
Data Security and Privacy in the Cloud

Pierangela Samarati

Università degli Studi di Milano
Dipartimento di Informatica

Via Bramante 65 – 26013 Crema – Italy
pierangela.samarati@unimi.it

Abstract. Achieving data security and privacy in the cloud means
ensuring confidentiality and integrity of data and computations, and pro-
tection from non authorized accesses. Satisfaction of such requirements
entails non trivial challenges, as relying on external servers, owners lose
control on their data. In this paper, we discuss the problems of guar-
anteeing proper data security and privacy in the cloud, and illustrate
possible solutions for them.

Keywords: Cloud computing, confidentiality, integrity, honest-but-
curious servers, data fragmentation, inferences, private access, shuffle
index, query integrity.

1 Introduction

Cloud computing has emerged as a successful paradigm increasingly appeal-
ing to individuals and companies for storing, accessing, processing, and sharing
information. The cloud provides, in fact, significant benefits of scalability and
elasticity, allowing its users to conveniently offer and enjoy services at reduced
costs thanks to the economy of scale that providers can exploit. Relying on the
cloud for storing and managing data brings, together with all the benefits and
convenience, also new security and privacy risks (e.g., [20,25,27,34]). In this pa-
per, we address in particular the problems related to the protection of data and
of computations on them. On one hand, cloud providers can be assumed to em-
ploy basic security mechanisms for protecting data outsourced to them, maybe
even employing controls that would not be affordable by most individuals or
small companies. On the other hand, however, relying on external parties for
storing or processing data, users lose control on such data hence leaving them
potentially exposed to security and privacy risks. Data could be sensitive and
should be maintained confidential even with respect to the cloud provider itself
that, while trustworthy for providing services, should not be allowed to know
the actual data content (honest-but-curious servers). Even the integrity of data
– or of computations on them – can be at risk as providers might behave not
correctly (lazy or malicious servers).

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 28–41, 2014.
c© Springer International Publishing Switzerland 2014



Data Security and Privacy in the Cloud 29

Protecting data and computations entail then ensuring both confidentiality
and integrity. Confidentiality issues arise since data externally stored or man-
aged can contain sensitive information, or information that the owner wishes to
maintain confidential. Confidentiality should be guaranteed also with respect to
the server storing or processing data, hence introducing complications in query
execution and in the enforcement of possible access restrictions. In addition to
the stored data, even users’ accesses on them may need to be maintained con-
fidential. Integrity issues arise since external servers storing or processing data
could misbehave. Guaranteeing integrity requires providing users with the ability
of assessing that data are stored correctly, computations are performed correctly,
and returned results are correct.

This paper is organized in two main sections. Section 2 illustrates confidential-
ity issues, presenting solutions for guaranteeing confidentiality of data in storage,
enforcing access restrictions, and guaranteeing confidentiality of accesses over
data. Section 3 illustrates integrity issues, presenting solutions for guaranteeing
integrity of data as well as of computations on them.

2 Confidentiality of Data and Access Control

Guaranteeing confidentiality in the cloud entails ensuring confidentiality to the
stored data (Section 2.1), enforcing of access restrictions on the data (Section 2.2),
andmaintaining confidentiality of the accesses performedon the data (Section 2.3).

2.1 Encryption and Fragmentation

A natural solution for protecting data confidentiality consists in encrypting data
before releasing them to the external server for storage. Encryption can be ap-
plied at different granularity levels. In particular, when data are organized in
relational tables, encryption can be applied at the level of table, attribute, tu-
ple, and cell [7,22]. Encryption at the level of tuple appears to be preferred as
it provides some support for fine-grained access while not requiring too many
encryption/decryption operations. Also, for performance reasons, symmetric en-
cryption is usually adopted.

A complication in dealing with encrypted data is that, since the server storing
the data should not know the actual data content, data cannot be decrypted
for query execution. A possible solution to this obstacle consists in evaluating
queries on the encrypted values themselves. For instance, homomorphic encryp-
tion solutions provide such a capability but support limited kinds of queries
and suffer from high performance overhead. An alternative solution consists in
associating with the encrypted tuples some metadata, called indexes , which can
be used for query execution (e.g., [7,22]). Intuitively an index column can be
specified for every attribute on which conditions need to be evaluated. Condi-
tions on plaintext values, known at the trusted client side, are then translated



30 P. Samarati

Patient
SSN Name YoB Job Disease Treatment

123-45-6789 A. Allen 1971 hairdressing eczema ointments
635-98-3692 B. Brown 1954 painter asthma bronchodilator
820-73-0735 C. Clark 1985 plastic worker dermatite corticosteroids
838-91-9634 D. Davis 1962 miners silicosis oxygen
168-87-4067 E. Evans 1977 lab techn hepatitis antiviral drug
912-83-7265 F. Fisher 1960 nurse tuberculosis antibiotics

(a)

Patiente

tid enc In Iy Ij Id
1 τ n1 y1 j1 d1

2 σ n2 y1 j2 d2

3 λ n3 y1 j2 d1

4 ρ n4 y2 j3 d2

5 α n5 y3 j1 d2

6 δ n6 y3 j3 d2

(b)

Fig. 1. An example of plaintext relation (a) and of corresponding encrypted and in-
dexed relation (b)

into conditions on index values to be evaluated at the server side. Figure 1 il-
lustrates an example of relation and its corresponding encrypted and indexed
version, where indexes have been defined over attributes Name, YoB, Job, and
Disease of the plaintext relation. Query execution is enforced by: a query to be
executed by the server over the index values and a further query to be executed
by the client on the server’s result once decrypted, to evaluate further condi-
tions and producing the actual result. Index values should be well related to the
plaintext values to provide effective in query execution, while at the same time
not leak information on the plaintext values behind them. Different indexing
functions have been proposed that differ in how plaintext values are mapped
onto index values, such as [15]: direct indexing, providing a one-to-one mapping
between plaintext values and index values; hash and bucket-based indexing, pro-
viding a many-to-one mapping between plaintext values and index values (thus
generating collisions); and flattened indexing, providing a one-to-many mapping
between plaintext values and index values (to not expose the indexing function
to frequency-based inferences). All these types of indexing functions differ in the
offered protection guarantees, the kinds of queries supported, and the perfor-
mance overhead suffered. For instance, direct indexing allows precise evaluation
of equality conditions, and even of range conditions if indexes are ordered but is
also the one most exposed to inference attacks compromising the confidentiality
of the indexing function.

As encryption makes query evaluation more complex or not always possible,
alternative solutions have been devised trying to limit encryption, or depart
from it. In particular, when what is sensitive are not the data values themselves
but their association, confidentiality can be guaranteed breaking the association
(i.e., its visibility) by storing the involved attributes in separate data fragments .
The association is then protected by restricting visibility of the fragments or en-
suring their un-linkability. A sensitive association can be represented as a set of
attributes whose joint visibility (i.e., whose association) is sensitive. Attributes
whose values are sensitive are also captured in such representation as they cor-
respond to singleton sets. Figure 2(a) illustrates an example of relation and
confidentiality constraints over it. Different fragmentation paradigms have been
proposed differing in the use of encryption and in the assumptions required to
ensure protection of the sensitive associations.



Data Security and Privacy in the Cloud 31

Patient
SSN Name YoB Job Disease Treatment

123-45-6789 A. Allen 1971 hairdressing eczema ointments
635-98-3692 B. Brown 1954 painter asthma bronchodilator
820-73-0735 C. Clark 1985 plastic worker dermatite corticosteroids
838-91-9634 D. Davis 1962 miners silicosis oxygen
168-87-4067 E. Evans 1977 lab techn hepatitis antiviral drug
912-83-7265 F. Fisher 1960 nurse tuberculosis antibiotics

c1 = {SSN}
c2 = {Name,Disease}
c3 = {Name,Job}
c4 = {Job,Disease}

(a) Original relation and confidentiality constraints

F1

tid Name YoB Treatment SSN1e Disease1e

1 A. Allen 1971 ointments α η
2 B. Brown 1954 bronchodilator β ρ
3 C. Clark 1985 corticosteroids γ σ
4 D. Davis 1962 oxygen δ π
5 E. Evans 1977 antiviral drugs ε φ
6 F. Fisher 1960 antibiotics θ ε

F2

tid Job SSN2e Disease2e

1 hairdressing χ ξ
2 painter τ η
3 plastic worker η ζ
4 miners ν λ
5 lab techn μ �
6 nurse ω ι

(b) Two can keep a secret

F1

salt enc Name YoB
s11 Δ A. Allen 1971
s12 ν B. Brown 1954
s13 ρ C. Clark 1985
s14 σ D. Davis 1962
s15 ε E. Evans 1977
s16 π F. Fisher 1960

F2

sal enc Disease Treatment
s21 β eczema ointments
s22 γ asthma bronchodilator
s23 δ dermatite corticosteroids
s24 μ silicosis oxygen
s25 ε hepatitis antiviral drug
s26 χ tuberculosis antibiotics

F3

sal enc Job
s31 ψ hairdressing
s32 ω painter
s33 Σ plastic worker
s34 Π miners
s35 λ lab techn
s36 ι nurse

(c) Multiple fragments

Fo

tid SSN Name Job
1 123-45-6789 A. Allen hairdressing
2 635-98-3692 B. Brown painter
3 820-73-0735 C. Clark plastic worker
4 838-91-9634 D. Davis miners
5 168-87-4067 E. Evans lab techn
6 912-83-7265 F. Fisher nurse

Fs

tid YoB Disease Treatment
1 1971 eczema ointments
2 1954 asthma bronchodilator
3 1985 dermatite corticosteroids
4 1962 silicosis oxygen
5 1977 hepatitis antiviral drug
6 1960 tuberculosis antibiotics

(d) Keep a few

Fig. 2. A sample relation with confidentiality constraints and its fragmentation with
different paradigms

– Two can keep a secret [1]. Data are split in two fragments stored at two
independent external servers which are assumed to not communicate and
not know each other. Sensitive attributes are obfuscated (e.g., encrypted).
Sensitive associations are protected by splitting the attributes among the
two servers. In addition to sensitive attributes, other attributes may be ob-
fuscated if their plaintext storage at any of the two servers would expose



32 P. Samarati

some sensitive associations. The two fragments have a tuple identifier in
common, allowing the data owner to correctly reconstruct the original re-
lation. Figure 2(b) illustrates a sample fragmentation in two fragments for
relation Patient of Figure 2(a), subject to the reported confidentiality con-
straints. Note that, while not sensitive by itself, attribute Disease is obfus-
cated since its plaintext storage in any of the two fragments would violate
some constraint (c2 for fragment F1 and c4 for fragment F2).

– Multiple fragments [4,6,10,13]. It does not impose any assumption on the
external servers or on the number of fragments. Sensitive attributes are
stored in encrypted form. Sensitive associations are protected by splitting
the involved attributes among different fragments. Fragments are assumed
to be complete (every attribute is represented either in plaintext or in the
encrypted chunk) and to not have attributes in common (to ensure their un-
linkability). The encrypted chunk is produced with salts to avoid exposure
of values with multiple occurrences. Figure 2(c) illustrates a sample frag-
mentation with multiple fragments for relation Patient; the use of three
fragments permits to represent in plaintext form all attributes that are not
sensitive by themselves.

– Keep a few [5]. It assumes the data owner (or a trusted party) to store a
limited portion of the data and completely departs from encryption (i.e., all
attributes are stored in plaintext form). Sensitive attributes are stored at the
owner side. Sensitive associations are protected by ensuring that, for each
constraint, at least one of the attributes in it is stored at the owner side.
A tuple identifier is maintained in both fragments to allow the owner to
correctly reconstruct the original relation. Figure 2(d) illustrates a sample
fragmentation for relation Patient with this approach, where Fo is the
fragment stored at the owner side.

The advantage of fragmentation over encryption is the availability of data
in the clear and therefore the ability of the server to evaluate any condition
on them; by contrast encrypted data or indexes provide limited support for
evaluating conditions. In any of the strategies above, fragmentation should be
enforced trying to maximize the availability of attributes in the clear and to
minimize the fragmentation enforced. Also, additional criteria could be taken
into account such as the query workload or possible visibility requirements.

Fragmentation approaches assume fragments to not be linkable (and therefore
associations to be protected) when they have no common attributes. In other
words, attributes are assumed to be independent. However, often dependencies
may exist among attributes introducing inferences from some attributes over
others that indirectly expose otherwise not visible attributes or enable linking
among fragments [11]. To illustrate, consider the set of attributes and constraints
in Figure 3(a), also represented as a graph with one node per attribute and
constraint and with multi-arcs connecting attributes to constraints. A fragmen-
tation reporting, Birth, Zip and Disease in one fragment (light gray in the
graph) and Treatment, Premium, and Insurance in the other (dark gray in the
graph) appears to satisfy the constraints (note that attributes appearing dotted



Data Security and Privacy in the Cloud 33

R(SSN, Birthdate, Zip, Name, Treatment, Disease, Job, Premium, Insurance)

c1 = {SSN}
c2 = {Name, Disease}
c3 = {Zip, Premium}

(a)

d1 = {Birth, Zip}�Name
d2 = {Treatment}�Disease
d3 = {Disease}�Job
d4 = {Premium, Insurance}�Job

(b)

Fig. 3. An example of exposure of sensitive associations due to data dependencies

in the graph are not represented in the clear in any of the fragments). In fact,
no sensitive information is exposed in the fragments and not having attributes
in common the fragments cannot be linked. This reasoning would be perfectly
fine if attributes where independent. However, dependencies might exist and
some information be inferable from other, allowing an observer to: from the
Birthdate and Zip reduce uncertainty over the Name; from the Treatment infer
the Disease; from the Disease reduce uncertainty over the Job; and from the
Premium and the Insurance infer the Job. Such derivations due to dependen-
cies can indirectly expose information and leak sensitive information or enable
linking. Figure 3(b) extends the graph with multi-arcs representing dependen-
cies (from the premises to the consequence) and illustrates such inferences by
propagating colors from the premises to the consequence. More precisely, if a
given color appears in all the attributes of a premise, it is propagated to the
attribute in the consequence (in the graphical representation, propagated colors
are reported in the bottom half of the nodes). Multi colored attributes represent
(indirect) violations of the constraints.

2.2 Access Control Enforcement

In many scenarios access to data is selective, meaning that different users, or
groups of them, should have different views/access on the data. With data out-
sourced to external servers, the problem therefore arises of how to enforce access
control. In fact, the data owner cannot mediate every access request, as the
advantages of delegating the management of data to an external server would
be lost. On the other hand, the server storing the data may not be trusted for
the enforcement of the access control policy, which could also be sensitive and
should be protected from the server’ eyes.

A possible solution to have access control enforced without requiring the data
owner intervention at every access consists in combining access control with



34 P. Samarati

acl(r1) = {A}
acl(r2) = {A,B}
acl(r3) = {A,B,C}
acl(r4) = {A,B,C}
acl(r5) = {B,C,D}
acl(r6) = {B,C,D}

(a)

A ���� ��
�� �	A ��

����
���

� r1

B ���� ��
�� �	B ��

����
���

���
���

���
� �� ��

�� �	AB ��

����
���

� r2

C ���� ��
�� �	C ��

�����
����

����
� �� ��

�� �	ABC �� r3, r4

D ���� ��
�� �	D ���� ��

�� �	BCD �� r5, r6

(b)

Fig. 4. An example of access control policy (a) and key derivation hierarchy (b) en-
forcing it

encryption, wrapping the data with a (self-enforcing) protecting layer. Some
solutions in this direction rely on attribute-based encryption (ABE), possibly
combined with other cryptographic techniques (e.g., [30]). An alternative inter-
esting approach combines access control with encryption by selectively encrypt-
ing resources based on the authorizations on them [12]. Intuitively, data are
encrypted with different keys and users are given only the keys for data which
they are authorized to access. This solution introduces some challenges related to
key management: users would like to have a single key (regardless of the number
of resources for which they have access), and data should be encrypted at most
once (i.e., different replicas with different keys should be avoided). These re-
quirements can be satisfied by adopting a key derivation approach [2], by which
users can derive keys from a single key assigned to them and public tokens. Ac-
cess control can then be enforced by properly organizing the keys with which
resources are encrypted in a hierarchy reflecting the authorizations on the re-
sources, or better their access control lists (ACLs), where the key corresponding
to an ACL allows deriving, via one or more tokens, the keys associated with all
ACLs that are superset of it. This way a user is able to derive, from her key and
public tokens, all (and only) the keys that are needed to access resources that
she is authorized to access according to the access control policy. Figure 4(a)
reports an example of access control policy involving four users (A, B, C, and
D) and six resources (r1, r2, r3, r4, r5, r6). Figure 4(b) reports a corresponding
hierarchy for keys, including one key for each user and one key for each non sin-
gleton ACL appearing in the policy. Dotted lines connect users to their keys, and
keys to resources encrypted with them. Tokens, represented as continuous line,
allow users to derive from their own key the keys of all and only resources for
which they are authorized. This hierarchy-based approach can also be extended
to support write privileges [9], and subscription-based scenarios [8].

As the key with which resources are encrypted depends on their ACL, in
principle any change to the authorization policy would require downloading, de-
crypting, re-encrypting, and re-uploading the involved resources. This process
can be avoided assuming some cooperation of the server in enforcing authoriza-
tion changes by over-encrypting resources to make them not accessible to non-
authorized users who know the key with which resources have been encrypted by
the owner. Intuitively, every resource is subject to two layers of encryption [12]:
a base encryption layer (BEL) applied by the data owner reflects the access



Data Security and Privacy in the Cloud 35

control policy at initialization time; a surface encryption layer (SEL) applied on
top of the BEL by the server takes into account possible changes in the access
control policy. A user will be able to access a resource only if she can pass both
layers of encryption.

2.3 Private Access

In some scenarios what can be sensitive might be not (or not only) the data stored
at the external server but (also) the accesses that users make on such data. In
particular, the fact that an access aims at specific data (access confidentiality) or
that different accesses aim at the same data (pattern confidentiality) should be
maintained confidential, even to the server providing access itself. Traditional
approaches addressing these issues are based on private information retrieval
(PIR) techniques, which however assume that data are stored in the clear, and
suffer from high computation costs, thus limiting their applicability (e.g., [32]).
Alternative solutions are based on the Oblivious RAM structure (ORAM) [21]
and on dynamic data allocation techniques (e.g., [17,18,35]). These solutions pro-
vide access and pattern confidentiality by encrypting data and changing their
physical allocation at every access so to destroy the, otherwise static, correspon-
dence between data and physical blocks where they are stored. In particular,
Path ORAM [35] maintains some data in a local cache (called stash) and some
data in an external tree structure where nodes contain, in addition to actual
blocks, also dummy blocks (to provide uniformity of the size of all nodes). Every
access entails reading a path of the tree (containing the searched block) and
bringing the nodes in the path in the stash. Then, the nodes in the tree path
read are rewritten back (possibly moving out from the stash nodes mapping to
leaves intersecting the path).

The shuffle index also assumes a local cache but maintains at the external
storage the complete data structure (so providing also more resilience in case of
failures and accommodating concurrent accesses or distributed scenarios [18,19]).
The data stored externally are organized with a B+-tree whose nodes are en-
crypted and that has no pointer between leaves (to avoid leaking to the server
information on the order of values stored). The advantage of a key-based hierar-
chical organization is that it allows supporting range queries. To protect pattern
confidentiality, for every search operation, the client asks retrieval of more values:
the actual target and some covers (which provide uncertainty for the server on
the block to which the client actually aims). Also, the client performs a shuffling
among nodes in the cache and those retrieved by the search, then rewriting the
involved blocks (whose content have been changed by the re-allocation enforced
by the shuffling) on the server. Figure 5(a) illustrates an example of nodes for
a shuffle index where, for readability, we have omitted the pointers from a node
to its children; the parent-child relationship is however understandable from the
label assigned to nodes in the figure, as leaf nodes have as prefix the label of
their parent. The figure shows a sample execution with target c1 and cover b2,
assuming a1 (and then the path to it) be in cache. The dotted arrows in Fig-
ure 5(a) illustrate a possible shuffling that changes the data allocated to blocks



36 P. Samarati

Fig. 5. An example of logical shuffle index with cache/target/cover and shuffling op-
erations due to an access (a), logical shuffle index at the end of the access (b), and
server’s view on the access (c)

as in Figure 5(b). Figure 5(c) illustrates instead the view of the server on the
access.

3 Data and Computation Integrity

Another issue that needs to be considered when storing – or processing – data at
external servers is the ability to assess the correct behavior of the servers. This
implies verifying that data are maintained correctly and that queries performed
on them are correctly executed.

As for data storage, typical solutions are based on hashing and digital signa-
ture schemas (e.g., [23,31]). Signature-based approaches provide a deterministic
guarantee of data integrity but impose an overhead not always acceptable in
cloud scenarios. Alternative solutions, which provide probabilistic (i.e., not cer-
tain) guarantees of data integrity, are Proof of Retrievability (POR) approaches
(e.g., [28]), which apply to encrypted data, or Provable Data Possession (PDP)



Data Security and Privacy in the Cloud 37

J

clean up/check integrity

��

J∗

decrypt

��

��Client

J∗
k

��

��

������������

������������
L∗
k R∗

k

encrypt

��

encrypt

��
Computational

server Cs

L∗ R∗

salts&buckets/twins/markers

��

salts&buckets/twins/markers

��

L R

Storage server Sl Storage server Sr

Fig. 6. Join execution and integrity controls

approaches (e.g., [3]), which apply to generic datasets. They are based on con-
trol sentinels hidden among the encrypted data (for POR) or on homomorphic
verifiable tags (for PDP) whose presence and correctness can be verified by the
owner or other trusted parties.

As for query computation, guaranteeing integrity requires to provide users
with mechanisms to verify the correctness , completeness , and freshness of com-
putations. Correctness means that the result has been performed on the original
data and the computation performed correctly. Completeness means that no
data is missing from the result. Freshness means that the computation has been
performed on the most recent version of the data. Similarly to data storage so-
lutions, also solutions assessing integrity of computations can be distinguished
in deterministic and probabilistic. Deterministic solutions are based on the use
of authenticated data structures and allow assessing integrity of query results
based on a verification object which the server should return together with the
results. Different approaches can different with respect to how data are orga-
nized and the verification object computed. For instance, signature chaining
schemas (e.g., [33]) organize tuples in a chain while Merkle tree and its variation



38 P. Samarati

(e.g., MB-Tree) [29,38] organize data in a hash-based tree structure. Determin-
istic solutions permit to detect integrity violations with certainty but offer such
a capability only for queries with conditions on the attribute/s on which the
structure has been defined.

Probabilistic solutions accommodate a more general control, while provid-
ing only a probabilistic guarantee of detecting violations (e.g., [14,36,37]). For
instance, the proposal in [14] permits to assess the integrity of join queries per-
formed by a non trustworthy computational server. The approach is based on
the insertion, in the encrypted data passed to the computational server, of fake
tuples (not belonging to the original relations) representing markers (newly gen-
erated tuples) and twins (replicas of existing tuples). To flatten the distribution
of tuples participating in a join, tuples can be organized in buckets by using salts
in the encryption, and possibly inserting dummy tuples. A violation is detected
if an expected marker is missing or a twinned tuple appears solo. Of course,
the more the markers and twins inserted, the more the offered guarantee. While
the guarantee is only probabilistic, a confident assurance can be provided with
limited performance overhead. Figure 6 illustrates a high level representation of
the working of this technique.

4 Conclusions

The use of external cloud services for storing and processing data offers tremen-
dous benefits to companies as well as users. Such a convenience introduces how-
ever inevitable risks on the data, and the need to provide techniques for ensuring
confidentiality and integrity of data as well as of computations on them. This
paper discussed these needs and some solutions addressing them.

Acknowledgments. I would like to thank Sabrina De Capitani di Vimercati for
suggestions and comments. This paper is based on joint work with Sabrina De
Capitani di Vimercati, Sara Foresti, Giovanni Livraga, Sushil Jajodia, Stefano
Paraboschi, and Gerardo Pelosi. The work was supported in part by Italian
MIUR PRIN project “GenData 2020” and EC 7FP project ABC4EU (312797).

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani,
R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed ar-
chitecture for secure database services. In: Proc. of the 2nd Biennial Conference on
Innovative Data Systems Research, CIDR 2005, Asilomar, CA, USA (January 2005)

2. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key man-
agement for access hierarchies. ACM Transactions on Information and System
Security 12(3), 18:1–18:43 (2009)

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proc. of the 14th ACM Con-
ference on Computer and Communications Security (CCS 2007), Alexandria, VA,
USA (October-November 2007)



Data Security and Privacy in the Cloud 39

4. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 171–186.
Springer, Heidelberg (2007)

5. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: Outsourcing data while maintaining confidentiality. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer,
Heidelberg (2009)

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM Transactions on Information and System Security (TISSEC) 13(3),
22:1–22:33 (2010)

7. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc. of
the 10th ACM Conference on Computer and Communications Security (CCS 2003),
Washington, DC, USA (October 2003)

8. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G.: Enforcing
subscription-based authorization policies in cloud scenarios. In: Cuppens-Boulahia,
N., Cuppens, F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 314–329.
Springer, Heidelberg (2012)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Enforcing dynamic write privileges in data outsourcing. Computers
& Security (COSE) 39, 47–63 (2013)

10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Extending loose associations to multiple fragments. In: Wang, L.,
Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 1–16. Springer, Heidelberg
(2013)

11. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Fragmentation in presence of data dependencies. IEEE Transactions
on Dependable and Secure Computing (TDSC) (2014)

12. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM Transactions
on Database Systems (TODS) 35(2), 12:1–12:46 (2010)

13. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Fragments and loose associations: Respecting privacy in data publishing. Proc. of
the VLDB Endowment 3(1), 1370–1381 (2010)

14. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Integrity for join queries in the cloud. IEEE Transactions on Cloud Computing
(TCC) 1(2), 187–200 (2013)

15. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
On information leakage by indexes over data fragments. In: Proc. of the 1st Inter-
national Workshop on Privacy-Preserving Data Publication and Analysis (PrivDB
2013), Brisbane, Australia (April 2013)

16. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Data privacy:
Definitions and techniques. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 20(6), 793–817 (2012)

17. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati,
P.: Efficient and private access to outsourced data. In: Proc. of the 31st Interna-
tional Conference on Distributed Computing Systems (ICDCS 2011), Minneapolis,
Minnesota, USA (June 2011)



40 P. Samarati

18. DeCapitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Dis-
tributed shuffling for preserving access confidentiality. In: Crampton, J., Jajodia, S.,
Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 628–645. Springer, Heidelberg
(2013)

19. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Supporting concurrency and multiple indexes in private access to outsourced data.
Journal of Computer Security (JCS) 21(3), 425–461 (2013)

20. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing
data in the cloud: Privacy risks and approaches. In: Proc. of the 7th International
Conference on Risks and Security of Internet and Systems (CRiSIS 2012), Cork,
Ireland (October 2012)

21. Goldreich, O., Ostrovsky, R.: Software protection and simulation on Oblivious
RAMs. Journal of the ACM 43(3), 431–473 (1996)

22. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data in
the database-service-provider model. In: Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2002), Madison, Wisconsin, USA
(June 2002)

23. Hacigümüş, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases
in database as a service model. In: De Capitani di Vimercati, S., Ray, I., Ray, I.
(eds.) Data and Applications Security XVII. IFIP, vol. 142, pp. 61–74. Springer,
Heidelberg (2004)

24. Jhawar, R., Piuri, V.: Adaptive resource management for balancing availability and
performance in cloud computing. In: Proc. of the 10th International Conference on
Security and Cryptography (SECRYPT 2013), Reykjavik, Iceland (July 2013)

25. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proc. of the 15th IEEE International Con-
ference on Computational Science and Engineering (CSE 2012), Paphos, Cyprus
(December 2012)

26. Jhawar, R., Piuri, V., Santambrogio, M.: A comprehensive conceptual system-level
approach to fault tolerance in cloud computing. In: Proc. of the 2012 IEEE Interna-
tional Systems Conference (SysCon 2012), Vancouver, BC, Canada (March 2012)

27. Jhawar, R., Piuri, V., Santambrogio, M.: Fault tolerance management in cloud
computing: A system-level perspective. IEEE Systems Journal 7(2), 288–297 (2013)

28. Juels, A., Kaliski, B.: PORs: Proofs of retrievability for large files. In: Proc. of the
14th ACM Conference on Computer and Communications Security (CCS 2007),
Alexandria, VA, USA (October-November 2007)

29. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index structures
for aggregation queries. ACM Transactions on Information and System Security
(TISSEC) 13(4), 32:1–32:35 (2010)

30. Li, J., Chen, X., Li, J., Jia, C., Ma, J., Lou, W.: Fine-grained access con-
trol system based on outsourced attribute-based encryption. In: Crampton, J.,
Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 592–609.
Springer, Heidelberg (2013)

31. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM Transactions on Storage (TOS) 2(2), 107–138 (2006)

32. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information
retrieval: Techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)



Data Security and Privacy in the Cloud 41

33. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proc. of the ACM SIGMOD International Con-
ference onManagement of Data (SIGMOD 2005), Baltimore, MA, USA (June 2005)

34. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios:
Issues and directions. In: Proc. of the 5th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS 2010), Beijing, China (April 2010)

35. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path ORAM: An extremely simple Oblivious RAM protocol. In: Proc. of the 20th
ACM Conference on Computer and Communications Security (CCS 2013), Berlin,
Germany (November 2013)

36. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance.
In: Proc. of the 2008 ACM International Conference on Information and Knowledge
Management (CIKM 2008), Napa Valley, CA (October 2008)

37. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proc. of the 33rd International Conference on Very Large Data Bases (VLDB 2007),
Vienna, Austria (September 2007)

38. Yang, Z., Gao, S., Xu, J., Choi, B.: Authentication of range query results in MapRe-
duce environments. In: Proc. of the 3rd International Workshop on Cloud Data
Management (CloudDB 2011), Glasgow, U.K. (October 2011)


	Data Security and Privacy in the Cloud
	1 Introduction
	2 Confidentiality of Data and Access Control
	2.1 Encryption and Fragmentation
	2.2 Access Control Enforcement
	2.3 Private Access

	3 Data and Computation Integrity
	4 Conclusions
	References




