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Abstract In this work we present a thresholding algorithm for greyscale images.
Our proposal is the use of grouping functions to find the best threshold. These
functions are able to measure the belongingness of a grey intensity to the back-
ground or to the object of the image, so the best threshold is the one associated
with the highest grouping value.

1 Introduction

One of the most used techniques in image segmentation is thresholding or seg-
mentation by greylevels [1], [2], [3]. In thresholding, the different objects of the
image are characterized just by the intensity of each pixel. This technique consists
in finding a threshold t such that the pixels whose intensities are lower or equal to
t belong to the background of the image while the intensities that are greater than
t belong to the object, or vice versa [4]. The advantages of this kind of procedures
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with respect to other segmentation algorithms are the simplicity and low com-
putational cost. This is why thresholding is commonly used as a first step of more
complex segmentation algorithms.

In this work we present a new thresholding algorithm, generalizing previous
fuzzy approaches [4], [5]. Our proposal is based on the construction, for every
possible grey intensity, of two fuzzy sets (QBt and QOt ) representing the belong-

ingness of every greylevel to the background lQBt
ðqÞ

� �
and to the object

lQOt
ðqÞ

� �
of the image respectively. The objective is to find the threshold for wich

the belongingness of every grey intensity to the object or to the background is

maximum lQBt
¼ 1 or lQOt

¼ 1
� �

, so we are completely sure that those pixels

belong to the background or to the object of the image.
To solve the aim of the work, we propose the use of grouping functions, as a

bivariate aggregation function that gets the maximum value if and only if one of
the arguments is 1. In this work we study the axiomatization of these functions,
propose some construction methods and relate grouping functions to overlap
functions [6].

We also show an illustrative example for a medical imaging application, where
we have to segment some magnetic resonance images. The purpose is to separate
the gray matter from the white matter of a brain, which is a very helpful process to
evaluate some diseases like Alzheimer or schizophrenia.

The rest of the contribution is organized in the following way. We start
recalling some preliminary concepts in Sect. 2. In Sect. 3 we study grouping
functions, their relations with overlap functions and some construction methods. In
Sect. 4 we present our image thresholding algorithm, and in Sect. 5 we show an
illustrative example. We finish with some conclusions in Sect. 6.

2 Preliminaries

A strict negation [7] is a continuous and strictly decreasing function N : 0; 1½ �2!
0; 1½ � such that Nð0Þ ¼ 1 and Nð1Þ ¼ 0. A strong negation is a strict negation that

is also involutive, it means, NðNðxÞÞ ¼ x for all x 2 0; 1½ �.
A triangular norm (t-norm) is a symmetric and associative bivariate aggregation

function T : 0; 1½ �2! 0; 1½ � such that Tðx; 1Þ ¼ x for all x 2 0; 1½ �. Some examples
of t-norms are minimum function TMðx; yÞ ¼ min ðx; yÞ or product function
TPðx; yÞ ¼ x � y. A triangular conorm (t-conorm) is a symmetric and associative

bivariate aggregation function S : 0; 1½ �2! 0; 1½ � such that Sðx; 0Þ ¼ x for all
x 2 0; 1½ �. Some examples of t-conorms are the maximum function SMðx; yÞ ¼
maxðx; yÞ or the probabilistic sum function SPðx; yÞ ¼ xþ y� x � y [8–10].

In this work we use restricted equivalence functions (REF) to build the fuzzy
sets associated with an image [11], [4].
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Definition 1 A function REF : 0; 1½ �2! 0; 1½ � is called restricted equivalence
function if it satisfies the following conditions:

(1) REF x; yð Þ ¼ REF y; xð Þ for all x; y 2 0; 1½ �;
(2) REF x; yð Þ ¼ 1 if and only if x = y;
(3) REF x; yð Þ ¼ 0 if and only if x = 1 and y = 0 or x = 0 and y = 1;
(4) REF x; yð Þ ¼ REF N xð Þ;N yð Þð Þ for all x; y 2 0; 1½ �, being N a strong negation;
(5) if x� y� z then REF x; yð Þ�REF x; zð Þ and REF y; zð Þ�REF x; zð Þ, for all

x; y; z 2 0; 1½ �.

3 Grouping Functions

Definition 2 A function GG : 0; 1½ �2! 0; 1½ � is a grouping function if it satisfies
the following conditions:

GG1ð ÞGG x; yð Þ ¼ GG y; xð Þ for all x; y 2 0; 1½ �;
GG2ð ÞGG x; yð Þ ¼ 0 if and only if x ¼ y ¼ 0;
GG3ð ÞGG x; yð Þ ¼ 1 if and only if x = 1 or y = 1;
GG4ð ÞGG is non-decreasing;
GG5ð ÞGG is continuous.

Observe that a grouping function is a particular case of binary aggregation.
We can find a relation between grouping functions and overlap functions,

defined in [6]. We use this relation to present several construction methods of
grouping functions.

3.1 Overlap Functions

Definition 3 A function GO : 0; 1½ �2! 0; 1½ � is an overlap function if it satisfies the
following properties:

(GO1) GO is symmetric.
GO2ð ÞGO x; yð Þ ¼ 0 if and only if xy = 0.
GO3ð ÞGO x; yð Þ ¼ 1 if and only if xy = 1.
GO4ð ÞGO is non-decreasing.
GO5ð ÞGO is continuous.

Theorem 1 Let GO be an overlap function and let N be a strict negation. Then.

GGðx; yÞ ¼ NðGOðNðxÞ;NðyÞÞÞ ð1Þ

is a grouping function. Reciprocally, we have that
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GOðx; yÞ ¼ NðGGðNðxÞ;NðyÞÞÞ ð2Þ

is an overlap function.

Proof (GG1), (GG4) and (GG5) are direct. GG2ð ÞGG x; yð Þ ¼ 0 ¼ N GO N xð Þ;ðð
N yð ÞÞÞ if and only if GO N xð Þ;N yð Þð Þ ¼ 1 if and only if N xð Þ ¼ N yð Þ ¼ 1 if and only
if x = y = 0. GG3ð Þ;GG x; yð Þ ¼ 1 ¼ N GO N xð Þ; N yð Þð Þð Þ if and only if GO N xð Þ;ð
N yð ÞÞ ¼ 0 if and only if N(x) = 0 or N(y) = 0 if and only if x = 1 or y = 1.

Based on the relation between overlap functions and t-norms, in this work we
proof that any associative grouping function is also a t-conorm. However, the
reciprocal of this theorem does not hold, as it is clear if we consider any non-
continuous t-conorm.

Theorem 2 Let GG be an associative grouping function. Then GG is a t-conorm.

Proof We just need to proof that 0 is the neutral element of GG. Because of the
continuity of GG and GG 0; 1ð Þ ¼ 1 and GG 0; 0ð Þ ¼ 0 , we can say that for any
x 2 0; 1� ½ there exists a y 2 0; 1� ½ such that x ¼ GG y; 0ð Þ. Then GG x; 0ð Þ ¼
GG GG y; 0ð Þ; 0ð Þ ¼ GG y;GG 0; 0ð Þð Þ ¼ GG y; 0ð Þ ¼ x and in a similar way
GG 0; xð Þ ¼ x.

Example 1 An associative grouping function and therefore a t-conorm is the
maximum function.

GGðx; yÞ ¼ maxðx; yÞ ð3Þ

Theorem 3 Let GG1; . . .;GGm be m grouping functions and let w1; . . .;wm be m
non-negative weights such that

Pm
i¼1 wi ¼ 1. Then the convex sum G ¼Pm

i¼1 wiGGi is a grouping function.

Proof Direct.

3.2 Construction of Grouping Functions

In the next theorem we study a construction method of grouping functions from
two functions f and h that satisfy certain properties.

Theorem 4 The function GG : 0; 1½ �2! 0; 1½ � is a grouping function if and only if

GGðx; yÞ ¼
f ðx; yÞ

f ðx; yÞ þ hðx; yÞ ð4Þ
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for f ; h : 0; 1½ �2! 0; 1½ � such that

(1) f and h are symmetric;
(2) f is non-decreasing and h is non-increasing;
(3) f x; yð Þ ¼ 0 if and only if x ¼ y ¼ 0;
(4) h x; yð Þ ¼ 0 if and only if x = 1 or y = 1;
(5) f y h are continuous functions.

Proof We have to take into account that f x; yð Þ þ h x; yð Þ 6¼ 0 for all

x; yð Þ 2 0; 1½ �2. Then the necessity is straightaway taking f x; yð Þ ¼ GG x; yð Þ and
h x; yð Þ ¼ 1� GG x; yð Þ. (Sufficiency) (GG1) (GG2) (GG3) and (GG5) are direct.
(GG4) If x1 B x2 then f(x1, y) B f(x2, y) and h x2; yð Þ� h x1; yð Þ. So we have that
f x1; yð Þh x2; yð Þ� f x2; yð Þh x1; yð Þ. Multiplying both sides of the equality we have
f x1; yð Þf x2; yð Þ þ f x1; yð Þh x2; yð Þ� f x1; yð Þf x2; yð Þ þ f x2; yð Þh x1; yð Þ. We can

rewrite GGðx1; yÞ ¼ f ðx1;yÞ
f ðx1;yÞþhðx1;yÞ �

f ðx2;yÞ
f ðx2;yÞþhðx2;yÞ ¼ GGðx2; yÞ.

Example 2 If we take f x; yð Þ ¼ max x; yð Þ and hðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞð1� yÞ

p
we have

GGðx; yÞ ¼
maxðx; yÞ

maxðx; yÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞð1� yÞ

p ð5Þ

Example 3 If we take f x; yð Þ ¼ max x; yð Þ and h x; yð Þ ¼ 1� xð Þ 1� yð Þ we have

GGðx; yÞ ¼
maxðx; yÞ

maxðx; yÞ þ ð1� xÞð1� yÞ ð6Þ

Example 4 If we take f ðx; yÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞð1� yÞ

p
and h x; yð Þ ¼ min 1� xð Þ;ð

1� yð ÞÞ we have

GGðx; yÞ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞð1� yÞ

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞð1� yÞ

p
þminðð1� xÞ; ð1� yÞÞ

ð7Þ

A deeper study on some properties of grouping functions can be found in [12].
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4 Thresholding Algorithm Based on Grouping Functions

In this work we propose the use of grouping functions as the metric to calculate the
optimal threshold of an image. To do so, we construct, for every greylevel, a fuzzy
set associated with the background and a fuzzy set associated with the object of the
image. Applying a convex combination of several grouping functions to these sets,
we choose the suitable threshold for each image. The scheme of our proposal is
shown in Algorithm 1.

4.1 Construction of Fuzzy Sets Associated with the Image

In thresholding problems with only one threshold, we suppose that the image is
divided into two areas, so we can separate one object from the background. Based
on the study presented in [4], in this work we construct two fuzzy sets (QBt

associated with the background and QOt associated with the object) from restricted
equivalence functions, bearing in mind the following reasoning: the more similar
is a greylevel (q) to the average of the background intensities (analogously to the
object intensities) the higher the membership value of that intensity to the fuzzy set
associated with the background (object) is.

Algorithm 1 Thresholding algorithm

1: for t = {0, 1, . . . , L − 1} (For every greylevel) do
2: Construct a fuzzy set associated with the background

of the image (QBt
).

3: Construct a fuzzy set associated with the object of the
image (QOt

).
4: for q = {0, 1, . . . , L − 1} (For every greylevel) do
5: Calculate several grouping functions for QBt

(q)
and QOt

(q).
6: Calculate the convex combination of previous func-

tions obtaining a new grouping function GGcomb
(q).

7: end for
8: Calculate the weighted sum of previous grouping

L−1

q=0

GGcomb
(µBt

(q), µOt
(q)) · h(q)

where h(q) is the number of pixels whose intensity is
q.

9: end for
10: Take as best threshold t∗ the one associated with the

maximum sum of grouping:

t∗ = argmax
t

L−1

q=0

GGcomb
(µBt

(q), µOt
(q)) · h(q)
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For a fixed greylevel t, we start by calculating the average value of the inten-
sities belonging to the background (mB(t)) and to the object (mO(t)) using the
following expressions:

mBðtÞ ¼
Pt

q¼0 q � hðqÞPt
q¼0 hðqÞ

mOðtÞ ¼
PL�1

q¼tþ1 q � hðqÞ
PL�1

q¼tþ1 hðqÞ

Let REF be a restricted equivalence function, we construct the fuzzy sets QBt

and QOt with the following membership functions, for every greylevel
q ¼ 0; 1; . . .; L� 1:

lQBt
ðqÞ ¼ REF

q

L� 1
;
mBðtÞ
L� 1

� �
ð8Þ

lQOt
ðqÞ ¼ REF

q

L� 1
;
mOðtÞ
L� 1

� �
ð9Þ

We can proof that, with this construction method and due to property (2) of
Definition 1, a greylevel has maximum membership degree to the background
(object) fuzzy set only if its intensity is the same as the average intensities of the
background (object) of the image.

• lQBt
ðqÞ ¼ 1 if and only if q = mB(t).

• lQOt
ðqÞ ¼ 1 if and only if q = mO(t).

4.2 Grouping Calculus

To calculate the grouping value associated with each possible threshold t, we use
n different grouping functions GG1;GG2; . . .;GGnð Þ. A grouping function takes
two arguments and calculates the group level between both of them. In this case,
we compute the grouping, for every greylevel, between the membership degree to
the fuzzy set associated with the background and to the fuzzy set associated with
the object.

Using the result obtained in Theorem 3, we combine the n grouping functions
previously calculated. In this way, we obtain a new grouping function that,
experimentally, it outperforms the result obtained by the worst grouping expres-
sion selected. This step helps us to solve the problem of choosing a grouping
expression not suitable for a specific problem, what finishes in wrong results.

Once we have one sole value for the grouping of every greylevel, we calculate
the sum. This is the value for the grouping associated with the threshold t.
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4.3 Selection of the Maximum Grouping

Every possible threshold t ¼ 0; 1; . . .; L� 1f g has a grouping value associated
with it, calculated as the sum of the grouping function in several points. To get the
best threshold, we choose the one associated with the highest grouping value. We
choose the maximum value because of grouping functions properties. It means, the
sum is maximum if GGðlBt

ðqÞ; lOt
ðqÞÞ ¼ 1 for all q ¼ 0; 1; . . .; L� 1f g. By

property (GG2) of Definition 2 this is achieved in two cases:

• lBt
ðqÞ ¼ 1, so q = mB(t). In this case we are completely sure that the pixels

whose intensity is q belong to the background of the image, because this
intensity is exactly the average intensity of all the pixels of the background.

• lOt
ðqÞ ¼ 1, so q = mO(t). In this case we are completely sure that the pixels

whose intensity is q belong to the object of the image, because this intensity is
exactly the average intensity of all the pixels of the object.

In this sense, by choosing the highest grouping value we are selecting the
threshold for which all the pixels whose intensity is lower than the threshold are
very closed to the average of background (object) intensities and all the pixels
whose intensity is greater than the threshold are very closed to the average
intensity of the object (background).

5 Illustrative Example

In this section we show the performance of the proposed algorithm over 10
T1-weighted magnetic resonance images (see Fig. 1). These images are provided
by the Center for Morphometric Analysis at Massachusetts General Hospital
(available at http://www.cma.mgh.harvard.edu/ibsr/). The aim of the segmentation
of this kind of images is to separate each of the pixels inside the brain into one of
the following two types: grey matter and white matter. This segmentation can be
viewed as part of a volumetric analysis of the brain regions, which is very useful to
evaluate the evolution of diseases such as Alzheimer, epilepsy or schizophrenia
[13, 14]. To measure the quality of the segmented results, we compare them with
an ideal handmade segmentation provided at the same webpage (see Fig. 2). This
comparison is measured by the percentage of well classified pixels.
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In this example we use four grouping functions for the step 5 of the algorithm:

• GG1(x, y) = max(x, y)

• GG2ðx; yÞ ¼ maxðx;yÞ
maxðx;yÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�xÞð1�yÞ
p

• GG3ðx; yÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞð1� yÞ

p
• GG4 x; yð Þ ¼ xþ y� xy

To calculate the convex combination of grouping functions we use the same
weight for each of them. In this way, each of the four weights is 0.25. If we a priori
know that some grouping functions are more suitable than others for a specific
image, then it is recommended to use different values for the weights, using greater
values for these suitable functions (for example, using weighted means).

In Fig. 3 we see the segmentations obtained by our method for every image.
Next we study the different segmentations obtained by each one of the four

proposed grouping functions in relation to the final result obtained by the con-
sensus of all of them. To do so, in Figs. 4, 5 and 6 we show different results for
three images. In the first row we see the segmentation obtained by each one of the
four grouping functions. In the second row we show in white the pixels well

Fig. 1 Original images

Fig. 2 Ideal handmade segmentations
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classified by every individual grouping function that are wrong classified in the
convex combination. Finally, in the third row we show in white the pixels wrong
classified by every individual grouping function that are well classified in the
convex combination.

As we can see, depending on the image we segment, some grouping functions
are more suitable for thresholding purposes than others. This fact is confirmed with
the number of pixels well and wrong classified with respect to the convex com-
bination. In Table 1 we show the thresholds obtained for every image and the
percentage of well classified pixels. The first column shows the results obtained by
the convex combination of grouping functions, and columns 2–5 show the results
obtained by each one of the functions.

As we can experimentally see, the consensus of grouping functions always
provides a middle threshold value among the ones obtained by every grouping
function and so forth, in most cases the percentage of well classified pixels is
intermediate too. In this way, we know that our algorithm does not always get the
best possible result with grouping functions. However, the threshold got by the

Fig. 3 Obtained segmentations by our algorithm

GG1 GG2 GG3 GG4Fig. 4 Segmentations
obtained by each one of the
four grouping functions (first
row). In the second row we
show in white the pixels well
classified by every individual
grouping function that are
wrong classified in the
convex combination. In the
third row we show the pixels
wrong classified by every
individual grouping function
that are well classified in the
convex combination
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agreement tends to be better or equal than the worst of the thresholds got by every
of the grouping functions. As we have said, this fact solves the problem of
choosing a grouping function suitable for every one of the images.

Finally, we compare our thresholding method based on grouping functions with
Otsu’s algorithm [3], as it is one of the most used thresholding methods. In Table 2
we show the obtained threshold by both algorithms as well as the percentage of
well classified pixels. We can see that our method gets the best results for all
images in the experiment, so we can say it improves Otsu’s thresholding method
for this set of images.

GG1 GG2 GG3 GG4Fig. 5 Segmentations
obtained by each one of the
four grouping functions (first
row). In the second row we
show in white the pixels well
classified by every individual
grouping function that are
wrong classified in the
convex combination. In the
third row we show the pixels
wrong classified by every
individual grouping function
that are well classified in the
convex combination

GG1 GG2 GG3 GG4Fig. 6 Segmentations
obtained by each one of the
four grouping functions (first
row). In the second row we
show in white the pixels well
classified by every individual
grouping function that are
wrong classified in the
convex combination. In the
third row we show the pixels
wrong classified by every
individual grouping function
that are well classified in the
convex combination
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6 Conclusions

In this work we have presented a thresholding algorithm for greyscale images
based on grouping functions. These functions, applied to our problem, measure the
belongingness of a greylevel intensity to the background or to the object of the
image. In this way, we choose the threshold associated with the highest grouping
value to segment the image. One of the advantages of our proposal is avoiding the
selection of a suitable grouping function for each image, by means of a convex
combination of several of them.
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