
Fuzzy Resolution with Similarity-Based
Reasoning

Banibrata Mondal and Swapan Raha

Abstract Resolution is an useful tool for mechanical theorem proving. Resolution

models the refutation proof procedure, which is mostly used in constructing a

‘proof’ of a ‘theorem’. In this chapter, an attempt is made to derive a fuzzy

resolvent from imprecise information expressed as standard rule using similarity

based inverse approximate reasoning methodology. For complex clauses, we

investigate similarity based ordinary approximate reasoning to derive a fuzzy

resolvent. The proposal is well-illustrated with artificial examples and a real life

problem.

1 Introduction

Man had for long wanted to find a general decision procedure to prove theorems.

Since 1930, consistent efforts were made by Herbrand and others in this respect. It

was in 1965 that Robinson [1] made a major breakthrough. He introduced a
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machine-oriented logic based on resolution principle to check the (un)satisfiability

of a set of formulae represented in some standard form.

Mechanical theorem proving techniques were first applied to deductive question

answering systems and then to problem solving, program synthesis, program

analysis and many others. In automated theorem proving, resolution acts as a rule

of inference leading to a refutation based theorem-proving technique.

Now, given some formulae modelling vague knowledge, can we define an

automated procedure which decides whether a given conclusion is logically

entailed by the knowledge? A first step towards formalization of automated

deduction in fuzzy logic was taken by Lee and Chang [2]. Lee’s works [2, 3] were

continued and implemented by other researchers. Lee’s fuzzy formulae are syn-

tactically defined as classical first-order formulae, but they differ semantically as

the formulae have a truth value in [0,1]. Mukaidono [4, 5] generalized Lee’s [3]

result. Dubois and Prade [6] established fuzzy resolution principle in the case of

uncertain propositions. In Kim et al. [7], antonym-based fuzzy hyper-resolution

was introduced and its completeness was proved. Fontana and Formato [8]

introduced, a fuzzy resolution rule based on an extended most general unifier

provided by the extended unification algorithm. Sessa [9] proposed a methodology

to manage uncertain and imprecise information in the frame of the declarative

paradigm of logic programming considering, a similarity relation between function

and predicate symbols in the language of a logic program. Habiballa and Novak

[10] presented refutational theorem proving system for fuzzy description logic

based on the general resolution rule. Raha and Ray [11] investigated a generalized

resolution principle that handles the inexact situation effectively and is applicable

for both well-defined and undefined propositions. They associated a truth value to

every proposition and used Zadeh’s concept of approximate reasoning based on

possibility theory to model a deductive process. In this research, we extend our

knowledge to present, a generalised resolution principle that deals with fuzzy

propositions and uses the technique of similarity based reasoning. Similarity is

inherent in approximate reasoning, but none used it in fuzzy resolution. Indeed,

human reasoning is often performed on the basis of analogy and/or similarity

between entities. We, therefore, accomplish the task of choosing an almost

complementary pair in fuzzy resolution on the basis of similarity/dissimilarity

measure of fuzzy sets instead of contradictory degree of the pair. The advantage of

our method is that, it reduces significant and important drawback of compositional

rule of inference and executes effective resolution to show its flexibility for

automated reasoning. In this article, we have avoided the generic problem in

generalised modus ponens (GMP) by using similarity-based inverse approximate

reasoning method [12] in fuzzy resolution. However, for complex set of clauses

the method is not suitable. In this case, we investigate similarity-based ordinary

approximate reasoning [13] to deduce fuzzy resolution.
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2 Preliminaries

We start by summarizing a few basic concepts of fuzzy logic connected with fuzzy

resolution.

Definition 1 A resolvent of two clauses C1, C2 containing the complementary

literals p and :p respectively, is defined as

resðC1;C2Þ ¼ fC1 � fpgg[fC2� f:pgg;
∪ is understood as the disjunction of the literals present in them.

It is also a logical consequence of C1 and C2.

Definition 2 A resolution deduction of a clause C from a set S of clauses is a finite

sequence of clauses C1, C2,..., Cn = C such that, each Ci is either a member of S or

is a resolvent of two clauses taken from S. From the resolution principle in

propositional logic we deduce that, if S is true under some truth valuation v, then

v(Ci) = TRUE for all i, and in particular, v(C) = TRUE [14].

A simple resolution scheme is:

premise1 : a _ b

premise2 : :b
conclusion : a

In first order logic, resolution condenses the traditional syllogism of logical

inference down to single rule. To recast the logical inference using the resolution

technique, the formulae are represented in conjunctive normal form.

Definition 3 C1 and C2 being two clauses in fuzzy logic, R(C1, C2) being a

classical resolvent of C1 and C2, and A being the literal C1 and C2 are resolved

upon (i.e., C1 ∈ A and C2 ∈ * A or conversely), then fuzzy resolvent

R(C1, C2)cd(A) of C1 and C2, where cd(A) is the contradictory degree of keyword

A or the confidence associated with the resolvent, is defined by

RðC1;C2ÞcdðAÞ ,RðC1;C2Þ VðA ^ �AÞ

An important theorem which was proved in [4, 5] is given in the following [15]:

Theorem 1 A set S of fuzzy clauses is unsatisfiable if and only if, there is a

deduction of empty clause with its confidence of resolvent cd ≠ 0 from S.

Fuzzy Implication:
Typically, a fuzzy rule ‘If X is A then Y is B’ (A and B are fuzzy sets) is expressed

as I(a, b), where I is a fuzzy implication and a and b are membership grades of

A and B respectively. From an algebraic point of view, some implication operators

basically identified in [16] are classified with four families ITi ; i 2 f1; 2; 3; 4g,
where T and T* denote the specific t-norm and correlated t-conorm respectively
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(see, Table 1) to implement the implication operators. Here, we use only two

families I2 and I3 of implication operators. Family I2, often named S-implication,

derives from classical logic form a ! b ¼ :a _ b. Family I3, known as

R-implication, reflects a partial ordering on propositions. With reference to the

t-norms and t-conorms in Table 1, the explicit expressions of fuzzy implication

operators ITi are presented in Table 2.

Similarity Index:
The notion of similarity plays a fundamental role in theories of knowledge and

behaviour and has been dealt with extensively in psychology and philosophy. If we

study the behaviour pattern of children we find that, children have a natural sense

in recognizing regularities in the world and to mimic the behavior of competent

members of their community. Children thus make decisions on similarity

matching. The similarity between two objects suggests, the degree to which

properties of one may be inferred from those of the other. The measure of simi-

larity provided, depends mostly on the perceptions of different observers.

Emphasis should also be given to different members of the sets, so that no one

member can influence the ultimate result. Many measures of similarity have been

proposed in the existing literature [17, 18]. A careful analysis of the different

similarity measures reveals, that it is impossible to single out one particular

similarity measure that works well for all purposes.

Suppose U be an arbitrary finite set, and F ðUÞ be the collection of all fuzzy

subsets of U. For A;B 2 F ðUÞ, a similarity index between the pair {A, B} is

denoted as S(A, B; U) or simply S(A, B) which can also be considered as a function

S : F ðUÞ � F ðUÞ ! ½0; 1�. In order to provide a definition for similarity index, a

number of factors must be considered. We expect a similarity measure S(A, B) to

satisfy the following axioms :

P1. S(B, A) = S(A, B), S(not A, not B) = S(A, B), not A being some negation of A.

P2. 0 ≤ S(A, B) ≤ 1.

Table 1 T-Norms and T-Conorms

T/T * T(a, b) T*(a, b)

M min(a, b) max(a, b)

P a.b a + b − a.b

B max(0, a + b − 1) min(1, a + b)

Table 2 Expression of fuzzy implication operators

ITi M P B

IT1 max(min(a, b), 1 − a) 1 − a + a2.b max(1 − a, b)

IT2 max(l − a, b) 1 − a + a.b min(1 − a + b, 1)

IT3 1 if a� b
b otherwise

1 if a� b
b=a otherwise

min(1 − a + b, 1)

IT4 1 if a� b
1� a otherwise

1 if a� b
1�a
1�b otherwise

min(1 − a + b, 1)
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P3. S(A, B) = 1 if and only if A = B.

P4. For two fuzzy sets A and B, simultaneously not null, if S(A, B) = 0 then

min lAðuÞ;lBðuÞð Þ ¼ 0 for all u ∈ U, i.e., A \ B ¼ U.
P5. If either A � B � C or A 	 B 	 C then S(A, C) ≤ min{S(A, B), S(B, C)}.

We now consider a definition of measure of similarity which has been proposed

in [13, 19].

Definition 4 Similarity Indices Let A and B be two fuzzy sets defined over the

same universe of discourse U. The similarity index S(A, B) of pair {A, B} is

defined by

SðA;BÞ ¼ 1�
P
u

lAðuÞ � lBðuÞj jq

n

0
@

1
A

1
q

;

where n is the cardinality of the universe of discourse and q ≥ 1 is the family

parameter.

Measure of dissimilarity is another measure of comparison of objects in liter-

ature. Many authors like Meunier et al. [17] have defined measure of dissimilarity

in different way. However, we use the dissimilarity measure in the context of

similarity measure and consider measure of dissimilarity of two fuzzy subsets

A and B defined over F ðUÞ, denoted by D(A,B) as D(A, B) = 1 − S(A, B).

Moreover, we assume D(A, B) = S(not A, B) = S(A, notB). Through out the chapter,

we use this concept of dissimilarity.

In the next section, principle of fuzzy resolution is discussed based on the

method of inverse approximate reasoning [12].

3 Fuzzy Resolution Based on Inverse Approximate
Reasoning

Instead of complementary literal in the set of clauses in fuzzy logic, we introduce

here a concept of similar/dissimilar literal. Let us consider two clauses C1 ¼
P _ C1

0 and C2 ¼ P0 _ C2
0. Resolvent of C1 and C2 denoted by resðC1;C2Þ ¼

C1
0 _ C2

0 if and only if similarity between P and P´ is less than Q or equivalently,

dissimilarity between P and P´ is greater than 1 − Q, Q being pre-defined

threshold.

The argument form of simple fuzzy resolution is as follows.

A _ B
not B

A

The scheme for Generalised Fuzzy Resolution is given in Table 3.
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In this case, we can say that the Disjunctive Syllogism holds if B´ is close to

notB, A´ is close to A.

The scheme in inverse approximate reasoning is as given in the following

Table 4. Here, fuzzy sets A and A* are defined over the universe of discourse

U ¼ fu1; u2; . . . ; umg and fuzzy sets B and B* are defined over the universe of

discourse V ¼ fv1; v2; . . .; vng:
We, now, transform the disjunction form of rule into fuzzy implication or fuzzy

relation and apply the method of inverse approximate reasoning to generate the

required resolvent.

We proposed two algorithms SIAR and INAR for inverse approximate rea-

soning based on similarity given in [12]. We apply these methods to obtain a

resolvent in fuzzy resolution.

In classical logic, we have

a ! b 
 :a _ b; 8a; b 2 f0; 1g: ð1Þ
Let us extend this classical logic equivalence to fuzzy logic, by interpreting the

disjunction and negation as a fuzzy union (t-conorm) and a fuzzy complement,

respectively. Fuzzy implication thus obtained is usually referred to in the literature

as S-implication.

We now consider the classical logic tautology which is obtained from (1).

a _ b 
 :a ! b; 8a; b 2 f0; 1g: ð2Þ
Extending the classical equivalence (2) into fuzzy logic, we find that the fuzzy

union is transformed to fuzzy implication. In fuzzy resolution, we deal with rule of

type ‘X is A or Y is B’. Like classical logic, we may transform the rule into ‘If X is

notA then Y is B’ under fuzzy logic. Hence, the equivalent scheme of Table 3 that

conforms fuzzy resolution is considered in Table 5. It is noted that A* is similar to

A, whenever B* is similar to notB.

We have demonstrated in [12] that, if the given data is sufficiently dissimilar to

the consequent part of a given rule then we conclude that the resulting fuzzy set is

sufficiently dissimilar to the antecedent part of the rule. Applying this method, in

the scheme given in Table 5, we get the required resolvent, which establishes the

fuzzy resolution principle. The algorithm is as follows:

Table 3 Generalised fuzzy

resolution
Rule: X is A or Y is B

Fact: Y is B´

Conclusion: X is A´

Table 4 Inverse approximate

reasoning
Rule(p): if X is A then Y is B

Fact(q): Y is B*

Conclusion: X is A*
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ALGORITHM—FRIAR:

Step 1. Translate the rule into fuzzy implication as lR u; vð Þ ¼ I lnotA uð Þ; lB vð Þð Þ,
where I is an implication operator;

Step 2. Take cylindrical extension of B* in V on U 9 V, say R´, defined by

R0 ¼ P
U�V lB vð Þ= u; vð Þ;

Step 3. Compute R* = R ∩ R´, where ∩ denotes any fuzzy conjunction operator;

Step 4. Obtain A* = projR* on U defined by

projR�on U ¼
X

u
Sup
v

lRðu; vÞ=u:

Mathematically, we get

lA�ðuÞ ¼projv2VR�ðu; vÞ
¼ sup

v2V
T lRðu; vÞ; lR0ðu; vÞð Þ

¼ sup
v2V

T lRðu; vÞ; lB�ðvÞð Þ
ð3Þ

where T is a t-norm used to describe fuzzy conjunction operator.

It is expected that, for the observation ‘Y is notB’ and the given premise ‘X is

A or Y is B’ we can conclude ‘X is A’ by fuzzy resolution. However, for the the

observation ‘Y is B’ no conclusion can be drawn. We establish the above criteria

by the following theorem.

Theorem 2 Let B* = not B be normal and R be interpreted by any S-implication

satisfying (3). Then A* ⊇ A for any t-norm T. (consistency)

Corollary Let B* = not B be normal and R be interpreted by any S-implication

satisfying (3). Then A* = A for Lukasiewicz t-norm T.

Example 1 Consider the premises

p : X is LARGE or Y is SMALL
q : Y is not SMALL

in which X and Y are defined over the universes U = {u1,…, u4} and V = {v1,…, v4}
respectively and fuzzy sets labelled by LARGE, SMALL and not SMALL are

defined by

A,LARGE ¼ 0=u1 þ 0:45=u2 þ 0:95=u3 þ 1=u4 ð4Þ

Table 5 Equivalent scheme

conforms fuzzy resolution
Rule: If X is notA then Y is B

Fact: X is B*

Conclusion: X is A*
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B, SMALL ¼ 1=v1 þ 0:65=v2 þ 0:15=v3 þ 0:0=v4 ð5Þ

B� , not SMALL ¼ 0=v1 þ 0:35=v2 þ 0:85=v3 þ 1=v4 ð6Þ

The similarity between fuzzy sets B and B* is 0.0, i.e., fuzzy set B* in obser-

vation is dissimilar to fuzzy set B in the disjunctive form of rule.

Again, by INAR, we study the shape of the resolvent A* for data given in (4),

(5) and (6) with different S-implications and different t-norms, which is described

in the Tables 6, 7 and 8, where M, p and B indicate minimum, product and

bounded product respectively for t-norms.

The result shows that the dissimilarity between B* and B assures the similarity

between A* and A when the reasoning mechanism is handled using inverse

approximate reasoning. Thus the proposition ‘given a disjunction and the negation

of one of the disjuncts, the other may be inferred’ is established in fuzzy logic.

Example 2 Now, we consider the scheme and data of Example 1 except B*.

Consider B* = 0.0/v1 + 0.1225/v2 + 0.7225/v3 + 1.0/v4 in (6). We shall observe the

results for the given premise ‘p’ and data in (4) and (5).

In this case, S(B,B*) = 0.1304, i.e., fuzzy sets B and B* are dissimilar.

Let us execute the reasoning mechanism by INAR. The results are shown in

Table 9, 10 and 11 respectively for different implications and t-norms.

Table 6 A* for Reichenbach S-implication

T/lA* u1 u2 u3 u4 A* S(A, A*)

M 0.35 0.53 0.95 1.0 ⊃ A 0.820

P 0.23 0.45 0.95 1.0 ⊃ A 0.886

B 0.0 0.45 0.95 1.0 A 1.0

Table 7 A* for Kleene-Dienes S-implication

T/lA* u1 u2 u3 u4 A* S(A, A*)

M 0.35 0.45 0.95 1.0 ⊃ A 0.825

P 0.23 0.45 0.95 1.0 ⊃ A 0.886

B 0.0 0.45 0.95 1.0 A 1.0

Table 8 A* for Lukasiewicz S-implication

T/lA* u1 u2 u3 u4 A* S(A, A*)

M 0.35 0.60 0.95 1.0 ⊃ A 0.809

P 0.23 0.51 0.95 1.0 ⊃ A 0.882

B 0.0 0.45 0.95 1.0 A 1.0
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That is, if B* is not exactly match with notB but these are dissimilar, the fuzzy

resolvent can be obtained through inverse approximate reasoning method. The

technique is new.

Theorem 3 Let B* = B be normal and R be interpreted by any implication sat-

isfying (3). Then A* = UNKNOWN for any t-norm T.

We prove the theorem for Reichenbach S-implication and T = min only, but the

above theorem can be proved for any other implications and any other t-norms in

the similar way.

Example 3 In Example 1, if we take B* = B ≜ SMALL = 1.0/v1 + 0.65/v2 + 0.15/v3
+ 0.0/v4 in (6) then either by SIAR or by INAR we get A* = 1.0/u1 + 1.0/u2 + 1.0/u3
+ 1.0/u4 = UNKNOWN, for all of the cases.

Theorem 4 Let B* = not B be normal and R be interpreted by Rescher-Gaines

R-implication satisfying (3). Then A* ⊆ A for any t-norm T.

Example 4 For the data given in Example 1, applying INAR for Rescher-Gaines

R-implication combined with any t-norm T, we get the fuzzy resolvent A* as

A* = 0.0/u1 + 0.35/u2 + 0.85/u3 + 1.0/u4 which is a subset of A and

S(A, A*) ≈ 0.929. It establishes Theorem 4.

Table 9 A* for Reichenbach S-implication

T/lA* u1 u2 u3 u4 A* S(A, A*)

M 0.15 0.53 0.95 1.0 ⊃A 0.9144

P 0.11 0.45 0.95 1.0 ⊃A 0.9458

B 0.0 0.45 0.95 1.0 A 1.0

Table 10 A* for Kleene-Dienes S-implication

T/lA* u1 u2 u3 u4 A* S(A,A*)

M 0.15 0.45 0.95 1.0 ⊃ A 0.9250

P 0.11 0.45 0.95 1.0 ⊃ A 0.9458

B 0.0 0.45 0.95 1.0 A 1.0

Table 11 A* for Lukasiewicz S-implication

T/lA* u1 u2 u3 u4 A* S(A, A*)

M 0.15 0.60 0.95 1.0 ⊃ A 0.8939

P 0.11 0.45 0.95 1.0 ⊃ A 0.9458

B 0.0 0.45 0.95 1.0 A 1.0

Fuzzy Resolution with Similarity-Based Reasoning 369



We, now, apply another method SIAR [12] to obtain fuzzy resolvent for the

scheme given in Table 3. Let us consider another classical logic equivalence

a _ b 
 b _ a 
 :b ! a ð7Þ
The classical logic equivalence (7) can be extended in fuzzy logic with

implication and negation function. Then we transform the rule in Table 3 into its

equivalent form ‘p1 : If Y is notB then X is A’ over the domain of [0,1]V 9 U. A

fuzzy rule may be defined by means of a conjunction for defining a fuzzy Cartesian

product rather than in terms of a multivalued logic implication [12, 20].

Therefore, the rule in p1 is transformed into fuzzy relation R as

lRðv; uÞ ¼ Tð1� lBðvÞ;lAðuÞÞ; ð8Þ
where T is a t-norm describing a fuzzy conjunction.

Now, we can apply our method SIAR described in [12]. The algorithm is as

follows :

ALGORITHM—FRSIAR:

Step 1. Translate given premise p1 and compute R(not B, A) by (8);

Step 2. Compute similarity measure S(not B, B*) using some suitable definition;

Step 3. Modify R(not B, A) with S(not B, B*) to obtain the modified conditional

relation R(not B, A|B*) using scheme in [12];

Step 4. Use sup-projection operation on R(not B, A|B*) to obtain A* as

lA�ðuÞ ¼ sup
v

lRðnot B;AjB�Þðv; uÞ: ð9Þ

We now illustrate the method applied here by some suitable examples.

Example 5 Let us consider the data of Example 1. For completely dissimilar B*

with B and for different t-norms T, the shapes of fuzzy resolvent A* in U are

studied here, when we apply SIAR. In each case, it turns out exactly the fuzzy set

A which corresponds ‘LARGE’.

Example 6 Let us consider the data in Example 1 where B* is not completely

dissimilar with B, but dissimilarity exceeds certain threshold. Applying SIAR we

observe the shapes of A* and compare it with given A for different t-norms. Since

S(A, A*) ≈ 0.92, i.e., A* is almost similar to A, it establishes fuzzy resolution in

reasoning.

In the above methods, we applied INAR or SIAR when the disjunctive

knowledge can be transformed into fuzzy implication. However, it may not always

be the case. Moreover, when the expert knowledge is in complex form of dis-

junction it is difficult to apply INAR or SIAR. So, we extend our method in such a

way that can deal with complex premises.
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4 Fuzzy Resolution with Complex Clauses

In this section, we extend the scheme given in Table 3. Let X, Y and Z be three

linguistic variables that take values from the domain U, V and W respectively. We

consider the derivation of an inexact conclusion ‘r’ from two typical knowledge

(premises) ‘p’ and ‘q’ according to the scheme given in Table 12, where A’s, B’s

and C’s are approximations of possibly inexact concepts by fuzzy sets over U, V

and W respectively. In 1993, Raha and Ray [11] applied Zadeh’s [21] concept of

approximate reasoning with the application of possibility theory to model a

deductive process ‘Generalised Disjunctive Syllogism’. They used projection

principle and conjunction principle to deduce fuzzy resolvent. Here, we investigate

another method which is described in the following algorithm.

ALGORITHM—FRCEP:

Step 1. Translate the premise p into fuzzy relation

R1 � FðU � V Þ as lR1
u; vð Þ = minðlAðuÞ; 1� lBðvÞÞ;

Step 2. Translate the premise q into fuzzy relation

R2 � FðV �W Þ as lR2
v;wð Þ = minðlB0ðvÞ; lCðwÞÞ;

Step 3. Take cylindrical extension of R1 in U 9 V on U 9 W, say R1´, defined by

R0
1 ¼

X
U�V�W

lR1
ðu; vÞ=ðu; v;wÞ;

Step 4. Take cylindrical extension of R2 in V 9W on U 9 V 9W, say R2´, defined

by

R0
2 ¼

X
U�V�W

lR2
ðv;wÞ=ðu; v;wÞ;

Step 5. Construct R´ = R1´ ∩ R2´, where ∩ denotes any fuzzy conjunction

operator;

Step 6. Compute S(notB, B´) and, say, s;

Step 7. Modify R´ with s by a Scheme in [12] and, say, R*;

Step 8. Obtain R = projR* on U 9 W defined by

projR� on U �W ¼
X
U�W

sup
v

lR�ðu; v;wÞ=ðu;wÞ;

Step 9. Obtain A’ and C’ by projecting R separately on U and W such that

Table 12 Generalised fuzzy

resolution-extended form
p: X is A or Y is B

q: Y is B´ or Z is C

r: X is A´ or Z is C´
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A0 ¼ projUR ¼
X
U

sup
w

lRðu;wÞ=u and

C0 ¼ projWR ¼
X
W

sup
u

lRðu;wÞ=wÞ

Symbolically, the fuzzy resolvent R is obtained by, for u ∈ U, v ∈ V and w ∈W,

lR(u, w)

¼ sup
v

lR�ðu; v; wÞ

¼ sup
v

s ! lR0ðu; v; wÞf g;

¼s ! sup
v

lR0ðu; v; wÞ

¼s ! sup
v

T lR10ðu; v; wÞ; lR20ðu; v; wÞ
� �

¼s ! sup
v

T lR1
ðu; vÞ; lR2

ðu; vÞ� �
¼s ! sup

v
T min lAðuÞ; 1� lBðvÞð Þ;min lB0ðvÞ; lCðwÞð Þð Þ

¼s ! T min lAðuÞ; 1� inf
v
lBðvÞ

� �
;min sup

v
lB0ðvÞ; lCðwÞ

� �� �

¼s ! T lAðuÞ; lCðwÞð Þ; iff 1� inf
v
lBðvÞ ¼ sup

v
lB0ðvÞ ¼ 1:

This derivation can be achieved if there is a v0 ∈ V such that μB (v0) = 0 and

μB´(v0) = 1 which is possible if the fuzzy sets B and B´ are dissimilar, i.e., notB and

B are similar for any implication → in derivation. We observe two criteria here.

Criterion 1: Taking x → y = min(1, y/x), we get

lRðu;wÞ ¼ minð1; T lAðuÞ; lCðwÞð Þ=sÞ;
Criterion 2: Taking x → y = 1 − x + xy, we get

lRðu;wÞ ¼ 1� sþ T lAðuÞ; lCðwÞð Þ:s:
From the two criteria above, we observe that when s = S(notB, B´) = 0, i.e.,

when B and B´ are completely similar, R = U 9W = UNKNOWN. Therefore, fuzzy

resolvent could be anything. However, if s is close to unity, i.e., if B and B´ are

almost dissimilar we have R is close to
P

U�W
TðlAðuÞ; lCðwÞÞ=ðu;wÞ which, after

re-translation, gives ‘If X is A or Z is C’. Again, we observe that a small change in

B´ produces a small change in fuzzy resolvent—which ensures our method is

reasonable one.

Let us consider a scheme given in Table 13 where variables Xi (i = 1, 2,…,m) and
the respective fuzzy subsets Ai (i = 1, 2,…,m) are defined on universeUi (i = 1,2,…,m)
respectively; variablesYj (j=1, 2,…,n) and the respective fuzzy subsetsBj (j=1, 2,…,n)
are defined on universeVj (j= 1, 2,…, n) respectively. (Ak, Bl) is almost dissimilar over

the same universe Uk (= Vl) with the degree of confidence of keyword Ak is cd
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(Ak) = 1 − S(Ak,Bl) and the corresponding variables Xk,Yl, defined over Uk (= Vl)

respectively, assign same linguistic variable.

The algorithm is as follows:

ALGORITHM—FRAE:

Step 1. Check for pair of literals (Ai, Bj), ∀ i, j from clauses C1 and C2 whether

these are defined over same universe and are assigned by same linguistic

variable; Otherwise, resolution is not possible;

Step 2. If dissimilarity D(Ak, Bl) is high, i.e., D(Ak, Bl)[1 − Q, Q is pre-defined

threshold then go to the next step and say, Ak is keyword; Otherwise, there

is no fuzzy resolvent;

Step 3. Modify Bj either by Bj´ = min(1, Bj/D(Ak, Bl)) or by Bj´ = 1 − (1 − Bj).S

(Ak, Bl));

Step 4. Fuzzy resolvent is R(C1, C2) = A1´ ∨ ··· ∨ Am´ ∨ B1´∨· · ·∨Bn´ and

R(C1, C2)cd = cd(Ak) which is measured as cd(Ak) = D(Ak, Bl);

Step 5. Repeat the process until empty clause, with the confidence cd ≠ 0, is

derived for more than two clauses.

Hence, we prove the (un)satisfiability of a theorem by the deduction of empty

clause from a set of fuzzy clauses.

Let us consider an example to illustrate the method. Suppose variables that

range over finite sets or can be approximated by variables ranging over such sets.

Example 7 Let us consider the premises

p : X is LARGE or Y is SMALL or Z is LARGE;
q : X is not LARGE;
r : Y is not SMALL;

in which X, Y and Z are defined over the universes U = {u1,…, u4}, V = {v1,…, v4}
and W = {w1, w2, w3, w4} respectively. Fuzzy sets labelled by LARGE, SMALL

and not SMALL defined over the universes U, V and W respectively are given in

Example 1 and fuzzy set LARGE defined over W is given by

C, LARGE ¼ 0=w1 þ 0:20=w2 þ 0:75=w3 þ 1=w4:

A0 , not LARGE ¼ 1:0=u1 þ 0:55=u2 þ 0:05=u3 þ 0:0=u4:

We execute the following steps with the given data, using ALGORITHM-

FRCEP.

Table 13 Generalised fuzzy resolution-another extension

C1:X1 is A1 or X2 is A2 or ··· or Xm is Am;

C2:Y1 is B1 or Y2 is B2 or ··· or Yn is Bn;

R(C1,C2): X1 is A1´ or ··· or Xm is Am´

or Y1 is B1´ or ··· or Yn is Bn´
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Execution:

Step 1. Compute the fuzzy relation R1 = A ⋁ B ⋁ C by

lR0ðu; v;wÞ ¼ minð1� lAðuÞ; 1� lBðvÞ; lCðwÞÞ;
Step 2. Extend A′ in U cylindrically on U 9 V 9 W as

R2 ¼
X

U�V�W

lA0 ðuÞ=ðu; v;wÞ;

Step 3. Compute R´ = R1 ∩ R2 by lR0ðu; v;wÞ ¼ TðlR1ðu; v;wÞ; lR2ðu; v;wÞÞ,
taking fuzzy conjunction ∩ as t-norm T;

Step 4. Modify R´ with Sð1� lAðuÞ; lA0 ðuÞÞ ¼ s1 to get R* as lR� ðu; v;wÞ ¼
1� ð1� lR0 ðu; v;wÞÞ � s1;

Step 5. Project R* on V 9 W such that

R ¼
X
V�W

sup
u

lR�ðu; v;wÞ ¼
0:00 0:00 0:00 0:00
0:00 0:20 0:45 0:45
0:00 0:20 0:75 0:85
0:00 0:20 0:75 1:00

0
BB@

1
CCA

Step 6. Extend B´ in V cylindrically on V 9 W as R3 ¼
P
V�W

lB0=ðv;wÞ
Step 7. Compute R´´ = R ∩ R3 by lR´´(v, w) = T(lR(v, w), lR3(v, w)), taking fuzzy

conjunction ∩ as t-norm T;

Step 8. Modify R´´ with S(1 − lB(v), lB´(v)) = s2 to get R** as lR**(v, w) =

1 − (1 − lR´´ (v, w))ñs2;

Step 9. Project R** on W such that

C0 ¼
X
w

sup
v

lR��ðv;wÞ ¼ 0=w1 þ 0:20=w2 þ 0:75=w3 þ 1=w4;

which is completely similar to C, i.e., S(C´, C) = 1.

Even if A´ and B´ in the respective premises p and q, are not completely

dissimilar to A and B respectively, but the dissimilarity measures attain values

greater than certain predefined threshold then we can get a fuzzy resolvent C´

which is almost similar to C, using FRCEP.

Suppose,

A0 ¼ 1:0=l1 þ 0:3025=l2 þ 0:0025=l3 þ 0:0=l4;

B
0 ¼ 0:0=v1 þ 0:1225=v2 þ 0:7225=v3 þ 1:0=v4:

S(notA, A´) = 0.873992; S(notB, B´) = 0.869604 are computed.

Then, it yields C´ = 0.24/w1 + 0.39/w2 +0.81/w3 + 1.0/w4 with S(C, C´)

= 0.843441.

Therefore, it is possible to get a fuzzy resolvent from a set of fuzzy clauses if

there is a pair of dissimilar literals contained in the respective clauses.
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5 Example in Real Life

The statements in real life are mostly fabricated by vague, imprecise, uncertain and

incomplete information which can be dealt with using fuzzy logic. In daily life, we

have to often decide whether one statement follows from some other statements.

Fuzzy resolution can be a way to deal with such phenomena. Let us consider the

following example.

Example 8 Suppose, the stock price is low if the prime interest rate is high.

Suppose, also, people are not happy when stock price is low. Assume that the

prime interest rate is high. Can we conclude that people are not happy? Again, if

we assume that the interest rate is very high, how can we conclude about the

happiness of people?

For this problem, we construct the rule base in Table 14.

(i) For Observation 1: The above scheme may be transformed into the equivalent

scheme given in Table 15. in which prime interest rate, stock price and happiness

are defined over the respective universes U = [0, 20]%, V = Rs. [10,000, 22,000]

and W = [0,100]. Fuzzy sets defined over the respective universes U, V and W are

given in Table 16.

The membership grade of fuzzy complement is defined by 1 − a here, where

a is the membership grade of a fuzzy set.

The similarity between complement of fuzzy set LOW in p and fuzzy set

not LOW in q (denoted by s1) is 1.0. Therefore, in two clauses, fuzzy sets

are dissimilar. Hence, we can resolve upon these dissimilar pair and apply

ALGORITHM—FRCEP to get the resolvent. Here,

R1 ¼
X
U�V

minðlnot HIGHðuÞ; 1� lLOW ðvÞÞ=ðu; vÞ

R2 ¼
X
V�W

minðlnot LOW ðuÞ; lnot HAPPY ðwÞÞ=ðv;wÞ

We construct R´ = R1´ ⋂ R2´, where ∩ denotes any fuzzy conjunction operator

(here, ⋂ = min) and

R10 ¼
P

U�V�W
lR1

ðu; vÞ=ðu; v;wÞ;
R20 ¼

P
U�V�W

lR2
ðv;wÞ=ðu; v;wÞ:

WemodifyR´ with dissimilarity s1 = 1.0 as we get lR* = (u, v,w) = 1− (1− lR´)·s1
and we get

R ¼ projR� on U �W

Let us extend the fuzzy sets ‘HIGH’ cylindrically in the premise r on U 9 W as

R3 ¼
X
U�W

lHIGH=ðu;wÞ;
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and compute R´´ = R ∩ R3 by

lR00ðu;wÞ ¼ TðlRðu;wÞ; lR3
ðu;wÞÞ;

taking fuzzy conjunction ∩ as t-norm T (here, ∩ = min);

Next, we calculate the dissimilarity measure of the fuzzy set not HIGH in p and

the fuzzy set HIGH in r (denoted by s2) and R´´ is induced by the dissimilarity

measure s2 = 1 to get R** as

lR�� ðu;wÞ ¼ 1� ð1� lR00 ðu;wÞÞ � s2;
At last, we project R** on W such that

C0 ¼
X
W

sup
v

lR�� ðu;wÞ

¼ 0:50=0þ 0:50=25þ 0:50=50þ 0:25=75þ 0:0=100

and S(C´, not HAPPY) = 0.75, which is rather similar to not HAPPY.

(ii) For Observation 2: In this case, the observation is changed into

r : The prime interest rate is very HIGH

to the scheme given in Table 15.

Table 14 Rule base and

observations
Rule 1: IF the prime interest rate is HIGH

THEN the stock price is LOW;

Rule 1: IF the stock price is LOW

THEN people are not HAPPY;

Observation 1: The prime interest rate is HIGH;

Observation 2: The prime interest rate is very HIGH;

Table 15 Equivalent scheme

for observation 1
p: The prime interest rate is not HIGH

OR the stock price is LOW;

q: The stock price is not LoW

OR the people are not HAPPY;

r: The prime interest rate is HIGH;

Table 16 Fuzzy sets in

scheme
HIGH = 0.0/0 + 0.0/2 + 0.1/4 + 0.3/6 + 0.5/8

+0.6/10 + 0.7/12 + 0.9/14 + 1.0/16 (⊂ U)

LOW = 1.0/10, 000 + 0.8/12,000 + 0.75/14, 000

+0.5/16,000 + 0.3/18, 000 + 0.1/20,000

+0.0/22,000 (⊂ V)

HAPPY = 0.0/0 + 0.25/25 + 0.5/50 + 0.75/75

+1.0/100 (⊂ W)
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Describing the membership grades of the fuzzy set ‘very HIGH’ in q as a2,

where a is the membership grades of the fuzzy set ‘HIGH’ defined over U, defining

other parameters in the same way and executing in a similar way, we can derive a

fuzzy set

C0 ¼ 0:46=0þ 0:46=25þ 0:46=50þ 0:37=75þ 0:16=100;

the similarity of which is 0.71 with the fuzzy set not HAPPY in the premise q,

whenever dissimilarity between ‘not HIGH’ ⊂ U in premise p and ‘HIGH’ ⊂ U in

observation r is 0.84.

Hence, in either case, we can derive a conclusion like ‘people are not so happy’

for the given observations. Therefore, our resolution method is effective in

deriving a conclusion from some given statements in real life.

6 Conclusion

This chapter presented a resolution principle for fuzzy formulae based on simi-

larity and approximate reasoning methodology. Similarity is inherent in approxi-

mate reasoning and resolution deduction can be used as a rule of inference to

generate new clause from a given set of clauses. The essential idea of resolution of

two clauses is to search for a literal in a clausal formula that is almost comple-

mentary to a literal in the other form. The clause formed by the disjunction of the

remaining literals and subsequent removal of the pair of almost complementary

literals is a logical consequence. If we put the resolvent in the set of clauses its

behaviour (satisfiability) never changes. It can be applied directly to any set S of

clausal formulae (not necessarily to ground clauses) to test the (un)satisfiability of S.

To test the unsatisfiability it checks whether S contains the empty clause, (as a

resolution deduction). This could be a powerful technique in constructing a proof of

a theorem using refutation procedure. Examples cited in the chapter attempted to

demonstrate how resolution can be effectively used to construct a proof of a theorem

or to make a decision in real life. Inverse approximate reasoning may be applied to

model different goal-directed search techniques. We apply inverse approximate

reasoning method to avoid the inherent problem of GMP. Instead of testing com-

plementary literals we use dissimilarity concept of fuzzy literals.

References

1. Robinson, J.A.: A machine oriented logic based on the resolution principle. J.ACM 12(1),
23–41 (1965)

2. Lee, R., Chang, C.L.: Some properties of fuzzy logic. Inf. Control 19(1), 417–431 (1971)

3. Lee, R.: Fuzzy logic and the resolution principle. J. ACM 19(1), 109–119 (1972)

4. Shen, Z., Ding, L., Mukaidono, M.: Fuzzy resolution principle. In: Proceedings of the

Eighteenth International Symposium on Multivalued Logic, Spain, May 24–26, 1988

Fuzzy Resolution with Similarity-Based Reasoning 377



5. Mukaidono, M.: Fuzzy inference of resolution style. In: Yager, R.R. (ed.) Fuzzy Set and

Possibility Theory, pp. 224–231. Pergamon Press, New York (1982)

6. Dubois, D., Prade, H.: Necessity measure and the resolution principle. IEEE Trans. Syst. Man

Cybern. 17(3), 474–478 (1987)

7. Kim, C., Kim, D.S., Park, J.: A new fuzzy resolution principle based on the antonym. Fuzzy

Sets Syst. 113(2), 299–307 (2000)

8. Fontana, F.A., Formato, F.: A similarity-based resolution principle. Int. J. Intell. Syst. 17(9),
853–872 (2002)

9. Sessa, M.I.: Approximate reasoning by similarity-based sld resolution. Theor. Comput. Sci.

275, 389–426 (2002)

10. Habiballa, H., Novak, V.: Fuzzy general resolution. In: Proceedings of International

Conference Aplimat 2002, pp. 199–206. Slovak Technical University, Bratislava (2002)

11. Raha, S., Ray, K.S.: Approximate reasoning based on generalised disjunctive syllogism.

Fuzzy Sets Syst. 61(2), 143151 (1994)

12. Mondal, B., Raha, S.: Similarity based inverse approximate reasoning. IEEE Trans. Fuzzy

Syst. 19(6), 10581071 (2011)

13. Mondal, B., Mazumdar, D., Raha, S.: Similarity in approximate reasoning. Int. J. Comput.

Cognit. 4(3), 46–56 (2006)

14. Kelly, J.J.: The Essence of Logic. Prentice-Hall, New Delhi (1997)

15. Zadeh, L.A.: The concept of linguistic variable and its application to approximate reasoning:

Part I and part II. Inf. Sci. 8, 301–357 (1975)

16. Lazzerini, B., Marcelloni, F.: Some considerations on input and output partitions to produce

meaningful conclusions in fuzzy inference. Fuzzy Sets Syst. 113(2), 221–235 (2000)

17. Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of

objects. Fuzzy Sets Syst. 84(2), 143–153 (1996)

18. Zwick, R., Carlstein, E., Budescu, D.V.: Measures of similarity among fuzzy concepts: a

comparative analysis. Int. J. Approx. Reason. 1(2), 221–242 (1987)

19. Raha, S., Pal, N.R., Ray, K.S.: Similarity based approximate reasoning: methodology and

application. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 32(4), 541547 (2002)

20. Ughetto, L., Dubois, D., Prade, H.: Implicative and conjunctive fuzzy rule -a tool for

reasoning from knowledge and examples. In: Proceedings of AAAI/IAAI’1999, Menlo Paru,

CA, USA, pp. 214–219 (1999)

21. Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J.E., Michie, D., Mikulich, L.I.

(eds.) Machine Intelligence, vol. 9, pp. 149–194. Elsevier, New York (1979)

Authors’ Biography

Banibrata Mondal received B.Sc. and M.Sc. degrees in Mathematics from Visva-Bharati, Santiniketan,

West Bengal, India. He is currently working toward the Ph.D. degree with the Department of Mathe-

matics, Visva Bharati. His current research interest includes formulation of inverse approximate rea-

soning based on similarity.

Swapan Raha received B.Sc. and M.Sc. in Mathematics and M.Tech. (Computer Science) from Calcutta

University, Kolkata, India. He received the Ph.D. degree from Indian Statistical Institute, Kolkata. He is

currently a Professor with the Department of Mathematics, Visva Bharati, Santiniketan, West Bengal,

India. His research interests include fuzzy logic and approximate reasoning, fuzzy automata and fuzzy

control.

378 B. Mondal and S. Raha


	23 Fuzzy Resolution with Similarity-Based Reasoning
	Abstract
	1�Introduction
	2�Preliminaries
	3�Fuzzy Resolution Based on Inverse Approximate Reasoning
	4�Fuzzy Resolution with Complex Clauses
	5�Example in Real Life
	6�Conclusion
	References


