated FPK equation in two-dimensions can then be solved with
the EPC method when the polynomial degree in the EPC procedure equals six.
The procedure for the probabilistic solution of the cantilever is presented. Similar
problems can also be observed from many real problems in science and engineering.
Numerical analysis is conducted with the SSS-EPC method, MCS method, and
Gaussian closure method for comparison and testing the effectiveness of the SSS-
EPC procedure in investigating the high-dimensional cantilever systems with both
external and parametric excitations. Two cases are considered. One is about a SDOF
system formulated with one linear mode function with Galerkin’s method and the
other is about a 16-DOF system formulated with 16 linear mode functions with
Galerkin’s method. In each case, the results obtained by the SSS-EPC method are
close to those obtained by the MCS when the polynomial degree equals six in the
EPC procedure. From the PDFs of displacement and velocity it is also observed that
both the displacement and velocity of the cantilever are far from being Gaussian,
which is caused by the parametric excitation. The mean up-crossing rate obtained by
SSS-EPC with polynomial degree being six are also close to those obtained by the
MCS even if both the displacement and velocity deviate a lot from Gaussian. Hence
the SSS-EPC method is effective in analyzing the systems similar to the cantilever
excited by correlated lateral and axial Gaussian white noises. The solution from the
16-DOF system can be considered as converged solution since further increasing the
number of mode functions cannot make the solution obviously changed. It is also
found that the solution of the SDOF system is very close to the solution from the
16-DOF system, which means that it is accurate enough to model the motion of the
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cantilever as a SDOF system with the correlated lateral and axial excitations being
Gaussian white noises. It is also noted that the number of linear modes needs to be
even with SSS-EPC procedure in order to fit the results from MCS if the cantilever
is modeled as MDOF system and there are fully correlated external and parametric
excitations being Gaussian white noise. The reason behind this phenomenon needs
to be further investigated.
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Abstract In this paper a general formulation is proposed for the dynamic anal-
ysis of stochastic structures with uncertain material properties. A straightforward
generalization of the mean and variability response function concept is introduced
leading to closed form integral expressions for the dynamic mean and variability
response of statically indeterminate beam/frame structures as well as for more
general stochastic finite element systems. As in the case of classical variability
functions, these integral expressions involve the spectral density function of a
stochastic field modeling the uncertain material properties and so-called dynamic
mean and variability response functions, recently established for linear stochastic
statically determinate single degree of freedom oscillators. A finite element method-
based fast Monte Carlo simulation procedure is used for the accurate and efficient
numerical evaluation of these functions. Numerical examples are provided including
a statically indeterminate beam/frame structure and a plane stress problem. The
dynamic mean and variability response functions can be used consequently to
perform sensitivity/parametric analyses with respect to various probabilistic char-
acteristics involved in the problem (i.e., correlation distance, standard deviation)
and to establish realizable upper bounds on the dynamic mean and variance of the
response.
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1 Introduction

In stochastic finite element methodologies developed over the past decades, whether
these are based on perturbation/expansion (Liu et al. 1986a, b), spectral Galerkin
approximations (Ghanem and Spanos 1991) or computationally expensive Monte
Carlo methods (Liu et al. 1986a; Grigoriu 2006; Matthies et al. 1997; Stefanou
2009), knowledge of the correlation structure and the marginal probability dis-
tribution function (pdf ) of the stochastic fields describing the uncertain system
parameters is a prerequisite for the prediction of the response variability of a
stochastic static or dynamic system. As there is usually a lack of experimental
data for the quantification of such probabilistic quantities, a sensitivity analysis
with respect to various stochastic parameters is often implemented. In this case,
however, the problems that arise are the increased computational effort, the lack of
insight on how these parameters control the response variability of the system and
the inability to determine bounds of the response variability. Furthermore, limited
works are dealing with the dynamic propagation of system uncertainties, most of
them reducing the stochastic dynamic PDE’s to a linear random eigenvalue problem
(Ghosh et al. 2005; Schueller 2011).

In this framework and to tackle the aforementioned issues, the concept of the
Dynamic Variability Response Function (DVRF) has been proposed in (Papadopou-
los and Kokkinos 2012), which is a function of deterministic parameters of the
problem as well as of the standard deviation of the stochastic field modeling
the uncertain system properties. In that work, closed form integral expressions,
involving DVRF and the spectral density function of the stochastic field, were
suggested for the computation of the dynamic variance of the response displacement
as follows:

Var Œu.t/
 D
Z 1

�1
DVRF

	
t; �; �ff



Sff .�/ d� (1)

A similar expression has also been proposed for the mean system response
involving a Dynamic Mean Response Function (DMRF). This approach was
formulated for linear statically determinate single degree of freedom stochastic
oscillators under dynamic excitations and it was demonstrated that the integral
form expressions for the dynamic mean and variance can be used to effectively
compute the first and second order statistics of the transient system response
with reasonable accuracy, together with time dependent spectral-distribution-free
upper bounds. They also provide an insight into the mechanisms controlling the
uncertainty propagation with respect to both space and time and in particular the
mean and variability time histories of the stochastic system dynamic response.
Furthermore, once the DMRF and DVRF were established, sensitivity analyses with
respect to various probabilistic parameters such as correlation distances, standard
deviation were performed at a very small additional computational cost.
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Based on the aforementioned recent development, closed form integral expres-
sions in the form of Eq. (1) are proposed in the present work for the mean and
variance of the dynamic response of statically indeterminate beam/frame structures
and then extended to more general stochastic finite element systems (i.e. plane
stress problems) under dynamic excitations. In this case DVRF and DMRF are
vectors comprised of a DMRF and DVRF for each degree of freedom of the FE
system. A general so-called Dynamic FEM fast Monte Carlo simulation (DFEM-
FMCS) is proposed for the accurate and efficient evaluation of DVRF and DMRF
for stochastic FE systems. Numerical results are presented, demonstrating that as in
the case of classical VRFs proposed in the late 1980s (Shinozuka 1987) along with
different aspects and extensions (Wall and Deodatis 1994; Graham and Deodatis
1998), as well as in the case of DMRF and DVRF for single degree of freedom
stochastic oscillators (Papadopoulos and Kokkinos 2012), the DVRF and DMRF
matrices appear to be independent of the functional form of the power spectral
density function Sff (�) and appear to be marginally dependent on the pdf of the field
modeling the uncertain system parameter. It is reminded that the existence of VRF
has been proven only in the case of statically determinate structures under static
loading (Shinozuka 1987; Papadopoulos and Deodatis 2006). In all other cases this
existence had to be conjectured and the validity of this conjecture was demonstrated
through comparisons of the results obtained from Eq. (1) with brute force MCS. It
should be mentioned here that the VRF concept was recently extended in (Teferra
and Deodatis 2012) for structures with non-linear material properties where a closed
form analytic expression of VRF revealed the clear dependence of the integral form
of Eq. (1) on the standard deviation as well as higher order power spectra of f(x).
Finally, realizable upper bounds of the mean and dynamic system response are
evaluated.

2 Time-History Analysis of Stochastic Finite Element
Systems

Without loss of generality consider the linear stochastic FE system of Fig. 1 which
is a fixed-fixed beam/frame structure. The inverse of the elastic modulus is assumed
to vary randomly along its length according to the following expression:

1

E.x/
D F0 .1C f .x// ; (2)

where E is the elastic modulus, F0 is the mean value of the inverse of E, and f(x) is
a zero-mean homogeneous stochastic field modeling the variation of 1/E around its
mean value.
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Fig. 1 Geometry and loading
of the fixed–fixed frame
discretized with 60 beam
elements

For the derivation of the deterministic system dynamic response the trivial
second-order differential equation for the discretized FE dynamic system equilib-
rium neglecting damping is as follows:

M Ru.t/C Ku.t/ D P.t/ (3)

where M is the mass matrix of the discretized FE system, K is its stiffness matrix
and P(t) is its loading vector. At last, u(t) is the time-history of the displacement
vector of the system, providing information about the response of each node of the
FE mesh, and Ru.t/ is the second order time-derivative of u(t).

Direct integration of Eq. (3) can be performed using i.e. a Newmark scheme of
the following form:

tCtbR D tCtR C M
�
a0
tU C a1

t PU C a2
t RU
�

(4)

where a0 D 1
at2

I a1 D 1
at

I a2 D 1
2a

� 1I a6 D t .1 � ı/ I a7 D
ıt . After choosing a time step �t parameters ˛ and ı are selected under the
limitations ı� 0.50 and a � 0.25(0.5 C ı)2. After initialization of 0U; 0 PU; and 0 RU,
the displacements at time t C�t are calculated solving the following linear system
of equations

bKtCtU D tCtbR (5)

where bK is the effective stiffness matrix given by

bK D K C a0M (6)



Dynamic Response Variability of General FE-Systems 275

Finally accelerations and velocities at time t C�t accrue from the following
equations:

tCt RU D a0
	
tCtU � tU


 � a1t PU � a2
t RU (7)

tCt PU D t PU C a6
t RU C a7

tCt RU (8)

Matrices bR and bK in Eqs. (5) and (6) and consequently vectors U; PU and RU are
random due to the variation of E(x) in Eq. (2). Thus, the solution of Eq. (5) requires
the implementation of some stochastic methodology in order to invert the stochastic
operator bK at each time step and predict the stochastic dynamic response of the FE
system.

3 Analysis of Mean and Variance of Dynamic System
Response Using DMRF and DVRF

Following a procedure similar to the one presented in (Papadopoulos and Kokkinos
2012) for linear stochastic oscillators under dynamic loading, it is possible to
express the variance of the dynamic response of a stochastic finite element system
in the following integral form expression:

Var Œu.t/
 D
Z 1

�1
DVRF

	
t; �; �ff



Sff .�/ d� (9a)

where DVRF is the vectorized dynamic version of DVRF, assumed to be a function
of deterministic parameters of the problem related to geometry, loading, (mean)
material properties and the standard deviation � ff of the stochastic field modeling
the system’s flexibility. A similar integral expression can provide an estimate for the
mean value of the dynamic response of the system (Papadopoulos et al. 2006):

" Œu.t/
 D
Z 1

�1
DMRF

	
t; �; �ff



Sff .�/ d� (9b)

where again DMRF is the vectorized dynamic version of DMRF, which is a function
similar to the DVRF in the sense that it also depends on deterministic parameters of
the problem as well as � ff .
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3.1 Numerical Estimation of the DVRF and the DMRF Using
Fast Monte Carlo Simulation

The numerical estimation of DVRF and DMRF involves a dynamic FEM-based
fast Monte Carlo simulation (DFEM-FMCS) whose idea is to consider the random
field f (x) in Eq. (2) as a random sinusoid (Papadopoulos et al. 2005; Papadopoulos
and Deodatis 2006) and plug its monochromatic power spectrum into Eqs. (9a) and
(9b), in order to compute the respective mean and variance response at various wave
numbers as a function of time t. The steps of the FEM-FMCS approach are the
following:

(i) Generate N (5–10) sample functions of the below random sinusoid with
standard deviation � ff and wave number � modeling the variation of the inverse
of the elastic modulus 1/E around its mean F0:

fj .x/ D p
2�ff cos

	
�x C 'j



(10)

where j D 1,2, : : : ,N and ' j varies randomly under uniform distribution in the
range [0,2�]. These samples are generated by dividing the range [0,2�] at 5–10
equally spaced distances and selecting the centres of these distances as values
of random phase angles 'j’s.

(ii) Using these N generated sample functions it is straightforward to compute their
respective dynamic mean and response variance, "Œu.t/
� and VarŒu.t/
� , by
solving the corresponding FEM system under the applied dynamic loading
using Eqs. (5), (7) and (8). Random matrix bK is constructed by assigning a
different value of E at each FE, using e.g. the mid-point method.

(iii) The value of the DMRF at wave number � can then be computed as follows:

DMRF
	
t; �; �ff


 D "Œu.t/
�
�2ff

(11a)

and likewise the value of the DVRF at wave number �

DVRF
	
t; �; �ff


 D VarŒu.t/
�
�2ff

(11b)

Both previous equations are direct consequences of the integral expressions
in Eqs. (9a) and (9b) in the case that the stochastic field becomes a random
sinusoid.

(iv) Get DMRF and DVRF as a function of both time t and wave number � by
repeating previous steps for various wave numbers and different time steps. The
entire procedure can be repeated for different values of the standard deviation
� ff of the random sinusoid.
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3.2 Bounds of the Mean and Variance of the Dynamic
Response

Upper bounds on the mean and variance of the dynamic response of the stochastic
system can be established directly from Eqs. (9a) and (9b), as follows:

" Œu.t/
 D
Z 1

�1
DMRF

	
t; �; �ff



Sff .�/ d� � DMRF

	
t; �max.t/; �ff



�2ff

(12a)

Var Œu.t/
 D
Z 1

�1
DVRF

	
t; �; �ff



Sff .�/ d� � DVRF

	
t; �max.t/; �ff



�2ff

(12b)

where �max(t) is the wave number at which DMRF and DVRF, corresponding to a
given time step t and value of � ff , reach their maximum value. For the minimum,
�max(t) is substituted with �min(t) and inequality signs switch direction. An envelope
of time evolving upper and lower bounds on the mean and variance of the dynamic
system response can be extracted from Eqs. (12a) and (12b). As in the case of linear
stochastic systems under static loads (Papadopoulos et al. 2005, 2006; Papadopoulos
and Deodatis 2006), this envelope is physically realizable since the form of the
stochastic field that produces it is the random sinusoid of Eq. (10) with � D �max.t/.

4 2D Formulation

In the case of a problem where the inverse elastic modulus is considered to vary
randomly over a 2D domain, the following equation is adopted:

1

E .x; y/
D F0 .1C f .x; y// ; (13)

where E is the elastic modulus, F0 is the mean value of the inverse of E, and f(x,y)
is now a two-dimensional, zero-mean homogeneous stochastic field modeling the
variation of 1/E around its mean value F0. Accordingly, the integral expressions for
the variance and mean response displacement u(t) become:

Var Œu.t/
 D
Z 1

�1

Z 1

�1
DVRF

	
t; �x; �y; �ff



Sff

	
�x; �y



d�xd�y (14a)

" Œu.t/
 D
Z 1

�1

Z 1

�1
DMRF

	
t; �x; �y; �ff



Sff

	
�x; �y



d�xd�y (14b)
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where DVRF(t,�x,�y,� ff ) and DMRF(t,�x,�y,� ff ) are in this case two-dimensional,
possessing the following bi-quadrant symmetries:

DMRF
	
�x; �y


 D DMRF
	��x;��y



(15)

DVRF
	
�x; �y


 D DVRF
	��x;��y



(16)

Sff (�x, �y) is the spectral density function of the stochastic field f(x,y) possessing
the same symmetries as DMRF and DVRF . The 1D random sinusoid in Eq. (10)
now becomes a 2D one with the following form:

fj .x/ D p
2�ff cos

	
�xx C �yy C 'j


 I j D 1; 2; : : : ; N: (17)

Upper bounds on the mean and variance of the response displacement for a given
time instance t can be established for the 2D case as follows:

Var Œu.t/
 � DVRF
�
t; �max

x ; �max
y ; �ff

�
�2ff (18a)

" Œu.t/
 � DMRF
�
t; �max

x ; �max
y ; �ff

�
�2ff (18b)

where (�max
x , �max

y ) is the wave number pair at which the DMRF or the DVRF take
their maximum value (for a given value of � ff and a given location (x,y)), and �2

ff is
the variance of the stochastic field f (x,y) modeling the inverse of the elastic modulus.
Again, for the minimum, �max

x,y (t) is substituted with �min
x,y (t) and inequality signs

switch direction. It should be emphasized that (�max
x , �max

y ) are not necessarily the
same for the DMRF and the DVRF.

5 Numerical Examples

Example 1 For the fixed-fixed frame shown in Fig. 1 with length and height equal to
L D 4 m, the inverse of the modulus of elasticity is assumed to vary randomly along
its length according to Eq. (2) with F0 D (1.35 � 108 KN/m)� 1 and I D 0.1 m4. The
total mass of the beam is assumed to be mtot D 6,000 kg, distributed evenly among
the finite element nodes of the model. For the analysis of the frame structure we used
60 beam elements, 20 for each column and the plateau, of equal length, resulting in
177 d.o.f.’s.

Two load cases are considered: LC1 consisting of a concentrated dynamic
periodic load P(t) D 100 sin(2t) at the right top corner of the frame (see Fig. 1)
and LC2 consisting of a dynamic load pn.t/ D �mn

RUg.t/ acting on each node n of
the beam with mn being the corresponding nodal mass and RUg.t/ the acceleration
time history of the 1940 El Centro earthquake. The stochastic field f(x) in Eq. (2)
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is considered to vary across the length of the two columns and the plateau of the
frame running continuously from the left fixed edge to the right. The spectral density
function (SDF) used for the modeling of the inverse of the elastic modulus stochastic
field is given by the following formula:

Sff .�/ D 1

4
�2b3�2e�bj�j (19)

with b D 1,2,10 being three different values of the correlation length parameter
examined.

For standard deviations � ff of the stochastic field f(x) higher than 0.2 a truncated
Gaussian and a lognormal pdf is used to model f (x). For this purpose, an underlying
Gaussian stochastic field denoted by g(x) is generated using the spectral represen-
tation method (Shinozuka and Deodatis 1991) and the power spectrum of Eq. (19).
The truncated Gaussian field fTG(x) is obtained by simply truncating g(x) in the
following way: � 0.9 � g(x) � 0.9, while the lognormal fL(x) is obtained from the
following transformation as a translation field (Grigoriu 1995):

fL.x/ D F�1L fG Œg.x/
g (20)

The SDF of the underlying Gaussian field in Eq. (20) and the corresponding
spectral densities of the truncated Gaussian and the Lognormal fields denoted
SfTGfTG .�/ and SfLfL .�/, respectively, are different from the one in Eq. (19) and
are computed from the following formula

Sfifi .�/ D 1

2�Lx

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

LxZ

0

fi .x/e
�i�xdx

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

I i D TG;L (21)

where Lx is the length of the sample functions of the non-Gaussian fields modeling
flexibility. As the sample functions of the non-Gaussian fields are non-ergodic, the
estimation of power spectra in Eq. (21) is performed in an ensemble average sense
(Grigoriu 1995).

Figure 2 presents 3D plots of DMRF(uA) and DVRF(uA) for the horizontal
displacement uA of point A of the frame as a function of time t and frequency
� for � ff D 0.2. In this figure it can be observed that DMRF(uA) remains almost
constant with respect to �, while evolving substantially as a function of t. On the
contrary DVRF(uA) demonstrates a substantial volatility with respect to both � and
t. Therefore, in contrast to DMRF(uA), DVRF(uA) accommodates the possibility of
considerable variation of the variability response for different statistical parameters
of the stochastic field. This is further demonstrated in Fig. 3 in which the upper
and lower bounds of the dynamic mean and variability response are depicted
containing minima and maxima respectively, in comparison to the estimated mean
and variability responses for case of a Gaussian stochastic field with the power
spectrum of Eq. (19) and � ff D 0.2. The aforementioned bounds are derived directly
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Fig. 2 3D plots of (a) DMRF and (b) DVRF of the horizontal displacement uA, as a function of
frequency � (rad/m) and time t(sec) for LC1 and � ff D 0.2

from Eq. (12) having previously computed DMRF(uA) and DVRF(uA) with the
computationally efficient DFEM-FMCS in Eq. (11), while in the case of the
Gaussian field with � ff D 0.2, the mean and variance were obtained with the integral
expression in Eq. (9). From this figure it can be seen that the upper mean dynamic
response and the one estimated for the Gaussian field, are almost identical, while
they differ significantly in the case of the response variability, reaching a maximum
difference of more than 70 % at t D 0.8 s. It should be pointed out here that bounds
of each response do not necessarily need to coincide in the frequency number that
they occur.
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Fig. 3 Upper and lower bounds on the (a) mean and (b) variance of the response displacement for
LC1 and � ff D 0.2

In order to demonstrate the validity of the proposed approach, the results obtained
from the DFEM-FMCS procedure and Eq. (9) were compared with Brute Force
Monte Carlo Simulation. In Fig. 4a–f the results of this comparison are presented for
the dynamic mean and response variability of uA (Fig. 1) using a Gaussian stochastic
field and � ff D 0.2 for three different values of correlation length parameter b. In this
manner the independence of DMRF and DVRF from the spectral density function
is also showcased. Figure 5 presents the same comparison but for a truncated
Gaussian field with � ff D 0.3912 while Fig. 6 examines a lognormal field case
with � ff D 0.399. From all these figures it can be observed that the results of
the DFEM-FMCS are in close agreement with the corresponding results of MCS.
The prediction of the mean value is almost identical for the two methods in all
cases considered, while the maximum error in the variance does not exceed 20 %
and is attributed to a slight dependence of the DVRF on the pdf of the random
field modeling 1/E(x). This error becomes negligible in the case of small standard
deviations of the order of � ff D 0.2.

Example 2 Consider now the shear wall in Fig. 7 with length and height equal
to L D 4 m, the inverse of the modulus of elasticity is assumed to vary randomly
within its surface according to Eq. (13) with F0 D (1.35 � 108KN/m)� 1, v D 0.2 and
t D 1.0 The total mass of the beam is assumed to be mtot D 4,000 kg, distributed
evenly among the finite element nodes of the model. The wall is discretized into a
total of 100 plain stress elements, 121 nodes and 242 d.o.f.’s. In this example the
2D version DFEM-FMCS procedure has been implemented, using Eq. (14) for the
estimation of the dynamic mean and variability.
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Fig. 4 Time histories of the (a), (c), (e) mean and (b), (d), (f) variance response displacement of
the frame structure for a Gaussian field with � ff D 0.2 for LC1 and for three different correlation
length parameter values bD 1,2 and 10.. Comparison of results obtained from Eqs. (9a and 9b)
and MCS
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Fig. 5 Time histories of the (a) mean and (b) variance response displacement of the frame
structure for a truncated Gaussian field with � ff D 0.391238 for LC1. Comparison of results
obtained from Eqs. (9a and 9b) and MCS

Fig. 6 Time histories of the (a) mean and (b) variance response displacement of the frame
structure for a lognormal field with � ff D 0.399398 for LC1. Comparison of results obtained from
Eqs. (9a and 9b) and MCS

The concentrated load is applied as shown in Fig. 3. For this case the following
2D spectrum is implemented:

Sf0f0 .�x; �x/ D �2f

4�
bxby exp

�

�1
4

�
b2x�

2
y C b2y�

2
y

��

(22)

with bx D by D 2.0.
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Fig. 7 Geometry, loading
and finite element mesh of the
shear wall

Fig. 8 Time histories of the (a) mean and (b) variance response displacement of the shear wall for
a Gaussian field with � ff D 0.1 for LC1. Comparison of results obtained from Eqs. (14a and 14b)
and MCS

In Fig. 8, charts depict the comparison for the dynamic mean and variability
response of the shear wall horizontal displacement at point A and LC1 for a
Gaussian stochastic field with � ff D 0.1. The prediction of Eq. (14) in this case
is very satisfactory with errors ranging up to 5–8 %. In Fig. 9 the upper bounds
of the mean and variance response displacement are depicted in comparison to the
corresponding responses for the case of a Gaussian field with � ff D 0.1. As expected
the accruing upper bounds vary considerably from the respective mean and variance
response obtained for � ff D 0.1.
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Fig. 9 Time histories of the (a) mean and (b) variance response displacement upper bounds of the
shear wall for a Gaussian field with � ff D 0.1 for LC1. Results obtained from Eqs. (18a and 18b)

6 Concluding Remarks

In the present work, Dynamic Variability Response Functions and Dynamic Mean
Response Functions are obtained for a statically indeterminate frame structure
and a shear wall with random material properties under dynamic excitation using
both beam and plain stress elements. The inverse of the modulus of elasticity was
considered as the uncertain system parameter.

The DVRF and DMRF provide with an insight of the dynamic system sensitivity
to the stochastic parameters and the mechanisms controlling the response mean and
variability and their evolution in time.
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Stochastic Models of Defects in Wind Turbine
Drivetrain Components

Hesam Mirzaei Rafsanjani and John Dalsgaard Sørensen

Abstract The drivetrain in a wind turbine nacelle typically consists of a variety of
heavily loaded components, like the main shaft, bearings, gearbox and generator.
The variations in environmental load challenge the performance of all the compo-
nents of the drivetrain. Failure of each of these components of the drivetrain will
lead to substantial economic losses such as cost of lost energy production, cost of
repairs, cost of crew and cost of transportation. For offshore wind turbines, the
marine environment affects the repair & maintenance process and in some case
because of the rush environment, the maintenance team cannot operate properly and
the wind turbine does not work for several days and consequently the cost of lost
energy increases drastically. In this paper is presented stochastic models for fatigue
failure based on test data and the accuracy of the models are compared.

Keywords Wind turbine • Reliability • Drivetrain • Defects • Stochastic model

1 Introduction

Reliability of wind turbine drivetrain components is very important for wind turbine
manufacturers and owners. Offshore wind turbines are large structures exposed to
wave excitations, highly dynamic wind loads influenced by the wind turbine control
system and wakes from other wind turbines. Therefore, most components in a wind
turbine experience highly dynamic and time-varying loads. These components may
fail due to wear or fatigue and this can lead to unplanned shut down and repairs.
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The drivetrain consists of a variety of heavily loaded components, such as the
main shaft, bearings, gearbox and generator. The variability of the loads challenges
the performance of all the components of drivetrain. The failure of each component
of the drivetrain will lead to economic losses such as cost of lost energy production,
cost of repairs, cost of crew and cost of transportation. The environmental exposure
affects the repair & maintenance of offshore wind turbine. Sometimes, because of
the harsh environment, the maintenance team cannot operate properly and therefore
the wind turbine cannot be accessed for several days. Consequently, the cost of lost
energy increases drastically.

Due to fluctuating loads, fatigue is one of the main failure modes in wind turbine
components. The current design of large wind turbines against fatigue is usually
based on the life design approach (Campbell 2008). In the safe life design, fatigue
testing is carried out on baseline materials to produce S-N curves. For many years
it has been assumed in designs that all loads and strengths are deterministic. The
strength of an element was determined in such a way that it exceeded the load
with a certain margin and accounted for by a safety factor defined as the ratio
between the strength and the load (Dong et al. 2013). Recently, safety factors are
changed to partial safety factors in new codes. Hence, characteristic values of the
uncertain loads and resistances are specified and partial safety factors are applied to
the loads and strengths in order to ensure that the structure is safe enough. Hence,
the uncertainties in the loads, strengths and the modeling can be accounted partially
for in such a semi-probabilistic safety format.

This paper focuses on probabilistic methods for assessment of the reliability
and stochastic modeling of the fatigue strength using structural reliability methods;
see Entezami et al. (2012) allowing a rational modeling of all uncertainties. An
important aspect in modeling fatigue failure of large cast steel components is to
take into account scale effects. Two approaches are considered in this paper for
stochastic modeling of the fatigue life including scale effects. One method is based
on the classical Weibull approach and the other on application of a LogNormal
distribution as done e.g. for the fatigue life of welded steel details.

2 Wind Turbine Drivetrain

Currently, most operating wind turbines use a modular configuration (Hau 2006).
Typically, all individual components of the drivetrain are mounted onto a bedplate.
The basic drivetrain components are the main bearing, shaft, gearbox, brakes,
high-speed shaft and the generator, see Hau (2006) and Lindley (1976). A typical
configuration of these components in the nacelle of a wind turbine is shown in Fig. 1.

Reliability of wind turbine gearboxes is studied in a number of research projects,
e.g. the GRC project at National Renewable Energy Laboratory (NREL), (Oyague
2009). This include as important areas research on fault diagnosis and condition
monitoring. Several methods have been considered, such as vibration and acoustic
emission (Soua et al. 2013) and Local mean decomposition (Liu et al. 2012).
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Fig. 1 Wind turbine drivetrain components (Oyague 2009)

Some studies on probabilistic modeling of failures in wind turbine drivetrain
components have been carried out (Dong et al. 2013) but without a detailed
stochastic modeling of the uncertainties related to the parameters in the limit state
equations modeling each failure mode.

As mentioned above, most of the studies concentrated on gearbox failures.
Moreover, in some studies failure of other parts like brake system (Entezami et al.
2012) is considered. By reviewing failure statistics of wind turbines, it is seen that
focus is on reliability of blades, foundation and electrical parts whereas reliability
of mechanical part such as bearing is only considered in few public studies.

Therefore, in this paper, the main bearing or main shaft are considered. Bearing
and shaft of wind turbines are those having the highest downtimes in case of failure,
see e.g. (Sheng and Veers 2011) and (Tavner et al. 2012). The current fatigue
design is based on the life design approach (Shirani and Härkegård 2011a). In the
safe life design S-N curves are based on tests as discussed above. However, the
fatigue strength is typically highly uncertain and statistical uncertainties due to a
limited number of tests can be important in modeling the fatigue strength. Moreover,
model uncertainties related to e.g. application of the Miner rule for fatigue damage
accumulation should be considered.

3 Fatigue Life Modeled by a LogNormal Distribution

The fatigue life can be modeled as the number of cycles to failure at a specified
stress level. As the applied stress level decreases, the number of cycles to failure
increases. The fatigue strength of metals is often assumed to follow the Basquin
equation (Campbell 2008):

�a D �f .2N /
� 1
m (1)
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where �a is the alternating stress amplitude, � f is the fatigue strength, 2 N is the
number of load reversals to failure, and �1/m is the fatigue strength exponent.
Equation (1) can also be written

N D 1

2

�
�a

�f

�m
(2)

In Eq. (2), �a is affected by geometrical size effects and can be estimated by the
following equation (Shirani and Härkegård 2011a)
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� 1
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(3)

where V0 is the reference volume and �a0 is the fatigue strength corresponding to
the volume V0. The stress exponent b� determines the effect of the specimen size
on the fatigue life. By substitution of Eq. (3) in Eq. (2), the following equation is
obtained:
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The relative component volume influences the size effect and therefore the
volume ratio is introduced by a scaling parameter sV :

SV D V

V0
(5)

Moreover, the bn in Eq. (4) is:

bn D b�

m
(6)

The Eq. (4) can be rewritten in logarithmic format as follows

logN D log
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�f

�m
S
1=bn
V

�

) logN Dm log �f �m log�a0C 1
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This equation is rewritten introducing an uncertainty term ":

logN D m log�f �m log�a0 C 1

bn
logSV � log.2/C " (7)

where " is assumed to be normally distributed with mean value D 0 and standard
deviation D �". " models the scatter in fatigue life and can be considered here
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to cover both physical and model uncertainties related to imperfect knowledge or
idealizations of the mathematical models used or uncertainty related to the choice
of probability distribution types for the stochastic variables. It is noted that the test
data considered below do not allow a bilinear S-N curve to be fitted.

The parameters in Eq. (7) can be estimated using available test data. In this
paper test data extracted from Shirani and Härkegård (2011b) are used to exemplify
the procedure for the stochastic modeling. Assuming that the Shirani data are
representative the results of the statistical analysis can also be used to assess the
reliability level for drivetrain components and to calibrate safety factors, see below.

In the following, the Maximum Likelihood Method is used for the statistical
analysis. The likelihood function as function of the statistical parameters � f , m,
and �" to be estimated is written as follows accounting both for tests results where
failure occurs and for test results where failure does not occur (run-outs):

L
	
�f ;m; �"
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nFY

iD1
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�

logni D m log�f �m log�a0;i C 1

bn
logSV C " � log 2
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bn
logSV C "�log 2

�

(8)

where ni is the number of stress cycles to failure or run-out (no failure) with
stress range equal to �a0,i in test number i. nF is the number of tests where failure
occurs, and nR is the number of tests where failure does not occur after ni stress
cycles (run-outs). n D nF C nR is the total number of tests. � f , m, and �" are
estimated solving the optimization problem max L(� f , m, �"). This can be done
using a standard nonlinear optimizer, e.g. the NLPQL algorithm, see Schittkowski
(1986).

Since the parameters � f , m and �" are estimated by the maximum-likelihood
technique, they become asymptotically (number of data should be larger than
25–30) normally distributed stochastic variables with expected values equal to
maximum-likelihood estimates and covariance matrix equal to, see Lindley (1976):

C�f ;m;�" D ��H�f;m;�"

��1 D
2

4
�2�f ��f ;m��f �m ��f ;�"��f ��"

��f ;m��f �m �m
2 �m;�"�m��"

��f ;�"��f ��" �m;�"�m��" �2�"

3

5 (9)

where H�f ;m;�" is the Hessian matrix with second-order derivatives of the log-
likelihood function. ��f , �m, and ��" denote the standard deviation of � f , m and
�" respectively and � indicates correlation coefficients.

Alternatively to the LogNormal model for the S-N curve a Weibull model can be
used, as described in the next section.
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4 Fatigue Life Modeled by a Weibull Distribution

The influence of scale effects on damage modeling and fatigue life can from a
theoretical basis be modeled by a Weibull model, see e.g. Madsen et al. (1986).
Such a model is considered in this section assuming that the fatigue life can be
modeled by a Weibull distribution. The distribution function for number of cycles
to failure, N given stress range �a0 is written:

FN .n/ D 1 � exp
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where bn is a shape parameter. The corresponding density function becomes
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By substitution Eq. (4) and (6) in Eq. (11), the density function is written
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The statistical parameters � f and m in Eq. (12) can be estimated by the Maximum
Likelihood Method with the log-likelihood function:
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where ni is the number of stress cycles to fail or run-out (no failure) with stress
range �a0,i in test number i. nF is the number of tests where failure occurs, and
nR is the number of tests where failure did not occur after ni stress cycles (run-
outs). n D nF C nR is the total number of tests. � f and m are estimated solving the
optimization problem max L(� f , m), as described above.
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5 Characteristic Values

In deterministic, code based design safety is introduced though application of
deterministic values in terms of characteristic values and partial safety factors to
obtain design values of both loads and strengths.

If statistical uncertainty is not taken into account then corresponding to a stress
range, �a0,c a characteristic value of the fatigue life, nc defined as a 5 % quantile can
be estimated directly from the distribution function of the fatigue life.

If statistical uncertainty is to be taken into account and the physical/model
uncertainties for the fatigue life is modeled by a Lognormal distribution then a
characteristic value for the fatigue life, nc corresponding to the stress range, �a0,c

defined as a 5 % quantile can be obtained from

P

�

lognc > m log�f �m log�a0;c C 1

bn
logSV C " � log 2



D 0:05 (14)

with a corresponding limit state equation written as

g
	
�f ;m; "; �"


 D m log�f �m log�a0;c C 1

bn
logSV C " � log 2 � lognc (15)

Here the stochastic variables are ", m, �" and � f and they are introduced to model
the physical/model and statistical uncertainties. For given �a0,c (Eq. (15)) can be
solved with respect to the characteristic fatigue life, nc using e.g. FORM (First Order
Reliability Methods), see Madsen et al. (1986).

Similarly if the fatigue life is modeled by a Weibull distribution and statistical
uncertainty is accounted for then a limit state equation can be applied:

g
	
�f ;m; "; �"


 D lognc C log 2 � 1

bn
log .SV /

Cm log .�a0;c/�m log
	
�f

 � log .�1n.0:95//1=bn�" (16)

In Eq. (16), ", �", m and � f model the physical/model and statistical uncertainties,
respectively. As mentioned before, these parameters can be obtained from the test
results.

6 Results

As mentioned above the data by Shirani and Härkegård (2011b) will be used to
illustrate the above statistical analysis and reliability assessment for wind turbine
components. The test data follows the specification listed in Table 1.



294 H. Mirzaei Rafsanjani and J.D. Sørensen

Table 1 The test plan (Shirani and Härkegård 2011b)

Material Load ratio Specimen Number of specimen Testing frequency

T95 0 Ø21 12 10
T95 �1 Ø21 12 10
T95 �1 Ø50 12 1
T150 �1 Ø21 18 10
T150 �1 120*140 9 40

Table 2 5 % quantile using LN distribution

Test ¢ f [MPA] m " ¢"

D21 T95 RD 0 443.51 12.107 �1.1896 0.3220
D21 T95 RD�1 1,022.58 8.8793 �1.3270 0.3171
D50 T95 RD�1 1,003.92 8.3760 �1.2605 0.1652
D21 T150 RD�1 792.87 9.5477 �1.1181 0.2261
120*140 T150 RD�1 405.60 14.47 �1.5295 0.3524

Table 3 5 % quantile using Weibull distribution

Test ¢ f [MPA] m " ¢"

D21 T95 RD 0 444.10 12.366 �1.579 0.3389
D21 T95 RD�1 974.68 9.1787 �1.4400 0.3528
D50 T95 RD�1 781.91 10.257 �1.6236 0.1657
D21 T150 RD�1 700.05 10.799 �1.5422 0.2571
120*140 T150 RD�1 412.59 14.39 �1.1564 0.3522

The material is EN-GJS-400-18-LT ductile cast iron with graphite nodules con-
tained within a ferritic matrix (Sheng and Veers 2011). The specimens are extracted
from two types of castings with 95 mm thickness, (95 mm � 200 mm � 750 mm)
cast blocks, and 150 mm thickness, (150 mm � 300 mm � 1,550 mm) cast blocks.
These blocks are illustrated in Table 1 by T95 and T150.

Two series of specimens were machined from T95 block, specimens with 21 mm
and specimens with 50 mm diameter, see Sheng and Veers (2011). Specimens with
21 mm diameter were tested at load ratios R D �1 and R D 0, but specimens with
50 mm diameter were just tested at load ratio R D �1. Furthermore, two series of
specimens were machined from T150 block, specimens with 21 mm and heavy
section specimens with 120 � 140 mm cross section. All specimens were tested at
load ratios R D �1 (Shirani and Härkegård 2011b).

The statistical analysis is performed following the methodology described in
Sects. 3 and 4 for estimation of the parameters in the LogNormal and Weibull
models. The results are shown in Tables 2 and 3 and 5 % quantiles are estimated
as described above. The results of each test category are shown in Figs. 2, 3, 4, 5
and 6 showing test results for broken/failed and run-out specimens. Furthermore, the
results of fit to LogNormal distribution and Weibull distribution are shown. Further,
the figures show two types of 5 % quantiles for the LogNormal distribution, namely
quantiles estimated when only failure data considered in calculating the 5 % quantile
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and the other quantile is estimated when the statistical uncertainties is taken into
account. Moreover, the 5 % quantile of Weibull distribution is estimated when the
statistical uncertainties are considered.

The results show that generally only a small difference is obtained between the
mean (best fit) curves using Weibull and LogNormal distributions. Larger differences
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are seen in some cases when the 5 % quantiles are considered. Generally, the
LogNormal distribution results in smaller number of cycles to failure than the
Weibull distribution. Further, it is also seen that as expected smaller fatigue lives
are obtained when statistical uncertainty is taken into account. Also it is seen in
most cases to be important to take into account in the statistical analysis that some
tests result in no-failure/run-out. As demonstrated in the examples this is easily
accounted for using the Maximum Likelihood Method.

7 Conclusion

In this paper stochastic models for modeling fatigue failure in wind turbine driv-
etrain components are considered. Firstly, two stochastic models for uncertainties
influencing fatigue failure are described based on a Weibull and a LogNormal
distribution function. These uncertainties include model uncertainties, statistical
uncertainties and size effects. It is described how the statistical parameters can
be estimated using the Maximum Likelihood Method and how 5 % quantiles can
be obtained taking into account statistical uncertainties though formulating limit
state equations and applying FORM (First Order Reliability Methods).

In an illustrative example, statistical procedure is applied to a set of data to
demonstrate the importance of taking into account both tests resulting in failure and
in no-failure/run-out using the Maximum Likelihood Method. The results indicate
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that generally only a small difference is obtained between the mean (best fit) curves
using Weibull and LogNormal distributions. When 5 % quantiles (characteristic
values) are compared larger differences are seen with the LogNormal model
resulting in smaller number of cycles to failure than the Weibull model. Further,
it is also seen that as expected smaller fatigue lives are obtained when statistical
uncertainty is taken into account.
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Stochastic FEM to Structural Vibration
with Parametric Uncertainty

K. Sepahvand and S. Marburg

Abstract In this paper, we employ non–sampling techniques based on the
generalized polynomial chaos (gPC) expansions to numerical simulation of damped
vibration problems including random material and damping parameters. A general
stochastic finite element method (SFEM) formulation is presented for damped
linear structural vibration. Uncertainty involved in stiffness and damping matrices
are represented by the gPC expansions. A hybrid SFEM and the gPC expansion
is implemented to generate samples of the parameters for the FEM deterministic
code from which the gPC expansions of natural frequencies and damping ratios are
calculated. For that, experimental modal data are used to evaluate the coefficient of
proportional uncertain damping matrix. The model is validated using experimental
modal data for samples of composite plates.

Keywords Random damping • Stochastic vibration • Stochastic FEM
• Polynomial chaos

1 Introduction

The behavior prediction of vibration problems with uncertain parameters is an
important topic in novel engineering research with various applications. The
deterministic numerical simulation of such problems leads to an approximate
and nominal solution of reality. In such conditions, the powerful tool stochastic
FEM (SFEM) is applied to achieve reliable results in numerical simulations.
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Various SFEM procedures have been developed in past decades (Vanmarcke and
Grigoriu 1983; Der Kiureghian and Ke 1988; Matthies et al. 1997; Ghanem
and Abras 2003; Keese 2003; Baroth et al. 2007), most based on the sampling
techniques as Monte Carlo (MC) methods (Papadrakakis and Papadopoulos 1996).
A comprehensive review on the SFEM has been reported in Stefanou (2009).
The application of the method to vibration problems has been reported in many
works, i.e. Sarkar and Ghanem (2002), Schuëller and Pradlwarter (2009), Adhikari
and Sarkar (2009), Sepahvand et al. (2012), and Soize (2013). In the most of
these works, the impact of parameter uncertainties on structural damping has been
ignored. In this paper, we investigate structural elastic parameter uncertainties and
their effects on the natural eigenfrequencies and damping ratio. To this end, a SFEM
formulation of structural free vibration is presented. It is assumed that the parameter
uncertainties will appear in stiffness matrix.

2 Stochastic FE Modeling of Structural Damped Vibration

As established in many studies the general time dependent FE model of structure
vibration can be presented as

��!2M C K.j!/
�

U D F (1)

where M and K are global mass and stiffness matrices, respectively, F and U are
nodal force and displacement vectors and j D sqrt.�1/. It is assumed that the
stiffness matrix can be decoupled as

K.j!/ D Ke C Kv.j!/ (2)

Elastic stiffness matrix Ke is assumed frequency independent, whereas Kv serves
as the stiffness part which contribute in damping stiffness. It is assumed that
uncertainties attribute only in Kv and Ke is considered deterministic. This is
particularly useful when one deals with sandwich composite structures where the
elastic faces can be modeled deterministically and the viscoelastic layer as uncertain
part. In such conditions, the stochastic FE from of Eq. (1) can be written as

��!2.�/M C Ke C Kv.j!; �/
�

U.�/ D F (3)

where � D f�1; �2; : : : ; �M g is the vector of independent random variables stand
for uncertainties in material parameters, e.g. elastic and damping parameters of
viscoelastic layer. The stochastic matrix Kv.j!; �/, eigenfrequencies ! and the
stochastic vector U.�/ can be approximated using gPC expansions as
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Kv.j!; �/ D
N1X

iD0
ki .j!/�i .�/ D kT .j!/� .�/ (4)

!2.�/ D
N2X

iD0
aj �j .�/ D aT� .�/ (5)

U.�/ D
N3X

kD0
uk�k.�/ D uT� .�/ (6)

In these expansions �i; �j and �k denote the orthogonal polynomials of the vector
of random variables. In a classical gPC problem, the deterministic coefficients ki
are calculated based on the information available on the statistical distribution of
uncertain parameters and the type of random variables (Sepahvand et al. 2010).
Substituting the gPC expansions in Eq. (3) leads to

�.�/ D ��aT� .�/M C Ke C kT .j!/� .�/
�

uT� .�/� F (7)

This represents the error of approximate gPC solution of stochastic FE model in
Eq. (1). These unknown deterministic coefficient vectors aT and uT are obtained by
using Galerkin method, i.e. projecting the error �.�/ onto space of basis functions
�p.�/. This yields to

h�.�/; �k.�/i ! 0 (8)

Once the stochastic basis functions,�.�/s, are chosen, the solution process reduces
to computation of the unknown coefficients by minimization of the error. Conse-
quently, any optimization process to minimize stochastic error must be performed
with respect to the random space discretization by the gPC, i.e.

˝��aT� .�/M C Ke C kT .j!/� .�/
�

uT� .�/; �k.�/
˛ � hF; �k.�/i D 0 (9)

There are two broad classes of methods that can be used to solve the above
stochastic model: (i) intrusive and (ii) non–intrusive methods. Implementation of
the intrusive method requires projection of the stochastic model into an equivalent
deterministic model by using stochastic Galerkin projection, whereas in the non–
intrusive method, the model is employed as third party solver or black–box, and
the solution is investigated at specific collocation points of the stochastic basis
function (Huang et al. 2007). In this work we employ the second method as
described in next section.
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3 Case Study

As a case study, the free vibration of orthotropic plates is investigated in this
section. The E–moduli E11;E22 and the shear modulus G12 are considered as
uncertain parameters. The uncertain damping parameter is represented by means
of proportional model as

C.�/ D ˛M C ˇK v.�/ (10)

The orthogonal transformation of the damping matrix with respect to normalized
eigenvectors f˚g for deterministic case is used to calculate the pre–defined con-
stants ˛ and ˇ, i.e.

f˚gT C f˚g D Œ˛ C ˇ!2i 
 (11)

As in most of the practical engineering vibration analysis, these constants are
estimated form measured modal data for limited modes assuming that would be
valid for the overall vibration modes of the plate. We used experimental modal
damping and frequencies of the first few modes to estimate the constants. From
Eq. (11) we can write

2 O�i O!i D ˛ C ˇ O!2i ; i D 1; 2; : : : ; m (12)

where O� and O! are measured damping and natural frequencies, respectively, and m
is the number of first few modes, see Fig. 1. As m > 2, a least–square minimization
is performed for evaluating the constants. The first order, 2–dimensional (2d)
gPC expansions are served to represent the uncertainty in material parameters, for
instance for G12

G12.�1; �2/ D NG12 C ı1�1 C ı2�2; �1; �2 2 NŒ0; 1
 (13)

In which NG is the mean value and ı1 D ı2 D 0:15 NG. Accordingly, the uncertain
eigenfrequency !i D 2�fi and damping ratio �i at i th–mode are approximated
using second order, 2d–gPC as

�i D !2i Œ1C j�i 
 D
2X

iD0
ai�i .�1; �2/

"

1C j

2X

iD0
bi�i .�1; �2/

#

(14)
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Fig. 1 Experimental FRF for 100 identical plate samples, the average FRF (bold line) is used to
estimate the constants in Eq. (10)

Table 1 The gPC coefficients of natural frequencies (Hz) and damping ratios (%) in Eq. (14)

Mode .a0; b0/ .a1; b1/ .a2; b2/ .a3; b3/ .a4; b4/ .a5; b5/

1 (660.8,1.78) (49.4,0.95) (49.4,0.95) (�2.2,0.10) (�2.2,0.10) (�4.3,0.11)
2 (1336.1,0.83) (101.4,1.42) (101.4,1.42) (�4.4,�2.35) (�4.4,�2.35) (�8.7,�2.70)
3 (1461.9,1.67) (110.40,2.11) (110.4, 2.11) (�4.9,0.20) (�4.9,0.20) (�9.6,0.21)
4 (1879.2,1.21) (138.30,2.64) (138.3,2.64) (�6.4,�9.91) (�6.4,�9.91) (�12.6,0.44)

In which ai and bi are deterministic unknown coefficients and �i.�1; �2/ are 2d
orthogonal Hermite polynomials, cf. Sepahvand et al. (2010). Non–intrusive SFEM
is employed to calculate these coefficients. To this end, nine samples of sparse points
are generated from roots of third order Hermite polynomials, i.e. .0;˙1:732/, and
deterministic FE model of the plate is solved on each sample point to estimate 2� 6
unknown coefficients. The simulated natural frequencies and damping ratios, then,
passed a nonlinear optimization process to evaluate the coefficients. The results are
shown in Table 1. To evaluate the validity of the results obtained from the proposed
method and to test the convergence property, the constructed probability density
function (PDF) of the uncertain frequencies and damping ratios are compared with
the constructed PDFs from the measured data for 100 samples. The results are
shown in Figs. 2 and 3. A good agreement is observed between the second order
gPC estimations (bold lines) and experimental results.
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Fig. 2 PDFs of the first four eigenfrequencies constructed from the second order gPC (bold lines)
in comparison with experimental results (dashed lines)

4 Conclusions

This paper presented application of stochastic FEM for structural damped vibration
problems in which material and damping properties exhibit random variation,
by using collocation points. The method appears to be efficient, requiring only
several runs to accurately compute the solution statistics in comparison with
Monte Carlo simulation which may require thousands of realizations. The paper
contribution focuses on the experimental validation of the results. As a numerical
example, the free vibration of damped orthotropic plate is investigated in which
random stiffness matrix is employed to model uncertain proportional damping. The
unknown deterministic coefficients of damping ratios and eigenfrequencies for the
first four modes have been calculated from nine collocation points. This strategy
helps us to use the available deterministic FEM code developed in any commercial
software.
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Fig. 3 PDF of the first four damping ratios represented by second order gPC (bold lines).
The dashed lines show the experimentally measured values for 100 samples

References

Adhikari S, Sarkar A (2009) Uncertainty in structural dynamics: experimental validation of a
wishart random matrix model. J Sound Vib 323(3–5):802–825

Baroth J, Bressolette Ph, Chauvière C, Fogli M (2007) An efficient {SFE} method using lagrange
polynomials: application to nonlinear mechanical problems with uncertain parameters. Comput
Methods Appl Mech Eng 196(45–48):4419–4429

Der Kiureghian A, Ke J-B (1988) The stochastic finite element method in structural reliability.
Probab Eng Mech 3(2):83–91

Ghanem R, Abras J (2003) A general purpose library for stochastic finite element computations. In:
Bathe KJ (ed) Computational fluid and solid mechanics 2003, pp 2278–2280. Elsevier Science
Ltd, Oxford

Huang S, Mahadevan S, Rebba R (2007) Collocation–based stochastic finite element analysis for
random field problems. Probab Eng Mech 22(2):194–205



306 K. Sepahvand and S. Marburg

Keese A (2003) Numerical solution of systems with stochastic uncertainties – a general purpose
framework for stochastic finite elements. PhD thesis, Fachbereich Mathematik and Informatik,
TU Braunschweig, Braunschweig

Matthies HG, Brenner CE, Bucher CG, Soares CG (1997) Uncertainties in probabilistic numerical
analysis of structures and solids-stochastic finite elements. Struct Saf 19(3):283–336

Papadrakakis M, Papadopoulos V (1996) Robust and efficient methods for stochastic finite
element analysis using Monte Carlo simulation. Comput Methods Appl Mech Eng 134
(3–4):325–340

Sarkar A, Ghanem R (2002) Mid–frequency structural dynamics with parameter uncertainty.
Comput Methods Appl Mech Eng 191(47–48):5499–5513

Schuëller GI, Pradlwarter HJ (2009) Uncertain linear systems in dynamics: retrospective and recent
developments by stochastic approaches. Eng Struct 31(11):2507–2517

Sepahvand K, Marburg S, Hardtke H-J (2010) Uncertainty quantification in stochastic systems
using polynomial chaos expansion. Int J Appl Mech 2(2):305–353

Sepahvand K, Marburg S, Hardtke H-J (2012) Stochastic free vibration of orthotropic plates using
generalized polynomial chaos expansion. J Sound Vib 331:167–179

Soize C (2013) Stochastic modeling of uncertainties in computational structural dynamics–recent
theoretical advances. J Sound Vib 332(10):2379–2395

Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods
Appl Mech Eng 198:1031–1051

Vanmarcke E, Grigoriu M (1983) Stochastic finite element analysis of simple beams. J Eng Mech
109(5):1203–214


	Preface
	Contents
	Part I Damage and Fracture
	Fracture Simulations of Concrete Using Discrete Meso-level Model with Random Fluctuations of Material Parameters
	1 Introduction
	2 Model Description
	2.1 Deterministic Model
	2.2 Stochastic Extension of the Model

	3 Experimental Series and Identification of Model Parameters
	3.1 Identification of Deterministic Parameters
	3.2 Identification of Stochastic Parameters

	4 Deterministic Modeling
	5 Effects of Spatial Randomness
	6 Analysis of Energy Dissipation
	7 Conclusions
	References

	Sequentially Linear Analysis of Structures with Stochastic Material Properties
	1 Introduction
	2 Sequentially Linear Analysis (SLA)
	2.1 General Procedure
	2.2 Saw-Tooth Model

	3 Representation of Uncertain Material Properties
	3.1 Non-Gaussian Translation Fields
	3.2 The Spectral Representation Method

	4 Stochastic Finite Element Analysis
	5 Numerical Example
	6 Conclusions
	References


	Part II Homogenization
	A Coupling Method for the Homogenization of Stochastic Structural Models
	1 Introduction
	2 Description of the Mono-models
	2.1 Stochastic Solid Model
	2.2 Deterministic Beam Model

	3 Coupling Method in a Stochastic Framework
	3.1 Arlequin Formulation
	3.2 Finite Element Discretization

	4 Homogenization of a Stochastic Solid Model into a Beam Model
	5 Conclusion
	References

	Adaptive Strategy for Stochastic Homogenization and Multiscale Stochastic Stress Analysis
	1 Introduction
	2 Methodology
	2.1 Homogenization Method
	2.2 Monte Carlo Simulation for Multiscale Stochastic Analysis
	2.3 Multiscale Stochastic Analysis with a Function Approximation Method
	2.3.1 Perturbation-Based Multiscale Stochastic Analysis
	2.3.2 Polynomial Approximation Approach
	2.3.3 Piecewise Linear Approximation Approach


	3 Adaptive Strategies for Approximation-Based Multiscale Stochastic Analysis
	3.1 Polynomial-Based Approximate Stochastic Homogenization with Adaptive Weight
	3.2 Adaptive Strategy for the Perturbation-Based Multiscale Stochastic Analysis

	4 Numerical Examples
	4.1 Problem Settings
	4.2 Stochastic Homogenization of Particle-Reinforced Composite Material with the Polynomial Approximation
	4.3 Multiscale Stochastic Stress Analysis of Particle-Reinforced Composite Material with the Piecewise Linear Approximation

	5 Conclusion
	References

	Strength Properties of Porous Materials Influenced by Shape and Arrangement of Pores: A DLO Investigation Towards Material Design
	1 Introduction
	2 Methodology
	2.1 Probabilistic Formulation

	3 Results and Discussion
	3.1 Circular Pores: Variation of Size
	3.2 Elliptical Pores: Variation of Volume Fraction
	3.3 Elliptical Pores: Variation of Size

	4 Conclusions and Outlook
	References

	Homogenization of Random Heterogeneous Media with Inclusions of Arbitrary Shape
	1 Introduction
	2 Modeling Inclusions of Arbitrary Shape with XFEM
	2.1 Problem Formulation
	2.2 XFEM Discrete System
	2.3 Enrichment Function
	2.4 Convergence Study of XFEM Solution for Single Inclusion

	3 Homogenization
	3.1 Generation of Random Microstructures
	3.2 Homogenization in the Framework of MCS

	4 Numerical Examples
	5 Conclusions
	References


	Part III Inverse Problems–Identification
	Using Experimentally Determined Resonant Behaviour to Estimate the Design Parameter Variability of Thermoplastic Honeycomb Sandwich Structures
	1 Introduction
	2 Uncertainty Quantification
	3 Thermoplastic Honeycomb Sandwich Samples
	4 Experimental Modal Analysis
	5 Numerical Modal Analysis and Model Updating
	6 Random Field Modelling of Panel Parameter Variability
	7 General Conclusions
	References

	Identification of a Mesoscale Model with Multiscale Experimental Observations
	1 Introduction
	2 Multiscale Experimental Configuration
	3 Multiscale Statistical Inverse Problem
	4 Validation of the Method in 2D Plane Stresses
	4.1 Prior Stochastic Model of the Apparent Elasticity Random Field in 2D Plane Stresses
	4.2 Construction of a Simulated ``Experimental'' Database
	4.3 Multi-objective Optimization Problem
	4.4 Numerical Results and Validation

	5 Conclusions
	References


	Part IV Multiscale Stochastic Mechanics
	Stochastic Multiscale Coupling of Inelastic Processesin Solid Mechanics
	1 Introduction
	2 Meso-scale Model of Material Heterogeneities
	2.1 Mechanical Meso-Scale Model
	2.1.1 Structured Mesh and Element Kinematics Enhancements
	2.1.2 Operator Split Solution Procedure

	2.2 Probabilistic Aspects of Heterogenous Materials

	3 Simultaneous Approach to Multi-scale Analysis
	3.1 Mechanical Two-Scale Coupling
	3.2 Probabilistic Scale Coupling
	3.3 Computational Coupling

	4 Sequential Approach to Multi-scale Analysis
	4.1 Macro-scale Characterisation of Heterogeneous Materials
	4.2 Macro-scale Properties Identification
	4.3 Size Effect Representation

	5 Concluding Remarks
	References

	A Note on Scale-Coupling Mechanics
	1 Introduction
	2 Scale Coupling or Decoupling
	2.1 Classical Modeling Methodologies
	2.2 Multiscale Methodology

	3 A Scale-Coupling Mechanics Theory
	3.1 Existing Methods to Address Scale Coupling Effect
	3.2 Scale Coupling Mechanics Formulation
	3.2.1 Derivation of the Non-local Constitutive Law
	3.2.2 Representative Volume Element
	3.2.3 Derivation of Strain Gradient Formulation


	4 Conclusion
	References

	Statistical Volume Elements for Metal Foams
	1 Introduction
	2 Microstructure
	2.1 CT Analysis
	2.2 Microstructure Generation

	3 Determination of Linear Elastic Properties
	3.1 Stiffness Tensor
	3.2 Material Symmetry
	3.3 Partial Volume Averaging
	3.4 Two Section Model
	3.5 Variable Strut Thickness

	4 Statistical Evaluation of Material Properties
	4.1 Determination of the Distribution Function
	4.2 Determination of the Correlation Functions

	5 Validation of the Implemented Model
	5.1 Comparison with Finite Element Method
	5.2 Comparison with Experiments

	6 Conclusions
	References

	Stochastic Characterisation of the In-Plane Tow Centroid in Textile Composites to Quantify the Multi-scale Variation in Geometry
	1 Introduction
	2 Material
	3 Image Processing and Analysis
	4 Statistical Characterisation of the In-Plane Centroid
	4.1 Analysis of the In-Plane Deviations
	4.2 Standard Deviation
	4.3 Correlation Information

	5 Towards Virtual Modelling of Realistic Multiple Unit Cell Structures
	6 Conclusions
	References

	A Variability Response-Based Adaptive SSFEM
	1 Introduction
	2 Variability Response Function
	2.1 Fast Monte Carlo Simulation

	3 Karhunen-Loève Series Representation
	4 Spectral Stochastic Finite Element Method
	5 Adaptive SSFEM based on VRF
	6 Numerical Example
	7 Conclusions
	References

	Monte Carlo Simulation vs. Polynomial Chaos in Structural Analysis: A Numerical Performance Study
	1 Monte Carlo Simulation in High Performance Computing Environments
	1.1 The MC-PCG-Skyline Method
	1.2 Optimizing the Solution with Multiple Right-Hand Sides

	2 SSFEM in High Performance Computing Environment
	2.1  Solution of the Augmented Systems
	2.2 A Full Block Preconditioning Scheme

	3 Numerical Test
	3.1 Solver Assessment Procedure
	3.2 Computation of the Second Moments of the Response Field
	3.3 Performance of the Proposed Solution Procedures

	4 Conclusions
	References

	Effects of POD-Based Components of Turbulent Wind on the Aeroelastic Stability of Long Span Bridges
	1 Introduction
	2 Forced Oscillations Near the Critical Conditions
	3 Modeling of the Wind Field
	4 Simplified Flutter Mode Shape
	5 Example
	6 Concluding Remarks
	References


	Part V Stochastic Dynamics
	PDEM-Based Response Analysis of Nonlinear Systems with Double Uncertainties
	1 Introduction
	2 Probability Density Evolution Method (PDEM)
	3 FPK-Like Equation and Its Dimension Reduction
	4 Numerical Examples
	5 Concluding Remarks
	References

	The Probabilistic Solutions of the Cantilever Excited by Lateral and Axial Excitations Being Gaussian White Noise
	1 Introduction
	2 Dynamical System of the Cantilever Excited by Correlated External and Parametric Gaussian White Noises
	3 Dimension Reduction with State-Space-Split Method
	4 Numerical Analysis
	4.1 Case 1. SDOF System
	4.2 Case 2. 16-DOF System

	5 Conclusions
	References

	Dynamic Response Variability of General FE-Systems
	1 Introduction
	2 Time-History Analysis of Stochastic Finite Element Systems
	3 Analysis of Mean and Variance of Dynamic System Response Using DMRF and DVRF
	3.1 Numerical Estimation of the DVRF and the DMRF Using Fast Monte Carlo Simulation
	3.2 Bounds of the Mean and Variance of the Dynamic Response

	4 2D Formulation
	5 Numerical Examples
	6 Concluding Remarks
	References

	Stochastic Models of Defects in Wind Turbine Drivetrain Components
	1 Introduction
	2 Wind Turbine Drivetrain
	3 Fatigue Life Modeled by a LogNormal Distribution
	4 Fatigue Life Modeled by a Weibull Distribution
	5 Characteristic Values
	6 Results
	7 Conclusion
	References

	Stochastic FEM to Structural Vibration with Parametric Uncertainty
	1 Introduction
	2 Stochastic FE Modeling of Structural Damped Vibration
	3 Case Study
	4 Conclusions
	References



