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Abstract The problem of expert preference function reconstruction in decision
making process of multicriterion comparative assessment of set of object is con-
sidered. The problem is reduced to integral indicator identification using available
data of object’s performance indexes measurements as well as expert estimation of
integral indicators values for each object and feature weights. Based on machine
learning approach and expert estimations concordance technique, the solution of
preference function recovering problem is obtained in the form of optimal non-
linear object feature convolution.

1 Introduction

One of the most important problems of decision making theory is multiple criteria
comparative assessments and ordering of objects or alternative decisions based on
expert judgments [1–3]. The well-known and widely practiced approach to such a
problem is the reduction of a set of partial performance criteria (indexes), which
characterized some object’s features, to the generalized one, known as an integral
indicator [4], which, in fact, is an expert measure of object’s performance. Integral
indicator as an aggregate performance index of objects (alternatives) over for all
criteria should be constructed on the basis of expert preferences and reflects the
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priorities of the decision maker. The choice of integral indicator model is an intricate
problem, because expert preference function structure is usually unknown.

Different approaches to expert preference function construction are considered
in [5–7]. In practice, the commonly used preference function model is a linear
convolution of partial performance indexes defines the object’s features, where
feature weights are given by experts [2, 8]. An alternative is direct expert esti-
mation of integral indicator using observed (measured) values of partial perfor-
mance indexes for each object to be compared with subsequent approximation of
obtained experimental dependence.

A simple linear feature convolution is not always adequately representing the
actual expert preferences, which may be very complicated and appears in a
complex nonlinear dependence of integral indicator from partial performance
indexes. For such a case, for instance, an appropriate approximation of preference
function may be used [5, 6], but it leaves open the question about the choice of
approximation model, which provides a sufficiently high accuracy of approxima-
tion under small amount of data.

The possible contradiction between expert estimations of object’s integral
indicators and feature weights may be overcome by expert estimation concordance
approach, proposed by Shakin and Strijov [9, 10]. An appropriate concordance
procedure performs the simultaneous correction of object’s integral indicators and
feature weights expert estimations in order to obtain the concordant decision.

In this chapter the problem of preference function reconstruction is considered
with the purpose of expert preferences eliciting using measured performance
indexes (‘‘object–feature’’ data) as well as expert estimations of features weights
and object’s integral indicators. Therefore the preference function reconstruction
may be considered as specific identification problem [11], which may be solved by
means of machine learning approach [12].

The use of support vector machine (SVM) approach [13] combined with kernel-
based methods [14] provides a significant reduction in the number of estimated
parameters of integral indicator model and allow to reconstruct the complex
nonlinear structure of expert preference function.

Herewith expert estimations of feature weights in linear feature convolution,
which may be considered as a first approximation for nonlinear feature convolution,
and can be used as a priory information for optimal expert estimation concordance
according to the proposed technique.

2 Problem Statement

Consider decision making comparison process for similar objects or decision
alternatives, which characterized by a set of performance criteria.

Introduce a set of comparable objects or alternatives = ¼ t1; . . .; tnf g and a set
of partial performance indexes < ¼ q1; . . .; qmf g, where each index defines some
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object feature. It is assumed that a set of features describes the objects performance
or quality according to some criteria.

Each object ti characterized by the vector of partial performance indexes,

namely, measured features xT
i ¼ x1

i ; . . .; xm
i

� �
, where x j

i is a j-th actual feature
measured value for i-th object (alternative).

Thus a set of observation may be represented in the form of data matrix

(‘‘object–feature’’ table) Xn ¼ x j
i

� �n;m

i;j¼1.

In order to compare the objects or decision alternatives based on expert esti-
mation, it is first necessary to evaluate a generalized performance index or integral
indicator [4], which characterized the quality or performance of each object.

The integral indicator is a scalar real-valued function J xð Þ, which is a priory
unknown and defines by expert’s preferences. At that the integral indicator value
J xið Þ for each object ti; i ¼ 1; n associates with corresponding vector of measured
features xi.

Consider the situation, when integral indicator is constructed using the suitable
expert estimations. It is assumed that for investigated set of objects an expert or
expert group based on available data and their own preferences produce the vector
qT

n ¼ q1; . . .; qnð Þ; qi ¼ J xið Þ; i ¼ 1; n of linear-scaled integral indicator esti-
mates for each object and a vector of feature weights wT ¼ w1; . . .;wmð Þ, which
may be treated as an expert estimates of features relative significance.

It is necessary using available data of measured partial performance indexes
(features) Xn and expert estimates qn, w to reconstruct integral indicator function
J xð Þ.

Therefore such an approach may be considered as an expert preference eliciting
based on expert indicator and feature weights estimations and ‘‘object–feature’’
data.

The integral indicator model is taken in the quasilinear form ĴðxÞ ¼ /TðxÞc;
where cT ¼ c1; . . .; cMð Þ—vector of unknown model parameters, uT xð Þ ¼
u1 xð Þ; . . .;uM xð Þð Þ—vector of predetermined coordinate functions, M is a model

dimension.
Let us evaluate the parameters estimates for integral indicator model ĴðxÞ as a

solution of optimization problem, which formalized a goal of matching the esti-
mated and the measured integral indicators:

RðcÞ ¼
Xn

i¼1

qi � uTðxiÞc
� �2 þ Xðc;wÞ ! min

c
ð1Þ

The first item in (1) describes the approximation quality of objects performance
expert estimates, characterized by integral indicator values for each object,
whereas the second one allows expert estimation of features weights and may be
considered as an a priory information for unknown model parameters c. The
specific form of X c;wð Þ may be evaluated using concordance technique consid-
ered below.
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Thus the solution of (1) defines the data-based expert preference function
model. In fact, an integral indicator approximation ĴðxÞ may be treated as an
optimal nonlinear convolution of partial performance indexes.

The procedure of expert preference function reconstruction based on ‘‘object–
feature’’ measured data and concordance of objects performance indexes and
features weights expert estimations is illustrated in Fig. 1.

3 Optimal Concordance for Linear Preference Function

3.1 Expert Estimations Concordance

Consider at first a linear model of expert preference function, at that the integral
indicator is the linear combination of features and their weights (linear features
convolution model of integral indicator).

Using available ‘‘object–feature’’ measured data Xn under linear feature con-
volution model assumption, a mutual transformation of expert estimates of objects
indices qn vector and features weights vector w can be performed:

qn;wð Þ �!Xn q ¼ Xnw; wn ¼ Xþn qn

� �
; ð2Þ

where linear operator Xn maps the vector of expert estimates of features weights
w to the vector q and pseudo-inverse operator Xþn maps the vector of expert
estimates of objects indexes qn to the vector wn.

In general case, the estimated and mapped vectors are usually different, namely
qn 6¼ q;w 6¼ wn, so it is necessary to extricate the contradictions between measured
data and expert estimates via expert concordance approach.

Vectors of expert estimates of object’s integral indicators and features weights
will be concordant, if they satisfied the concordance condition �q ¼ Xn �w.

In accordance to the Concordance Theorem [9], there exist such scalar values
a; b 2 0; 1½ �; aþ b ¼ 1, so vectors wa ¼ awþ 1� að Þwn; qb ¼ bqþ 1� bð Þq
meet concordance condition qb ¼ Xnwa.

In such a way, concordant expert estimates of integral indicators and feature
weights can be defined as following:

wa ¼ a wþ 1� að ÞXþn qn;

qa ¼ 1� að Þqþ aXnw;
ð3Þ

where a ¼ 1� b 2 0; 1½ � is the object’s integral indicators versus feature weights
importance parameter.

It is evident, that there exist a set of vectors which satisfy the concordance
conditions (3), so the problem of optimal expert estimations concordance arises.
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3.2 Optimal Expert Estimations Concordance

Expert estimates of object’s indicators and features weights will be referred to as
optimally concordant for linear feature convolution model regarding measured
data Xn if they minimize the concordance functional:

M q;wð Þ ¼ 1
2

qn � qk k2þ 1
2
c w� w0ð Þk k2;

q ¼ Xnw; eTw ¼ 1;
ð4Þ

where w0—vector of a priory values of feature weights in linear convolution, c—
weight coefficient, which defines degree of belief for expert estimates of object
performance indexes versus feature weights, eT ¼ 1 1. . .1ð Þ.

Constrains in (4) match the relationship between object’s indicators and feature
weights expert estimation for linear preference function and weight coefficients
normalization requirements.

Note that the second item in (4) acts as a regularizing component, which in
addition ensures computational stability of optimal concordant expert estimation.

The solution of optimization problem (4) may be obtained using Lagrange
function

L q;w; k; lð Þ ¼ M q;wð Þ þ kT qn � Xnwð Þ þ l 1� eTw
� �

: ð5Þ

Using Kunch-Takker condition of optimality for (5), the relationship between
optimal values of Lagrange multipliers can be obtained:

l ¼ m�1eTXT
n k; k ¼ P�1

n qn � Xnw0ð Þ; ð6Þ

where Pn ¼ cIn þ XnPmXT
n ; Pm ¼ Im � m�1eeT; In; Im—identity matrices of

appropriate dimension.
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Fig. 1 Preference function reconstruction based on expert estimations concordance and ‘‘object–
feature’’ measured data
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Taking into account obtained dependence (6), the solution of optimal expert
estimation concordance problem may be obtained in the following form:

�w ¼ w0 þPmXT
n P�1

n qn � Xnw0ð Þ;
�q ¼ Xnw0 þWnP�1

n qn � Xnw0ð Þ;
ð7Þ

where Wn ¼ XnPmXT
n ; Pn ¼ cIn þWn.

It is evident, that optimal concordant expert estimations (7) have the following
limit properties: c! 0 : �w ¼ Xþn qn; c!1 : �w ¼ w0; which describe the
extreme cases of linear feature convolution weights forming: under full a priory
information absence c ¼ 0ð Þ and under full confidence for expert estimation of
feature weights c ¼ 1ð Þ.

4 Nonlinear Preference Function Reconstruction

4.1 Integral Indicator Identification

Consider a generalization of proposed approach for nonlinear expert preference
function model which defines the appropriate nonlinear integral indicator (non-
linear feature convolution).

Consider the nonlinear model of preference function as ĴðxÞ ¼ uTðxÞc; where
cT ¼ c1; . . .; cMð Þ—vector of preference function model parameters, subjected to
estimation, uT xð Þ ¼ u1 xð Þ; . . .;uM xð Þð Þ—vector of coordinate functions.

Using the kernel-based approach, the coordinate function vectors u xið Þ is taken
hereby that its scalar products will be positive define kernel function

K x; xið Þ ¼ uT xð Þu xið Þ, as a radial-basis function K x; xið Þ ¼ exp �l x� xik k2
� �

,

where l[ 0—function parameter.
In accordance with accepted preference function model, vector of integral

indicators expert estimates qT
n ¼ q1; . . .; qnð Þ for each object may be represented as

qi ¼ Ĵ xið Þ þ ni; i ¼ 1; n; ð8Þ

where ni—‘‘expert measurement’’ errors, which allow inaccuracy of expert
estimates.

From (8) following, that measurement equation for preference function model
may be represented in the form:

qn ¼ Uncþ n;

UT
n ¼ u x1ð Þ; . . .;u xnð Þð Þ; n ¼ n1; . . .; nnð Þ:

ð9Þ
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In accordance with support vector approach (SVM) [5], the unknown model
parameters estimates may be obtained as a solution of regularized functional
minimization problem

IðcÞ ¼ 1
2

nk k2þ 1
2

c c� c0ð Þk k2;

n ¼ qn � Unc;
ð10Þ

where c0—vector of a priory values of integral indicator model parameters,
c[ 0—regularization parameter, which provides computational stability of esti-
mation procedure.

An equivalent conjugate optimization problem taking into account (9), (10)
may be stated using Lagrange function

L c; n; kð Þ ¼ I cð Þ þ kT q� Unc� nð Þ; ð11Þ

where kT = (k1, …, kn)—vector of Lagrange multipliers.
Using the conditions for optimality for conjugate optimization problem for

Lagrange function (11), the expression for model parameters optimal estimates
and conjugate variables may be obtained in the form:

c� ¼ c0 þ c�1UT
n k�; k� ¼ cA�1

c qn � Unc0ð Þ;
Ac ¼ c In þ Kn; Kn ¼ UnU

T
n ¼ Kðxi; xjÞ

� �n;n

i;j¼1:
ð12Þ

4.2 Optimal Concordance for Nonlinear Preference
Function Model

The resulting estimate of preference function model parameters depends of a
priory value of estimated parameters c0. To find them it is naturally to use the
available information of feature weights expert estimates w, defining the relative
importance of particular criteria.

Interpreting the linear convolution of criteria as a first step of preference
function nonlinear model approximation, take an optimal a priory value of pref-
erence function model parameters c0 from the condition of best approximation of
objects integral indexes q0 ¼ Unc0 by the vector of its expert estimates obtained
for measured data Xn using linear feature convolution ~qn ¼ Xnw:.

Consequently, in order to find a priory value of preference function parameters,
which are optimally concordant with expert estimations of feature weights w,
consider the corresponding optimization problem for auxiliary regularized
functional:
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I0 c0ð Þ ¼
1
2

fk k2þ 1
2
x c0k k2;

f ¼ ~qn � q0 ¼ Xnw� Unc0:
ð13Þ

where x[ 0—regularization parameter.
Using the appropriate Lagrange function for optimization problem (13)

Lðc0; f; mÞ ¼ I0ðc0Þ þ mTðXnw� Unc0 � fÞ; ð14Þ

where mT ¼ m1; . . .; mnð Þ—vector of Lagrange multipliers, the solution of con-
strained optimization problem (13) takes the following form:

c�0 ¼ x�1UT
n m�; m� ¼ xA�1

x Xnw;

Ax ¼ xIn þ Kn;
ð15Þ

where in accordance with (12) Kn ¼ UnU
T
n .

From the (12), (15) following, that the resultant expression for nonlinear
preference function model, based on feature measured data and optimally con-
cordant expert estimates, takes the following form:

ĴnðxÞ ¼ uTðxÞUnd;

d ¼ ½A�1
c qn þ ðIn � A�1

c KnÞA�1
x Xnw�:

ð16Þ

Finally, taking into account the obvious relation

uTðxÞUn ¼ ðKðx; x1Þ; . . .;Kðx; xnÞÞ; ð17Þ

the obtained nonlinear preference function model may be represented as kernel
function linear combination determined in the points of corresponding feature
measurements:

ĴnðxÞ ¼
Xn

i¼1

diKðx; xiÞ; d ¼ ðd1; . . .; dnÞ; ð18Þ

where coefficients di of linear kernel function linear combination (18), in accordance
with (16), depends from measured data matrix Xn and expert estimates qn;wf g.

Thus, formula (18), gives, in fact, the desired preference function model in the
form of nonlinear convolution of feature measurements optimally concordant with
expert estimates of integral indicators and feature weights.

It should be noted, that obtained estimates depends only from symmetric
positive-defined (n� n) matrix Kn, formed from kernel functions, determined in
measurement points; thereof the estimates calculation requires the inversion of
well-posed matrix.
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Moreover, the final expression for integral indicator estimate (18) doesn’t
directly include the coordinate functions ui xð Þf g in explicit form, which elimi-
nates the need of their prior choice. As a result only kernel function K x; xið Þ is used
for indicator model construction.

This enable the possibility of quite complex preference function approximation,
at that the number of estimated model parameters doesn’t exceed the number of
feature measurement.

Later on, obtained preference function model may be used for new objects
integral indicator assessment using available feature measurements without direct
expert participation.

5 Numerical Example

Consider as an example the problem of integral indicator construction for expert
assessment of Thermal Power Plants, which is necessary to compare the plants
according to their impact on the environment, so the criterion of ecological
footprint is used.

At that the integral indicator of Power Plant should characterize its pollution
emission. Such a problem is closely related with Kyoto Index assessment [15].

In order to illustrate the proposed approach, the numerical example from [15]
is used, where the compared objects are some of US Power Plants. The main
features, according to the criterion of ecological footprint, includes total net
generation, emission of anthropogenic greenhouse gas CO2 and other air pollutants
NOX and SO2.

The waste measurements are used as statistical information which is necessary
for ‘‘feature–object’’ data specification.

Power Plants ‘‘feature–object’’ measured data as well as object’s integral
indicators expert estimations are taken from http://strijov.com/papers/iiesky.pdf
and presented in Table 1.

The expert estimates of feature weights, which used as a priory information
under expert estimates concordance procedure for nonlinear preference function
model, are presented in Table 2.

The Integral Indicator of ecological footprint for considered Power Plants was
constructed using the proposed method of preference function kernel-based
identification along with expert estimates concordance. In contrast to [15], where
integral indicator is taken as a linear convolution of the object’s features, the
nonlinear integral indicator is designed using presented methodology.

The obtained integral indicator of Power Plants regarding the feature variables
x1 ¼ CO2; x2 ¼ NOX þ SO2 is presented at Fig. 2.

The obtained nonlinear model of integral indicator more accurate represents the
complex structure of expert preferences in comparison with simple linear feature
convolution.
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6 Conclusion

The developed approach allows considering the problem of multiple criteria
nonlinear convolution as a problem of preference function identification based on
both feature measurement data and expert estimates of integral indicators and
feature weights. The proposed generalization of expert estimates concordance idea
for the case of nonlinear preference function guaranties on optimal concordance of
measurement and expert data, whereas machine learning approach coupled with
kernel-based technique ensure the possibility of more accurate approximation of
expert preference function with complex structure.

Table 2 Expert estimation
of feature weight

# Feature Weight

1 Total net generation 0.2
2 CO2 emission 0.5
3 NOX emission 0.2
4 SO2 emission 0.1
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Fig. 2 The constructed
integral indicator or power
plants

Table 1 ‘‘Object–feature’’ measurement data and expert estimation of integral indicators

# Plant name Total net generation Emission Indicator’s expert
estimations

CO2 NOX SO2

106 kWh Short tons per month 0–100

1 Beckford 458,505 191 10 41 76
2 East Bend 356,124 147 16 13 89
3 Miami Fort 484,590 204 28 33 62
4 Zimmer 818,435 329 5 64 24
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The considered identification scheme may be compared with neural network
structure with radial-basis activation function and weights, corresponding to
estimated preference model parameters. At that under the sufficiently large training
data set the suitable learning algorithm may be used for weights tuning. The further
development of proposed approach is related with kernel function parameters well
as regularization parameters choice.
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