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Abstract. This article proposes efficient solutions for the construction
of sealed-bid second-price and combinatorial auction protocols in an ac-
tive adversary setting. The main reason for constructing secure auction
protocols is that the losing bids can be used in the future auctions as well
as negotiations if they are not kept private. Our motivation is to apply
verifiable secret sharing in order to construct various kinds of sealed-bid
auctions. We initially propose two secure second-price auction protocols
with different masking methods. Subsequently, we provide two secure
combinatorial auction protocols based on our second masking approach.
In the first scheme, we apply an existing dynamic programming method.
In the second protocol, we use inter-agent negotiation as an approximate
solution in the multiple traveling salesman problem to determine auction
outcomes. It is worth mentioning that our protocols are independent of
the secret sharing scheme that is being used.

Keywords: Applied cryptography, security and privacy in auctions.

1 Introduction

The growth of e-commerce technologies has created a remarkable opportunity
for secure auctions where bidders submit sealed-bids to auctioneers and then
the auctioneers define outcomes without revealing the losing bids. The main
motivation for protection of the losing bids is that the bidders’ valuations can be
used in the future auctions and negotiations by different parties, say auctioneers
to maximize their revenues or competitors to win the auction. This problem can
be resolved by constructing privacy-preserving auction protocols.

In fact, secure comparison, as the main building block of sealed-bid auctions,
is first motivated by the millionaires’ problem [38]. In this problem, the goal
is to determine whether x > y, where both x and y are private secrets of two
players. The answer to this question becomes known to the parties only after
the execution of the protocol. The millionaires’ problem ultimately leaded to the
introduction of secure multiparty computation MPC, where n players cooperate
to perform a computation task based on the private data they each provide.
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Other methods were later proposed in order to construct protocols for secure
comparison, interval test and equality test. For instance, [9] proposes multiparty
computation techniques to implement these operations. The main building block
of this construction is a protocol, named bit-decomposition, that converts a poly-
nomial sharing of a secret into shares of its bits. This protocol is simplified in [22].
As a counterpart, [11] implements these operations by homomorphic encryption
in a computationally secure setting. We later clarify why these operations are
too expensive to build practical sealed-bid auctions, as shown in Table 2.

There exist many sealed-bid auctions in both passive and active adversary
models. In the former, players follow protocols correctly but are curious to learn
private bids. In the latter, players may also deviate from protocols. The majority
of the sealed-bid auction protocols either are secure only in the passive adversary
model or they apply costly bitwise approaches, e.g., using verifiable secret sharing
VSS for every single bit of each bid rather than a single VSS for the entire bid.

1.1 Literature Review

All the following protocols utilize “secret sharing” as their main building block.
In the initial construction of the first-price sealed-bid auction protocols, the
authors in [10] implement a secure auction service by using verifiable secret
sharing as well as verifiable signature sharing. At the end of the bidding time,
auctioneers open bids to define outcomes, therefore, they learn the losing bids.

The authors in [12] illustrate a set of protocols for sealed-bid auctions by using
secure distributed computation. The bidders’ valuations are never revealed to
any party even when the auction is completed. Their constructions support the
first-price and second-price auctions. The general idea of their approach is to
compare bids digit-by-digit by applying secret sharing techniques. This protocol
is computationally very expensive.

The proposed first-price construction in [14] (modified in [15]) demonstrates
a multi-round secure auction protocol in which winners from an auction round
take part in a subsequent tie-breaking second auction round. The authors use
the addition operation of secure multiparty computation in a passive adversary
model. Later, the authors in [27] detected some shortcomings in this scheme such
as the lack of verifiability. They then resolved those problems.

The authors in [13] present a protocol for the (M + 1)st-price auction. They
illustrate a new method where bidders’ valuations are encoded by the degree of
distributed polynomials. The proposed construction requires only two rounds of
computations; one round for bidders and one round for auctioneers. The pro-
posed scheme in [6] is a fully private (M + 1)st-price auction protocol in which
only the winning bidders and the seller learn the selling price. It has two main
shortcomings. First, the scheme is not able to handle ties among multiple win-
ners. Second, it is not an efficient construction in the computational setting.

Finally, the authors in [26] design a new first-price secure auction protocol
based on a homomorphic secret sharing scheme. Their construction relies on
hard computation problems and does not depend on any trust. They also show
that the proposed protocol is secure against different kinds of attacks.
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1.2 Motivation and Contributions

Our motivation is to propose efficient solutions for the construction of secure
second-price as well as combinatorial auction protocols where losing bids are
kept private in an active adversary model. We would like to use secret sharing
techniques to define auction outcomes without using costly bitwise operations.
This helps us to design approximate secure solutions for the general combina-
torial auction that is expensive even without using sealed-bids. Even by having
unlimited computational power, one can significantly reduce the communication
cost by avoiding the use of bitwise operations, that is, sharing each bid as a single
field element is more efficient compared to sharing every single bit/digit of that
element, for an example of such a scheme, see [12]. Our constructions consist of
an initializer I, n bidders and m auctioneers. Here are our contributions:

• Our first solution is proposed for the second-price auction by using VSS. In
this protocol, all bids are masked by using + operation, consequently, bids
are sealed but their differences are revealed only to auctioneers. Although
the general idea is similar to the comparison protocol in [22], our protocol
works in an active adversary setting without using any bitwise operation. In
that article, the authors use bitwise operations in a passive adversary model.

• We then improve our previous solution in order to prevent the revelation
of the difference between each pair of bids. We propose another sealed-bid
second-price auction protocol where all bids are masked by using + and ×
operations. As a result, both bids and their differences are sealed, however,
the ratio of the bids are revealed only to auctioneers. We should stress that
this protocol can be simply extended to the secure (M + 1)st-price auction.

• Finally, we provide two secure combinatorial auction protocols based on
our second masking approach: (a) we use an existing dynamic programming
method [33] to define auction outcomes. In that paper, the authors encode
bids as the degree of secret sharing polynomials. As a result, their protocol
only works in the passive adversary model whereas our construction works
in an active adversary setting, (b) we apply the inter-agent negotiation ap-
proach, introduced in [16], as an approximate solution in a multiple traveling
salesman problem in order to determine auction outcomes.

2 Preliminaries

2.1 Auction Protocols

In an auction, winner is a bidder who has submitted the highest bid. To define
the selling price, there are two main approaches: first-price and second-price
auctions. In the former, the winner pays the amount that he has proposed, i.e.,
highest bid. In the latter, the winner pays the amount of the second-highest bid.
There exist other types of auctions such as (M + 1)st-price and combinatorial
auctions. In the former, the highestM bidders win the auction and pay a uniform
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price defined by (M +1)-price. In the latter, multiple items with interdependent
values are sold while bidders can bid on any combination of items.

In the first-price auction, a bidder potentially is able to define the winner as
well as the selling price at the same time. On the other hand, in the second-price
auction, a bidder potentially is able to define either the winner or the selling price
for the winner. As a result, he proposes the actual highest value, say κ, he can
afford to pay, which is also a profitable price for him [35]. Suppose the proposed
bid is less than κ. In this case, the bidder decreases his chance of winning. If the
proposed bid is bigger than κ, the bidder might win with an unprofitable price.
This property forces the bidders to propose their true valuations.

2.2 Secret Sharing

In secret sharing schemes, a secret is divided into various shares in order to be
distributed among participants, then a subset of players cooperate to reveal the
secret [31,5]. In a (t, n)-secret sharing scheme where t < n, the secret is divided
into n shares such that any t+ 1 players can combine their shares to reveal the
secret, but any subset of t parties cannot learn anything about the secret.

In verifiable secret sharing VSS [8], players can verify the consistency of their
shares with other players’ shares. There are various techniques for performing the
verification procedure, such as using zero knowledge proof with small probability
of error, or applying bivariate polynomials without any probability of errors [4];
the latter construction works under the assumption that n ≥ 3t+1 by considering
secure pairwise channels among players. The proposed scheme in [29] applies the
same communication model along with a broadcast channel to construct a new
scheme with n ≥ 2t + 1. The authors in [32] construct a VSS protocol based
on symmetric bivariate polynomials. This construction is simple and uses both
pairwise channels and a broadcast channel under the assumption that n ≥ 4t+1.

3 Our Constructions

Our model, Figure 1, consists of n bidders B1 . . .Bn, m auctioneers A1 . . .Am

and a seller. We consider communication model of VSS that is being used [32].
In addition, a trusted initializer I distributes some information and then

leaves the scheme before our protocols start. This is preferable to a trusted party
who remains in the scheme. In the literature, trusted authorities are assumed
in many secure auction protocols, for instance, semi-trusted third party [7,2],

Initializer 
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B
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 A 1 
B 1 

B n 
A m 

Fig. 1. Proposed Secure Auction Model
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trusted third party [37,21], trusted centers [30], trusted authority [1,34], trustee
[36]. It is worth mentioning that by paying an extra computational cost, a trusted
party or initializer can be removed from any scheme to be replaced by MPC.
Since each bidder acts as an independent dealer and the auctioneers perform the
computation, our protocols have the following properties and assumptions:

• They can tolerate colluding auctioneers ∇ where m ≥ 4t + 1 and t ≥ |∇|
due to VSS of [32]. If the complicated VSS of [29] is used, our protocols can
tolerate m ≥ 2t+ 1 since these protocols are independent of their VSS.

• They can tolerate dishonest bidders who submit inconsistent shares. Note
that we assume the majority of the bidders are honest.

• We assume bidders do not collude with auctioneers similar to [25], and multi-
auctioneer and multi-bidder protocols in [10,14].

There also exist other kinds of collusion assumptions in the literature, e.g.,
[20] assumes auctioneers do not collude with the auction issuer, [18] assumes the
seller does not collude with the auction authority, etc. In Table 1, we have listed
some protocols that have an assumption similar to our constructions.

Table 1. Protocols Where the Auctioneers Cannot Collude With the Bidders

Protocol Cryptographic Technique Adversary Model

Here Verifiable Secret Sharing Active

[25] Homomorphic Encryption Active

[14,15] Secret Sharing Passive

[10] Verifiable Secret and Signature Sharing Active

To construct our sealed-bid auction protocols, we use (1) + operation for
adding two shared secrets, (2) × operation for multiplying two shared secrets.
Although any arbitrary VSS can be used in our constructions, we apply the
verifiable secret sharing scheme proposed in [32] due to its simplicity. This means
our protocols would tolerate more dishonest auctioneers if the VSS of [4,29] were
used. All computations are performed in a large enough finite field Zq.

3.1 Sealed-Bid Second-Price Auction Protocol Using +

In our first construction, bidders initially distribute shares of their bids βi among
auctioneers by VSS. Auctioneers then mask all shared secrets by adding an
unknown value δ to bids, i.e., computing βi + δ for 1 ≤ i ≤ n: this increases
valuations equally in order to preserve the ordering. Finally, auctioneers reveal
the masked values to determine auction outcomes without revealing actual bids.

We assume that the total number of colluding auctioneers is limited to our
secret sharing threshold, i.e., |∇| ≤ t. We also select a large enough finite field
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to prevent the modular reduction after using the addition operation. Our first
solution is shown in Figures 2 and 3. The first phase is repeated n times, i.e., it
is used for each bidder Bk where 1 ≤ k ≤ n.

Initialization

1. I initiates a secret sharing scheme by a symmetric polynomial, that is, he
generates h(x, y) ∈ Zq[x, y] of degree t in which h(0, 0) = δ, where q > κ+ δ to
prevent the modular reduction and κ denotes the maximum possible price.

2. He then sends shares of auctioneers Ai for 1 ≤ i ≤ m accordingly and leaves
the scheme, i.e., hi(x) = h(x, ωi) where ω is a primitive element in the field.
Now, each auctioneer has a share of an unknown value δ.

Bid Submission

1. Each bidder Bk chooses a random symmetric polynomial gk(x, y) ∈ Zq[x, y] of
degree t to send shares gki(x) = gk(x, ω

i) to Ai for 1 ≤ i ≤ m through a private
channel where gk(0, 0) = βk.

2. To verify distributed shares, auctioneers Ai and Aj perform pairwise checks,
i.e., they verify that gki(ω

j) = gkj(ω
i), similar to VSS of [32]. They will either

accept shares of βk or disqualify Bk.

Fig. 2. A. Secure Auction Protocol Using Addition Operation

Outcome Computation

1. Each auctioneer Ai locally adds hi(x) to the share that he has received from
each bidder Bk, that is, ψki(x) = gki(x) + hi(x) for 1 ≤ k ≤ n. In fact, ψki(x)
are shares of βk + δ for 1 ≤ k ≤ n where δ is unknown to everyone.

2. Each Ai then sends ψki(0) to a selected auctioneer Aj where i, j ∈ Γ , i.e., the
set of good auctioneers. All computations performed by Aj are only visible to
the auctioneers. Aj computes ϕk(0, y) such that ϕk(0, ω

i) = ψki(0) for at least
m− 2|∇| values of i.

3. In fact, ϕk(x, y) = gk + h. Aj computes masked values ϕk(0, 0) = βk + δ and
then sorts them in decreasing order, i.e., ϕ1

w(0, 0), ϕ
2
s(0, 0), . . . , ϕ

n
∗ (0, 0), where

w is the index of the winner and s is the index of the second highest bid.

4. Auctioneers send the winner’s index along with shares gsi(x)-s to all bidders
through private channels. Each bidder locally computes the selling price by
gs(0, 0) = βs. They can agree on βs due to the honest majority assumption.

Fig. 3. B. Secure Auction Protocol Using Addition Operation

Since equal bids have equal masked values, ties among multiple winners can be
detected and handled by assigning priority to bidders or by a random selection.
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Theorem 1. The proposed protocol defines auction outcomes correctly and only
reveals the difference between each pair of bids to the auctioneers in an active ad-
versary setting. We require m ≥ 4t+1 even if one bidder is dishonest, otherwise,
we require m ≥ 3t+ 1 when we use VSS of [32].

Proof. The security of the verifiable secret sharing scheme that we use is proven
in [32]. We provide further clarifications on the condition of this construction.
Dishonest auctioneers have two possibilities: (a) they either collude to recover
secret bids or (b) they send incorrect shares to disrupt the protocol.
(a) t-privacy: If all colluding auctioneers |∇| ≤ t collect their shares, they are
not able to recover secret bids βk since all secret sharing polynomials gk(x, y)’s
are of degree t and each of which requires t+ 1 shares to be interpolated.
(b) t-resilience: On the other hand, dishonest auctioneers cannot disrupt the
protocol. In the worst case scenario, if a dishonest bidder sends incorrect shares
(i.e., less than 1

4 of shares can be corrupted for an acceptable bid submission)
to honest auctioneers during bid submission and also colluding auctioneers send
incorrect shares (i.e., less than 1

4 of the remaining 3
4 shares) to the selected

auctioneer Aj for the reconstruction of ϕk(0, 0) in the outcome computation
phase, Aj can then use an error correction technique, such as the Reed-Solomon
Codes [19], to interpolate ϕk(0, y). Finally, if dishonest auctioneers |∇| ≤ t send
incorrect shares to bidders in the step-4 of the outcome computation phase, they
can each use error correction to recover βs. If all bidders are honest, m ≥ 3t+1
satisfies the required condition of error correction.

Note that the dishonest bidders cannot disrupt the protocol if they collude
with each others because they are only involved in two tasks. (a) Bid submission
by VSS: either honest auctioneers receive consistent shares with respect to a
secret bid and accept secret sharing, or the bidder is disqualified. In the former
case, the bidder cannot repudiate his bid since those consistent shares are a
strong commitment. (b) Selling price reconstruction: each bidder receives the
winner’s index along with shares of the selling price from auctioneers in order to
compute the outcome, therefore, colluding bidders cannot disrupt the protocol
since majority of bidders are honest and they are able to agree on the winner’s
index and a correct selling price.

At the end of the protocol, all bidders only know auction outcomes. Assuming
bidders do not collude with auctioneers, all losing bids are kept secret from all
parties because δ is an anonymous constant term only known to I. It is worth
mentioning that revealing ϕk(0, 0)’s only discloses the masked values βk + δ and
the difference of each pair of bids to auctioneers, but not the actual bids βk. ��

3.2 Sealed-Bid Second-Price Auction Protocol Using × and +

We now apply a practical approach to hide bids as well as their exact distances.
Similar to the previous approach, bidders initially distribute shares of their bids
among auctioneers by VSS. Then, auctioneers mask shared secrets to define
outcomes. They start by comparing each pair of consecutive bids from β1 all the
way to βn to find the maximum element and repeat this process to define the
second maximum element, i.e., (n− 1) + (n− 2) = 2n− 3 comparisons in total.
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For each comparison, they multiply two bids by a new unknown secret 1 < αl

and then add two new random secrets δl1 and δl2 (as noise) to the resulting values
such that the order of two bids are maintained, i.e., αlβk + δl1 and αlβk+1 + δl2
where 1 ≤ δl1 �= δl2 < αl, shown in Figures 4 and 5. Each time, after executing ×
operation, the degree reduction protocol in [24] is used to adjust the threshold.

Initialization

1. Initializer I generates symmetric polynomials fl, hl1, hl2 ∈ Zq [x, y] of degree t
for 1 ≤ l ≤ (2n − 3) with constant terms αl, δl1, δl2, where q > αl(κ + 1) to
prevent the modular reduction. In fact, we use different l for each comparison.

2. He then sends shares of fl, hl1, hl2 to Ai for 1 ≤ i ≤ m and leaves the scheme.
That is, f i

l (x) = fl(x,ω
i), hi

l1(x) = hl1(x, ω
i) and hi

l2(x) = hl2(x, ω
i) where ω

is a primitive element.

Bid Submission

• We apply the bid submission protocol of the previous construction, that is,
each bidder Bk chooses a random symmetric polynomial gk(x, y) of degree t to
send gki(x) = gk(x, ω

i) to Ai for 1 ≤ i ≤ m through private channels such that
gk(0, 0) = βk. Auctioneers also verify shares similar to that protocol.

Fig. 4. Secure Auction Using Addition and Multiplication Operations

In this protocol, equal bids are not distinguished due to the random noise
δl1 and δl2. Therefore, auctioneers can execute a secure equality test on βw and
βk to detect potential ties between them, i.e., compute γl(βw − βk) where γl is
unknown. If it is zero, two bids are equal, otherwise, they are different.

Theorem 2. The proposed protocol defines auction outcomes correctly and only
reveals the ratio of bids to the auctioneers in an active adversary setting. We
require m ≥ 4t+1 even if a single bidder is dishonest, otherwise, we only require
m ≥ 3t+ 1 when we use VSS of [32].

Proof. We provide a short clarification since the security proof is straightforward
and the same as the previous theorem. In this protocol, the actual difference of
each pair of bids are kept private due to the additive factors δl1 and δl2, where
1 ≤ δl1 �= δl2 < αl. In other words, considering two consequtive bids βk < βk+1

where βk+1−βk = 1, their corresponding masked values have the same ordering,
that is, αlβk + δl1 < αlβk+1 + δl2 even if δl1 = αl − 1 and δl2 = 1. However,
upper and lower bounds of the bids’ ratios are revealed only to auctioneers:

ratio =
αlβk + δl1

αlβk+1 + δl2
<

αlβk + αl

αlβk+1
<

βk + 1

βk+1

ratio =
αlβk + δl1

αlβk+1 + δl2
>

αlβk

αlβk+1 + αl
>

βk

βk+1 + 1
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Outcome Computation

1. Auctioneers select shares of a pair of bids βk and βk′ . Each Ai locally computes
ψki(x) = f i

l (x) × gki(x) and ψk′i(x) = f i
l (x) × gk′i(x), that is, shares of new

symmetric polynomials. They execute a degree reduction protocol for thresh-
old adjustment [24]. After that, each Ai adds shares hi

l1(x) and hi
l2(x) to the

previous shares, i.e., ψki(x) ← ψki(x) + hi
l1(x) and ψk′i(x) ← ψk′i(x) + hi

l2(x).

2. Each Ai then sends ψki(0) and ψk′i(0) to a selected Aj where i, j ∈ Γ , i.e.,
the set of good auctioneers. Computations performed by Aj are only visible
to the auctioneers. Aj computes polynomials ϕk(0, y) and ϕk′(0, y) such that
ϕk(0, ω

i) = ψki(0) and ϕk′(0, ωi) = ψk′i(0) for at least m− 2|∇| values of i.
3. In fact, ϕk(x, y) = fl × gk + hl1 and ϕk′(x, y) = fl × gk′ + hl2. Therefore, Aj

reveals ϕk(0, 0) = αlβk + δl1 and ϕk′(0, 0) = αlβk′ + δl2. Now, auctioneers can
define which bid is larger by comparing masked values αlβk+δl1 and αlβk′+δl2,
where αl, δl1, δl2 are unknown to everyone.

4. Auctioneers repeat steps 1−3 to determine two highest bids βw and βs accord-
ingly. The winner’s id along with shares gsi(x)-s are sent to all bidders through
private channels. Each Bk locally computes the selling price by gs(0, 0) = βs.
They can agree on βs due to the honest majority assumption.

Fig. 5. Secure Auction Using Addition and Multiplication Operations

It is now easy to observe that the ratio of two bids are bounded as follows:

βk

βk+1 + 1
< ratio <

βk + 1

βk+1

During the outcome computation phase and the execution of a degree re-
duction protocol, auctioneers can verify all computations by means of pairwise
checks (similar to VSS of [32]) to make sure everyone is following the protocols
correctly since all polynomials remain symmetric. We should mention that the
degree reduction is avoidable in some other settings, e.g., having honest bidders
under m ≥ 4t+1 assumption, auctioneers can interpolate a polynomial of degree
2t in the existence of t malicious parties by using error correction [19]. ��

3.3 Sealed-Bid Combinatorial Auction Protocol by Dynamic
Programming

The first unconditionally secure combinatorial auction protocol was proposed
in [33]. (For other type of unconditionally secure auction protocols see [23,17],
i.e., sealed-bid Dutch-style auctions.) [33] applies a dynamic programming DP
technique to determine auction outcomes. This solution is secure only in the
passive adversary model and it is not verifiable. In addition, the number of
auctioneers must be larger than the maximum possible revenue.

In this construction, weight publishers (bidders) submit their valuations as
the degree of secret sharing polynomials. Then, evaluators (auctioneers) use
deg(gk) + deg(gl) = deg(gk × gl) and max{deg(gk), deg(gl)} = deg(gk + gl) to
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implement addition and max operations accordingly. They also use mask pub-
lishers (trusted third parties) to execute these operations securely. The authors
later propose the counterpart construction of this scheme in a computational
setting based on the homomorphic encryption [39].

We first provide an example to show a combinatorial auction model based on
a directed graph, Figure 6. We then illustrate the dynamic programming method
in order to define auction outcomes. Finally, we explain our secure solution to
this problem in an active adversary setting.

Example 1. Suppose six bidders B1, . . . ,B6 propose their evaluations on various
subsets of three items {a, b, c}. For instance, β5 = $5 for all three items, β2 = $3
for {a}, and so on. As you can see, auctioneers earn the maximum revenue if
they sell {b} to the first bidder for $1 and {a, c} to the last bidder for $5.

0: {a,b,c} 1: {a,c} 2: {c} 3: { } 
{b}: β1 = $1 {a}: β2 = $3 {c}: β3 = $1 

{a,c}: β6 = $5 

{a,b}: β4 = $2 
{a,b,c}: β5 = $5 

Fig. 6. Directed Graph to Model Combinatorial Auctions

r = 3 : f(3) = 0 destination function

r = 2 : f(2) = max{w23 + f(3)} = max{1} = 1

r = 1 : f(1) = max{w12 + f(2), w13 + f(3)} = max{4, 5} = 5

r = 0 : f(0) = max{w01 + f(1), w02 + f(2), w03 + f(3)} = max{6, 3, 5} = 6

More generally, f(r) =
link:r→s
max {wrs + f(s)}, where the value of the destination

function is zero and wrs is the weight of the link between two subsequent nodes r
and s. Therefore, we need two operations addition andmax in order to implement
a sealed-bid combinatorial auction protocol in the active adversary setting.

Similar to the previous construction, I first distributes some multiplicative
and additive factors based on the size of the directed graph. Bidders B1, . . . ,Bn

then distribute their bids by symmetric bivariate polynomials of degree t. In
the computation stage, auctioneers A1, . . . ,Am use the same addition operation
to execute wrs + f(s) = βk + f(s). They also apply the previous comparison
approach to implement themax operation. Finally, they define auction outcomes.

3.4 Sealed-Bid Combinatorial Auction Protocol by Multiple-TSP

In our last construction, we design an approximate secure solution in order to
solve the combinatorial auction problem through a multiple traveling salesman
problem MTSP, where more than one salesman is allowed to be used for finding
the solution. In the fixed destination version of this problem, each salesman
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returns to his original depot after completing the tour. Similar to the traveling
salesman problem, each city is visited exactly once and the total cost of visiting
cities is minimized [3]. We first illustrate how to model a combinatorial auction
based on the multiple traveling salesman problem and then we demonstrate an
inter-agent negotiation approach [16] to solve this problem, Figure 7.

Example 2. Suppose three bidders B1,B2,B3 propose their bids on various sub-
sets of seven items {a, b, c, d, e, f, g}, as shown below.

B1 → {a, b, c} : $12 or {a, b} : $5 or {a, c} : $7

B2 → {d, e} : $7 or {b, d, e} : $13 or {c, d, e} : $11

B3 → {f, g} : $9 or {b, f, g} : $16 or {c, f, g} : $14

In the initialization phase, auctioneers assign all items to three bidders for
the total price of $28, Figure 7 left-hand side. In the subsequent negotiation
stages, they maximize the selling price. For instance, both items {b} and {c}
can be release from the first bidder’s set. Since B1 pays more money for {a, c}
compared to {a, b}, therefore {b} is released with 12− 7 = $5 cost. On the other
hand, B2 pays extra 13−7 = $6 > $5 for {b} while B3 pays extra 16−9 = $7 > $5
for that. Therefore, {b} is assigned to the last bidder and the total selling price
is increased to $30 through one round of negotiation, Figure 7 right-hand side.

{a,b,c}: 1 = $12 {d,e}: 2 = $7 {f,g}: 3 = $9 {a,c}: 1 = $7 {d,e}: 2 = $7 {b,f,g}: 3 = $16{ , , } 1

b d f

{ , } 2 { g} 3 { , } 1

bd f

{ , } 2 { g} 3

Plus $2

a c e g a c e g

Fig. 7. Multiple Traveling Salesman Problem for Modeling Combinatorial Auctions

Similar to our previous construction, we require addition (minus is the same)
and max (or comparison) operations to implement the negotiation protocol in a
secure setting. We can also define a time interval for the entire protocol in order
to limit the number of negotiation rounds for an approximate solution.

4 Complexity and Properties

We now clarify why the existing bitwise operations are too expensive to construct
sealed-bid auction protocols. As we stated earlier, these protocols use VSS for
every single bit of each bid rather than a single VSS for each bid. Let � = 	log2 q

denotes the number of bits of each bid, i.e., the size of each finite field’s element.

The round complexity is measured by the number of rounds in which players
execute the multiplication protocol and the communication complexity is mea-
sured by the number of invocations of the multiplication protocol. For instance,
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to compute α1α2α3α4, α1α2 and (α1α2)α3 and (α1α2α3)α4 can be computed
sequentially, or α1α2 and α3α4 can be computed in parallel in order to compute
(α1α2)(α3α4). The former method takes 3 rounds with 3 invocations whereas
the later method takes 2 rounds with 3 invocations. In all complexity analyses,
the goal is to perform parallel multiplications as much as possible.

To construct bitwise operations, Bit-Decomposition BD protocol is proposed
in [9] to convert a polynomial sharing of a secret into shares of its bits. This
protocol takes 114 rounds and 118� + 110 � log � invocations. The authors also
provide a protocol, named Bitwise Less-Than BIT-LT, to compare two decom-
posed elements in 19 rounds with 22� invocations. Therefore, to compare two
elements, they must be decomposed in parallel and then they can be compared,
i.e., (114 + 19) rounds and (2 ∗ (118�+ 110 � log �) + 22�) invocations.

The authors in [22] show that the comparison protocol can be simplified by
using simpler subprotocols, i.e., (38 + 6) rounds and (2 ∗ (93�+94 � log �) + 19�)
invocations. They also show that the BD protocol itself can be simplified to
achieve even a better result, i.e., (25+6) rounds and (2 ∗ (93�+47 � log �)+ 19�)
invocations. Finally, they propose a new comparison protocol without applying
the DB protocol while using other bitwise operations. This construction takes
(13 + 2) rounds and (3 ∗ (93� + 1) + 2) invocations. Note that our comparison
protocol only takes 1 round for two multiplications in parallel and 2 invocations.

The summary of these analyses are presented in Table 2. Even by using ele-
ments with � = 128 bits, it is impractical to use any of these bitwise operations.
For instance, in the best case scenario, it requires 35, 717 secure multiplications in
order to perform one single comparison. Having only 10 bids, it requires 350, 717
secure multiplications to find the highest bid whereas our protocol only requires
20 multiplications. This implies that avoiding bitwise operations is better than
revealing partial information like ratio of bids.

Table 2. Single Comparison’s Cost in Terms of the Number of Multiplications

Secure Comparison Number Communication 
 = 128: Number of

Protocol of Rounds Complexity Secure Multiplications

Our 2nd Protocol 1 2 2

[22] not using BD 15 279
 + 5 35, 717

[22] using BD 31 205
 + 94 
 log 
 110, 464

[22] simplifying [9] 44 205
 + 188 
 log 
 194, 688

[9] 133 258
 + 220 
 log 
 230, 144

In general, sealed-bid auction protocols have some essential properties [28] as
listed below. (a) Correctness : determining auction outcomes correctly, i.e., the
winners and the selling price. (b) Privacy: preserving privacy of the losing bids.
(c) Verifiability: parties who exchange money such as bidders and the seller (if
applicable) must be able to verify auction outcomes. (d) Fairness : bidders must
not be able to modify and/or deny (a.k.a non-repudiation) the submitted bids.
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(e) Robustness : none of the active parties are assumed to be honest and malicious
behavior must be tolerated. (f) Anonymity: the identities of the losers must be
kept secret. Excluding property (f), our protocols have all the above features.

We also would like to highlight some important points regarding our protocols.
Although partial information like the ratio of the bids might be revealed to
auctioneers, our protocols keep the actual values of the losing bids secret. This
is much better than using impractical bitwise approach to fully hide the losing
bids. Moreover, revealing the ratio of the bids is better than revealing the exact
difference between two bids, i.e., saying the 2nd-highest bid is 3/4 of the winning
bid or saying the 2nd-highest bid is exactly $10 less than the winning bid. In our
schemes, auctioneers perform similar to an intermediate computation engine. In
other words, bidders determine the actual value of the selling price themselves by
outsourcing part of the computation, as in the client-server MPC model. Finally,
our initializer, who can be replaced by MPC, is not an active party when the
auction starts.

5 Concluding Remarks

We initially illustrated the lack of efficient solutions for the sealed-bid auction
protocols that are secure in an active adversary setting (without using costly bit-
wise operations). We therefore proposed four secure constructions with different
properties and applications. The summary of our contributions are presented in
Table 3. Note that m ≥ 2t+ 1 can be tolerated using complicated VSS of [29].

Table 3. Sealed-Bid Auction Protocols Using VSS of [32]

Protocol Adv. A1..m B1..n Assumption Opt. Reveal

2nd-price + bids’

honest m ≥ 3t+ 1 differences

2nd-price active dishonest or or ratio

combinatorial DP dishonest m ≥ 4t+ 1 +,× of

combinatorial MTSP bids

It is quite challenging to construct sealed-bid auction protocols in an active
adversary model without using a trusted party. In other words, if one relaxes
these assumptions, he can decrease the computation and communication com-
plexities. For instance, constructing the proposed schemes by considering the
simple passive adversary model or using a trusted authority who remains in the
scheme while the protocol is being executed. In addition, the winner determi-
nation problem of a general combinatorial auction is NP-complete and imple-
menting this problem in a secure fashion adds extra computational cost to the
protocol. Therefore, it is reasonable to apply simpler protocols (compared to
bitwise approach where every single bit of bids is shared) along with approxi-
mate solutions to define auction outcomes. In this case, even by having unlimited
computational power, we can significantly improve the communication cost.
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