
Chapter 1

Remote Sensing of Coastal Ecosystems

and Environments

Victor V. Klemas

Abstract Advances in sensor design and data analysis techniques are making

remote sensing systems suitable for monitoring coastal ecosystems and their

changes. Hyperspectral imagers, LiDAR and radar systems are available for map-

ping coastal marshes, submerged aquatic vegetation, coral reefs, beach profiles,

algal blooms, and concentrations of suspended particles and dissolved substances

in coastal waters. Since coastal ecosystems have high spatial complexity and

temporal variability, they benefit from new satellites, carrying sensors with fine

spatial (0.4–4 m) or spectral (200 narrow bands) resolution. Imaging radars are

sensitive to soil moisture and inundation and can detect hydrologic features beneath

the vegetation canopy. Multi-sensor and multi-seasonal data fusion techniques

are significantly improving coastal land cover mapping accuracy and efficiency.

Using time-series of images enables scientists to study coastal ecosystems and to

determine long- term trends and short- term changes.

1.1 Introduction

Coastal ecosystems, including marshes, mangroves, seagrasses and coral reefs, are

highly productive and act as critical habitats for a wide variety of plants, fish,

shellfish, and other wildlife. For instance, coastal wetlands provide flood protection,

protection from storm and wave damage, water quality improvement through

filtering of agricultural and industrial waste, and recharge of aquifers (Morris

et al. 2002; Odum 1993). Since more than half of the U.S. population lives in the

coastal zone, coastal ecosystems have been exposed to a wide range of stress-

inducing alterations, including dredge and fill operations, hydrologic modifications,
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pollutant run-off, eutrophication, impoundments and fragmentation by roads and

ditches (Waycott et al. 2009). Furthermore, with events such as the hurricanes of

2004, 2005 and 2012 annual losses to coastal communities can total billions of

dollars. Environmental impacts from coastal storms include beach erosion, wetland

destruction, excessive nutrient loading, algal blooms, hypoxia and anoxia, fish kills,

releases of pollutants, spread of pathogens, and bleaching of coral reefs.

Over the long term, coastal communities are also facing a rising sea level. The

substantial sea level rise and more frequent storms predicted for the next 50–

100 years will affect coastal towns and roads, coastal economic development,

beach erosion control strategies, salinity of estuaries and aquifers, coastal drainage

and sewage systems, and coastal wetlands and coral reefs (Gesch 2009; IPCC 2007;

NOAA 1999). Coastal areas such as barrier islands, beaches, and wetlands are

especially sensitive to sea-level changes. A major hurricane can devastate a wetland

(Klemas 2009). Rising seas will intensify coastal flooding and increase the erosion

of beaches, bluffs and wetlands, as well as threaten jetties, piers, seawalls, harbors,

and waterfront property. Along barrier islands, the erosion of beachfront property

by flooding water will be severe, leading to greater probability of overwash during

storm surges (NOAA 1999).

Since coastal ecosystems have high spatial complexity and temporal variability,

they require high spatial, spectral and temporal resolutions. Recent advances in

sensor design and data analysis techniques are making remote sensing systems

practical and cost-effective for monitoring natural and man-made changes impacting

coastal ecosystems. High resolution multispectral and hyperspectral imagers, LiDAR

and radar systems are available for monitoring changes in coastal marshes, sub-

merged aquatic vegetation, coral reefs, beach profiles, algal blooms, and concentra-

tions of suspended particles and dissolved substances in coastal waters. Some of the

ecosystem health indicators that can be mapped with new high-resolution remote

sensors include natural vegetation cover, wetland loss and fragmentation, wetland

biomass change, percent of impervious watershed area, buffer degradation, changes

in hydrology, water turbidity, chlorophyll concentration, eutrophication level, salin-

ity, etc. (Lathrop et al. 2000; Martin 2004; Wang 2010).

With the rapid development of new remote sensors, data bases and image

analysis techniques, potential users need guidance in choosing remote sensors

and data analysis methods that are most appropriate for each specific coastal

application (Yang 2009). The objective of this paper is to review those remote

sensing techniques that are cost-effective and practical for shoreline delineation,

wetland mapping and other coastal applications.

1.2 Wetland Mapping

For more than three decades remote sensing techniques have been used by

researchers and government agencies to map and monitor wetlands (Dahl 2006;

Tiner 1996). Traditionally, in addition to airborne sensors, the Landsat Thematic

Mapper (TM) and the French SPOT satellite have been reliable data sources for
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wetland and land cover mapping (Klemas 2011). Their 30 m and 10–20 m respec-

tive spatial resolutions and spectral bands have proven cost-effective for mapping

land cover and changes in large coastal watersheds (Harvey and Hill 2001;

Houhoulis and Michener 2000; Jensen 2007; Lunetta and Balogh 1999). Landsat

TM and ETM+ imagery have also been used to study water turbidity and depth in

marshes as well as the seasonal dynamics of inundation, turbidity, and vegetation

cover (Bustamante et al. 2009; Ward et al. 2012).

More recently other medium spatial resolution satellite sensors, such as MODIS

on NASA’s Terra and Aqua satellites, have been used to map wetlands and study

their interaction with storm surges. This is illustrated in Fig. 1.1, which shows an

image of the Texas coast captured by MODIS on NASA’s Terra satellite 13 days

after Hurricane Ike made landfall on September 13, 2008. The storm’s surge

covered hundreds of kilometers of the Gulf Coast because Ike was a large storm,

with tropical-storm-strength winds stretching more than 400 km from the center of

the storm. Most of the shoreline in this region is coastal wetland. One can clearly

distinguish the red-brown areas in the image which are the result of the massive

storm surge that Ike had pushed far inland over Texas and Louisiana, causing a

major marsh dieback. The salty water burned the plants, leaving them wilted and

brown. The brown line corresponds with the location and extent of the wetlands.

North of the brown line, the vegetation gradually transitions to pale green farmland

Fig. 1.1 The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra

satellite captured this image on September 26, 2008, 13 days after Hurricane Ike came ashore.

The brown areas in the image are the result of a massive storm surge that Ike pushed far inland over

Texas and Louisiana causing a major marsh dieback (Color figure online) (Credits: NASA/GSFC)
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and dark green natural vegetation untouched by the storm’s surge. The powerful tug

of water returning to the Gulf also stripped marsh vegetation and soil off the land.

Therefore, some of the brown seen in the wetlands may be deposited sediment.

Plumes of brown water are visible as sediment-laden water drains from rivers and

the coast in general. The muddy water slowly diffuses, turning pale green, green,

and finally blue as it blends with clearer Gulf water (NASA/GSFC 2010; Ramsey

and Rangoonwala 2005).

Many coastal ecosystems are patchy and exhibit considerable variations in their

extent, spatial complexity, and temporal variability (Dahl 2006). Protecting them

requires the ability to monitor their biophysical features and controlling processes

at high spatial and temporal resolutions, such as that provided by aircraft and high

spatial resolution satellite sensors (Adam et al. 2010; Klemas 2011). More recently,

the availability of high spatial and spectral resolution satellite data has significantly

improved the capacity for mapping salt marshes and other coastal ecosystems

(Jensen et al. 2007; Laba et al. 2008; Ozesmi and Bauer 2002; Wang et al. 2010).

High resolution imagery (0.4–4 m) can now be obtained from satellites, such as

IKONOS and QuickBird. Major plant species within a complex, heterogeneous

tidal marsh have been classified using multitemporal high-resolution QuickBird

images, field reflectance spectra and LiDAR height information. Phragmites, Typha
spp. and S. patens were spectrally distinguishable at particular times of the year,

likely due to differences in biomass and pigments and the rate at which change

occurred throughout the growing season. For instance, classification accuracies for

Phragmites were high due to the uniquely high near-infrared reflectance and height
of this plant in the early fall (Ghioca-Robrecht et al. 2008; Gilmore et al. 2010).

High resolution imagery is more sensitive to within- class spectral variance,

making separation of spectrally mixed land cover types more difficult than when

using medium resolution imagery. Therefore, pixel-based techniques are some-

times replaced by object-based methods, which incorporate spatial neighborhood

properties, by segmenting/partitioning the image into a series of closed objects

which coincide with the actual spatial pattern, and then proceed to classify the

image. “Region growing” is among the most commonly used segmentation

methods. This procedure starts with the generation of seed points over the whole

scene, followed by grouping neighboring pixels into an object under a specific

homogeneity criterion. Thus the object keeps growing until its spectral closeness

metric exceeds a predefined break-off value (Kelly and Tuxen 2009; Shan and

Hussain 2010; Wang et al. 2004).

Small wetland sites are often mapped and studied using airborne sensors (Jensen

2007; Klemas 2011). Airborne georeferenced digital cameras, providing color and

color infrared digital imagery are particularly suitable for accurate wetland map-

ping and interpreting satellite data. Most digital cameras are capable of recording

reflected visible to near-infrared light. A filter is placed over the lens that transmits

only selected portions of the wavelength spectrum. For a single camera operation, a

filter is chosen that generates natural color (blue-green-red wavelengths) or color-

infrared (green-red-near IR wavelengths) imagery. For multiple camera operation,

filters that transmit narrower bands are chosen (Ellis and Dodd 2000).
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Digital camera imagery can be integrated with GPS position information and

used as layers in a GIS for a wide range of modeling applications (Lyon and

McCarthy 1995). Small aircraft flown at low altitudes (e.g. 200–500 m) can also

be used to guide field data collection (McCoy 2005). However, cost becomes

excessive if the study site is larger than a few hundred square kilometers, and in

that case, medium resolution multispectral sensors, such as Landsat TM (30 m) and

SPOT (20 m), become more cost-effective (Klemas 2011).

1.3 Hyperspectral Remote Sensing of Wetlands

Airborne hyperspectral imagers, such as the Advanced Visible Infrared Imaging

Spectrometer (AVIRIS) and the Compact Airborne Spectrographic Imager (CASI)

have been used for mapping coastal wetlands and shallow water substrate (Fearns

et al. 2011; Lesser and Mobley 2007; Li et al. 2005; Rosso et al. 2005; Ozesmi and

Bauer 2002; Schmidt and Skidmore 2003; Thomson et al. 1998). Hyperspectral

imagers may contain hundreds of narrow spectral bands located in the visible, near-

infrared, mid-infrared, and sometimes thermal portions of the EM spectrum (Jensen

et al. 2007).

The advantages and problems associated with hyperspectral mapping have been

clearly demonstrated by Hirano et al. (2003) who used AVIRIS hyperspectral data to

map vegetation for a portion of Everglades National Park in Florida. The AVIRIS

provides 224 spectral bands from 0.4 to 2.45 μm, each with 0.01 μm bandwidth, 20 m

spatial resolution, and a swath width of 10.5 km. Hirano et al. compared the

geographic locations of spectrally pure pixels in the AVIRIS image with dominant

vegetation polygons of the Everglades Vegetation Database and identified spectrally

pure pixels as ten different vegetation classes, plus water and mud. An adequate

number of pure pixels was identified to permit the selection of training samples used

in the automated classification procedure. The spectral signatures from the training

samples were then matched to the spectral signatures of each individual pixel. Image

classification was undertaken using the ENVI spectral angle mapper (SAM) classifier

in conjunction with the spectral library created for the Everglades study area.

The SAM classifier examines the digital numbers (DNs) of all bands from each

pixel in the AVIRIS data set to determine similarity between the angular direction of

the spectral signature (i.e. color) of the image pixel and that of a specific class in

the spectral library. A coincident or small spectral angle between the vector for the

unknown pixel and that for a vegetation class training sample indicates that the image

pixel likely belongs to that vegetation class. In the case of spectrally mixed pixels,

the relative probability of membership (based on the spectral angle) to all vegetation

classes is calculated. Mixed pixels are then assigned to the class of the greatest

probability of membership (Hirano et al. 2003).

The hyperspectral data proved effective in discriminating spectral differences

among major Everglades plants such as red, black and white mangrove communities

and enabled the detection of exotic invasive species (Hirano et al. 2003). The overall

classification accuracy for all vegetation pixels was 65.7 %, with different mangrove
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tree species ranging from 73.5 to 95.7 % correct. Limited spatial resolution was a

problem, resulting in too many mixed pixels. Another problem was the complexity of

image-processing procedures that are required before the hyperspectral data can be

used for automated classification of wetland vegetation. The tremendous volume of

hyperspectral image data necessitated the use of specific software packages, large

data storage, and extended processing time (Hirano et al. 2003). A detailed accuracy

assessment of airborne hyperspectral data for mapping plant species in freshwater

coastal wetlands has been performed by Lopez et al. (2004).

A number of advanced new techniques have been developed for mapping

wetlands and even identifying wetland types and plant species (Schmidt

et al. 2004; Jensen et al. 2007; Klemas 2011; Yang et al. 2009). For instance,

using LiDAR, hyperspectral and radar imagery, and narrow-band vegetation

indices, researchers have been able not only discriminate some wetland species,

but also make progress on estimating biochemical and biophysical parameters

of wetland vegetation, such as water content, biomass and leaf area index

(Adam et al. 2010; Artigas and Yang 2006; Filippi and Jensen 2006; Gilmore

et al. 2010; Ozesmi and Bauer 2002; Simard et al. 2010; Wang 2010). The

integration of hyperspectral imagery and LiDAR-derived elevation has also signif-

icantly improved the accuracy of mapping salt marsh vegetation. The hyperspectral

images help distinguish high marsh from other salt marsh communities due to its

high reflectance in the near-infrared region of the spectrum, and the LiDAR data

help separate invasive Phragmites from low marsh plants (Yang and Artigas 2010).

Hyperspectral imaging systems are now available not only for airborne applica-

tions, but also in space, such as the satellite-borne Hyperion system, which can detect

fine differences in spectral reflectance, assisting in species discrimination on a global

scale (Christian and Krishnayya 2009; Pengra et al. 2007). The Hyperion sensor

provides imagery with 220 spectral bands at a spatial resolution of 30 m. Although

there have been few studies using satellite-based hyperspectral remote sensing to

detect and map coastal vegetation species, results so far have shown that discrimi-

nation between multiple species is possible (Blasco et al. 2005; Heumann 2011).

1.4 Wetland Applications of Synthetic Aperture

Radar (SAR)

Imaging radars provide information that is fundamentally different from sensors

that operate in the visible and infrared portions of the electromagnetic spectrum.

This is primarily due to the much longer wavelengths used by SAR sensors and the

fact that they send out and receive their own energy (i.e., active sensors). One of the
most common types of imaging radar is Synthetic Aperture Radar (SAR). SAR

technology provides the increased spatial resolution that is necessary in regional

wetland mapping and SAR data have been used extensively for this purpose (Lang

and McCarty 2008; Novo et al. 2002).
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When mapping and monitoring wetland ecosystems, imaging radars have some

advantages over sensors that operate in the visible and infrared portions of the

electromagnetic spectrum. Microwave energy is sensitive to variations in soil

moisture and inundation, and is only partially attenuated by vegetation canopies,

especially in areas of lower biomass (Baghdadi et al. 2001; Kasischke et al. 1997a,

b; Lang and Kasischke 2008; Rosenqvist et al. 2007; Townsend 2000, 2002;

Townsend and Walsh 1998) or when using data collected at longer wavelengths

(Hess et al. 1990; Martinez and Le Toan 2007).

The sensitivity of microwave energy to water and its ability to penetrate vege-

tative canopies, make SAR ideal for the detection of hydrologic features below the

vegetation (Kasischke et al. 1997a; Kasischke and Bourgeau-Chavez 1997; Phinn

et al. 1999; Rao et al. 1999; Wilson and Rashid 2005). The presence of standing

water interacts with the radar signal differently depending on the dominant vege-

tation type/structure (Hess et al. 1995) as well as the biomass and condition of

vegetation (Costa and Telmer 2007; Töyrä et al. 2002). When exposed to open

water without vegetation, specular reflection occurs and a dark signal (weak or no

return) is observed (Dwivedi et al. 1999). The radar signal is often reduced in

wetlands dominated by lower biomass herbaceous vegetation when a layer of water

is present due largely to specular reflectance (Kasischke et al. 1997a). Conversely,

the radar signal is often increased in forested wetlands when standing water is

present due to the double-bounce effect (Harris and Digby-Arbus 1986; Dwivedi

et al. 1999). This occurs in flooded forests when the radar pulse is reflected strongly

by the water surface away from the sensor (specular reflectance) but is then

redirected back towards the sensor by a second reflection from a nearby tree

trunk. The use of small incidence angles (closer to nadir) enhances the ability to

map hydrology beneath the forest canopy due to increased penetration of the

canopy (Bourgeau-Chavez et al. 2001; Hess et al. 1990; Lang and McCarty 2008;

Töyrä et al. 2001).

1.5 Wetland Change Detection

Many coastal wetlands, such as the tidal salt marshes along the Louisiana coast, are

generally within fractions of a meter of sea level and will be lost, especially if the

impact of sea level rise is amplified by coastal storms. Man-made modifications of

wetland hydrology and extensive urban development will further limit the ability of

wetlands to survive sea level rise. To identify long-term trends and short term

variations, such as the impact of rising sea levels and storm surges on wetlands, one

needs to analyze time-series of remotely sensed imagery. High temporal resolution,

precise spectral bandwidths, and accurate georeferencing procedures are factors

that contribute to the frequent use of satellite image data for change detection

analysis (Baker et al. 2007; Coppin et al. 2004; Shalabi and Tateishi 2007). A

good example is the study of the onset and progression of marsh dieback performed

by Ramsey and Rangoonwala (2010).
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The acquisition and analysis of time-series of multi-spectral imagery is a chal-

lenging task. The imagery must be acquired under similar environmental conditions

(e.g. same time of year, sun angle, etc.) and in the same or similar spectral bands.

There will be changes in both, time and spectral content. One way to approach this

problem is to reduce the spectral information to a single index, reducing the

multispectral imagery into one single field of the index for each time step. In this

way the problem is simplified to the analysis of a time-series of a single variable,

one for each pixel of the images.

The most common index used is the Normalized Difference Vegetation Index

(NDVI), which is expressed as the difference between the red and near infrared

(NIR) reflectances divided by their sum (Jensen 2007). These two spectral bands

represent the most detectable spectral characteristic of green plants. This is because

the red (and blue) radiation is absorbed by the chlorophyll in the surface layers of

the plant (Palisade parenchyma) and the NIR is reflected from the inner leaf cell

structure (Spongy mesophyll) as it penetrates several leaf layers in a canopy. Thus

the NDVI can be related to plant biomass or stress, since the NIR reflectance

depends on the abundance of plant tissue, whereas the red reflectance indicates

the surface condition of the plant. It has been shown by researchers that time-series

remote sensing data can be used effectively to identify long term trends and subtle

changes of NDVI by means of Principal Component Analysis (Jensen 2007; Young

and Wang 2001; Yuan et al. 1998).

The pre-processing of multi-date sensor imagery when absolute comparisons

between different dates are to be carried out, is much more demanding than the

single-date case. It requires a sequence of operations, including calibration to

radiance or at-satellite reflectance, atmospheric correction, image registration,

geometric correction, mosaicking, sub-setting, and masking out clouds and irrele-

vant features (Coppin et al. 2004; Lunetta and Elvidge 1998).

Detecting the actual changes between two registered and radiometrically

corrected images from different dates can be accomplished by employing one of

several techniques, including post-classification comparison (PCC), spectral image

differencing (SID), and change vector analysis (CVA). In PCC change detection,

two images from different dates are independently classified. The two classified

maps are then compared on a pixel-by-pixel basis. One disadvantage is that every

error in the individual date classification maps will also be present in the final

change detection map (Jensen 1996; Lunetta and Elvidge 1998).

Spectral image differencing (SID) is the most widely applied change detection

algorithm. SID techniques rely on the principle that land cover changes result in

changes in the spectral signature of the affected land surface. SID techniques

involve the transformation of two original images to a new single-band or multi-

band image in which the areas of spectral change are highlighted. This is accom-

plished by subtracting one date of raw or transformed (e.g. vegetation indices,

albedo, etc.) imagery from a second date, which has been precisely registered to the

image of the first date. Pixel difference values exceeding a selected threshold are

considered as changed. This approach eliminates the need to identify land cover

changes in areas where no significant spectral change has occurred between the two
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dates of imagery (Coppin et al. 2004; Jensen 1996). A comparison of the SID and

the PCC change detection algorithms is provided by Macleod and Congalton

(1998). The SID and the PCC based change detection methods are often combined

in a hybrid approach. For instance, SID can be used to identify areas of significant

spectral change, and then PCC can be applied within areas where spectral change

was detected in order to obtain class-to-class change information.

The changeable nature of wetland ecosystems sometimes requires a more

dynamic change detection procedure. These ecosystems can exhibit a variety of

vegetative or hydrologic changes that might not be detected when using only one or

two spectral bands. Change vector analysis (CVA) is a change detection technique

that can measure change in more than two spectral bands, giving it an advantage

when mapping rapidly changing and highly diverse wetlands (Baker et al. 2007;

Coppin et al. 2004; Mitsch and Gosselink 2000). CVA determines the direction and

magnitude of changes in multi-dimensional spectral space (Houhoulis and Miche-

ner 2000). CVA concurrently analyzes change in all data layers, instead of a few

selected spectral bands (Coppin et al. 2004). The CVA method identifies a change

magnitude threshold that is used to separate actual land cover changes from subtle

changes due to the variability within land cover classes, as well as radiometric

changes associated with instrument and atmospheric variations (Hame et al. 1998;

Johnson and Kasischke 1998). Defining spectral threshold values to separate true

landscape changes from inherent spectral variation is particularly beneficial for

studies of broadly diverse ecosystems, such as wetlands (Houhoulis and Michener

2000). Human interpretation and sometimes an empirical threshold method need to

be applied for interpretation of CVA results to obtain accurate information on

wetland changes.

1.6 Submerged Aquatic Vegetation (SAV)

Seagrass beds provide essential habitat for many aquatic species, stabilize and

enrich sediments, dissipate turbulence, reduce current flow, cycle nutrients, and

improve water quality (Hughes et al. 2009). However, in many parts of the world,

the health and quantity of seagrass beds has been declining (Orth et al. 2006;

Waycott et al. 2009). The decline of coral reefs and SAV is closely linked to

human activity since the coastlines and estuaries that host them are often heavily

populated. Specifically, the declines have been attributed to reduction in water

clarity, alteration of sediment migration via dredging, destruction from coastal

engineering, boating and commercial fishing. High concentrations of nutrients

exported from agriculture or urban sprawl in coastal watersheds are causing algal

blooms in many estuaries and coastal waters (Klemas 2012). Algal blooms are

harmful in that they cause eutrophic conditions, depleting oxygen levels needed by

organic life and limiting aquatic plant growth by reducing water transparency.

Submerged aquatic plants and their properties are not as easily detectable as

terrestrial vegetation. The spectral response of aquatic vegetation resembles that of

terrestrial vegetation, yet the submerged or flooded conditions introduce factors that
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alter its overall spectral characteristics (Fyfe 2003; Han and Rundquist 2003; Pinnel

et al. 2004; Williams et al. 2003). Thus the main challenge for remote sensing of

submerged aquatic plants is to isolate the weakened plant signal from the interfer-

ence of the water column, the bottom and the atmosphere. In addition to bottom

reflectance, optically active materials, such as phytoplankton, suspended sediments

and dissolved organics, affect the scattering and absorption of the radiation. A

careful correction of atmospheric effects is important prior to the analysis of

submerged vegetation imagery derived from satellite or high altitude airborne

data (Silva et al. 2008).

More recently water column optical models have been used to correct water and

bottom effects by including bathymetric information as one of the variables

(Dierssen et al. 2003; Heege et al. 2003). Paringit et al. (2003) developed a seagrass

canopy model to predict the spectral response of submerged macrophytes in

shallow waters. The model considers not only the effects of the water column

through radiative transfer modeling, but also viewing and illumination conditions,

leaf and bottom reflectance, leaf area index and the vertical distribution of biomass.

By inverting the model, the authors were able to estimate plant coverage and

abundance with IKONOS satellite imagery, and compare the remotely sensed

results with field measurements (Silva et al. 2008). In several other studies digital

elevation models and bathymetric data have also been successfully incorporated in

the SAV classification approach in order to relate the change in the SAV to water

depth (Valta-Hulkkonen et al. 2003, 2004; Wolter et al. 2005).

Since SAV communities have high spatial complexity and temporal variability,

standard methods for determining seagrass status and trends have been based on high

resolution aerial color photography taken from low to medium altitude flights

(Ferguson et al. 1993; NOAA-CSC 2001; Pulich et al. 1997). The color photos are

traditionally analyzed by photo-interpreting the 9� 9 in. positive photo-

transparencies to map the SAV distribution. This is often followed by digitization

of the seagrass polygons from map overlays and compilation of digital data into a

spatial GIS database. Using airborne color and color infrared video imagery

researchers have been able to distinguish between water hyacinth and hydrilla with

an accuracy of 87.7 % (Everitt et al. 1999). Good mapping results have also been

obtained with recently available airborne digital cameras (Kolasa and Craw 2009).

Large SAV beds and other benthic habitats have been mapped using Landsat TM

with limited accuracies ranging from 60 to 74 %. Eight bottom types could be

spectrally separated using supervised classification: sand, dispersed communities

over sand, dense seagrass, dispersed seagrass over sand, reef communities, mixed

vegetation over muddy bottom, and deep water (Gullstrom et al. 2006; Nobi and

Thangaradjou 2012; Schweitzer et al. 2005; Wabnitz et al. 2008). SAV biomass has

been mapped with Landsat TM using regression analysis between the principal

components and biomass, after eigenvector rotation of four TM bands (Armstrong

1993; Zhang 2010). Changes in eelgrass and other seagrass beds have also been

mapped with TM data with accuracies of about 66 %, including a study which

showed that image differencing was more effective than post-classification or

principal component change detection analysis (Macleod and Congalton 1998;

Gullstrom et al. 2006).
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The mapping of submerged aquatic vegetation (SAV), coral reefs and general

bottom characteristics from satellites has become more accurate since high resolu-

tion (0.4–4 m) multispectral imagery became available (Mumby and Edwards

2002; Purkis et al. 2002; Purkis 2005). Coral reef ecosystems usually exist in

clear water and can be classified to show different forms of coral reef, dead coral,

coral rubble, algal cover, sand, lagoons, different densities of seagrasses, etc. SAV
often grows in somewhat turbid waters and thus is more difficult to map. Aerial

hyperspectral scanners and high resolution multispectral satellite imagers, such as

IKONOS and QuickBird, have been used to map SAV with accuracies of about

75 % for classes including high-density seagrass, low-density seagrass, and

unvegetated bottom (Dierssen et al. 2003; Mishra et al. 2006; Wolter et al. 2005).

Hyperspectral imagers have improved SAV and coral reef mapping results by

being able to identify more estuarine and intertidal habitat classes (Garono

et al. 2004; Mishra et al. 2006; Phinn et al. 2008; Pu et al. 2012; Purkis

et al. 2008; Nayegandhi et al. 2009). Figure 1.2 shows a 2006 hyperspectral

image of seagrass communities in the St. Joseph Bay Aquatic Preserve in Florida.

The maps produced from such images showed coverage and extent of seagrass

communities in the bay, and provided an indicator of the bay’s health. The maps

were used to identify “good” areas to be targeted for protection, and “poor” areas to

be targeted for restoration (CAMA 2009).

SAV has been mapped with high accuracies using airborne hyperspectral

imagers and regression models, binary decision trees incorporating spectral mixture

analysis, spectral angle mapping, and band indexes (Hestir et al. 2008; Peneva

et al. 2008). Airborne LiDARS have also been used with multispectral or

hyperspectral imagers to map coral reefs and SAV (Brock et al. 2004, 2006;

Brock and Purkis 2009).

Acoustic techniques have been used for rapid detection of submerged aquatic

vegetation in turbid waters. The acoustic impedance (density difference between

the plant and surrounding water) which produces the reflections, is thought to result

primarily from the gas within the plant, since the more buoyant species (with more

gas) reflect acoustic signals more strongly. Hydroacoustic techniques include

horizontally-aimed side scanning sonar systems and vertically-aimed echo

sounders. Side-scan sonar systems provide complete bottom coverage and generate

an image. They have been effective for delineating seagrass beds (Moreno

et al. 1998; Sabol et al. 2002). The horizontal orientation of the acoustic beam

results in a stronger reflected signal from the vertically oriented grass blades.

Echo sounders are pointed vertically downward and traverse a path generating

an analog strip chart, with the horizontal axis equal to distance, vertical axis equal

to depth, and echo intensity shown as gray scale. Numerous researchers using echo

sounders have reported success in detecting and qualitatively characterizing

seagrass beds (Miner 1993; Hundley 1994). For instance, Sabol et al. (2002) used

high resolution digital echo sounders linked with GPS equipment. The acoustic

reflectivity of SAV allowed for detection and measurement of canopy geometry,

using digital signal processing algorithms. Comparison with field data showed good

detection and measurement performance over a wide range of conditions.
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1.7 Beach Profiling and Shoreline Change Detection

Information on beach profiles and coastal bathymetry is needed for studies of

near-shore geomorphology, hydrology and sedimentary processes (Finkl

et al. 2005a; Lidz et al. 1997). In order to plan sustainable coastal development

Fig. 1.2 Hyperspectral imagery of seagrass communities in St. Joseph Bay, FL (CAMA 2009)
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and implement effective beach erosion control, flood zone delineation and ecosys-

tem protection, coastal managers and researchers need information on long-term

and short-term changes taking place along the coast, including changes in beach

profiles due to erosion by storms and littoral drift, wetlands changes due to

inundation, etc. (Gesch 2009; West et al. 2001).

Beach profiles and shoreline positions can change rapidly with seasons and after

storms, in addition to exhibiting slower changes due to littoral drift and sea level rise

(Stockdon et al. 2009). During winter storms waves remove sand from the beach and

deposit it offshore, typically in bar formation (Fig. 1.3). During summer, milder wave

formations move the bars onshore and rebuild the wider berm for the “summer

beach”. Long-term changes of shorelines due to littoral drift or sea level rise can be

aggravated by man-made structures such as jetties, seawalls and groins (Finkl 1996;

Irish and White 1998; Khalil and Finkl 2007; Klemas 2009; Wang 2010).

Before the advent of the Global Positioning System (GPS) and Light Detection

and Ranging (LiDAR) systems, shoreline position analysis and beach profiling

were based on historical aerial photographs and topographical sheets (Morton and

Miller 2005). To map long-term changes of shorelines due to beach erosion, time-

series of historical aerial photographs are available dating back to the 1930s and

topographic maps exist to extend the record of shoreline change to the mid-late

1800s. Such data are held by local, state and federal agencies, including the

U.S. Geological Survey and the USDA Soil Conservation Service. These agencies

also have various maps, including planimetric, topographic, quadrangle, thematic,

ortho-photo, satellite and digital maps (Jensen 2007; Rasher and Weaver 1990).

Time series of high resolution satellite images have also been used to map shoreline

changes, but with accuracies of the order of several meters.

To perform a shoreline position analysis, the shoreline can be divided into

segments which are uniformly eroding or accreting. Then the change in the distance

of the waterline can be measured in reference to some stable feature like a coastal

highway. The instantaneous water line in the image is not a temporally represen-

tative shoreline. The high water line, also referred to as the wet/dry line, is a

commonly used indicator because it is visible in most images. Other indicators

include the vegetation line, bluff line, or man-made shore vestments (Boak and

Turner 2005; Thieler and Danforth 1994).

Fig. 1.3 Changes in beach profiles between summer and winter due to changes in wave climate.

During winter storms the beach is eroded and seaward cross-shore sediment transport results in the

formation of off-shore bars (Purkis and Klemas 2011)
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Topographical and depth data can now be effectively acquired at various spatial

scales by airborne laser surveys using LiDAR techniques (Guenther et al. 1996;

Ackermann 1999; Krabill et al. 2000; Lillycrop et al. 2002). A laser transmitter/

receiver mounted on an aircraft transmits a laser pulse that travels to the land

surface or the air-water interface, where a portion of this energy reflects back to the

receiver. The land topography is obtained from the LiDAR pulse travel-time. On

water, some of the energy propagates through the water column and reflects off the

sea bottom. The water depth is calculated from the time lapse between the surface

return and the bottom return (Hapke 2010; Purkis and Klemas 2011).

Global Positioning Systems (GPS), combined with airborne LiDAR techniques,

make it now possible to obtain accurate topographical maps, including shoreline

positions (Jensen 2007; Morton and Miller 2005; Schmid et al. 2011). A particu-

larly effective approach for studying sand dynamics along coastlines includes the

combined use of airborne hyperspectral data and airborne LiDAR data. Airborne

LiDAR surveying has been significantly enhanced by kinematic differential GPS

methods which enable the positioning of small aircraft to within several centime-

ters. Inertial navigation systems provide three-dimensional aircraft orientation to

within 0.005� making aero-triangulation with ground data points unnecessary.

LiDAR transmitters can provide elevation measurements at over 2,000 points per

second from altitudes of 500–1,000 m with vertical accuracies of 10–15 cm (Brock

and Sallenger 2000; Cracknell and Hayes 2007; Finkl et al. 2005a; Hapke 2010).

A typical beach profiling procedure using LiDAR may include cross-shore

profiles every 10 m. Beach slope and location, elevation of the berm, dune base

and dune crest can also be determined from these beach profiles. One can use a

known vertical datum to remove the subjective nature of identifying the shoreline.

The water line is then readily identified, because laser returns from the sea are noisy

(Stockdon et al. 2002).

A LiDAR aircraft mapping configuration usually includes a light aircraft

equipped with a LiDAR instrument and GPS, which is operated in tandem with a

GPS base station. In coastal applications, the aircraft flies along the coast at heights

of about 200–500 m, surveying a ground swath directly below the aircraft. The

aircraft position throughout the flight is recorded by an onboard GPS receiver. The

aircraft GPS signals are later combined with signals concurrently collected by a

nearby GPS base station. Differential kinematic GPS post-processing determines

the aircraft flight trajectory to within about 5 cm (Cracknell and Hayes 2007; Wang

2010). Although airborne laser mapping may be carried out at night, flight safety

dictates that coastal LiDAR operations are normally confined to daylight hours and

timed to coincide with low tide to maximize coverage of the beach face.

LiDAR surveys can now produce a 10 cm vertical accuracy at spatial densities

greater than one elevation measurement per square meter. Such performance

satisfies the needs of various coastal applications, including flood zone delineation,

monitoring beach nourishment projects and mapping changes along barrier island

beaches and other sandy coasts (Brock and Purkis 2009; Deronde et al. 2006; Gares

et al. 2006; Raber et al. 2007; Webster et al. 2004; Wozencraft and Millar 2005).

The ability of LiDAR to rapidly survey long, narrow strips of terrain is important,
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because beaches are elongate, highly dynamic sedimentary environments that

undergo seasonal and long-term erosion or accretion and are also impacted by

severe storms (Kempeneers et al. 2009; Krabill et al. 2000; Stockdon et al. 2002;

Zhou 2010).

In order to develop digital flood insurance maps and data for habitat studies and

vegetation identification, in 2005 the State of Delaware contracted with USGS and

NASA to produce high detail elevation data using NASA’s Experimental Advanced

Airborne Research LiDAR (EAARL), which was specifically designed to measure

submerged topography and adjacent coastal land elevations. Emergency managers

have been able to use this data to develop statewide inundation maps and to

incorporate this data into flood and storm surge models to create an early-flood-

warning system (Carter and Scarborough 2010).

1.8 Bathymetry

The lack of accurate near-shore bathymetric data has been identified as a key

limitation in the application of geospatial data to coastal environments (Malthus

and Mumby 2003). Remote sensing techniques that have been successfully used to

map coastal water depth include LiDAR and acoustic depth sounding. In LiDAR

bathymetry, a laser transmitter/receiver mounted on an aircraft transmits a pulse

that reflects off the air-water interface and the sea bottom. Since the velocity of the

light pulse is known, the water depth can be calculated from the time lapse between

the surface return and the bottom return. Because laser energy is lost due to

refraction, scattering and absorption at the water surface, the sea bottom and inside

the water column, these effects limit the strength of the bottom return and limit the

maximum detectable depth.

Examples of LiDAR applications include regional mapping of changes along

sandy coasts due to storms or long-term sedimentary processes and in the analysis

of shallow benthic environments (Bonisteel et al. 2009; Guenther et al. 1996; Irish

and Lillycrop 1997; Gutierrez et al. 1998; Kempeneers et al. 2009; Sallenger

et al. 1999). Bertels et al. (2012) used integrated optical and acoustic remote

sensing data over the backshore-foreshore-nearshore continuum to study sediment

dynamics along the Belgian coastline. To accomplish this, the authors combined

airborne hyperspectral imaging spectroscopy, airbore laser scanning and seaborne

sonar. The LiDAR and hyperspectral data were combined with side-scan sonar and

single- and multibeam depth and backscatter data to construct integrated sedimen-

tological and morphological maps (Bertels et al. 2012).

Another example is the use of airborne laser bathymetry (ALB) to rapidly

acquire large, high-quality data sets along the Continental Shelf of southeast Florida

by Finkl et al. (2005b). The ALB provided a contiguous set of data for 160 km of

coast from onshore to 6 km offshore. Image enhancement of the ALB digital data

facilitated recognition of numerous seafloor features and bathymetric patterns.

Bathymetric analysis of the 600 sq km survey area allowed for the first time an
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assessment of links between the influence of seabed morphology on wave transfor-

mation patterns and beach morphodynamics in southeast Florida.

To maximize water penetration, bathymetric LiDARs employ a blue-green laser

with a typical wavelength of 530 nm to range the distance to the seabed. With the

near-exponential attenuation of electromagnetic energy by water with increasing

wavelength, a pure blue laser with a wavelength shorter than 500 nm would offer

greater penetration. However, this wavelength is not used because, first, blue light

interacts much more strongly with the atmosphere than longer wavelengths; and

second, creating a high-intensity blue laser is energetically less efficient than blue-

green and consumes a disproportionately large amount of instrument power.

Conversely, terrestrial topographical LiDARs typically utilize near-infrared

(NIR) lasers with wavelengths of 1,064 nm. As is the case for the blue-green

laser used for hydrography, this NIR wavelength is focused and easily absorbed

by the eye. Therefore, the maximum power of the LiDAR system is limited by the

need to make them eye-safe. While bathymetric lasers are limited in their accuracy

by water column absorption, terrestrial infrared lasers suffer from null or poor

returns from certain materials and surfaces such as water, asphalt, tar, clouds and

fog, all of which absorb NIR wavelengths.

Because they do not penetrate water predictably, NIR topographical lasers

cannot be used to assess bathymetry. Dual-wavelength LiDAR provides both

bathymetric and topographical LiDAR mapping capability by carrying both an

NIR and a blue-green laser. The NIR laser is not redundant over water, because it

reflects off the air-water interface and can be used to refine the altitude above the

sea surface as well as to distinguish dry land from water using the signal polariza-

tion (Guenther 2007). In addition, specific LiDAR systems, like the Scanning

Hydrographic Operational Airborne LiDAR System (SHOALS), record the red

wavelength Raman signal (647 nm). The Raman signal comes from interactions

between the blue-green laser and water molecules, causing part of the energy to be

backscattered while changing wavelength (Guenther et al. 1994; Irish and Lillycrop

1999). A detailed description of the SHOALS system is provided by Lillycrop

et al. (1997).

By employing a very high scan-rate, state-of-the-art systems such as the Exper-

imental Advanced Airborne Research LiDAR (EAARL) have been used to measure

both, topography and bathymetry, from the return time of a single blue-green laser

(Bonisteel et al. 2009; McKean et al. 2009; Nayegandhi et al. 2009). Operating in

the blue-green portion of the electromagnetic spectrum, the EAARL is specifically

designed to measure submerged topography and adjacent coastal land elevations

seamlessly in a single scan of transmitted laser pulses. Figure 1.4 shows such a

bathymetric-topographical DEM of a section of the Assateague Island National

Seashore, captured by the EAARL. Assateague Island National Seashore consists of

a 37-mile-long barrier island along the Atlantic coasts of Maryland and Virginia.

This experimental advance signaled the future move towards commercial imple-

mentation of dual-application but single-wavelength instruments (Krabill

et al. 2000; Wozencraft and Lillycrop 2003).
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While the EAARL and dual-wavelength LiDARs offer nearly seamless profiles

between bathymetry and terrestrial terrain, neither bathymetric system can acquire

dependable bathymetric data in very shallow depths or over white water in the surf

zone. When white-caps are present, the laser does not penetrate the water column.

Furthermore, if the depth is less than 2 m, even in clear water it becomes difficult to

separate the laser pulse returning from the water surface from the one reflected by

the bottom bed (Parson et al. 1997; Philpot 2007; Bonisteel et al. 2009). For coastal

mapping, both problems are obviated by combining successive flights at low tide

with a topographical LiDAR, and at high tide with a bathymetric LiDAR (Pastol

et al. 2007; Sinclair 2008; Stoker et al. 2009). Such a strategy is not possible for

coastal areas that do not have large tidal variations, or for non-tidal inland water

bodies.

Optical water clarity is the most limiting factor for LiDAR depth detection, so it

is important to conduct the LiDAR overflights during tidal and current conditions

that minimize the water turbidity due to sediment re-suspension and river inflow

(Sinclair 2008). LiDAR overflights should not be conducted during high wind

conditions, since the rough water surface will scatter the LiDAR pulse and make

it difficult to detect (Brock and Sallenger 2000; Irish and Lillycrop 1999).

Fig. 1.4 Coastal topography for a section of the Assateague Island National Seashore acquired

using the Experimental Advanced Airborne Research LiDAR (EAARL) (Bonisteel et al. 2009)

(Credit: USGS)
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Typical flight parameters for airborne LiDARs used in bathymetry are shown in

Table 1.1. The LiDAR system must have a kd factor large enough to accommodate

the water depth and water turbidity at the study site (k¼ attenuation coefficient;

d¼max. water penetration depth). For instance, if a given LiDAR system has a

kd¼ 4 and the turbid water has an attenuation coefficient of k ¼ 1, the system will

be effective only to depths of approximately 4 m. Typically, a LiDAR sensor may

collect data down to depths of about three times the Secchi (visible) depth (Estep

et al. 1994; Sinclair 2008). Beyond that depth, one may have to use acoustic echo-

sounding profilers or side-scan imaging sonars (Brock and Sallenger 2000).

Echo-sounding profilers, which measure water depth and changes in bottom

topography, send out pulses of acoustic energy from beneath the boat or other

platform. The acoustic “ping” is reflected off the seabottom and submerged objects

and recorded by the transceiver. The depth to target calculation is based on how

long it took the reflected pulse to return to the surface and the speed of sound in

water under prevailing environmental conditions. The earliest sounders used single

beams, but the newer systems use multiple beams, with a large array of beams

measuring bottom depths across a wide swath (Bergeron et al. 2007; Cracknell and

Hayes 2007).

Side-scan imaging sonars emit acoustic pulses in the form of a very wide

fan-shaped beam to both sides and at right angles to the track, to produce an

image of the seabottom from the backscattered acoustic energy. Sonar echo-

sounders and side-scan sonars are frequently housed in a torpedo-shaped “fish”,

which is towed by cable behind the survey ship at a predetermined height off the

bottom (Avery and Berlin 1992; Pittenger 1989; Thompson and Schroeder 2010).

More recently, various acoustic sensors have been housed in Remotely Operated

Vehicles (ROVs) or Autonomous Underwater Vehicles (AUV’s) and used to

monitor features on the bottom and in the water column (Chadwick 2010).

Table 1.1 LiDAR flight

parameters
Flying height 200–500 m (400 m typical)

Vertical accuracy �15 cm

Horizontal accuracy DGPS¼ 3 m; KGPS¼ 1 m

Max mapping depth 60 m (clear water)

Typical kd product 4

Coastal k 0.2–0.8 (d¼ 5–20 m)

Estuarine k 1.0–4.0 (d¼ 1–4 m)

Sounding density 3–15 m

Sun angle 18�–25� (to minimize glare)

Scan geometry Circular (220 m swath typical)

Sea state Low (0–1 Beaufort scale)

Water penetration Green LiDAR (532 nm) used

Aircraft height Infrared LiDAR (1,064 nm) used

DGPS differential GPS mode, KGPS kinematic GPS mode
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1.9 Summary and Conclusions

Coastal ecosystems are highly productive and act as critical habitats for a wide

variety of plants, fish, shellfish, and other wildlife. Coastal wetlands and estuaries

have been exposed to a wide range of natural and man-induced alterations, includ-

ing dredge and fill operations, hydrologic modifications, pollutant run-off, eutro-

phication, impoundments and fragmentation by roads and ditches. Environmental

impacts from sea level rise and more frequent coastal storms are causing increased

beach erosion, wetland destruction, algal blooms, hypoxia and anoxia, fish kills,

releases of pollutants, and spread of pathogens.

Since coastal ecosystems have high spatial complexity and temporal variability,

they require high spatial, spectral and temporal resolutions. Advances in sensor

design and data analysis techniques are making remote sensing systems attractive

for monitoring and mapping changes in the coastal zone. High resolution multi-

spectral and hyperspectral imagers, LiDAR and radar systems are available for

monitoring changes in coastal marshes, submerged aquatic vegetation, coral reefs,

and beach profiles. Imaging radars are sensitive to soil moisture and inundation and

can detect hydrologic features beneath the vegetation canopy.

Submerged aquatic plants and their properties are not as easily detectable as

terrestrial vegetation. The main challenge for remote sensing of submerged aquatic

plants is to isolate the weakened plant signal from the interference of the water

column, the bottom and the atmosphere. Airborne hyperspectral imagers have

improved SAV and coral reef mapping results by being able to identify more

estuarine and intertidal habitat classes. The mapping of submerged aquatic vegetation

(SAV), coral reefs and general bottom characteristics from satellites has become

more accurate since high resolution multispectral imagery became available.

To identify long-term trends and short term variations, such as the impact of

rising sea levels and hurricanes on wetlands, one needs to analyze time-series of

remotely sensed imagery. High temporal resolution, precise spectral bandwidths,

and accurate georeferencing procedures are factors that contribute to the frequent

use of satellite image data for change detection analysis. Detecting the actual

changes between two registered and radiometrically corrected images from differ-

ent dates can be accomplished by employing one of several techniques, including

post-classification comparison (PCC), spectral image differencing (SID), and

change vector analysis (CVA). A comparison of the SID and the PCC change

detection algorithms is provided by Macleod and Congalton (1998).

Global Positioning Systems (GPS), combined with airborne LiDAR techniques,

make it now possible to obtain accurate topographical maps, including shoreline

positions. LiDAR surveys can produce a 10 cm vertical accuracy at spatial densities

greater than one elevation measurement per square meter. Such performance

satisfies the needs of most coastal applications. Airborne LiDAR and ship-borne

acoustic depth profilers are being used to map coastal water depth and bottom

topography. LiDAR profilers, employing blue-green lasers, can penetrate the water

column down to depths of about three times the Secchi depth.
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Remote sensors can monitor and assess long-term trends and short-term changes

of vegetation and hydrology faster, more completely and at lower cost per unit area

than field or ship surveys alone. Multi-sensor and multi-seasonal data fusion

techniques are significantly improving coastal land cover mapping accuracy and

efficiency. Combinations of different satellite and airborne sensors can provide data

that enhances the research and management of coastal ecosystems.

Future research priorities should include investigations of best approaches for

processing hyperspectral data. Hyperspectral sensors need to be tested for SAV and

bottom type discrimination using data obtained from satellites. The question of how

differing levels of tidal inundation affect the reflectance characteristics of emergent

marsh vegetation still needs to be better documented. Finally there is a need to

investigate improvements to be gained from synergistic use of multi-wavelength

remote sensing approaches, change detection techniques and multi-temporal com-

parisons and knowledge-based methods for improving classification accuracy

(Malthus and Mumby 2003).
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