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Abstract Stability of a fuzzy control system is closely related to the analytical
structure of the fuzzy controller, which is determined by its components such as
input and output fuzzy sets and fuzzy rules. We first characterize the mathematical
input–output structure of fuzzy controllers and then utilize the structure charac-
teristics to advance stability analysis. We study how the components of a general
class of Mamdani fuzzy controllers dictate the controller’s input–output relation-
ship. The controllers can use input fuzzy sets of any types, arbitrary fuzzy rules,
arbitrary inference methods, either Zadeh or the product fuzzy logic AND oper-
ator, singleton output fuzzy sets, and the centroid defuzzifier. We theoretically
prove that regardless of the choices for the other components, if and only if Zadeh
fuzzy AND operator and piecewise linear (e.g., trapezoidal or triangular) input
fuzzy sets are used, the fuzzy controllers become a peculiar class of nonlinear
controllers with the following interesting characteristics: (1) they are linear with
respect to input variables; (2) their control gains dynamically change with the
input variables; and (3) they become linear controllers with constant gains around
the system equilibrium point. These properties make the fuzzy controllers suitable
for analysis and design using conventional control theory. This necessary and
sufficient condition becomes a sufficient condition if the product AND operator is
employed instead. We name the fuzzy controllers of this peculiar class type-A
fuzzy controllers. Taking advantage of this new structure knowledge, we have
established a necessary and sufficient local stability condition for the type-A fuzzy
control systems. It can be used not only for the stability determination, but also for
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practically designing a type-A fuzzy control system that is at least stable at the
equilibrium point even when model of the controlled system is mathematically
unknown. Three numerical examples are provided to demonstrate the utility of our
new findings.

1 Introduction

Efforts have been made to rigorously derive and study analytical structure of fuzzy
controllers. By analytical structure, we mean the mathematical relationship
between the input and output of a fuzzy controller. Precise understanding of the
structure is fundamentally important because it can enable one to analyze and
design fuzzy control systems more effectively with the aid of conventional control
theory [2, 7, 14]. The analytical structure is determined by a fuzzy controller’s
components including input fuzzy sets, output fuzzy sets, fuzzy rules, fuzzy
inference, fuzzy logic operators, and defuzzifier. Different component choices
obviously result in different analytical structures. The explicit structures of some
fuzzy controllers have been derived [3, 11] (recently, the explicit structures of
some type-2 fuzzy controllers have been investigated [1, 15]). They are related to
classical controllers such as PID control [4, 10, 13] and sliding mode control [5].
No work, however, has been reported in the literature that characterizes analytical
structures into different types with respect to component choices.

Our motivations for the current study are two folds—we first characterize the
mathematical input–output structure of fuzzy controllers of a broad class by class
and then utilize the structure characteristics and class to advance system stability
analysis. Structurally speaking, such classification can produce structure infor-
mation that is broader than what an individual analytical structure can because one
class can cover many different fuzzy controllers with various nonlinear input–
output structures. Subsequently, the structure classification can provide useful
guidelines for the controller developer to choose appropriate types of the com-
ponents (e.g., triangular fuzzy sets instead of Gaussian ones) at the early devel-
opment stage, reducing time and effort on design and analysis in practice. Up to
date, triangular and trapezoidal fuzzy sets have been most widely used for input
variable fuzzification whereas other types (e.g., Gaussian and bell-shape fuzzy
sets) are utilized to a lesser extent. As to fuzzy logic AND operators, Zadeh type
and the product type are used far more often than any other types. As a matter of
fact, the remaining types have hardly been used. Historically, these current pre-
ferred choices were determined mainly based on the results of a great deal of the
trial-and-error effort, computer simulation study and the empirical development of
successful fuzzy control applications. No analytically rigorous reasons in the
context of conventional control theory have been given in the literature. In this
paper, we attempt to provide a more rigorous answer and show that these popular
choices are indeed theoretically sensible.
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Another important benefit of classifying fuzzy controller structures is to make
stability analysis more tractable and effective for a wide class of fuzzy controllers
as one could concentrate on one class of fuzzy controllers a time instead of on all
fuzzy controllers at once. Consequently, the stability results could be less con-
servative and more practically meaningful. In this paper, we will develop an
analytical stability criterion that can be used to judge (local) stability of a broad
class of fuzzy control systems regardless of the availability of the mathematical
model of the system under control. The criterion can also be utilized to analytically
design a stable fuzzy control systems not only when the system model is given, but
also when it is unknown.

2 Configuration of a General Class of Mamdani Fuzzy
Controllers

This class of Mamdani fuzzy controllers has m input variables, designated as
xiðnÞ; i ¼ 1; 2; . . .;m, where n signifies sampling instance. xi(n) is computed using
the current and/or historical output of a dynamic plant to be controlled (e.g.,
y(n) and y(n-1)) as well as target output signal S(n). This means the input space to
be m-dimensional. xi(n) is multiplied by a scaling factor ki, resulting in the scaled
input variable Xi(n). The universe of discourse for Xi(n) is [ai, bi]. Assuming that
each of the intervals is divided into Mi-1 subintervals, all the subintervals of the
m intervals produce a total of

U ¼
Ym

i¼1

Mi � 1ð Þ

m-dimensional ‘‘blocks’’ (i.e., divisions), each is designated as Hi; i ¼ 1; . . .;U.
Mi input fuzzy sets are defined over [ai, bi]. Like most fuzzy controllers in the

literature, each subinterval has two fuzzy sets defined over it. The j-th fuzzy set for
Xi(n) is designated as ~Ai;j whose membership function is denoted l~Ai;j

ðxiÞ. The

fuzzy sets can be any types. Of particular interest to this study is the piecewise
linear fuzzy sets. Two examples of such fuzzy sets are illustrated in Fig. 1 (these
examples are hypothetical and similar fuzzy sets are rarely used by fuzzy control
in practice. We show this type of more dramatic examples to ensure a broad
coverage). Note that the trapezoidal and triangular types, the most widely-used
types among all the fuzzy set types available, are the special cases of the piecewise
linear type. If l~Ai;j

ðxiÞ is of the trapezoidal type, it can be represented by

l~Ai;j
ðxiÞ ¼ bij � xiðnÞ þ kij
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where kij and bij are constants. bij is a constant taking different values in the
different segments of [ai, bi]. When xiðnÞ 2 ai; a

0
i

� �
; bij� 0 and when

xiðnÞ 2 b
0

i; bi

� �
; bij� 0, where a

0

i\b
0

i. When xiðnÞ 2 a
0

i; b
0

i

� �
; l~Ai;j
ðxiÞ ¼ 1. Obvi-

ously, the trapezoidal type becomes the triangular type if a
0
i ¼ b

0
i.

The fuzzy controllers use a total of X ¼
Qm

i¼1 Mi fuzzy rules, each of which is
in the following format:

IF X1ðnÞ is ~A1;I1 AND. . .AND XmðnÞ is ~Am;Im THEN uðnÞ is ~Vk

where ~Vk is an output fuzzy set of the singleton type for the output variable
u(n) whose universe of discourse is [UL, UH]. That is, ~Vk is nonzero only at one
location in the interval and the nonzero value is designated as Vk. The fuzzy AND
operator can be Zadeh type (i.e., the minimum operator) or the product type, but
not both at the same time for the rule base. As for reasoning, any fuzzy inference
method may be used in the rules. It will produce the same inference outcome
because the output fuzzy sets are of the singleton type. The popular centroid
defuzzifier is employed to combine the inference outcomes of the individual rules:

uðnÞ ¼
PX

h¼1 lhðxÞ � VhPX
h¼1 lhðxÞ

ð1Þ

Here, x ¼ ½x1ðnÞ � � � xmðnÞ� is the input vector and lhðxÞ is the resulting mem-
bership of executing all the fuzzy logic AND operations in the h-th rule whereas Vh

signifies the nonzero value of the singleton output fuzzy set in the rule.

rm
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1

0
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rm+1

)(
1,

~ imiA
x

+
µ)(

,
~ imiA
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Fig. 1 Illustrative definition of piecewise linear fuzzy sets. Shown are two hypothetical ones.
The widely-used triangular and trapezoidal fuzzy sets are their special cases
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3 Structure Characterization and Local Stability
Determination

3.1 Structure Characterization

In control theory, a general nonlinear controller is described by uðnÞ ¼ f ðxÞ and a
controller is linear if f is linear, that is

uðnÞ ¼ f1x1ðnÞ þ � � � þ fmxmðnÞ þ f0 ð2Þ

where fi, i ¼ 1; . . .;m , is a constant gain and f0 is a constant control offset term.
We use this formalism as a base to classify the fuzzy controllers into two types.

Definition 1 A fuzzy controller of the general class is defined as local type-A
fuzzy controller in an m-dimensional region of input space if its input–output
relation satisfies

uðnÞ ¼ c1ðxÞx1ðnÞ þ � � � þ cmðxÞxmðnÞ þ c0ðxÞ ð3Þ

ci(x), gain for xi(n), must be either a constant or a fractional expression whose
numerator is constant. All the terms, from x1(n) to xm(n), must be present.
c0(x) must be either a constant (including 0) or a fractional expression whose
numerator does not contain aixiðnÞ; i ¼ 1; . . .;m; or their linear combination (ai is
constant).

Definition 2 A fuzzy controller is defined as local type-B fuzzy controller in the
region if it is not of local type-A.

Definition 3 If a fuzzy controller is of local type-A in every region of input space,
it is defined as a global type-A fuzzy controller. Otherwise, it is defined as a global
type-B fuzzy controller.

A type-A fuzzy controller, global or local, possesses interesting properties—it
is linear with respect to its input variables and nonlinear in terms of the gains,
ci(x), which vary with x. On the other hand, a type-B fuzzy controller cannot be
linear with respect to input variables.

We are now ready to formally characterize the structure of the fuzzy
controllers.

Theorem 1 A necessary and sufficient condition for a Mamdani fuzzy controller
of the general class that uses Zadeh AND operator to be of global type-A is that all
of its input fuzzy sets are piecewise linear.

Proof We first prove the necessity of the condition—if at least one of the input
fuzzy sets involving a particular m-dimensional region of the input space is not
piecewise linear, the fuzzy controller cannot be of global type-A.
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Without loss of generality, assume that l~Ai;j
ðxiÞ, a non-piecewise linear func-

tion, is the membership function of the j-th fuzzy set for xi(n). To derive the input–
output analytical relationship for the fuzzy controllers, the input space must be
divided into many m-dimensional regions in such a way that in each of the regions
one and only one of the membership functions in a fuzzy rule will always be the
smallest [13]. As a result, that membership function will be the resulting mem-
bership function for that rule after Zadeh AND operation is carried out. The total
number of such regions depends on m and the shape of the input fuzzy sets.
Inevitably, l~Ai;j

ðxiÞ will be the smallest membership function in at least one region

(or this fuzzy set would not be useful and hence should be removed used—cannot
be true). After this step of considering the individual rules, the obtained regions
must be put together (i.e., superimposed) so that all the rules can be considered at
the same time. This process will create the final m-dimensional regions. Let us
assume that there are a total of U regions, in each of which, up to 2m fuzzy rules
will be involved (here we assume, without loss of generality, that the input fuzzy
set for xi(n) intersects only with its adjacent (two) fuzzy sets and intersects only
once with each of them). Let Wi be the number of the rules involved in the i-th
final region and suppose that in the region the input fuzzy sets for x1(n) is the
smallest for a1 rules, x2(n) for a2 rules,…, and xm(n) for am rules, where

Pm
p¼1 ap ¼

Wi (some ap may be 0). For the i-th final region, we get the input–output relation:

uðnÞ ¼
Pm

j¼1

Paj

k¼1 lhk
ðxjÞ � VhkPm

j¼1

Paj

k¼1 lhk
ðxjÞ

ð4Þ

where lhk
ðxjÞ represents the resulting smallest membership function and Vhk is the

singleton output fuzzy set involved in the fuzzy rule. Because Vhk represents the
rule consequent and all the rule consequents should not have the same singleton
fuzzy sets, thus the above equation should not/cannot be equal to Vhk for all the
final regions. Hence, if at least one input fuzzy set, say l~Ai;j

ðxiÞ, is not linear or

piecewise linear in one of the final regions, u(n) in that region will not be able to be
written in the form of (3) because xi(n) cannot be factored out of l~Ai;j

ðxiÞ. That is to

say that the fuzzy controller cannot be a local type-A controller in that region and
therefore the fuzzy controller cannot be a global type-A controller.

Now let us prove the condition to be sufficient. When all the input fuzzy sets are
linear or piecewise linear, the smallest membership function in every final region
will always be a linear function of xi(n) (note that a piecewise linear membership
function can always be decomposed into a series of linear membership functions).
Suppose that the linear fuzzy sets are

lhk
ðxjÞ ¼ bhk

xjðnÞ þ khk :
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As a result,

uðnÞ ¼
Pm

j¼1

Paj

k¼1 lhk
ðxjÞ � VhkPm

j¼1

Paj

k¼1 lhk
ðxjÞ

¼
Xm

j¼1

Paj

k¼1 bhk
� VhkPm

j¼1

Paj

k¼1 lhk
ðxjÞ

xjðnÞ þ
Pm

j¼1

Paj

k¼1 khk � VhkPm
j¼1

Paj

k¼1 lhk
ðxjÞ

¼ c1ðxÞx1ðnÞ þ � � � þ cmðxÞxmðnÞ þ c0ðxÞ

where

cjðxÞ ¼
Paj

k¼1 bhk
� VhkPm

j¼1

Paj

k¼1 lhk
ðxjÞ

; j ¼ 1; 2; . . .;m and c0ðxÞ ¼
Pm

j¼1

Paj

k¼1 khk � VhkPm
j¼1

Paj

k¼1 lhk
ðxjÞ

Unless the fuzzy sets are such chosen that
Pm

j¼1

Paj

k¼1 lhk
ðxjÞ is a constant, the

value of cj(x) changes with xj(n) and hence is variable gain for xj(n). According to
Definition 3, the fuzzy controller is a global type-A fuzzy controller. �

We can rigorously show that Theorem 1 also holds for the fuzzy controllers that
use the product AND operator when the popular input fuzzy sets in the literature
are utilized. They include triangular, trapezoidal, Gaussian, Bell, Generalized Bell,
Sigmoid, and so on. This kind of result, however, is not comprehensive enough.
We know that the necessity portion of the theorem will not hold if the input fuzzy
sets are allowed to be any nonlinear functions. Subsequently, we decided to
present the following sufficient condition. This result can be extended to become a
necessary and sufficient condition if some (mild) mathematical constraint is
applied to the fuzzy sets. The constraint will most likely not affect the practicality
of the fuzzy controllers, if at all.

In the next section, we will conduct local stability analysis. For that purpose, we
only need to know the properties of the relevant part of the fuzzy controllers—the
local fuzzy controller covering the system equilibrium point. The following results
are obvious in light of Theorem 1 and Definitions 1 to 3.

Corollary 1 A necessary and sufficient condition for a Mamdani fuzzy controller
of the general class that uses Zadeh AND operator to be of local type-A around the
system equilibrium point is that all the input fuzzy sets covering the point are
linear.

Note that the input fuzzy sets have to be linear, not piecewise linear, because
the latter is not sensible when we consider only a point.

Corollary 2 A Mamdani fuzzy controller of the general class that uses Zadeh
AND operator is a global type-B fuzzy controller if at least one input fuzzy set is
not piecewise linear.

Theorem 2 A sufficient condition for a Mamdani fuzzy controller of the general
class that uses the product AND operator to be of global type-A is that all of its
input fuzzy sets are piecewise linear.
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Proof Due to the product fuzzy AND operator, in each m-dimensional ‘‘block’’,
the combined membership function for the h-th rule can be represented as

lhðxÞ ¼ l~A1;I1
ðx1Þ � � � � � l~Am;Im

ðxmÞ

and hence

uðnÞ ¼
PX

h¼1 lhðxÞ � VhPX
h¼1 lhðxÞ

¼
XX

h¼1

VhPX
h¼1 lhðxÞ

lhðxÞ

¼
XX

h¼1

hhðxÞ � lhðxÞ ¼
XX

h¼1

hhðxÞ � l~A1;I1
ðx1Þ � � � � � l~Am;Im

ðxmÞ
ð5Þ

where

hhðxÞ ¼
VhPX

h¼1 lhðxÞ
:

Note that due to the use of the product AND operation, lh(x) here differs from
the case above that uses Zadeh AND operator. Assume that in the entire input
space, all the input fuzzy sets are linear or piecewise linear. Then in any Hi,
carrying out all the multiplication operations in (5) and simplifying the resultant
expression gives

uðnÞ ¼
Xm

i¼1

aiðxÞ � xiðnÞ þ
Xm

i¼1

Xm

j [ i

aijðxÞ � xiðnÞ � xjðnÞ þ � � � þ a1...mðxÞx1ðnÞ � � � xmðnÞ þ dðxÞ

¼
Xm

i¼1

aiðxÞ � xiðnÞ þ CðxÞ

where

CðxÞ ¼
Xm

i¼1

Xm

j [ i

aijðxÞ � xiðnÞ � xjðnÞ þ � � � þ a1...mðxÞx1ðnÞ � � � xmðnÞ þ dðxÞ

The denominators of ai(x) and C(x) are the same—
PX

h¼1 lhðxÞ. The numerators
of ai(x) are constants determined by the slops and y-intercepts of the fuzzy sets.
The numerator of C(x) contains the cross-products of x1ðnÞ; . . .; xmðnÞ as well as a
constant term, all determined by the slopes and y-intercepts of the fuzzy sets. Note
that none of the terms in the numerator can be expressed as aixiðnÞ; i ¼ 1; . . .;m; or
their linear combination (ai is constant). By Definition 1, the fuzzy controller is a
global type-A fuzzy controller. �

For the same reason as for obtaining Corollary 1, we state Corollary 3 for
Theorem 2.
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Corollary 3 A sufficient condition for a Mamdani fuzzy controller of the general
class that uses the product AND operator to be of local type-A around the system
equilibrium point is that all the input fuzzy sets covering the point are linear.

Note that a Mamdani fuzzy controller of the general class that uses the product
AND operator may (very likely) be a global type-B fuzzy controller if at least one
input fuzzy set is not piecewise linear.

In a sense, type-A fuzzy controllers are most similar to the linear controller as
far as the controller structure is concerned. These fuzzy controllers can be treated
as nonlinear controllers with variable gains. The variable gains are mathematically
complicated in general. Deriving their explicit expressions is possible for some
configurations [12] but impossible for others. The variable gains can empower the
fuzzy controllers to outperform the linear controller (e.g., PID control), especially
when the system under control is nonlinear or with time delay. Our previous study
of Mamdani as well as TS fuzzy controllers with variable gains has shown this
point [12, 13]. This may provide one theoretical justification/explanation for the
dominant use of triangular/trapezoidal input fuzzy sets and Zadeh or product fuzzy
AND operator in the current practice of fuzzy control. There are many other
choices available, but most of them have hardly been used. Such strong prefer-
ences have existed in the literature for many years with little theoretical support.
The prior justifications are based on perceived component simplicity and empirical
observation of good control performance attributed to these particular preferred
selections.

3.2 Local Stability Analysis

We now turn our attention to local stability determination of the fuzzy controllers
regulating nonlinear dynamic systems. Without loss of generality, assume that
when a system to be controlled is at the equilibrium point of our interest (i.e.,
y(n) = 0), x = 0. We want to study two related issues: (1) conditions for the fuzzy
control system to be stable at least in the area around the equilibrium point, and (2)
design of the fuzzy control system that will be at least stable in the area.

At x = 0, a local fuzzy controller satisfying Corollary 1 or 3 becomes a local
linear controller:

uðnÞ ¼ c1ð0Þx1ðnÞ þ � � � þ cmð0ÞxmðnÞ þ c0ð0Þ ð6Þ

where c0ð0Þ; . . .; cmð0Þ are the values of ci(x) and are the constant gains. The term of
c0ð0Þ does not affect system stability; it will be dropped from the stability study
below. If both the system to be controlled and the local fuzzy controller are linear-
izable at the equilibrium point, then the system stability at that point can be decided
by applying Lyapunov’s linearization method [6] to the linearized local fuzzy
controller (i.e. (2)) and the linearized system. Thus, we obtain the following result.
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Theorem 3 Suppose that a fuzzy controller of the general class is used to control
a nonlinear system that is linearizable at the equilibrium point. If the fuzzy con-
troller is a local type-A controller at the equilibrium point that is also linearizable,
the fuzzy control system is locally stable (or unstable) at the equilibrium point if
and only if the linearized control system is strictly stable (or unstable) at the
equilibrium point.

Proof The conclusion can be obtained using Lyapunov’s linearization method
(see [10] for similar proof). The method assumes the nonlinear control system to
be continuously differentiable at the equilibrium point. In essence, it states that if
the linearized system is strictly stable (or unstable) at the equilibrium point, then
the equilibrium point is locally stable (or unstable) for the original nonlinear
system. �

The linearizability test must be met before the stability condition can be used
because it is the precondition for the theorem. Our previous study indicates that the
use of Zadeh fuzzy logic AND operator results in more than one control structure
to cover x = 0, which can sometimes fail the test. This is usually not true for the
fuzzy controllers using the product AND operator because in most cases there is
only one control structure for the entire area around x = 0 [12]. A test failure only
means inapplicability of the theorem; it does not imply system instability.

Theorem 3 offers some practically important advantages. First, it is a necessary
and sufficient condition. Unlike sufficient conditions or necessary conditions, it is
not conservative and is the ‘‘tightest’’ possible stability condition. Second, only
explicit structure of the local fuzzy controller covering the equilibrium point is
required. As long as all the input fuzzy sets covering the equilibrium point are
linear, the theorem is usable. Third, the theorem can be used not only when the
system model is available, but also when it is unavailable but is known linearizable
at the equilibrium point. (Most physical systems are linearizable.) In the latter
case, one can devise a linear controller and use it to control the system. If the
resulting control system is observed to be locally stable (unstable), then the same
system controlled by a linearized fuzzy controller whose gains at the equilibrium
point equal to the gains of the linear controller will be locally stable (unstable).
This design approach can be attractive as in practice, physical systems are often
too complex and/or costly to be precisely modeled.

4 Numerical Examples

Since Theorems 1 and 2 and their corollaries are straightforward to apply, no
numerical examples are needed. We now use three examples to illustrate the utility
of Theorem 3 and its above-mentioned advantages in system analysis and design.
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Example 1 (Local stability determination when system model is known) Assume
that a continuous-time system to be controlled is

y00ðtÞ þ 20y0ðtÞ þ 5 sinðyðtÞÞ ¼ 4uðtÞ

and the sampling period for the system is 0.1. Suppose that a type-A fuzzy con-
troller has been designed. It uses the product fuzzy AND operator and its input
variables are x1ðnÞ ¼ SðnÞ � yðnÞ and x2ðnÞ ¼ yðn� 1Þ � yðnÞ, where S(n) is the
reference input signal. The controller’s output variable is DuðnÞ ¼
uðnÞ � uðn� 1Þ. There can be numerous fuzzy sets for the scaled input variables
X1(n) and X2(n); but to determine the local stability one only needs to know
whether the fuzzy sets covering the area around x = 0 are linear and, if so, what
their mathematical expressions are. Supposedly they are

l~A1;1
ðx1Þ ¼ �0:95x1ðnÞ þ 0:4; l~A1;2

ðx1Þ ¼ x1ðnÞ þ 0:5;

for x1ðnÞ 2 �0:5; 0:5½ � and

l~A2;1
ðx2Þ ¼ �1:1x2ðnÞ þ 0:5; l~A2;2

ðx2Þ ¼ 0:9x2ðnÞ þ 0:2

for x2ðnÞ 2 �0:5; 0:5½ �.

The four fuzzy rules resulted from the four combinations of these fuzzy sets are

IF X1ðnÞ is ~A1;1 AND X2ðnÞ is ~A2;1 THEN DuðnÞ is ~V1

IF X1ðnÞ is ~A1;1 AND X2ðnÞ is ~A2;2 THEN DuðnÞ is ~V2

IF X1ðnÞ is ~A1;2 AND X2ðnÞ is ~A2;1 THEN DuðnÞ is ~V3

IF X1ðnÞ is ~A1;2 AND X2ðnÞ is ~A2;2 THEN DuðnÞ is ~V4

where ~V1; ~V2; ~V3, and ~V4 are singleton fuzzy sets whose DuðnÞ values corre-
sponding to the nonzero memberships of these sets are at 1, 0.71, -1.083, and -1,
respectively.

The question is: Is this fuzzy control system stable at x = 0?

Solution Due to the use of the linear fuzzy sets, the local fuzzy controller
covering the region around x = 0 satisfies Corollary 3 and hence is a local type-A
fuzzy controller. For the stability determination, we need to have the explicit
structure of this local fuzzy controller, which can be derived by plugging the four
fuzzy sets and the four fuzzy rules into (1). The result is

DuðnÞ ¼ c1ðxÞx1ðnÞ þ c2ðxÞx2ðnÞ þ c0ðxÞ
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where

c1ðxÞ ¼
1:23578

0:035x1ðnÞ � 0:18x2ðnÞ � 0:01x1ðnÞx2ðnÞ þ 0:63
;

c2ðxÞ ¼
0:109605

0:035x1ðnÞ � 0:18x2ðnÞ � 0:01x1ðnÞx2ðnÞ þ 0:63
;

c0ðxÞ ¼ �
0:00914327

0:035x1ðnÞ � 0:18x2ðnÞ � 0:01x1ðnÞx2ðnÞ þ 0:63
:

The controlled system is obviously linearizable at x = 0 and the linearized
system is

y00ðtÞ þ 20y0ðtÞ þ 5yðtÞ ¼ 4uðtÞ:

With the sampling period 0.1, the discrete-time pulse transfer function is

HðzÞ ¼ YðzÞ
UðzÞ ¼

0:01131 z + 0:005913
z2 � 1:114 z + 0:1353

:

The local fuzzy controller is obviously linearizable and the resultant controller
is

DuðnÞ ¼ 1:96155x1ðnÞ þ 0:173977x2ðnÞ � 0:0145131: ð7Þ

For the stability determination, one only needs to consider DuðnÞ ¼
1:96155eðnÞ þ 0:173977rðnÞ. Because

uðnÞ ¼ uðn� 1Þ þ DuðnÞ ¼ uðn� 1Þ þ 1:96155x1ðnÞ þ 0:173977x2ðnÞ
¼ uðn� 1Þ þ 2:135527x1ðnÞ � 0:173977x1ðn� 1Þ;

the transfer function of the linearized local fuzzy controller is

CðzÞ ¼ UðzÞ
X1ðzÞ

¼ 2:135527z� 0:173977
z� 1

:

The closed-loop control system at x = 0 is

HðzÞCðzÞ
1þ HðzÞCðzÞ ¼

0:024159 (zþ 0:5226Þ (z� 0:08146Þ
ðz� 0:1376Þ (z2 � 1:952z + 0:9913Þ

:

The poles are z ¼ 0:1376, and z ¼ 0:9760� 0:1965i, all of which are inside the
unit circle. Therefore, the linearized control system is stable at x = 0 stable, so is
the local fuzzy control system.
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In next example, we show how to determine the local stability even when
system model is unknown.

Example 2 (Local stability determination when system model is unknown) Sup-
pose that the system model in Example 1 is unavailable but is known to be
linearizable at x = 0. Also, assume that we have devised a linear PI controller
DuðnÞ ¼ 1:96155x1ðnÞ þ 0:173977x2ðnÞ and found it to be able to control the
system stably at x = 0. Note that this PI controller is exactly the same as the local
fuzzy controller (4) without the constant offset term. With these modifications, can
the local stability of the fuzzy control system in Example 1 be determined ?

Solution According to Example 1, the new fuzzy controller system is linear-
izable. Thus Theorem 3 is applicable. Since the PI control system containing
DuðnÞ ¼ 1:96155x1ðnÞ þ 0:173977x2ðnÞ, which is the linearized local fuzzy con-
troller, is known to be locally stable, the fuzzy control system is logically locally
stable too.

Example 3 (Design of at least locally stable fuzzy control system when system
model is unknown) Suppose that the DuðnÞvalues for ~V1; ~V2; ~V3, and ~V4 are not
given in the above example, but all the other conditions remain the same. How
should one design their values so that the resulting fuzzy control system is stable at
least at x = 0?

Solution It can be derived that the local fuzzy controller is DuðnÞ ¼
c1ðxÞx1ðnÞ þ c2ðxÞx2ðnÞ þ c0ðxÞ where

c1ðxÞ ¼
0:2V1 þ 0:5V2 � 0:19V3 � 0:475V4

0:035x1ðnÞ � 0:18x2ðnÞ � 0:01x1ðnÞx2ðnÞ þ 0:63
;

c2ðxÞ ¼
0:45V1 � 0:55V2 þ 0:36V3 � 0:44V4

0:035x1ðnÞ � 0:18x2ðnÞ � 0:01x1ðnÞx2ðnÞ þ 0:63
;

c0ðxÞ ¼
0:1V1 þ 0:25V2 þ 0:08V3 þ 0:2V4 þ x2

1ðnÞ 0:9V1 � 1:1V2 � 0:855V3 þ 1:045V4ð Þ
0:035x1ðnÞ � 0:18x2ðnÞ � 0:01x1ðnÞx2ðnÞ þ 0:63

:

Thus,

c1ð0Þ ¼ 0:3175V1 þ 0:7937V2 � 0:3019V3 � 0:7540V4;

c2ð0Þ ¼ 0:7143V1 � 0:8730V2 þ 0:5714V3 � 0:6984V4;

c0ð0Þ ¼ 0:1587V1 þ 0:3968V2 þ 0:1270V3 þ 0:3175V4:

We know from Example 2 that the linear PI controller DuðnÞ ¼ 1:96155x1ðnÞ
þ0:173977x2ðnÞ, which is the same as the local fuzzy controller (4) without the
constant term, can control the system stably at least at x = 0. Thus, the fuzzy
control system of interest will be locally stable too if the values of the design
parameters satisfy the following simultaneous equations:
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0:1587V1 þ 0:3968V2 þ 0:1270V3 þ 0:3175V4 ¼ 0
0:3175V1 þ 0:7937V2 � 0:3019V3 � 0:7540V4 ¼ 1:96155
0:7143V1 � 0:8730V2 þ 0:5714V3 � 0:6984V ¼ 0:173977:

8
<

:

The number of solution set is infinite, and every set achieves the local stability.
One set, for instance, is: V1 ¼ 1;V2 ¼ �0:40;V3 ¼ �1:25, and V4 ¼ �0:5.

5 Conclusion

We have achieved two objectives: (1) to establish the conditions for a subset of a
general class of Mamdani fuzzy controllers to be a specific type of nonlinear
controllers described in (3), and (2) to utilize these conditions and establish a tight
local stability criterion for analyzing or designing the fuzzy control systems even
when the controlled system model is mathematically unavailable. This type of
controllers has some desirable characteristics suitable for analysis and design using
conventional control theory.

Based on our results, we recommend that the trapezoidal and triangular fuzzy
sets, the only two widely-used piecewise linear types, be used for input fuzzy sets
as the first choice. As we have demonstrated theoretically and through examples,
the benefits of doing so include (1) clearer connection between the fuzzy con-
trollers and conventional control (2) easier (local) stability analysis, and (3) more
practically meaningful system design.
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