
Xinyi Huang
Jianying Zhou (Eds.)

 123

LN
CS

 8
43

4

10th International Conference, ISPEC 2014
Fuzhou, China, May 5–8, 2014
Proceedings

Information Security
Practice and Experience

Lecture Notes in Computer Science 8434
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Xinyi Huang Jianying Zhou (Eds.)

Information Security
Practice and Experience

10th International Conference, ISPEC 2014
Fuzhou, China, May 5-8, 2014
Proceedings

13

Volume Editors

Xinyi Huang
Fujian Normal University
Fuzhou, China
E-mail: xyhuang81@gmail.com

Jianying Zhou
Institute for Infocomm Research
Singapore
E-mail: jyzhou@i2r.a-star.edu.sg

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06319-5 e-ISBN 978-3-319-06320-1
DOI 10.1007/978-3-319-06320-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936019

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 10th International Conference on Information Security Practice and Expe-
rience (ISPEC 2014) was held in Fuzhou, China, during May 5-8, 2014. The
conference was hosted by Fujian Provincial Key Laboratory of Network Security
and Cryptology, Fujian Normal University.

This year the conference received 158 submissions. They were evaluated on
the basis of their significance, novelty, technical quality, and practical impact.
Each paper was reviewed by three Program Committee members and the review-
ing process was double-blind. After careful reviews and intensive discussions, 36
papers were selected for presentation at the conference and inclusion in this
Springer volume (LNCS 8434), with an acceptance rate of 23%.

In conjunction with ISPEC 2014, there was a “Huawei Information Secu-
rity Practice and Experience Forum” sponsored by Huawei. The forum con-
sisted of seven keynote speeches being delivered to the ISPEC 2014 participants.
The seven keynote speakers were Dieter Gollmann, Miroslaw Kutylowski, Javier
Lopez, David Naccache, Mark Ryan, Pierangela Samarati, and Yang Xiang. The
proceedings also contain the invited papers from the keynote speakers.

There is a long list of people who volunteered their time and energy to put
together the conference and who deserve special thanks. Thanks to the Program
Committee members and external reviewers for their hard work in evaluating
the papers. We are also very grateful to all the people whose work ensured a
smooth organization process: Honorary Chair Fegn Bao, General Chairs Robert
Deng and Li Xu, Publication Chair Ying Qiu, Publicity Chairs Cheng-Kang Chu
and Yu Wang, and Organizing Chair Wei Wu.

Last but certainly not least, our thanks go to all the authors who submitted
papers and all the attendees.

May 2014 Xinyi Huang
Jianying Zhou

ISPEC 2014

10th Information Security
Practice and Experience Conference

Fuzhou, China
5-8 May 2014

Organized by Fujian Normal University, China

Sponsored by Huawei Technologies Co., Ltd.

Honorary Chair

Feng Bao Huawei, Singapore

General Chairs

Robert Deng Singapore Management University, Singapore
Li Xu Fujian Normal University, China

Program Chairs

Xinyi Huang Fujian Normal University, China
Jianying Zhou Institute for Infocomm Research, Singapore

Publication Chair

Ying Qiu Institute for Infocomm Research, Singapore

Publicity Chairs

Cheng-Kang Chu Huawei, Singapore
Yu Wang Deakin University, Australia

Organizing Chair

Wei Wu Fujian Normal University, China

Program Committee

Cristina Alcaraz University of Malaga, Spain
Basel Alomair KACST, Saudi Arabia
Man Ho Au University of Wollongong, Australia

VIII ISPEC 2014

Joonsang Baek KUSTAR, UAE
David Chadwick University of Kent, UK
Songqing Chen George Mason University, USA
Xiaofeng Chen Xi’dian University, China
Chen-Mou Cheng National Taiwan University, Taiwan
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong
Cheng-Kang Chu Huawei, Singapore
Mauro Conti University of Padua, Italy
Xuhua Ding Singapore Management University, Singapore
Yong Ding Guilin University of Electronic Technology,

China
Josep Ferrer-Gomila Universitat de les Illes Balears, Spain
Sara Foresti Università degli Studi di Milano, Italy
Jordi Forne Universitat Politecnica de Catalunya, Spain
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Dawu Gu Shanghai Jiao Tong University, China
Fuchun Guo University of Wollongong, Australia
Jinguang Han Nanjing University of Finance and Economics,

China
Qiong Huang South China Agricultural University, China
Sokratis Katsikas University of Piraeus, Greece
Przemys�law Kubiak Wroclaw University of Technology, Poland
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Junzuo Lai Jinan University, China
Hao Lei Huawei, China
Albert Levi Sabanci University, Turkey
Jiguo Li Hohai University, China
Jin Li Guangzhou University, China
Jinming Li Huawei, China
Tieyan Li Huawei, Singapore
Yingjiu Li Singapore Management University, Singapore
Joseph Liu Institute for Infocomm Research, Singapore
Shengli Liu Shanghai Jiao Tong University, China
Javier Lopez University of Malaga, Spain
Der-Chyuan Lou Chang Gung University, Taiwan
Di Ma University of Michigan-Dearborn, USA
Olivier Markowitch Université Libre de Bruxelles, Belgium
Sjouke Mauw University of Luxembourg, Luxembourg
Chris Mitchell Royal Holloway, University of London, UK
Eiji Okamoto University of Tsukuba, Japan
Rolf Oppliger eSECURITY Technologies, Switzerland
Raphael C.-W. Phan Multimedia University, Malaysia
Kai Rannenberg Goethe University, Germany
Kouichi Sakurai Kyushu University, Japan

ISPEC 2014 IX

Gokay Saldamli Samsung, USA
Chunhua Su JAIST, Japan
Hung-Min Sun National Tsing Hua University, Taiwan
Tsuyoshi Takagi Kyushu University, Japan
Shaohua Tang South China University of Technology, China
Raylin Tso National Chengchi University, Taiwan
Claire Vishik Intel Corporation, UK
Haining Wang The College of William and Mary, USA
Huaxiong Wang Nanyang Technological University, Singapore
Lingyu Wang Concordia University, Canada
Jian Weng Jinan University, China
Duncan S. Wong City University of Hong Kong, Hong Kong
Qianhong Wu Beijing University of Aeronautics and

Astronautics, China
Qi Xie Hangzhou Normal University, China
Haixia Xu Chinese Academy of Sciences, China
Shouhuai Xu University of Texas at San Antonio, USA
Zhi Xu Palo Alto Networks, USA
Guomin Yang University of Wollongong, Australia
Yanjiang Yang Institute for Infocomm Research, Singapore
Fangguo Zhang Sun Yat-sen University, China
Futai Zhang Nanjing Normal University, China
Lei Zhang East China Normal University, China
Rui Zhang Chinese Academy of Sciences, China
Zhenfeng Zhang Chinese Academy of Sciences, China
Wentao Zhu Chinese Academy of Sciences, China

Additional Reviewers

Aciicmez, Onur
Anagnostopoulos, Christos
Ariyapala, Kanishka
Barua, Rana
Bucicoiu, Mihai
Celik, Serkan
Chandran, Nishanth
Chang, Jinyong
Chen, Jie
Chen, Xihui
Cimato, Stelvio
Compagno, Alberto
Dahan, Xavier
Deng, Hua
Fernandez, Carmen
Fuster-Sabater, Amparo

Gebala, Maciej
Goundar, Raveen
Groszschaedl, Johann
Gu, Haihua
Guo, Fuchun
Guo, Yanfei
Harn, Lein
Jiang, Tao
Jonker, Hugo
Kitsos, Paris
Kolokotronis, Nicholas
Konstantinou, Elisavet
Kuehn, Ulrich
Kuo, Po-Chun
Kuribayashi, Minoru
Kywe, Su Mon

X ISPEC 2014

Kühn, Ulrich
Lai, Russell W.F.
Lanotte, Ruggero
Li, Juanru
Li, Nan
Li, Shujun
Liang, Bei
Liang, Kaitai
Limniotis, Konstantinos
Lin, Suqing
Liu, Junrong
Liu, Liang
Liu, Weiran
Liu, Wen Ming
Liu, Ya
Liu, Zheli
Liu, Zhen
Lu, Jiqiang
Lu, Yang
Luo, Xizhao
Ming, Tang
Moyano, Francisco
Nieto, Ana
Nuñez, David
Parra-Arnau, Javier
Rebollo-Monedero, David
Rhouma, Rhouma
Rizomiliotis, Panagiotis
Sabeti, Vajiheh
Sajadieh, Seyed Mehdi
Sasaki, Yu

Schwabe, Peter
Shen, Yilin
Shparlinski, Igor
Soleimany, Hadi
Tang, Fei
Tesfay, Welderufael
Tian, Haibo
Trujillo, Rolando
Veseli, Fatbardh
Veshchikov, Nikita
Wang, Huaqun
Wang, Jianfeng
Wang, Qingju
Wang, Yujue
Watanabe, Dai
Wenger, Erich
Wu, Shuang
Xu, Jing
Yang, Shuzhe
Yap, Wun-She
Yesuf, Ahmed Seid
Zagorski, Filip
Zhang, Cong
Zhang, Huajun
Zhang, Jiang
Zhang, Tao
Zhang, Yinghui
Zhao, Yongjun
Zhao, Ziming
Zhenhua, Liu

Table of Contents

Invited Papers from Keynote Speakers

Access Control in and Around the Browser . 1
Dieter Gollmann

Improving Thomlinson-Walker’s Software Patching Scheme Using
Standard Cryptographic and Statistical Tools . 8

Michel Abdalla, Hervé Chabanne, Houda Ferradi, Julien Jainski,
and David Naccache

Preserving Receiver-Location Privacy in Wireless Sensor Networks 15
Javier Lopez, Ruben Rios, and Jorge Cuellar

Data Security and Privacy in the Cloud . 28
Pierangela Samarati

Forbidden City Model – Towards a Practice Relevant Framework
for Designing Cryptographic Protocols . 42

Miros�law Kuty�lowski, Lucjan Hanzlik, Kamil Kluczniak,
Przemys�law Kubiak, and �Lukasz Krzywiecki

Network Security

A CAPTCHA Scheme Based on the Identification of Character
Locations . 60

Vu Duc Nguyen, Yang-Wai Chow, and Willy Susilo

A Mulitiprocess Mechanism of Evading Behavior-Based Bot Detection
Approaches . 75

Yuede Ji, Yukun He, Dewei Zhu, Qiang Li, and Dong Guo

Obfuscating Encrypted Web Traffic with Combined Objects 90
Yi Tang, Piaoping Lin, and Zhaokai Luo

A Website Credibility Assessment Scheme Based on Page
Association . 105

Pei Li, Jian Mao, Ruilong Wang, Lihua Zhang, and Tao Wei

System Security

A Methodology for Hook-Based Kernel Level Rootkits 119
Chien-Ming Chen, Mu-En Wu, Bing-Zhe He, Xinying Zheng,
Chieh Hsing, and Hung-Min Sun

XII Table of Contents

Precise Instruction-Level Side Channel Profiling of Embedded
Processors . 129

Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes

Automated Proof for Authorization Protocols of TPM 2.0
in Computational Model . 144

Weijin Wang, Yu Qin, and Dengguo Feng

SBE – A Precise Shellcode Detection Engine Based on Emulation
and Support Vector Machine . 159

Yonggan Hou, J.W. Zhuge, Dan Xin, and Wenya Feng

HDROP: Detecting ROP Attacks Using Performance Monitoring
Counters . 172

HongWei Zhou, Xin Wu, WenChang Shi, JinHui Yuan, and
Bin Liang

Security Practice

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+
on FPGAs . 187

Shaohua Tang, Bo Lv, Guomin Chen, and Zhiniang Peng

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200
Graphics Processing Unit . 202

Shujie Cui, Johann Großschädl, Zhe Liu, and Qiuliang Xu

A Progressive Dual-Rail Routing Repair Approach for FPGA
Implementation of Crypto Algorithm . 217

Chenyang Tu, Wei He, Neng Gao, Eduardo de la Torre,
Zeyi Liu, and Limin Liu

Fault-Tolerant Linear Collision Attack: A Combination with Correlation
Power Analysis . 232

Danhui Wang, An Wang, and Xuexin Zheng

Implementing a Covert Timing Channel Based on Mimic Function 247
Jing Wang, Le Guan, Limin Liu, and Daren Zha

Detecting Frame Deletion in H.264 Video . 262
Hongmei Liu, Songtao Li, and Shan Bian

Security Protocols

Efficient Adaptive Oblivious Transfer in UC Framework 271
Vandana Guleria and Ratna Dutta

Table of Contents XIII

Multi-receiver Authentication Scheme for Multiple Messages Based
on Linear Codes . 287

Jun Zhang, Xinran Li, and Fang-Wei Fu

Efficient Sealed-Bid Auction Protocols Using Verifiable Secret
Sharing . 302

Mehrdad Nojoumian and Douglas R. Stinson

Information-Theoretical Secure Verifiable Secret Sharing with Vector
Space Access Structures over Bilinear Groups . 318

Jie Zhang and Futai Zhang

Cloud Security

Proofs of Retrievability Based on MRD Codes . 330
Shuai Han, Shengli Liu, Kefei Chen, and Dawu Gu

TIMER: Secure and Reliable Cloud Storage against Data
Re-outsourcing . 346

Tao Jiang, Xiaofeng Chen, Jin Li, Duncan S. Wong,
Jianfeng Ma, and Joseph Liu

Improvement of a Remote Data Possession Checking Protocol
from Algebraic Signatures . 359

Yong Yu, Jianbing Ni, Jian Ren, Wei Wu, Lanxiang Chen, and
Qi Xia

Distributed Pseudo-Random Number Generation and Its Application
to Cloud Database . 373

Jiageng Chen, Atsuko Miyaji, and Chunhua Su

Digital Signatures

A Provably Secure Ring Signature Scheme with Bounded Leakage
Resilience . 388

Huaqun Wang, Qianhong Wu, Bo Qin, Futai Zhang, and
Josep Domingo-Ferrer

Two-Party (Blind) Ring Signatures and Their Applications 403
Man Ho Au and Willy Susilo

Efficient Leakage-Resilient Signature Schemes in the Generic Bilinear
Group Model . 418

Fei Tang, Hongda Li, Qihua Niu, and Bei Liang

Attribute-Based Signature with Message Recovery 433
Kefeng Wang, Yi Mu, Willy Susilo, and Fuchun Guo

XIV Table of Contents

Encryption and Key Agreement

An Adaptively CCA-Secure Ciphertext-Policy Attribute-Based Proxy
Re-Encryption for Cloud Data Sharing . 448

Kaitai Liang, Man Ho Au, Willy Susilo, Duncan S. Wong,
Guomin Yang, and Yong Yu

Multi-recipient Encryption in Heterogeneous Setting 462
Puwen Wei, Yuliang Zheng, and Wei Wang

ACP-lrFEM: Functional Encryption Mechanism with Automatic
Control Policy in the Presence of Key Leakage . 481

Mingwu Zhang

Provably Secure Certificateless Authenticated Asymmetric Group Key
Agreement . 496

Lei Zhang, Qianhong Wu, Bo Qin, Hua Deng, Jianwei Liu, and
WenChang Shi

Theory

New Variants of Lattice Problems and Their NP-Hardness 511
Wulu Li

Improved Preimage Attacks against Reduced HAS-160 524
Ronglin Hao, Bao Li, Bingke Ma, and Xiaoqian Li

Modular Inversion Hidden Number Problem Revisited 537
Jun Xu, Lei Hu, Zhangjie Huang, and Liqiang Peng

On the Recursive Construction of MDS Matrices for Lightweight
Cryptography . 552

Hong Xu, Lin Tan, and Xuejia Lai

On Constructions of Circulant MDS Matrices for Lightweight
Cryptography . 564

Kishan Chand Gupta and Indranil Ghosh Ray

Author Index . 577

Access Control in and Around the Browser

Dieter Gollmann

Hamburg University of Technology
diego@tuhh.de

Abstract. We conduct an analysis of access control mechanisms in the
browser and note that support for mashups and defences against cross-
site scripting attacks are both moving from ad-hoc measures towards
solutions where the browser enforces access control policies obtained from
a host (CORS and CSP respectively). We also point out the degree of
trust these solutions have to take for granted.

1 Introduction

Once Netscape 2.0 had furnished the browser with the means for processing ex-
ecutable elements in HTML pages, the browser had to implement a reference
monitor regulating how code arriving in a page might use client side resources.
Resources include objects managed by the browser, objects managed by the
underlying operating system, and outgoing connections. Initially, executable el-
ements in HTML pages were so-called applets written in Java. Today, JavaScript
has become the favourite language for writing client-side scripts in web applica-
tions, with the Document Object Model (DOM) used for representing web pages
in the browser and XMLHttpRequest used for exchanging data with a server.

Reference monitors enforce a security policy. The Same Origin Policy (SOP)
had been introduced in Netscape 2.0 and was adopted as the de facto standard by
browser developers. SOP in its various flavours remains highly influential today.
This paper will trace how SOP became an impediment when the development
of web applications progressed towards mashups, and how attackers found ways
around this defence to execute unwanted code at the client. (To explain how
to interpret “unwanted code”, we still need to discuss who actually decides the
policy enforced in the browser.) This paper will also analyze the approaches
developed for dealing with these two issues. Our discussion will be conducted
within the framework of access control. It will steer clear of most browser specific
details, relevant as they are for practical deployment, but lay out a systematic
way for analyzing access control in the web. It is not our goal to study the
idiosyncrasies of different browsers and browser versions.

2 Access Control

The principles of access control can be expressed using the terms principal,
subject, object, and access operation [4].

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 1–7, 2014.
c© Springer International Publishing Switzerland 2014

2 D. Gollmann

A principal is an entity that can be granted access to objects or can make
statements affecting access control decisions [3].

Principals are thus the entities security policies refer to. We use authorization to
denote the act of granting an access right to a principal, i.e. of setting a policy1.
A subject is an active entity within an IT system that speaks for a principal.
Subjects are the entities sending access requests to (the implementation of) the
reference monitor. An object is the passive entity an access request refers to.
Objects can be accessed by various access operations. Authentication binds a
subject to a principal. In the words of [6],

if s is a statement authentication answers the question “Who said s?”
with a principal. Thus principals make statements; this is what they are
for.

This terminology has its origin in the area of operating systems. Principals were
user identities, referring in the main to persons who had an account on a system.
Processes were the subjects speaking for principals, take the real uid and effective
uid of processes on a Linux system as examples. From the operating system
perspective, authentication is the step whereby a new process bound to certain
user identities is created. The objects were resources managed by the operating
system. Typical access operations were read, write, and execute.

This kind of identity-based access control is still the familiar paradigm of
access control, to the extent that it on occasion obscures the view on the general
picture. It is not the type of access control applicable to web applications. Here,
we need a decision criterion other than the user who had started a process
for defining access control rules. Web pages are loaded from hosts; hosts can
be addressed in the browser by entering host names. SOP follows this line of
reasoning and uses host names as its principals. Informally, SOP rules state
that a script may only connect back to the host it had been loaded from, and
may only read and modify data loaded from that host. The rules typically also
consider the scheme (protocol) and the port used for communicating with the
server. The combination of scheme, host name, and port is known as origin. Note
that policies on reading and sending data control data flow out of the client.

The term origin is intuitive but can be misleading. Formally, a reference mon-
itor applies its rules to requests coming from subjects (considering, of course,
the principals they speak for). In browsers, the Document objects in a browsing
context play the rôle of subjects. By convention, the document.domain property
in a Document denotes the principal it is speaking for. The terminology adopted
suggests that code in a page was loaded from this origin. Section 4 will analyze
to which extent this is true.

1 In the research literature on access control, authorization also stands for evaluating
whether a requestor has been granted the access rights required for a given request.

Access Control in and Around the Browser 3

2.1 Cross-Windows Attacks

There exist exceptions to SOP. Frame navigation, i.e. modifying the location
property of a frame, may be governed by different rules. Without restrictions on
frame navigation, users can be deceived about the host that will receive data
they are entering in a frame in a browser window [1]. Assume a user has opened
two windows, one to the attacker’s host and a second to some other host, in
the following called the target. A script in the attacker’s window navigates a
frame in the target window to the attacker’s host. Data the user enters in that
frame, e.g. user name and password in a login frame, would now be passed to
the attacker.

The same window policy (Mozilla, 2001) restricts frame navigation so that
frames may only navigate frames within their own window. Cross-windows at-
tacks will be blocked but the attack would still be possible if the attacker’s web
frame had been included in the target’s window by design. The descendant policy
adopted in HTML 5 restricts the permission to navigate frames even further. A
frame can only navigate its own descendant frames.

Cross-windows attacks are termed escalation (elevation) of privilege attacks
in [1]: a frame takes control of a region outside its bounding box. The object
of access control is a region in the browser screen. By including a frame, the
parent delegates the permission to use part of its region to the child frame. With
the same window policy, it also delegates the permission to navigate within the
entire window containing the parent frame. With the descendant policy, a frame
cannot step up and across within – or out of – the logical structure of a window.

3 Mashups

Mashups are web applications where an integrator combines gadgets from mul-
tiple hosts. Integrator and gadgets may be intended to exchange data. Gadgets
can be included in a way that treats them as separate subjects isolated by SOP.
Iframes have been used for that purpose. Malicious gadgets could not attack the
integrator but SOP would also get in the way of intended interactions between
integrator and gadgets.

Gadgets can be included in a way that lets them speak for the integrator,
e.g. by including script tags loaded from the gadget’s site. When script tags
are not subject to SOP, code in the gadgets would run with the permissions of
the integrator. Interaction between integrator and gadgets is possible but the
integrator has to trust the gadgets. Gadgets are trusted if they can hurt the
integrator! This is the original meaning of trust in computer security.

Both approaches are unsatisfactory, albeit in different ways. We desire isola-
tion of subjects (integrators, gadgets), but we also want selected communications
channels. Mashup developers found that fragment identifiers could be used as
a workaround for communication between frames. Return, for a moment, to a
technical issue in access control. At which stage of an attempted frame naviga-
tion would SOP be evaluated? Assume, for the sake of the argument, that this
happens after the location property has been changed and when the frame is

4 D. Gollmann

1. page request
�

�
2. response page, includes script

requesting to connect to Host B

3. Origin request

4. Access-Control-Allow-Origin header

5. page request

6. response page

� �

�

�

Host A

Host B

client

Fig. 1. Preflighted cross-origin resource sharing

reloaded from its new location. Frames are not reloaded when only the fragment
identifier is changed, hence SOP will not be invoked, and frame identifiers become
a message passing channel from the navigating frame to the frame navigated.

Later, the postMessage API was introduced, now part of HTML 5, as a dedi-
cated message passing channel whereby a sending frame could post messages to
a target origin2 and a receiving frame could register events listening for messages
from a specified sender. Advice on building secure communications channels on
top of fragment identifiers and the postMessage API can be found in [1].

3.1 Cross-Origin Resource Sharing

With the postMessage API, the policy on who is authorised to send data to a
frame is defined by the listening events in the frame itself, i.e. the policy is part
of the code. From a design perspective it is desirable to separate policy and
code. The W3C Recommendation on cross-origin resource sharing [8] provides
this separation.

Figure 1 sketches the steps in a so-called preflight request. In steps 1 and 2
the client loads a page from Host A that contains a request for a resource on
Host B. In step 3, the client asks Host B to authorize this request by sending an
Origin request header indicating the origin of the request, Host A in our case.
If the Origin header is missing or contains a value not in the access control list
(list of origins) of Host B, the request cannot be authorized and the protocol run
is terminated. If the request can be authorized, an Access-Control-Allow-Origin
header and further headers specifying relevant policy rules are sent to the client
(step 4). Steps 5 and 6 conclude the cross-origin request.

Employing the terminology of XACML [7], Host B serves as Policy Informa-
tion Point in this example and initially also as Policy Decision Point. The client

2 Here, the decision to refer to the triple (scheme, host, port) as origin leads to language
that may appear counter-intuitive.

Access Control in and Around the Browser 5

is the Policy Enforcement Point. The client furthermore caches the policies re-
ceived from the server and may later act as a Policy Decision Point for requests
that match a policy rule in its cache.

4 Cross-site Scripting

In a cross-site scripting (XSS) attack the client is deceived about the true source
of a script and executes the script in a context it has not been authorized for.
The effect is an elevation of privilege attack where the attacker’s script gets
executed with the permissions of a “trusted” server. Here, trust implies that the
server is a principal that has permissions not granted to the attacker by the
browser’s security policy. In the context of SOP, it may just mean that server
and attacker have different origins. Trust must no be mistaken as a statement
about the server’s trustworthiness.

To appreciate the possible attack patterns, consider the method the browser
uses to authenticate subjects, i.e. for setting the value of document.domain in a
Document in the browser context. When a page gets loaded, scheme, host, and
port define the origin of that page. Any script in the DOM of that page gets the
access rights of this origin. This authentication mechanism implicitly assumes
that every script in the DOM of the page has been authorized by the host.

Access control can be broken by breaking this assumption. Dynamic web pages
may be created by server-side scripts that include HTTP request parameters and
data items from backend servers when constructing a response page. In reflected
XSS the attacker’s script is passed as an HTTP request parameter to the server
(and the victim has to be tricked into sending the request so that the response
is sent back to the victim). In stored XSS, the attacker’s script is placed in a
suitable data item held on a backend server. The client just has to load the
vulnerable page to load the attacker’s script.

DOM-based XSS exploits certain dynamic aspects of building the DOM in the
browser. There exist document properties that do not correspond to the body
of a web page but, e.g., to its location or URL. Frames in a web page may refer
to such properties. Script elements injected in such a property would then be
added to the DOM when the DOM is constructed and later be executed with
the access rights of the web page.

4.1 Content Security Policy

Considering the mode of these attacks we observe that code gets injected and
might defend against code injection attacks by applying filtering and blocking
rules on the values that may serve as input to the construction of a web page.
This can be tricky because it is up to the browser to interpret the data in
the pages it receives. Server-side defences might not be aware of all client-side
interpretations. Code-injection defences try to maintain the implicit assumption
that all code in a page has been authorized to be there.

6 D. Gollmann

Content Security Policy (CSP) [2] makes authorization explicit and moves
the removal of injected scripts to the browser. The server sends policy rules, so-
called directives, in an HTTP header to the client. The client enforces the policy.
For example, the script-src directive defines a white list of origins scripts are
authorized to be loaded from. All in-line scripts are blocked. Only scripts loaded
from the white listed origins will be included in the DOM and executed. Script
tags or scripts sourced from the attacker’s site can be injected at the server into
a web page or into a URL passed to the browser but will not be included in the
DOM and executed at the client.

The attacker could inject unintended scripts from white listed sources. This
does not amount to an elevation of privilege attack, scripts will be using the
rights they are authorized for, but the functionality of the web page would be
altered. This can be viewed as a kind of confused deputy attack [5].

5 Conclusions

When the browser is asked to enforce origin-based policies on scripts, it has to be
able to authenticate the origin of scripts. Authentication must be done in such a
way that scripts authenticated as having a particular origin are indeed authorized
to speak for that origin. The current authentication mechanism assumes that all
scripts received in a page are authorized to speak for its origin. XSS attacks
inject scripts either directly at the client into the DOM of a web page or at the
server from where they are propagated into the DOM. CSP is a clean solution in
terms of access control. The browser rejects all in-line scripts – their true source
is uncertain – and loads scripts only from origins authorized by the host. The
host is the Policy Information Point, the browser the Policy Enforcement Point.

When a browser enforces SOP, its security policy is too restrictive for mashups.
The clean solution in terms of access control is to relax SOP and let the site
targeted by a cross-origin request state its policy on sharing resources (CORS).

In both cases the browser enforces policies obtained from a server. From the
user’s angle, why should the server be trusted on policies? From the server’s
angle, why should the client be trusted on enforcement? CSP trusts the server
to tell the truth and assumes that the white listed sources are not corrupted.
Enforcement is in the user’s interest as attacks may threaten the user’s sensitive
data such as cookies. CORS policies reflect the server’s interest and the server
trusts the client on enforcement.

This duality between CSP and CORS can be linked to different answers to
the question “who owns the data in the browser”. Data capturing the user’s
browsing history and access credentials belong to the user. Protecting these data
is a privacy issue. Data loaded from a server may be the intellectual property
of the hosting organization. Protecting these data is a matter of commercial
confidentiality.

Next steps in the development of access control mechanisms for web applica-
tions could go in the direction of reducing trust in the other party and towards
formal models of this access control system that has grown over the past twenty
years.

Access Control in and Around the Browser 7

Acknowledgements. This author gratefully acknowledges many fruitful
discussions on the topic of this paper at the Dagstuhl Seminar 12401 “Web
Application Security”.

References

1. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers.
Communications of the ACM 52(6), 83–91 (2009)

2. Barth, A., Veditz, D., West, M.: Content security policy 1.1. W3C Working Draft
(January 2014), http://www.w3.org/TR/CSP11/

3. Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The Digital distributed sys-
tem security architecture. In: Proceedings of the 1989 National Computer Security
Conference (1989)

4. Gollmann, D.: Computer Security, 3rd edn. John Wiley & Sons, Chichester (2011)
5. Hardy, N.: The confused deputy. Operating Systems Reviews 22(4), 36–38 (1988)
6. Lampson, B., Abadi, M., Burrows, M.,Wobber, E.: Authentication in distributed sys-

tems: Theory and practice. ACM Transactions on Computer Systems 10(4), 265–310
(1992)

7. OASIS. eXtensible Access Control Markup Language (XACML) Version V3.0. Tech-
nical report, OASIS Standard (January 2013)

8. van Kesteren, A.: Cross-origin resource sharing. W3C Recommendation
(January 2014), http://www.w3.org/TR/cors/

http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/cors/

Improving Thomlinson-Walker’s Software

Patching Scheme Using Standard Cryptographic
and Statistical Tools

Michel Abdalla1, Hervé Chabanne2, Houda Ferradi1,2,
Julien Jainski3, and David Naccache1

1 École normale supérieure
Équipe de cryptographie, 45 rue d’Ulm, f-75230 Paris cedex 05, France

given name.name@ens.fr
2 Morpho

11 boulevard Gallieni, f-92130 Issy-les-Moulineaux, France
given name.name@morpho.com

3 Diskrete Security llc
1679 S. DuPont Highway, Suite 100, Dover, DE 19901. Kent County, USA

julienja@gmail.com

Abstract. This talk will illustrate how standard cryptographic tech-
niques can be applied to real-life security products and services. This
article presents in detail one of the examples given in the talk. It is in-
tended to help the audience follow that part of our presentation. We
chose as a characteristic example a little noticed yet ingenious Microsoft
patent by Thomlinson and Walker. The Thomlinson-Walker system dis-
tributes encrypted patches to avoid reverse engineering by opponents
(who would then be able to launch attacks on unpatched users). When
the proportion of users who downloaded the encrypted patch becomes
big enough, the decryption key is disclosed and all users install the patch.

1 Introduction

In a little noticed yet ingenious patent [11], Thomlinson and Walker describe
a very original software patching system. Tomlinson and Walker describe their
invention as follows:

”. . . Computer programs are complex systems, and they typically have vul-
nerabilities that are not discovered until after the software is released. These
vulnerabilities can be addressed after the initial software is released by dis-
tributing and installing an update to the software, which is designed to remedy,
or protect against, the vulnerability. Typically, the vulnerability is discovered by
the program’s manufacturer, support entity, or partner before the vulnerability
is generally known to the public.

One problem with an update is that the update can normally be reverse engi-
neered to reveal the existence of the vulnerability that the update is attempting
to fix, which can be an invitation to attackers to try to exploit the vulnerabil-
ity on machines without the fix applied. If updates could be delivered to every

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 8–14, 2014.
c© Springer International Publishing Switzerland 2014

Improving Thomlinson-Walker’s Software Patching Scheme 9

machine at the same time, then the fact that the updates reveals the vulnera-
bility would not be a significant problem, since all machines would be protected
against the vulnerability at the same time that attackers learned of the vulnera-
bility’s existence. However, updates often take the form of large files, and there
is not sufficient bandwidth, or other physical resources, to distribute the update
to every machine at the same time. Thus, there is a window of time during which
the update (and the vulnerability that it both fixes and reveals) is known to the
public, but a significant number of machines are unprotected. It is desirable to
update programs in such a manner that all, or a large number, of machines are
protected very soon after the update is first made known to the public.

Updates can be provided in an encrypted form, such that being able to use
the update (or to read it for reverse engineering purposes) requires a decryption
key. The key can then be delivered after certain conditions have been met –
e.g., only after the encrypted update has been delivered to a sufficient number
of machines to ensure widespread protection, and/or after the update has un-
dergone sufficient testing to ensure that it effectively remedies the vulnerability
that it is designed to address. Since the key is small the key can be delivered to
a large number of machines in a relatively short amount of time, as compared
with how long it takes to distribute the update itself. Once the key is received
by the machines on which the update is to be installed, the update, which has
already been delivered in encrypted form, can be decrypted and installed. Since
the update is encrypted, the update can be presumed not to be known to the
world until the key is delivered. And, since the widespread distribution of the
key takes a relatively short amount of time, the amount of time between when
the update is first known, and the time at which a large number of machines
are protected, is reduced, as compared with the time period that would exist if
updates were distributed in unencrypted form . . . ”

While perfectly functional and useful, Tomlinson-Walker’s original proposal
suffers from two shortcomings:

Single Editor Support: Each software editor must manage his own keys.
i.e. two editors cannot share keys without compromising the confidentiality of
their respective patches.

Memory Increase: The list of published keys grows linearly with the number
of updates. This is not a real-life problem because the number of software updates
is usually small. However, it would be nice to come up with a system requiring
only O(1) or O(logc n) memory for managing n updates1.

The following sections will show how to improve Tomlinson-Walker’s original
proposal using standard cryptographic building-blocks such as one-way trapdoor
functions, identity based encryption and tree-based hashing. The contribution
of this invited talk is therefore the illustration of known techniques (e.g. [7,9])

1 Note that throughout this paper complexities are expressed as a function of the
number of updates and not as a function of the system’s security parameter as is
customary in cryptography. This is why, for instance, in Section 4, an IBE decryption
operation is considered to require constant-time.

10 M. Abdalla et al.

using a new problem rather than the design of new protocols. Throughout this
paper τ denotes the moment at which the key is disclosed.

Related Work: The timed release of information is a widely researched area
with an abundant bibliography. We do not overview these reference here but
refer the reader to the excellent introduction found in [7].

2 Single Editor, Constant Memory, Linear Time

We first present a single-editor patch management method that requires constant
storage from the editor but claims from the client O(n) time.

Let N be an RSA modulus [8] generated by the editor. Let 3d = 1 mod φ(N).
The editor picks a random integer r0 ∈ Z∗

N . Everyday the editor computes
ri = rdi−1 mod N and updates the information on his website to (only) {N, ri}.
To retrieve the key of day t < i the client (who knows the current date i) simply
cubes ri modulo N i − t times to reach rt. Note that exactly for the reasons
described in [9], the client cannot speed-up computations and must spend O(i−t)
time to compute rt from ri.

This idea is also similar in concept to the reverse Canetti-Halevi-Katz [2]
scheme suggested in section 5.4 of [1].

3 Single Editor, Polylogarithmic Memory,
Polylogarithmic Time

We now use a hashing tree to achieve O(logc n) time and storage. Instead of for-
mally describing the algorithm, we illustrate the scheme’s operation during 15
days. Pick a random r and derive a key tree by successive hashes as shown in Fig-
ure 1. The algorithm governing the management of this tree is straightforward.

4 Multiple Editors, Linear Memory, Constant Time

We will now extend Thomlinson-Walker’s concept to multiple editors. As a typ-
ical example Microsoft, Google and Apple may want to use the same key distri-
bution server for deploying patches for Windows, Chrome and iTunes without
sharing any secret material. A technique for doing so was published by Mont et
alii in [6]. [6] uses Identity Based Encryption (IBE). The concept of IBE was
invented by Shamir in 1984 [10]. It allows a party to encrypt a message using
the recipient’s identity as a public key. The corresponding private-key is pro-
vided by a central authority. The advantage of IBE over conventional public-key
encryption is that it avoids certificate management, which greatly simplifies the
implementation of secure communications between users. With an IBE scheme,
users can simply use their email addresses as their identities. Moreover, the re-
cipient does not need to be online to present a public-key certificate before the
sender encrypts a message, and the sender does not have to be online to check
the validity of the certificate.

More formally, an IBE scheme consists of four algorithms :

Improving Thomlinson-Walker’s Software Patching Scheme 11

on day reveal keys

1 r000
2 r000, r001
3 r00
4 r00, r010
5 r00, r010, r011
6 r00, r01
7 r0
8 r0, r100
9 r0, r100, r101

10 r0, r10
11 r0, r10, r110
12 r0, r10, r110, r111
13 r0, r10, r11
14 r0, r1
15 r

r

r0 = h(r, 0)

r00 = h(r0, 0)

r000 = h(r00, 0)

r001 = h(r00, 1)

r01 = h(r0, 1)

r010 = h(r01, 0)

r011 = h(r01, 1)

r1 = h(r, 1)

r10 = h(r1, 0)

r100 = h(r10, 0)

r101 = h(r10, 1)

r11 = h(r1, 1)

r110 = h(r11, 0)

r111 = h(r11, 1)

Fig. 1. Key tree example for 15 days

Setup generates the system’s public parameters π and a private master key μ.

KeyGeneration takes as input an identity v and computes v’s private key dv
using μ.

Encrypt encrypts messages for an identity v using π.

Decrypt decrypts ciphertexts for identity v using π and the private-key dv.

[6] considers time information as strings (e.g. [5]) and treats them as identities.
A Trusted Third Party (TTP) generates π and maintains public list to which a
new di is added every day. In other words, on day i the TTP reveals the keys
d1, . . . , di. This allows different patch editors to encrypt patches into the future.
The TTP also allows to preserve the editor’s anonymity until τ . Indeed, an editor
can post a patch on the TTP’s website without indicating to which specific
software the patch will be applied. This method forces all users to consult the

12 M. Abdalla et al.

list at date τ but increases operational security because it prevents the opponent
from knowing in which software he has to look for flaws.

5 Multiple Editors, Polylogarithmic Memory,
Polylogarithmic Time

Finally, it would be nice to combine all the previous desirable system features
and provide memory-efficient and time-efficient multi-editor support. This can
be achieved using Hierarchical IBE (HIBE) [4,3,1]. HIBE generalizes IBE and
allows to structure entities in a hierarchy. A level-i entity can distribute keys
to its descendants but is unable to decrypt messages intended to ancestors and
collaterals.

Just as an IBE, a HIBE comprises the algorithms Setup, KeyGeneration, En-
crypt and Decrypt. However, while in IBE identities are binrary strings, in a
HIBE identities are ordered lists. As in IBE, Setup outputs {π, μ}.

KeyGeneration takes as input an identity (I1, ..., Ik) and the private key
d[(I1, ..., Ik−1)] of the parent identity (I1, ..., Ik−1) and outputs the private key
d[(I1, ..., Ik)] for identity (I1, ..., Ik).

Encrypt encrypts messages for an identity (I1, ..., Ik) using π and Decrypt
decrypts ciphertexts using the corresponding private key d[(I1, ..., Ik)].

We can hence adapt the tree construction of Section 3 as shown in Figure 2.
We conveniently illustrate this idea for a week starting on Sunday and ending
on Saturday.

6 How Long Should We Wait?

A last interesting question, totally unrelated to the above cryptographic discus-
sion, is the determination of the optimal key release date τ . A plausible model
can be the following: As an encrypted patch is announced, the opponent starts
looking for the flaw. Let ρ(t) be the probability that the vulnerability will be
discovered by the opponent before t. Let v(t) denote the proportion of users who
downloaded the patch at time t. Here ρ(0) = v(t) = 0 and ρ(∞) = v(∞) = 1. It
is easy to see that the optimal τ is the value that maximizes (1 − ρ(t))v(t). It

Table 1. Optimal τ values solved for various p, q probabilities

Device
connectivity

low exploit
complexity
q = 0.1

average exploit
complexity
q = 0.01

high exploit
complexity
q = 0.001

permanent p = 0.8 5 14 24

usual p = 0.6 3 8 12

intermittent p = 0.2 2 3 5

Improving Thomlinson-Walker’s Software Patching Scheme 13

on day reveal keys

Sunday d00
Monday d00, d01
Tuesday d0
Wednesday d0, d10
Thursday d0, d10, d11
Friday d0, d1

Saturday μ

Saturday

ID0 = Saturday|Tuesday

ID00 = Saturday|Tuesday|Sunday

ID01 = Saturday|Tuesday|Monday

ID1 = Saturday|Friday

ID10 = Saturday|Friday|Wednesday

ID11 = Saturday|Friday|Thursday

Fig. 2. HIBE tree example for 7 days. dX denotes the secret key of identity IDX .

may be reasonable to assume that v(t) � 1−pt where p is the probability that a
computer is not turned on by its owner during a day and ρ(t) � 1−(1−q)t where
q is the probability to independently discover the flaw after a one day’s work.
Resolution for this simplified model reveals that for most ”reasonable” values
(e.g. 1/6 ≤ p ≤ 2/3 and 10−4 ≤ q ≤ 0.1) τ would typically range somewhere
between 1 and 20 days (Figure 3).

To see what this model imply in practice, we consider three typical device
categories: permanently connected devices (e.g. mobile telephones), usually con-
nected devices (e.g. PCs, tablets) and intermittently connected devices (e.g.
smart-cards). Exploits of different technical difficulties were assigned the q val-
ues given in Table 1.

Table 1 confirms the intuition that (for a fixed p) τ increases with the exploit’s
complexity, i.e. the model takes advantage of the exploit’s non-obviousness to
spread the patch to more devices. In addition, (for a fixed q) τ increases with
the device’s connectivity as it appears better to patch only some devices rather

14 M. Abdalla et al.

Fig. 3. Optimal τ for ρ(t) = 1− (1 − q)t and v(t) � 1 − pt. Solved for 1/6 ≤ p ≤ 2/3
and 10−4 ≤ q ≤ 0.1

than let v(t) slowly grow and maintain the entire device community at risk. We
do not claim that this very simplified model accurately reflects reality.

References

1. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

2. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

3. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

4. Horwitz, J., Lynn, B.: Towards hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

5. ISO 8601: 2004 Data elements and interchange formats Information interchange
Representation of dates and times

6. Mont, M., Harrison, K., Lotspiech, J.: The HP ttime vault service: exploiting IBE
for timed release of confidential information. In: Proceedings of the International
World Wide Web Conference 2003, pp. 160–169. ACM (2003)

7. Paterson, K.G., Quaglia, E.A.: Time specific encryption. In: Garay, J.A., De Prisco,
R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)

8. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

9. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto,
Technical Report MIT/LCS/TR-684. MIT (February 1996)

10. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

11. Thomlinson, M., Walker, C.: Distribution of encrypted software update to reduce
attack winodow. United States Patent Application 2008/007327 (August 31, 2006)

Preserving Receiver-Location Privacy

in Wireless Sensor Networks

Javier Lopez1, Ruben Rios1, and Jorge Cuellar2

1 Network, Information and Computer Security (NICS) Lab,
Universidad of Málaga, Spain

2 Siemens AG, Munich, Germany
{jlm,ruben}@lcc.uma.es,

jorge.cuellar@siemens.com

Abstract. Wireless sensor networks (WSNs) are exposed to many dif-
ferent types of attacks. Among these, the most devastating attack is to
compromise or destroy the base station since all communications are ad-
dressed exclusively to it. Moreover, this feature can be exploited by a
passive adversary to determine the location of this critical device. This
receiver-location privacy problem can be reduced by hindering traffic
analysis but the adversary may still obtain location information by cap-
turing a subset of sensor nodes in the field. This paper addresses, for the
first time, these two problems together in a single solution.

Keywords: Wireless sensor networks, location privacy, traffic analysis,
node capture.

1 Introduction

Wireless sensor networks (WSNs) are highly distributed networks composed of
two types of devices namely, the sensor nodes and the base station [1]. The sen-
sor nodes are matchbox-sized computers which have the ability to monitor the
physical phenomena occurring in their vicinity and to wirelessly communicate
with devices nearby. To the contrary, the base station is a powerful device that
collects all the information sensed by the sensor nodes and serves as an interface
to the network. These networks are extremely versatile, making them suitable
for countless application scenarios where sensor nodes are unobtrusively embed-
ded into systems for monitoring, tracking and surveillance operations. Many of
these applications are critical and thus security and privacy become essential
properties.

Privacy problems in WSNs can been categorised as content-oriented or context-
oriented [14]. Content-oriented privacy focuses on protecting the privacy of the
packet contents. Therefore, the data to be protected may be the actual sensed
data [21] or the queries issued to the network [8] by a user. Context-oriented
privacy refers to the protection of the metadata associated with the measure-
ment and transmission of data. These data include the time at which sensitive

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 15–27, 2014.
c© Springer International Publishing Switzerland 2014

16 J. Lopez, R. Rios , and J. Cuellar

information is collected (i.e., temporal privacy [13]) and the location of the nodes
involved in the communication (i.e., location privacy [15]).

Similarly, there are two main types of location privacy problems affecting
sensor networks: source- and receiver-location privacy. The former is concerned
with hiding the area where a particular type of data messages are generated.
This property is important in applications where these messages are related to
the behaviour of individuals, business or valuable assets [12]. On the other side,
receiver-location privacy solutions are focused on preventing an adversary from
reaching the base station. This is essential for the survivability of the network
since an adversary with physical access to this critical device may take control
over the network or even render it useless by destroying it.

Preserving receiver-location privacy is especially challenging because all the
traffic generated in the network is addressed to this single device using single-
path multi-hop communications. This introduces obvious traffic patterns that an
attacker can analyse to determine the location of the base station. Several traffic
normalisation techniques [5,20,16] have been proposed to hinder traffic analysis
but these solutions can only provide some means of protection when the attacker
is passive. More sophisticated adversaries may also be able to capture a subset
of sensor nodes, exploiting the fact that each node stores a routing table that
contains information on the location or distance to the base station.

This paper presents a novel receiver-location privacy solution consisting of
two complementary schemes that prevent the leakage of information about the
location of base station in the presence of traffic analysis and node capture at-
tacks. The first scheme uses a probabilistic approach to guide data packets to
the base station and introduces controlled amounts of fake traffic to hide this
flow of information. The second scheme consists of a tuneable routing table per-
turbation algorithm that reduces the negative effects of node capture attacks
while ensuring the delivery of data to the base station. To the best of our knowl-
edge there is no solution in the literature that considers both types of attacks
to receiver-location privacy simultaneously.

The rest of this paper is organised as follows. Before describing our solution,
some related works in the area are analysed in Section 2. Section 3 presents the
network and attacker models together with the main assumptions adopted for
the rest of this work. Section 4 first overviews the solution and then gives more
details about the internals of each of the two schemes that comprise it. Next,
Section 4 briefly discusses the benefits and downsides of the proposed solutions.
Finally, some conclusions and future lines of research are sketched in Section 6.

2 Related Work

Receiver-location privacy solutions can be classified according to the capabilities
of the adversary, which has traditionally been considered to be passive (with a
local or global eavesdropping range). This classification can be further divided
according to the main techniques used to counter these adversaries, as shown in
Fig. 1. Since this work focuses on local adversaries, we only review these solutions

Preserving Receiver-Location Privacy in Wireless Sensor Networks 17

Receiver-Location
Privacy

Local
Adversary

Global
Adversary

Biased
Walks

Basic

Sink
Simulation

Disguise

RelocationBogus
Traffic

Fig. 1. Classification of Receiver-Location Privacy Solutions

but we refer the reader to [17] for a more exhaustive analysis of location privacy
solutions in WSNs.

Deng et al. [6,5] were the first to propose a set of anti-traffic analysis tech-
niques to protect the base station. They present a set of basic countermeasures
consisting of applying hop-by-hop re-encryption, de-correlating packet sending
times and establishing a uniform sending rate across the network. These so-
lutions have some limitations and the authors try to alleviate them with the
Multi-Parent Routing (MPR) scheme. The idea behind this scheme is balance
the traffic load while reducing the distance to the base station at each hop.
To that end, each node selects the next node uniformly at random from all its
neighbours closer to the base station than itself. However, this countermeasure is
insufficient to prevent parent-child correlation and the authors propose to make
every node decide whether to send the packet to a random parent or to a random
neighbour based on some probability.

A similar approach is proposed by Jian et al. [10,11]. They suggest to make
each sensor node divide its neighbours into two groups: closer and further neigh-
bours. Later, data packets are sent with higher probability to nodes belonging
to the group of closer neighbours. This results in a traffic pattern biased towards
the base station, which can be noticed by an attacker after a sufficient number
of observations. This problem is reduced by injecting fake packets in the oppo-
site direction with some probability. However, the attacker can still determine
whether a packet is fake in some situations and therefore he is able to determine
that the base station is on the other direction.

Some other approaches try to introduce more randomness in the communica-
tion pattern. Deng et al. [7,5] further improve MPR by generating fake paths of
messages with some probability when a node observes the transmission of data
packets in their vicinity. As a result, the random path grows fake branches. The
main problem of this scheme is that nodes near the base station generate much
more fake branches than remote nodes. To address this problem, the authors
suggest that sensor nodes may adjust their probability of generating fake traffic
based on the number of packet they forward.

18 J. Lopez, R. Rios , and J. Cuellar

Another scheme based on the injection of fake traffic is devised in [19]. Data
messages are sent along the shortest path to the base station and when two
of these paths converge at some point, the intersection node sends two fake
packets to two fake data sinks after a given period of time. The idea is to have
several points in the network that receive a similar number of packets. The main
limitation is that the attacker gets a good intuition of the direction to the base
station while tracing the shortest path before the first intersection point. This
problem is also present in the Bidirectional Tree Scheme [3], which sends data
messages along the shortest path and creates several branches of fake messages
that flow into and out of the path.

Finally, sink simulation approaches try to emulate the presence of the base
station at different locations. These techniques are also based on the generation
of fake traffic but addressed to particular network areas. This results in areas with
high volumes of traffic (i.e., hotspots) that are intended to draw the adversary
away from the real base station. In [2], the base station selects the hotspots by
sending some special messages to random locations which are at least h hops
away from it. During data transmission, when a node receives a real packet it
generates a fake message and forwards it to its closer maelstrom. Deng et al. [7,5]
also devised a similar solution but hotspots are created in a decentralised way by
keeping track of the number of fake packets forwarded to each neighbour. New
fake traffic is more likely to be sent to neighbours who have previously received
more fake traffic. The main drawback of hotspots is the high overhead needed
to deceive local adversaries.

The solution presented in this paper is an evolution of our previous work
[16], which can be classified as a biased random walk solution with fake packet
injection. In the new version we introduce a new mechanism capable of increasing
the safety time of the base station in the presence of node capture attacks. None
of the solutions in the literature have considered this problem as a threat to
receiver-location privacy.

3 Problem Description

This section presents the main assumptions as well as the network model and
the capabilities of the attacker adopted for the rest of this paper.

3.1 Network Model

This work considers sensor networks deployed for monitoring purposes. These
networks are usually deployed in vast areas and they are composed of a large
number of sensor nodes and a single base station.

We assume that the connectivity of the network is relatively high and each
node knows its neighbours based on some topology discovery protocol. This
allows sensor nodes to build their routing tables in such a way that the node is
aware of the distance of each of its neighbours to the base station. During data
transmission the node may select the next communication hop from neighbours

Preserving Receiver-Location Privacy in Wireless Sensor Networks 19

which are one hop closer, at the same distance than itself, or one hop further
away from the base station. We denote these groups of nodes as LC, LE and LF ,
respectively.

Finally, we assume that every node shares pairwise cryptographic keys with
each of its neighbours, which enables hop-by-hop re-encryption as well as the
identification of fake messages.

3.2 Attacker Model

The adversary is considered to be mobile and capable of performing both traffic
analysis and node capture attacks. Its hearing range is limited to a portion of
the network, which we represent as ADVn being n the number of hops controlled
by the adversary. In the literature, the adversary is usually considered to have
a monitoring range similar to an ordinary sensor node (i.e., ADV1).

A passive adversary decides its next move based on its observations. He may
choose between a time-correlation or a rate-monitoring attack. In the former,
the attacker observes the sending times of a nodes and its neighbours. Since a
node forwards a packet immediately after it is received, the attacker may learn
which neighbours are closer to the base station. The other attack is based on
the assumption that nodes near the base station have a higher forwarding rate.
Therefore, the attacker observes which node in its vicinity sends more packets
and moves towards it.

An active adversary is interested in capturing nodes in order to retrieve their
routing tables since these contain information on the distance to the base station.
There are some works in the literature [4,18] devoted to the modelling and
mitigation of node capture attacks but they are focused on the protection of
the key distribution mechanisms. Some authors consider a random node capture
strategy while others consider the capture of nodes in a particular area. In this
work we consider that the attacker starts by capturing nodes at the edge of the
network and moves according to the information he obtains. We also assume
that the attacker cannot compromise all sensor nodes without being discovered.
Only a fraction of the routing tables in the network can be captured.

4 Base Station Cloaking Scheme

This section presents our approach for protecting receiver-location privacy. We
start by giving an overview of the two mechanisms comprising our solution and
then we describe them in detail.

4.1 Overview

The devised solution consists of two complimentary schemes, a traffic normali-
sation scheme and a routing tables perturbation scheme. The former is intended
to hinder traffic analysis attacks while the latter is used to diminish the threat
of node capture attacks.

20 J. Lopez, R. Rios , and J. Cuellar

During data transmission, whenever a node has something to transmit, it
sends two packets to different random nodes. One of the packets is more likely to
be received by a node closer to the base station while the other packet is received
by a neighbour at the same distance or further away with high probability. These
probabilities are adjusted in such a way that every neighbouring node receives
on average the same amount of traffic. Consequently, one of the packets can be
used to carry real data and the other one as a mechanism to hide the data flow.

The second scheme complements the first one by introducing some perturba-
tion to the routing tables. In this way, if an adversary is capable of capturing
a node and retrieving its routing table he cannot be certain of which nodes in
the table are closer to the base station. A parameter is introduced to control the
degree of perturbation of the tables since modifying the routing tables affects
the efficiency of the data transmission protocol.

4.2 Traffic Normalisation

The transmission protocol must satisfy a series of properties to ensure the secu-
rity and usability of the system. First, it must guarantee the convergence of data
packets to the base station. For this purpose, the expected value of the distance
between the data sender and the base station must be larger than the expected
value of the distance between the next node and the base station. This is a prop-
erty for the usability of the system. Second, the protocol must ensure that the
traffic generated by a node is evenly distributed among its neighbours. In other
words, the average number of messages received by any pair of neighbours must
be similar. This property is intended to locally normalise the traffic and thus
make it difficult for the adversary to make a decision on its next move based on
his observations. Finally, since the protocol sends pair of messages, we impose a
third property to make sure that each of them is sent to a different node.

Sensor nodes always send two packets when they have something to trans-
mit. Usually, real packets are sent out in conjunction with fake packets to hide
the direction of the data flow because they are indistinguishable to an external
observer. We devised a lightweight mechanism that ensures the three properties
described above. This mechanism is based on the combinations without rep-
etition of two elements from the routing table. If the routing table is sorted
according to the distances of the neighbours to the base station (see Fig. 2a),
we achieve that with high probability, any resulting combination has its first
element from the list of closer nodes LC. Consequently, if real packets are sent to
the first element of the combination the convergence property is satisfied. Addi-
tionally, if combinations are picked uniformly at random, the node balances its
transmission among all its neighbours since all the elements in the routing table
appear in exactly l− 1 combinations, where l is the number of rows of the table.
The combinations resulting from the routing table of node x are depicted in
Fig. 2b, where we additionally count the number of combinations where the first
and second element of the combination, n1 and n2 respectively, belong to each
of the groups. From this figure it is easy to see that the probability of sending

Preserving Receiver-Location Privacy in Wireless Sensor Networks 21

A

B

C

D

E

F

x

neighs(x) distance group

A n− 1
LC

B n− 1
C n

LE
D n
E n+ 1

LF
F n+ 1

(a) Routing table of node x

n1

LC LE LF

n2

LC AB 1

LE AC BC
5

AD BD CD

LF AE BE CE DE
9

AF BF CF DF EF
9 5 1

(b) Resulting combinations

Fig. 2. Neighbours Selection Process

Algorithm 1. Traffic normalisation

Input: packet ← receive()
Input: combs ← combinations(sort(neighs), 2)
Input: FAKE TTL
1. {n1, n2} ← select random(combs)
2. if isreal(packet) then
3. send random(n1, packet, n2, fake(FAKE TTL))
4. else
5. TTL ← get time to live(packet)− 1
6. if TTL > 0 then
7. send random(n1, fake(TTL), n2, fake(TTL))
8. end if
9. end if

a data packet towards the base station, i.e., P(n1 ∈ LC) = 9/15, is much higher
than in order directions.

Since fake traffic is injected in the network, its propagation must be controlled
in some way to minimise its impact on the lifetime of the network. In other words,
fake traffic must be dropped at some point but this action must not give location
information to the adversary. The whole process is represented in Algorithm 1.
Upon the reception of a packet, the node first checks whether the packet contains
actual data. In case the packet is real, the node selects two neighbours using the
above mentioned mechanism and generates a new fake packet that contains a
time-to-live value. The data packet is sent to node n1 and the fake packet to node
n2. If the packet received is fake, the node must behave in the same way, that is,
the node sends two packets. However, now both packets are fake. The time-to-
live value is decremented at each hop and if the value reaches 0 no packets are
forwarded. The initial value of this parameter is globally defined by the network
administrator based on the eavesdropping power of the adversary. The goal is
to allow fake traffic to propagate beyond the reach of the adversary.

This protocol works correctly under the assumption of highly connected net-
works where the number of further neighbours do not outnumber the number of
closer neighbours. In [16] we showed this conditions are met even for randomly
deployed sensor networks since the number of neighbours closer to the base sta-
tion is roughly the same to the number of nodes further away. Still, the speed of

22 J. Lopez, R. Rios , and J. Cuellar

convergence of data packets is affected by these values. The speed increases as
the number of elements in LC grows for the nodes in the path.

4.3 Routing Tables Perturbation

Routing tables are a fundamental component of almost any data transmission
protocol. They contain relevant information regarding the location or distance
to the data sink. Our traffic normalisation protocol relies on the table order1

to determine suitable combinations of neighbours that satisfy the usability and
privacy of the system. However, if an adversary gains access to the routing tables
he is able to determine which nodes are closer to the base station regardless of
the use of traffic analysis techniques.

We propose a routing table perturbation scheme that rearranges the elements
of the table to generate some uncertainty on the adversary instead of giving him
direct access to this privacy-relevant information. Since the perturbation affects
the resulting combinations, it must be carefully tuned in such a way that the
convergence property holds. Formally, we must ensure that P(n1 ∈ LC) > P(n1 ∈
LF). In other words, the routing table must continue to be biased towards the
base station after the rearrangement of its elements.

The perturbation degree or bias is an important variable in this scheme be-
cause it determines both the speed of convergence of data packets to the base
station and the uncertainty level of the attacker. We define the bias of a routing
table r, bias(r) ∈ [−1, 1], as the probability of sending data packets in the di-
rection of or in the opposite direction to the base station. The closer the bias is
to 1 the greater it is the probability that data packets are sent to nodes in LC .
Likewise, a bias value close to -1 implies that it is highly likely that the resulting
combinations have their first elements from LF . Consequently, the bias can be
defined as the difference between the probability of sending the data packet to
a node in LC and the probability of sending it to LF .

bias(r) = P(n1 ∈ LC)− P(n1 ∈ LF) (1)

Note that these probabilities depend on the positions of each of the elements
in LC and LF in the routing table because the position determines the number of
combinations that have a particular neighbour as the first element. For example,
if we number the rows of the routing table in Fig. 2a from bottom to top,
starting from 0, we can see in Fig. 2b that there are no combinations where the
first element is F while A is the first element of 5 combinations. Therefore, we
can generalise the probabilities in Equation 1 for any subset of elements in the
table L as:

P(n1 ∈ L) =
1

C

∑
n∈L

pos(n) (2)

where C is the total number of combinations resulting from the table. These
equations allows us to check that bias(r) = −1 when the table is comprised

1 Knowing the actual distance, as shown in Fig. 2b, is not necessary.

Preserving Receiver-Location Privacy in Wireless Sensor Networks 23

Algorithm 2. Perturbation Algorithm

Input: br ← {LC , LE , LF}
Input: bias, MAX ITER
1. E ← energy(bias, br)
2. i ← 0
3. while (i < MAX ITER)∧ (E �= 0) do
4. br′ ← swap(br)
5. E′ ← energy(bias, br′)
6. if (E′ < E) then
7. br ← br′

8. E ← E′

9. end if
10. i ← i+ 1
11. end while
12. return br

solely of elements in LF since C =
∑

n∈LF pos(n). Likewise, if all the elements
in the table are closer to the base station, then bias(r) = 1. In general, the bias
must be greater than 0 in order to enable the eventual delivery of messages to
the base station.

Finding a particular arrangement of the table that satisfies a particular bias
value may be time consuming and may not always be feasible. This problem
is conditioned by the number of elements of each group in the original table.
Therefore, our perturbation scheme (see Algorithm 2) is modelled as an optimi-
sation algorithm that receives as input a desired bias and the routing table, and
returns the closest match. Our algorithm is inspired on evolutionary strategies
[9] where simple mutations are applied to the routing table in order to minimise
the distance to the desired bias. More precisely, we swap two elements from the
routing tables and check whether this reduces the energy (i.e., the distance to the
desired solution). In case the new state of the table reduces the energy we keep
this arrangement. The process is repeated for a maximum number of iterations
or until the energy is zero, which means that the optimal solution is found.

The main advantage of these solutions compared to deterministic algorithms
is that the time to find a (pseudo-) optimal solution to the problem is reduced.
The search space may be large for very dense network configurations where the
routing tables contain a large number of nodes. In these cases, the computation
time may be reduced several orders of magnitude. The main downside is that
the desired solution is not always found although it converges to it.

The non-deterministic nature of the algorithm provides an additional means
of protection to reversing attacks. Since the algorithm does not always reach the
same solution, the attacker may not be able to undo the perturbation even if he
learns the bias used by the algorithm. Nonetheless, it is more secure to completely
remove this value from the node after use since it is no longer necessary for the
operation of the data transmission protocol.

24 J. Lopez, R. Rios , and J. Cuellar

5 Discussion

A local eavesdropper eventually finds a data source and starts analysing the
traffic it generates. If the attacker chooses to perform a time-correlation attack
he moves to the neighbour who forwards the first packet, which may be real or
fake. If the packet is real, the attacker is highly likely to reduce its distance to
the base station but the probability of following a real packet is lower than the
probability of following a fake packet. The reason is that the ratio of fake to real
packets is greater or equal to 1 for typical attackers. Also, note that the adversary
can only be sure that he followed a fake packet when it is no longer propagated
but since they flow in any direction, this provides the attacker2 with no relevant
information. If the strategy is to perform rate monitoring, the attacker moves
to the neighbour receiving the larger number of packets but our transmission
protocol evenly distributes the traffic, which hinders this attack.

Dealing with an attacker capable of capturing sensor nodes and retrieving its
routing table is an ambitious task. First, note that making the nodes store fake
routing tables provides no protection to the real table. The reason is that the
node must keep a pointer to the real table and the adversary may also have
access to it. Even if this information is obfuscated in some way, the adversary
can identify which table is in use in various ways. For example, if the node is
transmitting packets, the adversary can observe which pairs of neighbours are
actually receiving messages. Also, since the routing tables are updated after
each topology discovery phase the fake routing tables should take into account
topology changes to prevent the attacker from easily distinguishing the real
table. The fact that routing tables are periodically updated, also implies that
the perturbation must be performed by all nodes. If the decision is determined
probabilistically, the adversary could compromise a set of nodes and wait until
the next discovery phase to check whether the routing tables changed. In view
of this, the attacker could identify which tables are real. In general, keeping the
real tables in its original form within the nodes is unsafe.

The main drawback of our perturbation algorithm is that it negatively im-
pacts the performance of the network by slowing the speed of convergence of
data packets. However, it is the price to pay for protecting the location of the
most important device of the network. Still, the attacker has an advantage that
depends on the degree of perturbation introduced to the routing table. Since
the resulting table must be slightly biased towards the base station in order to
allow data packets to be delivered, the adversary can reproduce the behaviour
of the node and generate pairs of messages whose first element is closer to the
base station with higher probability. But this is true for any system where the
attacker has access to all the secrets. Nevertheless, introducing the perturbation
algorithm is much better than not modifying the routing tables. In the latter
case, the adversary simply needs to move always to the first neighbour in the

2 We are assuming that the network is configured correctly and thereby the adversary
does not control the whole path of fake messages.

Preserving Receiver-Location Privacy in Wireless Sensor Networks 25

routing table and will reach the base station within the minimum number of
captures.

6 Conclusions

This work presents a novel receiver-location privacy solution that reduces the
chances of an attacker reaching the base station. The devised solution consists of
two complementary schemes that hinder both traffic analysis and node capture
attacks. The first scheme is a traffic normalisation protocol that injects controlled
amounts of fake traffic to hide the flow of real data packets. This protocol satisfies
several usability and security properties that ensure the eventual delivery of data
packets to the base station while it is protected from being traced. The second
scheme is an evolutionary algorithm that perturbs the routing tables of the nodes
to interfere with adversaries capable of gaining location information about the
base station after capturing a node. The algorithm is guided by a bias value,
which determines the perturbation degree of the tables. This value introduces
a tradeoff between the protection against these attacks and the mean delivery
time of data packets.

As future work we aim to investigate new mechanisms to reduce the overhead
introduced by the traffic normalisation scheme especially when the hearing range
of the adversary is large. We also want to explore and develop more sophisti-
cated attacker models and check the robustness of our solution against them.
Additionally, we are working on the design of a privacy-friendly topology discov-
ery protocol since traditional solutions reveal the location of the base station.
Our final goal is to develop an integral solution capable of protecting both from
attackers interested in finding the base station and data sources.

Acknowledgements. This work has been partially funded by the European
Commission through the FP7 project NESSoS (FP7 256890), the Spanish Min-
istry of Science and Innovation through the ARES project (CSD2007-00004) and
the Andalusian Government PISCIS project (P10-TIC-06334). The first author
is supported by the Spanish Ministry of Education through the F.P.U. Program.
Also, special thanks to Mart́ın Ochoa for his valuable comments in preliminary
versions of this work.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 40(8), 102–114 (2002)

2. Chang, S., Qi, Y., Zhu, H., Dong, M., Ota, K.: Maelstrom: Receiver-Location Pre-
serving in Wireless Sensor Networks. In: Cheng, Y., Eun, D.Y., Qin, Z., Song, M.,
Xing, K. (eds.) WASA 2011. LNCS, vol. 6843, pp. 190–201. Springer, Heidelberg
(2011)

3. Chen, H., Lou, W.: From Nowhere to Somewhere: Protecting End-to-End Location
Privacy in Wireless Sensor Networks. In: 29th International Performance Comput-
ing and Communications Conference, IPCCC 2010, pp. 1–8. IEEE (2010)

26 J. Lopez, R. Rios , and J. Cuellar

4. Chen, X., Makki, K., Yen, K., Pissinou, N.: Node Compromise Modeling and its
Applications in Sensor Networks. In: 12th IEEE Symposium on Computers and
Communications (ISCC 2007), pp. 575–582 (July 2007)

5. Deng, J., Han, R., Mishra, S.: Decorrelating wireless sensor network traffic to in-
hibit traffic analysis attacks. Pervasive and Mobile Computing 2(2), 159–186 (2006)

6. Deng, J., Han, R., Mishra, S.: Intrusion tolerance and anti-traffic analysis strategies
for wireless sensor networks. In: International Conference on Dependable Systems
and Networks, DSN 2004, pp. 637–646. IEEE Computer Society, Los Alamitos
(2004)

7. Deng, J., Han, R., Mishra, S.: Countermeasures Against Traffic Analysis Attacks
in Wireless Sensor Networks. In: 1st International Conference on Security and
Privacy for Emerging Areas in Communications Networks (SECURECOMM 2005),
pp. 113–126 (2005)

8. Di Pietro, R., Viejo, A.: Location privacy and resilience in wireless sensor networks
querying. Comput. Commun. 34(3), 515–523 (2011)

9. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Comput-
ing, 2nd edn. Springer (2007)

10. Jian, Y., Chen, S., Zhang, Z., Zhang, L.: Protecting receiver-location privacy in
wireless sensor networks. In: 26th IEEE International Conference on Computer
Communications (INFOCOM 2007), pp. 1955–1963 (2007)

11. Jian, Y., Chen, S., Zhang, Z., Zhang, L.: A novel scheme for protecting receiver’s
location privacy in wireless sensor networks. IEEE Transactions on Wireless Com-
munications 7(10), 3769–3779 (2008)

12. Kamat, P., Zhang, Y., Trappe, W., Ozturk, C.: Enhancing Source-Location Privacy
in Sensor Network Routing. In: 25th IEEE International Conference on Distributed
Computing Systems (ICDCS 2005), pp. 599–608 (2005)

13. Kamat, P., Xu, W., Trappe, W., Zhang, Y.: Temporal Privacy in Wireless Sensor
Networks. In: 27th International Conference on Distributed Computing Systems,
ICDCS 2007, p. 23. IEEE Computer Society, Washington, DC (2007)

14. Ozturk, C., Zhang, Y., Trappe, W.: Source-Location Privacy in Energy-
Constrained Sensor Network Routing. In: 2nd ACM Workshop on Security of Ad
Hoc and Sensor Networks (SASN 2004), pp. 88–93 (2004)

15. Proano, A., Lazos, L.: Perfect Contextual Information Privacy in WSNs under
Colluding Eavesdroppers. In: 6th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec, April 17-19. ACM, Budapest (2013)

16. Rios, R., Cuellar, J., Lopez, J.: Robust Probabilistic Fake Packet Injection for
Receiver-Location Privacy in WSN. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 163–180. Springer, Heidelberg (2012)

17. Rios, R., Lopez, J.: Analysis of Location Privacy Solutions in Wireless Sensor
Networks. IET Communications 5, 2518–2532 (2011)

18. Vu, T.M., Safavi-Naini, R., Williamson, C.: Securing wireless sensor networks
against large-scale node capture attacks. In: Proceedings of the 5th ACM Sym-
posium on Information, Computer and Communications Security, ASIACCS 2010,
pp. 112–123. ACM, New York (2010)

19. Yao, L., Kang, L., Shang, P., Wu, G.: Protecting the sink location privacy
in wireless sensor networks. Personal and Ubiquitous Computing, 1–11 (2012),
doi:10.1007/s00779-012-0539-9

Preserving Receiver-Location Privacy in Wireless Sensor Networks 27

20. Ying, B., Gallardo, J.R., Makrakis, D., Mouftah, H.T.: Concealing of the Sink
Location in WSNs by Artificially Homogenizing Traffic Intensity. In: 1st Inter-
national Workshop on Security in Computers, Networking and Communications,
pp. 1005–1010 (2011)

21. Zhang, L., Zhang, H., Conti, M., Di Pietro, R., Jajodia, S., Mancini, L.: Preserving
privacy against external and internal threats in WSN data aggregation. Telecom-
munication Systems 52(4), 2163–2176 (2013)

Data Security and Privacy in the Cloud

Pierangela Samarati

Università degli Studi di Milano
Dipartimento di Informatica

Via Bramante 65 – 26013 Crema – Italy
pierangela.samarati@unimi.it

Abstract. Achieving data security and privacy in the cloud means
ensuring confidentiality and integrity of data and computations, and pro-
tection from non authorized accesses. Satisfaction of such requirements
entails non trivial challenges, as relying on external servers, owners lose
control on their data. In this paper, we discuss the problems of guar-
anteeing proper data security and privacy in the cloud, and illustrate
possible solutions for them.

Keywords: Cloud computing, confidentiality, integrity, honest-but-
curious servers, data fragmentation, inferences, private access, shuffle
index, query integrity.

1 Introduction

Cloud computing has emerged as a successful paradigm increasingly appeal-
ing to individuals and companies for storing, accessing, processing, and sharing
information. The cloud provides, in fact, significant benefits of scalability and
elasticity, allowing its users to conveniently offer and enjoy services at reduced
costs thanks to the economy of scale that providers can exploit. Relying on the
cloud for storing and managing data brings, together with all the benefits and
convenience, also new security and privacy risks (e.g., [20,25,27,34]). In this pa-
per, we address in particular the problems related to the protection of data and
of computations on them. On one hand, cloud providers can be assumed to em-
ploy basic security mechanisms for protecting data outsourced to them, maybe
even employing controls that would not be affordable by most individuals or
small companies. On the other hand, however, relying on external parties for
storing or processing data, users lose control on such data hence leaving them
potentially exposed to security and privacy risks. Data could be sensitive and
should be maintained confidential even with respect to the cloud provider itself
that, while trustworthy for providing services, should not be allowed to know
the actual data content (honest-but-curious servers). Even the integrity of data
– or of computations on them – can be at risk as providers might behave not
correctly (lazy or malicious servers).

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 28–41, 2014.
c© Springer International Publishing Switzerland 2014

Data Security and Privacy in the Cloud 29

Protecting data and computations entail then ensuring both confidentiality
and integrity. Confidentiality issues arise since data externally stored or man-
aged can contain sensitive information, or information that the owner wishes to
maintain confidential. Confidentiality should be guaranteed also with respect to
the server storing or processing data, hence introducing complications in query
execution and in the enforcement of possible access restrictions. In addition to
the stored data, even users’ accesses on them may need to be maintained con-
fidential. Integrity issues arise since external servers storing or processing data
could misbehave. Guaranteeing integrity requires providing users with the ability
of assessing that data are stored correctly, computations are performed correctly,
and returned results are correct.

This paper is organized in two main sections. Section 2 illustrates confidential-
ity issues, presenting solutions for guaranteeing confidentiality of data in storage,
enforcing access restrictions, and guaranteeing confidentiality of accesses over
data. Section 3 illustrates integrity issues, presenting solutions for guaranteeing
integrity of data as well as of computations on them.

2 Confidentiality of Data and Access Control

Guaranteeing confidentiality in the cloud entails ensuring confidentiality to the
stored data (Section 2.1), enforcing of access restrictions on the data (Section 2.2),
andmaintaining confidentiality of the accesses performedon the data (Section 2.3).

2.1 Encryption and Fragmentation

A natural solution for protecting data confidentiality consists in encrypting data
before releasing them to the external server for storage. Encryption can be ap-
plied at different granularity levels. In particular, when data are organized in
relational tables, encryption can be applied at the level of table, attribute, tu-
ple, and cell [7,22]. Encryption at the level of tuple appears to be preferred as
it provides some support for fine-grained access while not requiring too many
encryption/decryption operations. Also, for performance reasons, symmetric en-
cryption is usually adopted.

A complication in dealing with encrypted data is that, since the server storing
the data should not know the actual data content, data cannot be decrypted
for query execution. A possible solution to this obstacle consists in evaluating
queries on the encrypted values themselves. For instance, homomorphic encryp-
tion solutions provide such a capability but support limited kinds of queries
and suffer from high performance overhead. An alternative solution consists in
associating with the encrypted tuples some metadata, called indexes , which can
be used for query execution (e.g., [7,22]). Intuitively an index column can be
specified for every attribute on which conditions need to be evaluated. Condi-
tions on plaintext values, known at the trusted client side, are then translated

30 P. Samarati

Patient
SSN Name YoB Job Disease Treatment

123-45-6789 A. Allen 1971 hairdressing eczema ointments
635-98-3692 B. Brown 1954 painter asthma bronchodilator
820-73-0735 C. Clark 1985 plastic worker dermatite corticosteroids
838-91-9634 D. Davis 1962 miners silicosis oxygen
168-87-4067 E. Evans 1977 lab techn hepatitis antiviral drug
912-83-7265 F. Fisher 1960 nurse tuberculosis antibiotics

(a)

Patiente

tid enc In Iy Ij Id
1 τ n1 y1 j1 d1

2 σ n2 y1 j2 d2

3 λ n3 y1 j2 d1

4 ρ n4 y2 j3 d2

5 α n5 y3 j1 d2

6 δ n6 y3 j3 d2

(b)

Fig. 1. An example of plaintext relation (a) and of corresponding encrypted and in-
dexed relation (b)

into conditions on index values to be evaluated at the server side. Figure 1 il-
lustrates an example of relation and its corresponding encrypted and indexed
version, where indexes have been defined over attributes Name, YoB, Job, and
Disease of the plaintext relation. Query execution is enforced by: a query to be
executed by the server over the index values and a further query to be executed
by the client on the server’s result once decrypted, to evaluate further condi-
tions and producing the actual result. Index values should be well related to the
plaintext values to provide effective in query execution, while at the same time
not leak information on the plaintext values behind them. Different indexing
functions have been proposed that differ in how plaintext values are mapped
onto index values, such as [15]: direct indexing, providing a one-to-one mapping
between plaintext values and index values; hash and bucket-based indexing, pro-
viding a many-to-one mapping between plaintext values and index values (thus
generating collisions); and flattened indexing, providing a one-to-many mapping
between plaintext values and index values (to not expose the indexing function
to frequency-based inferences). All these types of indexing functions differ in the
offered protection guarantees, the kinds of queries supported, and the perfor-
mance overhead suffered. For instance, direct indexing allows precise evaluation
of equality conditions, and even of range conditions if indexes are ordered but is
also the one most exposed to inference attacks compromising the confidentiality
of the indexing function.

As encryption makes query evaluation more complex or not always possible,
alternative solutions have been devised trying to limit encryption, or depart
from it. In particular, when what is sensitive are not the data values themselves
but their association, confidentiality can be guaranteed breaking the association
(i.e., its visibility) by storing the involved attributes in separate data fragments .
The association is then protected by restricting visibility of the fragments or en-
suring their un-linkability. A sensitive association can be represented as a set of
attributes whose joint visibility (i.e., whose association) is sensitive. Attributes
whose values are sensitive are also captured in such representation as they cor-
respond to singleton sets. Figure 2(a) illustrates an example of relation and
confidentiality constraints over it. Different fragmentation paradigms have been
proposed differing in the use of encryption and in the assumptions required to
ensure protection of the sensitive associations.

Data Security and Privacy in the Cloud 31

Patient
SSN Name YoB Job Disease Treatment

123-45-6789 A. Allen 1971 hairdressing eczema ointments
635-98-3692 B. Brown 1954 painter asthma bronchodilator
820-73-0735 C. Clark 1985 plastic worker dermatite corticosteroids
838-91-9634 D. Davis 1962 miners silicosis oxygen
168-87-4067 E. Evans 1977 lab techn hepatitis antiviral drug
912-83-7265 F. Fisher 1960 nurse tuberculosis antibiotics

c1 = {SSN}
c2 = {Name,Disease}
c3 = {Name,Job}
c4 = {Job,Disease}

(a) Original relation and confidentiality constraints

F1

tid Name YoB Treatment SSN1e Disease1e

1 A. Allen 1971 ointments α η
2 B. Brown 1954 bronchodilator β ρ
3 C. Clark 1985 corticosteroids γ σ
4 D. Davis 1962 oxygen δ π
5 E. Evans 1977 antiviral drugs ε φ
6 F. Fisher 1960 antibiotics θ ε

F2

tid Job SSN2e Disease2e

1 hairdressing χ ξ
2 painter τ η
3 plastic worker η ζ
4 miners ν λ
5 lab techn μ �
6 nurse ω ι

(b) Two can keep a secret

F1

salt enc Name YoB
s11 Δ A. Allen 1971
s12 ν B. Brown 1954
s13 ρ C. Clark 1985
s14 σ D. Davis 1962
s15 ε E. Evans 1977
s16 π F. Fisher 1960

F2

sal enc Disease Treatment
s21 β eczema ointments
s22 γ asthma bronchodilator
s23 δ dermatite corticosteroids
s24 μ silicosis oxygen
s25 ε hepatitis antiviral drug
s26 χ tuberculosis antibiotics

F3

sal enc Job
s31 ψ hairdressing
s32 ω painter
s33 Σ plastic worker
s34 Π miners
s35 λ lab techn
s36 ι nurse

(c) Multiple fragments

Fo

tid SSN Name Job
1 123-45-6789 A. Allen hairdressing
2 635-98-3692 B. Brown painter
3 820-73-0735 C. Clark plastic worker
4 838-91-9634 D. Davis miners
5 168-87-4067 E. Evans lab techn
6 912-83-7265 F. Fisher nurse

Fs

tid YoB Disease Treatment
1 1971 eczema ointments
2 1954 asthma bronchodilator
3 1985 dermatite corticosteroids
4 1962 silicosis oxygen
5 1977 hepatitis antiviral drug
6 1960 tuberculosis antibiotics

(d) Keep a few

Fig. 2. A sample relation with confidentiality constraints and its fragmentation with
different paradigms

– Two can keep a secret [1]. Data are split in two fragments stored at two
independent external servers which are assumed to not communicate and
not know each other. Sensitive attributes are obfuscated (e.g., encrypted).
Sensitive associations are protected by splitting the attributes among the
two servers. In addition to sensitive attributes, other attributes may be ob-
fuscated if their plaintext storage at any of the two servers would expose

32 P. Samarati

some sensitive associations. The two fragments have a tuple identifier in
common, allowing the data owner to correctly reconstruct the original re-
lation. Figure 2(b) illustrates a sample fragmentation in two fragments for
relation Patient of Figure 2(a), subject to the reported confidentiality con-
straints. Note that, while not sensitive by itself, attribute Disease is obfus-
cated since its plaintext storage in any of the two fragments would violate
some constraint (c2 for fragment F1 and c4 for fragment F2).

– Multiple fragments [4,6,10,13]. It does not impose any assumption on the
external servers or on the number of fragments. Sensitive attributes are
stored in encrypted form. Sensitive associations are protected by splitting
the involved attributes among different fragments. Fragments are assumed
to be complete (every attribute is represented either in plaintext or in the
encrypted chunk) and to not have attributes in common (to ensure their un-
linkability). The encrypted chunk is produced with salts to avoid exposure
of values with multiple occurrences. Figure 2(c) illustrates a sample frag-
mentation with multiple fragments for relation Patient; the use of three
fragments permits to represent in plaintext form all attributes that are not
sensitive by themselves.

– Keep a few [5]. It assumes the data owner (or a trusted party) to store a
limited portion of the data and completely departs from encryption (i.e., all
attributes are stored in plaintext form). Sensitive attributes are stored at the
owner side. Sensitive associations are protected by ensuring that, for each
constraint, at least one of the attributes in it is stored at the owner side.
A tuple identifier is maintained in both fragments to allow the owner to
correctly reconstruct the original relation. Figure 2(d) illustrates a sample
fragmentation for relation Patient with this approach, where Fo is the
fragment stored at the owner side.

The advantage of fragmentation over encryption is the availability of data
in the clear and therefore the ability of the server to evaluate any condition
on them; by contrast encrypted data or indexes provide limited support for
evaluating conditions. In any of the strategies above, fragmentation should be
enforced trying to maximize the availability of attributes in the clear and to
minimize the fragmentation enforced. Also, additional criteria could be taken
into account such as the query workload or possible visibility requirements.

Fragmentation approaches assume fragments to not be linkable (and therefore
associations to be protected) when they have no common attributes. In other
words, attributes are assumed to be independent. However, often dependencies
may exist among attributes introducing inferences from some attributes over
others that indirectly expose otherwise not visible attributes or enable linking
among fragments [11]. To illustrate, consider the set of attributes and constraints
in Figure 3(a), also represented as a graph with one node per attribute and
constraint and with multi-arcs connecting attributes to constraints. A fragmen-
tation reporting, Birth, Zip and Disease in one fragment (light gray in the
graph) and Treatment, Premium, and Insurance in the other (dark gray in the
graph) appears to satisfy the constraints (note that attributes appearing dotted

Data Security and Privacy in the Cloud 33

R(SSN, Birthdate, Zip, Name, Treatment, Disease, Job, Premium, Insurance)

c1 = {SSN}
c2 = {Name, Disease}
c3 = {Zip, Premium}

(a)

d1 = {Birth, Zip}�Name
d2 = {Treatment}�Disease
d3 = {Disease}�Job
d4 = {Premium, Insurance}�Job

(b)

Fig. 3. An example of exposure of sensitive associations due to data dependencies

in the graph are not represented in the clear in any of the fragments). In fact,
no sensitive information is exposed in the fragments and not having attributes
in common the fragments cannot be linked. This reasoning would be perfectly
fine if attributes where independent. However, dependencies might exist and
some information be inferable from other, allowing an observer to: from the
Birthdate and Zip reduce uncertainty over the Name; from the Treatment infer
the Disease; from the Disease reduce uncertainty over the Job; and from the
Premium and the Insurance infer the Job. Such derivations due to dependen-
cies can indirectly expose information and leak sensitive information or enable
linking. Figure 3(b) extends the graph with multi-arcs representing dependen-
cies (from the premises to the consequence) and illustrates such inferences by
propagating colors from the premises to the consequence. More precisely, if a
given color appears in all the attributes of a premise, it is propagated to the
attribute in the consequence (in the graphical representation, propagated colors
are reported in the bottom half of the nodes). Multi colored attributes represent
(indirect) violations of the constraints.

2.2 Access Control Enforcement

In many scenarios access to data is selective, meaning that different users, or
groups of them, should have different views/access on the data. With data out-
sourced to external servers, the problem therefore arises of how to enforce access
control. In fact, the data owner cannot mediate every access request, as the
advantages of delegating the management of data to an external server would
be lost. On the other hand, the server storing the data may not be trusted for
the enforcement of the access control policy, which could also be sensitive and
should be protected from the server’ eyes.

A possible solution to have access control enforced without requiring the data
owner intervention at every access consists in combining access control with

34 P. Samarati

acl(r1) = {A}
acl(r2) = {A,B}
acl(r3) = {A,B,C}
acl(r4) = {A,B,C}
acl(r5) = {B,C,D}
acl(r6) = {B,C,D}

(a)

A ���� ��
�� �	A ��

����
���

� r1

B ���� ��
�� �	B ��

����
���

���
���

���
� �� ��

�� �	AB ��

����
���

� r2

C ���� ��
�� �	C ��

�����
����

����
� �� ��

�� �	ABC �� r3, r4

D ���� ��
�� �	D ���� ��

�� �	BCD �� r5, r6

(b)

Fig. 4. An example of access control policy (a) and key derivation hierarchy (b) en-
forcing it

encryption, wrapping the data with a (self-enforcing) protecting layer. Some
solutions in this direction rely on attribute-based encryption (ABE), possibly
combined with other cryptographic techniques (e.g., [30]). An alternative inter-
esting approach combines access control with encryption by selectively encrypt-
ing resources based on the authorizations on them [12]. Intuitively, data are
encrypted with different keys and users are given only the keys for data which
they are authorized to access. This solution introduces some challenges related to
key management: users would like to have a single key (regardless of the number
of resources for which they have access), and data should be encrypted at most
once (i.e., different replicas with different keys should be avoided). These re-
quirements can be satisfied by adopting a key derivation approach [2], by which
users can derive keys from a single key assigned to them and public tokens. Ac-
cess control can then be enforced by properly organizing the keys with which
resources are encrypted in a hierarchy reflecting the authorizations on the re-
sources, or better their access control lists (ACLs), where the key corresponding
to an ACL allows deriving, via one or more tokens, the keys associated with all
ACLs that are superset of it. This way a user is able to derive, from her key and
public tokens, all (and only) the keys that are needed to access resources that
she is authorized to access according to the access control policy. Figure 4(a)
reports an example of access control policy involving four users (A, B, C, and
D) and six resources (r1, r2, r3, r4, r5, r6). Figure 4(b) reports a corresponding
hierarchy for keys, including one key for each user and one key for each non sin-
gleton ACL appearing in the policy. Dotted lines connect users to their keys, and
keys to resources encrypted with them. Tokens, represented as continuous line,
allow users to derive from their own key the keys of all and only resources for
which they are authorized. This hierarchy-based approach can also be extended
to support write privileges [9], and subscription-based scenarios [8].

As the key with which resources are encrypted depends on their ACL, in
principle any change to the authorization policy would require downloading, de-
crypting, re-encrypting, and re-uploading the involved resources. This process
can be avoided assuming some cooperation of the server in enforcing authoriza-
tion changes by over-encrypting resources to make them not accessible to non-
authorized users who know the key with which resources have been encrypted by
the owner. Intuitively, every resource is subject to two layers of encryption [12]:
a base encryption layer (BEL) applied by the data owner reflects the access

Data Security and Privacy in the Cloud 35

control policy at initialization time; a surface encryption layer (SEL) applied on
top of the BEL by the server takes into account possible changes in the access
control policy. A user will be able to access a resource only if she can pass both
layers of encryption.

2.3 Private Access

In some scenarios what can be sensitive might be not (or not only) the data stored
at the external server but (also) the accesses that users make on such data. In
particular, the fact that an access aims at specific data (access confidentiality) or
that different accesses aim at the same data (pattern confidentiality) should be
maintained confidential, even to the server providing access itself. Traditional
approaches addressing these issues are based on private information retrieval
(PIR) techniques, which however assume that data are stored in the clear, and
suffer from high computation costs, thus limiting their applicability (e.g., [32]).
Alternative solutions are based on the Oblivious RAM structure (ORAM) [21]
and on dynamic data allocation techniques (e.g., [17,18,35]). These solutions pro-
vide access and pattern confidentiality by encrypting data and changing their
physical allocation at every access so to destroy the, otherwise static, correspon-
dence between data and physical blocks where they are stored. In particular,
Path ORAM [35] maintains some data in a local cache (called stash) and some
data in an external tree structure where nodes contain, in addition to actual
blocks, also dummy blocks (to provide uniformity of the size of all nodes). Every
access entails reading a path of the tree (containing the searched block) and
bringing the nodes in the path in the stash. Then, the nodes in the tree path
read are rewritten back (possibly moving out from the stash nodes mapping to
leaves intersecting the path).

The shuffle index also assumes a local cache but maintains at the external
storage the complete data structure (so providing also more resilience in case of
failures and accommodating concurrent accesses or distributed scenarios [18,19]).
The data stored externally are organized with a B+-tree whose nodes are en-
crypted and that has no pointer between leaves (to avoid leaking to the server
information on the order of values stored). The advantage of a key-based hierar-
chical organization is that it allows supporting range queries. To protect pattern
confidentiality, for every search operation, the client asks retrieval of more values:
the actual target and some covers (which provide uncertainty for the server on
the block to which the client actually aims). Also, the client performs a shuffling
among nodes in the cache and those retrieved by the search, then rewriting the
involved blocks (whose content have been changed by the re-allocation enforced
by the shuffling) on the server. Figure 5(a) illustrates an example of nodes for
a shuffle index where, for readability, we have omitted the pointers from a node
to its children; the parent-child relationship is however understandable from the
label assigned to nodes in the figure, as leaf nodes have as prefix the label of
their parent. The figure shows a sample execution with target c1 and cover b2,
assuming a1 (and then the path to it) be in cache. The dotted arrows in Fig-
ure 5(a) illustrate a possible shuffling that changes the data allocated to blocks

36 P. Samarati

Fig. 5. An example of logical shuffle index with cache/target/cover and shuffling op-
erations due to an access (a), logical shuffle index at the end of the access (b), and
server’s view on the access (c)

as in Figure 5(b). Figure 5(c) illustrates instead the view of the server on the
access.

3 Data and Computation Integrity

Another issue that needs to be considered when storing – or processing – data at
external servers is the ability to assess the correct behavior of the servers. This
implies verifying that data are maintained correctly and that queries performed
on them are correctly executed.

As for data storage, typical solutions are based on hashing and digital signa-
ture schemas (e.g., [23,31]). Signature-based approaches provide a deterministic
guarantee of data integrity but impose an overhead not always acceptable in
cloud scenarios. Alternative solutions, which provide probabilistic (i.e., not cer-
tain) guarantees of data integrity, are Proof of Retrievability (POR) approaches
(e.g., [28]), which apply to encrypted data, or Provable Data Possession (PDP)

Data Security and Privacy in the Cloud 37

J

clean up/check integrity

��

J∗

decrypt

��

��Client

J∗
k

��

��

������������

������������
L∗
k R∗

k

encrypt

��

encrypt

��
Computational

server Cs

L∗ R∗

salts&buckets/twins/markers

��

salts&buckets/twins/markers

��

L R

Storage server Sl Storage server Sr

Fig. 6. Join execution and integrity controls

approaches (e.g., [3]), which apply to generic datasets. They are based on con-
trol sentinels hidden among the encrypted data (for POR) or on homomorphic
verifiable tags (for PDP) whose presence and correctness can be verified by the
owner or other trusted parties.

As for query computation, guaranteeing integrity requires to provide users
with mechanisms to verify the correctness , completeness , and freshness of com-
putations. Correctness means that the result has been performed on the original
data and the computation performed correctly. Completeness means that no
data is missing from the result. Freshness means that the computation has been
performed on the most recent version of the data. Similarly to data storage so-
lutions, also solutions assessing integrity of computations can be distinguished
in deterministic and probabilistic. Deterministic solutions are based on the use
of authenticated data structures and allow assessing integrity of query results
based on a verification object which the server should return together with the
results. Different approaches can different with respect to how data are orga-
nized and the verification object computed. For instance, signature chaining
schemas (e.g., [33]) organize tuples in a chain while Merkle tree and its variation

38 P. Samarati

(e.g., MB-Tree) [29,38] organize data in a hash-based tree structure. Determin-
istic solutions permit to detect integrity violations with certainty but offer such
a capability only for queries with conditions on the attribute/s on which the
structure has been defined.

Probabilistic solutions accommodate a more general control, while provid-
ing only a probabilistic guarantee of detecting violations (e.g., [14,36,37]). For
instance, the proposal in [14] permits to assess the integrity of join queries per-
formed by a non trustworthy computational server. The approach is based on
the insertion, in the encrypted data passed to the computational server, of fake
tuples (not belonging to the original relations) representing markers (newly gen-
erated tuples) and twins (replicas of existing tuples). To flatten the distribution
of tuples participating in a join, tuples can be organized in buckets by using salts
in the encryption, and possibly inserting dummy tuples. A violation is detected
if an expected marker is missing or a twinned tuple appears solo. Of course,
the more the markers and twins inserted, the more the offered guarantee. While
the guarantee is only probabilistic, a confident assurance can be provided with
limited performance overhead. Figure 6 illustrates a high level representation of
the working of this technique.

4 Conclusions

The use of external cloud services for storing and processing data offers tremen-
dous benefits to companies as well as users. Such a convenience introduces how-
ever inevitable risks on the data, and the need to provide techniques for ensuring
confidentiality and integrity of data as well as of computations on them. This
paper discussed these needs and some solutions addressing them.

Acknowledgments. I would like to thank Sabrina De Capitani di Vimercati for
suggestions and comments. This paper is based on joint work with Sabrina De
Capitani di Vimercati, Sara Foresti, Giovanni Livraga, Sushil Jajodia, Stefano
Paraboschi, and Gerardo Pelosi. The work was supported in part by Italian
MIUR PRIN project “GenData 2020” and EC 7FP project ABC4EU (312797).

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani,
R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed ar-
chitecture for secure database services. In: Proc. of the 2nd Biennial Conference on
Innovative Data Systems Research, CIDR 2005, Asilomar, CA, USA (January 2005)

2. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key man-
agement for access hierarchies. ACM Transactions on Information and System
Security 12(3), 18:1–18:43 (2009)

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proc. of the 14th ACM Con-
ference on Computer and Communications Security (CCS 2007), Alexandria, VA,
USA (October-November 2007)

Data Security and Privacy in the Cloud 39

4. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 171–186.
Springer, Heidelberg (2007)

5. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: Outsourcing data while maintaining confidentiality. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer,
Heidelberg (2009)

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM Transactions on Information and System Security (TISSEC) 13(3),
22:1–22:33 (2010)

7. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc. of
the 10th ACM Conference on Computer and Communications Security (CCS 2003),
Washington, DC, USA (October 2003)

8. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G.: Enforcing
subscription-based authorization policies in cloud scenarios. In: Cuppens-Boulahia,
N., Cuppens, F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 314–329.
Springer, Heidelberg (2012)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Enforcing dynamic write privileges in data outsourcing. Computers
& Security (COSE) 39, 47–63 (2013)

10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Extending loose associations to multiple fragments. In: Wang, L.,
Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 1–16. Springer, Heidelberg
(2013)

11. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Fragmentation in presence of data dependencies. IEEE Transactions
on Dependable and Secure Computing (TDSC) (2014)

12. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM Transactions
on Database Systems (TODS) 35(2), 12:1–12:46 (2010)

13. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Fragments and loose associations: Respecting privacy in data publishing. Proc. of
the VLDB Endowment 3(1), 1370–1381 (2010)

14. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Integrity for join queries in the cloud. IEEE Transactions on Cloud Computing
(TCC) 1(2), 187–200 (2013)

15. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
On information leakage by indexes over data fragments. In: Proc. of the 1st Inter-
national Workshop on Privacy-Preserving Data Publication and Analysis (PrivDB
2013), Brisbane, Australia (April 2013)

16. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Data privacy:
Definitions and techniques. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 20(6), 793–817 (2012)

17. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati,
P.: Efficient and private access to outsourced data. In: Proc. of the 31st Interna-
tional Conference on Distributed Computing Systems (ICDCS 2011), Minneapolis,
Minnesota, USA (June 2011)

40 P. Samarati

18. DeCapitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Dis-
tributed shuffling for preserving access confidentiality. In: Crampton, J., Jajodia, S.,
Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 628–645. Springer, Heidelberg
(2013)

19. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Supporting concurrency and multiple indexes in private access to outsourced data.
Journal of Computer Security (JCS) 21(3), 425–461 (2013)

20. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing
data in the cloud: Privacy risks and approaches. In: Proc. of the 7th International
Conference on Risks and Security of Internet and Systems (CRiSIS 2012), Cork,
Ireland (October 2012)

21. Goldreich, O., Ostrovsky, R.: Software protection and simulation on Oblivious
RAMs. Journal of the ACM 43(3), 431–473 (1996)

22. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data in
the database-service-provider model. In: Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2002), Madison, Wisconsin, USA
(June 2002)

23. Hacigümüş, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases
in database as a service model. In: De Capitani di Vimercati, S., Ray, I., Ray, I.
(eds.) Data and Applications Security XVII. IFIP, vol. 142, pp. 61–74. Springer,
Heidelberg (2004)

24. Jhawar, R., Piuri, V.: Adaptive resource management for balancing availability and
performance in cloud computing. In: Proc. of the 10th International Conference on
Security and Cryptography (SECRYPT 2013), Reykjavik, Iceland (July 2013)

25. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proc. of the 15th IEEE International Con-
ference on Computational Science and Engineering (CSE 2012), Paphos, Cyprus
(December 2012)

26. Jhawar, R., Piuri, V., Santambrogio, M.: A comprehensive conceptual system-level
approach to fault tolerance in cloud computing. In: Proc. of the 2012 IEEE Interna-
tional Systems Conference (SysCon 2012), Vancouver, BC, Canada (March 2012)

27. Jhawar, R., Piuri, V., Santambrogio, M.: Fault tolerance management in cloud
computing: A system-level perspective. IEEE Systems Journal 7(2), 288–297 (2013)

28. Juels, A., Kaliski, B.: PORs: Proofs of retrievability for large files. In: Proc. of the
14th ACM Conference on Computer and Communications Security (CCS 2007),
Alexandria, VA, USA (October-November 2007)

29. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index structures
for aggregation queries. ACM Transactions on Information and System Security
(TISSEC) 13(4), 32:1–32:35 (2010)

30. Li, J., Chen, X., Li, J., Jia, C., Ma, J., Lou, W.: Fine-grained access con-
trol system based on outsourced attribute-based encryption. In: Crampton, J.,
Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 592–609.
Springer, Heidelberg (2013)

31. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM Transactions on Storage (TOS) 2(2), 107–138 (2006)

32. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information
retrieval: Techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

Data Security and Privacy in the Cloud 41

33. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proc. of the ACM SIGMOD International Con-
ference onManagement of Data (SIGMOD 2005), Baltimore, MA, USA (June 2005)

34. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios:
Issues and directions. In: Proc. of the 5th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS 2010), Beijing, China (April 2010)

35. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path ORAM: An extremely simple Oblivious RAM protocol. In: Proc. of the 20th
ACM Conference on Computer and Communications Security (CCS 2013), Berlin,
Germany (November 2013)

36. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance.
In: Proc. of the 2008 ACM International Conference on Information and Knowledge
Management (CIKM 2008), Napa Valley, CA (October 2008)

37. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proc. of the 33rd International Conference on Very Large Data Bases (VLDB 2007),
Vienna, Austria (September 2007)

38. Yang, Z., Gao, S., Xu, J., Choi, B.: Authentication of range query results in MapRe-
duce environments. In: Proc. of the 3rd International Workshop on Cloud Data
Management (CloudDB 2011), Glasgow, U.K. (October 2011)

Forbidden City Model – Towards a Practice Relevant
Framework for Designing Cryptographic Protocols�

Mirosław Kutyłowski, Lucjan Hanzlik, Kamil Kluczniak,
Przemysław Kubiak, and Łukasz Krzywiecki

Faculty of Fundamental Problems of Technology, Wrocław University of Technology
{firstname.secondname}@pwr.wroc.pl

Abstract. Designing a cryptographic protocol for practical applications is a chal-
lenging task even for relatively simple scenarios. The usual approach is to design
a protocol having in mind some simple attack scenarios. This produces clean de-
signs but many security problems might be ignored. Repeatedly, the development
in this area was a sequence of steps: many protocols have been proposed and
subsequently broken by presenting realistic attack situations not covered by the
original security model. The resulting situation is an abundance of models, which
are less and less intuitive, hard to compare and to understand.

Our goal is to provide a simple and intuitive framework that would help us
to capture the key properties of the real world architectures and attack scenarios.
Motivated by the smart card design, the main idea is to build the system architec-
ture in the way that resembles the courts of the Emperor’s Palace in the ancient
China. There are many internal courts and strict rules how to cross the boundaries
between these separate areas. The crucial part of the model is specifying what the
adversary can do in each part of the system.

Keywords: cryptographic device, security model, adversary, attack, PACE, ac-
tive authentication.

1 Introduction

One of the major components of cryptography in practice are the cryptographic devices
that implement somehow the crucial components of the cryptographic protocols. In fact,
there is no way other than special purpose devices to enforce the following rules:

– the keys are protected so that their secrecy is guaranteed,
– the protocol is executed according to its specification.

The standard operating systems do not guarantee these properties. One can try to solve
this problem by redesigning the operating system (e.g. Chinese project Kylin), or by se-
curing isolated components by hardware means. The last approach resulted in a number
of practical solutions and massive deployment of cryptographic protocols. The most
spectacular solutions are: SIM cards used for cellular telecommunication, biometric
passports and other electronic identity documents, signature smart cards, TPM mod-
ules, HSM devices, and general purpose smart cards such as Java Card.

� Partially supported by grant S30028/I-18 from the Institute of Mathematics and Computer
Science of the Wrocław University of Technology.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 42–59, 2014.
c© Springer International Publishing Switzerland 2014

Forbidden City Model 43

These examples show that the deployment of cryptography is far away from the
initial stage. On the other hand, we can see that there are quite clear design tendencies.
In all cases the cryptographic suite is built from small components, with strictly defined
functionalities and hardware level protection. Almost always, they are single purpose
devices; they may serve as secure components of general purpose and programmable
systems.

On the other hand, it turns out that even for such devices, very simple in principle,
formal security analysis comes quite late or is incomplete and presented for bureau-
cratic reasons only. Nevertheless, there are many excellent designs of cryptographic
devices constructed by security engineers. On the other hand, there are examples of
painful mistakes. May be the most spectacular case are the early electronic voting ma-
chines, designed and deployed rapidly due to political pressure, ignoring the warnings
of security specialists.

In out opinion, the common lack of systematic approach and realistic security anal-
ysis is not due to negligent attitude of system designers, but rather to a gap between
system design problem and realistic threats on one hand, and theoretical models for
security that became to live their own life in the academic community.

Paper Contents. The goal of this paper is to present a different view on the protocol
design methodology. We think that it might be much easier to address the practical
security questions, if the model becomes closer to the technical reality.

This paper presents only a sketch of the approach. It does not present new proof
techniques but rather tries to organize the proof steps. This is quite important since the
number of details even for a very simple protocol might be abundant and it is easy to
overlook some issues.

The second important twist in our approach are the adversary models. In the cryp-
tographic literature there is a tendency to either underestimate the adversary and make
idealistic assumptions that cannot be fulfilled in practice, or to overestimate the adver-
sary and create too complicated algorithms to meet unrealistic threats.

More details will be presented in the forthcoming journal version of this paper.

2 Traditional Methodology

Standard Approach. Typically a party running a protocol is regarded as a univer-
sal computing machine such a Turing Machine. It runs a program performing internal
computation on available data: static secrets, ephemeral secrets, and data received from
other participants. When terminated correctly it usually has to be in an accepting state.
In case of AKE protocols it results with a session key shared with the peer party device.
The attacks on the protocol functionalities may affect:

Authentication: each party identifies and checks its peer within the session;

Consistency: if two parties A and B, establish a common session key K , then A be-
lieves it communicates with B, and B believes it communicates with A;

44 M. Kutyłowski et al.

Secrecy: if a session is established between two honest peers, then no adversary should
learns any information about the resultant session key and the messages encrypted
with this key.

In case of other functionalities, like creating electronic signatures, attacks may be tar-
geted at a simple forgery. In case of more sophisticated schemes like group signatures
the attack may aim violating anonymity of the signatory.

Abstract models of adversary measure its strength as the probability of breaking the
required functionality of the device. Usually the adversary is given the power:

– to control communication between devices
• intercept messages
• change/generate messages

– get the internal data stored on the device (long term static secrets – LongTermRe-
veal, ephemeral secrets – EphemeralReveal).

The ability to learn the party’s data by the adversary is modelled by abstract oracles.
There are oracles associated with each party running an instance of the protocol, called a
session. The adversary can query the party’s oracle in a given session to get the required
data. The most widely accepted models Canetti-Krawczyk (CK), extended Canetti-
Krawczyk (eCK), strengthen extended Canetti-Krawczyk (seCK) differ by details how
the adversary may learn the internal state of the protocol parties. As an example we
provide below a chart with some oracles available for these protocols:

CK eCK seCK (model 1) seCK (model 2)

Send sends a message to
party Pj on behalf of Pj .
The oracle returns Pj ’s re-
sponse to the message.

Send sends a message to party
Pj on behalf of Pj . The or-
acle returns Pj ’s response to
the message.

Send sends a message to party
Pj on behalf of Pj . The or-
acle returns Pj ’s response to
the message.

State-Reveal returns the
ephemeral session key, but
not the long-term secret state.

Ephemeral Key Reveal re-
veals an ephemeral key of a
party

Ephemeral Key Reveal re-
veals an ephemeral key of a
party

intermediate results reveals
intermediate results of com-
putation (which may involve
using secret values)

Long-Term Key Reveal re-
veals static secret key of a
party

CorruptSC returns the entire
internal state including long-
term secrets.

CorruptSC returns the entire
internal state including long-
term secrets.

Corrupt returns the entire in-
ternal state including long-
term secrets.

realized by Long-Term Key
Reveal, Ephemeral Key Re-
veal, Reveal

Session-Key-Reveal reveals a
session key of a completed
session.

Reveal reveals a session key of
a completed session

SessionKeyReveal reveals a
session key of a completed
session.

SessionKeyReveal reveals a
session key of a completed
session.

Of course if too many informations are revealed, then trivially security of a session
may disappear. So the authors introduce the concept of fresh sessions. A session is fresh
if it is not exposed, i.e. if secret data, which would trivially be used by the adversary
to break the security of the protocol, is not leaked. Therefore in the above-mentioned
models, to provide the freshness of the session in the security game, the adversary is
not allowed to query the following oracles:

CK eCK seCK (model 1) seCK (model 2)

Session-Key-Reveal Reveal SessionKeyReveal SessionKeyReveal
Corrupt Long-Term Key Reveal,

Ephemeral Key Reveal of one
party

CorruptSC , Ephemeral Key
Reveal of one party

intermediate results on
CorruptSC , and Ephemeral
Key Reveal of one party

Forbidden City Model 45

The protocol under attack is modelled by a sequence of executions of oracles. So the
approach is adversary-centric and at very high level of abstraction. In order to define
a uniform framework and comparable results the number of different kinds of oracles
should be kept low. This is hard, as there are different requirements for different pro-
tocols may and the framework built for one occasion is not suitable for the other one.
Even for a quite focused problem of AKE our experience is that there is an abundance
of models, oracles and their relations are at least unclear for the laymen.

Attacks Not Covered. Unfortunately, the general models still may not reflect all attack
possibilities. So we have to deal with adding new models all the times. For instance, we
believe that in certain cases the adversary can execute AlterData oracle: he can change
the internal data of a protocol participant or even replace it by the chosen value without
knowing the value changed. The possibilities what can be changed and how may differ
very much from case to case.

2.1 Demonstration of the Attacks

Signature Based Attacks. Consider the smart-card device realizing of the signature
functionality based on the Schnorr’s scheme:

1. choose k ∈ [1, q − 1] uniformly at random,
2. r := gk,
3. e := H(M ||r),
4. s := k − x · e mod q,
5. return (r, s).

Obviously, the adversary that queries the oracle Ephemeral Key Reveal (and thereby
gets k) can derive the static secret x from the signature (r, s). However, a similar at-
tack can be mounted without the use of Ephemeral Key Reveal oracle. We consider the
malicious card implementation that can mount the following attack in two subsequent
functionality executions (say E1, E2) with the AlterData oracle: In E1 the value k is
not erased after Step 2. In E2 Step 1 is not executed - instead the stored value k from
execution E1 is used. Now the secret static key can be derived from signatures: (e1, s1)
over the message M1, and (e2, s2) over the message M2, obtained from E1 and E2
respectively: x := (s1 − s2)/(H(M1||r)−H(M1||r)).

The attack might be feasible due to a wrong implementation of the PRNG component
that executes Step 1 (it produces two the same outputs in subsequent runs), or due to
the wrong implementation of the control flow (not erasing the previous k, and skipping
Step 1 in the next execution).

The attack discussed above can be used not only for signature functionality itself,
but for any protocol that uses that signature scheme as a building block.

Password Based Attacks. We just mention a single simple example. Password authen-
tication protocols aim to protect against unauthorized usage of a device - the attacker
should not be able to use the device without knowing the password. Now consider the

46 M. Kutyłowski et al.

malicious implementation that would store the password internally on the device dur-
ing the first protocol run in a secure memory section, and use that stored value since
then. Now after stealing a device the adversary can use it for authentication. Again
the attacked value - the password in this case - is not learned by the attacker, but the
functionality of the protocol implemented on the device is affected in a substantial way.

3 Forbidden City Model

The main problem with the traditional approach is that it separates the algorithm design
from the security proof. The other problem is that the algorithm design may disregard
crucial elements of the protocol implementation. In this section we present the method-
ology of co-design of a cryptographic scheme with it security model.

3.1 Model Components

Component. The component is the fundamental concept of the Forbidden City model.
A basic component C consists of

– the main subcomponent containing the code executed by the component and logic
necessary to perform the input and output operations,

– component’s input and output gates,
– optionally: a subcomponent as memory of the component.

A component may contain more subcomponents inside – we shall discuss it later.

Read-write memory

R/WM MAIN

data
logic

(a)

Read-only memory

ROM MAIN

data
logic

(b)

Fig. 1. A basic component: (a) with read/write memory, (b) with read-only data

Component’s Code. When activated, a componentC executes the code from its MAIN
component. Each component executing code may communicate with other components
using MPI mechanisms – sending and receiving data via output and input gates.

Thereby, we regard a cryptographic protocol as a distributed algorithm, where each
container is one of the (independent) protocol participants. As always for distributed
algorithms, we do not assume that there is a priori synchronization between different
components, their executions might be inconsistent. In most cases, the code executed
by a component is a simple sequential program with a very straightforward control flow.

Forbidden City Model 47

Nesting. The idea of nesting the components is the central concept of the Forbidden
City model. Each component may contain any number of subcomponents. In turn, an
internal component may contain its own subcomponents, and so on.

For instance, we may concern a smart card with the operating system on a ROM
memory which directly operates the input and output of the smart card. The smart card
may have another components, like a cryptographic coprocessor and a (pseudo)random
number generator inside the cryptographic coprocessor. The main memory is the part
that is open for uploading and running user’s applications.

Component

applets

PUBLIC

secret keys

Crypto co-proc. MAIN-OS

operating

system

Fig. 2. An example of a nested component architecture – a smart card with the operating system
on ROM, a cryptographic coprocessor and an area for uploading and running applets

Examples: A Communication Channel. Fig. 3 describes a situation of a smart card
and a card reader with the user entering a PIN on the keyboard of the computer con-
nected to the smart card reader via a wireless channel. In order to model the system
behavior the wireless channel is a separate component where the MAIN subcomponent
may be used to describe physical properties of the communication channel.

3.2 Adversary Model

An adversary is defined by the access methods to the data and code separately for each
component. The examples of access rights are: erase, replace by a fixed
content, replace by a content of choice, read, . . .

Note that erasing and replacing need not to come together with the read access. Each
operation might by a partial one – instead of erasing a given block of memory the adver-
sary may erase each bit of this block with some probability. Similarly, a read operation
for D may return the value f(D), where f is a (randomized) operation corresponding
to the technical reality.

48 M. Kutyłowski et al.

Smart
Card

Wireless
Communication

Reader PC Keyboard

Other
Device

Other
Device. . .

. . .

Fig. 3. A smart card and a reader with a wireless interface

The adversary can exercise his access rights during the attack in a malicious way.
In particular, he may influence execution of the components, where he can change the
code or the values of the control variables.

Note that our approach may lead to a large number of adversary models, describing
different attack conditions. The traditional approach is different – an attempt to find a
single attack scenario that covers all possible cases. Note also that we separate access
rights of the adversary (that follow from the technical reality) from the attack strategies
(which are inventions of the attackers). Surprisingly, in our approach it might be easier
to cover all cases. The main idea is based on the following observation that holds for a
wide range of attacks1:

If in some adversary model the attack is infeasible, then it is infeasible in all
cases when the adversary has weaker access rights.

So, it suffices to consider only maximal elements in the partial order of access rights in
the set of access right that should not lead to a successful attack.

4 Examples

In this section we discuss two specific applications: creation of Schnorr signatures and
the issues of authentication for an electronic identity document establishing communi-
cation with a reader.

4.1 Secure Signature Creation Device

Architecture for Schnorr Signatures. Let us consider the Schnorr signature scheme
recalled in Sect. 2.1. While this is a complete description concerning algebraic oper-
ations, it leaves crucial details necessary to evaluate the protocol’s security. There are
problems with two parts of the specification: the first is realization of “choose k uni-
formly at random”. The second one is computing the hash value Hash(M ||r).

Choosing a number at random is a nice abstract step, but it cannot be executed di-
rectly by a standard circuitry. For computing Hash(M ||r), the problem might be the

1 Surprisingly, this is not always the case, see the discussion on the privacy issues in [8].

Forbidden City Model 49

size of M . So, it seems that the signing algorithm is executed by a signing component
consisting of at least three components: RNG responsible for generating random ele-
ment k, HASH responsible for hashing (M ||r), and the SIGN component implementing
the operations involving the secret key x. Moreover, the communication between RNG
and SIGN has to be well protected, since leaking k reveals immediately the signing
key. In order to simplify the communication, one can use block hashing for computing
Hash(M ||r), and prepare the intermediate result for M outside the signing component
and finalize the computation with r inside. Therefore, it seems to be reasonable to em-
bed RNG inside SIGN, and two HASH components (see Fig. 4).

Signing device for Schnorr

Sign-RNG

RNG

MAIN

HASH

PC

x

Fig. 4. Basic model of a device creating Schnorr signatures

Security Conditions. The basic conditions required for a signature scheme are key
secrecy (meaning that it is impossible to derive the key from signatures created) and
unforgeability (meaning that it is impossible to create valid signatures without the pri-
vate key). These two properties can be viewed as abstract versions that have to guarantee
the following concrete condition:

Definition 1. Let C be a component implementing creation of electronic signatures.
Then C guarantees unforgeability for the adversary model A, if with an overwhelming
probability the adversary A cannot create a valid signature σ on a message M of his
choice without running the SIGN subcomponent of C storing the signing key so that it

delivers σ. Before attempting to create the signature σ, the adversary may run C
many times, possibly performing the attacks according to the model A. In particular,
the adversary may create signatures for arbitrary messages, but σ has to be different
from all these signatures.

Remark 1. Note that the above definition refers to a successful termination of the sig-
nature creation by the component SIGN that stores the signing key. So we can claim
that in case of execution interruption no signature can be derived. This solves nicely
many legal issues.

50 M. Kutyłowski et al.

Remark 2. Definition 1 admits that unforgeability refers only to a given adversary
model. In particular, the situation may be quite different in the case when the adversary
may influence the protocol execution of the signing device – the standard definitions
assume that the adversary can change the protocol execution only when acting as a
different protocol participant.

Remark 3. The attack strategy might be to derive the secret signing key x. Once it
succeeds, it is possible to use x outside SIGN in order to derive a new signature σ.

Note also that we do not necessarily demand that no data about the signing key x is
leaked. The main point is that, as long as the holder of the device implementing SIGN is
the only party that can create signatures, the signing scheme is considered to be secure.
This is an application centric approach, where the physical token plays the main role
and the private signing key is the mean to achieve unforgeability. The secrecy of x is
not the goal itself.

Problems with RNG. For the RNG there are the following adversary scenarios:

– the adversary may replace or influence the internal parts of RNG so that its output
is no more “uniformly random” from the point of view of the adversary,

– instead of influencing the source of physical randomness the adversary may attack
the output gate and inject there some other values.

In this case when k is not uniformly random, it might become predictable by the
adversary. This leads directly to the disclosure of the signing key via the equality
s = k − x · e mod q. Note that the standard tests (like the NIST suite) can detect
the attacks only if RNG becomes severely and permanently damaged. So, the SIGN
component cannot really test the output received allegedly from RNG.

There is a large variety of practical possibilities leading to such attack situations. The
RNG has to be implemented by a separate hardware module embedded in the signing
chip. So the manufacturers of the SIGN and RNG might be different and the manu-
facturer of RNG might be tempted to install a back-door via a hardware Trojan (like
indicated in [2]). The problem is that proving non-existence of the back-door might be
very hard or even impossible. On the other hand, we have to take into account physical
attacks (like exposing the chip to extreme temperatures) that would change the physical
properties of the RNG without switching off the electronic parts.

Due to the problems with the RNG sketched above one may consider to implement
the Schnorr signatures in a slightly different way. Let us describe an idea based on
distributed generation of Schnorr signatures [13]. We split the signing key x into two
parts x1, x2, where x = x1 + x2 mod q (the public key is still y = gx, where g is
the group generator). The algebraic description of the signing procedure takes now the
following form:

1. choose k1 ∈ [1, q − 1] uniformly at random
2. r1 := gk1

3. count := count+ 1
4. k2 := PRNG(z, count) mod q

Forbidden City Model 51

5. r2 := gk2

6. r := r1 · r2
7. e := Hash(M ||r)
8. s1 := k1 − x1 · e mod q
9. s2 := k1 − x2 · e mod q

10. s := s1 + s2 mod q
11. return (e, s)

In the description above the parameter z is a secret key embedded in the signing device,
count is an internal counter, and PRNG is a pseudorandom number generator.

From the external point of view, the result (e, s) is the Schnorr signature created
with exactly the same probability distribution as the Schnorr signatures created in the
traditional way. It can be implemented as described by Fig. 5 and in Table 1. The idea
is that there are two parts of the execution: one of them is vulnerable to attacks on
RNG. The other part is deterministic and is immune to physical attacks aimed to limit
randomness of the k component. However, it might be vulnerable to an attack by a
dishonest manufacturer retaining z.

Signing device for Schnorr

Sign-RNG

Sign-PRNG

RNG

PRNG

MAIN

HASH

PC

x1

x2count
z

Fig. 5. A distributed implementation of Schnorr signatures

We may consider an adversary model that any physical random generator may be
influenced so that the outcome of random number generators can be guessed. This has a
dramatic impact on the RNG contained in C1 but no impact on C2. We may assume that
the adversary knows k1, but the attack fails: s = k1 + k2 − x · e mod q, but still there
are two unknowns k2 and x. Moreover, if PRNG is well chosen, then we may assume
that its output is indistinguishable from the output of a real random number generator.
The Achilles Heel of C2 is the secret z. If in turn the adversary can read the memory of
PRNG or replace it in some way, then k2 becomes exposed. So we see that the scheme
does not protect against forgery if both C1 and C2 are exposed, but the attacks against
C1 and C2 require different capabilities of the adversary.

52 M. Kutyłowski et al.

Table 1. A modified realization of Schnorr signatures - the code executed by the components

code executed by SIGN-RNG: code executed by SIGN-PRNG:

activate upon request from MAIN activate upon request from MAIN
choose k1 ∈ [1, q uniformly at random send a request to PRNG
r1 := gk1 receive k2 from PRNG
send r1 to MAIN r2 := gk2

receive e from MAIN send r2 to MAIN
s1 := k1 − x1 · e mod q receive e from MAIN
send s1 to MAIN s2 := k1 − x2 · e mod q
reset send s1 to MAIN

reset

code executed by MAIN: code executed by PRNG:

send a request to SIGN-RNG receive request from SIGN-PRNG
send a request to SIGN-PRNG count := count+ 1
receive r1 from SIGN-RNG k2 := PRNG(z, count) mod q
receive r2 from SIGN-PRNG send k2 to SIGN-PRNG
r := r1 · r2
receive pre-hash h from the external HASH
send h, r to the internal HASH
receive e from the internal HASH
send e to SIGN-RNG
send e to SIGN-PRNG
receive s1 from SIGN-RNG
receive s2 from SIGN-RNG
s := s1 + s2
send (s, e) as the output

Issues Related to Hashing. The main problem with the hashing operation is that the
length of M may prevent performing the hash operation inside a well protected com-
ponent. This may create a problem: if the hashing is performed directly by a PC, then
the adversary may influence creation of the hash value e in an arbitrary way. Luckily,
the hash functions are not monolithic – usually we have iterative constructions, each
built upon some compression function. That is, the message to be hashed is divided into
blocks, and the compression function is applied iteratively to the output of the last iter-
ation and the current message block (as the initial ,,output”, the initial vector defined in
the specification of the hash function is utilized). Hence in case of Schnorr signatures
all but the last message blocks could be compressed on a PC, and then the compression
result and the last message block are transferred to the smart card. The smart card ap-
plies the last iteration of the compression function and obtains Hash(M ||r) (note that
in this way manipulations on e are prevented). Then only at this point:

Forbidden City Model 53

1. the exponent k is generated,
2. r := gk is calculated in the secure area,
3. the next compression function is applied to the compression result already obtained

and to the value r, hence e := Hash(M ||r) is calculated,
4. k, e, x are used to obtain s.

To sum up, the construction e := Hash(M ||r) used in [14], [6, Sect.4.2.3] may be
utilized to achieve a kind of atomic operation composed from the sequence of steps
1-4, all executed in the secure area of the smart card. Note that no output dependent on
k leaves the smart card until the complete signature is generated, and the time between
the first and the last step of the sequence above is minimized. Hence the time when
k is exposed to changes (for example some changes made by loss of power or by a
deliberate attack aimed e.g., at setting a fixed value) is minimized. See that in some
way the ephemeral key k might be more precious for the adversary than the private key
x! Indeed, knowledge of k is equivalent to the knowledge of x, but setting the value of x
to the one known to the adversary would destroy the key, whereas setting the value of k
may yield a successful attack. That is, existence of k may open new possibilities for the
adversary. Consequently, the key k should be protected very carefully and its existence
time frame should be minimized, and, before revealing the results of computations, a
consistency check [4] should be performed in a reliable manner (by reliable we mean
a check which does not accept a signature which is invalid). Note that sometimes a
check could be bypassed by a powerful adversary – cf. the attack on a checkcast
instruction when ClassCastException should be thrown [1, Subsect.4.1].

See that the atomic operation considered above is rather hard to achieve in the con-
struction e := Hash(r||M) used in [12], [9], [10]. In the latter construction the exponent
k is generated at first, r = gk is transferred to the PC, and then the smart card (which
usually possesses no clock) waits for the response from the PC. . . What is more, a re-
liable signature verification (which is one of possible consistency checks) is infeasible
for the smart card without an honest assistance from the PC (at least for large M)!

However, the construction e := Hash(r||M), due to the randomizer r put in front of
the message, makes collision attacks on Hash more difficult [12]. Hence from purely
theoretical point of view the construction seems to be more suitable than the version
with e := Hash(M ||r). But which construction should be implemented in practice? Is
the optimal answer possible without considering the details above? Maybe advantages
of both constructions could be combined? This seems to be an interesting problem of
applied cryptography.

Security Model for the Main Component. The important thing that we learn from the
Forking Lemma proof is that “freezing” the RNG by a physical attack or overwriting
the value of k in SIGN by a fixed value makes it possible to derive the signing key
and thereby break unforgeability. So we see that SIGN has to fulfill the property that its
memory must be resistant not only against leaking k, but also against possibly a broader
class of attacks against memory manipulations.

As we see, a big disadvantage of the Schnorr signatures (and many other signature
schemes based on the Discrete Logarithm Problem) is that the computation of s involves
k and x in a way such that any of them and s immediately reveal the other one. But can

54 M. Kutyłowski et al.

we do any better? It turns out that it is possible. For signatures like BLS [5], there are no
values like k that might endanger the secret key x and the exponentiation operation with
x can be performed in the innermost component. In such an architecture the component
of the signing key is like the Emperor’s Pavilion in the Forbidden City.

4.2 Authentication of Identity Documents

In this section we focus on two protocols executed when a wireless smart card reader
starts communication with an identity document on a smart card, called from now on
eID. The goal of these protocols is to protect the communication in the following sense:

Password Authentication: the eID admits to establish a session if it becomes con-
vinced that the reader knows the password,

Active Authentication: the reader obtains a proof that the eID holds the secret key
corresponding to the declared identity of the eID.

The protocol yields also a session key shared by the eID and the reader.

Security Model. The main objectives of the protocols presented above is as follows:

Definition 2 (Security of Password & Active Authentication). Let I be a component
modelling an eID. Let x be the private key installed in I and y be the corresponding
public key. Let π be the password assigned to I .

We say that a password and active authentication protocol is secure if upon the
protocol termination:

– if a reader R and an eID J share a session key, none of them has aborted the
protocol, and R regards y as the public key associated with the session partner,
then with a high probability J = I ,

– if a reader R and the eID I share a session key, and none of them has aborted the
protocol, then with a high probability R knows the password π.

The above definition is closely related to the matching sessions concept and security of
AKE. However, we define session ID as the private session key and adopt the definition
to what we are supposed to achieve regarding the reader. Namely, we cannot believe
that the reader connected with the eID is the same reader where the holder of eID has
entered the password. Indeed, at exactly the same time another reader knowing π may
start communication with the eID and may succeed to establish the connection.

For the sake of completeness let us mention that in case of the protocols discussed
privacy protection is another crucial condition. It can be formulated as follows (this
general definition consumes both privacy requirements stated in [8]):

Definition 3 (Privacy in Password & Active Authentication). A protocol guarantees
privacy if the adversary cannot decide if a given session has been executed by an eID
component I , even if the reader presents to the adversary private data allegedly used
during the protocol. The only exception from this situation is when the adversary runs
the reader himself and the eID does not abort the protocol.

Forbidden City Model 55

The phrase “cannot decide” means here that the probability distribution to provide
the correct answer cannot differ in a non-negligible way from the probability distri-
bution where the adversary has no access to the data from the protocol execution con-
cerned for the decision. Before the guessing phase starts, the adversary may observe the
interactions and itself may execute the protocol with any eID. Some executions might
be faulty and the adversary may take advantage of the access rights defined by the
adversary model.

Example Protocols. Let us now recall protocols that merge password authentication
(PACE) with an active authentication. We discuss PACE|AA [3] and SPACE|AA pro-
tocols [8] (also presented later as PACE|CA during INTRUST 2013 by J. Bender et
al.). In both cases the eID holds a password π and a secret key x, for which y = gx

is the public key (as before, the operations are executed in a group G of order q where
Discrete Logarithm Problem is hard). The reader obtains π via an independent chan-
nel (read optically from the eID card surface or entered by the eID holder). Below we
describe operations executed during the protocol execution (with some details skipped).

Operations executed by the eID: Operations executed the reader:

reset
Kπ := Hash(0||π) Kπ := Hash(0||π)
choose s < q uniformly at random
z := ENC(Kπ, s)
send z receive z

s := DEC(Kπ, z)
choose yA < q uniformly at random choose yB < q uniformly at random

PACE|AA version
YA := gyA YB := gyB

SPACE|AA version
t := gyA YB := gyB

YA := tx

receive YB send YB

send YA receive YA

PACE|AA version
h := Y yA

B h := Y yB
A

SPACE|AA version
τ := Y yA

B h := Y yB
A

h := τx

ĝ := h · gs ĝ := h · gs
choose y′

A < q uniformly at random choose y′
B < q uniformly at random

Y ′
A := ĝy

′
A Y ′

B := ĝy
′
B

receive Y ′
B send Y ′

B

send Y ′
A receive Y ′

A

K := Y ′
B

y′
A K := Y ′

A
y′
B

KENC := Hash(1||K) KENC := Hash(1||K)
K′

SC := Hash(2||K) K′
SC := Hash(2||K)

KMAC := Hash(3||K) KMAC := Hash(3||K)

56 M. Kutyłowski et al.

K′
MAC := Hash(4||K) K′

MAC := Hash(4||K)
TA := MAC(K′

MAC , Y
′
B)) TB := MAC(K′

MAC , Y
′
A))

receive TB send TB

abort if TB invalid
send TA receive TA

abort if TA invalid
PACE|AA version

σ := yA + Hash(5||YA||Y ′
A) · x

send ENC(K′
SC , σ||cert(y)) receive and decrypt ENC(K′

SC , σ||cert(y))
check certificate cert(y)

abort if gσ �= YA · yHash(5||YA||Y ′
A)

SPACE|AA version
w := yA
send ENC(K′

SC , w||cert(y)) receive and decrypt with K′
SC

check certificate cert(y)
abort if yw �= YA

PACE|AA and SPACE|AA are relatively simple communication protocols, never-
theless it is quite difficult to track down all details. We do not aim to explain them but
rather wish to illustrate some design decisions and security issues.

Architecture of PACE|AA and SPACE|AA. Below we discuss how to organize each
protocol as an interaction of components. First observe that protecting π in a secure
memory does not make sense. Indeed, an adversary holding an eID may try the pass-
words one by one attempting to establish communication. On the other hand, x has to
be well protected, otherwise it would be possible to clone the eID component.

Definitely, we may implement random number generation via a separate component
RNG. Upon request RNG generates an element in the range [0, q − 1] uniformly at
random.

In case of SPACE|AA one can implement x in a separate component EXP. Given an
input γ the component responds with γx. There are no other operations available. In
case of PACE|AA the situation is more complicated due to interaction between ya, σ
and x. In this case it is necessary to embed signature generation in a separate compo-
nent SIGN-EXP which additionally may perform exponentiation. This is definitely a
complication as this does not look as a standard component to be reused elsewhere.

Attacking Randomness. In order to show profound differences between PACE|AA
and SPACE|AA we discuss the situation where the adversary may reduce the entropy
of randomness by attacking the component responsible for choosing random exponents.

First consider PACE|AA. If the adversary guesses yA, then from the public parame-
ters YA, Y ′

A and σ he can easily derive x by the equality σ = yA+Hash(5||YA||Y ′
A) ·x.

If the adversary is not running the reader that interacts with the eID (and therefore does
not receive σ directly), then the attack is slightly harder. First the adversary has to guess
the exponent y′A and computes the candidates for K , K ′

SC , decrypt the ciphertext and
checks if the result is of the form σ||cert(y). Getting π requires more effort: having
y′A and Y ′

A one can derive ĝ = (Y ′
A)

y′−1
A mod q . By guessing yA we get candidates for

Forbidden City Model 57

eID for PACE|AA

Sign-EXP MAIN

PC

x

RNG

eID for SPACE|AA

EXP

RNG MAIN

PC

x

Fig. 6. eID of PACE|AA and SPACE|AA

h = Y yA

B and then for gs = ĝ/h. Then for each candidate password π is suffices to de-
crypt z and check whether the obtained plaintext s satisfies the equality ĝ = h ·gs. Once
the adversary gets π and x, he can create a clone of the eID and thereby the properties
from Definition 2 are violated.

In case of SPACE|AA let us assume that the adversary has seized control over the
whole eID component except for the component EXP. However, in this case all what
the adversary can do is to run EXP as an oracle for raising to power x. Therefore,
under standard assumptions the adversary cannot derive x. However, SPACE|AA is
still insecure regarding Definition 2. Indeed, after guessing y′A it is possible to deriveK
and thereby the session key. Afterwards it is possible to hijack the session.

Finally, let us note that the situation is the same for the model where the ephemeral
keys are revealed, as already stated in [8].

Attacks by Manipulating the Code Component. The second adversary model con-
cerned here is the situation that the adversary can manipulate the code in the MAIN
eID component (e.g. the malicious manufacturer). Now we assume that the adversary
cannot read any ephemeral data, but can eavesdrop the communication channel between
the eID attacked and the reader.

Below we show that the adversary may gain the access to the session key and can hi-
jack the session for PACE|AA. Thereby, the protocol is insecure regarding Definition 2,
as the second condition is violated. The manipulated code executed by the manipulated
eID component is as follows (the new code line is underlined):

Kπ := Hash(0||π)
choose s < q uniformly at random
z := ENC(Kπ, s)
send z
choose yA < q uniformly at random
YA := gyA

receive YB

send YA

h := Y yA
B , ĝ := h · gs

choose y′
A < q uniformly at random

y′
A := Hash(ZyA) mod q

58 M. Kutyłowski et al.

Y ′
A := ĝy

′
A

receive Y ′
B

send Y ′
A

. . . (continue without changes)

In the above code Z = gα is an element for which the discrete logarithm α is known
only to the adversary manipulating the code.

In order to obtain the session key, the adversary recomputes y′A using the property

y′A = Hash(Y α
A) mod q. Then the adversary may computeK := Y ′

B
y′
A and the remain-

ing keys using exactly the same operations as the eID component.
Let us summarize the attack properties:

– The attack idea is in fact borrowed from [15]. It takes advantage of the fact that the
PACE algorithm creates powers for randomly chosen exponents twice.

– Reverse engineering the code component may reveal the parameter Z to the third
parties. However, Z does not suffice to perform the attack on the session keys.

– The attack does not require any non volatile memory to store some extra values.
The attacker requires neither the private key x nor the password π.

– The manipulated values Y ′
A cannot be distinguished from the values Y ′

A produced
by the original protocol. This follows from the fact that (YA, Z, Z

yA) is a Diffie-
Hellman triple and the last element cannot be distinguished from a random group
element. Of course, we require also that it is infeasible to distinguish the random
source of elements from [0, . . . , q − 1] from a source that chooses a group element
R at random and outputs Hash(R) mod q.

Finally note that

– The attack works without any change against the plain PACE protocol.
– For SPACE|AA the only modification in the attack to be done is that the adversary

has to fix Z for which Z = yβ and β is known to the adversary. As before, instead
of generating y′A at random the manipulated code takes y′A := Hash(ZyA) mod q.
The recovery of y′A by the adversary is possible thanks to the equality ZyA = Y β

A .

The lesson to be learnt is that it is hard to design a protocol without any potential
implementation weakness. In case of PACE based protocols the problem is that after
reset of the smart card the protocol executes Diffie-Hellman key exchange protocol
twice and thereby has to use two randomly chosen exponents. This makes room for the
SETUP technique from [15]. However, what we really need here is not randomness,
but unpredictability for the adversary observing the protocol execution. This problem
can be solved by using signatures instead of random exponents, as proposed in [7].
However, thereby we may fall back into some problems as the extended execution code
may give rise to new security traps. Another strategy could be to abandon double Diffie-
Hellman key exchange and return to the idea of SPEKE [11] despite patent problems.

References

1. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 combining fault and logi-
cal attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS,
vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

Forbidden City Model 59

2. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hardware Tro-
jans. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 197–214.
Springer, Heidelberg (2013)

3. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE|AA protocol for machine read-
able travel documents, and its security. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397,
pp. 344–358. Springer, Heidelberg (2012)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic proto-
cols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer,
Heidelberg (1997)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol-
ogy 17(4), 297–319 (2004)

6. Bundesamt für Sicherheit in der Informationstechnik: Elliptic Curve Cryptography. Technis-
che Richtlinie TR-03111 v2.0 (June 2012)

7. Gołebiewski, Z., Kutyłowski, M., Zagórski, F.: Stealing secrets with SSL/TLS and SSH
– kleptographic attacks. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS,
vol. 4301, pp. 191–202. Springer, Heidelberg (2006)

8. Hanzlik, L., Krzywiecki, Ł., Kutyłowski, M.: Simplified PACE|AA protocol. In: Deng, R.H.,
Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 218–232. Springer, Heidelberg (2013)

9. ISO/IEC 14888-3/Amd 1:2010: Information technology - Security techniques - Digital sig-
natures with appendix - Part 3: Discrete logarithm based mechanisms, AMENDMENT 1
(2010)

10. ISO/IEC 14888-3/Amd 2:2012: Information technology - Security techniques - Digital sig-
natures with appendix - Part 3: Discrete logarithm based mechanisms, AMENDMENT 2
(2012)

11. Jablon, D.P.: Extended password key exchange protocols immune to dictionary attacks. In:
WETICE, pp. 248–255. IEEE Computer Society (1997)

12. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr signatures. J.
Mathematical Cryptology 3(1), 69–87 (2009)

13. Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party signatures for user
authentication. In: NDSS. The Internet Society (2003)

14. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174
(1991)

15. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based cryp-
tosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–276. Springer,
Heidelberg (1997)

A CAPTCHA Scheme Based

on the Identification of Character Locations

Vu Duc Nguyen, Yang-Wai Chow, and Willy Susilo�

Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering,

University of Wollongong, Australia
{vdn108,caseyc,wsusilo}@uow.edu.au

Abstract. CAPTCHAs are a standard security mechanism used on
many websites to protect online services against abuse by automated pro-
grams, or bots. The purpose of a CAPTCHA is to distinguish whether
an online transaction is being carried out by a human or a bot. Unfor-
tunately, to date many existing CAPTCHA schemes have been found
to be vulnerable to automated attacks. It is widely accepted that state-
of-the-art in text-based CAPTCHA design requires that a CAPTCHA
be resistant against segmentation. In this paper, we examine CAPTCHA
usability issues and current segmentation techniques that have been used
to attack various CAPTCHA schemes. We then introduce the design of a
new CAPTCHA scheme that was designed based on these usability and
segmentation considerations. Our goal was to also design a text-based
CAPTCHA scheme that can easily be used on increasingly pervasive
touch-screen devices, without the need for keyboard input. This paper
also examines the usability and robustness of the proposed CAPTCHA
scheme.

Keywords: Text-based CAPTCHA, segmentation resistance, optical char-
acter recognition.

1 Introduction

CAPTCHAs (Completely Automated Public Turing test to tell Computers and
Humans Apart) are essentially automated reverse Turing tests that are com-
monly used by online services to distinguish whether an online transaction is
being carried out by a human or an automated program, i.e. a bot [24]. Since its
inception, many diverse CAPTCHA schemes have been proposed, and to date,
CAPTCHAs have become a standard Internet security mechanism for deterring
automated attacks by bots and other malicious programs. Of the different types
of CAPTCHAs (e.g. text-based, image-based, audio-based) that are currently
used in practice, text-based CAPTCHAs are the most prevalent form in use.
Chellapilla et al. [12] attribute the popularity and pervasiveness of text-based

� This work is supported by ARC Future Fellowship FT0991397.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 60–74, 2014.
c© Springer International Publishing Switzerland 2014

A CAPTCHA Scheme Based on the Identification of Character Locations 61

CAPTCHAs to its human friendliness, intuitiveness, ease of use, low implemen-
tation cost, etc. In general, a traditional text-based CAPTCHA challenge con-
sists of a word or a random sequence of characters, which may consist of letters
and/or digits, that are embedded within an image. The user’s task is to solve
the CAPTCHA challenge by entering the appropriate sequence of characters in
the correct order.

Unfortunately, while there are numerous existing CAPTCHA schemes that are
currently deployed on a vast number of websites, many of these schemes have
been found to be insecure. The vulnerability of these schemes stem from various
design flaws that can be exploited to break these CAPTCHAs. Over the years, re-
searchers have documented many techniques that can be used to break a variety
of CAPTCHA schemes at high success rates [1,3,4,7,13,16,19,21,20,28,29]. Fur-
thermore, attacks against CAPTCHA schemes are not only limited to traditional
text-based CAPTCHAs, as techniques to break other forms of CAPTCHAs
have also been documented. These include techniques for breaking animated
CAPTCHAs [23,27], 3D-based CAPTCHAs [22], image-based CAPTCHAs [31],
audio-based CAPTCHAs [5], etc. As such, the design of a CAPTCHA scheme
that is robust against automated attacks is an important and open research
problem. In addition, the challenge of designing a secure CAPTCHA scheme is
further complicated by the fact that not only must the resulting CAPTCHA be
secure against automated attacks, it must also be easily usable by a human.

This paper presents the design of a new CAPTCHA scheme along with a
discussion on the security and usability of the proposed scheme. It is widely
accepted that state-of-the-art in CAPTCHA design requires that a CAPTCHA
be segmentation-resistant [1,12], as once a CAPTCHA can be segmented into its
constituting characters, the scheme is essentially deemed to be broken [11]. In
this paper, we first examine CAPTCHA usability issues and current segmenta-
tion techniques that have been used to attack a variety of existing CAPTCHAs,
in order to identify the various factors that must be considered when designing
a robust CAPTCHA scheme. This will then be followed by a discussion on the
design of our proposed scheme in relation to these usability and segmentation
considerations. In addition, this paper presents the results of a user study that
was conducted to ascertain the usability of the proposed CAPTCHA scheme,
followed by an analysis on the robustness of the scheme.

Our Contributions. In this paper, we present and discuss the design of a
new text-based CAPTCHA scheme that is robust against current segmentation
techniques. The proposed CAPTCHA scheme is also usable on touch-screen in-
terfaces, without the need to enter text via a physical or on-screen keyboard.
Our proposed approach alters the traditional challenge posed by conventional
text-based CAPTCHAs in which the user’s task is to answer the question of
“What is the text?”, into a question of “Where is the text?”. Hence, the user’s
task is to recognize and identify the locations of characters in the CAPTCHA
challenge. Furthermore, this paper outlines and examines the various usability

62 V.D. Nguyen, Y.-W. Chow, and W. Susilo

and security issues that must be considered in the design of a robust CAPTCHA
scheme.

2 Background

2.1 Usability versus Security

The fundamental requirement of a practical CAPTCHA scheme necessitates that
humans must be able to solve the CAPTCHA challenges with a high degree
of success, while the likelihood that a computer program can correctly solve
them must be very small. This tradeoff between the usability and security of
a CAPTCHA scheme is a hard act to balance. Security considerations push
designers to increase the difficulty of the CAPTCHA scheme, while usability
requirements compel them to make the scheme only as difficult as they need to
be, but still be effective in deterring automated abuse. These conflicting demands
have resulted in the ongoing arms race between CAPTCHA designers and those
who try to break them [10,15].

The design of a robust CAPTCHA must capitalize on the difference in natural
human ability and the capabilities of current computer programs [10]. This is
a challenging task because on one hand, computing technology and algorithms
that can be used to solve CAPTCHAs are constantly evolving and improving
(e.g. Optical Character Recognition (OCR) software), while on the other hand,
humans must rely on their inherent abilities and are unlikely to get better at
solving CAPTCHAs. In addition, it has been shown that several key features
that are commonly employed to increase the usability of CAPTCHA schemes
can easily be exploited by computer programs.

The use of color is a major factor that has to be considered in CAPTCHA
design. Color is used in CAPTCHAs for a variety of reasons. From a usability
perspective, color is a strong attention-getting mechanism, it is appealing and
can make CAPTCHA challenges interesting, appropriate use of color can facili-
tate recognition and comprehension of a CAPTCHA, and so on [2]. However, it
has been shown that the imprudent use of color can have a negative impact on
both CAPTCHA usability and security [1,30].

To aid usability, text-based CAPTCHA challenges that are based on dictio-
nary words are intuitive and easier for humans to solve because humans find
familiar text easier to perceive and read [25]. However, CAPTCHA challenges
that are based on language models are susceptible to dictionary attacks. Rather
of trying to recognize individual characters, which may be difficult if the charac-
ters are overly distorted and/or overlapping, researchers have successfully used
holistic approaches to recognize entire words for CAPTCHA schemes that are
based on language models [4,21].

Instead of using actual dictionary words, it is possible to take advantage of
text familiarity using “language-like” strings. Phonetic text or Markov dictionary
strings are pronounceable strings that are not words of any language. Experi-
ments have shown that humans perform better when solving CAPTCHAs with
pronounceable strings in contrast to CAPTCHAs which contain purely random

A CAPTCHA Scheme Based on the Identification of Character Locations 63

characters [25]. Nevertheless, the disadvantage of using this approach is that cer-
tain characters (i.e. vowels) will appear at higher frequencies in pronounceable
strings compared to other characters. The higher frequencies of certain charac-
ters makes the resulting CAPTCHA more vulnerable to attacks.

In addition, for usability purposes text-based CAPTCHAs should avoid the
use of confusing digits and letters like the digit ‘0’ and the letter ‘O’, the digit ‘1’
and the letter ‘l’, etc. Confusing character combinations like ‘W’ and ‘VV’, ‘m’
and ‘rn’, etc. should also be avoided. Furthermore, if letter case is important,
then confusing characters include upper and lower case pairs like ‘S’ and ‘s’, ‘Z’
and ‘z’, etc. [30].

2.2 Segmentation Resistance

Chellapilla et al. [11,13] demonstrated that machine learning algorithms can
successfully be used to break a variety of different CAPTCHA schemes. In doing
so, they also showed that computers can outperform humans at the task of
recognizing individual characters. The task of solving a text-based CAPTCHA
consists of two main challenges; namely, a segmentation challenge, followed by
a recognition challenge. The segmentation challenge refers to the identification
and separation of a sequence of characters into its constituting characters in the
correct order, and the recognition challenge involves recognizing the individual
characters. As such, it follows that once a computer program can adequately
reduce a CAPTCHA to the problem of recognizing individual characters, the
CAPTCHA is essentially broken. Hence, it is widely accepted that a secure
CAPTCHA scheme must be designed to be segmentation-resistant [1,10].

Broad classifications of three of the mainstream segmentation-resistant meth-
ods that are currently employed by a number of CAPTCHA schemes to deter
segmentation, as defined by Bursztein et al. [7], are described as follows:

– Background Confusion: CAPTCHA schemes that use this approach to
prevent segmentation attempt to blend the CAPTCHA text with the back-
ground. There are three main ways of achieving this; namely, by using a
complex background image, by using a background with very similar col-
ors to the text, or by adding noise. Some CAPTCHA schemes employ a
combination of these techniques.

– Using Lines: In this approach, random line(s) that cross over multiple
characters are drawn over the CAPTCHA text. This is done to help prevent
segmentation because characters in the CAPTCHA challenge are connected
together by the lines.

– Collapsing: This approach typically involves removing the space between
characters, tilting characters and/or overlapping them, which in effect crowds
the characters together. The notion behind this approach is to make segmen-
tation difficult because the characters are either very close or joined together.
While this is considered to be the most secure anti-segmentation mechanism,
often design flaws in the CAPTCHA scheme allow attackers to exploit these
flaws in order to perform segmentation [7]. Some of these attacks are de-
scribed in the next section.

64 V.D. Nguyen, Y.-W. Chow, and W. Susilo

2.3 CAPTCHA Segmentation Techniques

While it is widely accepted that a robust CAPTCHA scheme must be designed to
be segmentation-resistant, many existing schemes that adopt anti-segmentation
mechanisms have in fact been found to be insecure. This is mainly due to certain
design flaws in the scheme that can be exploited by the attacker to segment the
CAPTCHA. Over the years, researchers have documented a variety of different
techniques that can be used to segment various CAPTCHA schemes. Among
others, several key segmentation techniques are described as follows:

– De-noising Algorithms: De-noising techniques are mainly used to remove
random noise from a CAPTCHA. Of the various de-noising techniques that
have been proposed over the years, the Markov Random Field technique,
a.k.a. Gibbs algorithm [18], has been found to be very effective [7]. The algo-
rithm works by computing the energy of each pixel based on its surroundings
and removing pixels that have an energy below a certain threshold. This is
performed iteratively until there is no more pixels to remove.

– Histogram-Based Segmentation: Histogram-based segmentation is a
popular CAPTCHA segmentation technique that projects a CAPTCHA’s
pixels to their respective X or Y coordinates [3,7,19,28,29]. By producing a
histogram of the number of pixels in the X or Y dimension, in general, sec-
tions that contain a large pixel count contain characters, while sections with
a low pixel count are potential positions that can be used to segment the
characters. For CAPTCHAs where the characters are only joined slightly
or connected using small lines, this method is effective in segmenting the
CAPTCHA. In other CAPTCHA attacking methods, this technique is effi-
cient in separating groups of characters or potential groups prior to the use
of other segmentation techniques.

– Color Filling Segmentation (CFS): The basic idea behind this technique
is identify a foreground color pixel (i.e. a pixel with a color associated with
the text) and to trace all the neighboring pixels with the same color which
are connected to this pixel, in effect performing a flood fill algorithm, to
identify a chunk of connected pixels. This process is repeated until all chunks
in a CAPTCHA have been identified [3,29]. The end result of using this
method is that an attacker can identify individual characters or groups of
characters. This method is often used in conjunction with other segmentation
techniques.

– Opportunistic Segmentation: This technique relies on making educated
guesses based on prior knowledge about the CAPTCHA scheme. The tech-
nique exploits regular and predictable features of a CAPTCHA scheme in
order to approximate where the segmentation cuts should be. For example,
CAPTCHA schemes that use a fixed number of characters per challenge,
where characters are usually placed at certain fixed locations, and all char-
acters have roughly the same width, are susceptible to opportunistic segmen-
tation. The reason for this is because it is easy to make an educated guess
as to where the segmentation cuts are likely to occur [7,10].

A CAPTCHA Scheme Based on the Identification of Character Locations 65

– Segmentation Based on Patterns and Shapes: In this segmentation
approach, attackers try to identify certain patterns and shapes that typi-
cally characterize some characters. For example, characters like ‘a’, ‘b’, ‘d’,
‘e’, ‘g’, ‘o’, ‘p’, ‘q’ all contain loops or circular regions, characters like ‘i’,
‘j’, ‘l’ typically consist of small vertical blocks of pixels, etc. [3,16]. Once
these patterns are determined, these particular features can be identified in
the CAPTCHA which in turn allows the attacker to ascertain appropriate
locations to segment the text.

The techniques described here are some generic methods that have been
adopted to attack a number of different CAPTCHA schemes. There are also
other specialized segmentation methods that have been used to attack spe-
cific CAPTCHA schemes [1,28]. While to date there is no comprehensive seg-
mentation solution that can be used to break all CAPTCHA schemes, many
CAPTCHA segmentation attacks use a combination and/or variations of the
techniques described above.

3 Design of the Proposed CAPTCHA Scheme

Many of the existing CAPTCHA schemes that adopt anti-segmentation mech-
anisms have actually been broken through the use of using various segmen-
tation techniques, including those described in the previous section. As such,
in designing a CAPTCHA scheme, it is imperative to examine the use of anti-
segmentation mechanisms and to consider the resulting CAPTCHA’s robustness
against current segmentation techniques. Since a CAPTCHA scheme’s robust-
ness is determined by the cumulative effects of its design choices [10], we will
discuss the reasons and security issues that were considered in the design of our
proposed CAPTCHA scheme.

In general, the use of background confusion techniques as a security mecha-
nism has been deemed to be insecure. For one thing, human usability considera-
tions require that the text stand out from the rest of the background, otherwise
a human will not be able to adequately solve the CAPTCHA, and for this rea-
son it is likely that any background can be processed, filtered and removed. It
has therefore been recommended that backgrounds only be used for cosmetic
purposes [7]. In addition, using lines to connect characters as a segmentation-
resistant technique has also been found to be inadequate in preventing the re-
sulting CAPTCHA from being segmented. This is because there are a variety of
techniques that can efficiently detect and/or remove lines, for example, through
the use of line detection algorithms such as the Hough transform [17], erosion
and dilation techniques [26], as well as histogram-based segmentation techniques.

Collapsing techniques such as crowding and overlapping characters together
are considered to be the most secure anti-segmentation approach to date. How-
ever, an increasing number of CAPTCHA scheme that have been designed with
these techniques have been successfully broken because attackers have managed
to exploit design flaws in the various schemes [3,7]. One of the reasons for this

66 V.D. Nguyen, Y.-W. Chow, and W. Susilo

is due to the fact that current text-based CAPTCHAs crowd and overlap char-
acters in the horizontal dimension only. This has allowed attackers to identify
predictable features in the CAPTCHA schemes and to approximate where the
segmentation cuts should occur.

In this paper, we propose the design of a text-based CAPTCHA scheme that
is robust against current segmentation techniques. One of our goals was to also
design a scheme that can easily be used on the increasingly popular and per-
vasive touch-screen devices, without having to rely on the need to input text
using a physical or on-screen keyboard. As such, unlike conventional text-based
CAPTCHAs which deal with the question of “What is the text?”, our approach
alters this into the question of “Where is the text?”. Examples of our proposed
CAPTCHA scheme are depicted in Figure 1.

(a) Colored version (b) Black and white version

Fig. 1. Examples of the proposed CAPTCHA scheme

There are two slightly different versions of our proposed scheme. Figure 1(a)
shows an example of a colored version of the proposed CAPTCHA, while Figure
1(b) shows a black and white version. Note that the use of color in our scheme
is not for any security reasons, but rather it is primarily used for reasons of
usability. This is in line with recommendations that color be used in CAPTCHAs
for usability rather than for security [2]. The colored version of our scheme
was implemented to ascertain whether or not it would facilitate human visual
perception, by making it easier for humans to distinguish characters from the
background, instead of having to solely rely on the outlines of characters. To
help answer this question, a user study was conducted and the findings of the
experiment are discussed in Section 4.1.

For each CAPTCHA in our proposed scheme, a user is provided with a chal-
lenge character set (the list of characters at the bottom of the CAPTCHA)
and an image that contains these specific characters, along with a whole lot

A CAPTCHA Scheme Based on the Identification of Character Locations 67

of other non-relevant characters. To solve the CAPTCHA, the user’s task is to
find the locations of the characters provided in the challenge character set in
the image, then drag-and-drop each challenge character onto the correct char-
acter in the image. This can easily be done using a mouse, a pointing device
or on a touch-screen. Figure 2(a) and Figure 2(b) show examples of an incor-
rect answer and a correct answer respectively1. Note that the correct characters
in the CAPTCHA are only highlighted after the solution has been submitted.
Drag-and-drop CAPTCHAs are not new and have previously been proposed,
for example, for identifying images of 3D text objects [9]. Others have proposed
clickable CAPTCHAs for mobile devices [14].

(a) An incorrect solution (b) A correct solution

Fig. 2. Example answers

The design of the proposed CAPTCHA scheme mainly relies on the collapsing
technique for preventing segmentation. However, unlike conventional text-based
CAPTCHAs, it can be seen from the examples shown in Figures 1 and 2 that
our approach not only crowds, tilts and overlaps characters in the horizontal
dimension, it also does this in the vertical dimension. In addition, our approach
uses many more characters than is actually contained in the challenge character
set. For conventional CAPTCHAs that adopt the crowding characters together
approach, each character only has a maximum of two neighboring left and right
characters that it can overlap with. Our approach allows for center characters to
overlap with a maximum of eight neighboring characters. Obviously, characters
at the sides have less neighboring characters. As such, it can easily be seen that
our approach effectively prevents segmentation techniques like histogram-based
segmentation, color filling segmentation or methods that try to identify character
patterns and shapes to determine where the text should be segmented, because
the text cannot simply be segmented using single lines.

1 Animated examples depicting user interaction with the proposed scheme can be
found at: http://www.uow.edu.au/~wsusilo/CAPTCHA/newCAPTCHA.html

http://www.uow.edu.au/~wsusilo/CAPTCHA/newCAPTCHA.html

68 V.D. Nguyen, Y.-W. Chow, and W. Susilo

The challenge character set in the proposed scheme consists of random char-
acters instead of dictionary words, and is therefore not affected by dictionary
attacks. Rather than using a fixed number of characters per challenge, the num-
ber of characters in the challenge set can be randomized. Furthermore, for all
characters in the image, their rotation angles, positions and sizes, as well as the
number of characters, can all be randomized within a certain range of values.
This prevents other segmentation techniques like opportunistic segmentation,
because the randomization makes it difficult to predict where individual charac-
ters are located. Also, since color in our scheme is not used for security, attackers
cannot use color filtering to identify the locations of individual characters in the
image.

From a usability perspective, the proposed CAPTCHA scheme is based on
Gestalt principles of visual perception. By removing the outlines of characters
wherever they overlap in the image to deter segmentation, a human can still
solve the CAPTCHA because humans perceive objects as a whole and the vi-
sual system fills in the missing areas. Our implementation was programmed to
avoid the use of confusing character combinations within the same CAPTCHA
challenge. In our scheme, each unique character only occurs once per challenge.
Also, although the characters are crowded together, unlike many conventional
text-based CAPTCHAs which rely on character warping or distortion to de-
ter automated attacks, the characters in our approach are not distorted. This
is because the security mechanism of our approach does not rely on character
warping or distortion, which in turn makes the task of recognizing undistorted
characters easier for humans. Only upper case letters and digits are used in the
current implementation.

4 Results and Discussion

4.1 User Study

User studies with human participants are the best method of establishing the
human-friendliness of a CAPTCHA scheme [10]. As such, a pilot user study
was conducted to determine the usability of the proposed CAPTCHA scheme.
The study was also done to ascertain whether the use of color in one of the
CAPTCHA versions would make a significant difference for a human. A total of
42 volunteers, 33 male and 9 female, took part in the experiment. Participants
were aged between 18 and 58 (average ∼32.9, standard deviation ∼1.05). None
of the participants had ever seen or had any prior knowledge about the proposed
CAPTCHA scheme.

Method. For the study, a total of 30 CAPTCHA challenges were generated.
Of this, 15 were the colored version and the other 15 were the black and white
version. For each version, the challenge character set consisted of 3 characters
for 7 of the CAPTCHAs, while the challenge character set for the remaining 8
CAPTCHAs consisted of 4 characters. The order in which the CAPTCHAs were

A CAPTCHA Scheme Based on the Identification of Character Locations 69

presented to the participants was randomized. In order to compare results, the
same experimental conditions were maintained for all participants. Hence, each
participant was required to solve the same set of 30 CAPTCHAs.

Before the experiment, each of the participants was given instructions about
the experimental task and what they were required to do. Their task was simply
to view each challenge and solve the CAPTCHA using a mouse. The duration
of the experiment was designed to be short to avoid participants loosing concen-
tration. The total time required by each participant to complete the experiment
varied between individuals, but took no longer than 15 minutes. During the ex-
periment, we recorded the time taken by each user to complete each CAPTCHA
challenge as well as all their answers. Participants were not provided with any
information regarding the correctness of their answers. At the end of the exper-
iment, participants were also given a post-experiment questionnaire that con-
tained questions about their subjective opinions in relation to the usability of
the proposed CAPTCHA scheme.

Results. Table 1 shows the results of the experiment. It shows the difference
in accuracy and average completion time between the colored version of the
CAPTCHA and the black and white version. For good usability and to avoid
users getting annoyed, Chellapilla et al. [10] state that the human success rate
of a good CAPTCHA should approach 90%. It can be seen from the user study
results that the success rate of both versions of our proposed CAPTCHA satisfies
this benchmark.

Table 1. Average completion time and the success rates

Accuracy (%) Average Time (s)

Colored version 96.35 18.97

Black and white version 93.81 26.24

In addition, the experimental results suggest that the use of color has an effect
on the overall usability of the CAPTCHA scheme. In Table 1, one can see that
the accuracy for the colored version was higher than the black and white version.
However, a Chi-square test did not reveal a significant difference. The results also
show a difference in the average completion times. Upon further analysis, a t -test
showed a significant difference in the average completion time for the black and
white version (M = 26.24s, SD = 18.26s) and the colored version (M = 18.97s,
SD = 7.60s); t(841) = 9.22, p < 0.001. This suggests that perceptually the use
of color to distinguish characters from the background makes the CAPTCHA
easier for a human to solve. Table 2 shows the breakdown of average completion
times based on the number of characters per challenge. Not surprisingly, the
more challenge characters in a CAPTCHA, the longer it took participants to
solve the CAPTCHA.

70 V.D. Nguyen, Y.-W. Chow, and W. Susilo

Table 2. Average completion time based on the number of challenge characters

Average Time (s)
3 characters 4 characters

Colored version 17.70 21.52

Black and white version 20.67 31.12

It should be noted that overall the time taken by participants to complete our
proposed CAPTCHA scheme appears to be longer than that required to solve
other image CAPTCHAs. In a large scale evaluation study by Bursztein et al.
[6] where they tested a variety of CAPTCHA schemes, they reported an average
solving time of 9.8 seconds for image CAPTCHAs and 28.4 seconds for audio
CAPTCHAs. The lengthy duration required to solve our proposed CAPTCHA,
especially the black and white version, is probably due to two factors. First, users
have to search the image in order to identify the locations of the appropriate
characters. A task that appears to be more difficult in the case of the black and
white version. Second, users may spend more time when trying to accurately
drag-and-drop characters to the appropriate locations in the image, compared
to traditional text-based CAPTCHAs where they would simply input text via a
keyboard. Figure 3 is an example of a plot which shows the locations of where
the participants’ “dropped” each of the individual challenge characters when
attempting to solve the CAPTCHA.

In one of the questions on the post-experiment questionnaire, participants
were asked to rate the ease of use of the proposed CAPTCHA scheme using a 7-
point Likert scale, with 1 being very difficult to use and 7 being very easy to use.

Fig. 3. Example showing the locations of where participants’ “dropped” the respective
challenge characters in the CAPTCHA

A CAPTCHA Scheme Based on the Identification of Character Locations 71

(a) CAPTCHA challenge

(b) Skeleton image (c) Edge detection

(d) X and Y histogram projections
of text outlines

(e) X and Y histogram projections
of text regions

Fig. 4. Image processing results on a CAPTCHA challenge

72 V.D. Nguyen, Y.-W. Chow, and W. Susilo

The average participant response to this question was 5.14. When asked to rate
the usability of the proposed CAPTCHA scheme as compared to other existing
CAPTCHAs that they had used in the past, the average response was 4.65,
where 1 was much harder to use and 7 was much easier to use. This indicates
that in general, the majority of participants had a positive opinion about the
usability of the proposed scheme.

4.2 Security

Figure 4 shows example images resulting from a number of typical techniques
that are often used to attack CAPTCHA schemes. The CAPTCHA challenge it-
self is shown in Figure 4(a). Figure 4(b) shows the CAPTCHA image’s skeleton.
Skeletonization is a process that is used to thin a shape while preserving the gen-
eral pattern of the shape. Skeleton images have been used to attack CAPTCHAs
as the skeleton thins the characters to a single pixel thickness, which may poten-
tially be used to identify geometric features of the characters [3]. It can be seen
in the figure that because characters in the proposed CAPTCHA are overlapped
in both the vertical and horizontal dimensions, the skeleton image does not re-
sult in useful information that can be used to segment or to identify individual
characters. Figure 4(c) shows the results of processing the CAPTCHA using a
Canny edge detection filter [8]. In the proposed CAPTCHA scheme, the edge
detection filter merely highlights the outlines of the overlapping characters, but
does not facilitate the task of separating the characters.

Histogram-based segmentation is a commonly used approach that projects
CAPTCHA pixels in the X and Y dimensions in order to identify potential loca-
tions to segment the text. Figure 4(d) shows the results of histogram projections
that project the pixels that form the outlines of the overlapping characters in
the X and Y dimensions respectively. X and Y histogram projections of the in-
ternal regions of the characters are shown in Figure 4(e). It can be seen that
both histogram projection approaches do not provide enough information that
can be used to adequately segment the CAPTCHA challenge.

5 Conclusion

In this paper, we presented the design of a new CAPTCHA scheme that was de-
veloped to be segmentation-resistant. To achieve this, this paper first examined
the various usability and security issues that have to be considered when design-
ing a robust CAPTCHA scheme, then described how the proposed CAPTCHA
scheme satisfied these issues. The CAPTCHA scheme introduced in this paper is
based on the concept of identifying character locations, rather than merely rec-
ognizing characters, and can easily be used on touch-screen devices without the
need for a keyboard. In addition, this paper also presented the results obtained
from a user study that was conducted to ascertain the usability of the proposed
CAPTCHA scheme.

A CAPTCHA Scheme Based on the Identification of Character Locations 73

References

1. Ahmad, A.S.E., Yan, J., Marshall, L.: The robustness of a new CAPTCHA. In:
EUROSEC, pp. 36–41 (2010)

2. Ahmad, A.S.E., Yan, J., Ng, W.-Y.: CAPTCHA design: Color, usability, and se-
curity. IEEE Internet Computing 16(2), 44–51 (2012)

3. Ahmad, A.S.E., Yan, J., Tayara, M.: The robustness of Google CAPTCHAs.
University of Newcastle, UK, Technical Report 1278, 1–15 (2011)

4. Baecher, P., Büscher, N., Fischlin, M., Milde, B.: Breaking reCAPTCHA: A holistic
approach via shape recognition. In: Camenisch, J., Fischer-Hübner, S., Murayama,
Y., Portmann, A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 56–67.
Springer, Heidelberg (2011)

5. Bursztein, E., Beauxis, R., Paskov, H., Perito, D., Fabry, C., Mitchell, J.C.: The
failure of noise-based non-continuous audio CAPTCHAs. In: IEEE Symposium on
Security and Privacy, pp. 19–31. IEEE Computer Society (2011)

6. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are
humans at solving CAPTCHAs? a large scale evaluation. In: IEEE Symposium on
Security and Privacy, pp. 399–413. IEEE Computer Society (2010)

7. Bursztein, E., Martin, M., Mitchell, J.C.: Text-based CAPTCHA strengths and
weaknesses. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Conference on
Computer and Communications Security, pp. 125–138. ACM (2011)

8. Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8(6), 679–698 (1986)

9. Chaudhari, S.K., Deshpande, A.R., Bendale, S.B., Kotian, R.V.: 3D drag-n-
drop CAPTCHA enhanced security through CAPTCHA. In: Mishra, B.K. (ed.)
ICWET, pp. 598–601. ACM (2011)

10. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building segmentation
based human-friendly Human Interaction Proofs (HIPs). In: Baird, H.S., Lopresti,
D.P. (eds.) HIP 2005. LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005)

11. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Computers beat humans
at single character recognition in reading based Human Interaction Proofs (HIPs).
In: CEAS (2005)

12. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Designing human friendly
Human Interaction Proofs (HIPs). In: van der Veer, G.C., Gale, C. (eds.) CHI,
pp. 711–720. ACM (2005)

13. Chellapilla, K., Simard, P.Y.: Using machine learning to break visual Human In-
teraction Proofs (HIPs). In: NIPS (2004)

14. Chow, R., Golle, P., Jakobsson, M., Wang, L., Wang, X.: Making CAPTCHAs
clickable. In: Spasojevic, M., Corner, M.D. (eds.) HotMobile, pp. 91–94. ACM
(2008)

15. Chow, Y.-W., Susilo, W.: AniCAP: An animated 3D CAPTCHA scheme based
on motion parallax. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS,
vol. 7092, pp. 255–271. Springer, Heidelberg (2011)

16. Cruz-Perez, C., Starostenko, O., Uceda-Ponga, F., Alarcon-Aquino, V., Reyes-
Cabrera, L.: Breaking reCAPTCHAs with unpredictable collapse: Heuristic char-
acter segmentation and recognition. In: Carrasco-Ochoa, J.A., Mart́ınez-Trinidad,
J.F., Olvera López, J.A., Boyer, K.L. (eds.) MCPR 2012. LNCS, vol. 7329,
pp. 155–165. Springer, Heidelberg (2012)

17. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves
in pictures. Commun. ACM 15(1), 11–15 (1972)

74 V.D. Nguyen, Y.-W. Chow, and W. Susilo

18. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (6), 721–741 (1984)

19. Huang, S.-Y., Lee, Y.-K., Bell, G., Ou, Z.-H.: An efficient segmentation algorithm
for CAPTCHAs with line cluttering and character warping. Multimedia Tools and
Applications 48(2), 267–289 (2010)

20. Liu, P., Shi, J., Wang, L., Guo, L.: An efficient ellipse-shaped blobs detection
algorithm for breaking Facebook CAPTCHA. In: Yuan, Y., Wu, X., Lu, Y. (eds.)
ISCTCS 2012. CCIS, vol. 320, pp. 420–428. Springer, Heidelberg (2013)

21. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual
CAPTCHA. In: CVPR (1), pp. 134–144 (2003)

22. Nguyen, V.D., Chow, Y.-W., Susilo, W.: Breaking a 3D-based CAPTCHA scheme.
In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 391–405. Springer, Heidelberg
(2012)

23. Nguyen, V.D., Chow, Y.-W., Susilo, W.: Breaking an animated CAPTCHA
scheme. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341,
pp. 12–29. Springer, Heidelberg (2012)

24. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003)

25. Wang, S.-Y., Baird, H.S., Bentley, J.L.: CAPTCHA challenge tradeoffs: Familiarity
of strings versus degradation of images. In: ICPR (3), pp. 164–167. IEEE Computer
Society (2006)

26. Wilkins, J.: Strong CAPTCHA guidelines v1.2 (2009),
http://www.bitland.net/captcha.pdf

27. Xu, Y., Reynaga, G., Chiasson, S., Frahm, J.-M., Monrose, F., Van Oorschot, P.:
Security and usability challenges of moving-object CAPTCHAs: Decoding code-
words in motion. In: Proceedings of the 21st USENIX Conference on Security
Symposium, Security 2012, p. 4. USENIX Association, Berkeley (2012)

28. Yan, J., Ahmad, A.S.E.: Breaking visual CAPTCHAs with naive pattern recogni-
tion algorithms. In: ACSAC, pp. 279–291. IEEE Computer Society (2007)

29. Yan, J., Ahmad, A.S.E.: A low-cost attack on a Microsoft CAPTCHA. In: Ning, P.,
Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and Communications
Security, pp. 543–554. ACM (2008)

30. Yan, J., Ahmad, A.S.E.: Usability of CAPTCHAs or usability issues in CAPTCHA
design. In: Cranor, L.F. (ed.) SOUPS, ACM International Conference Proceeding
Series, pp. 44–52. ACM (2008)

31. Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K.: Attacks
and design of image recognition CAPTCHAs. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security,
pp. 187–200. ACM (2010)

http://www.bitland.net/captcha.pdf

A Mulitiprocess Mechanism of Evading

Behavior-Based Bot Detection Approaches

Yuede Ji, Yukun He, Dewei Zhu, Qiang Li�, and Dong Guo

College of Computer Science and Technology, Jilin University,
Changchun China 130012

{jiyd12,heyk12,zhudw5509}@mails.jlu.edu.cn,

{li_qiang,guodong}@jlu.edu.cn

Abstract. Botnet has become one of the most serious threats to In-
ternet security. According to detection location, existing approaches can
be classified into two categories: host-based, and network-based. Among
host-based approaches, behavior-based are more practical and effective
because they can detect the specific malicious process. However, most of
these approaches target on conventional single process bot. If a bot is
separated into two or more processes, they will be less effective. In this
paper, we propose a new evasion mechanism of bot, multiprocess mecha-
nism. We first identify two specific features of multiprocess bot: separat-
ing C&C connection from malicious behaviors, and assigning malicious
behaviors to several processes. Then we further theoretically analyze why
behavior-based bot detection approaches are less effective with multipro-
cess bot. After that, we present two critical challenges of implementing
multiprocess bot. Then we implement a single process and multiprocess
bot, and use signature and behavior detection approaches to evaluate
them. The results indicate that multiprocess bot can effectively decrease
the detection probability compared with single process bot. Finally we
propose the possible multiprocess bot architectures and extension rules,
and expect they can cover most situations.

1 Introduction

Botnet has become one of the most serious threats to Internet security. A bot
is a host compromised by malwares under the control of the botmaster through
Command and Control (C&C) channel. A large scale of bots form a botnet. The
botmaster can utilize botnets to conduct various cyber crimes such as spread-
ing malwares, DDoS attacks, spamming, and phishing. Bots always try to hide
themselves from detection tools to accomplish malicious behaviors.

According to detection location, existing approaches can be divided into two
categories: host-based and network-based. (1) Host-based approaches mainly in-
clude signature- and behavior-based approaches [1]. Signature-based approaches
mainly extract the feature information of the suspicious program to match with

� Corresponding Author.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 75–89, 2014.
c© Springer International Publishing Switzerland 2014

76 Y. Ji et al.

a knowledge database [2]. Behavior-based detection approaches monitor the ab-
normal behaviors on hosts to detect bot [3–6]. (2) Network-based approaches
mainly analyze network traffic to filter out bot host [7–9].

Among host-based detection approaches, behavior-based approaches are more
practical and effective because they can detect the specific malicious process.
However, most behavior-based approaches are based on single process or related
family processes. If a bot is separated into two or more processes, these ap-
proaches will be less effective. Multiprocess bot has two specific features as we
proposed in this paper: (1) It can separate C&C connection from malicious
behaviors; (2) It can assign malicious behaviors to several processes. As we
know, the biggest difference between bot and other malwares is the C&C in-
frastructure. If the C&C connection is separated from malicious behaviors, the
detection approaches correlating network behaviors with malicious behaviors will
be less effective. Similarly, if malicious behaviors are assigned to several processes
and each process only performs a part of malicious behaviors, the suspicion
level may drop to the same with benign process. Thus, malicious behaviors
detection approaches will be less effective. If bot can successfully evade exist-
ing behavior-based detection approaches, it will cause more threats to Internet
security.

Multiprocess malware has been analyzed by some researchers. Ramilli M et
al. propose the idea of multiprocess malware and prove that the malware divided
into several processes will effectively evade the detection of most anti-virus en-
gines [10]. Lejun Fan et al. define three important architectures of multiprocess
malwares, relay trace, master slave, and dual active mode [11]. Weiqin Ma et al.
present a new attack, namely “shadow attacks”, which divides a malware into
multiple “shadow processes” [12]. Experiments indicate that multiprocess mal-
wares can effectively evade the detection of behavior-based detection approaches.
Multiprocess bots have been discovered [13], while they have not been studied in
detail. If multiprocess bots really explodes, we know nothing about their archi-
tectures, communication mechanisms, and other critical knowledge, then they
will cause great threats. Thus analyzing them will be very significant.

Our work makes the following contributions:
(1) We identify two specific features of multiprocess bot: separating C&C

connection from malicious behaviors, and assigning malicious behaviors to sev-
eral processes. Then we theoretically analyze why existing behavior-based bot
detection approaches are less effective with multiprocess bot according to four
categories of behavior-based approaches.

(2) We present two critical challenges of implementing multiprocess bot, and
implement a single process and multiprocess bot from a simplified version of
Zeus. We use signature and behavior based detection approaches to evaluate
them. The results indicate that multiprocess bot can effectively decrease the
detection probability. Then we propose other multiprocess bot architectures and
extension rules, and expect they can cover most situations.

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 77

2 Evasion Mechanism of Multiprocess Bot

We first present the two specific features of multiprocess bots, then analyze why
they are able to evade behavior bot detection approaches.

2.1 Specific Features of Multiprocess Bot

There are two specific differences between multiprocess and conventional bot:
separating C&C connection from malicious behaviors, and assigning malicious
behaviors to several processes. Lejun Fan et al. propose a typical multiprocess
architecture master slave mode [11]. We rename it as star architecture using the
terminology of network topology. In star network topology, each host is connected
to a central hub with a point-to-point connection. Similarly, as shown in Figure
1, process P1 acts as the central hub, connects with C&C server S and other
malicious processes P2, P3, and P4. In Figure 1, the circle denotes benign process,
the hexagon denotes malicious process, S denotes C&C server, and Pi denotes
different processes. We will analyze the two features using star architecture.

S

3P

1P
2P 4P

Fig. 1. Star Architecture of Multiprocess Bot

Feature 1: Separating C&C Connection from Malicious Behaviors. The
first feature of multiprocess bot is separating C&C connection from malicious
behaviors. It means that the process communicating with C&C server has no
other malicious behaviors, and the malicious processes do not communicate with
C&C server directly. We regard this specific process as server process. We will
analyze this feature using the star architecture as shown in Figure 1.

In star architecture, P1 is the server process that establishes C&C channel
with server S. P2, P3, and P4 are the malicious processes. Suppose the botmas-
ter sends a command to the multiprocess bot and we will explore the whole
execution procedure. C&C server S sends a command to P1. In order to evade
track techniques like taint analysis [14], the server process can transform data
flow dependence into control flow dependence or other obfuscation techniques.
After the transformation, the server process sends the command to a certain
process using process communication mechanisms. This process performs mali-
cious behaviors in accordance with the command. After execution, the malicious
process sends the result data to the server process. The malicious process can
also use obfuscation techniques to better evade track techniques. After receiving
the result data, the server process sends them to the C&C server.

78 Y. Ji et al.

In this feature, the server process P1 only has network behaviors, and the
malicious processes P1, P2, and P3 only perform a part of all malicious behaviors.
Some behavior-based bot detection approaches detect the process which only
has network behaviors as benign, and the process without network behaviors
will be neglected. Through transforming data flow dependence into control flow
dependence or other obfuscation mechanisms, the server process is separated
from other malicious processes. Thus this feature is able to evade the detection
approaches correlating network behaviors with malicious behaviors. However it
may not be able to evade approaches which only detect host malicious behaviors.

Feature 2: Assigning Malicious Behaviors to Several Processes. The
second feature is that malicious behaviors are assigned to several processes.
Thus, each process only performs a small part of whole malicious behaviors.
This feature can effectively evade malicious behavior detection approaches with
well designed number of malicious behaviors each process has. Thus, the number
becomes a critical challenge. We will use three phases to explain how to define
the number and prove that multiprocess bot is able to evade behavior detection.

We utilize the notations in Table 1 to explain this feature. In Table 1, C
denotes the critical system call set, ai denotes the ith system call, and there are
k system calls in total. fi denotes the ith behavior which has num(fi) system
calls, and each one of them is denoted as aij . num1i denotes the number of critical
system calls of each behavior fi, and num2i denotes the number of behaviors
that critical system call ai is in.

Table 1. Notations of system calls and behaviors

Description Set
critical system call set C = {a1, . . . , ai, . . . , ak}

system call set of each behavior fi = {ai
1, . . . , a

i
j , . . . , a

i
num(fi)

}
number of critical system calls

of each behavior fi
Num1 = {num11, . . . , num1i, . . . , num1n}

number of behaviors that
critical system call ai is in

Num2 = {num21, . . . , num2i, . . . , num2k}

Phase 1: Suppose we extract the system calls of known malicious behaviors
to build the system call set fi of each behavior. We build the critical system call
set C using the similar methods of building Common API in [15]. The system
calls in the critical set are frequently called by these malicious behaviors.

Phase 2: We match every system call aij of each set fi with critical set C to
generate num1i, and after matching all we can get set Num1. It denotes the
number of critical system calls of each behavior. We match every system call ai
of critical set C with each set fi to generate num2i, and then Num2. It denotes
the number of behaviors that call a specific critical system call.

Phase 3: Based on set Num1 and Num2 we can get two assignment mecha-
nisms: behavior level and system call level assignment mechanism. In behavior
level assignment, we sort the behaviors in descending order in setNum1. The top

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 79

behaviors represent the most frequent behaviors. We can separate the top behav-
iors with each other to average the critical behavior numbers of each process. In
this way, we can decrease the malicious grain size of each process. We can assign
the sorted set to the processes in S shape, and other assignment mechanisms like
arithmetic, random walk, etc. can also be used. Set Num2 is about system call
level assignment mechanism. We also sort the system calls in descending order.
We assign top system calls to different processes or even a process only perform-
ing one critical system call. This assignment mechanism is more complicated than
behavior level.

We summarized the whole procedure in Algorithm 1. A multiprocess bot using
either of them will significantly improve the evasion probability. If a multiprocess
bot uses both of them, it will be very difficult to detect. Thus this feature can
effectively evade behaviors detection approaches.

Algorithm 1. Process Assignment Algorithm

1. build the system call set fi for each malicious behavior
2. build the critical system call set C
3. match each system call set fi with C to generate Num1
4. match critical set C with each system call set fi to generate Num2
5. t = number of processes
6. sort Num1 in descending order
7. for i from 1 to t do
8. assign behavior i, 2 ∗ t+ 1− i, 2 ∗ t+ i, . . . to process i
9. end for
10. sort Num2 in descending order
11. for i from 1 to t do
12. assign system call i, 2 ∗ t+ 1− i, 2 ∗ t+ i, . . . to process i
13. end for

2.2 Evading Behavior-Based Bot Detection Approaches

According to detection targets, we classify existing behavior-based bot detec-
tion approaches into 4 categories: detecting C&C connections, detecting mali-
cious behaviors, detecting bot commands, and detecting bots (correlating C&C
connection with malicious behaviors). Based on the two specific features, we uti-
lize an example approach of each category to analyse why behavior-based bot
detection approaches are less effective with multiprocess bot.

Detecting C&C Connections. In this category, detection approaches detect
bots based on C&C connections on host and JACKSTRAWS [16] is a typical
one. It associates with each network connection a behavior graph that captures
the system calls that lead to the connection and operate on returned data.

80 Y. Ji et al.

We use star architecture in Figure 1 to present the evasion procedure. The
server process P1 establishes connection with C&C server S and it will be cap-
tured by JACKSTRAWS. P1 can transform data flow dependence into control
flow and distributes the corresponding data to appropriate processes using pro-
cess communication mechanisms. The malicious processes P2, P3, and P4 perform
fine-grained malicious behaviors which have nothing to do with network connec-
tions. After finishing the malicious behaviors, they will send the result data to
P1. Then P1 will upload them to C&C server. In this way, multiprocess bot can
separate network connection from malicious behaviors.

According to JACKSTRAWS, the captured network connection alone is not
enough for being detected as malicious C&C. What’s more, if the connection
is encrypted, the detection will be more difficult. They mention three failed
detection cases and the first is that the bot process did not finish its malicious
behaviors after receiving commands. In this way, multiprocess bot can evade this
detection approach.

Detecting Malicious Behaviors. Approaches in this category detect bots
based on host malicious behaviors. Martignoni et al. propose an typical approach
using hierarchical behavior graphs to detect malicious behaviors.

This approach is less effective with multiprocess bot. First, it monitors the
execution of one single process, while in multiprocess bot, there are several pro-
cesses performing malicious behaviors. Specifically, multiprocess bot can evade
taint analysis from transforming data flow dependence into control flow, thus
this approach is not able to detect any relationship between processes.

Second, the first feature of multiprocess bot is separating C&C connection
from malicious processes. As shown in star architecture, S only communicates
with the server process P1. Based on this feature, P1 only has network behaviors,
thus in behavior graphs it is similar with benign network processes. The other
malicious processes perform a part of malicious behaviors without C&C connec-
tion, thus in behavior graphs they may not be the same with malicious behavior
graphs. However, if a process still performs critical malicious behaviors, it can
also be detected.

Third, the second feature is assigning malicious behaviors to several processes.
As we discussed before, there are two separation mechanisms: behavior and
system call level. A multiprocess bot using these two mechanisms can make the
event sequence of each process different from any malicious behavior graph. Thus
this approach is less effective with multiprocess bot.

Detecting Bot Commands. In this category, detection approaches detect
bots based on bot commands. BotTee [15] is a typical approach of identifying
bot commands by run time execution monitoring.

BotTee can effectively detect conventional bot commands. However, it has
two obvious drawbacks: it monitors the execution of single process; it highly
relies on network related system calls. The first drawback is opposite with the
second feature of multiprocess bot which assigns malicious behaviors to several

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 81

processes. BotTee detects bot commands in system call level thus behavior level
assignment mechanism is ineffective, while system call level assignment is still
effective. The second drawback is opposite with the first feature which separates
C&C connection from malicious behaviors. This is a fatal blow to BotTee because
they suppose bot command begins with recv or other network reception system
calls and ends with send or other network sending system calls.

We use an example to present the evasion procedure. In star architecture,
suppose S sends a command to P1. After P1 received the command, Deviare
API [17] captures the recv command and begins to monitor process P1. P1

assigns the command to appropriate process, for example P2. Then P2 performs
malicious behaviors and sends the result to P1. Then P1 sends the result to S,
while Deviare API captures the command and triggers Bot Command Identifier.
Then Bot Command Identifier analyses the system call sequences between recv
and send. And then the sequence will be sent to other components. Thus the
sequence of P1 does not includes malicious behaviors and it will be detected as
benign. In this way, multiprocess bot can evade BotTee.

Detecting Bots. Detecting bots means the detection approach correlates ma-
licious behaviors with C&C connection. BotTracer detects bots through three
phases: automatic startup, establishment of C&C channel, and information har-
vesting/dispersion [18].

BotTracer highly relies on the behaviors of a bot process, and multiprocess
bot can effectively evade them. We will present the evasion mechanism using
star architecture. After the bootstrap phase, P1, P2, P3 and P4 are flagged as
suspicious processes. All the processes of multiprocess bot have to be started
automatically, thus they are not able to evade this phase. In the C&C estab-
lishment phase, only the server process P1 establishes C&C channel and other
processes communicate with P1. Thus only P1 is regarded as suspicious and oth-
ers can effectively evade this phase. In the last phase, the server process P1 only
communicates with other processes and the C&C server. Thus it can evade this
phase because it does not perform malicious activities. In summary, the server
process P1 can evade BotTracer in the last phase, other malicious processes can
evade in the C&C establishment phase. Thus multiprocess bots can effectively
evade this kind of detection approaches.

3 Critical Challenges of Multiprocess Bot

Although multiprocess bot is able to evade behavior-based bot detection ap-
proaches, it still has many critical challenges. We will present two of them:
bootstrap mechanism, and process communication mechanism.

Bootstrap Mechanisms. Conventional bots can be started automatically by
modifying the bootstrap process list or Registry entries [18]. This is essential for
bot to actively initialize C&C channel.Conventional bot which has one process

82 Y. Ji et al.

only needs to start itself, while multiprocess bot need to start all the processes.
Multiprocess bot may run in the hosts stealthily, while the bootstrap of all the
processes is not easy to accomplish stealthily. If the bootstrap mechanism is not
well designed, multiprocess bot may be detected at the startup stage. Thus the
design of bootstrap mechanisms becomes a critical challenge of multiprocess bot.

Process Communication Mechanisms. Each process of multiprocess bot
has to communicate with others to accomplish malicious behaviors together. The
communication methods mainly include Interprocess Communications (IPC) and
covert channel communication.

IPC mechanisms are common and mainly include clipboard, Component Ob-
ject Model (COM), data copy, Dynamic Data Exchange (DDE), file mapping,
mailslots, pipes, Remote Procedure Call (RPC), and Windows sockets. Covert
channel is a computer security attack that can transfer information between pro-
cesses that are illegal to communicate by the computer security policy. Covert
channels are classified into storage and timing channels [19]. A variety of covert
channels have been proposed. Aciiçmez et al. propose an attack named Sim-
ple Branch Prediction Analysis (SBPA) [20], which analyzes the CPU’s Branch
Predictor states through spying on a single quasi-parallel computation process.
Percival demonstrates that shared access to memory caches provides not only
an easily used high bandwidth covert channel between threads, but also permits
a malicious thread to monitor the execution of another thread [21].

IPC data may be easy to capture, while it may not be easy to identify the
suspicious data from the variety benign IPC data. Covert channels are difficult
to detect and changeable. Thus the process communication mechanisms make
the detection more difficult.

4 Experiments

In order to evaluate the above analyses, we develop a prototype of multiprocess
bot from Zeus bot[22]. First, we develop a single process bot, named Mini Zeus,
which is a simplified version of Zeus. Then, we develop a multiprocess version of
Mini Zeus. We use signature and behavior analysis to evaluate them.

4.1 Prototype Architecture

Mini Zeus is a simplified version of Zeus bot. It has 4 major behaviors: (1) It
uses bootstrap mechanisms to make the bot process automatically started. (2)
It establishes C&C channel. Thus it can receive commands, execute commands,
and send information. (3) It captures http requests of Internet Explorer and
sends them to C&C server. (4) It will copy itself to the directory of system32,
and replace its time stamp with the time stamp of ntdll.dll.

The single process version of Mini Zeus is shown in Figure 2(a). Mini Zeus.exe
is the bot infection process. Once started, it will modify Registry to make it au-
tomatically start. Then it will use remote thread injection to make Explorer.exe

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 83

(a)

Mini_Zeus.exe

Explorer.exe

iexplore.exe

DllInject:

HookHttpLib.dll

DllInject:

HookCreate-

Process.dll

C&C

Server

Control Commands

Http Request

Svchost.exe

DllInject:

BotClient.dll

Svchost.exe

SendInfo.exe

Explorer.exe

iexplore.exe

Create Process

Create Process

Create Process

DllInject:HookHttpLib.dll

DllInject:

Communication.dll

DllInject:

HookCreateProcess.dll

Information

To be Sent

Inject Dll to Target Process

Http Request

Messages

C&C

Server

NamedPipe-

Server.exe

(b)

Mini_Zeus.exe

Winlogon.exe

Fig. 2. Architecture of Mini Zeus

load HookCreateProcess.dll, and Svchost.exe load BotClient.dll. When HookCre-
ateProcess.dll is loaded, it will hook function CreateProcess. When users try to
launch IE browser, HookHttpLib.dll will be injected to iexplorer.exe. This dll will
inject function HttpSendRequest, thus the information of post operation will be
injected and sent to C&C server. When BotClient.dll is loaded, Svchost.exe will
create a thread to communicate with C&C server. In summary, Mini Zeus.exe
is the initial process and Svchost.exe is the running bot process.

Multiprocess version of Mini Zeus is shown in Figure 2(b). Mini Zeus.exe is
the bot infection process. Once started, it will use remote thread injection to
make Winlogon.exe load Schedule.dll. Schedule.dll firstly modify the Registry
to make Mini Zeus.exe automatically started. It has three other major behav-
iors: (1) It will create NamedPipeServer.exe. (2) It will inject Communication.dll
into Svchost.exe. (3) It will inject HookCreateProcess.dll into Explorer.exe. Af-
ter these three steps, NamedPipeServer.exe will establish a named pipe server
and is responsible for receiving and sending information. Svhost.exe will cre-
ate process SendInfo.exe. SendInfo.exe will establish a named pipe to connect
with NamedPipeServer.exe. It also establishes C&C channel with C&C server.
When HookCreateProcess.dll is loaded by Explorer.exe, it will hook function
CreateProcess. Once users try to launch IE browser, HookHttpLib.dll will be
injected to iexplorer.exe. This dll will inject function HttpSendRequest and es-
tablish a named pipe, thus the information of post operation will be injected
and sent to NamedPipeServer.exe. In summary, Mini Zeus.exe is the initial bot
process, and NamedPipeServer.exe, SendInfo.exe, and the controlled iexplore.exe
are the running bot processes.

4.2 Signature Analysis

We use VirusTotal to take a signature analysis of single process Mini Zeus and
multiprocess Mini Zeus. The results are shown in Table 2, the URL in the table is
the ID number and the real url is https://www.virustotal.com/en/file/URL/

84 Y. Ji et al.

Table 2. Signature analysis results

File / URL Detection ratio
Single Mini Zeus.exe

71e82907ae2a45fc51071910b7db39a62675b190f26e444b796eb81dbdfad77f
28 / 47

SendInfo.exe
5d86d1fabefb094034e192039a5d75d5f982205b1149f5684bf3e74dc6e63224

6 / 33

NamedPipeServer.exe
edb8897344e40b237c7d99ed6f5177f39c0b99f693a7b619e168c667058f0d55

2 / 47

Mini Zeus.exe
0647dcd190af0e7519f2a4f003a6502e6186776be609c5494fe23cd6335fada5

13 / 47

analysis. For example, the result of the first url is https://www.virustotal.co
m/en/file/71e82907ae2a45fc51071910b7db39a62675b190f26e444b796eb81d

bdfad77f/analysis/.
The single process Mini Zeus is detected as malicious by 28 of 47 antivirus

engines, benign by 19 antivirus engines. Mini Zeus is detected as benign because
it has different signatures with Zeus bot, it is a simplified version and only has
the basic functions, and we distribute some malicious behaviors into dll files. In
Multiprocess Mini Zeus, the main processMini Zeus.exe is detected as malicious
by 13 of 47 antivirus engines, as benign by 34 antivirus engines. The other two
processes are detected as malicious by 6 and 2. The main process is detected
as malicious because it uses remote thread injection. This injection mechanism
is a little obvious for antivirus engines, and we believe the number can further
decrease if we use different injection mechanisms. These two analysis reports
are able to indicate that multiprocess bot can effectively decrease the detection
probability compared with single process bot.

4.3 Behavior Analysis

In behavior analysis, we use host-based behavior analysis tool ThreatFire.
ThreatFire is a host-based behavior detection tool, we use it to comparatively

analyze our single process and multiprocess version of Mini Zeus bot. The bot

Fig. 3. Behavior analysis results

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 85

host has the following configurations: Intel Q6600 quad-core processor, 2.40GHz,
2GB RAM, and Windows XP SP3 operating system. ThreatFire and Process
Hacker are installed. The server host has the same configurations, with XAMPP
and Google Chrome installed. We perform the following experiments:

1. We ran ThreatFire and adjusted its sensitive level to 5 (highest) in the bot
host. We ran our bot server program in the server host.

2. For each bot, we ran it to evaluate the kinds of alerts. We all click ”Allow
this process to continue” to make the bot started.

3. After the bot successfully started, we ran IE browser to test bot behaviors.
The results of our experiments are as follows:
1. In single process Mini Zeus, there are 5 alerts, one for registering itself in

”Windows System Startup” list. The other four are for remote thread injection.
Remote thread injection is not able to evade the detection because of its high
risk. C&C connection behavior is not detected because we create a thread to
connect with bot server.

2. In multiprocess Mini Zeus, there are 2 alerts for Mini Zeus.exe and they are
both remote thread injection. There are no alerts for other processes. There are
no alerts for register because we hook winlogon to make it register Mini Zeus.

3. Both of these two bots can work well without alerts. Figure 3 shows mul-
tiprocess Mini Zeus can successfully capture the post information.

The results indicate that multiprocess Mini Zeus performs better than sin-
gle process Mini Zeus. It can successfully reduce the number of alerts and the
risk level, however, there still exists some alerts. In summary, the experiments
indicate that multiprocess bot can effectively decrease the detection probability
compared with single process bot.

5 Extended Architectures of Multiprocess Bot

Besides star architecture, Lejun Fan et al. also present the relay race mode and
dual active mode. The relay race mode is the same with the ring in network
topology, thus we rename it as ring architecture. Since these two architectures
are well suited with network topology, we analyse other network topology archi-
tectures and find that multiprocess bot can also adopt these architectures. Thus
we present 6 more architectures and 4 extension rules as shown in Figure 4. We
hope these architectures with the extension rules can cover most situations.
Architecture 1: Bus Architecture. In bus network, all nodes are connected
to a single cable. Similarly, in the bus architecture of multiprocess bot all mali-
cious processes are connected to C&C server. As shown in Figure 4(a), malicious
processes P1, P2, and P3 connect to C&C server S. Malicious behaviors are as-
signed to several processes and each one only performs a part of them.
Architecture 2: Ring Architecture. A ring network is set up in a circular
architecture in which data travels around in one direction. Similarly, in the ring
architecture of multiprocess bot as shown in Figure 4(b), all the processes form
a one direction ring. The data travels along the ring and every process identifies
whether the data is for it.

86 Y. Ji et al.

(c) Tree

(g) Extension of ring
(e) Partially connected

mesh
(f) Hybrid of bus and star

(d) Fully connected

mesh

(b) Ring

S

1P

2P

3P

4P

S

1P
4P

5P

2P 3P

6P

S

1P

2P

3P

4P

2
1SP 3

1SP

4
1SP

S

1P

2P

3P

4P

S

1P

4P 5P 6P 7P

2P
3P

S

1P

2P

3P

4P

(a) Bus

S

2P1P 3P

Fig. 4. Architectures of multiprocess bot

Architecture 3: Tree Architecture. Tree architecture is a hierarchical ar-
chitecture as shown in Figure 4(c). The highest level of this tree is the root
process P1. It communicates with C&C server S. In this architecture, only the
leaf processes perform malicious behaviors and other processes are the controller
of their child nodes. The data are passed along the tree.
Architecture 4: Fully Connected Mesh Architecture. There are two mesh
architectures, fully connected and partially connected. In fully connected mesh
architecture, the processes can communicate with each other as shown in Figure
4(d). P1 communicates with C&C server S and other processes. P2, P3, and P4

perform malicious behaviors and they can communicate with each other.
Architecture 5: Partially Connected Mesh Architecture. In partially
connected mesh architecture, some nodes connect with more than one. As shown
in Figure 4(e), P1, P2, and P3 connect with each other and P4 only connects
with P1. This architecture is a subset of fully connected mesh with one specific
condition that P1 should connect with all other processes directly or indirectly.
Architecture 6: Hybrid Architecture. The above 5 architectures and star
architecture are the basic architectures, while multiprocess bot can generate
more complicated architectures through combining them. For example, we can
combine bus with star architecture to generate a new architecture as shown in
Figure 4(f). S, P1, P2, and P3 forms the standard bus architecture, S, P1, P4, P5,
and P6 forms the standard star architecture.
Extension Rules. Besides these architectures, we define four extension rules.
The server process and malicious processes can create a child process, and we
can get the following rules.

(1) Rule 1: The server process communicates with C&C server and its child
process communicates with others. (2) Rule 2: The malicious process communi-
cates with others and its child process communicates with C&C server. (3) Rule
3: The malicious process communicates with others and its child process per-
forms malicious behaviors. (4) Rule 4: The malicious process performs malicious
behaviors and its child process communicates with others.

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 87

Figure 4(g) is an extension architecture of ring using Rule 3. Each of the orig-
inal malicious processes creates a child process to perform malicious behaviors.
Through these rules, the behaviors of all the processes can be minimized and
may cause great confusions to behavior-based bot detection approaches.

6 Related Work

Ramilli M et at. propose an attack mode named multiprocess malware [10]. If a
malware is divided into multiple coordinated processes, no sequence of system
calls executed by one process will match the behavioral signatures. Thus this
attack mode can evade anti-virus detection tools. However, it also faces many
problems, such as the division of malware, the communication of multiple pro-
cesses, the bootstrp of multiple processes, and the execution sequence of multiple
processes. Lejun Fan et al. use dynamic analysis approaches to detect privacy
theft malware [11]. They also monitor the related processes of suspicious process
to discover the collaborative behavior of multiprocess privacy theft malwares.
They propose three important architectures of multiprocess malwares, relay trace
mode, master slave mode, and dual active mode. Weiqin Ma et al. present a new
generation of attacks, namely “shadow attacks”, to evade current behavior-based
malware detections by dividing a malware into multiple “shadow processes” [12].
They analyze the communication between different processes, and the division
of a malware into multiple processes. They also develop a compiler-level pro-
totype, AutoShadow, to automatically transform a malware to several shadow
processes.

These works all target on multiprocess malwares, however, we target on the
attack of multiprocess bot. Although bot is one category of malwares, it has
different architectures and features and can cause more serious threat. The ar-
chitectures are more complicated than others, especially the C&C infrastructure.
We propose some specific features of multiprocess bot, and deeply analyze why
existing behavior-based approaches are less effective with multiprocess bot.

Virtual machine based malware detection approaches, Holography, Anubis,
and CWSandbox , etc. can track multiprocess malwares, while these approaches
run malwares in an isolated environment. Many novel bots can detect whether
they are running in a virtual machine before they perform malicious behaviors.
Also, these approaches are not practical for protecting hosts of normal users.

7 Limitations and Future Work

There are several limitations in our work. (1) We theoretically analyzed behavior-
based bot detection approaches and did not implement them. There are many
challenges when we try to implement them, such as the large-scale data, and
the unclear implementation details. If we can implement these approaches to
evaluate multiprocess bot we can get a more convincing result. (2) Mini Zeus is
a simplified version of Zeus, and many malicious behaviors are not implemented.

88 Y. Ji et al.

However, the primary behaviors of Zeus are included and more than half anti-
virus engines detect it as malicious. The experiment results are still clear. (3) In
our experiment about behavior detection, we only use one detection engine to
analyze. We will try to use more behavior-based detection approaches to evaluate
multiprocess bot.

We are very interested in multiprocess bot and this is a primary work. We will
perform the following further works: (1) We will try to implement some behavior-
based bot detection approaches, and perform some systematic tests about the
concrete reasons why existing behavior-based approaches are less effective with
multiprocess bot. (2) We will try to find or implement more instances of multi-
process bots to perform a large-scale experiments. (3) We will deeply analyze the
advantages and disadvantages of multiprocess bot, and try to find the effective
detection approaches about multiprocess bot.

8 Conclusion

In this paper we analyze multiprocess bot in detail. First, we identify two spe-
cific features of multiprocess bot, separating C&C connection from malicious
behaviors and assigning malicious behaviors to several processes. Based on the
two features, we theoretically analyze why existing behavior-based bot detec-
tion approaches are less effective with multiprocess bot. After that we present
two critical challenges of implementing multiprocess bot. Then we implement a
single process and a multiprocess bot. We use signature and behavior based de-
tection approaches to evaluate them. The results indicate that multiprocess bot
can effectively decrease the detection probability compared with single process
bot. Finally we propose the possible multiprocess architectures and extension
rules, and hope they can cover most situations of multiprocess bot.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China under Grant No. 61170265, Fundamental Research Fund
of Jilin University under Grant No. 201103253.

References

1. Silva, S.S.C., Silva, R.M.P., Pinto, R.C.G., Salles, R.M.: Botnets: A survey. Com-
puter Networks (2012)

2. Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname eval-
uation. In: Proceedings of the First Conference on First Workshop on Hot Topics
in Understanding Botnets, Cambridge, MA, p. 8 (2007)

3. Stinson, E., Mitchell, J.C.: Characterizing bots remote control behavior. In:
Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108.
Springer, Heidelberg (2007)

4. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Ef-
fective and efficient malware detection at the end host. In: Proceedings of the 18th
Conference on USENIX Security Symposium, pp. 351–366. USENIX Association
(2009)

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 89

5. Shin, S., Xu, Z., Gu, G.: Effort: Efficient and effective bot malware detection. In:
2012 Proceedings of the IEEE INFOCOM, pp. 2846–2850 (2012)

6. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A layered ar-
chitecture for detecting malicious behaviors. In: Lippmann, R., Kirda, E., Tracht-
enberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 78–97. Springer, Heidelberg
(2008)

7. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: Bothunter: Detecting
malware infection through ids-driven dialog correlation. In: Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, p. 12. USENIX
Association (2007)

8. Gu, G., Perdisci, R., Zhang, J., Lee, W., et al.: Botminer: Clustering analysis of
network traffic for protocol-and structure-independent botnet detection. In: Pro-
ceedings of the 17th Conference on Security Symposium, pp. 139–154 (2008)

9. Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control
channels in network traffic (2008)

10. Ramilli, M., Bishop, M., Sun, S.: Multiprocess malware. In: 2011 6th International
Conference on Malicious and Unwanted Software (MALWARE), pp. 8–13. IEEE
(2011)

11. Fan, L., Wang, Y., Cheng, X., Li, J., Jin, S.: Privacy theft malware multi-process
collaboration analysis. In: Security and Communication Networks (2013)

12. Ma, W., Duan, P., Liu, S., Gu, G., Liu, J.-C.: Shadow attacks: Automatically
evading system-call-behavior based malware detection. Journal in Computer Vi-
rology 8(1-2), 1–13 (2012)

13. Microsoft security intelligence report,
http://www.microsoft.com/security/sir/story/default.aspx#!zbot

(accessed November 2013)
14. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317–331.
IEEE (2010)

15. Park, Y., Reeves, D.S.: Identification of bot commands by run-time execution mon-
itoring. In: Annual Computer Security Applications Conference, ACSAC 2009,
pp. 321–330. IEEE (2009)

16. Jacob, G., Hund, R., Kruegel, C., Holz, T.: Jackstraws: Picking command and
control connections from bot traffic. In: USENIX Security Symposium (2011)

17. http://www.nektra.com/products/deviare-api-hook-windows/

(accessed November 2013)
18. Liu, L., Chen, S., Yan, G., Zhang, Z.: Bottracer: Execution-based bot-like malware

detection. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS,
vol. 5222, pp. 97–113. Springer, Heidelberg (2008)

19. Zander, S., Armitage, G., Branch, P.: A survey of covert channels and countermea-
sures in computer network protocols. IEEE Communications Surveys and Tutori-
als 9(3), 44–57 (2007)

20. Aciiçmez, O., Koç, Ç.K., Seifert, J.-P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM Symposium on Information, Computer
and Communications Security, pp. 312–320. ACM (2007)

21. Percival, C.: Cache missing for fun and profit (2005)
22. Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M.,

Wang, L.: On the analysis of the zeus botnet crimeware toolkit. In: 2010 Eighth
Annual International Conference on Privacy Security and Trust (PST), pp. 31–38.
IEEE (2010)

http://www.microsoft.com/security/sir/story/default.aspx#!zbot
http://www.nektra.com/products/deviare-api-hook-windows/

Obfuscating Encrypted Web Traffic

with Combined Objects

Yi Tang1,2, Piaoping Lin1, and Zhaokai Luo3

1 School of Mathematics and Information Science
Guangzhou University, Guangzhou 510006, China

2 Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong
Higher Education Institutes

Guangzhou University, Guangzhou 510006, China
3 School of Computer Engineering and Science
Shanghai University, Shanghai 200072, China

Abstract. Web traffic demonstrates a sequence of request-response
transactions during web page visiting. On one hand, the browser re-
trieves the basic HTML file and then issues requests in sequence for ob-
jects in HTML document. On the other hand, the server returns related
objects in sequence as responses. This makes the traffic of a web page
demonstrate pattern features different from other pages. Traffic analysis
techniques can extract these features and identify web pages effectively
even if the traffic is encrypted. In this paper, we propose a countermea-
sure method, CoOBJ, to defend against traffic analysis by obfuscating
web traffic with combined objects. We compose some objects into a single
object, the combined object, and force the object requests and responses
on combined objects. By randomly composing objects with different ob-
jects, the traffic for a given web page is variable and exhibits different
traffic patterns in different visits. We have implemented a proof of con-
cept prototype and validate the CoOBJ countermeasure with some state
of the art traffic analysis techniques.

Keywords: Encrypted Web Traffic, Web Page Identification, Traffic
Analysis, Combined Object.

1 Introduction

Internet users are increasingly concerned with the private web browsing behav-
iors. They want to preserve the privacy of not only what content they have
browsed but also which web site they have visited. Encryption is the popular
method to ensure the privacy of data transferred in networks. The secure pro-
tocol suites, such as SSL, SSH, IPSec, and Tor, etc., are widely used in current
web applications to ensure data privacy in flight. It seems that the user browsing
privacy is preserved if the encryption method is perfect and the encryption key is
not broken. However, encryption does not hide everything. The encrypted data
streams are on web request-response sequences, the secure protocols do not alter
the pattern of the traffic. Some basic traffic features, such as the order, number,

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 90–104, 2014.
c© Springer International Publishing Switzerland 2014

Obfuscating Encrypted Web Traffic with Combined Objects 91

length, or timing of packets, are closely associated with the original web page
and related objects. These explicit and implicit features can be extracted by
traffic analysis (TA) and may lead to the disclosure of the web sites and the web
pages user visited, or even the user private inputs [2][4][5][7][9][10].

Most of the proposals against TA attacks are on varying packet features on
packet level. Padding extra bytes into transmitting data is the general method.
The padding procedure is performed at server side before or after encryption
[4][7]. An improved strategy on padding is traffic morphing which makes the
web traffic similar to a predefined traffic distribution [12]. These efforts are on
fine-grained single object analysis and they are not efficient against the coarse-
grained aggregated statistics [5]. The BuFLO method intends to cut off the
aggregated associations among packet sizes, packet directions, and time costs
[5] by sending specified packets with a given rate during a given time period.
Some other techniques on higher level, such as HTTPOS [8], try to influence
the packet generation at server side by customizing specified HTTP requests or
TCP headers at client side.

In this paper, we propose CoOBJ, a TA defence method on web application
level. We try to make a web page with varying traffic features by introducing the
notion of combined object. Our proposed method is on client-server cooperation.
A combined object is an object combination which is composed by a set of
original objects embedded in a web page. We translate a common web page
into combined-object-enabled (CO-enabled) web page by introducing embedded
scripts for combined objects and object identifiers within object tags. When
the browser renders the CO-enabled web page, the embedded script is triggered
and initiates requests for combined objects. Cooperatively, a script running on
server will produce object combinations with random sizes and random chosen
components. This kind of object generating and fetching procedure changes the
traffic features of the original web page and hence may be used to defend against
the traffic analysis.

The contribution of this paper can be enumerated as follows.

1. We introduce the notion of combined object to design a new defence method,
CoOBJ, against traffic analysis.

2. We develop the CO-enabled web page structure to support the requests and
responses for combined objects. By composing the combined objects with
random number of random chosen component objects, the traffic features of
CO-enabled web pages can be varied in different visits.

3. We have implemented a proof of concept prototype with data URI scheme
and the AJAX technique, and we demonstrate the effectiveness of CoOBJ
on defending against some typical TA attacks.

The rest of this paper is structured as follows. In Section 2, we overview some
works on traffic analysis. In Section 3, we introduce the notion of combined
objects. In Section 4, we discuss the method to construct the combined objects.
In Section 5, we conduct some experiments to validate our proposed method.
And finally, the conclusion is drawn in Section 6.

92 Y. Tang, P. Lin, and Z. Luo

2 Traffic Analysis in Encrypted Web Flows

2.1 HTTP Traffic

A web page can be viewed as a set of document resources (objects) that can
be accessed through a common web browser. When accessing a web page, the
browser first fetches the basic HTML file from a destination server who hosts
that file, and then, issues network requests to fetch other objects in sequence
according to the order of corresponding objects in retrieved HTML document.

Table 1 demonstrates the numbers and sizes of objects related to two typical
portal websites, www.yahoo.com and www.sina.com.cn. Note that many object
requests are issued by the browser in order to render the required pages, and
hence volumes of object downloading traffic are introduced. As illustrated in Ta-
ble 1, at least 58 image files are needed to retrieve when visiting www.yahoo.com
while the number is increased to 114 when visiting www.sina.com.cn. Corre-
spondingly, the downloaded volumes of images are reached to 536k and 760k,
respectively. In total, the number and the volume of required objects for ren-
dering these two pages are reached to 78, 883k and 227, 1,980k, respectively. It
implies that these two web pages can easily be distinguished on the number of
requests and the volume of downloaded objects.

Table 1. Features of Some Web Pages on Nov. 15, 2013 (source: [13])

Object
www.yahoo.com www.sina.com.cn
Number Size (kB) Number Size (kB)

HTML 3 87 38 96
Script 11 214 57 209
CSS 3 45 1 2
Image 58 536 114 760
Flash - - 10 910
Others 3 1 7 3
Total 78 883 227 1,980

It is well known that HTTP is not a secure protocol which is faced with the
leakage of message payloads. As shown in Fig. 1(a), the default HTTP payload is
in plain. A simple man-in-the-middle (MITM) attack could easily eavesdrop and
intercept the HTTP conversations. HTTPS is designed to resist such MITM at-
tacks by providing bidirectional encrypted transmissions. As shown in Fig. 1(b),
the HTTPS payloads are encrypted but the TCP and IP headers are preserved.

In some applications, we often require tunnel-based transmissions to hide real
communicating IP address. The tunnel-based transmission means that the entire
specified IP packet is encapsulated into a new IP packet, i.e., that specified
packet is as the payload of that new packet. If the tunnel is encrypted, the

Obfuscating Encrypted Web Traffic with Combined Objects 93

Fig. 1. IP packets without/with encrypted HTTP payloads

encapsulated packet is also encrypted. It implies that both the real IP addresses
and port numbers are protected from any MITM attackers. As shown in Fig.
1(c), all the IP packet with HTTP payload is encrypted and is encapsulated into
a packet with new header. A typical encrypted tunnel is the secure shell (SSH)
tunnel. A SSH tunnel can be used to forward a given port on a local machine to
HTTP port on a remote web server. It means a user may visit an external web
server in private if he can connect to an external SSH server to create an SSH
tunnel.

From the viewpoint of confidentiality, it seems that the privacy of the con-
versations on HTTPS or SSH tunnel is preserved because of the encryption of
browsed web pages. However, some traffic features, such as the number of object
requests, are consistent in the same way whether or not the traffic is encrypted. A
traffic analysis attack can effectively use these features to identify the web page
the user visited, or even the data that the user input. For example, when visiting
the two portal websites in Table 1, counting the number of object requests can
distinguish them easily.

2.2 Traffic Analysis

We view a web page page as an object set {obji}, i.e., page = {obji}, where each
object obji is needed to retrieve from some hosted web servers. To render these
objects, the src attribute is used to specify the URI for retrieving. With specified
URIs, the browser will send a sequence of HTTP requests to servers, and the
servers will reply those requests with response packets. It is noted that the order
of objects retrieving requests are basically on the order of corresponding objects
in page.

When the traffic is encrypted and the encryption is perfect, only the encrypted
payload size and the packet direction can be taken. Consider that the popular
encryption methods cannot largely enlarge the difference between the length of
encrypted message and the length of corresponding plaintext version, we assume
that the encryption is approximatively length-preserved. This implies that the

94 Y. Tang, P. Lin, and Z. Luo

size of an encryption object is similar to the size of object in plain. Considering
the order of objects in transmitting, it implies that the aggregated size of packets
between two requests is generally related to a certain object size. For example,
the traffic vector 〈(20, ↑), (100, ↓), (40, ↓), (30, ↑)〉 denotes four sets of encrypted
HTTP traffic, the first and the last are from client to server with sizes 20, 30,
respectively, the others are from server to client with sizes 100, 40, respectively,
and we can infer that the client possibly downloads an object with size 140.

Machine learning is the basic technique for traffic analysis. It is operated in
two steps: model training and data classifying. Firstly, a model is built and is
trained by training data, and then it is incorporated into a classifier to classify
a data set. Supervised machine learning algorithms are used to construct TA
classifiers. It means that a classifier is trained on sets of traces that are labeled
with a set of web pages, and then it is used to determine whether or not a new
trace set is from a given web page. Formally, the TA classifier is trained on a
given labeled feature set {(F1, page1), (F2, page2), ..., (Fk, pagek)}, where each Fi

is a feature vector and pagei is a label. And then, a new feature F
′
is input and

the classifier will decide which label pagei that the F
′
is attached.

Table 2. Traffic Analysis Attack Instances

Method Classifier Features Considered

LL [7] näıve Bayes packet lengths
HWF [6] multinomial näıve Bayes packet lengths
DCRS [5] näıve Bayes total trace time

bidirectional total bytes
bytes in traffic bursts

We consider three typical TA techniques listed in Table 2.
Liberatore and Levine [7] developed a web page identification algorithm (LL)

by using näıve Bayes (NB) classifier. NB classifier is the classical classifier. In
traffic analysis, it is used to predict a label page: page = argmaxi P (pagei|F

′
)

for a given feature vector F
′
using Bayes rule P (pagei|F

′
) = P (F

′
|pagei)P (pagei)

P (F ′) ,

where i ∈ {1, 2, ..., k} and k is the number of web pages. The LL method adopts
the kernel density estimation to estimate the probability P (F

′ |pagei) over the
example vector during the training phase, and the P (pagei) is set to k−1. The

normalization constant P (F
′
) is computed as

∑k
i=1 P (F

′ |pagei) ·P (pagei). The
feature vector used in this method is constituted by the packet direction and the
packet length.

Herrmann, Wendolsky, and Federrath [6] proposed a web page identification
algorithm (HWF) by using a multinomial näıve Bayes (MNB) classifier. Both
LL and HWF methods use the same basic learning method with the same traffic
features. The difference is in the computation of P (F

′ |pagei). The HWF method

Obfuscating Encrypted Web Traffic with Combined Objects 95

determines the P (F
′ |pagei) with normalized numbers of occurrences of features

while the LL method determines with corresponding raw numbers.
Most of the works are on single fine-grained packet analysis. In [5], Dyer, Coull,

Ristenpart, and Shrimpton proposed an identification method (DCRS) based on
three coarse trace attributes. The three coarse features are total transmission
time, total per-direction bandwidth, and traffic burstiness (total length of non
acknowledgement packets sent in a direction between two packets sent in another
direction). They use NB as the underlying machine learning algorithm and build
the VNG++ classifier. Their results show that TA methods can reach a high
identification accuracy against existed countermeasures without using individual
packet lengths. It implies that the chosen feature attributes are more important
in identifying web pages.

2.3 The Padding-Based Countermeasures

Visiting a web page means an HTTP session is introduced. This session is com-
posed by a sequence of network request-response communications. As we dis-
cussed previously, the corresponding network packets, in both lengths and direc-
tions, are associated with the original web page and hence the web page could
be identified even if the packets are transmitted in encrypted.

To change the profiles of communicated packets, a simple and effective method
is padding extra bytes to packet payloads [10]. Note that the length of packet
payload is limited by the length of maximum transmission unit (MTU). When no
ambiguity is possible, we also denote the length of MTU as MTU. There exists
many padding-based methods [5]. In this paper, we consider the following four
padding-based methods.

1. PadFixed This method randomly chooses a number r, r ∈ {8, 16, ..., 248},
and pads some bytes data to each packet in session. In detail, let len be the
original packet length, we pad r bytes data to packet if r + len ≤ MTU,
otherwise, pad each packet to MTU.

2. PadMTU All packet lengths are increased to MTU.
3. PadRand1 For each packet in session, randomly pick a number r : r ∈
{8, 16, ..., 248} and increase packet length to min{len + r,MTU} for this
packet where len is the original packet length.

4. PadRand2 For each packet in session, randomly pick a number r : r ∈
{0, 8, ...,MTU − len} and increase packet length to len + r for this packet
where len is the original packet length.

3 The Combined Object

In this section, we will introduce the notion of combined object and analyze the
number scale of combined object sequences in a web page.

Suppose there is an object set S, S = {obj1, obj2, ..., objn}, where each obji is
in a web page with 1 ≤ i ≤ n.

96 Y. Tang, P. Lin, and Z. Luo

Definition 1. (Combined Object) A combined object with size m, CoObj, is an
object combination which is constructed by m objects in object set S. The size of
CoObj is denoted as m = |CoObj| and CoObj is called as a m-object.

A typical m-object, CoObj, can be denoted as 〈obji1 , obji2 , ..., objim〉, where
objij ∈ S with j ∈ {1, 2, ...m}, and 1 ≤ i1 < i2 < ... < im ≤ n. The objij
is called as the component object of CoObj. All the component objects in a
combined object constructs the component object set, denoted by CO, for this
combined object. We also denote the size of CO as |CO|. For the m-object
CoObj, COCoObj = {obji1 , obji2 , ..., objim}, and |COCoObj | = m.

For example, let ExampleS = {obj1, obj2, ..., obj8} be an object set, the com-
bined object CoObj1 = 〈obj1, obj2〉 is a 2-object, and CoObj2 = 〈obj3, obj4, obj8〉
is a 3-object. And COCoObj1 = {obj1, obj2}, and COCoObj2 = {obj3, obj4, obj8}.

Definition 2. (k-Partition) Given an integer k ≥ 2, a k-Partition in object set S
is a set of object sets {CO1, CO2, ..., CON}, where S = ∪N

i=1COi, 2 ≤ |COi| ≤ k,
and COi ∩ COj = φ for any i �= j.

Definition 3. (k-Partition sequence) Given a k-Partition in object set S kP =
{CO1, CO2, ..., CON}, a k-partition sequence over kP is a an object set sequence,
COs1 , COs2 , ..., COsN , where 1 ≤ si ≤ N for each i with 1 ≤ i ≤ N and si �= sj
for any i �= j.

For the set ExampleS, if CO1 = {obj1, obj2}, CO2 = {obj3, obj4, obj5}, and
CO3 = {obj6, obj7, obj8}, the set {CO1, CO2, CO3} is a 3-partition in ExampleS.
For this k-partition, there exists 6 k-partition sequences.

Another 3-partition example is {CO1, CO
′
2, CO

′
3} where CO

′
2 =

{obj3, obj4, obj6} and CO
′
3 = {obj5, obj7, obj8}. For this 3-partition, there

also exists 6 different sequences. If the granularity of each object request is on
combined object, a k-partition sequence implies a sequence of traffic volumes.

Let kP = {CO1, CO2, ..., CON} be a k-partition in S, let COSi = {CO|CO ∈
kP ∧ |CO| = i} be the set of i-objects in kP with 2 ≤ i ≤ k and di = |COSi|.
We are interested in how many sequences of different k-partitions are existed for
a given k.

Lemma 1. Given an object set with size n, if kP is a k-partition over it and
di is the number of i-objects over kP, the number of k-partitions, with the same
integer sequence di, we can construct is n!∏

k
i=2(i!)

di
.

Let D = {d|(d2, d3, ..., dk) : ∀i : 2 ≤ i ≤ k, di ≥ 0 ∧
∑k

i=2 i · di = n}.

Theorem 1. Given k ≥ 2 and an object set with size n, the sequence number
of different k-partitions we can construct is

∑
d∈D

n!∏
k
i=2(i!)

di
.

We define a rounding function

δ(n, i) =

{
0 if n mod i = 0
1 if n mod i �= 0.

Obfuscating Encrypted Web Traffic with Combined Objects 97

Note that the length of sequence depends on the size of each COj . The longest
length of sequence is �n2 �+ δ(n, 2).

In the next, we estimate the scale of sequences number of different k-partitions
with Stirling’s approximation in the case of n is even. According to the Stirling’s
approximation,n! is bounded by 1 ≤ n!√

2πn(n
e)n

≤ e√
2π

, we have
∑

d∈D
n!∏k

i=2(i!)
di
≥

n!

2
n
2
≥

√
2πn(n

e)n

(
√
2)n

=
√
2πn(n√

2e
)n. It implies that the scale of sequence number of

different k-partitions is at least O(
√
n(n√

2·e)
n) when n is even. For the case that

n is odd, we have similar results.

Theorem 2. Given k ≥ 2 and an object set with size n, the scale of sequence
number of k-partitions is O(

√
n(n√

2·e)
n).

Theorem 2 implies when introducing k-partition for a web page with n objects,
the number of different sequences of k-partitions can reach to O(

√
n(n√

2·e)
n). As

an example, when n is 10, the scale of sequence number reaches to 105 , while
n is 30, the scale reaches to 1027. Considering that the machine learning based
classifier needs training on enough number of traffic samples, the huge number
of possible traffic traces may decrease the learning efficiency.

4 Constructing the Combined Objects

In this section, we will discuss how to represent combine objects in HTML docu-
ment and how to retrieve those objects from server. We will present the structure
of combined-object-enabled (CO-enabled) HTML document.

4.1 The CO-enabled HTML Document

The data URI scheme allows inclusion of small media type data
as immediate data inline [14]. The data URIs are in the form of
data:[<mediatype>][;base64],<encoded-data> where the mediatype part specifies the
Internet media type and the ;base64 indicates that the data is encoded as base64.
For example, the fragment could
be used to define an inline image embedded in HTML document.

We extend the general data URI form to include multiple base64-encoded
objects. The combined object in a k-partition can be described in pseudo regu-
lar expression form, data:{<mediatype>;base64,<encoded-data>|ObjID:}{2,k}, where
each component object is identified by ObjID and separated by |ObjID:, and the
notation {2,k} indicates that the number of component objects is between 2
and k.

In order to support retrieving combined objects, it needs to redefine the struc-
ture of traditional HTML document. We call the HTML document that can sup-
port accessing combined objects as the combined-object-enabled (CO-enabled)
HTML document. The following demonstrates this kind of CO-enabled HTML
document structure with img tags.

98 Y. Tang, P. Lin, and Z. Luo

<html>
<head> </head>
<script>
function CombinedObject()
......

</script>
<body onload="CombinedObject()">

......

......

......

</body>
</html>

To retrieve the combined objects, the scripts for combined objects must be
included in HTML document and the URIs for extern objects are also needed
to be changed. The fragment <body onload=”CombinedObject()”> implies that
when the basic HTML document has been loaded, the onload event triggers the
embedded script for combined objects. Note that the contents within img tags are
referred to the object identifier (ObjID), the browser does not request the single
image file. When the script CombinedObject() is initiated, an XMLHttpRequest
(XHR) object will be created. It means that some parts of the web page could
be updated while not downloading the whole web page. We use this XHR object
to download combined objects.

The open() and send() methods in XHR object are used to require combined
objects. The server generates combined objects and translate them into base64
encoded texts and returns them to client. We also use the responseText attribute
in the XHR object to read the response from server. When the browser receives
the responses, it triggers the onreadystatechange event and the readyState at-
tribute stores the state of XHR objects. Particularly, when readyState is 4 and
the state is 200, it indicates that the response is success. We define the action
when the server is ready and call the successmethod in callback object to deal the
server response. The response string responseText contains the base64-encoded
combined objects. We decompose the text and obtain renderable base64-encoded
image files.

4.2 The Communications for Combined Objects

Fig. 2 demonstrates the communications between browser and web server for
combined objects in CO-enabled HTML document. When the web browser ini-
tiates the request for basic HTML file, the server returns the CO-enabled HTML
file. The browser renders this HTML file and requires combined objects corre-
sponding to different objects. The returned base64-encoded combined objects
are then decomposed and dispatched to the browser for rendering. The require-
compose-decompose-dispatch procedure will be continue until all objects are
downloaded.

Obfuscating Encrypted Web Traffic with Combined Objects 99

Fig. 2. Communications for Combined Objects

5 Experiments and Discussions

We have implemented a proof of concept prototype for combined objects. In
this session, we will discuss the validation experiments for our proposed CoOBJ
method.

5.1 The Experiment Setup

Our experiments are on artificial web pages with only image objects. We create
an image library by picking some image files whose sizes are ranged from 5k to
25k from some websites. We then randomly select m image files to construct 200
combined-object-enabled web pages, respectively. The experimental web server
is a PC running Apache-tomcat-6.0.33. We also construct 200 traditional web
pages with the same number of images for comparison. For each artificial web
page, we visit 100 times via HTTPS and SSH tunnel, respectively. We record the
traces in each visit, strip packet payloads with TCPurify tool [16], and construct
two types of traces set, CoDataHTTPSm and CoDataSSHm. For comparing with
other TA countermeasures, we also construct 200 traditional web pages with the
same number of image and visit them via HTTPS and SSH tunnel. The datasets
for comparison tests are TrDataHTTPSm, and TrDataSSHm. In our conducted ex-
periments, we set m as 20, 60, and 100, respectively, and set the object partition
as 4-partition.

To test the performances against the traffic analysis, we run the code from [15]
with classifiers and countermeasures we discussed in Section 2 on our constructed
test datasets. The size K of private traces are set to 2i with 1 ≤ i ≤ 7 and 200,
respectively. This means that the identifying web page is limited inK web pages.
We use the default parameters in original code configuration. For each K with
different classifiers and countermeasures, we run the test 10 times and average
the accuracy as the ratio of successful identification.

100 Y. Tang, P. Lin, and Z. Luo

5.2 Visiting Web Pages with CoOBJ Method via HTTPS and SSH

We test our proposed CoOBJ method against the 3 discussed classifiers on the
CO-enabled pages with 60 objects and compare the results with other counter-
measures. Fig. 3 and Fig. 4 show the comparison results for the case of HTTPS
transmission and SSH transmission, respectively.

For the case of HTTPS transmission, as demonstrated in Fig. 3, comparing
with the other four padding-based countermeasures, the CoOBJ method lowers
the identification accuracy, especially when the size of privacy sets exceeds 16.
In the tests for all 3 classifiers, the CoOBJ method minimized the identification
accuracy.

The case for transmission over SSH tunnel is shown in Fig. 4. The perfor-
mances of the CoOBJ method are different in the 3 classifiers. It is the most
effective countermeasure to defend against the HWF classifier, but for the LL
classifier, the effectiveness is neither good nor bad. It is weak in defending against
the DCRS classifier.

Fig. 3. Accuracy in HTTPS traffic: CoOBJ and other countermeasures

Fig. 4. Accuracy in SSH traffic: CoOBJ and other countermeasures

Obfuscating Encrypted Web Traffic with Combined Objects 101

5.3 The CoOBJ Method against Different Classifiers

Fig. 5 and Fig. 6 demonstrate the identification accuracy of 3 classifiers on the
trace sets for combined-object-enabled web pages with different objects. Both
figures show that the DCRS classifier can obtain higher identification accuracy
on the test dataset.

Fig. 5. Accuracy on visiting web pages with CoOBJ via HTTPS

Fig. 6. Accuracy on visiting web pages with CoOBJ via SSH tunnel

5.4 Time Cost for the CoOBJ Method

To evaluate the time costs of the proposed CoOBJ method, we compare the
time costs visiting CO-enabled web pages with visiting traditional web pages.
We first construct 10 web pages with m images, and transform them into CO-
enabled pages, respectively. Because we intend to evaluate extra computation
cost introduced by CoOBJ, these pages will be visited in HTTP protocol. We
visit each page 10 times, record the total time for loading objects, and then
compute the average of time cost. We average the average values for two types
of pages, respectively.

Fig. 7 demonstrates the comparison results in visiting two types of web pages,
where m is set as 20, 40, 60, 80, and 100. It shows that as the number of objects

102 Y. Tang, P. Lin, and Z. Luo

Fig. 7. Loading Time: Traditional Pages and CO-enabled Pages

increasing, the extra time cost is increased in much more. For example, visiting
CO-enabled pages with 20 objects needs 0.53 seconds in average while visiting
traditional pages needs 0.27 seconds. For the pages with 100 objects, it averagely
needs 2.69 seconds to visit CO-enabled pages while needs 0.93 seconds to visit
traditional pages.

5.5 Discussions

Our conducted experiments demonstrate the higher abilities of the CoOBJ
method against TA classifiers, especially when the web pages are visited in
HTTPS protocol. According to the CoOBJ method, the granularity of HTTP
requests is on a set of objects. It reduces the number of HTTP requests at least
in a half, and obviously changes the traffic volume of responses comparing to
the volume of traditional web page. Also, the number of different appearance
sequences of combined objects can reach to a larger scale. It lowers the page
identification accuracy according to the experiment results.

However, the CoOBJ method may introduce extra computation costs in both
server side and client side. Since the combined object is composed in base64-
encode, it may increase the network traffic volumes.

Our POC implementation is immature. We do not consider the render order
introduced by scripts. And also, we do not consider the case that the objects in
page are from different web servers.

5.6 Related Work

Encrypting web traffic is a common strategy to preserve users’ privacy while surf-
ing the Web. However, the current encryption suites are focused on transmission
content protection and some traffic features cannot be effectively protected. A
traffic analysis attack could use these features to infer the users’ web browsing
habits and their network connections. Identifying web page on encrypted traffic
is an important class of traffic analysis attacks.

Sun et al. [10] proposed a classifier based on the Jaccard coefficient similarity
metric, and reliably identified a large number of web pages in 100,000 web pages.

Obfuscating Encrypted Web Traffic with Combined Objects 103

They also proposed some countermeasures against TA attacks but our proposed
method is not addressed. Bissias et al. [2] used cross-correlation to determine
web page similarity with features of packet length and timing. Liberatore et
al. [7] showed that it is possible to infer web pages with näıve Bayes classifier
by observing only the lengths and the directions of packets. Herrmann et al.
[6] suggested a multinomial näıve Bayes classifier for page identification that
examines normalized packet counts.

Panchenko et al. [9] developed a Support Vector Machine(SVM) based clas-
sifier to identify web pages transmitted on onion routing anonymity networks
(such as Tor). They used a variety of features, include some totaling data, based
on volume, time, and direction of the traffic. Dyer et al. [5] provided a compre-
hensive analysis of general-purpose TA countermeasures. Their research showed
that it is the chosen features, not the analysis tools, that mainly influence the
accuracy of web page identification.

Some other attacks are not only depended on network packets. Wang et al. [11]
proposed a new web page identifying technique on Tor tunnel. They interpreted
the data by using the structure of Tor elements as a unit of data rather than
network packets.

Padding extra bytes to packets is a standard countermeasure. Various padding
strategies have been proposed to change encrypted web traffic [5]. However, this
kind of countermeasures is on a single non-MTU packet, it is vulnerable when
using coarse-grain traffic features [5][9]. Traffic morphing [12] tries to make a web
page traffic similar to another given web page. This method is also focused on
the fine-grain packets and is limited in changing coarse-grain features. Sending
specified packets at fixed intervals [5] can reduce the correlation between the
observed traffic and the hidden information and demonstrate more capabilities
against the coarse-grain feature based analysis. However, it also introduces traffic
overhead or delay in communication.

Some countermeasure proposals are on application-level. The browser-based
obfuscation method, such as the HTTPOS method [8], takes the existing HTTP
and TCP functionalities to generate randomized requests with different object
data requirements at client. It changes the number of requests from clients and
the distribution of response packet volumes from servers. The HTTPOS method
is on splitting the response packets by introducing special HTTP requests or
TCP packets. Although it is effective against some of existing classifiers, it in-
creases the number of requests and the number of response packets.

6 Conclusion

We have proposed a countermeasure method, CoOBJ, to defend against web
page identification based traffic analysis by introducing combined objects. We
compose some web objects into an aggregated one with base64-encoded form.
By composing different number of objects with randomly chosen objects, we can
reduce the number of object requests and make web traffic different in different
visits. We have implemented a proof of concept prototype and validated it with

104 Y. Tang, P. Lin, and Z. Luo

conducted experiments. Possible future work may include reducing the computa-
tion costs in client side and server side, and make it more compatible in current
web applications.

Acknowledgments. We would like to thank Xuan Zhang, Zihao He, Yongjian
Gu, and Shaohe Hong for their help in experiments. This paper was partially
supported by the Science and Technology Project of Guangzhou Municipal
Higher Education under grant 2012A022, and the Project of Creative Training
of Guangzhou University for undergraduate students 2013.

References

1. Backes, M., Doychev, G., Köpf, B.: Preventing Side-Channel Leaks in Web Traffic:
A Formal Approach. In: Proceedings of NDSS 2013 (2013)

2. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy Vulnerabilities in
Encrypted HTTP Streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS,
vol. 3856, pp. 1–11. Springer, Heidelberg (2006)

3. Cai, X., Zhang, X., Joshi, B., Johnson, R.: Touching from a Distance: Website Fin-
gerprinting Attacks and Defenses. In: Proceedings of ACM CCS 2012, pp. 605–616
(2012)

4. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel Leaks in Web Applica-
tions: a Reality Today, A Challenge Tomorrow. In: Proceedings of IEEE S&P 2010,
pp. 191–206 (2010)

5. Dyer, K., Coull, S., Ristenpart, T., Shrimpton, T.: Peek-a-Boo, I still see you:
Why Traffic Analysis Countermeasures Fail. In: Proceedings of IEEE S&P 2012,
pp. 332–346 (2012)

6. Herrmann, D., Wendolsky, R., Federrath, H.: Website Fingerprinting: Attacking
Popular Privacy Enhancing Technologies with the Multinomial Näıve-bayes Clas-
sifier. In: Proceedings of CCSW 2009, pp. 31–42 (2009)

7. Liberatore, M., Levine, B.: Inferring the Source of Encrypted HTTP Connections.
In: Proceedings of ACM CCS 2006, pp. 255–263 (2006)

8. Luo, X., Zhou, P., Chan, E., Lee, W., Chang, R.: HTTPOS: Sealing Information
Leaks with Browserside Obfuscation of Encrypted Flows. In: Proceedings of NDSS
2011 (2011)

9. Panchenko, A., Niessen, L., Zinnen, A., Engel, T.: Website Fingerprinting in Onion
Routing Based Anonymization Networks. In: Proceedings of ACM WPES 2011,
pp. 103–114 (2011)

10. Sun, Q., Simon, D., Wang, Y., Russell, W., Padmanabhan, V., Qiu, L.: Statistical
Identification of Encrypted Web Browsing Traffic. In: Proceedings of IEEE S&P
2002, pp. 19–30 (2002)

11. Wang, T., Goldberg, I.: Improved Website Fingerprinting on Tor. In: Proceedings
of WPES 2013, pp. 201–212 (2013)

12. Wright, C., Coull, S., Monrose, F.: Traffic Morphing: An Efficient Defense Against
Statistical Traffic Analysis. In: Proceedings of NDSS 2009, pp. 237–250 (2009)

13. HTTP Archive, http://httparchive.org
14. Masinter, L.: The “data” URL scheme, http://www.ietf.org/rfc/rfc2397.txt
15. https://github.com/kpdyer/traffic-analysis-framework

16. http://masaka.cs.ohiou.edu/eblanton/tcpurify/

http://httparchive.org
http://www.ietf.org/rfc/rfc2397.txt
https://github.com/kpdyer/traffic-analysis-framework
http://masaka.cs.ohiou.edu/eblanton/tcpurify/

A Website Credibility Assessment Scheme Based

on Page Association

Pei Li1, Jian Mao1, Ruilong Wang1, Lihua Zhang2, and Tao Wei3

1 School of Electronic and Information Engineering, BeiHang University, China
2 Institute of Computer Science and Technology, Peking University, China

3 FireEye Inc, United States

Abstract. The credibility of websites is an important factor to pre-
vent malicious attacks such as phishing. These attacks cause huge eco-
nomic losses, for example attacks to online transaction systems. Most of
the existing page-rating solutions, such as PageRank and Alexa Rank,
are not designed for detecting malicious websites. The main goal of
these solutions is to reflect the popularity and relevance of the web-
sites, which might be manipulated by attackers. Other security-oriented
rating schemes, e.g., black/white listed based, voting-based and page-
similarity-based mechanisms, are limited in the accuracy for new pages,
bias in recommendation and low efficiency. To balance the user expe-
rience and detection accuracy, inspired by the basic idea of PageRank,
we developed a website credibility assessment algorithm based on page
association. We prototyped our algorithm and developed a website as-
sessment extension for the Safari browser. The experiment results showed
that our method is accurate and effective in assessing websites for threats
from phishing with a low performance overhead.

Keywords: Website credibility, Page association, Page rating.

1 Introduction

The credibility of websites is an important factor to prevent malicous websites
from attacking users. For example, phishing websites defraud users of their pri-
vate information for attackers’ financial benefits. The attacks from malicious
websites have been increasing in the past a few years, which have become one of
the main security threats to users.

To protect users from such websites, we need to recognize malicious websites
and make users aware the threats from websites with low reputation. A common
solution is to use a reputation system to help users identify malicious websites,
such as blacklist/whitelist based detection and page-feature based detection.
Blacklist/whitelist based detection uses blacklist/whitelist provided by trusted
third parties to assess URLs and identify malicious pages. Unfortunately, it is
challenging to update the list in time, while malicious pages typically exist only
for a short period of time. Page-feature based detection [8,9] is another important
technique to detect malicious websites, which extracts page features and checks

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 105–118, 2014.
c© Springer International Publishing Switzerland 2014

106 P. Li et al.

them for similarity to benign pages. These types of solutions usually achieve
a lower false negative, but introduce more system overhead. Most of existing
feature-based solutions focus on static page features that might be bypassed by
attackers via simple modification on the malicious pages.

Another type of methods use page relationships to assess the credibility of
websites, e.g., PageRank [15], Alexa Rank [3], etc. However, such solutions focus
on the popularity and relevance with respect to page contents. They cannot
be used to accurately access the credibility of websites. In addition, as running
security solutions incurs computation and operation overhead to browsers, it
inevitably brings delay of loading pages. Such overhead affects user experience,
so it is important to reduce the computation of mechanisms. On the other hand,
mechanisms using less computation tend to be less accurate. How to balance
user experience and detection accuracy is a key challenge.

In this paper, we propose a website credibility assessment1 algorithm. It uses
page associations and user behaviors as the basis to determine the credibility
of websites. We implemented the algorithm into a website assessment extension
for the Safari browser. The experiment results confirmed that analyzing user
behaviors is helpful to enhance efficiency of identifying malicious pages.

The paper is organized as follows. Section 2 discusses related work. Section
3 proposes our assessment algorithm based on page association. In Section 4,
we describe the extension’s system architecture. In Section 5, we analyze perfor-
mance of extension and illustrate its accuracy. Section 6 concludes this paper.

2 Related Work

PageRank [15] is an algorithm developed by Google Inc. and used by Google
Search to measure the importance of websites. It assumes that more important
web pages are likely to receive more and better links from other pages. PageRank
considers each link as a vote. For instance, page A has a link poiting to page B.
This link is a support of website importance from A to B. The more important
page A is, the more this link contributes to page B’s rank. By counting the
quantity and quality of links to a page, an integer scaled from 0 to 10 is given to
estimate the importance of this page. PageRank is updated every few months,
so a new website has to wait a relatively long time to get a promotion in PageR-
ank. It results in a condition that newly created websites seem no difference in
PageRank from malicious websites even if they have improved their outlinks and
backlinks in the last weeks or months.

Alexa Rank [3] is a measure of how popular a site is. To calculate Alexa Rank
of a site, it needs to estimate the average daily unique visitors to the site, as well
as the number of pageviews on the site. The Alexa Rank for the site is calculated
from the above two values over the past 3 months. Although PageRank and Alexa
Rank are the most popular page rating algorithms, they are not suitable for the
credibility assessment on web pages’ trustworthiness. As they are not developed

1 We use the term assessment and evaluation interchangeably in this paper.

A Website Credibility Assessment Scheme Based on Page Association 107

for the website security evaluation, both of them concerned about the relevance
or importance of the target page rather than the website trustworthiness.

Kim et al. [8] inquire Google PageRank, WHOIS database to get page features
like the registration date, lifetime and ranks of websites. They give different
weight to each feature, define different risk levels, and compute comprehensive
risk index of pages to identify untrusted websites. This approach is effective for
most malicious pages with short lifetime and low access frequency, but may cause
false positive for newly created websites with low access frequency.

Blacklist/whitelist is a URL list of all the trusted/untrusted pages. By com-
paring URL with the lists, we can tell if it is a trusted or an untrusted page
and give them corresponding ratings. Black/Whitelist based mechanism is easy
to implement, but its accuracy depends on the correctness of the lists. Most
lists applied today are updated by users’ reports. Due to the short lifetime
of malicious websites, it is difficult to maintain the accuracy of blacklist and
whitelist. Many agencies depend on user reports to collect suspicious websites
and share the list with all users using their service. Phishtank [19] allows users
to report phishing websites to it, and shares the list with all the institution
and individual users through open APIs after the URL is verified by user votes.
WOT [14] relies on community members to report and get down untrusted pages.
Blacklist/whitelist approaches are usually employed by browser extensions, like
Netcraft [13], Trustwatch [5], Google safe Browsing [16], Microsoft Phishing Fil-
ter [6], and SpoofGuard [4]. Blacklist/whitelist based mechanisms have a high
false negative because of the delay in update and incompleteness of the list. It is
vulnerable to newly created malicious pages especially for those with a lifetime
less than two hours [17].

Because of the limitation of blacklist/whitelist based methods, some
researchers employ machine-learning mechanisms to develop new solutions based
on the features of the web page. Their researches focus on how to character-
ize dangerous web pages and detect malicious pages effectively with lower false
positive rate [21]. Some existing approaches are focused on analyzing websites
trustworthiness by using page-elements’ properties since the majority of attack-
ers use page content to show their spoofing information. Intuitively, phishing
pages not only copy the layout of real pages, but also include some redundant
information that real pages do not have. Layton et al. [9] compute the difference
of redundant information between phishing websites and real websites to detect
the phishing sites aiming at branded websites, but this approach only works for
specific phishing behaviors. Mao et al. [12] presented another page-feature based
approach, BaitAlarm, which computes CSS similarity between two pages to iden-
tify phishing pages that imitate real pages based on the rating given by their
algorithm. The conflict/tradeoff between false negative and performance over-
head introduced is still the kernel problem of the content-based or layout-based
approaches.

108 P. Li et al.

3 Page Association Based Website Credibility
Assessment

From the analysis above, it can be concluded that the tradeoff between the
accuracy and performance overhead is still an unsolved problem in these mali-
cious page analysis approaches based on credibility assessment. According to our
observation and experimental test [11] on the page association, we found that
normally, few trustworthy websites may point to malicious ones, especially for
the new generated malicious pages. So the quality and the quantity of a website’s
back-links might be used as a dominate feature to evaluate its trustworthiness.
Based on this intuition, we developed our websites credibility assessment algo-
rithm by using the page association properties.

In this section, we describe the algorithm we developed for website credibility
assessment and our credibility assessment based website analysis scheme as well.

3.1 Assessment Features Extraction and Aggregation Analysis

Our method consists of three parts: page association property extraction; prop-
erty analysis and aggregation; decision making based on aggregation result.

Back-links [18]of a page have a strong expression of how this page is associated
with other pages. As mentioned above, the quality and the quantity of back-
links are qualified to evaluate the credibility of the target page the back-links
pointing to. So we consider back-links as the page association property applied
in our assessment method. In order to reduce the computation of assessment,
we select the most important 10 back-links to take part in the property analysis
and aggregation. As Yahoo! search sorts back-links according to the order of
importance of websites, we choose the top 10 back-links in the result list of
Yahoo! search for further analysis and aggregation.

For a target page d, we consider each back-link bi as a support to the target
page in trustworthiness evaluation. The rating of back-link, represented as R(bi),
is regarded as the amount of the support this page can contribute to other pages
in total. These pages share the contribution of credibility support from the back-
link equally. For example, the credibility value of page A is 0.8 and it has two links
pointing to page B and page C. The credibility support that either B and C get
from page A is 0.4. On the other hand, the higher the rank of back-link is, more
credible the support from the back-link is. For a page with several back-links,
the credibility support from high-rating back-links should be more trustworthy
than others. We use a normalized coefficient Wi, to weight credibility support
from different back-links.

We illustrate the notations required in our algorithm in Table 1. Let d be the
target page. Suppose there are n links pointing to the page d, and bi(1 ≤ i ≤ n)
is the page which contains a link pointing to the page d, d’s credibility R(d) is
calculated by Formula(1),

R (d) =

n∑
i=1

Wi
R (bi)

N (bi)
(1)

A Website Credibility Assessment Scheme Based on Page Association 109

Table 1. Notations Announcement

Symbol Description

d the target page that needs to be assessed.
R(d) the credibility value of d.
bi a page which contains a link pointing to d. (1≤i≤n, i∈Z)
n the total number of links pointing to d.
N(bi) the total number of links in page bi.
Wi the weight of back-link bi.
R(bi) the credibility value of bi.

where N(bi) is the number of links in page bi, and Wi is the weight of each
back-link which is calculated by Formula (2):

Wi =
R (bi)√∑n
i=1 R

2 (bi)
(2)

After receiving the credibility value of the target page, we compare it with a
preset threshold to identify malicious pages which are defined as web pages with
a credibility value lower than threshold.

3.2 Credibility Assessment Based Malicious Page Detection

In order to reduce further computation of our method, we use Alexa Rank to
whitelist benign pages with high Alexa Rank. Malicious websites usually have a
short lifetime and low access frequency. Because of these features, they cannot
get the high rating during the Alexa’s 3-month updating period.

We randomly choose 100 websites from Alexa as the seed set of benign web-
sites T, 100 websites from PhishTank as the seed set of malicious websites P.
Our approach inquires back-links and their credibility value in T and P after
successfully extracting every back-link. We define the credibility value of links
from T as 1, the credibility value of links from P as 0. Others take one-tenth of
PageRank as their credibility value.

The operational process of our approach is described as below: 1) inquire
Alexa Rank of the page to filter out high-rank benign pages; 2) assess credibility
of the page if it did not pass the Alexa check; 3) return assessment result to
users. We illustrate the process of our approach in Algorithm 1.

Our approach uses received URL to inquire the Alexa Rank of the page and
compare it with the AR threshold. If the threshold is larger, then the page is
classified as a safe one, otherwise our approach needs to compute the credibility
value of the page to do further analysis. Credibility value is a decimal between
0 and 1. The larger the credibility value is, the more credible the page is. The
scheme contains four URL lists: whitelist, blacklist, portal websites list, and
history list. The whitelist contains all the websites whose credibility value is
1, while the blacklist holds all the zero-value pages. The credibility value of

110 P. Li et al.

Algorithm 1. Page Association Based Website Credibility Assessment

1 let d be a suspicious web page;
2 let R(d) be the credibility value of d

3 let tAR be a preset threshold of Alexa Rank
4 let tCV be a preset threshold of Credibility Value
5 Phase I: Filter Out Suspicious Pages With Alexa Rank.
6 Function Alexa(d)is

input : a suspicious page d

output: whether d is benign or malicious
7 compute A(d); /* inquire Alexa Rank of d online */

8 if A(d) < tAR then

9 page d is benign;
10 display “Safe” and details of assessment;

11 else

12 perform the credibility assessment, Assess {d};

13 Phase II: Compute Credibility Value.
14 Function Assess(d)is

input : a suspicious page d

output: credibility value of d, R(d)

15 if R(d) is recorded in local storage then

16 get R(d) from local sotrage;
17 else

18 search back-links of d; /* use Yahoo! to search back-links of d */

19 compute S(d) = {b0, b1...bn}(n < 10);
20 /* store at most 10 top back-links in S(d) */

21 get credibility value of every link in S(d);
22 compute the weight of every back-link Wi, (0 ≤i ≤ 9)

23

Wi =
R (bi)√∑
n
i=1 R2 (bi)

compute the credibility value of page d

24

R (d) =

n∑
i=1

Wi
R (bi)

N (bi)

Return R(d);

25 Phase III: Make Decision.
26 Function Decision(R(d))is

input : credibility value of d, R(d)

output: the result of assessment
27 if R(d) > tCV then

28 page d is benign;
29 display “Safe” and details of assessment;

30 else

31 page d is malicious;
32 display “Warn” and details of assessment;

A Website Credibility Assessment Scheme Based on Page Association 111

portal websites is defined as one-tenth of their PageRank. Our approach retrieves
target URLs in the order of whitelist, blacklist, portal websites list, and history
list. Once the existence of the target URL is confirmed, our approach returns
assessment result directly to users. Otherwise, it searches for all the back-links
of target page by Yahoo! search. To reduce the time overhead, we extract at
most 10 back-links of the page as the back-link set S(d) of the target page d.
Then we inquire each link from S(d) in T and P to get their credibility value.
For those beyond T and P, we inquire their PageRank online to get credibility
value. With every credibility value obtained, we will be able to calculate R(d)
and compare it with CV threshold (the threshold of credibility value). Websites
with credibility value larger than CV threshold are classified as credible pages,
the rest are classified as malicious pages.

Discussion. To solve the limitation that detection methods based on Alexa Rank
and PageRank are easy to cause false positive for newly created and low-access-
frequency benign sites, we adopt a user behavior analysis module. Our approach
checks the way users open login pages. If a URL is manually typed in by users, it
is familiar to users. We consider such pages as benign websites. On the contrary,
if a new page was opened by clicking a link, there is no guarantee that its
URL is exactly the same as the legitimate one. The possibility that such a page
is a malicious page is relatively high. For other pages visited in some other
ways like clicking links from history or favorite pages, their credibility have been
announced the first time they were visited. As a result, our approach only needs
to evaluate the login pages accessed by clicking links.

4 Implementation as Browser Extension

The architecture of our extension is illustrated in Fig. 1. It consists of three
modules: a page script, a global HTML page, and a menu. In this section, we
introduce these modules in the order of the operation process.

4.1 Page Script

The functional requirement of the page script is to judge whether the target
page is a login page, report click behaviors to global HTML pages, and show
assessment result.

Attackers usually induce users to input private information in a dangerous
page to steal their accounts and passwords. In the case that the webpage is
not a login page and users do not need to input their personal information,
our scheme treats this kind of pages harmless pages that are unable to steal
users’ accounts related information. If a website asks users for password before
launching the next page, this page should be treated as a suspicious page which
need further credibility evaluation. To avoid possible impact on user experience,
we use similar triggering condition as paper [20] that normal page-surfing will
not be disturbed and only the login pages will trigger the credibility assessment.

112 P. Li et al.

Page

Script

Monitor Users

Clicking

Behavior

Display

Result

Check for

Login

Page

Global

HTML

Page Command Operation

Websites Evaluation

Menu
Power

ON/OFF

Detail of

Evaluation

Security

Level

Fig. 1. The extension architecture

A login page must have input areas for account and password, so we identify
a login page by checking input objects whose type is “password”. We set the
triggering condition of extension as “a login page opened by clicking a link”.
Once the new page matches the triggering condition, our approach starts to
assess the credibility of it. Every time a user visits a new page, our approach
launches a script to check if the new page is a login page and sends its URL
to global HTML page immediately. If it is a login page, the page scripts will
announce global HTML page to check how this page was accessed. Assessment
can only be triggered if both checks above returned positive results, otherwise
the extension will do nothing but refresh history list.

When Safari opens a new page, the first work of the page script is to define
a str layer and a detail layer for displaying results, both of them are hidden
at the moment. The next step is to judge if this new page is a login page by
searching for input object whose type is password. If the existence of password
object is confirmed, the page script will send a message named newURL to global
HTML page in order to report URL of the target page. If there is not any
password object, the URL of target page will be send in a message named
onload.

When users click on an href object in the page, the page script reports this
action and its location (URL of the page it happens) to the global HTML page
in a message named onclick.

The page script modifies the content of str and detail layer according to
assessment result. From now on, str and detail layer will turn up whenever
the mouse enters an input area and be hidden when the mouse leaves or highlight
the input area.

Str layer gives a one-word result display while detail layer presents the detail
information of the assessment. Str turns up as a tiny tip at the right of mouse.
“Warn” in red means the page is untrusted. “Safe” in orange stands for the

A Website Credibility Assessment Scheme Based on Page Association 113

Fig. 2. Threshold Determination

page that has the Alexa Rank lower than AR threshold but the credibility value
larger than CV threshold. “Safe” in green is on behalf of the pages with the
Alexa Rank higher than AR threshold. Apart from str, our extension display
details of the assessment in the same color of str on the top of the page as well.
In this paper the AR threshold can be adjusted by changing security level of the
extension.

The CV threshold is an empirical value. To determine the CV threshold, we
randomly chose 10 legal login websites and 10 verified phishing websites from
PhishTank to test their credibility value. The results are illustrated in Fig. 2.
No legal websites have a credibility value less than 0.19 while all the phishing
websites have a credibility value scaled from 0 to 0.1. So we choose 0.15 as the
CV threshold.

4.2 Global HTML Page

The Global HTML page is the kernel of our extension. Nearly all the operations
and computations are done in the global HTML page. In our extension, the
global HTML page is in charge of operating messages from the page script and
commands from menu.

Messages from the page script are classified as three types: onload mes-
sage means the new page does not need to be assessed, in this case the global
HTML page modifies few parameters to prevent detection; onclick message is
an announcement of clicking behavior, the global HTML page extracts details
of this action and gets ready for possible detections; newURL message informs
global HTML page that the new page is a login page and reminds it to check
the action which opens this page. If the action is a clicking behavior, detection
is triggered, otherwise the global HTML page does nothing but refreshes history
list.

Once detection is triggered, the global HTML page stores the new URL first
and initializes related parameters to get ready for the next detection. Then the
global HTML page inquires Alexa Rank of the target page online and compares it
with AR threshold. If the target URL is identified as safe, the global HTML page

114 P. Li et al.

will announce the page script immediately. If not, it will assess the credibility of
the page with the algorithm we mentioned before, return the result to the page
script at the end and allow menu to look for detail information at the same time.

4.3 Menu

When the global HTML page completes the assessment, users are allowed to see
the detail information of the latest assessment, or adjust security level and on-off
state. Another function of menu is to send command to global HTML page. All
command will be executed in global HTML page.

5 Performance Analysis

We conducted an experiment to evaluate correctness, accuracy, and robustness
of our extension in different login pages. The experiment environment is listed
in Table 2. All the experiment is conducted in a virtual machine.

Table 2. The experiment environment

Mainboard Intel GM45

CPU Intel(R) Core(TM)2 Duo CPU P8400 @2.26GHz 2.27FHz

RAM 2.00GB

Operation System Windows 7 Ultimate Service Pack 1

Virtual Machine VirtualBox 4.1.10

Virtual OS Windows 7 (32bits)

Virtual RAM 512M

Virtual Hard Disk 31.32G

We selected 20 login pages (9 shopping websites, 5 E-mail websites, 5 social
websites and a file sharing website) to test whether our extension can function
properly in different websites. The working condition of extension is illustrated
in Fig. 3. The number of tested websites is colored in blue while the number of
websites that our extension can function properly is colored in green. As showed
in Fig. 3, our extension works for 90% (18 out of 20) websites. Some websites
with high security protection do not allow strange scripts to be injected, and
our extension relies on the page script to extract detection target and monitor
user behavior, so we cannot perform our experiment on these pages currently.

Fig. 4 is the login page of Kaixin (http://login.kaixin001.com/) whose
Alexa Rank is higher than AR threshold so its assessment result is exhibited in
green. In Fig. 5, we show the login page of the website Manzuo (http://www.man
zuo.com/login), whose Alexa Rank is lower than AR threshold but has a credi-
bility value larger than CV threshold, so its result was exhibited in orange. Both
Fig. 4 and Fig. 5 are benign websites while Fig. 6 is a verified malicious websites

A Website Credibility Assessment Scheme Based on Page Association 115

Fig. 3. Working condition of extension

Fig. 4. Login page of Kaixin

from PhishTank (http://cashexpr.com/sales/remax/index.htm), which in-
duces users to type in their E-mail accounts and passwords. This page has an
Alexa Rank lower than AR threshold and a credibility value smaller than CV
threshold so it was classified as a dangerous websites.

We also tested the robustness of our extension by calculating the extra time
it brings when loading several websites. We chose login pages of four websites
(Kaixin, Manzuo, 360yunpan and 55tuan), averaged 25 loading time of each
website2. The results are shown in Table 3.

2 The loading time of websites depends greatly on the network condition, so we tested
the loading time of a page without the extension 25 times in a row, and tested the
same page with our extension 25 times in a row immediately. The purpose of doing
so is to keep the experiment environment as stillest as we can.

116 P. Li et al.

Fig. 5. Login page of Manzuo

Fig. 6. Malicious websites

Table 3. Overhead on loading pages

Websites Without Extension With Extension Delay(ms) Delay Proportion

Kaixin [7] 1015.76 1147.56 131.8 12.98%

Manzuo [10] 1180.72 1212.52 31.8 2.69%

360yunpan [1] 1135.08 1259.48 124.4 10.96%

55tuan [2] 989.8 1083.6 93.8 9.48%

Average 1080.34 1175.79 75.45 9.03%

From the experiment results listed in Table 3, we can see that loading time of
pages increases 95.45ms (9.03%) on average. This overhead is reasonable that will
not affect the user experience. The experiment validates that our extension can
assess most login pages effectively and alert users on time with little overhead.

A Website Credibility Assessment Scheme Based on Page Association 117

6 Conclusion

In this paper, we propose a website credibility assessment algorithm based on
page association and user behaviors, and develop a malicious site analysis scheme
by using the credibility assessment algorithm. User behaviors are adopted in our
scheme to achieve less false positive caused by less frequently accessed websites.
We developed a Safari extension to implement the algorithm and deploy our
solution. The experiment shows that our approach is effective in assessing cred-
ibility of most login websites with limited overhead, which does not affect user
experience.

Acknowlegements. We thank the anonymous reviewers for their insightful
comments. We thank Zhenkai Liang for discussions on the early draft of this
paper. This work was supported in part by the Beijing Natural Science Foun-
dation (No. 4132056), the National Key Basic Research Program (NKBRP)
(973 Program) (No. 2012CB315905), the Beijing Natural Science Foundation
(No.4122024), and the National Natural Science Foundation of China (No.
61370190, 61272501, 61173154, 61003214).

References

1. 360. 360 cloud drive, http://yunpan.360.cn/

2. 55tuan. 55tuan,
http://user.55tuan.com/toLogin.no?service=

http%3A%2F%2Fwww.55tuan.com%2F&casIsLogin=false&source=1

3. Alexa. What is alexa traffic rank,
http://www.alexa.com/help/traffic-learn-more

4. Chou, N., Ledesma, R., Teraguchi, Y., Boneh, D., Mitchell, J.C.: Client-side defense
against web-based identity theft. In: 11th Annual Network and Distributed System
Security Symposium. Internet Society, San Diego (2004)

5. GeoTrust Corp. Geotrust introduces industry first secure consumer search service,
http://www.geotrust.com/about/news events/press/

PR TrustedSearch 092605s.pdf

6. Microsoft Corp. Microsoft phishing filter: A new approach to build trust in
e-commerce, http://www.microsoft.com/downloads/

7. Kaixin. Kaixin, http://login.kaixin001.com/

8. Kim, Y.-G., Cho, S., Lee, J.-S., Lee, M.-S., Kim, I.H., Kim, S.H.: Method for eval-
uating the security risk of a website against phishing attacks. In: Yang, C.C., et al.
(eds.) ISIWorkshops 2008. LNCS, vol. 5075, pp. 21–31. Springer, Heidelberg (2008)

9. Layton, R., Brown, S., Watters, P.: Using differencing to increase distinctiveness for
phishing website clustering. In: Ubiquitous, Autonomic and Trusted Computing,
Symposia and Workshops, Brisbane, pp. 488–492. IEEE (2009)

10. Manzuo. Manzuo, http://www.manzuo.com/login.

11. Mao, J., Dong, X., Li, P., Wei, T., Liang, Z.: Rating web pages using page-transition
evidence. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233,
pp. 49–58. Springer, Heidelberg (2013)

http://yunpan.360.cn/
http://user.55tuan.com/toLogin.no?service=http%3A%2F%2Fwww.55tuan.com%2F&casIsLogin=false&source=1
http://user.55tuan.com/toLogin.no?service=http%3A%2F%2Fwww.55tuan.com%2F&casIsLogin=false&source=1
http://www.alexa.com/help/traffic-learn-more
http://www.geotrust.com/about/news_events/press/PR_TrustedSearch_092605s.pdf
http://www.geotrust.com/about/news_events/press/PR_TrustedSearch_092605s.pdf
http://www.microsoft.com/downloads/
http://login.kaixin001.com/
http://www.manzuo.com/login

118 P. Li et al.

12. Mao, J., Li, P., Li, K., Wei, T., Liang, Z.K.: Baitalarm: Detecting phishing sites
using similarity in fundamental visual features. In: 5th International Conference
on Intelligent Networking and Collaborative Systems, Xi’an, pp. 790–795. IEEE
(2013)

13. Netcraft. Netcraft anti-phishing toolbar, http://toolbar.netcraft.com/
14. Web of Trust. Web of trust (WOT) - crowdsourced web safety,

https://www.mywot.com/en/aboutus

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab

16. Robichaux, P., Ganger, D.L.: Gone phishing: Evaluating anti-phishing tools for
windows. 3Sharp Project Report (September 2006),
http://3sharp.com/projects/antiphishing/gonePhishing.pdf

17. Sheng, S., Wardan, B., Warner, G., Granor, L., Hong, J., Zhang, C.: An empirical
analysis of phishing blacklists. In: Sixth Conference on Email and Anti-Spam (2009)

18. Wikipedia. Back link, http://en.wikipedia.org/wiki/Backlink
19. Wikipedia. Phishtank, http://en.wikipedia.org/wiki/Phishtank
20. Zhang, L.H., Wei, T., Li, K., Mao, J., Zhang, C.: A phishing detection method

depending on the pagerank. In: 5th Conference on Vulnerability Analysis and Risk
Assessment, Shanghai (2012)

21. Zhuang, W., Ye, Y.F., Li, T., Jiang, Q.S.: Intelligent phishing website detection
using classification ensemble. System Engineering - Theory/Practice 31, 2008–2020
(2011)

http://toolbar.netcraft.com/
https://www.mywot.com/en/aboutus
http://3sharp.com/projects/antiphishing/gonePhishing.pdf
http://en.wikipedia.org/wiki/Backlink
http://en.wikipedia.org/wiki/Phishtank

A Methodology for Hook-Based Kernel Level

Rootkits

Chien-Ming Chen1,2, Mu-En Wu3, Bing-Zhe He4, Xinying Zheng1,
Chieh Hsing4, and Hung-Min Sun4

1 School of Computer Science and Technology, Harbin Institute of Technology
Shenzhen Graduate School, Shenzhen, China

dr.chien-ming.chen@ieee.org, xinying 15@163.com
2 Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen, China

3 Department of Mathematics, Soochow University, Taipei, Taiwan, R.O.C.
mnasia1@gmail.com

4 Department of Computer Sciences, National Tsing Hua University, Hsinchu,
Taiwan, R.O.C.

{ckshjerho,jhsing}@is.cs.nthu.edu.tw,
hmsun@cs.nthu.edu.tw

Abstract. It is easy to discover if there are hooks in the System Service
Dispatch Table (SSDT). However, it is difficult to tell whether theses
hooks are malicious or not after finding out the hooks in the SSDT. In
this paper, we propose a scheme that evaluates the hooks by comparing
the returned results before hooking and after hooking. If a malicious
hook which hides itself by the way of modifying the parameters passed
to the Native API, we can easily detect the difference. Furthermore,
we use a runtime detour patching technique so that it will not perturb
the normal operation of user-mode programs. Finally, we focus on the
existing approaches of rootkits detection in both user-mode and kernel-
mode. Our method effectively monitors the behavior of hooks and brings
an accurate view point for users to examine their computers.

Keywords: Security, SSDT, Rootkits.

1 Introduction

With the rapidly growth of computer system, more and more issues have been
concerned. One of the most concerned issue is security [15,1,3,12]. Rootkits is a
technique used by a malicious program to hide itself. It has been widely used in
software, even in embedded systems. The rootkits have became a serious threat
to our computer. These rootkits can be classified into two primary classes: (1)
User-mode rootkits and (2) Kernel-mode rootkits. User-mode rootkits may hide
itself through High-Level API intercepting and filtering. This kind of rootkits
can easily be detected by existing anti-rootkits software. In this paper, we focus
on Kernel-mode rootkits which are harder to detect. Kernel-mode rootkits are
extremely dangerous because they compromise the innermost of an operation
system.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 119–128, 2014.
c© Springer International Publishing Switzerland 2014

120 C.-M. Chen et al.

Kernel-mode rootkits often use SSDT (System Service Dispatch Table) Hook-
ing, or DKOM (Direct Kernel Object Manipulation) to achieve information ma-
nipulation. Although there is a lot of existing anti-virus softwares that can detect
malicious code, when deal with rootkits, they cannot determine if its behavior
is suspicious. Besides, several methods for detecting kernel-mode rootkits have
been proposed [6,9,10,11,14,16]. However, if a user employs these softwares (e.g.,
Rootkit Unhookers [2], Rootkit Hook Analyzer [13]) to do the analysis and find
out a suspicious driver, he can remove the driver immediately. However, a wrong
decision may disable the functionality of some programs, such as anti-virus soft-
ware, or some on-line games.

In this paper, we propose a scheme to evaluate the hooks by comparing the
returned results before hooking and after hooking. Through this comparison,
if a malicious hook which hides itself by modifying the parameters passed to
the Native API, we can easily detect the difference. Besides, we use a runtime
detour patching technique to not to perturb the normal operation of user-mode
programs.

2 System Overview

According to our observation of the behavior of a hooked SSDT-based rootkit,
these kinds of rootkits usually hook the SSDT to achieve information manip-
ulation. Normally, a hooked SSDT-based rootkit hooks the SSDT to achieve
information manipulation. Even though existing tools are sufficient to detect
hooks in SSDT; however, we have to make a decision with caution whether to
remove the hook or not. The decision we made will influence the usability of the
computer.

In this section, we first describe design goals and assumptions. Then, we ex-
plain advantages of our scheme.

2.1 Design Goals and Assumption

Since we target at hooked SSDT-based rootkits, user-mode rootkits and other
parts of kernel-mode Rootkit (e.g., DKOM, Inline Function Patch) are beyond
our scope. Our scheme focuses on a machine which is probably infected with
rootkits. TAN [17] proposed a framework to defeat kernel Native API hookers
by SSDT restoration. We are inspired by his idea. In our scheme, we assume that
in the beginning, there is no other kind of rootkits running on this machine.

Our scheme has the following two design goals: (1) Effectively analyzing the
situation in the state before SSDT restoration SSDT<before> and the state after
SSDT restoration SSDT<after> [17]. (2) This program should not perturb the
normal operation of the program.

First, the SSDT restoration scheme [17] does not mention how to compare
these two states accurately, because after we executed the SSDT restoration.
We cannot reconstruct exactly the same parameters in the stack for the further
comparison. In other words, when a program executes a non-specific Native API

A Methodology for Hook-Based Kernel Level Rootkits 121

BSoD

Fig. 1. Unhook an Unknown driver

calls, we are unable to compare the differences between these two states since
we do not have any source code. When a Program A executes part of its code
and calls ZwCreateFile, we cannot alter its control flow and roll back to compare
the differences after SSDT restoration. To effectively analyze SSDT<before> and
SSDT<after>, the first way is to find some special programs that use the same
Native API all the time. By calling the API twice, we can see the difference. For
example, Windows Task Manager queries the job list by a single Native API and
is a good candidate for us. Another way is to write our own program; that is,
we can call the same API many times that do not affect our analysis. Toward
these two considerations, we decide to write our own program.

Second, a normal program will send IRP request in order to communicate
and exchange information with the driver. To obtain the analysis of the driver
behavior, we must unload the driver. Under such circumstances, the function-
ality of the program which communicates with this driver will be incompleted.
In Figure 1, if a user application communicates with an unknown driver (e.g.,
antivirus software, online gaming software driver), they will hook a part of the
SSDT entries. During the time we desire to test the driver, it must be unloaded.
However, such a move may cause Blue Screen of Death BSoD.

2.2 Advantages

Cross View Detection. We obtain the cross view detection ability by com-
paring SSDT<before> and SSDT<after>. Since we write our own program by
calling Native API directly for receiving the original message from the Native
API; this has two advantages. First, user-mode rootkits have been defeated.
Second, we can identify whether hooked SSDT-based rootkit exist or not by
executing Windows Task Manager as well as our own programs at the same
time.

122 C.-M. Chen et al.

Return

Suspicious Data

Return Original

Data

Fig. 2. Runtime detour patching

Runtime Detour Patching. The original idea is from the runtime detour
patching rootkit [5] and the characteristic of this kind of rootkit is that it can
modify the control flow of the system without awareness. In other words, the
rootkit redirects the control flow to their code when a user calls a Native API
from user-mode to kernel-mode. As the same mechanism, we modify its malicious
behavior and make this kind of harmful action turn into an effective identification
tool.

Since we should not affect the normal operation of program, we write a driver
to hook SYSENTER. If we are making a comparison of SSDT<before> and
SSDT<after> at the same time, the program can directly read the original ad-
dress of each SSDT entries when calling up a Native API. In Figure 2, a normal
program releases a called unknown driver. This driver hooks a part of or one of
the SSDT entry, and the driver returns the suspicious information to the user.
After our driver loads into kernel memory, we can directly read the original
address of SSDT entry. Through our technique, we will be able to return the
original SSDT address to the driver. Our scheme, to use the hooked SYSEN-
TER technique, will enable us to make an immediate choice whether to read the
original SSDT entry or not. If we wish to unhook the driver which is harmless,
our scheme can reduce the impact on the system while unloading this driver may
cause BSoD.

3 Our Scheme

Our systems shown in Figure 3 can be divided into two parts, originSSDTaddr
function and the detour driver. The detailed processes are listed as follows.

1. Preparation. Our program must be called up before calling up Windows
Task Manager.

A Methodology for Hook-Based Kernel Level Rootkits 123

2. OriginSSDTaddr Function. We use our program to check the hooked
state, generate the original SSDT address, and send the address to the detour
driver in the kernel-mode.

3. The Detour Driver. The detour driver enables the hook function which
can redirect the call to the original SSDT address.

4. Start Windows Task Manager. Once the above processes done, Windows
Task Manager is called up. The APIs in ToolHelp32 API are used.

5. ToolHelp32 API. ToolHelp32 API is located in kernel32.dll. Hence, the
system starts to call up the ToolHelp32 API in kernel32.dll.

6. NtQuerySystemInformation. kernel32.dll calls NtQuerySystemInforma-
tion in the Native API. This action triggers SYSENTER and stores current
EAX, EDX register. Then, SYSENTER is started.

7. The Detour Driver. Before switching to the kernel-mode, the control flow
executes the detour driver in this step. It will enable the hook at KiFastCal-
lEntry.

8. KiFastCallEntry. Once the detour driver is enabled, this step replaces
the original SYSENTER address with our own code and reconstructs the
information from user-mode.

9. Original NtQuerySystemInformation. Since the original KiFastCallEn-
try is already modified, the control flow executes the current EAX register
with the original SSDT address.

10. Reconstructed Information.When the control flow returns to user mode,
this message is already reconstructed.

If we desire to analyze a system whether it exists a malicious hook or not, the
first step, our originSSDTaddr function generates the original SSDT to compare
with the current SSDT address no matter there is any hook existed; if there is
one, loads the driver of our program, the detour driver will hook SYSENTER.
If an API has been hooked, the detour driver will replace the current address
of SSDT in kernel-mode with the address which obtained from the originSSD-
Tadd function. Finally, we call Windows Task Manager, and compare it with
the function we detoured. Through the difference between SSDT<before> and
SSDT<after>, the cross view are presented.

4 Evaluation

The existing unhook mechanism directly removes all the possible malicious driver
as usually; however, not all hooks are malicious. When unloaded a non-malicious
driver, it may affect the normal operation of a single program, or even affects
the whole system. To that end, we implement our scheme in compares with the
original address of SSDT entry without unloading a driver, and we can gain
the cross view detection ability by contrasting these two situations. As shown
in Figure 4, NtQuerySystemInformation hook can directly affect the results of
Windows Task Manager, while our system will be able to reach in the case of
cross view detection ability without remove the driver.

124 C.-M. Chen et al.

User Mode Kernel Mode

 KiFastCallEntry

 Orignal address of

NtQuerySystemInformation

in ntoskrnl.exe

The Detoured Driver :

mov ecx , 0x176

rdmsr

mov d_origKiFastCallEntry , eax

mov eax , MyKiFastCallEntry

wrmsr

 OriginSSDTaddr function:

 *Hooked SSDT check

 *Generating Orignal address of SSDT

 *Pass address to the Detoured Driver

 NtQuerySystemInformation

in ntdll.dll

SYSENTER

ToolHelp32

in

kernel32.dll

 Task Manager calls

Process32First

in ToolHelp32 API

 Start our program

before using

the Task Manager

Reconstructed Information

Fig. 3. The architecture of our system

In this section, we show: (1) Cross view detection ability effectively detects
the hook-based kernel rootkits in our scheme,(2) to achieve runtime detour for
comparison, and (3) we present current antivirus software measurement results.

4.1 Cross View Detection Ability

We tested the SSDT hook from [4], this driver hook NtQuerySystemInforma-
tion API, any process name started with root will be hidden. The user exe-
cutes Windows Task Manager and cannot detect the existence of this program.
And we use Rootkit Hook Analyzer to confirm the existence of the hook at
No.173 in the API, 0xAD, the memory address is 0xF9DCC00E. In Figure
4, we use a small program INSTDRV, this program is used to load drivers for
a small instrument. We modified the name of this small program into the file
name root INSTDRV.exe. When the driver loads into kernel module, we find
there is no process called root INSTDRV.exe existed in Windows Task
Manager(Fig. 5).

A Methodology for Hook-Based Kernel Level Rootkits 125

Fig. 4. The detection result from Rootkit Hook Analyzer & our program

4.2 Runtime Detour for Comparison

Since we use the communication from the detour driver and the originSSDTaddr
function. It allows us to achieve the capacity in runtime detour. As shown in
Figure 4, we first checked whether there is hook in the SSDT or not. The system
detected an existing hook, and the address existed in the kernel memory. Second,
we found out the location of the original SSDT address, and passed it to the
detour driver. Last, we made a simple Task Manager, and communicated with
the detour driver to allow our program directly calling the original Native API,
and listed the process. With such runtime detour ability as well as the cross view
comparison, we recognized whether the driver has malicious action or not.

Table 1. The statistics for the current antivirus software

Numbers of hooks

Kasperskey antivirus 39 hooks

Norton AntiVirus 35 hooks

F-Secure Anti-Virus 14 hooks

Trend Micro 13 hooks

McAfee 0 hooks

Avira Anti-virus 5 hooks

126 C.-M. Chen et al.

Fig. 5. Process list in Windows Task Manager

Table 2. The most common Native API that hook by antivirus software

Results

Native API name NtCreateThread NtLoadDriver NtOpenProcess

of Hookers 5 4 4

API number 53 97 122

Native API name NtOpenSection NtTerminateProcess NtWriteVirtualMemory

of Hookers 4 5 5

API number 125 257 277

4.3 Current Antivirus Software Measurement

As mentioned before, not only a malicious program will hook SSDT, but even an
anti-virus software will hook specific Native APIs. From Table I, it is a common
behavior that the current antivirus software will hook a part of SSDT entry.
Through this kind of action, it increases the capability of antivirus software to
detect malicious code and makes it more efficiency. It is worth mentioning that
Kasperskey antivirus hooks 39 APIs to monitor the system information. How-
ever, McAfee and Avira Anti-virus hooks the SSDT no more than 5 APIs. Table
II also shows the most common Native API that hook by antivirus software.

5 Related Work

In the rootkits detection mechanism, it is divided into cross view detection and
VMM-Based. In the cross view detection, it mainly utilizes the difference between

A Methodology for Hook-Based Kernel Level Rootkits 127

the two comparisons to find a suspicious process, file and registry. In VMM-
Based, it mainly uses the Host machine to analyze the memory of the client
to check out whether the malicious program exists or not. In the following, we
discuss about the current scheme in rootkits detection.

– Cross View Detection

Wang et al. [18] designed and implemented a quick scanner for user-mode
hiding Trojans and rootkits. They compared the information which scanned
from inside the host as “the lie” with “the truth”; “the truth” can be
obtained from the lowest level of user-mode before invoking into kernel-
mode. Thus, they hook a part of the Native API (e.g., NtEnumerateKey,
NtQuerySystemInformation) to monitor the Registry and process enumera-
tion API. After the hook obtained “the truth”, it uses a regular Win32 API
call to obtain “the lie”.

Rutkowska [7] mentioned that cross view based detectors, to be effective,
need to implement extremely deep method to get the system information.
And it is complex to support all hardwares. The author reminds us that
compromise detection is very difficult, and we should not expect a single
idea to revolutionize it.

– VMM-Based Jiang et al. [6,8] emphasized that the current technique of
the anti-virus systems is limited and vulnerable because they are running
inside the hosts where they are also been protected. Therefore, a new tech-
nique based on the Virtual Machine (VM) was born to solve this problem.
Nevertheless, it leads to another problem, known as the semantic gap. For
the reasons given above, they implemented an “Out-of-the-box” approach
to overcome the semantic gap between the VM and the host machine.

6 Conclusions

To find a hook in the system is easy by checking the SSDT. Nevertheless, it is dif-
ficult to tell whetehr it is a malicious hook or not. In this paper, we had proposed
a scheme to distinguish the malicious behavior by comparing the returned results
of hooking before and after. In addition, we adopted a runtime detour patching
technique to avoid perturbing the normal operation of user-mode programs.

Acknowledgement. The authors would like to thank anonymous reviewers for
their valuable comments and suggestions, which certainly led to improvements
of this paper. Chien-Ming Chen were partially supported by Shenzhen peacock
project, China, under contract No. KQC201109020055A and Shenzhen Strate-
gic Emerging Industries Program under Grants No. ZDSY20120613125016389.
Hung-Min Sun was partially supported by the National Science Council, Taiwan,
R.O.C., under the Grants NSC 100-2628-E-007-018-MY3. The corresponding au-
thor is Professor Hung-Min Sun.

128 C.-M. Chen et al.

References

1. Chen, C.-M., Wang, K.-H., Wu, T.-Y., Pan, J.-S., Sun, H.-M.: A scalable transitive
human-verifiable authentication protocol for mobile devices. IEEE Transactions on
Information Forensics and Security 8(8), 1318–1330 (2013)

2. DiabloNova. Rootkit Unhooker v3.8 (2007),
http://www.rootkit.com/newsread.php?newsid=902

3. He, B.-Z., Chen, C.-M., Su, Y.-P., Sun, H.-M.: A defence scheme against iden-
tity theft attack based on multiple social networks. Expert Systems with Applica-
tions 41(5), 2345–2352 (2014)

4. Hoglund, G., Butler, J.: HideProcessHookMDL (2004), http://www.rootkit.com/
5. Hoglund, G., Butler, J.: Rootkits-Subverting the Windows Kernel. Addison-Wesley

(2004)
6. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection through VMM-Based

“Out-of-the-Box” SemanticView Reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, pp. 128–138 (2007)

7. Joanna, R.: Thoughts about Cross-View Based Rootkit Detection (2005),
http://invisiblethings.org

8. King, S.T., Chen, P.M., Wang, Y.-M., Verbowski, C., Wang, H.J., Lorch, J.R.:
SubVirt: Implementing Malware with Virtual Machines. In: 2006 IEEE Symposium
on Security and Privacy, pp. 314–327 (2006)

9. Kruegel, C., Robertson, W., Vigna, G.: Detecting Kernel-Level Rootkits through
Binary Analysis. In: Proceedings of the 20th Annual Computer Security Applica-
tions Conference, pp. 91–100. IEEE Computer Society (2004)

10. Levine, J., Grizzard, J., Owen, H.: A Methodology to Detect and Characterize
Kernel Level Rootkit Exploits Involving Redirection of the System Call Table. In:
Proceedings of the Second IEEE International Information Assurance Workshop,
pp. 107–125. IEEE (2004)

11. Levine, J., Grizzard, J., Phillip, H., Owen, H.: A Methodology to Characterize Ker-
nel Level Rootkit Exploits that Overwrite the System Call Table. In: Proceedings
of the IEEE SoutheastCon, pp. 25–31. IEEE (2004)

12. Lin, C.-W., Hong, T.-P., Chang, C.-C., Wang, S.-L.: A greedy-based approach for
hiding sensitive itemsets by transaction insertion. Journal of Information Hiding
and Multimedia Signal Processing 4(4), 201–227 (2013)

13. R. S. Projects. RootKit Hook Analyzer (2007),
http://www.resplendence.com/hookanalyzer

14. Quynh, N.A., Takefuji, Y.: Towards a Tamper-Resistant Kernel Rootkit Detector.
In: Proceedings of the 2007 ACM Symposium on Applied Computing, pp. 276–283.
ACM (2007)

15. Sun, H.-M., Chen, C.-M., Shieh, C.-Z.: Flexible-pay-per-channel: A new model
for content access control in pay-tv broadcasting systems. IEEE Transactions on
Multimedia 10(6), 1109–1120 (2008)

16. Sun, H.-M., Wang, H., Wang, K.-H., Chen, C.-M.: A native apis protection mech-
anism in the kernel mode against malicious code. IEEE Transactions on Comput-
ers 60(6), 813–823 (2011)

17. Tan, C.K.: Defeating Kernel Native API Hookers by Direct Service Dispatch Table
Restoration (2004), http://www.security.org.sg

18. Wang, Y.-M., Beck, D.: Fast User-Mode Rootkit Scanner for the Enterprise. In:
Proceedings of the 19th Conference on Large Installation System Administration
Conference, pp. 23–30. USENIX (2005)

http://www.rootkit.com/newsread.php?newsid=902
http://www.rootkit.com/
http://invisiblethings.org
http://www.resplendence.com/hookanalyzer
http://www.security.org.sg

Precise Instruction-Level Side Channel Profiling

of Embedded Processors

Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes

Smart Card Centre, Information Security Group,
Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

{mehari.msgna.2011,k.markantonakis,k.mayes}@rhul.ac.uk

Abstract. Since the first publication, side channel leakage has been
widely used for the purposes of extracting secret information, such as
cryptographic keys, from embedded devices. However, in a few instances
it has been utilised for extracting other information about the internal
state of a computing device. In this paper, we show how to create a
precise instruction-level side channel leakage profile of an embedded pro-
cessor. Using the profile we show how to extract executed instructions
from the device’s leakage with high accuracy. In addition, we provide a
comparison between several performance and recognition enhancement
tools. Further, we also provide details of our lab setup and noise minimi-
sation techniques, and suggest possible applications.

Keywords: Side Channel Leakage, Templates, Principal Components
Analysis, Linear Discriminant Analysis, Multivariate Gaussian Distribu-
tion, k-Nearest Neighbors Algorithm, Reverse Engineering.

1 Introduction

In the last decade, several methods that use side channel leakage for cryptanalysis
have been proposed [1,2,3,4,5,6]. Since then, virtually all efforts in side channel
analysis have been focused into extracting data dependencies in the side channel
leakage. Yet, other information can be extracted from the same leakage, such as
executed instructions.

In [7], Novak presents a method to extract an A3/A8 substitution table from
the devices side channel leakage. In his attack the secret key and one of the sub-
stitution tables must be known. Clavier [8] improved Novak’s attack by propos-
ing a method to extract both substitution tables and the key without any prior
knowledge. In [9], Vermoen et al. show how to extract executed bytecode in-
structions from Java Cards. In their work they created a profile by averaging
power traces of known bytecodes and then correlated it with averaged traces of
unknown sequence bytecode instructions. In [10], Quisquater et al. presented a
method that recognizes executed instructions from a single trace by means of
self-organizing maps, which is a special form of neural network. In [11], Eisen-
barth et al. presented a more advanced statistical analysis methods to extract
executed instructions from PIC microcontrollers. In [12] Standaert et al. show

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 129–143, 2014.
c© Springer International Publishing Switzerland 2014

130 M. Msgna, K. Markantonakis, and K. Mayes

that a similar setup can be used to detect instructions from the device’s electro-
magnetic emission.

In this paper we present a precise instruction-level side channel profiling of an
embedded processor. In the process we provide a detailed discussion of template
construction, dimensionality reduction and classification techniques. In addition,
we also provide a comparative discussion between several dimensionality reduc-
tion and classification algorithms. In our work we achieved a 100% recognition
rate which is significantly higher than any of the previous work. Furthermore,
we also provide a detailed explanation of our lab equipment setup and suggest
possible applications.

The rest of the paper is structured as follows. Sections 2 and 3 discuss the
template construction and dimensionality reduction techniques. Section 4 pro-
vides a detailed explanation and comparison of different classification techniques.
Section 5 describes our lab equipment setup and experimental results. Section 6
shows the related works. Section 7 briefly explains some of the possible applica-
tion areas. Finally, section 8 concludes the paper.

2 Template Construction

The first step in profiling an embedded processor is the collection of training
(template) data. Here we make the assumptions that all legitimately manufac-
tured devices of the same model have similar leakage characteristics. The training
traces are collected by recording the power intake of a reference device while ex-
ecuting the selected instructions repeatedly. This can be achieved by running
simple training programs on a batch of reference devices. Now let us consider
N L-dimensional observations of the device’s power consumption {xn} where
1 ≤ n ≤ N . Each of these N L-dimensional observations belongs to one of the
K instructions Ik, where 1 ≤ k ≤ K. The template for each instruction would
now be the mean and covariance matrix of the N L-dimensional observations.
The mean (μk) and covariance (σk) are calculated as follows:

μk =
1

Nk

∑
{xn}∈Ik

xn (1)
σk =

1

Nk

∑
{xn}∈Ik

(xn − μk)(xn − μk)
T (2)

Thus, the template for each instruction is defined by the tuplets of (μk, σk).
However, in practice the observations {xn} may have too many closely corre-
lated points and the template construction process may be too time consuming.
Therefore, to escape the curse of dimensionality we have to employ dimension-
ality reduction techniques.

3 Dimensionality Reduction

Dimensionality reduction techniques are feature selection algorithms used to
compress data while preserving as much variance of the original data as possible.
In the literature, several dimensionality reduction methods have been proposed

Precise Instruction-Level Side Channel Profiling 131

[13,12]. In this paper we have implemented two of the most common techniques,
the Principal Components Analysis and the Fisher’s Linear Discriminant Anal-
ysis. In addition, we have also implemented three other methods, the Sum of
Difference of Means, Means-PCA and Means-Variance.

3.1 Sum of Difference of Means

In the past differential power has been used for correlating information leakage
with the power consumption of a device [1]. In [14] the same technique has been
utilized to reduce the dimensionality of traces obtained from RC4 [15]. In our
work we use this method to reduce the dimensionality of our instruction-level
traces. To compute the new dimension ,D, from the original dimension, L, we
performed, (a) compute the difference of each pair of mean vectors, (b) compute
the summation of these differences, and (c) select the first D points among the
highest peaks.

3.2 Means-Variance

The most important criterion when reducing the dimensions of a data is to retain
as much variance of the original data as possible. So, it may be reasonable to
take the feature points accounting for the maximum variance of the original data
across the different classes. To identify these points we need the mean of each
class μk, where 1 ≤ k ≤ K. If we put these means, into a matrix (with kth row
being the mean of the kth class), we will have a K × L matrix where L is the
dimension of the original data. The variance of each column is the inter-class
variance of each feature point. Finally, we reduce the dimension by taking the
first D columns with the highest variance.

3.3 Principal Components Analysis (PCA)

A Principal Components Analysis (PCA) [16] is a technique that reduces the
dimensionality of a data while maximizing as much of its variance as possible.
This is achieved by projecting the data orthogonally onto a lower dimensional
subspace. A lower dimensional subspace can be defined by a D-dimensional unit
vector −→u1. The projection of each observation, xn, onto this subspace is given by
−→u1T · xn. Now if we stack up all the observations into a matrix the projection
of each row of the matrix is represented as UT · X , where U is a matrix of
eigenvectors of the covariance matrix σ. The projection of the observations into
a D-dimensional subspace that maximises the projected variance is given by D
eigenvectors [17] −→u1, . . . ,−→ud with the D largest eigenvalues λ1, . . . , λd.

3.4 Means-PCA

PCA maximises the overall variance of class observations but does not consider
other classes. Here our aim is achieving a higher classification rate it may be rea-
sonable to maximise the variance of inter-class observations. The reason for this

132 M. Msgna, K. Markantonakis, and K. Mayes

is moving the class means apart may result a higher classification rate. Let us
consider the class means as instances and compute the projection coefficients us-
ing the techniques discussed in Section 3.3. Later on, these projection coefficients
will be used to transform the observations.

3.5 Fisher’s Linear Discriminant Analysis (F-LDA)

Fisher’s Linear Discriminant Analysis (F-LDA) is a method used in pattern
recognition and machine learning to find a linear combination of features which
characterises two or more class observations [18,19,20]. The resulting combina-
tion may be used for dimensionality reduction before classification. However,
instead of maximising the variance of the intra-class data like PCA, information
regarding the covariance of different classes is taken into consideration. These
are the “between-class” and “within-class” covariance matrices. Let us consider
again the N L-dimensional observations for each class. Then the “within-class”
covariance σW and the “between-class” covariance σB are computed as,

σW =

S∑
i=1

Nqiσqi (3) σB =

S∑
i=1

(μqi − μ)(μqi − μ)T (4)

where, Nqi , σqi , μqi and w are the number of observations, the covariance,
the mean and the power traces of class qi. Now, let us consider a D-dimensional
unit vector −→u1 onto which the data is projected. This time the objective is to
maximise both the projected “between-class” and the projected “within-class”
covariance:

J (−→u1) =
−→u1TσB

−→u1
−→u1TσW

−→u1
(5)

The projected J is maximised if −→u1 is the eigenvector of σ−1
W σB . The D-

dimensional subspace is created by the first D eigenvectors −→u1, · · · ,−→uD of σ−1
W σB

with the largest eigenvalues λ1, · · · , λD.

4 Instruction Classification

After the templates are created, the next step is testing our classification obser-
vations. In this section we discuss two classification algorithms.

4.1 Multivariate Gaussian Probability Density Function

Given the μk and σk of each instruction, classification is performed as follows.
Let W be the power consumption waveform captured at runtime and assume
that its samples are drawn from a Multivariate Gaussian Normal Distribution
model [21]. The noise introduced into the power waveform, W , is extracted by
subtracting the mean value from the waveform as in equation (6).

nk = {(W [1]− μk[1]), (W [2]− μk[2]), ..., (W [p]− μk[p])} (6)

Precise Instruction-Level Side Channel Profiling 133

where μk is the mean of instruction Ik and p is the selected feature points if
the original dimensionality is reduced. The probability of observing the noise nk

in the device’s power trace is then computed as shown in equation (7).

N (nk, (μk, σk)) =
1

(2π)D/2√σk
exp(−1

2
(nk)σ

−1
k (nk)

T) (7)

The instruction with the template that generates the highest probability of
observing the noise nk is chosen as the instruction executed by the processor.

4.2 k-Nearest Neighbors Algorithm (kNN)

The kNN is a non-parametric lazy supervised learning algorithm. The “non-
parametric” means the learning algorithm does not make assumptions about
the data and “lazy” means data generalization is not needed. In a supervised
learning the training data is an ordered pair 〈x, y〉 , where x is an instance and y
is its class label. The goal of the algorithm is to assign a class for a given instance
x

′
. In this algorithm, the training phase simply stores the training data along

with their class labels. During classification, the classifier computes the distance
between the instance x

′
and all training instances x ∈ X . It then keeps the k

closest training instances, where k ≥ 1. The class that is most common among
these instances is then assigned to x

′
. In kNN there are two major design choices

to be made; (a) the value of k, for example, if only 2 classes exist k = 3 is used
to avoid ties and (b) the distance function. The most common distance function
used in kNN is the Euclidean distance function [22,23]. Given two instances x
and x

′
the Euclidean distance, de is computed as in equation (8).

de(x, x
′
) = ‖x− x

′
‖ =

√
(x1 − x

′
1)

2 + · · ·+ (xp − x′
p)

2 =

√√√√ p∑
i=1

(xi − x
′
i)

2 (8)

where x and x
′
have p points and xi and x

′
i are the ith point. Some of the

other distance functions that can be used in kNN are Correlation and Cosine
learning distance functions.

5 Experimental Results

To implement the techniques discussed above we have selected an ATMega163 +
24C256 based smart card. The ATMega163 is an 8-bit microcontroller based on
an AVR architecture, and it has 130 instructions. To simplify our experiment we
chose 39 instructions. During the instruction selection process we considered the
following criteria; redundancy and usage of instructions. The redundancy refers
to more than one instruction performing the same operation; for example in
ATMega163 the instructions LD Rd, Z and LDD Rd, Z+q perform indirect load
operation. So, in our experiment we only use LD. Besides the redundancy, we also

134 M. Msgna, K. Markantonakis, and K. Mayes

tried to choose the most commonly used instructions by analyzing several source
codes. We created a source code base by using publicly available source codes
from various web sites [24,25]. We have also included our own implementation of
cryptographic algorithms and general purpose applications in the analysis. The
power traces are captured via a voltage drop across a shunt resistor connecting
the ground pin of the smart card and the ground pin of the voltage source.
The smart card is running at a clock frequency of 4MHz and is powered by a
+5V supply from the reader. The measurements are recorded using a LeCroy
WaveRunner 6100A [26] oscilloscope capable of measuring traces at a rate of
5 billion samples per second (5GS/s). The shunt resistor is connected with the
oscilloscope using a special cable, a probe, which was a Pomona 6069A [27], a
1.2m co-axial cable with a 250MHz bandwidth, 10MΩ input resistance and 10pf
input capacitance. All measurements are sampled at a rate of 500 MS/s.

5.1 Template Construction

To generate the number of traces we needed for the templates construction we
created several training code snippets. To construct the templates we attempted
to remove all other factors that influence the power consumption apart from the
instructions themselves. Such factors can be the initial values of source and des-
tination registers/memory cells, data processed by the instruction and, intrinsic
or ambient noise introduced by the measurement setup. To remove the influence
of the source and destination registers/memory cells we selected a random source
and destination before we executed the selected instructions and we initialised
them with random values sent from the terminal over the Application Protocol
Data Unit (APDU) channel. For the data processed, we have generated random
data for each execution of the target instruction. To minimise the influence of the
ambient noise introduced in the measurement, all equipment is properly warmed
up beforehand so that it is all running at a uniform temperature throughout the
power trace collection phase. This requires running a few test measurements to
be discarded before the actual power trace collection begins.

To minimise the effect of measurement noise introduced by the reference card
on the power traces we used 5 of the same model reference cards throughout the
experiment. To reduce the influence of other random noise from our measurement
we collected 3000 traces for each of the selected instructions (i.e. 600 traces from
each of the reference cards). Out of these 3000 traces, we used 2500 of them
to construct the templates. As part of the templates we took the average of
recorded traces and this reduces the standard deviation of the random noise by
a factor of

√
n, given that n is the number of traces used for calculating the

averaged value.
For multiple clock cycle instructions, the clock cycles are treated as consec-

utive instructions. Hence, more than one template is created for them. For the
conditional branching instructions, templates are created for both conditions.
When the condition is false the branching instructions only need one clock cycle;
however, when it is true they need two clock cycles. Therefore, for each condi-
tional branching instruction we created three templates. Including the multiple

Precise Instruction-Level Side Channel Profiling 135

0 25 50 75 100 125 150 175 200 225 250

−0.1

0

0.1

0.2

0.3

T ime (nS)

V
ol
ta
g
e
(m

V
)

NOP MOV ADD SUB

Fig. 1. Power consumption waveform of selected ATmega163’s one clock cycle instruc-
tions (NOP, MOV, ADD and SUB)

templates for the multi-clock cycle instructions and conditional branching in-
structions we generated a total of 76 templates. In Fig. 1 and Fig. 2 we plot the
average of the power consumption waveforms generated by one and two clock
cycle instructions respectively for selected instructions.

0 50 100 150 200 250 300 350 400 450 500

−0.1

0

0.1

0.2

T ime (nS)

V
ol
ta
g
e
(m

V
)

MUL ST LD

Fig. 2. Power consumption waveform of selected ATmega163’s two clock cycle instruc-
tions (MUL, ST and LD)

As shown in both the plots, some instructions (for instance NOP and SUB) gen-
erate sufficiently different waveforms to recognise them successfully. However,
others (for instance NOP and MOV) generate similar waveforms which makes it
more difficult to recognise them from their power waveform. So, in order to recog-
nise each instruction from a given waveform we have to create a well-conditioned
template and for that we need several training traces.

5.2 Dimensionality Reduction

When using the Sum of Difference of Means to reduce the dimensionality we
computed 2850 vector subtractions and additions. Fig. 3 illustrates the summa-
tion of these differences. The Means-Variance is a straight forward method and
involves the computation of variance for 125 column vectors.

When using PCA, the new dimensionalityD has to be chosen carefully. On the
one hand, if D is too small, too much of variance of the original data may get lost

136 M. Msgna, K. Markantonakis, and K. Mayes

1 25 50 75 100 125

−4
−2
0
2
4
6

Samplepoints

V
ol
ta
g
e
(m

V
)

Fig. 3. Sum of Difference of Means

and with it important information about the observations. On the other hand,
if D is too large, the templates cross-correlation increases and the classification
becomes less reliable.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

Principal components

V
a
ri
a
n
ce

(%
)

Fig. 4. Overall variance of the original data accounted for the first 20 principal com-
ponents of the instruction MOV

As shown in Fig. 4, the first 4 components accounted for 37.598%, the first 10
for 44.163% and the first 15 for 48.3387% of the overall variance of the original
data. So, when choosing the dimension, D, we have to decide how much variance
of the original data that we are willing to lose. In addition, we also performed
Means-PCA and LDA to reduce the dimensions of the original data to 50.

5.3 Instruction Classification

So far, we have selected 39 instructions out of the possible 130 and collected 3000
power consumption traces for each of the instructions. Out of these 3000 traces
we used 2500 of them to train the templates. Now we discuss the classification
result for the remaining 500 traces.

Multivariate Gaussian Probability Distribution Function (MVGPDF):
We have tested the MVGPDF classification both before and after the dimension-
ality reduction. Before reduction, we utilised the full space of the original data,

Precise Instruction-Level Side Channel Profiling 137

Table 1. Percentage of true (bold) and false positive recognition rate for a selected
instructions using MVGPDF. The rows and columns represent executed and recognised
instructions respectively.

Instruction Recognised as [%]
NOP MOV ADD ADC MUL 1 MUL 2 CLR CP INC SUB SBC

NOP 28.7 0 2.8 5.2 0.8 14.3 0.2 10 1.2 0 0.6
MOV 0 49.2 5.2 0 0.4 0 3.2 0 10.2 0 0.6
ADD 9 4.6 17.5 0 0.4 0.6 0 0.2 7.2 0.6 0.2
ADC 0.6 0 0 91.6 0 1.6 0 5.2 0 0 0.2
MUL 1 2.6 0.4 1.2 0 68.7 0 9.2 0.8 0 0 0.6
MUL 2 20.7 0.8 1 1 0 41.6 0 0 9.4 0 0.2
CLR 4.8 2 0.6 0 7.2 0.6 80.1 0 1 0 1.2
CP 2.2 0 0.6 3.8 0 0 0 89.8 0 0 1.2
INC 7.8 4.8 7.8 0.2 0.2 0 0.4 0 42 0.2 0.6
SUB 0 0 0 0 0 0 0 0 0 86.1 0
SBC 0.6 0 0.8 3.6 1.2 0 1.6 3.6 0.2 0 86.3

the overall recognition rate was 64.97%. In Table 1, we present the recognition
rate of 11 selected instructions using the full data space.

However, this computation is too time consuming. So, to find a good subspace
for our dimensionality reduction, we tested MVGPDF for the first 50 dimensions
of the original data.

1 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

(49, 39.56%)

(50, 37.73%)

(37, 66.25%)

(36, 66.78%)

(50, 49.75%)

New dimensions after reduction

R
ec
o
g
n
it
io
n
ra
te

(%
)

Sum of DoM Means − V ariance PCA

F − LDA Means − PCA

Fig. 5. Classification rate after dimensionality reduction using MVGPDF for all 39
instructions

In Fig. 5 we plotted the result of our classification rate after the dimensionality
reduction techniques. In the graph, the first number within the bracket is the
dimension and the second number is the maximum classification rate. Using
MVGPDF, the maximum classification rate we could achieve was 66.78% after
using Means-PCA for reducing the dimensions.

138 M. Msgna, K. Markantonakis, and K. Mayes

Table 2. Percentage of true (bold) and false positive recognition rate for a selected
instructions using kNN. The rows and columns represent executed and recognised in-
structions respectively.

Instruction Recognised as [%]
NOP MOV ADD ADC MUL 1 MUL 2 CLR CP INC SUB SBC

NOP 25.9 0.2 2.8 4.6 2.0 13.9 1.8 6.0 2.2 0 1.0
MOV 1.6 31.1 4.4 0 0.8 0.2 7.6 0 5.6 0 0.4
ADD 6.6 3.8 10.2 0.4 1.0 1.4 1.6 0.6 7.6 0.2 0.4
ADC 7.6 0 0.2 43.4 0.4 15.3 2.0 18.9 0.6 0 0.8
MUL 1 5.6 1.2 1.6 0.2 33.5 1.6 1.6 0.8 0.6 0 0
MUL 2 27.5 1.6 1.6 2.2 0.4 51.2 1.2 0 3.4 0 0
CLR 3.6 3.2 12.5 0.2 6.4 1.4 36.4 0 9.0 0 1.0
CP 10.6 0 5.0 7.0 1.0 0.6 0.4 27.7 0.4 0 3.8
INC 9.0 4.4 8.6 0 0.6 0.4 4.0 0.8 11.3 0 1.2
SUB 0 0 1.6 0 0 0 0 0 0 89.8 0
SBC 4.2 0.4 9.4 9.8 5.2 2.0 3.2 7.2 2.0 0.2 23.3

k-Nearest Neighbors Algorithm (kNN): In kNN there are two major design
decisions that need to be made. One is the number of neighbors, k, participating
in the decision making. The other is the distance function used to compute the
closeness between the template data and the signal that need to be classified.
First, we tested our traces with k = 1, Euclidean distance function and full
dimension of the traces. The average recognition rate for all the templates is
45.31%. The recognition rate for a selected 11 instructions is presented in Table 2.

With k = 1 and Euclidean distance function we repeated the experiment on
a reduced dimensions and the recognition rate is presented in Fig. 6. The result
for LDA, Means-PCA, Sum of Difference of Means and Means-Variance was not
very satisfactory. However, for PCA we have achieved a 100% recognition after
only using the first 13 dimensions. In order to see the effect of changing k on the
recognition rate, we repeated the experiment for k = {5, 10, 15, 20} and the result
was the same. Now this steep increase in recognition rate could be a combined
result of removal of inter-class correlated points using PCA and the fact that
the traces are not generalised during the learning process of the algorithm.

To check the effect of the second criterion, the distance function, we tested
our traces using three different distance functions. These are the Euclidean,
Correlation and Cosine distance function. The classification result after PCA
using all three different distance functions is plotted in Fig. 7. As shown in the
graph, apart from a minor difference for dimensions 1 ≤ D ≤ 12, the recognition
rates are the same. They all reached a 100% of recognition rate after the first
D ≥ 13 dimensions.

Finally, it may be worth noting that apart from the two classification tech-
niques, we have also experimented with several others. These algorithms include
Self-Organizing Maps [28], Support Vector Machines [29], Linear Vector Quan-
tization [30] and Naive Bayes Classifiers [31]. However, their results were not
satisfactory and we stopped pursuing them.

Precise Instruction-Level Side Channel Profiling 139

1 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

100

(8, 48.74%)

(12, 56.88%)

(13, 100.00%)

(50,23.91%)

(50, 35.23%)

New dimensions after reduction

R
ec
o
g
n
it
io
n
ra
te

(%
)

Sum of DoM Means − V ariance PCA

F − LDA Means − PCA

Fig. 6. Recognition rate for all 39 instructions using kNN for k=1 after applying
dimensionality reduction techniques

1 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

(13, 100.00%)

New dimensions after reduction

R
ec
o
g
n
it
io
n
ra
te

(%
)

Euclidean

Correlation

Cosine

Fig. 7. Recognition rate for all 39 instructions using K-Nearest Neighbours Algorithm
with different distance functions for k=1 after applying PCA

6 Related Work

In [9], Vermoen et al. shows how to extract information about executed byte-
code instructions from Java Card smart cards. In his work he created a power
consumption profile of the card by averaging several traces collected when the
Java Card was executing known sequence of training bytecode instructions. Later
on, he correlates the profile to averaged traces of the card’s power consumption
belonging to unknown sequence of bytecode instructions. In [10], Quisquater
et al. presented a method that recognises executed instructions from a single
trace using self-organizing maps [28], which is a special form of neural network.
Both papers discuss the general idea and feasibility of extracting executed in-
structions from the device’s power consumption without really quantifying their
success rate.

140 M. Msgna, K. Markantonakis, and K. Mayes

In [11], Eisenbarth et al. presented a more advanced statistical analysis meth-
ods to extract information about executed instructions from PIC microcon-
trollers. In their paper they also used Hidden Markov Model to reconstruct
the program’s control flow and source code analysis to improve the success rate
of their classification process. In their work they have achieved a maximum of
70.1% classification rate.

7 Application and Significance

The first application of the presented methods that comes to mind is reverse
engineering of embedded programs. Reverse engineering techniques are well es-
tablished methods. Applications reverse engineering could be to re-analyse the
design of a program or ensure its interoperability with other programs by reverse
engineering and studying it. Another application where reverse engineering can
be useful is analysing embedded cryptographic algorithms, more importantly if
the design of the algorithm is unknown. In such a case instruction-level side
channel templates of the embedded device can be used to reverse engineer the
crypto algorithm and analyse its security. Apart from reverse engineering the
following are few applications where the techniques discussed can be applied to.

Verifying Code Integrity. One scenario where the technique discussed can be
applied for useful analysis is verifying the integrity of executed instructions by
embedded devices. Traditionally integrity of software is verified by computing a
hash or digital signature over the immutable parts of the software and comparing
it with a pre-computed value. In such a scheme the integrity value is computed
over a group of instructions and verified before any of the instructions in that
group are executed. However, since the instructions are executed one at a time,
a skilled attacker may target them when they are transferred into the registers
from the non-volatile memory. In such a case, the discussed techniques can be
used to extract executed instructions from the power trace. Then the integrity
value is computed over their immutable part and compared to the pre-computed
value. This way any changes to the instructions can be detected; as they will be
reflected on the power consumption.

Counterfeit Detection. Counterfeits can be designed to be hard to detect
by only functional testing. Instruction-level side channel template can be used
to detect a known sequence of instructions inserted by the genuine developer.
This way if the known sequence is not detected the devices will be labelled as a
counterfeit.

Malware Detection. Malware is a program that disturbs the operation of a
computer system, gathers sensitive information or gains access into private data.
Another program known as Anti-Malware is used to detect malware in PCs. In
embedded systems, much emphasis is given into the installation of programs to

Precise Instruction-Level Side Channel Profiling 141

avoid malware. If the attacker manages to install the malware into the embedded
device it is very difficult to detect it. In such situation the methods that we
discussed can be utilized to extract the executed instructions and analyse if
malware exists or not.

Attack Preparation. Apart from the above applications the presented meth-
ods can also be used for attack preparation. Attacks on embedded devices have
a higher impact if they are applied at the right time. Hence, the presented meth-
ods can be used to gather information on the target programs before applying
the main attack on programs with a varying execution time or random shuffling
of instructions.

In our experiment we have achieved a 100% classification rate which has never
been achieved in previous works. So, our next work will be to test the methods
on real-time algorithms such as DES [32] and AES[33]. One should remember
that we did not target the data processed throughout our experiment, thus side
channel protections such as masking [34], shuffling [35] or random delays [36]
will not make any difference.

8 Conclusion

This paper has explored the idea of side channel profiling of a processor down to
its instruction-level properties. The maximum classification success rate achieved
prior to our work was 70.1%. In our experiment we discussed a four stage classifi-
cation process; trace collection, pre-processing, template construction and classi-
fication. We tested several dimensionality reduction and classification algorithms
some of which were not investigated previously in the context of side channel
analysis. We experimented on the algorithms using traces collected from five
AVR processors, ATMega163. We improved the previous classification success
rate to a 100% using a specific combination of dimensionality reduction and clas-
sification algorithm. These are PCA and k-NN algorithm. Finally, we discussed
few of the possible applications where the presented methods can be applied to.
Even though, it requires further investigation we can say that instruction-level
side channel templates could be used to detect hardware Trojans if the Trojan
circuit is big enough to change the device’s power consumption waveform.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Oswald, D., Paar, C.: Breaking mifare DESFire MF3ICD40: Power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

3. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

142 M. Msgna, K. Markantonakis, and K. Mayes

4. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J., Willems, J.-
L.: A practical implementation of the timing attack. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 167–182. Springer, Heidelberg (2000)

5. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012)

6. Van Eck, W., Laborato, N.: Electromagnetic radiation from video display units:
An eavesdropping risk? Computers & Security 4, 269–286 (1985)

7. Novak, R.: Side-channel attack on substitution blocks. In: Zhou, J., Yung, M., Han,
Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 307–318. Springer, Heidelberg (2003)

8. Clavier, C.: Side channel analysis for reverse engineering (SCARE) - An im-
proved attack against a secret A3/A8 GSM algorithm. IACR Cryptology ePrint
Archive 2004, 49 (2004)

9. Vermoen, D., Witteman, M., Gaydadjiev, G.N.: Reverse engineering Java Card
applets using power analysis. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 138–149. Springer,
Heidelberg (2007)

10. Quisquater, J.-J., Samyde, D.: Automatic code recognition for smartcards using a
kohonen neural network. In: Proceedings of the Fifth Smart Card Research and Ad-
vanced Application Conference, CARDIS 2002, November 21-22. USENIX (2002)

11. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Com-
putational Science X. LNCS, vol. 6340, pp. 78–99. Springer, Heidelberg (2010)

12. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

13. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning. J. Elec-
tronic Imaging 16(4) (2007)

14. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

15. Mousa, A., Hamad, A.: Evaluation of the RC4 algorithm for data encryption.
IJCSA 3(2), 44–56 (2006)

16. Berrendero, J.R., Justel, A., Svarc, M.: Principal components for multivariate func-
tional data. Computational Statistics & Data Analysis 55(9), 2619–2634 (2011)

17. Strang, G.: Introduction to Linear Algebra, 3rd edn. Wellesley-Cambridge Press,
MA (2003)

18. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of
Eugenics 7, 179–188 (1936)

19. Fukumi, M., Mitsukura, Y.: Feature generation by simple-FLDA for pattern recog-
nition. In: CIMCA/IAWTIC, November 28-30, pp. 730–734. IEEE Computer
Society (2005)

20. Zhang, L., Wang, D., Gao, S.: Application of improved Fisher Linear Discriminant
Analysis approaches. In: International Conference on Management Science and
Industrial Engineering (MSIE), pp. 1311–1314 (2011)

21. Gut, A.: An Intermediate Course In Probability, 2nd edn. Springer, Department
of Mathematics, Uppsala University, Sweden (2009)

22. Wang, L., Zhang, Y., Feng, J.: On the Euclidean distance of images. IEEE Trans.
Pattern Anal. Mach. Intell. 27(8), 1334–1339 (2005)

23. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer (2009)

Precise Instruction-Level Side Channel Profiling 143

24. Web site. Tutorial for learning assembly language for the AVR-Single-Chip-
Processors, http://www.avr-asm-tutorial.net/avr_en/ (visited October 2013)

25. Web site. AVR freaks, http://www.avrfreaks.net/ (visited October 2013)
26. LeCroy, T.: Teledyne LeCroy website, http://www.teledynelecroy.com (visited

February 2013)
27. Pomona Electronics. 6069A scope probe, website,

www.pomonaelectronics.com/pdf/d4550b-sp150b_6_01.pdf

(visited October 2012)
28. Kohenen, T.: Self-organized formation of topologically correct feature maps. Bio-

logical Cybernetics 43(1), 59–69 (1982)
29. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297

(1995)
30. Kohenen, T.: Learning Vector Quantization. Springer (2001)
31. Rish, I.: An empirical study of the naive bayes classifier. In: IJCAI 2001 Workshop

on Empirical Methods in Artificial Intelligence, vol. 3(22), pp. 41–46 (August 2001)
32. National Institute of Standards and Technology. Data encryption standard (DES),

publication 46-3. Technical report, Department of Commerce (Reaffirmed October
1999), http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

33. National Institute of Standards and Technology. Advanced encryption standard
(AES), publication 197. Technical report, Department of Commerce (November
2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

34. Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential
power analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp.
231–237. Springer, Heidelberg (2000)

35. Yu, B., Li, X., Chen, C., Sun, Y., Wu, L., Zhang, X.: An AES chip with DPA
resistance using hardware-based random order execution. Journal of Semiconduc-
tors 33(6) (2012)

36. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

http://www.avr-asm-tutorial.net/avr_en/
http://www.avrfreaks.net/
http://www.teledynelecroy.com
www.pomonaelectronics.com/pdf/d4550b-sp150b_6_01.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Automated Proof for Authorization Protocols

of TPM 2.0 in Computational Model

Weijin Wang, Yu Qin, and Dengguo Feng

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{wangweijin,qin_yu,feng}@tca.iscas.ac.cn

Abstract. We present the first automated proof of the authorization
protocols in TPM 2.0 in the computational model. The Trusted Plat-
form Module(TPM) is a chip that enables trust in computing platforms
and achieves more security than software alone. The TPM interacts with
a caller via a predefined set of commands. Many commands reference
TPM-resident structures, and use of them may require authorization.
The TPM will provide an acknowledgement once receiving an authoriza-
tion. This interact ensure the authentication of TPM and the caller. In
this paper, we present a computationally sound mechanized proof for
authorization protocols in the TPM 2.0. We model the authorization
protocols using a probabilistic polynomial-time calculus and prove au-
thentication between the TPM and the caller with the aid of the tool
CryptoVerif, which works in the computational model. In addition, the
prover gives the upper bounds to break the authentication between them.

Keywords: TPM, Trusted Computing, formal methods, computational
model, authorization.

1 Introduction

The Trusted Platform Module(TPM) is a chip that enables trust in computing
platforms and achieves higher levels of security than software alone. Starting
in 2006, many new laptop computers have been sold with a Trusted Platform
Module chip built-in. Currently TPM is used by nearly all PC and notebook
manufacturers and Microsoft has announced that all computers will have to
be equipped with a TPM 2.0 module since January 1, 2015 in order to pass
the Windows 8.1 hardware certification. Moreover, the TPM specification is an
industry standard [20] and an ISO/IEC standard [14] coordinated by the Trusted
Computing Group.

Many commands to the TPM reference TPM-resident structures, and use of
them may require authorization. When an authorization is provided to a TPM,
the TPM will provide an acknowledgement. As we know, several vulnerabilities of
the authorization in the TPM 1.2 have been discovered [9,10,16,12]. Most of them
are found by the formal analysis of the secrecy and authentication properties.
These attacks highlight the necessity of formal analysis of the authorization in

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 144–158, 2014.
c© Springer International Publishing Switzerland 2014

Automated Proof for Authorization Protocols of TPM 2.0 145

the TPM 2.0. But as far as we know, there is not yet any analysis of authorization
protocols in the TPM 2.0. Hence, we perform such an analysis in this paper.

There are two main approaches to the verification of cryptographic protocol.
One approach, known as the computational model, is based on probability and
complexity theory. Messages are bitstring and the adversary is a probability
polynomial-time Turing machine. Security properties proved in this model give
strong security guarantees. Another approach, known as the symbolic or Dalev-
Yao model, can be viewed as an idealization of the former approach formulated
using an algebra of terms. Messages are abstracted as terms and the adversary
is restricted to use only the primitives. For the purpose of achieving stronger
security guarantees, we provide the security proof of the authorization protocols
in the computational model. Up to now, the work in the literatures are almost
based on the symbolic model, our work is the first trial to formally analyze the
authorization in the computation model.

Related Work and Contributes. Regarding previous work on analyzing the
API or protocols of TPM, most of them are based on the TPM 1.2 specifications
and analyses of the authorization are rare. Lin [16] described an analysis of
various fragments of the TPM API using the theorem prover Ptter and the
model finder Alloy. He modeled the OSPA and DSAP in a model which omits
low level details. His results in the authorization included a key-handle switching
attack in the OSAP and DSAP. Bruschi et al. [9] proved that OIAP is exposed
to replay attack, which could be used for compromising the correct behavior
of a Trusted Computing Platform. Chen et.al found that the attacks about
authorization include offline dictionary attacks on the passwords or authdata
used to secure access to keys [10], and attacks exploiting the fact that the same
authdata can be shared between users [11]. Nevertheless, they did not get the
aid of formal methods. Delaune et.al. [12] have analyzed a fragment of the TPM
authentication using the ProVerif tool, yet ignoring PCRs and they subsequently
analyzed the authorization protocols which rely on the PCRs [13]. Recently, Shao
[18] et.al. have modeled the Protect Storage part of the TPM 2.0 specification
and proved their security using type system.

In our work, we first present the automated proof of authorization proto-
cols in the TPM 2.0 at the computational leval. To be specific, we model the
authorization protocols in the TPM 2.0 using a probabilistic polynomial-time
calculus inspired by pi calculus. Also, we propose correspondence properties as
a more general security goal for the authorization protocols. Then we apply the
tool CryptoVerif [4,5,6] proposed by Blanchet, which works in the computational
model, to prove the correspondence properties of the authorization protocols in
the TPM 2.0 automatically. As a result, we show that authorization protocols in
the TPM 2.0 guarantee the authentication of the caller and the TPM and give
the upper bounds to break the authentication.

Outline. We review the TPM 2.0 and the authorization sessions in the next
section. Section 3 describes our authorization model and the definition of security

146 W. Wang, Y. Qin, and D. Feng

properties, Section 4 illustrates its results using the prover CryptoVerif. We
conclude in Section 5.

2 An Overview of the TPM Authorization

When a protected object is in the TPM, it is in a shielded location because the
only access to the context of the object is with a Protected Capability (a TPM
command). Each command has to be called inside an authorization session. To
provide flexibility in how the authorizations are given to the TPM, the TPM 2.0
specification defines three authorization types:

1. Password-based authorization;
2. HMAC-based authorization;
3. Policy-based authorization.

We focus on the HMAC-based authorization. The commands that requires the
caller to provide a proof of knowledge of the relevant authV alue via the HMAC-
based authorization sessions have an authorization HMAC as an argument.

2.1 Session

A session is a collection of TPM state that changes after each use of that session.
There are three uses of a session:

1. Authorization – A session associated with a handle is used to authorize use
of an object associated with a handle.

2. Audit – An audit session collects a digest of command/response parameters
to provide proof that a certain sequence of events occurred.

3. Encryption – A session that is not used for authorization or audit may be
present for the purpose of encrypting command or response parameters.

We pay attention to the authorization sessions. Both HMAC-based authorization
sessions and Policy-based authorization sessions are initiated using the command
TPM2 StartAuthSession. The structures of this command can be found in
TPM 2.0 specification, Part 3 [20]. The parameters of this command may be
chosen to produce different sessions. As mentioned before, we just consider the
HMAC-based authorization sessions and set the sessionType =HMAC. The
TPM 2.0 provides four kinds of HMAC sessions according to various combination
of the parameters tpmkey and bind:

1. Unbound and Unsalted Session. In the version of session, tpmkey and
bind are both null.

2. Bound Session. In this session type, tpmkey is null but bind is present and
references some TPM entity with authV alue.

3. Salted Session. For this type of session, bind is null but tpmkey is present,
indicating a key used to encrypt the salt value.

4. Salted and Bound Session. In this session, both bind and tpmkey is
present. The bind is used to provide an authV alue, tpmkey encrypts the
salt value and the sessionkey is computed using both of them.

A more detailed description of the sessions is given in [20].

Automated Proof for Authorization Protocols of TPM 2.0 147

2.2 Authorization Protocols

We start with modelling the authorization protocols constructed from an ex-
ample command, named TPM2 Example, within some authorization sessions.
TPM2 Example is a more generic command framework other than a spe-
cific command which can be found in TPM 2.0 specification, Part 1 [20]. This
command has two handles (handleA and handleB) and use of the entity asso-
ciated with handleA required authorization while handleB does not. Therefore,
handleB does not necessarily appear in our protocol models.

We take the authorization protocol based on Salted and Bound Session as an
example. The other three protocols will be presented in the full version [21].

Protocol Based on Salted and Bound Session. We omit some size param-
eters that will not be involved in computation, such as commandSize,
authorizationSize and nonceCallerSize. The specification of the protocol
is given in the Figure 1. For the protocol based on Salted and Bound Session,
the Caller sends the command TPM2 StartAuthSession to the TPM,
together with a handle of the bound entity, an encrypted salt value, a hash
algorithm to use for the session and a nonce nonCallerStart which is not
only a parameter for computing session key but also a initial nonce setting
nonce size for the session. The response includes a session handle and a nonce
nonceTPM for rolling nonce. Then the Caller and TPM both compute the
session key as

sessionKey = KDFa(sessionAlg, bind.authV alue||salt,ATH,
nonceTPM,nonceCallerStart, bits)

and save nonceTPM as lastnonceTPM , where KDFa() is a key derivation
function (a hash-based function to generate keys for multiple purposes).
After that, TPM2 Example within such a session will be executed. If the
session is used to authorize use of the bound entity, i.e. bind.Handle =
key.Handle, then

comAuth =HMACsessionAlg(sessionKey,

(cpHash||nonceCaller||lastnonceTPM ||sessionAttributes)),

where cpHash = HsessionAlg(commandCode||key.name||comParam). Next
the TPM will generate a new nonceTPM named nextnonceTPM for next
rolling and send back an acknowledgment

resAuth = HMACsessionAlg(sessionKey,

(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)),

where rpHash = HsessionAlg(responseCode||commandCode||resParam).

Else if the session is used to access a different entity, i.e. bind.Handle �=
key.Handle, then

comAuth =HMACsessionAlg(sessionKey||key.authV aule,
(rpHash||nonceCaller||lastnonceTPM ||sessionAttributes)),

148 W. Wang, Y. Qin, and D. Feng

Fig. 1. Protocol based on Unbound and Unsalted Session

and

resAuth =HMACsessionAlg(sessionKey||key.authV alue,
(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)).

When finalizing current session, BothCaller andTPM savenextnonceTPM
as lastnonceTPM .

3 Authorization Model and Security Properties

In the beginning of this section, we model the authorization protocols of TPM
2.0. Our model uses a probabilistic polynomial-time process calculus, which is
inspired by the pi calculus and the calculi introduced in [17] and [15], to for-
malize the cryptographic protocols. In this calculus, messages are bitstrings and
cryptographic primitives are functions operating on bitstrings. Then we define
the security properties of the participants in our model.

3.1 Modelling the Authorization Protocols

To be more general, we present the Caller’s actions base on Salted and Bounded
Session used to access the bound entity in the process calculus as an example.
(The formalizations of the other sessions will be present in full version [21].)

We defined a process QC to show Caller’s actions, detailed in Figure 2. The
replicated process !iC≤NP represents N copies of P , available simultaneously,
where N is assumed to be polynomial in the security parameter η. Each copy
starts with an input c4[iC], means that the adversary gives the control to the
process. Then the process chooses a random nonce NC Start, a salt value for

Automated Proof for Authorization Protocols of TPM 2.0 149

QC =!iC�Nc4[iC]();

new NC Start : nonce; new salt : nonce; new r1 : seed;

c5[iC](handlebind, NC Start,enc(salt, tpmkey, r1));

c8[iC](nT : nonce);

let skseed = hash1(concat6(salt,getAuth(handlebind, authbind)),

concat5(ATH,nT , NC Start, bits)) in

let skC = mkgen(skseed) in

new NC : nonce;

let cpHash = hash(hk, concat3(comCode,getName(handlebind),

comParam)) in

let comAuth = mac(concat1(cpHash,NC , nT , sAtt), skC) in

even CallerRequest(NC, nT , sAtt);

c9[iC](comCode, handlebind, NC , sAtt, comAuth, comParam);

c12[iC](= resCode,= handlebind, nT next : nonce,= sAtt,

resHM : macres,= resParam);

let rpHa = hash(hk, concat4(comCode, resCode, resParam) in

if check(concat2(rpHa,nT next,NC , sAtt), skC , resHM) then

event CallerAccept(NC , nT next, sAtt).

Fig. 2. Formalization of Caller’s actions

establishing a session key, and a random seed r1 for encryption. The process
then sends a message handlebind, NCStart, enc(salt, tpmkey, r1) on the channel
c5[iC]. The handlebind is the key handle of the bound entity. This message will
be received by the adversary, and the adversary can do whatever he wants with
it.

After sending this message, the control is returned to the adversary and the
process waits for the message on the channel c8[iC]. The expected type of this
message is nonce. Once receiving the message, the process will compute a session
key skC and an authorization comAuth. The function concati(1 ≤ i ≤ 6) are
concatenations of some types of bitstrings. We also use the functions getAuth
and getName to model the actions getting the authorization value and key
name of the enitity from the key handle. comCode, resCode, comParam and
resParam represent the command code, respond code, remaining command pa-
rameters and the response parameters respectively. sAtt stands for the session
attributes, which is a octet used to identify the session type. Since our analysis
uses the same session type, we model it a fixed octet here.

When finalizing the computation, the process will execute the event Caller-
Request(NC , nT , sAtt) and send the authorization comAuth, together with
comCode,handlebind,NC ,sAtt and comParam on the channel c9[iC]. Then the
process waits for the second message from the environment on the channel

150 W. Wang, Y. Qin, and D. Feng

QT =!iT �Nc2[iT](bdhandle : keyHandle, cCode : code, rCode : code,

cParam : parameter, rParam : parameter);

c3[iT]();

c6[iT](= bdhandle, nC Start : nonce, e : ciphertext);

new NT : nonce;

let injbot(saltT) = dec(e, tpmkey) in

let skseed = hash1(concat6(saltT , getAuth(bdhandle, authbind)),

concat5(ATH,NT , nC Start, bits)) in

let skT = mkgen(skseed) in

c7[iT](NT);

c10[iT](= cCode,= bdhandle, nC : nonce, sAttRec : flags,

comHM : macres,= cParam);

if getContinue(sAttRec) = true then

let cpHa = hash(hk, concat3(cCode,getName(bdhandle), cParam)) in

if check(concat1(cpHa,nC , NT , sAttRec), skT , comHM) then

even TPMAccept(nC, NT , sAttRec);

new NT next : nonce;

let rpHash = hash(hk, concat4(cCode, rCode, rParam) in

let resAuth = mac(concat2(rpHash,NT next, nC , sAttRes), skT) in

event TPMAcknowledgment(nC, NT next, sAttRec);

c11[iT](rCode, bdhandle,NT next, sAttRec, recAuth, rParam).

Fig. 3. Formalization of TPM’s actions

c12[iC]. The expected message is resCode, handlebind, nT next, sAtt, resHM and
resParam. The process checks the first component of this message is resCode
by using the pattern = resCode, so do the handlebind, sAtt and resParam;
the two other parts are stored in variables. The process will verify the re-
ceived acknowledgment resHM . If the check succeeds, QC executes the event
CallerAccept(NC , nT next, sAtt).

In this calculus, executing these events does not affect the execution of the
protocol, it just records that a certain program point is reached with certain
values of the variables. Events are used for specifying authentication proper-
ties, as explained next session. We show the TPM’s action in the Figure 3,
corresponding to the Caller’s action.

3.2 Security Properties

Definition of Authentication. The formal definitions can be found in [6].
The calculus use the correspondence properties to prove the authentication of
the participants in the protocols. The correspondence properties are properties

Automated Proof for Authorization Protocols of TPM 2.0 151

of the form if some event has been executed, then some other events also have
been executed, with overwhelming probability. It distinguishes two kinds of cor-
respondences, we employ the description from [8] below.

1. A process Q satisfies the non-injective correspondence event(e(M1, ...,Mm))

⇒
∧k

i=1 event(ei(Mi1, ..., Mimi)) if and only if, with overwhelming proba-
bility, for all values of the variables inM1, ...,Mm, if the event e(M1, ...,Mm)
has been executed, then the events ei(Mi1, ...,Mimi) for i ≤ k have also
been executed for some values of the variables of Mij(i ≤ k, j ≤ mi) not in
M1, ...,Mm.

2. A process Q satisfies the injective correspondence inj-event(e(M1, ...,Mm))

⇒
∧k

i=1 inj-event(ei(Mi1, ..., Mimi)) if and only if, with overwhelming
probability, for all values of the variables in M1, ...,Mm, for each execution
of the event e(M1, ...,Mm), there exist distinct corresponding executions of
the events ei(Mi1, ...,Mimi) for i ≤ k for some values of the variables of
Mij(i ≤ k, j ≤ mi) not in M1, ...,Mm.

Security Properties of the Authorization. One of the design criterion of
the authorization protocol is to allow for ownership authentication. We will
formalize these security properties as correspondence properties. Firstly, we give
the informal description of the security properties.

1. When the TPM receives a request to use some entity requiring authorization
and the HMAC verification has succeeded, then a caller in possession of the
relevant authV alue has really requested it before.

2. When a caller accepts the acknowledgment and believes that the TPM has
executed the command he sent previously, then the TPM has exactly finished
this command and sent an acknowledgment.

The first property expresses the authentication of the Caller and the second
one expresses the authentication of the TPM. We can formalize the properties
above as injective correspondence properties:

inj : TPMAccept(x, y, z)⇒ inj : CallerRequest(x, y, z). (1)

inj : CallerAccept(x, y, z)⇒ inj : TPMAcknowledgment(x, y, z). (2)

4 Authentication Results with CryptoVerif

In this section, we will take a brief introduction of CryptoVerif and the assump-
tion used in our model. Then we present security properties directly proven by
CryptoVerif under the assumptions in the computational model.

152 W. Wang, Y. Qin, and D. Feng

4.1 CryptoVerif

There are two main approaches to the verification of cryptographic protocols.
One approach is known as the computational model and another approach,
is known as the symbolic or Dalev-Yao model. The CryptoVerif, proposed by
Blanchet[4,5,6,7], can directly prove security properties of cryptographic proto-
cols in the computational model. This tool is available on line at:

http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

CryptoVerif builts proofs by sequences of games [19,3]. It starts from the ini-
tial game given as input, which represents the protocol to prove in interaction
with an adversary (real mode). Then, it transforms this game step by step using
a set of predefined game transformations, such that each game is indistinguish-
able from the previous one. More formally, we call two consecutive games Q
and Q′ are observationally equivalent when they are computationally indistin-
guishable for the adversary. CryptoVerif transforms one game into another by
applying the security definition of a cryptographic primitive or by applying syn-
tactic transformations. In the last game of a proof sequence the desired security
properties should be obvious (ideal mode).

Given a security parameter η, CryptoVerif proofs are valid for a number of
protocol sessions polynomial in η, in the presence of an active adversary. Cryp-
toVerif is sound: whatever indications the user gives, when the prover shows a
security property of the protocol, the property indeed holds assuming the given
hypotheses on the cryptographic primitives.

4.2 Assumptions

We introduce the basic assumptions and cryptographic assumptions adopted by
our model and the CryptoVerif as follow.

Basic Assumptions. One of the difficulties in reasoning about authorization
such as that of the TPM is non-monotonic state. If the TPM is in a certain
state s, and then a command is successfully executed, then typically the TPM
ends up in a state s′ �= s. Suppose two commands use the same session, the
latter must use the nonce generated by the former called nextnonceTPM as the
lastnonceTPM when computing the authorization comAuth. In other words,
the lastnonceTPM in the latter is equal to the nextnonceTPM in the former.
CryptoVerif does not model such a state transition system.

We address these restrictions by introducing the assumption described by the
S. Delaune et.al [12], such that only one command is executed in each session.

Cryptographic Assumptions. In the analysis of the authorization protocols,
the Message Authentication Code (MAC) scheme is assumed to be unforgeable
under chosen message attacks (UF-CMA). Symmetric encryption is assumed to

http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Automated Proof for Authorization Protocols of TPM 2.0 153

be indistinguishable under chosen plaintext attacks (IND-CPA) and to satisfy ci-
phertext integrity (INT-CTXT). These properties guarantee indistinguishability
under adaptive chosen ciphertext attacks (IND-CCA2), as shown in [2].

We assume that the key derivation function is a pseudo-random function and
use it to derive, from a key seed, a key for the message authentication code. The
key seed is generated from a keying hash function. The keying hash function is
assumed to be a message authentication code, weakly unforgeable under chosen
message attacks, which is in accordance with [1]. To be specific, we compute
the sessionkey in a more flexible way, the result of the keying hash function is
a keyseed and the sessionkey is generated from this keyseed using a pseudo-
random function.

4.3 Experiment Results

Here we present authentication results directly proven in the computational
model by CryptoVerif 1.16 under assumptions mentioned above.

Experiment 1: Case of Unbound and Unsalted Session. In this case,
we consider a protocol without session key. The attacker can obtain the key
handle but cannot get the corresponding authV alue. The Caller and TPM
will compute the HMAC keyed by authV alue directly.

But unfortunately, we cannot achieve the injective correspondences between
the event CallerAccept and TPMAcknowledgment in (2) by CryptoVerif
directly because of limitations of the prover: it crashes when proving this prop-
erty. However, it succeeds in the non-injective case, hence we complete this proof
by hand.

Lemma 1. In the protocol based on Unbound and Unsalted Session, if the prop-
erty:

CallerAccept(NC, nextnT, sAtt)⇒
TPMAcknowledgment(nC, nextNT, sAttRec)

holds, then we have

inj:CallerAccept(NC, nextnT, sAtt)⇒
inj:TPMAcknowledgment(nC, nextNT, sAttRec).

Proof. Since the non-injective property succeeds, we can find iC ≤ N such that
NC [iC] = nC [u[iC]], nT next[iC] = NT next[u[iC]], sAtt[iC] = sAttRec[u[iC]]
and iT ≤ N such that u[iC] = iT .

Suppose that there exists another i′C and i′T satisfy the property above,
and u[i′C] = i′T . In order to prove injectivity, It remains to show that the
probability of {iT = i′T , iC �= i′C} is negligible. The equality iT = i′T , i.e.
u[iC] = u[i′C], combined with NC [iC] = nC [u[iC]] and NC [i

′
C] = nC [u[i

′
C]] im-

plies that NC [iC] = nC [u[iC]] = nC [u[i
′
C]] = NC [i

′
C]. Since NC is defined by

154 W. Wang, Y. Qin, and D. Feng

restrictions of the large type nonce, NC [iC] = NC [i
′
C] implies iC = i′C with over-

whelming probability, by eliminating collisions. This implies that the probability
of {iT = i′T , iC �= i′C} is negligible. ��

With Lemma 1, we prove the injective correspondence properties in (1) and
(2) under assumptions of UF-MAC in the MAC scheme and collision resistant
in hash function using CryptoVerif.

Experiment 2: Case of Bound Session. We must compute the sessionkey
bound to an entity in this protocol. According to the authorization entity,
there are two kinds of protocols in this experiment. Firstly we consider the
session is used to authorize use of the bound entity with an authorization value
authV aulebind, the HMAC is keyed by sessionKey. In another situation, we em-
ploy the bound session to access a different entity with an authorization value
authV auleentity. The sessionKey is still bound to the entity with authorization
value authV aluebind while the HMAC will take the concatenation of sessionkey
and the authV auleentity as a key.

Providing the MAC scheme assumed to be UF-MAC and hash function in the
random oracle model, we prove the injective correspondence properties of two
kinds of protocols mentioned above using CryptoVerif.

Experiment 3: Case of Salted Session. This session can be treated as the
enhanced version of unbound and unsalted session. Salting provides a mechanism
to allow use of low entropy authV alue and still maintain confidentiality for
the authV aule. If the authV alue used in an unsalted session has low entropy,
the attacker will perform an off-line attack, which is detailed in the TPM 2.0
specification, Part 1 [20].

The salt value may be symmetrically or asymmetrically encrypted. In our
analysis, We assume an IND-CPA and INT-CTXT probabilistic symmetric en-
cryption scheme is adopted by the participants. We show that this protocol satis-
fies the injective correspondence properties in (1) and (2) under the assumption
of IND-CPA, INT-CTXT and UF-MAC.

Experiment 4: Case of Salted and Bound Session. If the bound entity has
a low entropy, it will still be under threat of the off-line attack. This session looks
like the enhanced version of bound session. Unlike the bound session only using
the authorization value of bound entity to compute the sessionKey, this session
employs both the authV aluebind and the salt value. The remaining computation
is the same as the bound session and the session also exist two kinds of the
protocols.

Nevertheless, we can still prove the injective correspondence properties of two
kinds of protocols using CryptoVerif under the assumption of IND-CPA, INT-
CTXT and UF-MAC.

Automated Proof for Authorization Protocols of TPM 2.0 155

As a result, We formalize the experiment results mentioned above as the fol-
lowing theorems. The authentication of TPM can be represented as the theorem
1.

Theorem 1. In the all kinds of authorization protocols, if there is an instance
of:

1. The TPM received a Caller’s command with a request for authorization of
some sensitive data,

2. The TPM executed this command and the HMAC check in this command
has succeeded.

Then with overwhelming probability, there exists a distinct corresponding in-
stance of:

1. The Caller is exactly in possession of the authV alue of this sensitive data.
2. The Caller has exactly send this command with a request for authorization

of this sensitive data.

We formalize the authentication of TPM as the following theorem.

Theorem 2. In the all kinds of authorization protocols, if there is an instance
of:

1. The Caller received an acknowledgment from the TPM,
2. The HMAC check in the response has succeeded and the Caller accepted the

acknowledgment.

Then with overwhelming probability, there exists a distinct corresponding in-
stance of:

1. The TPM has precisely received the callers request and executed this com-
mand,

2. The TPM has really send an acknowledgment to the Caller.

The proof for the Theorem 1 and Theorem 2 in the case of Salted and Bound
Session used to access the bound entity has been presented in the full version
[21] due to the page limitation. But the corresponding upper bounds to break
the authentication between the Caller and TPM can be found in Appendix A.
The other cases can be proved in a similar way, so we omit the details because
of length constrains.

Note that in the case of Unbound and Unsalted Session, CryptoVerif is
only able to prove the non-injective correspondence property between the even
CallerAccept and TPMAcknowledgment, but thanks to Lemma 1, we can
obtain the results of Theorem 2.

5 Conclusions

We have proved the security of authorization protocols in the TPM 2.0 using the
tool CryptoVerif working in the computational model. Specifically, we presented

156 W. Wang, Y. Qin, and D. Feng

a detailed modelling of the protocols in the probabilistic calculus inspired by
the pi calculus. Additionally, we model security properties as correspondence
properties. Then we have formalized and mechanically proved these security
properties of authorization protocols in the TPM 2.0 using Cryional model.

As future work, we will find out the reason why the prover crashes when
proving the injective correspondences between the event CallerAccept and
event TPMAcknowledgment in the protocols based on the Unbound and
Unsalted Sessions and try to improve the prover to fix it. We will extend our
mode with the asymmetric case encrypting the salt value. Also, we argue that
our model can be adapted to prove the confidentiality using CryptoVerif and it
will be our future work.

Acknowledgments. The research presented in this paper is supported by
the National Natural Science Foundation of China under Grant Nos. 91118006,
61202414 and the National Grand Fundamental Research 973 Program of China
under Grant No. 2013CB338003. We also thank the anonymous reviewers for
their comments.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

4. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing 5(4), 193–207 (2008)

5. Blanchet, B.: A Computationally Sound Mechanized Prover for Security Protocols.
In: IEEE Symposium on Security and Privacy (SP 2006), pp. 140–154 (2006)

6. Blanchet, B.: Computationally sound mechanized proofs of correspondence asser-
tions. In: CSF 2007, pp. 97–111 (2007)

7. Blanchet, B., Pointcheval, D.: Automated Security Proofs with Sequences of
Games. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554.
Springer, Heidelberg (2006)

8. Blanchet, B., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Computationally Sound
Mechanized Proofs for Basic and Public-Key Kerberos. In: Proceedings of the
2008 ACM Symposium on Information, Computer and Communications Security
(ASIACCS 2008), pp. 87–99. ACM (2008)

9. Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay attack in TCG specifica-
tion and solution. In: Proc. 21st Annual Computer Security Applications Confer-
ence (ACSAC 2005), pp. 127–137. IEEE Computer Society (2005)

10. Chen, L., Ryan, M.D.: Offine dictionary attack on TCG TPM weak authorisation
data, and solution. In: Future of Trust in Computing. Vieweg & Teubner (2009)

Automated Proof for Authorization Protocols of TPM 2.0 157

11. Chen, L., Ryan, M.: Attack, solution and verification for shared authorisation data
in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983,
pp. 201–216. Springer, Heidelberg (2010)

12. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication
in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 111–125. Springer, Heidelberg (2011)

13. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal Analysis of Protocols Based
on TPM State Registers. In: Proc. 24th IEEE Computer Security Foundations
Symposium (CSF 2011), pp. 66–80 (2011)

14. ISO/IEC PAS DIS 11889: Information technology C security techniques C Trusted
Platform Modules

15. Laud, P.: Secrecy Types for a Simulatable Cryptographic Library. In: Proceedings
of the 12th ACM Conference on Computer and Communications Security (CCS
2005), pp. 26–35. ACM (2005)

16. Lin, A.H.: Automated Analysis of Security APIs. Masters thesis. MIT (2005),
http://groups.csail.mit.edu/cis/theses/amerson-masters.pdf

17. Mitchell, J., Ramanathan, A., Scedrov, A., Teague, V.: A Probabilistic Polynomial-
Time Process Calculus for the Analysis of Cryptographic Protocols. Theoretical
Computer Science 353(1-3), 118–164 (2006)

18. Shao, J., Feng, D., Qin, Y.: Type-based analysis of protected storage in the TPM.
In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 135–150.
Springer, Heidelberg (2013)

19. Shoup, V.: Sequences of games: a tool for taming complexity in se-
curity proofs. Cryptology ePrint Archive, Report 2004/332 (2004),
http://eprint.iacr.org/2004/332

20. Trusted Computing Group. TPM Specification version 2.0. Parts 1-4, revision
00.99 (2013),
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

21. Wang, W.J., Qin, Y., Feng, D.G.: Automated Proof for Authorization Protocols of
TPM 2.0 in Computational Model (full version). Cryptology ePrint Archive (2014),
http://eprint.iacr.org/2014/120

A Proof of Theorem 1 and Theorem 2

A.1 Proof of Theorem 1

Proof. Case of Salted and Bound Session used to access the bound entity : the security
properties have proved by CryptoVerif automatically and we refer the readers to full
version [21] for the details of proof procedure.

The probability P (t) that an attacker running in time t breaks the correspondence

inj : TPMAccept(x, y, z) ⇒ inj : CallerRequest(x, y, z)

is bounded by CryptoVerif by P (t) ≤ 42.5×N2

|nonce| +N×Pmac(tG31+(N2+2N−3)tcheck+

(N2 + 8N − 9)tmac + (N − 1)tmkgen, N + 9, N + 3, l) + N × Pmac(tG24 + t + (9N −
9)tcheck +(3N − 3)tmac +(N − 1)tmkgen, 3, 9, l)+Penc(tG14 + t,N)+Pencctxt(tG11 +
t,N,N)) where N is the maximum number of sessions of the protocol participants,
|nonce| is the cardinal of the set of nonces, Pmac(t,N,N ′, l) is the probability of
breaking the UF-CMA property in time t for one key, N MAC queries, N ′ verification

http://groups.csail.mit.edu/cis/theses/amerson-masters.pdf
http://eprint.iacr.org/2004/332
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://eprint.iacr.org/2014/120

158 W. Wang, Y. Qin, and D. Feng

queries for massages of length at most l, Penc(t,N) is the probability of breaking
the IND-CPA property in time t and N encryption queries, Pencctxt(t,N,N ′) is the
probability of breaking the INT-CTXT property in time t, N encryption queries, and
N ′ decryption queries, and tG11 ,tG14 ,tG24 ,tG31 are bounds on the running time of the
part of the transformed games not included in the UF-CMA or INT-CTXT or IND-
CPA equivalence, which are therefore considered as part of the attacker against the
UF-CMA or INT-CTXT or IND-CPA equivalence, and tcheck, tmac and tmkgen are the
maximal runtime of one call to functions, correspondingly, check, mac and mkgen.
The first terms of P (t) comes from elimination of collisions between nonces, while the
other terms come from cryptographic transformations. 	

A.2 Proof of Theorem 2

Proof. Similar to the proof of theorem 1, and The probability P (t) that an attacker
running in time t breaks the correspondence

inj : CallerAccept(x, y, z) ⇒ inj : TPMAcknowledgment(x, y, z)

is bounded by CryptoVerif by P (t) ≤ 6.5×N2

|nonce| +N×Pmac(tG31 +(N2+2N−3)tcheck+

(N2+8N−9)tmac+(N−1)tmkgen, N+9, N+3, l)+N×Pmac(tG24+t+(9N−9)tcheck+
(3N−3)tmac+(N−1)tmkgen, 3, 9, l)+Penc(tG14+t,N)+Pencctxt(tG11+t,N,N)). 	

SBE − A Precise Shellcode Detection Engine

Based on Emulation and Support Vector
Machine

Yonggan Hou1, J.W. Zhuge2, Dan Xin1, and Wenya Feng1

Institute for Network Science and Cyberspace, Tsinghua University, China
{yghouforsec,xindan53,pkuwenyafeng}@gmail.com,

zhugejw@cernet.edu.cn

Abstract. An important method of detecting zero-day attacks is to
identify the shellcode which is usually taken as part of the attacks. How-
ever, the detection range is always restricted, for existent emulation based
detection techniques only take several features that are observed when
shellcode is emulated. In this paper, we propose a new shellcode detec-
tion algorithm based on emulation and Support Vector Machine(SVM).
One of the most prominent advantages is that by means of emulating,
we can get the real executed path which includes key features to identify
shellcode e.g. loop, xor, GetPC etc. Moreover, by recording aforemen-
tioned features and training them with SVM, we can rely on general
features to detect shellcode rather than on specific features. In addition,
we build a complete shellcode data set so that other researchers can fo-
cus on detection algorithms. We have implemented a prototype system
named SBE on Ubuntu/Amd-64 and tested our algorithm with various
kinds of shellcode. Experiment shows that the proposed algorithm has
a better detection rate than Libemu and could effectively detect all x86
shellcode with very few false positives.

1 Introduction

Code injection attack has become one of the most prevalent and pernicious at-
tacking methods since it occurred. The detection of code injection attack mainly
concentrates on detecting shellcode which serves as a crucial part of attack vec-
tor[5]. Moreover, shellcode detection is also an important way to defend against
zero-day attack. Significant work that includes both static and dynamic methods
have been proposed in recent years to identify shellcode in network traffic.

The existing static detection methods could be easily bypassed by polymor-
phism[10,14] and more complicated tricks such as metamorphism[20], and the
common dynamic detection method such as GetPC Heuristic is not capable of
identifying plain shellcode that does not change itself when being executed. In
this paper, we first propose a new shellcode detection algorithm based on emu-
lation, then record shellcode information when it is executed, and finally use our
SVM engine to classify it. Emulation ensures that the detection is not hindered
by shellcode polymorphism and metamorphism; and SVM engine guarantees us

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 159–171, 2014.
c© Springer International Publishing Switzerland 2014

160 Y. Hou et al.

of wide shellcode detection range, for it depends on general features rather than
specific features. In addition, we generate a data set which is consisted of var-
ious polymorphic shellcode. These shellcodes are encrypted by twenty different
shellcode engines[10,14,16,17]. We believe shellcode researchers will benefit a lot
from it(Appendix A). The proposed approach is implemented and tested with
thousands of polymorphic and plain shellcode. Results show that it could detect
all x86 shellcode with an acceptable overhead.

Section 2 describes related work, in section 3, we introduce our new way
to detect both plain shellcode and self-decrypting shellcode, and then present
methods that could reduce the overhead caused by emulation. Our experiment
and analysis are shown in section 4.

2 Related Work

Generally speaking, there are two kinds of shellcode: polymorphic shellcode
which will decrypt itself when it is running, and plain shellcode that will never
change itself in any case.

There are two common methods to detect shellcode: the static method and
the dynamic method. The most widely used static shellcode detection tool is
Snort[1], which uses generic signatures such as /bin/sh string matching and
NOP-SLED matching. It could be easily evaded by polymorphism. Stride[2] de-
tects NOP-SLED, which is an important attack vector in code injection. How-
ever, in some special cases, NOP-SLED is not necessary. Buttercup[3] tries to de-
tect possible return address ranges of known buffer overflow vulnerabilities, but
it brings more false positives and usually is impossible to include all suspectable
return addresses. Moreover, static detection method could not effectively handle
shellcode that is highly obfuscated.

Zhang[4] proposed an efficient detection method that combines emulation and
data flow analysis, but it can not detect shellcode that doesn’t contain GetPC
code[15]. Polychronaks[5] presented a new shellcode detection method that could
identify non-self contained shellcode, but it could not detect shellcode that re-
main unchanged during the execution. Dynamic shellcode detection methods
based on emulation could detect obfuscated shellcode effectively but they were
unable to detect plain shellcode. Libemu[24] is an open source shellcode detector
that could x86 shellcode using GetPC heuristics and binary backwards traversal(
similar to Zhang[4]). However, GetPC heuristic method could detect obfuscated
shellcode effectively, but can not detect most plain shellcode that do not contain
GetPC coded.

Gene[6] took advantage of shellcode’s behavior when resolving kernel32.dll ad-
dress, Khodaverdi[23] and Feng[22] emphasized on monitoring suspicious system
calls. Their methods works well on Windows platform, however, Linux shellcode
is beyond their capabilities.

SBE − A Precise Shellcode Detection Engine 161

Classification

Train

Malicious

Benign

Emulate
Benign Data

Malicious Data

Feature
Set PCA Training Model

Network
Traffic Emualte SVM

Engine

Fig. 1. Overview of the proposed architecture

3 The Proposed Method

In this section, we first present an overview of the method and then give a
detailed introduction of data extraction and feature extraction. Feature selection
and performance optimization is explained in the next two subsections.

To detect the shellcode effectively in the proposed method, two steps must be
achieved efficiently. Firstly the shellcode must be emulated correctly, otherwise
it will have a negative influence on the result of the next step. Then in the second
step, features must be elaborately selected, for its result will have both high false
positives and negatives unless the features are selected accurately.

3.1 Overview of the Proposed Method

Figure 1 illustrates the main parts of SBE architecture. The high level process
comprises two stages: train and classification. A brief interpretation is given
below and a more detailed description will be illustrated in the following sections.

In the train phrase, data(including both shellcode and benign data) is ob-
tained and labeled first, then it is emulated and all features are recoded before
triming redundant features with PCA algorithm, and finally a predictive model
is achieved after training procedure. In the classification phrase, network traffic
is emulated and classified by SVM engine with the model acquired before.

Network traffic packets will be emulated before further examination. As all
static analysis could be bypassed or deceived by advanced polymorphic tech-
niques, emulation is a reliable way to resist shellcode polymorphism or obfus-
cation[7,8]. According to some suitable modifications, our emulator is able to
emulate hard-coded shellcode[6]which could not be emulated by most existing
polymorphic shellcode emulators.

The more steps network traffic could be run with, the more shellcode infor-
mation could be got. Normally, most benign network traffic has a low execution
chain[9], it means that most harmless traffic will distinct from malicious traf-
fic. In order to get enough features when shellcode is emulated, we choose all
instructions and pick some typical features as initial SVM engine feature set at
the beginning, then sufficient features will be chosen and redundant features will
be trimmed. It is worth mentioning that some existing common features should

162 Y. Hou et al.

Decryptor
for Block N

Encrypted
Block 2

Decryptor

Decryptor
for Block 1

Decryptor
for Block 2 · · · Encrypted

Block 1 · · · Encrypted
Block N

Encrypted Playload

Fig. 2. The architecture of shellcode

be included[4]. Finally, the SVM engine could be used to classify network traffic
data that are emulated after train stage.

The reason why we choose SVM instead of NN(Neural Network) is that SVM
can achieve a decent detection accuracy while maintaining a better efficiency
than NN[27]. Whats more, SVM is less prone to overfitting in practice. We make
a comparison between RBF kernel and linear kernel(Appendix 2) to analyze
which one we should choose in real deployment and we decide to choose RBF
kernel SVM because it outperforms other kernels in practice.

3.2 Data Extraction

In order to achieve a better detection rate, data set should have a wide range
and cover most popular shellcodes including plain shellcode and polymorphic
shellcode. In this subsection, we introduce how to build our data set so that
researchers can focus on algorithm design rather than data collection. The fol-
lowing methods are made for the sake of generating our ample and various
shellcodes:

1. All primitive shellcodes are obtained from shell-storm[18] and exploit-db
[19], both of which contain various shellcode provided by security researchers and
ardent hackers. Besides, open source toolkits such as Metasploit is also adopted
to generate shellcode data.

2. Owing to most of the data is plain shellcode, we use some popular shell-
code polymorphic engines to encrypt shellcode that is obtained from the first
step. These engines are the most popular shellcode engines such as AMDmu-
tate[10,14,17] and other seventeen x86 shellcode encoders in Metasploit[16].

3. We make an agent with JSoup[22] to visit Alex Top 500 sites randomly and
capture all the data responded by these sites. It makes sense because most of
the data is frequently visited by common users. Other benign data is randomly
generated, such as ascii data and printable data.

4. A part of the test data is achieved from our honeynet that is deployed in
several Chinese universities. These data could guarantee the engines’ reliability
in real deployment. The other test data is generated from previous encoders by
encrypting previous random picked captured data.

All these data(benign or malicious) will be used to generate network streams:
malicious data will be used as the payload in a stimulated attack, benign data is
going to be adopted in engendering normal network streams that are most likely
to arise false positives.

SBE − A Precise Shellcode Detection Engine 163

00000000 31C9
00000002 6681E940FF
00000007 E8FFFFFFFF
0000000C C05E8176
00000010 0E
00000011 C9
00000012 CB
00000013 EC
00000014 40
00000015 83EEFC
00000018 E2F4
0000001A E6E1
0000001C E660
0000001E E3EB
……

xor ecx,ecx
sub cx,0xff40
call dword 0xb
rcr byte [esi-0x7f],0x76
push cs
leave
retf
in al,dx
inc eax
sub esi,byte -0x4
loop 0xe
out 0xe1,al
out 0x60,al
jecxz 0xb

Fig. 3. Static disassemble code

3.3 Features Extraction

Most plain shellcode do not have many features they are executable, but they
still have some features similar to polymorphic shellcode. To be more specific,
they would initialize registers and apply call or int instructions in the process
of execution. All features which have been observed and analyzed in the train-
ing phrase are added in initial feature set, for the redundancy features will be
eliminated by feature selecting procedure.

As illustrated in figure 2, polymorphic shellcode contains two main parts. The
first part of the shellcode is a decryptor that could decrypt shellcode dynamically,
then follows the encrypted payload of the shellcode. Polymorphic shellcode will
decrypt the encrypted part first, then executes the decrypted payload to achieve
certain purpose.

We analyze a typical polymorphic shellcode encrypted by call4 dword xor
engine in Metasploit, the disassembly code is shown in figure 3 and the real
execution chain is illustrated in figure 4. The left column of figure 3 is instructions
addresses in hex format, and the middle column shows the instruction codes, the
third column shows the disassembled instructions. Figure 4 is the same as figure
3 except that the first column is the emulator’s eip address.

The shellcode in figure 3, takes advantage of several special tricks which could
be described as follows:
(1) Call in the middle of instruction. The disassemble code is altered because
call dword 0xb instruction jumps into the middle of itself and instructs the CPU
to reinterpret the machine code bytes starting with the call instruction.
(2) GetPC. GetPC is a simple way to get program counter[11]. In figure 4, call
dword 0xb instruction will push the return address onto the stack and pop esi
instruction will store the return address in esi register, this address could be
used to compute the encrypted payload address later. Most polymorphic shell-
codes contain GetPC code except some non-self-contained shellcodes, as argued
by Polychronakis[5].

164 Y. Hou et al.

00471002 31C9
00471007 6681E940FF
0047100b E8FFFFFFFF
0047100d FFC0
0047100e 5E
00471015 81760EC9CBEC40
00471018 83EEFC
0047100e E2F4
00471015 81760EACB5BAA1
00471018 83EEFC

xor ecx,ecx
sub cx,0xff40
call dword 0xb
inc eax
pop esi
xor dword [esi+0xe],0x40eccbc9
sub esi,0xfffffffc
loop 0xfffffff6
xor dword [esi+0xe],0xa1bab5ac
sub esi,0xfffffffc

Fig. 4. Real execution chain

(3) Loop and Self-decrypting. As the primary goal of polymorphism is to con-
ceal its real code from Intrusion Detection Systems(IDS), self-modifying is an
investable part of polymorphic shellcode and using loops is a suitable way to
achieve this goal.

There are also some other techniques to encode a polymorphic shellcode[8],
and all features of these techniques are applied in SBE feature extraction step.
All instructions are added as well, to guarantee that ample runtime information
is generated from emulation.

3.4 Feature Selection

As illustrated in figure 1, once initializing our feature set, next step is to filter
the useless, and redundant features should be done next. Feature selection could
boost SVM engines efficiency and speed. We use PCA algorithm[12] to select
ultimate features of recorded information. Before applying PCA algorithm, fea-
ture scaling[13] must be done first.
Suppose the training set X is x(1)x(2)(x3)...x(n). PCA algorithm could be de-
scribed as below:
(1) Compute covariance matrix of XXT using follow Eq1(Σ represents covari-
ance , n is origin data dimension, m is translated data dimension):

∑
=

1

m

i=1∑
n

(
x(i)

)(
x(i)

)T

(1)

(2) Compute eigenvectors of matrix Σ, get a m× n matrix.
(3) Translate each training data from n dimensions to m dimensions by multi-
plying them separately.
Overall feature selection flow could be described as:
(1)Try PCA with k = 4.
(2)Compute Σ,x(1), x(2), x(3),...x(m).
(3)If Eq2 is false, continue and add k, else return k value.

SBE − A Precise Shellcode Detection Engine 165

CommandReturn:
pop ebx
xor eax,eax
push eax
push ebx
mov ebx,0x7c8615b5
call ebx
xor eax,eax
push eax
mov ebx, 0x7c81ca82
call ebx

GetCommand: ;Define label for location of command string
call CommandReturn
db "cmd.exe /c net user PSUser PSPasswd /ADD && net localgroup Administrators /ADD PSUser"
db 0x00

Fig. 5. Example of a hard-coded shellcode

1
m

∑m
i=1

∥∥∥x(i) − x
(i)
approx

∥∥∥2
1
m

∑m
i=1

∥∥x(i)∥∥2 � 0.01? (2)

where denominator represents total variation in the data, numerator is average
squared projection error.

3.5 Performance Optimization

(1)Enhance emulation ability
Some modifications are made to enable SBE to emulate some hard-coded

address shellcode, as illustrated in figure 5, 0x7c8615b5 is the address of WinExec
in Windows SP2, but the function’s address is different in other versions of
Windows. Gene[11] and other existing dynamic detector choose to ignore these
kinds of shellcode because it is impossible to emulate.

In this paper, we enable the emulation of hard-coded address shellcode by
initializing all Windows memory with 0x3c before loading any dlls. 0x3c is the
operation code of ret instruction, if any shellcode accesses a wrong address of
system function, the emulator will just simply call a ret instruction and the
execution chain will not be interrupted. As is shown in figure 5, two direct
address calling instruction will be simply returned.

(2) Trim impossible paths
Network traffic emulation could achieve a decent throughput because most

benign traffic will terminate early when emulated. And common traffic often
contains privileged instructions, which can’t participate in a common shellcode.

Our way to skip illegal paths is quite similar to Polychronakis[5], the principle
of which could be described as: if there is a privileged instruction in the execution
path but it doesn’t contain any control transfer and self-modifying instructions,

166 Y. Hou et al.

the path could be skipped. As is illustrated in figure 6, the red path1,2,3,4,5,6
could be escaped because outsb is a privileged instruction and these paths do
not contain any control transfer or self-modifying instructions.

4 Experiment Evaluation

In order to verify the proposed method, a large number of data including both
malicious and benign samples are used to train and test the SVM engine. Since
most shellcode detectors are not public available except Libemu, we make a
comparison between SBE and Libemu in section 4.2. Result shows that the
detection engine is able to detect all kinds of shellcode with few false negatives
and zero false positives.

4.1 Data Set

Both benign and malicious data in our data set are uploaded to the internet,
and are publicly available now. Moreover, some useful tools which could translate
these data to specific format are also included. As there is no existing complete
shellcode data set before, this data set will liberate shellcode security researchers
from seeking experimental data. The format of the data is c style(looks like
\xf1\x3c).

0 1 2 3 4 5

85 C0 33 C0 6E ···

test eax, eax
db 0xc0
xor eax, eax
shr byte [esi + 0x0], 0x0
outsb

Fig. 6. Illegal instruction path

Name

Benign

Set 1

Set 2

Set 3

Set 4

Malicious

Set 1

Set 2

Set 3

Description

data that was captured from top 10 site ranked by Alex

printable data that is randomly generated

random ascii data

Windows and Linux data

plain shellcode obtained from shell-storm, exploit-db and Metasploit

Metasploit(17 encoders) encrypting shellcode

Clet, ADMmuated Tapion encrypting shellcode

5.98G

Size

1.2G

1G

1.2G

381.7MB

906MB

74.3MB

Fig. 7. Data set composition

SBE − A Precise Shellcode Detection Engine 167

Name SBE Libemu

Clet 100% 99%

ADMmutate 100% 97.5%

Tapion 98.5% 93.5%

MSF Encoders(17) 97.5% 87%

Real 100% 85%

Plain 91.5% 30.2%

Fig. 8. Detection Rate Comparison of SBE and Libemu

Plain shellcode is obtained from shell-storm[18] ,exploit-db[19] and Metas-
ploit[16] toolkit, various range of shellcodes are included, such as port-bind
shellcode, connect back shellcode, add-user shellcode, egg-hunt shellcode etc.
Then these shellcodes are encrypted by different shellcode encrypting engienes(
20 in total).

Benign data could be divided into 4 categories: random ascii data, random
printable data, benign network traffic data and Windows and Linux executable
data is also included because it is most likely to arouse false positives.

One part of the test data is obtained from the honeynet deployed in TsingHua
University and Northeastern University. The other part is achieved from mutated
train data and the test data is randomly picked and encrypted by other shellcode
engine. figure 7 illustrates the detailed information about data set covering both
benign and malicious ones.

1 10 100 1000 10000 100000 1000000

0

200

400

600

800

1000

Processing Cost

T
im

e
(S

)

Data(KB)

Fig. 9. Overhead caused by SBE

168 Y. Hou et al.

4.2 Detection Rate vs Libemu

We conducted several experiments with SBE and Libemu(an open source shell-
code detection library), the results are shown in figure 8.

As it is shown in figure 8, SBE identifies all shellcode encrypted by Clet and
ADMmuate while Libemu loses less than 2% of them. The abilities of detect-
ing Tapion shellcode of both detectors are quite similar. The detection rate of
Libemu is a little lower in MSF encrypted shellcode detection and we believe
that some emulation bugs in Libemu emulator(could not emulate some assembly
instructions such as ‘movsb’) are responsible for the declining after debugging
Libemu.

SBE has a prominent advantage of detecting plain shellcode over Libemu,
because most plain shellcode doesn’t contain GetPC code, which is a basic de-
tecting principle of Libemu.

All benign data that we generated were embedded in six million streams which
contained various types such as TCP, UDP, FTP, etc. In both SBE and Libemu,
zero false positive was found while detecting ASCII and printable data. Ten http
packets and 50 windows binary packets were wrongly identified by Libemu while
SBE only mistook zero http packet and one windows binary packet. As a matter
of fact, SBE surpasses most of other existing detectors[4, 5, 11] in false positive.

The results prove that SBE is reliable shellcode detection engine which could
sensitively discover attacks that contain shellcode and beats Libemu in all
aspects.

4.3 Processing Cost

In this section, we evaluate the time cost of the proposed method. The time
of loading one shellcode to memory is not included because in most cases, the
loading time of network traffic data is negligible. SBE is run on a machine
equipped with Ubuntu 12.10, Core i3 2.26GHz CPU and 4GB RAM. Figure 9
shows the speed of SBE dealing with various files.

We could observe that when the data quantity is smaller than 10MB, the
overhead of SBE is almost constant(about 0.2s), it also means that when SBE
is deployed in a system with small traffic, the detection time is constant(so
it is suitable to deploy SBE in a honeynet). As the data quantity increases,
processing speed of SBE falls down and finally relationship of cost time and
data size becomes linear. When data quantity is bigger than 100MB , the rough
speed of the implements system is 0.81M/S and more optimizations would have
to be done to speed up its detection ability.

5 Conclusion

In this paper, we propose an novel shellcode detection method that could detect
both polymorphic shellcode and plain shellcode and the proposed method is in-
dependent of specific shellcode features and more robust than other engines[4,6],

SBE − A Precise Shellcode Detection Engine 169

and we have implemented a prototype system called SBE on Unbuntu/Amd64.
In addtion, we make a complete data set that contains thousands of shellcode
encrypted with 20 different public engines, 1.4G in total. We believe this data
set will facilitate the data collection work of other security researchers.

The evaluation results have shown that our method is quite promising. SBE
has a better detection rate than Libemu and could detect various kinds of shell-
code with a considerably low false negatives and no false positives. In addition,
the overhead SBE caused is roughly linear so it could achieve a decent perfor-
mance compared with other methods[4,5].

Future work may focus on further performance optimization of SBE to en-
hance its data processing ability. In addition, we plan to extend our method to
other system architectures which require more emulation supports.

Acknowledgement. This work is supported by National Science and Technol-
ogy Major Project of China (2012ZX01039-004) and National Natural Science
Foundation of China (61003127).

References

1. Roesch, M.: Snort-lightweight intrusion detection for networks. In: Proceedings of
the 13th USENIX Conference on System Administration, pp. 229–238 (1999)

2. Akritidis, P., Markatos, E.P., Polychronakis, M., Anagnostakis, K.: Stride: Poly-
morphic sled detection through instruction sequence analysis. In: Sasaki, R., Qing,
S., Okamoto, E., Yoshiura, H. (eds.) Security and Privacy in the Age of Ubiquitous
Computing. IFIP AICT, vol. 181, pp. 375–391. Springer, Heidelberg (2005)

3. Pasupulati, A., Coit, J., Levitt, K., Wu, S.F., Li, S., Kuo, J., et al.: Buttercup: On
network-based detection of polymorphic buffer overflow vulnerabilities. In: Network
Operations and Management Symposium, NOMS 2004, pp. 235–248. IEEE/IFIP
(2004)

4. Zhang, Q., Reeves, D.S., Ning, P., Iyer, S.P.: Analyzing network traffic to detect
self-decrypting exploit code. In: Proceedings of the 2nd ACM Sympoium on Infor-
mation, Computer and Communications Security, pp. 4–12 (2007)

5. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detec-
tion of non-self-contained polymorphic shellcode. In: Recent Advances in Intrusion
Detection, pp. 87–106 (2007)

6. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Comprehensive shellcode
detection using runtime heuristics. In: Proceedings of the 26th Annual Computer
Security Applications Conference, pp. 287–296 (2010)

7. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the in-
feasibility of modeling polymorphic shellcode. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, pp. 541–551 (2007)

8. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-
ings of the 16th ACM Conference on Computer and Communications Security,
2009, pp. 524–533 (2009)

9. Tóth, T., Kruegel, C.: Accurate buffer overflow detection via abstract payload
execution. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516,
pp. 274–291. Springer, Heidelberg (2002)

170 Y. Hou et al.

10. Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk, M.: Polymorphic shellcode
engine using spectrum analysis (2003) Phrack, ed.

11. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network Level polymor-
phic shellcode detection using emulation. In: Büschkes, R., Laskov, P. (eds.)
DIMVA 2006. LNCS, vol. 4064, pp. 54–73. Springer, Heidelberg (2006)

12. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The
Journal of Machine Learning Research 3, 1157–1182 (2003)

13. Joachims, T.: Making large scale SVM learning practical (1999)
14. K2. ADMmutate, http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz (2001)
15. Skape. Implementing a custom x86 encoder. Uninformed, 5 (September 2006)
16. Metasploit project (2006), http://www.metasploit.com/
17. Bania, P.: TAPiON (2005), http://pb.specialised.info/all/tapion/
18. Salwan, J.: Shell-storm, http://www.shell-storm.org/
19. Offensive Security. Exploit DB, http://www.exploit-db.com/
20. Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley Pro-

fessional (February 2005)
21. Hedley, J.: Jsoup: Java html parser, ed. (2010)
22. Feng, H.-A.: “Generic shellcode detection,” ed: US Patent 8,307,432 (2012)
23. Khodaverdi, J.: Enhancing the Effectiveness of Shellcode Detection by New Run-

time Heuristics. International Journal of Computer Science 3, 02–11 (2013)
24. Baecher, P., Koetter, M.: libemu (2009), http://libemu.carnivore.it/
25. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST) 2, 27 (2011)
26. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: A

library for large linear classification. The Journal of Machine Learning Research 9,
1871–1874 (2008)

27. Andrs, P.: The equivalence of support vector machine and regularization neural
networks. Neural Processing Letters 15, 97–104 (2002)

http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz
http://www.metasploit.com/
http://pb.specialised.info/all/tapion/
http://www.shell-storm.org/
http://www.exploit-db.com/
http://libemu.carnivore.it/

SBE − A Precise Shellcode Detection Engine 171

Appendix

A Data Address

All data sets are transformed to C Style and are uploaded to Baidu Yun already, the
addresses are listed below:

1.ADMmutate: http://pan.baidu.com/s/15TS7H
2.CLET: http://pan.baidu.com/s/1EHv3A
3.Shell-storm windows shellcode: http://pan.baidu.com/s/1fOah
4.Shell-storm linux shellcode: http://pan.baidu.com/s/1LLJG
5.MSF Windows Shellcode: http://pan.baidu.com/s/1y2uEy
6.MSF Linux Shellcode: http://pan.baidu.com/s/1gl0uO
7.Alex Data: http://pan.baidu.com/s/1xMylf
8.ASCII Data: http://pan.baidu.com/s/1CF18w
9.Printable Data: http://pan.baidu.com/s/17VJW3

More data will be uploaded later after we finish the format transformation.

B Kernel Selection

We made a comparison of linear SVM and nonlinear SVM with RBF kernel. We com-
pared LIBSVM[25] and LIBLINEAR[26], the results are shown in table3.

As it is shown in Fig 10, parameters C andare automatically found by a tool called
grid.py[25]. Data sets in the table contain same benign samples and different malicious
for the reason that it is more intuitive for us to analyze the detection ability of SBE
separately. It is clear that Linear SVM is more efficient that RBF-SVM, but it lacks
of accuracy. In most cases, SBE will be trained first before it deployed in the real
environment and be re-trained to cover new cases. So we choose RBF instead of linear
with parameter C=8, γ=0.5.

Data Set

Clet

ADMmutate

Tapion

MSF Encoders(17)

Captured Data

Plain

Linear (LIBLINEAR)

30

32

30

31

31

32

0.2

0.1

1.1

1.6

1.2

0.5

RBF (LIBSVM)

8

8

6

10

7

8

0.5

0.5

0.7

0.6

0.4

0.5

0.8

0.4

2.0

4.0

2.2

1.3

C Time(s) C γ Time(s)

99.1%

99.5%

97.6%

94%

91%

98%

Accuracy

100%

100%

99%

98%

93%

100%

Accuracy

Fig. 10. Comparison between linear SVM and RBF SVM

http://pan.baidu.com/s/15TS7H
http://pan.baidu.com/s/1EHv3A
http://pan.baidu.com/s/1fOah
http://pan.baidu.com/s/1LLJG
http://pan.baidu.com/s/1y2uEy
http://pan.baidu.com/s/1gl0uO
http://pan.baidu.com/s/1xMylf
http://pan.baidu.com/s/1CF18w
http://pan.baidu.com/s/17VJW3

HDROP: Detecting ROP Attacks

Using Performance Monitoring Counters

HongWei Zhou1,2,3, Xin Wu1,2, WenChang Shi1,2,
JinHui Yuan3, and Bin Liang1,2

1 Key Laboratory of Data Engineering and Knowledge Engineering,
Ministry of Education, Beijing, China

2 School of Information, Renmin University of China, Beijing, China
3 Information Engineering University, Zhengzhou, China

Abstract. Combining short instruction sequences originated only from
existing code pieces, Return Oriented Programming (ROP) attacks can
bypass the code-integrity effort model. To defeat this kind of attacks, cur-
rent approaches check every instruction executed on a processor, which
results in heavy performance overheads. In this paper, we propose an
innovative approach, called HDROP, to detecting the attacks. It utilizes
the observation that ROP attacks often make branch predictor in modern
processors fail to determine the accurate branch destination. With the
support of PMC (Performance Monitoring Counters) that is capable of
counting performance events, we catch the abnormal increase in branch
mis-prediction and detect the existence of ROP attacks. In HDROP, each
basic unit being checked consists of hundreds of instructions rather than
a single one, which effectively avoids significant performance overheads.
The prototype system we developed on commodity hardware shows that
HDROP succeeds in detecting ROP attacks, and the performance tests
demonstrate that our approach has acceptably lower overheads.

Keywords: ROP, misprediction, branch, performance monitoring
counters.

1 Introduction

ROP(Return Oriented Programming) is a kind of code-reuse attack technique
which constructs the exploits by combining short instruction sequences only orig-
inating from the existing binaries code. Without injecting any new component,
it can circumvent the protection provided by current code-integrity efforts in-
cluding W⊕X, NICKLE[1] and Secvisor[2], etc. Furthermore, the adversary is
able to perform Turing-complete computation with ROP technology, and ROP
has been a practical attack technique to subvert computer system.

The first ROP attack is proposed in 2007[3], it chains some gadgets together
which are the short instruction sequences ending with ret instruction. Gadgets
are the essential units for ROP attack. Therefore, a feasible prevention idea is
to make it difficult to identify gadgets in the available code-bases. Following

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 172–186, 2014.
c© Springer International Publishing Switzerland 2014

HDROP: Detecting ROP Attacks Using Performance Monitoring Counters 173

this idea, an approach to build ret -less software is presented[4]. However, to
avoid the reliance on ret instruction, JOP(Jump Oriented Programming)[6,7]
is proposed which launches attack using gadgets ending with jmp instruction
instead of ret instruction. Meanwhile, some improved ROP techniques that are
able to automatically construct ROP exploits are presented[8,9].

ROP prevention solutions can be divided into two main categories. One is to
defeat ROP attacks by eliminating the available gadgets in the code-base[4,5].
G-free[5] is a typical approach which focus on removing the gadgets from the
intended and unintended code-base. It wipes off the unintended instructions
by aligning the instructions with a code-rewriting technology and protects the
existing ret and indirect jmp/call instruction with the another approach. Thus,
the adversary fails to find the available gadgets in the new code-base to launch
ROP attack.

The other is to detect ROP attacks on the abnormity introduced by its
execution[13,14,15]. ROPdefender[13] checks the destination of every ret instruc-
tion, because ROP misuse ret instruction to transfer the control from one gadget
to the next gadget. Other researches follow a similar method. However, these so-
lutions are usually implemented on the binary instrumentation framework such
as pin[19] or Valgrind[20]. With the support of binary instrumentations, they
check each executing instruction to detect the special abnormity. As a conse-
quence, they all incur a heavy performance overhead from 2x to 5.3x times
slower.

In this paper, we focus on how to detect ROP attacks, and propose a novel so-
lution called HDROP(Hardware-based solution to Detect ROP attack) which is
capable of detecting ROP attacks without significant performance overheads.
Unlike existing solutions, HDROP takes hundreds of instructions as a basic
checking unit rather than a single one. Thus, the monitor is not necessary to
be frequently trapped in. Consequently, it is able to reduce the performance
overhead induced by the context-switches between monitoring objects and de-
tecting mechanism.

Our approach is on the following observation. It is well known that modern
processors utilize branch predictor to improve their performance. However, ROP
attacks often make it fail to predict the right branch target. The cause is that
ROP attacks break the normal execution for transferring the control from one
gadget to the next, which makes branch targets sharply different from the origi-
nal ones. Therefore, HDROP detects ROP attacks by our new idea that if there
is an abnormal increase of misprediction on the given execution path, it maybe
introduce a ROP attack.

To catch mispredictions and other interesting processor events, HDROP uti-
lizes the capabilities supported by the hardware PMC(Performance Monitoring
Counters) which is available on the Intel processor[16]. PMC holds some hard-
ware counters to count the processor performance events including retired in-
struction, executed ret instruction and so on. With the support of PMC, we
build a misprediction profile for the monitored execution path, and expose the
abnormal increase of misprediction introduced by ROP attacks.

174 H. Zhou et al.

Our prototype system is developed on Fedora 5 with a 2.6.15-1 kernel. At first,
HDROP collected the related data by inserting thousands of checkpoints into
the kernel utilizing a compiler-based approach. Then, it catched the abnormal
increase of misprediction and detected ROP attacks on the prepared data. To
validate the effectiveness of HDROP, we have constructed a ROP rootkit with
the approaches introduced by [3] and [7]. Our experiments show that HDROP
is capable of detecting ROP attack. Furthermore, we have implemented the
performance tests on commodity hardware and the results demonstrate that
HDROP has acceptable lower performance overheads.

The rest of the paper is organized as follows. Section 2 and section 3 present
our design and implementation of HDROP respectively, followed by the evalua-
tion of HDROP in section 4. The discussion of our solution is detailed in section
5. Section6 surveys related work and section 7 concludes this paper.

2 Design

In our design, there are three main challenges to be overcome. First, what are
our interesting performance events? PMC is capable of monitoring a variety of
processor performance events, and we need to identify those which are closely
helpful to detect ROP attack. Second, how to collect the data from the hardware
counters(e.g. PMC) for the further detection? Ideally, they should be collected
without the heavy overhead. Third, how to design detecting algorithm. In this
paper, we construct the algorithm on a balance between the accuracy and the
performance overhead. The solutions will be discussed in detail in the following
subsections.

2.1 Interesting Performance Event

BR RET MISSP EXEC[16] is our first interesting performance event. More
specifically, BR RET MISSP EXEC means that hardware counter records the
number of mispredicted executed ret instructions[16]. By catching it, we are able
to detect ROP attacks on an abnormal increase of mispredicted ret instructions.
It is noted that HDROP is designed to detect ROP attacks that utilize the gad-
gets ending with ret instruction in this paper. If detecting JOP attacks[6,7], we
should identify other processor performance events, and we consider it as our
future work.

There is a distinction between executed instruction and retired instruction.
An executed instruction may not be a retired instruction. In other words, more
executed instructions are counted than actual retired instructions on the same
execution. Ideally, BR RET MISSP RETIRED should be our interesting event.
However, we fail to identify the expected performance event. To resolve this
issue, we utilize BR RET MISSP EXEC as the alternative, but this does not
weaken the capability of detecting ROP attacks.

The number of executed ret instruction is also our interesting data. It is con-
sidered as the necessary data for accurately detecting ROP attacks. With the

HDROP: Detecting ROP Attacks Using Performance Monitoring Counters 175

different input, there are different execution paths on the same monitored in-
structions. To detect the abnormal increase of mispredicted ret instructions for
the given monitored instructions, we have to generate the baseline for each path.
In more serious cases, the baseline may be submerged by “noise”. However, if
we obtain the number of executed ret instructions at the same time, it is more
easy to identify the execution path than before. Furthermore, it is feasible to
detect ROP attacks with several baselines. Therefore, BR RET EXEC is an-
other interesting performance events which counts the number of executed ret
instructions[16].

At last, we pay close attention to the number of the retired instructions. As
mentioned earlier, our solution takes hundreds of instructions as a basic checking
unit. So we want to know the number of the retired instructions on the checked
execution path. With the number, we are able to know the length of our moni-
toring execution path, and the frequency that HDROP trap in at the checking
time. The performance event is denoted as INST RETIRED.ANY P[16].

2.2 Collecting Data

Figure 1 demonstrates our scheme collecting data for monitored instructions. To
prepare the data for the detection, we insert some CPs(Checking Points) into
the software. These CPs scatter in the software, and read the hardware counters
for collecting their current values, and log the values for further detection. To
the end, there are two CPs located around the monitored instructions. As shown
in figure 1, CP1 reports reading1, and CP2 reports reading2. Thus, reading2
minus reading1 is the prepared data for checking the monitored instructions A.

In our design, reported reading of every CP can be utilized many times. As
shown in figure 1, monitored instructions A are adjacent to monitored instruc-
tions B. Therefore, CP2 is not only considered as the exit of monitored instruc-
tions A, but also the entry of monitored instructions B. Thus, reading2 is used
twice as reading2 minus reading1 and reading3 minus reading2. Note that not
every reading is used many times because the monitored instructions are not
always adjacent to each other.

Fig. 1. An example of collecting data

Ideally, every entry and exit of the monitored instructions should be accom-
panied with one CP. With the above example, CP1 and CP2 should be located

176 H. Zhou et al.

at the entry and exit of monitored instructions A respectively. However, it is
impossible to accurately deploy CPs as we expect, because we often have not
overall information of CFG(Control Flow Graph). Therefore, it maybe have some
entries and exits of monitored instructions uncovered by CPs. We maybe fail to
monitor some execution paths because no CPs collect the values of the hard-
ware counters. To address the above problem, it seems as a feasible solution by
reducing monitored instructions. However, there is a balance between the per-
formance overhead and the length of monitored instructions. Let’s imagine two
extreme cases. First, the monitoring object only hold one or several instructions.
However, the checker is trapped frequently, and this incurs a high performance
slowdown as existing solutions. On the other hand, locating only several CPs
in entire software is also not recommended because the introduced abnormity is
easy to be submerged by “noise”.

In our opinion, a function can be considered as the ideal basic monitoring
unit. Suppose that we have known the number of mispredicted ret instructions
of every subfunctions, the abnormity occurred in the parent function is easy to be
captured. Two causes contribute to it. First, a function seldom has hundreds sub-
functions. In other words, the sum of ret instructions is usually no more than one
hundred. Second, not every ret instruction issues one BR RET MISSP EXEC.
Note that the proposed approach is recursive, we have to monitoring every sub-
function before monitoring their parent. On the other hand, it is possible to take
several functions as a monitoring unit if these functions incur few mispredictions.
Thus, we can reduce the performance overhead further.

2.3 Detecting Algorithm

The goal of detecting algorithm is distinguishing the abnormality from “noise”.
To the end, the direct way is the classification algorithms. For example, we can
use ANN(Artificial Neural Networks) as detecting algorithm. First, we define
two categories including normality and abnormity to be classified. Then ANN is
trained to recognize two classes at the training time, and output the likelihood
of ROP attacks in the checking time. However, in this paper, we do not utilize
it as our detecting algorithm because of its heavy performance overhead.

Our detecting algorithm is an effective algorithm that is demonstrated in
figure 2. As shown in the figure, the number of mispredicted ret instructions
and executed ret instructions are denoted as missp num and exec num, and the
prepared data are denoted as the points. After the training, we build a shadowed
section to hold all legal points. At the checking time, if there is a ROP attack,
the point locates outside of the shadowed section. There are the simple formula
for the algorithm: a ∗ exec num+ b < missp num < a ∗ exec num+ b + c where
a, b and c are the computed parameters.

We first explain the parameter c. Usually, ROP attacks need about 5-10
gadgets[3,7,8]. Some existing detecting approaches consider that 3-5 gadgets
contribute to ROP attacks[14,15]. In this paper, we regard the number as 5
which is denoted as c shown in figure 2. It means that most of ROP attacks in-
crease the number of mispredicted ret instructions by 5. For example, assuming

HDROP: Detecting ROP Attacks Using Performance Monitoring Counters 177

Fig. 2. An example of detecting algorithm

that the number of mispredicted ret instructions is 3 in the normal execution,
there maybe a ROP attack if the number is more than 8 at the running time. In
essence, our detecting algorithm is to identify a narrow-region to only hold all
legal points whose width is less than parameter c.

We compute parameter a and parameter b on the training data. At the train-
ing time, we collect the number of mispredicted ret instructions and executed ret
instructions. In this way, we get some legal points as shown in figure 2. Mean-
while, we know the possible illegal points since we have known the legal points.
On the training data, we compute parameter a and b to build an expected sec-
tion as shown in figure 2. The section must hold all legal points, but any illegal
point. Note that the section does not always exist. In the scenario, the legal
points and illegal points are mixed, and no section hold all legal points whose
width is less than parameter c. To overcome it, we have to adjust the location
of CPs, and reduce the length of monitored instructions. In an extreme case, we
only monitor a function without any subfunctions by narrowing the length of
monitored instructions, thus we absolutely obtain the section.

3 Implementation

We have implemented a prototype of HDROP on fedora 5 with a 2.6.15-1 kernel.
Though most of ROP attacks are in the user space, [4] and [8] demonstrates the
feasibility of developing ROP rootkit in the kernel-space. Moreover, [4] proposes
a practicable defense technology to defeat ROP attacks. Like the above work, we
have developed HDROP to check ROP attacks in the kernel-space in this paper.
However, we believe that HDROP can be easily ported for detecting ROP attacks
in the user-space.

HDROP consist of some CPs and a DU(Decision Unit). To collect data, we
insert thousands of CPs into the kernel with a compiler-based approach, and
every CP sends the readings of hardware counters to DU. DU is developed as a
loadable module, and it activates the CPs in the kernel with a CP-map at the
loading time. HDROP is capable of customizing the monitoring objects with the
configured CP-map. At the training time, DU logs the collecting data to compute
the parameters of the detecting algorithm. At the running time, it performs the
final checking along the detecting algorithm.

In our implementation, the main challenge is to insert thousands of CPs into
the kernel. Our solution is developing a gcc plug-in that dynamically inserts

178 H. Zhou et al.

two CPs around each call instruction. More specifically, we rewrite the machine-
described file that is used as the guider for generating assembly code, and ask
gcc to insert the new instructions before and after each call instruction. The
instruction call the CPs function to report the readings of hardware counters.
Thus, we can monitor the execution of a function.

Figure 3 shows an example of our approach. Assume that we want to monitor
function F B, we insert two additional instructions around the call instruction in
function F A, which is shown as call F B in figure 3. The inserted instruction is
a five-byte call instruction which is shown as shadowed pane in the figure. Thus,
CPs collect the readings of hardware counters before and after the execution
of function F B. We redirect the kernel control flow to our code for collecting
readings of hardware counters.

Fig. 3. An example of inserting CPs. The shadowed panes are the inserted instructions,
and function F B is the monitored object. The dashed line indicates original execution
path, while the solid line shows appended execution path after CPs inserting into the
kernel.

Some readers may wonder that why we place the CPs around each call in-
struction? Our original intention is to build a function-granularity monitoring
framework. To the end, as shown in figure 3, one CP is inserted at the entry of
the function, and the other is inserted at the exit. Before CPs are inserted, the
execution path is shown by the dashed line in figure 3. After CPs are installed,
two additional executions are introduced which are indicated by the solid line
in figure 3. Moreover, with a configurable CP-map, it is flexible to monitor the
different functions. In this way, HDROP is able to cover most of kernel execution
path. Of course, there are some feasible solutions to insert CPs into the kernel
with the same goal. For example, we can insert the CPs at the beginning and
end of every function, which is considered it as an alternative scheme.

4 Evaluation

4.1 Effectiveness

To validate the effectiveness of our solution, we had constructed a ROP rootkit
guided by the approaches introduced by [3] and [7]. The rootkit waved six gad-
gets together that ends with ret instruction. Moreover, it did not reach any

HDROP: Detecting ROP Attacks Using Performance Monitoring Counters 179

malicious end, and only transfer the control from one gadget to next gadget for
incrementing one word in the memory. We launched the rootkit in two ways.
First, the kernel stack was overwritten to redirect kernel control flow to the
rootkit. Second, kernel control data was modified for hijacking kernel control
flow.

We had performed two experiments to show the effectiveness of HDROP. In
the first test, we had built a tested module that listed the running processes
in the kernel, and customized the CP-map to insert two CPs at the entry and
exit of the monitored function, which scanned task struct list to enumerate the
running processes in the kernel. At the training time, we caught the data for
computing the parameters of detecting algorithm. After that time, we launched
the ROP rootkit, and HDROP is able to detect the attack with the abnormal
increase on the number of mispredicted ret instructions.

Fig. 4. The experiment monitoring a function in the module

Figure 4 shows the result of our first experiment. Every point in figure 4
means a two-tuples (missp num,exec num) where missp num means the num-
ber of mispredicted ret instructions and exec num is the number of executed
ret instructions. For example, (1,28) means that normal execution took 1 mis-
predicted ret instruction and 28 executed ret instructions. If the ROP attack
was launched, the number of mispredicted ret instructions was increased. As an
example, the point (8,36) was abnormal which was denoted as a square in the
figure. In the first test, the monitored execution path was simple, and HDROP
was easy to detect the ROP rootkit.

In the second experiment, HDROP placed two CPs around an indirect call
instruction in kernel function real lookup. HDROP recorded the data when the
ROP rootkit was or not loaded in the kernel by modifying the destination of
the indirect call instruction. The data, including the number of mispredicted ret
instruction and executed ret instruction, were also taken as a point in figure 5.
Like figure 4, a legal point denotes as a triangle, while a illegal point as a square
in figure 5. Moreover, figure 5 only shows the part of obtained data of HDROP
for a better exhibition. As shown in figure 5, these points were mixed together,
and we failed to identify a narrow-region to just hold all legal points. It meant
HDROP failed to detect ROP rootkit with the deployed CPs.

180 H. Zhou et al.

Fig. 5. The experiment monitoring a kernel function

Fortunately, HDROP still had the capability of detecting the ROP rootkit.
As mentioned earlier, HDROP can overcome the challenge by adjusting the
CP-map to narrow the length of monitored instructions. Thus another CP was
implanted before the first call instruction in the function that is the target of the
monitored call instruction. In the normal execution, the number of mispredicted
ret instruction was usually zero. However, after launching ROP rootkit, the
number abnormally increased that was captured by the new inserted CP.

The above tests demonstrator the effectiveness of HDROR, and indicate the
feasibility of detecting ROP attacks with PMC. First, the rootkit is developed
following by [3],[4] and [8]. Second, the monitored objects include a kernel func-
tion and a module function. At last, we launch the ROP rootkit by modifying
kernel data which is a main way to subvert the kernel. In the future, we will
perform more experiments to show its effectiveness. Since there are some exist-
ing ROP shellcodes in the user-space, to check further its effectiveness, we might
improve HDROP for working in the user-space.

4.2 Performance

The second set of experiments is to measure the performance overhead of HDROP.
The benchmark programs was UnixBench of version 4.1.0[17], and the tested OS
was fedora 5 with 2.6.15-1 Linux kernel, and the hardware platform was Intel
X200. We had implemented our tests as follows. First, UnixBench run with de-
fault setting in the clear kernel, and recorded the final score of UnixBench. Second,
UnixBench run again while HDROP was installed in the kernel, and recorded the
final score. At last, we computed the performance slowdown of HDROP.

Figure 6 shows the performance overhead of HDROP with 3000 CPs inserted
into the kernel. To make our result precise, we repeated the test 5 times and
took the average as the score. The performance overhead of eleven tasks of
UnixBench are shown in figure 6. The task, called file read, incurred the maximal
performance overhead that was about 38%. On the other hand, the runtime

HDROP: Detecting ROP Attacks Using Performance Monitoring Counters 181

Fig. 6. Performance overhead of HDROP with 3000 CPs in the kernel

overhead of Dhrystone and Whetstone was almost zero. On the final score of
UnixBench, the average slowdown of HDROP was about 19%.

How many CPs should be inserted into the kernel? In our opinion, the num-
ber is no more than ten thousands against one assumption. We suppose that
the running kernel only hold several modules. To cover the dynamically loaded
modules, it is inevitable to place more CPs in the kernel. Moreover, OS often
loads different modules at the different time. So it is difficult to accurately esti-
mate the number of CPs if we want to cover all loadable modules. To make the
discussion clear, we optimistically suppose that the kernel only load few modules
without introducing additional CPs.

With the above assumption, we had performed following experiments to show
that several thousands CPs is able to cover the kernel. First, we caught the
number of the retired instructions while HDROP was detecting ROP attack.
We had performed our test based on the first experiment that was discussed in
the above subsection. We reset the hardware counter, and made it count the
number of retired instructions. What to be clarified was that the data was ob-
tained after HDROP detecting the ROP rootkit. The cause was that our tested
processor had only two hardware counters. At the detecting time, two counters
were busy to catch BR RET MISSP EXEC and BR RET EXEC. Therefore, the
number of retired instructions was obtained by repeating the test without catch-
ing BR RET MISSP EXEC. In the tests, we observed that HDROP monitored
about four hundreds instructions with only two CPs. In other words, HDROP
is able to take hundreds of instructions as the basic monitoring unit because
BR RET MISSP EXEC does not frequently occur.

To further validate our above idea, we had performed the other experiments
that monitored the execution of system calls. We placed two CPs around the
instruction call *sys call table to collect the number of retired instructions and
executed mispredicted ret instructions. In the test, we had catched 35802 items.
Every item can be denoted as {a,b}, where a was the number of executed mis-
predicted ret instructions and b was the number of retired instructions. Accord-
ing to the proportion of a to b, these items were divided into three categories

182 H. Zhou et al.

that was shown in figure 7. The first category was described as (a/b)*1000>5,
and held 2113 items. The second was (a/b)*1000<1, and held 532 items. The
test indicated that there were about 2.9 mispredicted ret instructions while one
thousand ret instructions retired. It means that it is possible to monitor several
million instructions just using ten thousands of CPs.

Fig. 7. Three categories divided against the proportion of a to b where a is the number
of retired instructions and b is the number of executed mispredicted ret instructions

At last, we had performed another test to demonstrate the performance over-
head of HDROP when different CPs are inserted into the kernel. In our opinion,
there are some factors severely impacting on performance overhead of HDROP.
First is the number of active CPs in the kernel, and second is the locality of
active CPs. To make our result precise, we randomly built CP-map which indi-
cated the number and locality of active CPs, and repeated the test with different
number of CPs in the kernel. The number of inserted CPs was from 500 to 6000.
As shown in figure 8, when 1000 CPs were inserted into the kernel, HDROP
incurred a 7% slowdown. If there were 6000 active PCs in the kernel, HDROP
introduced 31% performance overhead. Compared to existing solutions[13,14,15],
the performance overhead of HDROP is acceptable.

5 Discussion

There are some security assumptions for HDROP. First, the kernel, including
HDROP, is in the code-integrity. Otherwise, attackers can circumvent HDROP
by tampering with the code. Since some security mechanisms are available[1,2],
we believe this assumption is reasonable. Second, PMC is protected from mali-
cious modifying. It is possible to tamper with the hardware counters to forge the
readings. However, attackers have to do that with some crafting gadgets, and it
make more difficult to identify the gadgets. Therefore, we optimistically suppose
that PMC is immune to ROP attack. In this paper, we suppose a adversary
is capable of modifying the kernel data to launch ROP attacks, which include
return addresses, function pointers and so on.

Meanwhile, HDROP has some limitations. First, HDROP may send a false
alarm. The parameters of detecting algorithm are computed on the training data.

HDROP: Detecting ROP Attacks Using Performance Monitoring Counters 183

Fig. 8. Performance overhead of HDROP with different CPs in the kernel

So it is possible to take a legal execution as ROP attack for unfull coverage. Sec-
ond, we fail to automatically generate the CP-map for covering the whole kernel.
We are seeking a more appropriate detecting algorithm. At last, HDROP is not
capable of detecting JOP. We believe it is easy to improve HDROP by identify-
ing the new interesting performance events. To overcome the above limitations
is our future work.

A novel contribution of our work is to demonstrate the feasibility of detecting
ROP attacks with the support of PMC. More specifically, we not only propose a
novel practical solution of checking ROP attacks, but also present a new usage
of PMC. Furthermore, unlike existing software-based solutions, HDROP takes
hundreds of instructions as a basic checking unit rather than a single one. Thus,
HDROP does not incur a heavy performance overhead from 2x to 5.3x timer
slower.

6 Related Work

In 2007, Hovav Shacham presents ROP attack[3], which is further generalized
to a variety of platforms[10,12]. Meanwhile, there have been many efforts to
defeat ROP attacks. As mentioned earlier, they are proposed in two categories,
which are called gadget-less solution and abnormity-detecting solution. They are
closely related to our work, and we introduce them as follows.

6.1 Gadget-Less Solution

ROP attacks depend on the crafted gadgets from the available code-base. There-
fore, some solutions are proposed to kill the gadgets hiding in the code-base. A
compiler-based way is presented to build a ret-less kernel[4]. They systematically
replace ret instruction with other instructions while the kernel is recompiled.
Thus, the gadgets is hard to be found in the patched kernel.

G-Free[5] proposes a novel two-step approach to build no-gadget software.
The first step is to terminate all unintended ret and indirect jmp instructions by

184 H. Zhou et al.

padding several nop instructions for aligning them. The second step is to protect
aligned instructions from the misuse. Compared to ret-less kernel[4], G-Free is a
generic way to defeat ROP attack.

Similar to G-Free, Control-Flow Locking[18] divides the protected instructions
into intended instructions and unintended instructions. Control-Flow Locking re-
moves the misuse of unintended instructions by imposing alignment artificially.
To protect intended instructions, it proposes an interesting way. More specifi-
cally, it performs a lock operation before dynamic control transfer, and an unlock
operation if current transfer is legal. Though it allows one violation of CFG, it
still capable of defeating ROP attacks because only one deviation can not achieve
the malicious end.

In our opinion, the above work may call gadget-less solution. Their main goal
is generating a gadget-less code-base to eliminate ROP attacks. Beside that,
they have presented the different ways to protect control transfer for defeating
ROP attacks further. These work are considerable interesting, but our work is
completely different from them for we detecting ROP attacks with the abnormity
introduced by the attacks.

6.2 Abnormity-Detecting Solution

ROP attacks have some unique features. For example, ROP attacks often chain
several gadgets ending with ret instruction[3]. Moreover, every gadget is a short
instruction sequence, and it usually ranges from two to five instructions. There-
fore, DynIMA[14] records the length of the instructions between two ret in-
structions. If it is a short instruction sequence, DynIMA[14] considers it as a
“hit”. DynIMA reports ROP attacks occurring if there are consecutively “hit”.
DynIMA is partly implemented with the support of the PIN[19].

DROP[15] is a binary instrument tool to detect ROP attack. DROP[15] shares
the same observation with DynIMA[14]. However, it has developed a prototype
system, and the experiments show its effectiveness. But it incurs a heavy per-
formance overhead because it has to check every instruction for recording the
length of instructions between two ret instructions. Moreover, the adversary may
enlarge the length of the gadget, which makes them bypass DROP.

ROPDefender[13] detects ROP attacks on the side effect introduced by the
execution. As mentioned earlier, some ROP attacks wave the gadgets together
which end with ret instruction. Thus, the call and ret instruction are not paired.
On the observation, ROPDefender[13] maintains a shadow stack to identify every
ret instruction. More specifically, it monitors every executing instruction, and
stores a copy of the return addresses in the shadow stack for identifying the
misused ret instructions. Similar to DynIMA[14], ROPDefender is implemented
on the binary instrumentation framework PIN[19].

kBouncer[21] presents an efficient ROP mitigation technology. It only mon-
itors the last part of control transfers that lead to system call execution. In
this way, it avoids monitoring all control transfer which may introduce a high
performance overhead. It is on the observation that most of ROP attacks even-
tually perform a system call. Moreover, it considers that the control transfer on

HDROP: Detecting ROP Attacks Using Performance Monitoring Counters 185

ret instruction is abnormal without paired call instruction. Furthermore, it is
a hardware-based work with the support of LBR(Last Branch Recording)[16].
However, not all ROP attacks will perform a system call. Therefore, it is possible
to be circumvented.

HDROP is proposed on the novel observation: ROP attacks induce an abnor-
mal increase on the number of mispredicted ret instructions. Moreover, HDROP
does not monitor each executing instruction, and it induces less performance
overhead. Compared to some existing approaches, the performance overhead of
HDROP is acceptable.

7 Conclusion

The HDROP we propose in this paper is a low-cost hardware-based approach to
detecting ROP attacks. The observation behind our approach is straightforward
and effective: ROP attacks lead to increase in mis-prediction. Unlike previous
detection approaches, we take one or several functions as the basic monitoring
unit, not every instruction. Furthermore, HDROP utilizes PMC to collect in-
terested data to monitor a large body of instructions. Consequently, it greatly
reduces performance overhead. We have developed a prototype system on fedora
5. Experiments show that our approach can effectively detect ROP attacks with
an acceptable performance overhead.

Acknowledgment. The authors would like to thank the anonymous review-
ers for their insightful comments that helped improve the presentation of this
paper. The work is supported in part by the National Natural Science Founda-
tion of China (61070192, 91018008, 61170240,61303074), National 863 High-Tech
Research Development Program of China (2007AA01Z414), National Science
and Technology Major Project of China (2012ZX01039-004), CNITSEC Pro-
gram (CNITSEC-KY-2012-001/4), and Natural Science Foundation of Beijing
(4122041).

References

1. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits
with VMM-based Memory Shadowing. In: Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection (2008)

2. Seshadri, A., Luk, M., Qu, N., et al.: SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In: Proceedings of the 21st
ACM Symposium on Operating Systems Principles (October 2007)

3. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security (2007)

4. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with return-less kernels. In: Proceedings of the 5th ACM SIGOPS EuroSys
Conference (2010)

186 H. Zhou et al.

5. Onarlioglu, K., Bilge, L., Lanzi, A., et al.: G-free: Defeating return-oriented pro-
gramming through gadget-less binaries. In: Proceedings of the 26th ACSAC (2010)

6. Checkoway, S., Davi, L., Dmitrienko, A., et al.: Return-oriented programming with-
out returns. In: Proceedings of the 17th CCS (2010)

7. Bletsch, T., Jiang, X., Freeh, V.W., et al.: Jump-oriented programming: A new class
of code-reuse attack. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (2011)

8. Hund, R., Holz, T., Freiling, F.: Return-oriented rootkits: Bypassing kernel code in-
tegrity protection mechanisms. In: Proceedings of USENIX Security 2009. USENIX
(August 2009)

9. Chen, P., Xing, X., Mao, B., et al.: Automatic construction of jump-oriented pro-
gramming shellcode (on the x86). In: Proceedings of 6th ASIACCS (2011)

10. Buchanan, E., Roemer, R., Shacham, H., et al.: When good instructions go bad:
Generalizing return-oriented programming to RISC. In: Proceedings of the 15th
ACM Conference on Computer and Communications Security (2008)

11. Checkoway, S., Feldman, A.J., Kantor, B., et al.: Can DREs provide long-lasting
security? the case of return-oriented programming and the AVC Advantage. In:
Proceedings of EVT/WOTE (2009)

12. Kornau, T.: Return oriented programming for the arm architecture. Technical re-
port (2010)

13. Davi, L., Sadeghi, A.-R., Winandy, M.: ROPdefender: A detection tool to defend
against return-oriented programming attacks. Technical Report HGI-TR-2010-001
(2010)

14. Davi, L., Sadeghi, A.R., Winandy, M.: Dynamic integrity measurement and attes-
tation: Towards defense against return-oriented programming attacks. In: Proceed-
ings of 4th STC (2009)

15. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: Detecting return-
oriented programming malicious code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS
2009. LNCS, vol. 5905, pp. 163–177. Springer, Heidelberg (2009)

16. Intel. Intel 64 and ia-32 architectures software developers manual, volume 3b: Sys-
tem programming guide, part 2

17. UnixBench (2012), http://ftp.tux.org/pub/benchmarks/system/unixbench
18. Bletsch, T., Jiang, X.: Mitigating Code-Reuse Attacks with Control-Flow Locking.

In: Proceedings of the 27th Annual Computer Security Applications Conference,
ACSAC (2011)

19. Luk, C.-K., Cohn, R., Muth, R., et al.: Pin: Building customized program analysis
tools with dynamic instrumentation. In: Sarkar, V., Hall, M.W. (eds.) Proceedings
of PLDI (2005)

20. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

21. Pappas, V.: kBouncer: Efficient and transparent ROP mitigation. Technical report,
Columbia University (2012)

http://ftp.tux.org/pub/benchmarks/system/unixbench

Efficient Hardware Implementation of MQ

Asymmetric Cipher PMI+ on FPGAs

Shaohua Tang�, Bo Lv��, Guomin Chen��, and Zhiniang Peng

School of Computer Science & Engineering,
South China University of Technology, Guangzhou, China

shtang@IEEE.org,

csshtang@scut.edu.cn

Abstract. PMI+ is a Multivariate Quadratic (MQ) public key algo-
rithm used for encryption and decryption operations, and belongs to
post quantum cryptography. We designs a hardware on FPGAs to effi-
ciently implement PMI+ in this paper. Our main contributions are that,
firstly, a hardware architecture of encryption and decryption of PMI+
is developed, and description of corresponding hardware algorithm is
proposed; secondly, basic arithmetic units are implemented with higher
efficiency that multiplication, squaring, vector dot product and power op-
eration are implemented in full parallel; and thirdly, an optimized imple-
mentation for core module, including optimized large power operation,
is achieved. The encryption and decryption hardware of PMI+ is effi-
ciently realized on FPGA by the above optimization and improvement.
It is verified by experiments that the designed hardware can complete
an encryption operation within 497 clock cycles, and the clock frequency
can be up to 145.6MHz, and the designed hardware can complete a de-
cryption operation within 438 clock cycles wherein the clock frequency
can be up to 37.04MHz.

Keywords: Multivariate Quadratic (MQ) Public Key Algorithm, PMI+
Encryption and Decryption, Hardware Implementation, FPGA, Opti-
mized Large Power Operation.

1 Introduction

Public key cryptography has played an important role in modern communication
and computer networks. The public key cryptography, which is used widely,
mainly includes RSA based on integer factorization problem, ElGamal based on
discrete logarithm problem and elliptic curve cryptography, etc. In order to adapt
various occasions, many efficiently hardware implementations are proposed by
researchers [22,18,25,19,23,14,8].

The quantum algorithm of P.Shor is able to solve the integer factorization and
discrete logarithm problem in polynomial time, including a calculation problem
in elliptic curve field, which directly threatens classical cryptosystems based on

� Corresponding Author.
�� The authors Bo Lv and Guomin Chen contribute equally to this paper.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 187–201, 2014.
c© Springer International Publishing Switzerland 2014

188 S. Tang et al.

hard problems of number theory, and which helps to drive the development of
post quantum cryptography. The post quantum cryptography can be divided
into four categories: signature schemes based on hash function[17], lattice-based
public key cryptosystem[13], public key cryptosystem based on error correct-
ing code[16] and multivariate public key cryptosystem[7]. The research for post
quantum cryptography is growing rapidly and many hardware and embedded
system implementations of the post quantum cryptography appear in order to
adapt various occasions[24,21,11,20,1,2,3,6].

PMI+ [5] is one kind of multivariate public key cryptosystem, and is a variant
of MI[15]. Ding enhanced the security of MI by adding internal perturbation to
the central map of MI in 2004, to produce a new variant of the MI cryptosystem
which is called PMI cryptosystem[4]. However, the PMI cryptosystem has been
broken by differential cryptanalysis by Fouque et al.[10] in 2005. Ding introduced
new external perturbation to the central mapping of MI [5] in 2006, to produce
PMI+ cryptosystem whose security has been greatly improved. Up to present,
the PMI+ cryptosystem is still secure, and its hardware implementation is rel-
atively less, so a hardware used to implement PMI+ is designed in this paper,
which can be efficiently implemented in FPGA.

Our Contributions. The paper designs a hardware used to implement
PMI+, which can be efficiently implemented on FPGA.

Firstly, a hardware architecture of encryption and decryption of PMI+ is
developed, and description of corresponding hardware algorithm is proposed.

Secondly, basic arithmetic units are implemented with higher efficiency that
multiplication, squaring, vector dot product and power operation are imple-
mented in full parallel, wherein compared with a full parallel multiplier, a full
parallel squarer takes up about one-twentieth of the logical unit and has shorter
latency.

Thirdly, we implement an optimized large power operation, and compared
with general power operation, it can reduce 4288 cycles at most in one process
of decryption, with an obvious optimization. The encryption and decryption
hardware of PMI+ is efficiently realized on FPGA by the above optimization
and improvement.

Our experiments verify that if parameters are selected as (n, q, θ, r, a) =
(84, 2, 4, 6, 14), the length of a plaintext block is 84 bits and the length of a
ciphertext block is 98 bits, our designed hardware can complete an encryption
operation within 497 clock cycles or 3.42us, wherein the clock frequency can be
up to 145.6MHz, and our designed hardware can complete an decryption oper-
ation within 438 clock cycles or 11.83us, wherein the clock frequency can be up
to 37.04MHz.

Organization. The structure of the rest of this paper goes as follows. Section
2 briefly introduces solution and theory of PMI+ encryption scheme, including
the construction of algorithms, principles of encryption and decryption and the
choice of parameters; Section 3 primarily focuses on hardware design and imple-
mentation of PMI+, including hardware structure design, algorithm description
and implementation of basic arithmetic unit and hardware core module; Section 4

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+ 189

lists detailed experimental data, and makes performance contrast with other pub-
lic key encryption schemes; and Section 5 is the conclusion of this paper, which
summarizes the findings of this paper and proposes further research directions.

2 Preliminaries

We describes the basic theory of the encryption and decryption of PMI+ [5] in
this section. The basic idea of PMI+ is adding internal perturbation and external
perturbation to the central map of MI scheme to resist linearization equation
attack and differential attack.

2.1 Notations for PMI+

Let k be a finite field of characteristic two and cardinality q, K be an extension
of degree n over k. Let ϕ : K → kn defined by ϕ(a0 + a1x + ... + an−1x

n−1) =
(a0, a1, ..., an−1).

Fix θ so that gcd(qθ+1, qn−1) = 1 and define F̃ : K → K by F̃ (X) = X1+qθ .
Then F is invertible and F̃−1(X) = Xt, where t(1 + qθ) ≡ 1 mod (qn − 1).

Define the map F ′ : kn → kn by F ′(x1, ..., xn) = ϕ ◦ F̃ ◦ ϕ−1(x1, ..., xn) .
Fix a small integer r and randomly choose r invertible affine linear functions

z1, ..., zr, written as zj(x1, ..., xn) =
n∑

i=1

αijxi + βj , for j = 1, ..., r. This defines a

map Z : kn → kr by Z(x1, ..., xn) = (z1, ..., zr). The map Z is source of internal
perturbation.

Randomly choose n quadratic polynomials f̂1, ..., f̂n ∈ k[z1, ..., zr] . The f̂i
define a map F̂ : kr → kn by F̂ (z1, ..., zr) = (f̂1, ..., f̂n). Let P be the set
consisting of the pairs (λ, μ), where λ is a point that belongs to the image of F̂
and μ is the set of pre-images of λ under F̂ .

Define an internal perturbation map by F ∗(x1, ..., xn) = F̂ ◦ Z(x1, ..., xn) =
(f∗

1 , ..., f
∗
n). Define a map by F (x1, ..., xn) = (F ′ + F ∗)(x1, ..., xn).

Randomly choose a non-linear equations on x1, ..., xn for the central map F
as external perturbation. Randomly choose an invertible affine map L1 in n+ a
dimensional vector space kn+a, randomly choose an invertible affine map L2 in
n dimensional vector space kn, and F̄ (x1, ..., xn) = L1 ◦ F ◦ L2(x1, ..., xn) is a
public key of PMI+, and the private key includes the central map F ′, the map
F̂ , Z, L−1

1 and L−1
2 .

2.2 PMI+ Encryption

For a given plaintext block (x1, ..., xn), when encrypting the plaintext, it only
needs to apply the plaintext into the public key polynomial

y1 = f̄1(x1, x2, ..., xn),
...
yn+a = f̄n+a(x1, x2, ..., xn),

(1)

to calculate the evaluation of n + a quadratic polynomials that a ciphertext
(y1, ..., yn+a) can be acquired.

190 S. Tang et al.

2.3 PMI+ Decryption

We can decrypt the ciphertext (y1, ..., yn+a) by computing

X = (x1, ..., xn) = L2
−1 ◦ F−1 ◦ L1

−1(y1, ..., yn+a). (2)

The process is:
(1) calculating Y ′ = L1

−1(Y) = (y′1, ..., y
′
n+a);

(2) removing a external perturbation polynomials from Y ′ to obtain Ȳ =
(ȳ1, ..., ȳn);

(3) calculating (yλ1, ..., yλn) = F−1((ȳ1, ..., ȳn) + λ) for each (λ, μ) ∈ P , and
checking if μ = Z(yλ1, ..., yλn) , if not, continuing this step, otherwise, moving
on to the next step;

(4) applying (yλ1, ..., yλn) into a external perturbation polynomials, if the
verification is successful, moving on to the next step, otherwise, returning to the
previous step; and

(5) calculating X = L2
−1(yλ1, ..., yλn) = (x1, ..., xn), and X is a decrypted

plaintext.

2.4 Security and Parameter Selection of PMI+

The obtained PMI+ instance can reach a corresponding security level after asso-
ciated parameters are set. For example, Ding [5] has shown two sets of relatively
practical PMI+ parameters in his paper that the security level can be up to over
280, and the following table shows the two sets of parameters.

Table 1. Parameters for PMI+

n q r a θ

84 2 4 6 14

136 2 8 6 18

The parameters for PMI+ encryption and decryption hardware implemented
in this paper is as the first set of parameters shown in Table 1, and the security
level can be up to over 280.

3 Design and Implementation of PMI+ Hardware

3.1 Hardware Structure Design and Algorithm Process

Design of PMI+ Encryption. The hardware structure of PMI+ encryption
is as shown in Fig. 1.

It can be shown from (1) in Section 2.2, the operation process of PMI+ en-
cryption is equivalent to applying the plaintext into the polynomial to calculate,
and its hardware structure is illustrated in Fig. 1.

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+ 191

Plaintext Polynomial
Evaluation

Ciphertext

Fig. 1. The Hardware Structure of PMI+ Encryption

If parameters are selected as (n, q, θ, r, a) = (84, 2, 4, 6, 14), the length of the
plaintext block is 84 bits and the length of the ciphertext block is 98 bits, it needs
to add 14 external perturbations, the public key is 358,190 (3,655*98) bits, i.e.
44,774 bytes.

Design of PMI+ Decryption. The hardware structure of PMI+ Decryption
is shown in Fig. 2.

Big Power
Operation

Ciphertext

Polynomial
Evaluation

Affine
Transformation

Plaintext

Internal
Perturbator

Fig. 2. The hardware structure of PMI+ Decryption

From Section 2.3, the process of decryption is equivalent to calculating Eq.
(2) in Section 2.3. The process of PMI+ decryption is divided into four modules
based on the process of calculating Eq. (2): affine transformation, internal per-
turbator, large power operation and polynomial calculation, as shown in Fig. 2.
Wherein, the input of large power operation is a result of the affine transformed
result adding the internal perturbator. The role of the polynomial calculation
is to verify external perturbator, if the verification is successful, the result will
be calculated in the affine transformation module again to obtain the plaintext
block, otherwise, to select another element from the internal perturbator for
large power operation after addition.

Based on Eq. (2), the process of PMI+ decryption can be abstracted into
two parts: affine transformation and decryption mapping. In the parameters we

192 S. Tang et al.

selected, the process is that: firstly the ciphertext is operated by L1
−1 affine

transformation, wherein the parameter is 98 bits; then the result of the L1
−1

affine transformation is mapped by decryption mapping algorithm to the plain-
text space, and the result is 84 bits; finally the result of the PMI+ decryption
mapping is operated by L2

−1 affine transformation, and a 84-bit plaintext block
is obtained.

3.2 Basic Arithmetic Unit

Firstly, the basic arithmetic unit throughout the process of PMI+ encryption
and decryption is described here.

Full Parallel Multiplier. Elements in the finite field K can be expressed by

a polynomial as a =
83∑
i=0

aix
i, where ai ∈ {0, 1}. And a multiplication over the

finite field can be expressed by c = a⊗ b mod R(x) = M mod R(x).
One large field multiplication can be completed in one clock cycle by an ordi-

nary multiplication algorithm based on standard basis which contains merging
similar items and conducting modulus reduction, and the main computation in
the algorithm is on modulus reduction. It can be pre-processed with external
program. The full parallel multiplier is structured as follows.

m0 = a0 ⊗ b0,
m1 = (a0 ⊗ b1)⊕ (a1 ⊗ b0),
...
m165 = (a82 ⊗ b83)⊕ (a83 ⊗ b82),
m166 = a83 ⊗ b83;

c0 = m0 ⊕m84 ⊕ ...⊕m166,
c1 = m1 ⊕m85 ⊕ ...⊕m166,
...
c83 = m83 ⊕m110 ⊕ ...⊕m165.

The full parallel multiplier can complete one multiplication over the finite field
K in one clock cycle, which uses 7,056 AND gate circuits and 9,997 XOR gate
circuits. It was unrealistic to implement a direct look-up table over finite field
GF (284) (the storage space of the table can be up to 2168 bits), in comparison the
full parallel multiplier over the finite field K implemented in this paper should
be the better.

Full Parallel Vector Dot Product. In the process of PMI+ decryption,
the affine transformation is used twice, where in the first time, n is 98, and in
the second time, n is 84. It needs to implement two vector dot products: a 98
dimensional vector dot product and a 84 dimensional vector dot product. The
scalar value in the vector is 0 or 1, so for scalar value in the vector, the addition
uses a XOR gate circuit, and the multiplication uses a AND gate circuit.

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+ 193

Set a = (a0, ..., an−1), b = (b0, ..., bn−1), where ai, bi ∈ {0, 1}, i = 0, ..., n− 1,
and the dot product of vectors is c ∈ {0, 1} : c = (a0 ⊗ b0)⊕ ...⊕ (an−1 ⊗ bn−1).

The vector dot product operation can be completed in one clock cycle, which
uses n AND gate circuits and n− 1 XOR gate circuits.

Full Parallel Squarer. There is a very useful property in Frobenius mapping
that for a map Ti(X) = Xqi over the finite field K, X is represented as a
polynomial basis a0 + a1x+ ...+ a83x

83, and then the following equation holds:
Ti(X) = Xqi = a0 + a1x

qi + ...+ a83x
83∗qi .

While in the finite field K, q = 2, set a =
83∑
i=0

aix
i as any element in K,

then:a2 = a0 + a1x
2 + ... + a83x

83∗2. It can be pre-processed with external
program. The full parallel squarer has the following hardware structure.

c0 = a0 ⊕ a42 ⊕ ...⊕ a83,
c1 = a56 ⊕ a61 ⊕ ...⊕ a83,
...
c83 = a55 ⊕ a60 ⊕ ...⊕ a82.

The full parallel squarer can complete one squaring operation over the finite
field K in one clock cycle, which uses 1,525 XOR gate circuits. Compared with a
full parallel multiplier, the full parallel squarer uses about one in twenty logical
units, and has a shorter latency, so it seems worthwhile to implement the full
parallel squarer.

Full Parallel Power Operator. In order to implement the large power oper-
ation efficiently and reuse public arithmetic unit at the most extent, two power
operators are implemented, where one is a full parallel power 16 operator and
the other is a full parallel power 256 operator. Based on the nature of Frobenius
mapping, set a as any element in K, and then:

a16 = a0 + a1x
16 + ...+ a83x

83∗16,
a256 = a0 + a1x

256 + ...+ a83x
83∗256.

It can be pre-processed with external program. The full parallel power 16
operator has the following hardware structure:

c0 = a0 ⊕ a9 ⊕ ...⊕ a81,
c1 = a1 ⊕ a7 ⊕ ...⊕ a83,
...
c83 = a8 ⊕ a10 ⊕ ...⊕ a83.

The full parallel power 256 operator has the following hardware structure:

d0 = a0 ⊕ a4 ⊕ ...⊕ a83,
d1 = a1 ⊕ a2 ⊕ ...⊕ a83,
. . .
d83 = a2 ⊕ a3 ⊕ ...⊕ a83.

194 S. Tang et al.

The full parallel power operator that we implemented can complete one ex-
ponentiation over the finite field K in one clock cycle. Compared with a full
parallel multiplier, the full parallel squarer uses about one in tenth logical units,
and has a shorter latency.

3.3 Implementation of Hardware Core Modules

Implementation of Polynomial Calculation. The calculation of polynomial
can be an addition or multiplication over finite field GF (2), which can be im-
plemented by XOR operation and AND operation respectively. The polynomial
calculation module is used in both PMI+ encryption and decryption. Wherein,
in PMI+ encryption, the input of the polynomial calculation module is a plain-
text block of PMI+ and a public key polynomial, the output Y of the polynomial
calculation module is a ciphertext block, and the role of the polynomial calcula-
tion module is to implement PMI+ encryption; in PMI+ decryption, the input
of the polynomial calculation module is a result of the large power operation
and a external perturbation polynomials of PMI+, the output of the polynomial
calculation module is a result of PMI+ decryption mapping, and the role of the
polynomial calculation module is to verify a external perturbation polynomials.

Implementation of Affine Transformation. The affine transformation in-
cludes a vector addition and a vector dot product. The vector addition can be
implemented by XOR operation directly. The vector dot product can be im-
plemented by the full parallel vector dot product defined by us. In the PMI+
decryption, two affine transformations are used, respectively before and after
decryption mapping, the first uses a 98 dimensional vector dot product, and the
second uses a 84 dimensional vector dot product.

Implementation of Internal Perturbator. When we implement the PMI+
decryption, it needs to abstract a component to complete a transformation for
mapping from r = 6 dimensional vector to 84 dimensional vector, which is called
as internal perturbator. The expression of the map is calculated by a external
program off-line, and the arithmetic unit is implemented by 1,078 XOR gates
and 627 AND gates.

Implementation of Large Power Operation. In one PMI+ decryption, it
needs 64 large power operations at most, so optimized large power operation can
improve the performance of the PMI+ decryption hardware at a large extent. If
the parameter t is selected as 10240312824970976538687608, it is unrealistic to
find the solution of power by multiplication over the finite field K.

Conventional Large Power Operation. The large power operation is implemented
by a “square-multiplication” method. The binary equivalent for t is 10000111
10000111 10000111 10000111 10000111 10000111 10000111 10000111 10000111

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+ 195

10000111 1000, Xt can be expressed as Bt = B23 ⊗ B24 ⊗ ... ⊗ B283 , so one
large power operation can be completed by 83 squaring operations and 40
multiplications.

Optimal Implementation of Large Power Operation. The basic idea to implement
large power operation is reusing public arithmetic unit at the most extent, so as
to reduce clock cycles of the large power operation. The software implementation
of PMI+ has been completed in a 8051 microcontroller by Chen [26] in his master
dissertation, where the large power operation uses a similar idea. The differences
between the above paper and this paper are that the size of t used in this paper
is different (methods for optimization are different), and the implementation of
PMI+ in this paper is based on FPGA hardware platform.

We find that fragment S = 10000111 appears 10 times in the binary string, so
Xt can be expressed as Xt = X23 ⊗ (XS)16⊗ ((XS)16)256⊗ ...⊗ ((XS)16)...)256.

In the optimized large power operation, XS = X10000111 is firstly calculated,
and we implement it for optimization that XS can be calculated in 5 cycles.
Then, the operation of Xt can be quickly completed by adding new arithmetic
unit, and the rest of the operation can be completed in 11 clock cycles.

Algorithm 1. Optimal Implementation of Large Power Operation

Input: X;
Output: Y ;
Procedure:

1 begin
2 B2 : = square(X);
3 B4 : = square(B2); Y :=multiply(X,B2);
4 B8 : = square(B4); Y :=multiply(Y,B4);
5 B128 : = power16(B8); B16 : = square(B8);
6 B135 : = multiply(B128, Y);
7 tmp := power16(B135);
8 Y := multiply(B16,tmp);tmp = power256(tmp);
9 i = 8;

10 while i >= 0 do
11 Y : = multiply(Y ,tmp); tmp = power256(tmp);
12 i−−;

13 end
14 Y := multiply(Y ,tmp);
15 return Y ;

16 end

Algorithm 1 describes the process of the optimized large power operation.
The input X is a 84 dimensional vector, the output Y is also a 84 dimensional
vector, the arithmetic units of square and multiply are a full parallel squarer
and a full parallel multiplier respectively, and the arithmetic units of power16

196 S. Tang et al.

and power256 are a full parallel power 16 operator and a full parallel power
256 operator respectively.

Our new proposed large power operation can complete a large power op-
eration in 16 clock cycles which are less than one-sixth of those for “square-
multiplication” method, and only the logical units taken up by the arithmetic
units of power16 and power256 increases for its area, so the operational per-
formance is greatly enhanced.

4 Experiment Results and Analyses

The algorithm of PMI+ encryption and decryption is implemented in Quartas
II 8.0 environment by VHDL with the idea of high speed and parallelization,
its hardware simulation is implemented in EP2S130F102014 of the family of
StratixII, and the area of PMI+ encryption and decryption hardware is eval-
uated by SynopsysDC, where the process library is 0.18 nm process library of
TSMC and the working voltage is 1.62 volt. The following results come from
the real experimental data and compared with current implemented hardware
in performance.

4.1 PMI+ Basic Arithmetic Unit

Some basic arithmetic units of PMI+ are implemented in Section 3.2, including
a full parallel multiplier, a full parallel vector dot product, a full parallel squarer
and a full parallel power operator, and the performance data of these basic
arithmetic units is shown in Table 2.

Table 2. The Performance of PMI+’s Basic Arithmetic Units

Arithmetic Units Area Number of Logical Unit Maximum Clock
(um2) Equivalent Gate (ALUT) Latency Cycles

Full Parallel Multi-
plier

277997.2 27800 4823 27.000 1

Full Parallel Vector
Dot Product

3559.25 356 57 23.948 1

Full Parallel Squarer 19546 1955 289 17.483 1

Full Parallel Power
16 Operator

37115.8 3712 510 18.641 1

Full Parallel Power
256 Operator

39045 3905 538 19.191 1

It can be seen from the data in Table 2 that the basic arithmetic unit in PMI+
decryption hardware can complete one basic operation in one cycle, where the
full parallel multiplier takes up the maximum area, and compared with the
multiplier, the squarer and power operator complete an operation with lower
latency while take up less area.

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+ 197

4.2 Large Power Operation in PMI+

A comparison of the number of logical units and the number of clock cycles
between two different large power operations is listed in Table 3.

Table 3. Performance Comparison between two Large Power Operation Methods

Arithmetic Units Area/ Number of Logical Unit Clock
(um2) Equivalent Gate (ALUT) Cycles

Implementation Based
on “Square - Multiplica-
tion”

334715 33472 5176 84

Our Optimal Implemen-
tation of Large Power
Operation

435941 43595 6367 16

These results show that the performance of the optimized large power opera-
tion has a significant improvement that clock cycles of the optimized large power
operation reduce by 80.9% and the area adds about 30.2% for one large power
operation. In PMI+ decryption, it needs 64 large power operations at most, so
it can save up to 4,416 clock cycle at most for a period of decryption.

4.3 PMI+ Encryption and Decryption

We implement the first PMI+ encryption and decryption hardware on FPGA.
Compared with other public key encryption and decryption hardware, our hard-
ware implementation of PMI+ possesses of advantages such as small space, fast
speed of encryption and decryption, and practical security level.

The whole PMI+ decryption needs at least 207 clock cycles (excepting cycles
of reading ROM) to complete a signature operation, and it takes up a total of
11,005 logical units with a area of 680,302 um2 .

Table 5 lists performance data of the PMI+ encryption and decryption hard-
ware. Using experiment data, it’s easy to see the number of cycles of the PMI+
decryption is mutable, where 438 cycles for least and 2,915 cycles for most, and
the running speed of the PMI+ encryption hardware is far faster than that of
the PMI+ decryption hardware and the area of it is far less than the PMI+
decryption hardware.

4.4 Performance Comparison

The performances of the PMI+ decryption hardware is compared with other
public key cryptosystem hardware in this section. Table 6 lists the results after
comparing the implementation of the PMI+ decryption hardware with other
public key cryptosystems.

198 S. Tang et al.

Table 4. Cycles Required by Arithmetic Units in PMI+ Encryption

Step Main Arithmetic Units Clock Cycles

1 Calculate the Invertible Affine Map Function of L1
−1 85

2 Sum of the Affine Transformed Result and the Enternal Perturbator 1 - 64
3 Large Power Operation 16 - 1024
4 Calculate the Map of Z 6 - 384
5 Calculate the Invertible Affine Map Function of L2

−1 85
6 Check Extra Polynomial 14 - 56

Table 5. Performance of our PMI+ Encryption and Decryption

Hardware
Imple-
menta-
tion

Area
(um2)

Number of
Equivalent
Gate

Logical
Unit
(ALUT)

Clock
Frequency
(MHz)

Period
(ns)

Clock
Cy-
cles

Total
Time
(us)

PMI+
Encryp-
tion

160385 16039 3468 145.60 6.868 497 3.42

PMI+
Decryp-
tion

680302 68031 11005 37.04 27.000 438 -
2915

11.83
-
78.71

Table 6. Performance Comparison among some Public Key Crypto Hardwares

The Hardware
Implementation
Scheme

Number of
Equivalent
Gate

Clock Cy-
cles

Frequency
(MHz)

Total time
(us)

Area*time

RSA1024-
PSS[12]

250000 357142 200 1785.71 554.70

ECC128[9] 183000 592976 204 2910 661.69

EN-TTS[27] 21000 60000 67 895.53 23.37

Our Parallelized
PMI+ Decryp-
tion

68031 438 - 2915 37.04 11.83 -
78.71

1 - 6.66

The data in the table shows that compared with RSA and ECC, paralleliza-
tion PMI+ decryption hardware that we implemented has a higher performance
advantage, such as small product of area and time, and high operating efficiency.

5 Conclusion

We design a hardware on FPGAs used to efficiently implement PMI+. It is veri-
fied by experiments that our designed hardware can complete an encryption op-
eration within 497 clock cycles, and the clock frequency can be up to 145.6MHz,

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+ 199

and the designed hardware can complete a decryption operation within 438 clock
cycles wherein the clock frequency can be up to 37.04MHz. Our main contribu-
tions are to develop hardware architecture of encryption and decryption of PMI+
and describe corresponding hardware algorithms. Meanwhile, basic arithmetic
units are implemented in this paper with higher efficiency which can complete
the operation with lesser latency. Thirdly, an optimized large power operation
is implemented which needs only 16 cycles to complete one exponentiation, and
compared with general power operation, it can reduce 4288 cycles at most in
one process of decryption, with an obvious optimization.

Future studies will include: 1) using registers in hardware more accurately
to reduce the area and power consumption of hardware; and 2) reducing the
number of logical units of multiplier and latency on the premise that the clock
cycles do not increase.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China under Grant No. U1135004 and 61170080, Guangdong
Province Universities and Colleges Pearl River Scholar Funded Scheme (2011),
and High-level Talents Project of Guangdong Institutions of Higher Education
(2012).

References

1. Balasubramanian, S., Carter, H., Bogdanov, A., Rupp, A., Ding, J.: Fast Multi-
variate Signature Generation in Hardware: The Case of Rainbow. In: Application-
Specific Systems, Architectures and Processors, pp. 25–30 (July 2008)

2. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-Area Optimized Public-
Key Engines: MQ-Cryptosystems as Replacement for Elliptic Curves? In: Oswald,
E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008)

3. Czypek, P., Heyse, S., Thomae, E.: Efficient Implementations of MQPKS on Con-
strained Devices. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 374–389. Springer, Heidelberg (2012)

4. Ding, J.: A New Variant of the Matsumoto-Imai Cryptosystem through Per-
turbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 305–318. Springer, Heidelberg (2004)

5. Ding, J., Gower, J.E.: Inoculating Multivariate Schemes Against Differential At-
tacks. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 290–301. Springer, Heidelberg (2006)

6. Ding, J., Schmidt, D., Yin, Z.: Cryptanalysis of the New TTS Scheme in CHES
2004. International Journal of Information Security 5(4), 231–240 (2006)

7. Ding, J., Yang, B.Y.: Multivariate Public Key Cryptography. In: Bernstein, D.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 193–241.
Springer, Heidelberg (2009)

8. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient Hardware Implementation
of Fp-Arithmetic for Pairing-Friendly Curves. IEEE Transactions on Comput-
ers 61(5), 676–685 (2012)

200 S. Tang et al.

9. Fan, J., Vercauteren, F., Verbauwhede, I.: Faster Fp-arithmetic for Cryptographic
Pairings on Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 240–253. Springer, Heidelberg (2009)

10. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate
Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353.
Springer, Heidelberg (2005)

11. Ghosh, S., Verbauwhede, I.: BLAKE-512 Based 128-bit CCA2 Secure Tim-
ing Attack Resistant McEliece Cryptoprocessor. IEEE Transactions on Comput-
ers PP(99), 1 (2012)

12. Großschädl, J.: High-Speed RSA Hardware Based on Barrets Modular Reduction
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 191–203.
Springer, Heidelberg (2000)

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

14. Mahdizadeh, H., Masoumi, M.: Novel Architecture for Efficient FPGA Implementa-
tion of Elliptic Curve Cryptographic Processor Over GF (2163). IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 21(12), 2330–2333 (2013)

15. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Effi-
cient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.)
EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

16. McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory.
DSN Progress Report 42(44), 114–116 (1978)

17. Merkle, R.C.: Secrecy, Authentication, and Public Key Systems. Ph.D. thesis,
Stanford University (1979)

18. Miyamoto, A., Homma, N., Aoki, T., Satoh, A.: Systematic Design of RSA Pro-
cessors Based on High-Radix Montgomery Multipliers. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 19(7), 1136–1146 (2011)

19. Rebeiro, C., Roy, S.S., Mukhopadhyay, D.: Pushing the Limits of High-Speed
GF(2m) Elliptic Curve Scalar Multiplication on FPGAs. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 494–511. Springer, Heidelberg (2012)

20. Shih, J.R., Hu, Y., Hsiao, M.C., Chen, M.S., Shen, W.C., Yang, B.Y., Wu, A.Y.,
Cheng, C.M.: Securing M2M With Post-Quantum Public-Key Cryptography. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 3(1), 106–116
(2013)

21. Shoufan, A., Wink, T., Molter, H., Huss, S., Kohnert, E.: A Novel Cryptoprocessor
Architecture for the McEliece Public-Key Cryptosystem. IEEE Transactions on
Computers 59(11), 1533–1546 (2010)

22. Sutter, G., Deschamps, J., Imana, J.: Modular Multiplication and Exponentiation
Architectures for Fast RSA Cryptosystem Based on Digit Serial Computation.
IEEE Transactions on Industrial Electronics 58(7), 3101–3109 (2011)

23. Sutter, G., Deschamps, J., Imana, J.: Efficient Elliptic Curve Point Multiplica-
tion Using Digit-Serial Binary Field Operations. IEEE Transactions on Industrial
Electronics 60(1), 217–225 (2013)

24. Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-Speed Hardware Implemen-
tation of Rainbow Signature on FPGAs. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 228–243. Springer, Heidelberg (2011)

Efficient Hardware Implementation of MQ Asymmetric Cipher PMI+ 201

25. Wang, D., Ding, Y., Zhang, J., Hu, J., Tan, H.: Area-Efficient and Ultra-Low-Power
Architecture of RSA Processor for RFID. Electronics Letters 48(19), 1185–1187
(2012)

26. Chen, Y.: An Implementation of PMI+ on Low-Cost SmartCard. Master’s thesis,
National Taiwan University (2006)

27. Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing Minimized
Multivariate PKC on Low-Resource Embedded Systems. In: Clark, J.A., Paige,
R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88.
Springer, Heidelberg (2006)

High-Speed Elliptic Curve Cryptography

on the NVIDIA GT200 Graphics Processing Unit

Shujie Cui1,2, Johann Großschädl2, Zhe Liu2,�, and Qiuliang Xu1

1 Shandong University,
School of Computer Science and Technology,

Shunhua Road 1500, Jinan 250101, Shandong, P.R. China
shujiecui1@gmail.com, xql@sdu.edu.cn

2 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security,

6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg
{johann.groszschaedl,zhe.liu}@uni.lu

Abstract. This paper describes a high-speed software implementation
of Elliptic Curve Cryptography (ECC) for GeForce GTX graphics cards
equipped with an NVIDIA GT200 Graphics Processing Unit (GPU). In
order to maximize throughput, our ECC software allocates just a single
thread per scalar multiplication and aims to launch as many threads in
parallel as possible. We adopt elliptic curves in Montgomery as well as
twisted Edwards form, both defined over a special family of finite fields
known as Optimal Prime Fields (OPFs). All field-arithmetic operations
use a radix-224 representation for the operands (i.e. 24 operand bits are
contained in a 32-bit word) to comply with the native (24 × 24)-bit in-
teger multiply instruction of the GT200 platform. We implemented the
OPF arithmetic without conditional statements (e.g. if-then clauses) to
prevent thread divergence and unrolled the loops to minimize execution
time. The scalar multiplication on the twisted Edwards curve employs
a comb approach if the base point is fixed and uses extended projective
coordinates so that a point addition requires only seven multiplications
in the underlying OPF. Our software currently supports elliptic curves
over 160-bit and 224-bit OPFs. After a detailed evaluation of numerous
implementation options and configurations, we managed to launch 2880
threads on the 30 multiprocessors of the GT200 when the elliptic curve
has Montgomery form and is defined over a 224-bit OPF. The resulting
throughput is 115k scalar multiplications per second (for arbitrary base
points) and we achieved a minimum latency of 19.2 ms. In a fixed-base
setting with 256 precomputed points, the throughput increases to some
345k scalar multiplications and the latency drops to 4.52 ms.

1 Introduction

Driven by the requirements of 3D computer games, Graphics Processing Units
(GPUs) have evolved into massively parallel processors consisting of hundreds

� Co-first author, supported by the FNR Luxembourg (AFR grant 1359142).

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 202–216, 2014.
c© Springer International Publishing Switzerland 2014

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 203

of cores that are capable of running thousands of threads concurrently [14]. In
contrast, recent general-purpose CPUs feature a maximum of 12 cores and can
handle only few threads per core. They dedicate a large portion of their silicon
area to support a hierarchical memory organization (i.e. multi-level cache) and
sophisticated flow control mechanisms (e.g. branch prediction, out-of-order exe-
cution). In a modern GPU, on the other hand, the vast majority of transistors
(more than 80% according to [19]) is devoted to data processing (i.e. numerical
computations) rather than data caching and flow control. Over the past couple
of years, the performance of CPUs doubled roughly every 18 months, whereas
the computational power of GPUs increased significantly faster with an average
doubling rate of just about six months (“Moore’s law cubed”) [13]. Today, the
floating-point performance of contemporary GPUs exceeds that of CPUs of the
same or similar price by more than an order of magnitude. The unprecedented
computational power and relatively low cost of modern GPUs has made them
an attractive platform for various “number-crunching” applications outside the
graphics domain, e.g. in cryptography [4,6] and cryptanalysis [5].

The recent literature contains several case studies that demonstrate the use
of a GPU as “accelerator” for cryptographic workloads; a well-known example
is SSLShader [12], a GPU-based reverse proxy for SSL servers. SSL, along with
its successor TLS, is the current de-facto standard protocol for enabling secure
communication over an insecure network like the Internet. The most expensive
part of SSL/TLS is the handshake sub-protocol, whose task is to authenticate
the server to the client1 and establish a so-called pre-master secret [12]. When
an RSA-based cipher suite is used for the handshake, the server has to execute
computation-intensive modular exponentiations, which causes excessive delays
and hampers throughput. SSLShader tackles this problem by “off-loading” the
modular exponentiations to one or more GPUs, thereby alleviating the burden
of the server’s CPU. Practical experiments in [12] show that GPU acceleration
of the handshake increases the number of SSL transactions per second by a fac-
tor of 2.5 (1024-bit RSA) and 6.0 (2048-bit RSA) compared to a configuration
where the CPU performs the exponentiations. Even though [12] only considers
RSA-based cipher suites, the idea of accelerating SSL via one or more GPUs is
also applicable to handshakes using Elliptic Curve Cryptography (ECC).

In this paper, we present an efficient implementation of ECC (or, more pre-
cisely, of scalar multiplication in an elliptic curve group) for NVIDIA graphics
cards featuring a Tesla GPU [14]. Our implementation is specifically optimized
for high throughput, which means we aimed at maximizing the number of sca-
lar multiplications the GPU can execute per second. The basic idea we pursue
is to employ just one single thread for each scalar multiplication, but launch as
many threads in parallel as possible. This contrasts with the bulk of previous
work, which followed a relatively “fine-grained” approach to parallel processing
by invoking several threads to cooperatively compute one scalar multiplication
[2]. Avenues for exploiting thread-level parallelism to speed up ECC on GPUs

1 Client authentication is optional in SSL. Web applications usually authenticate the
client (i.e. user) through a higher-level protocol, e.g. by entering a password.

204 S. Cui et al.

exist in both the field arithmetic (i.e. modular multiplication and squaring, see
e.g. [1,4]) and the group arithmetic (i.e. point addition and point doubling, see
e.g. [6,11]). A major challenge of such a “many-threads-per-task” strategy is to
partition the task (scalar multiplication in our case) into independent subtasks
that can be executed in parallel with little communication and synchronization
overhead. The goal is to find a partitioning that keeps all threads busy all the
time so that no resources are wasted by idling threads, which is difficult due to
the iterative (i.e. sequential) nature of scalar multiplication algorithms. On the
other hand, a “one-thread-per-task” strategy avoids these issues and is easy to
implement because all involved operations are executed sequentially by a single
thread. Therefore, this approach has the virtue of (potentially) better resource
utilization when launching a large number of threads. However, the problem is
that the threads, even though they are independent of each other, share certain
resources such as registers or fast memory, which are sparse. The more threads
are active at a time, the fewer resources are available per task.

This paper seeks to shed new light on the question of how to “unleash” the
full performance of GPUs to achieve maximum throughput for scalar multipli-
cation. To this end, we combine the state-of-the-art in terms of implementation
options for ECC with advanced techniques for parallel processing on GPUs, in
particular the NVIDIA GT200 [14,19]. Our implementation currently supports
elliptic curves in Montgomery [18] and twisted Edwards form [3], both defined
over a special type of prime field known as Optimal Prime Field (OPF) [9]. In
order to ensure a fair comparison with previous work (most notably [1,6]), we
benchmarked our ECC software on a GeForce GTX285 graphics card equipped
with a GT200 processor. Even though the GT200 is already five years old and
has a (by today’s standards) rather modest compute capability of 1.3 [20], its
integer performance is still “remarkably good,” as was recently noted by Bos in
[6, Section 5]. This is not surprising since, in the past few years, NVIDIA has
focused primarily on cranking up the performance of single-precision floating-
point operations, whereas integer performance improved at a rather slow pace
from one GPU generation to the next. A peculiarity of the GT200 GPU are its
integer multipliers, which “natively” support only (24 × 24)-bit multiplications
and MAC operations, even though the integer units, including registers, have a
32-bit datapath. (32× 32)-bit multiplications can be executed, but they need to
be composed of several mul24 instructions and are, therefore, slow.

2 Preliminaries

In this section, we first discuss some basic properties and features of NVIDIA’s
GT200 platform (Subsection 2.1) and then recap the used elliptic curve models
as well as the underlying prime field (Subsection 2.2).

2.1 Graphics Processing Units (GPUs)

A large number of multi-core GPU platforms exist today, e.g. the Tesla, Fermi
and Kepler families from NVIDIA, or the Radeon series from AMD. We use an

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 205

NVIDIA GeForce GTX285 card for our implementation due to its attractive
price-performance ratio and easy programmability. The main component of an
NVIDIA GPU is a scalable array of multi-threaded Streaming Multiprocessors
(SMs), in which the actual computations are carried out. A GT200 is composed
of exactly 30 SMs, each coming with its own control units, registers, execution
pipelines and caches. The main components of an SM are Streaming Processors
(SPs), which are essentially just ALUs, referred to as “cores” in NVIDIA jar-
gon [20]. Each SM contains eight cores and two Special Function Units (SFUs).
The SMs are designed to create, manage, schedule, and execute a large num-
ber of threads concurrently following the SIMT (Single-Instruction, Multiple-
Thread) principle. A batch of 32 threads executed physically in parallel is called
a warp. At each cycle, the SM thread scheduler chooses a warp to execute. We
should note that a warp executes one common instruction at a time. If there is
a data-dependent conditional branch, divergent paths will be executed serially.
So, in order to obtain full performance, all the threads of a warp should have
the same execution path, i.e. conditional statements should be avoided.

The so-called Compute Unified Device Architecture (CUDA) is a parallel
programming model introduced by NVIDIA to simplify software development for
GPUs, including software for general-purpose processing on GPUs (GPGPU).
It provides both a low-level and high-level API and also defines the memory
hierarchy. The parallel portion of an application is executed on GPUs as kernels
(a kernel is a grid of thread blocks). A block is a group of threads, whereby all
threads in one block can cooperate with each other. A thread is the smallest
unit of parallelism and only threads with the same instructions can be executed
synchronously. Our implementation launches thousands of threads to compute
thousands of scalar multiplications in parallel on the GT200.

CUDA provides a hierarchical memory model, including registers, shared
memory, global memory, and constant memory [20]. Registers are on-chip mem-
ories, which are private to individual threads. Variables that reside in registers
can be accessed at the highest speed in a highly parallel manner. On a GT200,
each SM has 16384 registers of a width of 32 bits. However, registers can not be
addressed. Shared memory is also located on chip and can, therefore, be accessed
at a high speed. Shared memory is allocated to a thread block. All the threads
in one block can cooperate by sharing their input data and intermediate results
through shared memory. In the GT200 series, each SM has 16 kB shared memory.
Global memory and constant memory are off-chip memories. Global memory is
the only one that can be accessed by the host processor, so it is normally used
to exchange data with host memory. Constant memory can only be read and
is optimized for one-dimensional locality of accesses. One can achieve optimal
performance by carefully considering the advantages of the different variants
of memory. As registers and shared memory are the fastest memory spaces, we
mainly use them in our implementation. In order to get the best performance, it
is vital to balance the number of parallel threads per block with the utilization
of the limited registers and shared memory. Furthermore, one has to be careful
to prevent bank conflicts [20] when accessing shared memory.

206 S. Cui et al.

2.2 Elliptic Curve Cryptography (ECC)

Twisted Edwards Curve. Twisted Edwards curves were presented by Bern-
stein et al [3] and are widely considered to be one of the most efficient models
for implementers. Let K be a field with char(K) �= 2. A twisted Edwards curve
over K can be defined as

ET,a,d : ax2 + y2 = 1 + dx2y2 (1)

where a and d are distinct non-zero elements of K, i.e. ad(a− d) �= 0.
Our implementation adopts the idea of extended coordinates from [11] to

perform a point addition and point doubling. A point in extended projective
coordinates can be represented as (X : Y : T : Z) whereby the corresponding
extended affine coordinates have the form (X/Z, Y/Z, T/Z) with Z �= 0. The
auxiliary coordinate T has the property T = XY/Z. Fixing the parameter a to
−1 allows for a further reduction of the cost of point operations as described
in [11]. We follow the approach from [7] and use a quintuple with two variables
E and H instead of T to represent a point, whereby E ·H = T . In this case, a
point doubling can be performed with three multiplications and four squarings
(i.e. 3M+4S), while the point addition costs seven multiplications (7M).

To reach high throughput, our implementation adopts a comb method [10]
for scalar multiplication, which can only be used in scenarios where the base
point is fixed. Given the amount of constant memory the GTX285 provides,
we chose a window width of w = 8 for the comb method. Consequently, 256
points (one of which is the neutral element) have to be pre-computed off-line and
then transferred to constant memory before the actual execution of the scalar
multiplication. To prevent thread divergence and protect our implementation
against timing-based side-channel attacks, we simply exploit the completeness
of the Edwards addition law (i.e. we add the neutral element when an 8-bit digit
of the scalar is zero) to achieve a branchless execution path.

Montgomery Curve. Peter Montgomery introduced in 1997 a special fam-
ily of elliptic curves with outstanding implementation properties [18]. A Mont-
gomery curve EM with coefficients A and B over Fp is defined as

EM,A,B : By2 = x3 +Ax2 + x (2)

Montgomery curves allow a special ladder technique to perform a scalar multipli-
cation, which is generally referred to as “Montgomery ladder”. Instead of using
conventional (x, y) coordinates, the scalar multiplication on a Montgomery-form
curve can be computed using only the x coordinate of the base point. Due to
this feature, all point additions and doublings can be executed in an efficient
way since they never involve a y coordinate. Therefore, the point addition has
an operation count of of only 3M+2S, where M represents a field multiplica-
tion and S a squaring operation. Doubling a point costs 2M+2S+1C, where C
stands for a multiplication of a field element by the constant (A + 2)/4. In our
implementation, the parameter A is chosen such that this constant is small.

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 207

Fig. 1. Radix-224 representation of a 160-bit integer using 32-bit words

Optimal Prime Fields (OPFs). We use a special class of finite field, known
as Optimal Prime Field (OPF) [15]. OPFs are defined via a prime of the form
p = u · 2k + v, whereby u and v are small in relation to 2k. It is obvious that
there exist many such primes for a given bitlength. In our implementation, v is
always 1 and u is a 16-bit integer. A concrete example for a 160-bit prime is
p = 65356 · 2144 + 1 = 0xff4c000000000000000000000000000000000001. Primes
of such form have a low Hamming weight, i.e. they contain many zero words
[15]. Generic modular reduction algorithms, e.g. Montgomery reduction, can be
optimized for these primes as only the non-zero words must be processed.

3 Implementation

This section describes our implementation in detail. First, we demonstrate the
advantage of using a radix-224 representation for the field elements in Section
3.1, and then describe the field arithmetic operations in Section 3.2 and finally
the group arithmetic along with the scalar multiplication in Section 3.3.

3.1 Integer Representation

One of the fundamental questions when implementing multi-precision arithmetic
for a given architecture is how to represent the operands so as to take best
advantage of its computational resources. In general, multiplication and carry
propagation are of primary concern.

Multiplication plays an important role in ECC implementations, especially
when projective coordinates are used. The GT200 series is based on the Tesla
architecture, which means the native integer multiply instruction calculates a
(24 × 24)-bit product. A 32-bit integer multiplication is actually performed via
a combination of several 24-bit multiplications, shifts and additions. According
to the CUDA C programming guide [20], eight 24-bit integer multiplications can
be executed per clock cycle on each SM, which is more efficient than the integer
multiplication using a straightforward 32-bit representation. Thus, we adopt a
24-bit representation for the field elements in our work.

Multi-precision operands are typically represented by arrays of w-bit words
whereby w is determined by the word-size of the target processor. When us-
ing a straightforward 32-bit-per-word representation, a 160-bit operand X can
be stored in an array of five 32-bit words. On the other hand, a radix-224

representation (i.e. 24 bits per word) requires seven 32-bit words as shown in

208 S. Cui et al.

Fig. 2. Comparison of multi-precision addition (radix-232 vs radix-224)

Figure 1. The most significant byte is 0 in every word and the most significant
word of a 160-bit integer contains only 16 bits. Even though this representation
takes two additional 32-bit words (namely seven in total instead of five), it yields
significantly better field-multiplication performance on a GT200.

224 Addition vs 232 Addition. As shown in the left side of Figure 2, when
using the radix-232 representation, the sum of two words may overflow, and
the resulting carry bit has to be added to the next-higher word. This can be
performed efficiently in PTX assembly language using the add.cc instruction
[21]. On the other hand, the radix-224 representation provides enough space in
the unused most significant byte to hold the carry. However, there are extra
instructions necessary to extract the carry bit and then add it to the next-
higher pair of words. Thus, the radix-224 representation makes multi-precision
addition slightly slower, but this is more than compensated by a significant gain
in multiplication performance as will be described below.

224 Multiplication vs 232 Multiplication. We use the product-scanning
method [10], which can be optimized to take advantage our 24-bit integer rep-
resentation. Figure 3 shows an example of its implementation. As mentioned
before, CUDA provides the [u]mul24.lo/hi instructions, whereby the former
multiplies the 24 Least Significant Bits (LSBs) of the operands and returns the
32 LSBs of the 48-bit product. On the other hand, [u]mul24.hi also multiplies
the 24 LSBs of the operands, but returns the 32 Most Significant Bits (MSBs)
of the product [21, p. 60]. Therefore, the 48-bit product is written to two 32-bit
registers. In the inner loop of the product-scanning method, the partial prod-
ucts of the same column are added together. Due to the 24-bit representation, we
have 8 unused bits, which allows the carries to be added as part of the operands
(we only need to extract the carries at the end of the inner loop). Hence, only
two 32-bit additions are needed in each iteration of the inner loop.

The inner loop is much slower when using a 32-bit representation, which
has two main reasons. First, a 32-bit integer multiplication takes much longer
than the native 24-bit multiply instruction. Second, the processing of the carry
bits requires additional effort because both a 32-bit addition (to accumulate
the lower part) and a 64-bit addition (to accumulate the higher part) has to be
executed per loop iteration. A further disadvantage is the need for extra registers.
Figure 4 compares the execution time of the multiplication using a radix-224 and

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 209

Fig. 3. Product-scanning method for multi-precision multiplication

a radix-232 representation. The figure also includes a radix-229 representation,
which uses 32-bit multiply instructions to get the partial products, but handles
the carries in the same way as the radix-224 representation. Our results show
that the 24-bit representation outperforms the other two approaches by far.

Besides addition and multiplication, the proposed radix-224 representation is
also beneficial for modular reduction. The reason is twofold:

– No Reduction Operation: The idea of incomplete modular reduction was
described in detail by Yanik et al [23]. This technique allows the result of
an operation to be greater than the prime p, but it must have the same bit
length (denoted as s). Normally, if p < 2s < 2p − 1, we require the result
of a field arithmetic operation to be in the range [0, 2s − 1], but it does not
necessarily need to be smaller than p. Consequently, the reduction opera-
tion can be avoided when this condition is met, which means incompletely
reduced results can save execution time. However, if the result does not fit
into s bits, we need to reduce it until it is in the range [0, 2s − 1]. Our im-
plementation does not need to perform the reduction operation for every
field operation since the excess bits can be held in the unused bits without
additional memory or register usage.

– No Conditional Branches: Addition and Montgomery reduction may re-
quire a final subtraction of p, which can cause thread divergence and leak
side-channel information if implemented in a naive way. As we pointed out
before, the radix-224 representation does not have this problem.

210 S. Cui et al.

0

5

10

15

20

25

30

160-bit 192-bit 224-bit

co
m

pu
ta

tio
n

tim
es

 in
 n

s

comba_32
comba_29
comba_24

Fig. 4. Comparison of the execution time of multi-precision multiplication for 160, 192
and 224-bit operands (radix-224 vs radix-229 vs radix-232 representation)

3.2 Field Operations

“Lazy” Modular Addition and Subtraction. The modular addition and
subtraction are basic operations in ECC. We implemented them efficiently using
our special integer representation. For modular addition, we replace the field
addition a + b mod p by an ordinary integer addition a + b without reduction
operation. Since the unused bits in the most significant word can hold excess
bits (i.e. carries), the conditional subtraction can be eliminated. In a modular
subtraction, it is not possible to get a negative result due to the final reduction
operation (i.e. addition of p). However, this is not true for an ordinary subtrac-
tion. In our work, we compute kp+a− b instead of a− b to avoid to get negative
results, which is more efficient than doing a reduction since we just need to add
two 24-bit words before subtracting. The problem is to decide how many p have
to be added, which of course depends on the operands a and b. If a > b is always
true then we could just compute a − b. Unfortunately, there is no guarantee
that this is the case. In our implementation, the field-arithmetic operations are
invoked by the point addition and point doubling. In these two operations, the
inputs of a modular subtraction are generally the outputs of addition, modular
multiplication or squaring. The outputs of modular multiplication and squaring
are always in [0, 2p). On the other hand, the output of an addition is in the range
of [0, 4p). Therefore, we can avoid a negative result when k = 4, which means
we can simply replace a− b mod p by 4p+ a− b.

Efficient Field Multiplication and Squaring. Modular multiplication and
modular squaring are the two most performance-critical arithmetic operations in
ECC. In our implementation, they are realized through Montgomery’s modular
reduction technique introduced in [17]. We use a special variant of the so-called
Montgomery multiplication, the so-called Finely Integrated Product Scanning
(FIPS) method. The OPF primes we use have a very low Hamming weight so
that only the most significant and the least significant 24-bit word needs to be
considered in the reduction. We implemented both modular multiplication and

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 211

squaring on basis of Liu et al’s OPF-FIPS algorithm introduced in [15], which
simply ignores all the zero-words and, in this way, achieves very high perfor-
mance. We refer to [15] for a detailed description of the implementation. Some
further optimizations are possible when using a radix-224 representation and
following the approach of incomplete modular reduction. In this way, the final
subtraction in both the Montgomery multiplication and squaring does not need
to be carried out. However, the result of a modular multiplication/squaring is
now in the range of [0, 2p − 1]. Note that, since the FIPS method is based on
the product-scanning approach, we can process carries efficiently as described
before. All loops are fully unrolled for performance reasons. The operands are
loaded into registers and then we perform the computation in a word by word
fashion. Finally, the result is written back to memory.

3.3 Group Operations and Scalar Multiplication

Point Addition and Doubling. The most efficient way to represent a point
P = (x, y) on a twisted Edwards curve is to use extended projective coordinates
of the form (X : Y : T : Z) as proposed by Hisil et al in [11]. However, in
order to further optimize the point arithmetic, our implementation omits the
multiplication that produces the auxiliary coordinate T and outputs the two
factors E, H it is composed of instead (see [7] for details). In this way, one
can obtain more efficient point addition formulae, especially when the curve
parameter a = −1. By applying these optimizations, the cost of addition and
doubling amounts to 7M and 3M+4S, respectively.

We implemented the point addition/doubling on the Montgomery curve in
a straightforward way using exactly the formulae given in [18].

Scalar Multiplication. We benchmark our GPU implementation with two
different scalar multiplication techniques. In the case of an arbitrary point (i.e. a
base point that that neither constant or known in advance), we use the standard
Montgomery ladder on the Montgomery curve. In this way, we have to always
execute exactly one point addition and one point doubling for each bit of the
scalar, which amounts to 5M +4S per bit. On the other hand, if the base point
is fixed, our implementation uses a regular version of the comb method with 256
pre-computed points, similar as described in [16]. The idea of the regular comb
method is as follows: Since the base point P is fixed, we can do an off-line pre-
computation of multiples d ·P of P and store them in a table. Then, during the
actual scalar multiplication, we process 8 bits of the scalar at a time, and add
the corresponding entry from the table to the previous intermediate result. In
this way, the number of point doublings is reduced by a factor of 8 compared to
the straightforward double-and-add method. The number of point additions is
exactly the same as the number of doublings since we exploit the completeness
of the Edwards addition law and add the neutral element O = (0, 1) when an
8-bit block of the scalar is 0. The overall cost of our comb method with 256
pre-computed points amounts to 10

8 nM+ 4
8nS for an n-bit scalar.

212 S. Cui et al.

4 Experimental Results

Our experimental platform is an NVIDIA GTX285 graphics card; it contains
a GT200 GPU clocked at a frequency of 1476 MHz. The GT200 is nowadays
considered a low-end GPU with a compute capability of 1.3.

4.1 Throughput and Latency

The number of blocks per grid and the number of threads per block are two es-
sential parameters of an execution configuration since they directly impact the
utilization of the GPU. Furthermore, these two parameters interplay with the
memory and register usage. In our evaluation, we focus on three parameters,
namely the number of blocks running on each SM, the number of threads per
block, and the usage of on-chip memory.

The threads are assigned to an SM in a group of blocks. A block of threads
gets scheduled to one available multiprocessor. We can use more than one block
to expand the throughput by taking advantages of the 30 SMs. In [1], the best
performance was achieved by launching 30 blocks on the GT200. However, the
GT200 allows for up to 512 threads per SM, provided that there is sufficient
on-chip memory and registers available for each thread. Unfortunately, both is
severely limited, which requires to carefully balance the number of threads per
block with register and shared memory usage. Furthermore, the performance
also varies depending on what kind of memory is used. There are three basic
implementation options; we briefly describe them below taking variable-base
scalar multiplication on the 160-bit Montgomery curve as example.

– Shared memory can be accessed very fast, but is small. We can achieve the
lowest latency when all operands are held in shared memory. However, due
to its limited capacity of 16 kB per SM, only up to 80 threads per block can
be launched. We call this number of threads the threads limit point.

– Global memory is large. Thus, we can move some operands that are not
frequently used into global memory. In this case, the threads limit point
increases to 144. However, due to slower access time, the latency rises.

– To launch even more threads, we can put all operands into global memory.
In this case, the threads limit point is 160 threads per block, determined by
the register restriction. Unfortunately, the latency becomes very high.

The resulting throughput and latency of all three cases are illustrated in Figure
5. We can see that the blue line representing the latency is flat until the first
threads limit point of 80. Thereafter (i.e. from 96 onwards), the latency rises
slightly since now global memory is used to hold parts of operands. After pass-
ing the second threads limit point (i.e. 144), only global memory is used, and
therefore the latency increases sharply. In our work, throughput refers to the
number of point multiplications that can be executed per second, which is an
important performance metric. Figure 5 shows that the green bars representing
this metric keep increasing until the second thread limit point of 144, where the

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 213

0

100000

200000

300000

400000

500000

600000

0

10

20

30

40

50

60

70

80

16 32 48 64 80 96 112 128 144 160

Th
ro

ug
hp

ut

La
te

nc
y/

m
s

Scalar mul�plica�ons/block

160-bit throughput 224-bit throughput

160-bit latency 224-bit latency

Fig. 5. Throughput and latency for a different number of variable-base scalar multi-
plications per block (using the Montgomery ladder on a Montgomery curve)

peak is reached. After this point, the throughput declines sharply. Hence, we
achieve the highest throughput, namely 502k scalar multiplications per second,
with 4320 threads (i.e. 144 threads per block). This shows that one can increase
throughput by sacrificing latency; we did this by using both shared memory and
global memory for storing operands. For the 224-bit Montgomery ladder, the
highest throughput of 115k scalar multiplications per second is achieved when
96 threads per block are launched (i.e. 2880 threads altogether).

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0

2

4

6

8

10

12

16 32 48 64 80 96 112 128 144 160

Th
ro

ug
hp

ut

La
te

nc
y/

us

scalar mul�plica�ons/block

160-bit throughput 224-bit throughput
160-bit latency 224-bit latency

Fig. 6. Throughput and latency for a different number of fixed-base scalar multiplica-
tions per block (using a comb method with 256 points on a twisted Edwards curve)

Our implementation of the comb method stores the pre-computed points in
constant memory. Figure 6 shows the latency and throughput for a twisted
Edwards curves over a 160 and 224-bit OPF, respectively. Table 1 summarizes
the maximum performance of the four implementations. The throughput of the
comb method is about 1412k and 345k in the 160 and 224-bit case, respectively.
The performance is highly dependent on choosing the proper number of scalar
multiplications per block. Our results show that 112 and 128 are the best choices
for 160 and 224-bit curves, respectively, if one aims for high throughput.

214 S. Cui et al.

Table 1. Minimum latency and maximum throughput of scalar multiplication

Implementation Latency [ms] Throughput [op/s]

160-bit Montgomery ladder 5.9 502326

160-bit Comb method 1.84 1411756

224-bit Montgomery ladder 19.2 115200

224-bit Comb method 4.52 345417

4.2 Comparison with Related Work

In recent years, numerous ECC implementations for GPUs have been reported
in the literature. In [1], Antão et al introduced a parallel algorithm for point
multiplication using a Residue Number System (RNS) to expose parallelism in
the multi-precision integer arithmetic. Their results on the GTX285 platform
suggest a maximum throughput of 9990 scalar multiplications per second and a
latency of 24.3 ms if the underlying field has a size of 224 bits. Szerwinski and
Güneysu [22] presented an implementation on an NVIDIA 8800GTS based on
the operand-scanning method for multi-precision multiplication. Their results
indicate a throughput of 1412 scalar multiplications per second using the NIST
P-224 curve. In [8], Giorgi et al did a comprehensive evaluation of both prime-
field arithmetic and point arithmetic (including scalar multiplication) on the
NVIDIA 9800 GX2 GPU for operands of different length. When using a 224-bit
field, they achieved throughput of 1972 scalar multiplications per second.

Table 2. Comparison of GPU implementations of 224-bit scalar multiplication

Implementation Platform Latency [ms] Throughput
[op/s]

Processor
clock [MHz]

Szerwinski [22] 8800 GTS 305 1412.6 n./a.

Giorgi [8] 9800 GX2 n./a. 1972 n./a.

Antão [1] GTX 285 24.3 9990 1476

Bos [6] GTX 295 10.6 79198 1242

Our work (var. point) GTX 285 19.2 115200 1476

Our work (fixed point) GTX 285 4.52 345417 1476

To our knowledge, Bos reported in [6] the best previous result for ECC over
a 224-bit prime field on the GT200, even though he optimized latency instead
of throughput. He used a Montgomery ladder on a Weierstrass curve for scalar
multiplication, which is implemented with 8 threads so as to exploit parallelism
in the point operations. As shown in Table 2, he reached a throughput of 79198
scalar multiplications per second, but one has to consider that the GTX295
he used for benchmarking contains two GT200 GPUs, which are clocked with
a slightly lower frequency than in our GTX285. Taking these differences into
account, our throughput in the variable-base setting is 2.45 times higher than
that of Bos. On the other hand, the latency differs by a factor of 2.15.

High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 215

5 Conclusions

In this work, we combined Optimal Prime Fields (OPFs) with twisted Edwards
and Montgomery curves, and implemented both the field and curve arithmetic
to match the characteristics of the NVIDIA GT200 GPU. To optimize the field
arithmetic with respect to 24-bit integer multipliers of the GT200, we adopted
a radix-224 representation for the field elements. This representation facilitates
lazy or incomplete modular addition and subtraction since the most significant
word contains (at least) 8 vacant bits. We use OPFs as underlying algebraic
structure, which allows for very fast modular reduction since only the non-zero
words of the prime need to be processed. For point operations on the twisted
Edwards curve, extended coordinates are used to represent the points, which
allows the point addition to be performed with only seven multiplications in the
underlying OPF, while a point doubling requires three multiplications and four
squarings. We adopted the complete point addition formulae for curves with
parameter a = −1. The scalar multiplication uses a regular variant of the comb
method with 256 pre-computed points. Regarding the implementation options
related to memory (resp. register) usage and number of threads, we scarified
latency to get a higher throughput by moving temporary arrays from shared
memory to the un-cached global memory. In this way, we managed to achieve a
significantly higher throughput than the state-of-the-art.

Acknowledgements. The research described in this paper was supported, in
part, by the National Science Foundation of China (61173139), the Special-
ized Research Fund for the Doctoral Program of Higher Education of China
(20110131110027), and the Key Program of the Natural Science Foundation
of Shandong Province (ZR2011FZ005).

References

1. Antão, S., Bajard, J.-C., Sousa, L.: Elliptic curve point multiplication on GPUs.
In: Proceedings of the 21st IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP 2010), pp. 192–199. IEEE Computer
Society Press (2010)

2. Antão, S., Bajard, J.-C., Sousa, L.: RNS-based elliptic curve point multiplication
for massive parallel architectures. Computer Journal 55(5), 629–647 (2012)

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405.
Springer, Heidelberg (2008)

4. Bernstein, D.J., Chen, H.-C., Chen, M.-S., Cheng, C.-M., Hsiao, C.-H., Lange, T.,
Lin, Z.-C., Yang, B.-Y.: The billion-mulmod-per-second PC. In: Proceedings of the
4th Workshop on Special-Purpose Hardware for Attacking Cryptographic Systems
(SHARCS 2009), Lausanne, Switzerland, pp. 131–144 (September 2009)

5. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on graph-
ics cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–501.
Springer, Heidelberg (2009)

216 S. Cui et al.

6. Bos, J.W.: Low-latency elliptic curve scalar multiplication. International Journal
of Parallel Programming 40(5), 532–550 (2012)

7. Chu, D., Großschädl, J., Liu, Z., Müller, V., Zhang, Y.: Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In: Proceedings
of the 1st ACM Workshop on Asia Public-Key Cryptography (AsiaPKC 2013),
pp. 39–44. ACM Press (2013)

8. Giorgi, P., Izard, T., Tisserand, A.: Comparison of modular arithmetic algorithms
on GPUs. In: Parallel Computing: From Multicores and GPU’s to Petascale. Ad-
vances in Parallel Computing, vol. 19, pp. 315–322. IOS Press (2010)

9. Großschädl, J.: TinySA: A security architecture for wireless sensor networks. In:
Proceedings of the 2nd International Conference on Emerging Networking Exper-
iments and Technologies (CoNEXT 2006), pp. 288–289. ACM Press (2006)

10. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer (2004)

11. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves re-
visited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

12. Jang, K., Han, S., Han, S., Moon, S., Park, K.: SSLShader: Cheap SSL acceleration
with commodity processors. In: Andersen, D.G., Ratnasamy, S. (eds.) Proceedings
of the 8th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2011). USENIX Organization (2011)

13. Khan, F.G.: General Purpose Computation on Graphics Processing Units using
OpenCL. Ph.D. Thesis, Politecnico di Torino, Torino, Italy (March 2013)

14. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

15. Liu, Z., Großschädl, J., Wong, D.S.: Low-weight primes for lightweight elliptic
curve cryptography on 8-bit processors. In: Lin, D., Xu, S., Yung, M. (eds.) The
9th China International Conference on Information Security and Cryptology —
INSCRYPT 2013. LNCS. Springer, Heidelberg (to appear)

16. Liu, Z., Wenger, E., Großschädl, J.: MoTE-ECC: Energy-scalable elliptic curve
cryptography for wireless sensor networks (February 2013) (to be published)

17. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

18. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

19. NVIDIA Corporation. NVIDIA GeForceR© GTX 200 GPU Architectural Overview.
Technical brief (2008),
http://www.nvidia.com/docs/IO/55506/

GeForce GTX 200 GPU Technical Brief.pdf

20. NVIDIA Corporation. CUDA C Programming Guide. Design guide (2013),
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

21. NVIDIA Corporation. Parallel Thread Execution ISA. Application guide (2013),
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.2.pdf

22. Szerwinski, R., Güneysu, T.: Exploiting the power of GPUs for asymmetric
cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 79–99. Springer, Heidelberg (2008)

23. Yanık, T., Savaş, E., Koç, C.¸ K.: Incomplete reduction in modular arithmetic. IEE
Proceedings – Computers and Digital Techniques 149(2), 46–52 (2002)

http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.2.pdf

A Progressive Dual-Rail Routing Repair

Approach for FPGA Implementation of Crypto
Algorithm

Chenyang Tu1,3,4,�, Wei He2, Neng Gao1,3,��, Eduardo de la Torre2,
Zeyi Liu1,3,4, and Limin Liu1,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS,

Beijing, China
2 Centro de Electronica Industrial, Universidad Politecnica de Madrid,

Jose Gutierrez Abascal. 2, 28006 Madrid, Spain
3 Data Assurance and Communication Security Research Center, CAS,

Beijing, China
4 University of Chinese Academy of Sciences, Beijing, China

{chytu,gaoneng,liuzeyi,lmliu}@lois.cn,
{wei.he,eduardo.delatorre}@upm.es

Abstract. Side Channel Analysis (SCA), which has gained wide atten-
tions during the past decade, has arisen as one of the most critical metrics
for the cryptographic algorithm security evaluation. Typical SCA ana-
lyzes the data-dependent variations inspected from side channel leakages,
such as power and electromagnetism (EM), to disclose intra secrets from
cryptographic implementations on varying platforms, like microproces-
sor, FPGA, etc. Dual-rail Precharge Logic (DPL) has proven to be an
effective logic-level countermeasure against classic correlation analysis
by means of dual-rail compensation protocol. However, the DPL design
is hard to be automated on FPGA, and the only published approach is
subject to a simplified and partial AES core. In this paper, we present
a novel implementation approach applied to a complete AES-128 crypto
algorithm. This proposal bases on a partition mechanism which splits
the whole algorithm to submodules and transform individuals to DPL
format respectively. The main flavor lies within its highly symmetric
dual-rail routing networks inside each block, which significantly reduces
the routing bias between each routing pair in DPL. This paper describes
the overall repair strategy and technical details. The experimental result
shows a greatly elevated success rate during the routing repair phase,
from lower than 60% to over 84% for Xilinx Virtex-5 FPGA in SASEBO-
GII evaluation board.

Keywords: Side Channel Analysis, Dual-rail Precharge Logic (DPL),
routing repair, Design Automation, Xilinx FPGA.

� This work is supported by a grant from the National High Technology Research
and Development Program of China (863 Program, No. 2013AA01A214) and the
National Basic Research Program of China(973 Program, No. 2013CB338001).

�� Corresponding Author.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 217–231, 2014.
c© Springer International Publishing Switzerland 2014

218 C. Tu et al.

1 Introduction

Side Channel Analysis (SCA) has evolved as a crucial security issue when build-
ing a sound cryptographic circuit since Paul Kocher et al’s innovative discovery
in [1]. This attack typically observes the power consumption or EM emanation
from a running crypto device to infer internal circuit behaviors or processed date,
particularly as the secret key. Differing from traditional cryptanalysis techniques,
SCA can be seen as a non-intrusive attack since it theoretically doesn’t interrupt
the algorithmic functions, which makes it difficult to be detected and defended
with passive counter strategies.

The countermeasure research towards SCA is a complex issue which needs to
be scrutinized from the design bring-up, which involves the target algorithm, re-
quired security level and performance, implementation platform, cost (e.g. power,
chip area) and computation capability of adversaries. Two major popular meth-
ods, masking and hiding, have been proposed for removing or alleviating SCA
threats. Precisely, masking applies to the algorithmic level, to alter the sensitive
intermediate values with a mask in reversible ways. Unlike the linear masking,
non-linear operations that widely exist in modern cryptography are difficult to be
masked. Approved to be an effective countermeasure, the hiding method mainly
refers to a compensation strategy that is specially devised for smoothening the
data-dependent leakage in power or EM signature. While, none of them can be
extensively secure mainly being stunted from their implementations. In this pa-
per, we focus on the Dual-rail Precharge Logic (DPL) - one solution from hiding
approach - to introduce the technical proposals.

For dynamically compensating the intermediates, DPL is equipped with an
original (True/T) rail and a complementary (False/F) rail, which should be a
counterpart of the T rail [4]. In this way, the side-channel fluctuation in power
or EM signatures can be theoretically flattened. What’s more, timing achieves
a highly precise compensation manner between the two rails, the symmetry
routing paths are essential in the DPL solution. In practice it is pretty hard
to have the rigorous requirements using vendor provided tools, especially when
implementing a DPL design upon FPGA. This is mainly due to the weird logic
structure of DPL logic which requires strict physical symmetry between the two
logic rails that cannot be properly satisfied using generic FPGA design flow.
A series of novel packed techniques were introduced in [7][9] which depict a
dual-rail creation technique for FPGA implemented DPL, supported by low-
layer element manipulations from third-party APIs. This approach relies on two
consecutive execution procedures, namely “dual-rail transformation and routing
repair” to (a) highly expedite the logic realization; and (b) automatically heal
the problematic routings.

However, the described proposal is only validated with a very tiny design -
a simplified 8-bit AES core module [3]. To be concrete, the tool doesn’t work
efficiently upon complex designs, because it is severely retarded by its low compu-
tation efficiency during the reentrant repair process. In a sizable cryptographic
algorithm, all components of cryptographic circuits should be repaired as an
unity. The result is influenced by two aspects: firstly, the number of the conflict

A Progressive Dual-Rail Routing Repair Approach 219

complementary routing pairs is increasing due to the drastic routing resource
competition on the routing channels while the number of circuit components
is increasing; secondly, the security of DPL implementation is decreased with
non-identical complementary routing pairs.

To mitigate the implementation trouble, a progressive repair approach is pro-
posed, which relies on a partition strategy to progressively process each sub-
module. The main challenges for this technique are described from the following
three parts:

1) Split the complex cryptographic design to numerous functional blocks. In the
FPGA environment, the block is defined as a local territory to implement one
logic cluster, such as buffer, RAM, CLB and pin. The conventional concept of
block is not applicable to our cryptographic functional block. Therefore, a new
definition of cryptographic functional block is required.
2) Map the circuit components into each block. All circuit components should
be relocated as close as possible with a conventional mapping approach. It might
lead to more non-identical complementary routing pairs, which cripple the global
network symmetry.
3) Take different executions over each block because it is unnecessary to trans-
form some blocks to DPL format in consideration of cost/security tradeoff.

Our contribution mainly lies within a logic division tactic, and a progressive
repair mechanism supported by previously presented third-party auto repair
toolkit. The described work splits the whole algorithm to several functional sub-
modules and deal with them sequentially. Our approach is appropriate for com-
plex cryptographic design scenario. Experiments show that the routing repair
success rate of an AES-128 implementation is higher than 84% after the auto-
matic routing repair. However, the mechanism increases the repair success rate
while slightly weakens certain performance, like design density and maximal fre-
quency. Note that the proposal is valuable for proof-of-concept in security-critical
applications, instead of being a globally-adaptive closed system. A meticulous
tradeoff between security and cost sufficiently before project bring-up is still
mandatory.

The rest of the paper is organized as follows. In Section 2, the prior relevant
work is briefly described. Section 3 discusses the barriers on automatic DPL gen-
eration of a sizable algorithm by the existing techniques. Section 4 elaborates
the proposed progressive repair mechanism for achieving identical net pairs in
an FPGA application. Section 5 validates the achieved conflict rate and repair
success rate from the improved approach, the security grade from practical com-
parison attacks and the expenses of extra performance overhead. Finally, Section
6 draws conclusions and perspectives for future work.

2 Related Work

From generic sense of Side channel attacks, interesting leakages come from the
lower physical (transistor, gate) level instead of higher level layer (logic algorith-
mic level). Accordingly, most countermeasures are deployed at low-level logic

220 C. Tu et al.

layers, i.e., gate level (or equivalent LUT level in FPGA) for reducing or con-
cealing the exploitable signatures. DPL consists of an original (True/T) rail and
a complementary (False/F) rail, which should be a counterpart of the T rail[4].
In this logic, dual rails work simultaneously in complementary behaviors. Two
phases, precharge and evaluation, are alternatively switched by this protocol.
The value a(T) in T rail and a(F) in F rail compensate with each other (i.e.,
‘a(T): a(F)’ is always in state of ‘1:0’ or ‘0:1’) during the evaluation phase. Like-
wise, a(T) and a(T) both are reset to a fixed state (typically ‘0’, or in a few cases
‘1’).As a typical DPL, Simple Dynamic Differential Logic (SDDL) is first intro-
duced in [4]. In [5], same authors have proposed a new technique to implement
SDDL on FPGA with higher slice utilization.

In [3], the technique of automatic generation of identical routing pairs for
FPGA implemented DPL is presented. It is based on the copy-paste and conflict-
repair method, which makes use of a file format called Xilinx Design Language
(XDL) and a series of java-based third-party tools from RapidSmith [6] to carry
on the XDL format to include significant LUT-level modifications. XDL is a
human-readable equivalent version of the Xilinx NCD file, which is a proprietary
binary format to describe designs internally either after mapping or place and
route steps used by Xilinx commercial FPGA tools. The technique transforms
the normal algorithm design NCD design file to XDL format. Then it performs
the copy-paste execution to create the complementary F rail on XDL manner.
Next, the technique, relying on RapidSmith toolkit, analyses and modifies the
XDL design file to repair conflict routing pairs and complete the PA-DPL logic.
Finally, it transforms the new XDL design file to NCD version and generate
bit file to complete the whole automatic DPL generation process. And a PA-
DPL AES core implementation on a FPGA chip soldered on SASEBO-GII SCA-
evaluation board is generated automatically as a case study in this paper.

3 DPL Implementation Difficulties for Sizable Algorithm

The technique proposed in [3] about automatic generation of identical routing
pairs for FPGA implemented DPL employs an incorporated two phases mecha-
nism known as copy-paste and conflict-repair, to realize rail transformation and
routing repair work. A brief design flow is diagrammed in Fig 1. To obtain con-
current dual-rail behavior precisely, complete T/F compensation, and the two
rails must be maintained identical [2]. Meanwhile, the DPL in row-cross inter-
leaved placement can protect design against EM analysis which makes use of
the long distance between the complementary rails. Hence, the complementary
routing pairs in circuit translate one unit (a slice) on FPGA chip, and their
shapes are identical.

However, the existing technique is not suitable to the design of a complex
cryptographic algorithm, since it suffers from a low repair success rate due to
severe local resource congestion and the slow repair speed when a direct global
execution has been performed.

A Progressive Dual-Rail Routing Repair Approach 221

Format conversion

Initial Design
(NCD file)

Initial Design
(XDL file)

Modified Design
(XDL file)

Copy and paste

DPL Design
(XDL file)

Conflict and repair

Non-conflict

DPL Design
(NCD file)

Format conversion

DPL Design
(Bit file)

Generation

Fig. 1. The process of the existing technique

3.1 Serious Routing Congestion with Large Numbers of
Components

The interleaved format of the routing pair would result in very close routing
channels with each other [7][10]; the reuses of routing conflicts are likely to oc-
cur in local parts, which might result in circuit electrical failures. There is a set
of competitions on the routing channels from particular passed territories once
a number of routing pairs span through those regions. We note that the rout-
ing conflicts are inherently avoided from single-rail circuit, since vendor router
algorithm never allows this to happen. However, in dual-rail duplication, the
back-end created F network is relocated, which is possible to reuse some used
routing resources in practise.

When the Xilinx commercial FPGA tools load a design, the circuit will be
concentrated in a certain local area instead of being placed dispersedly over
the entire FPGA fabric. To simplicity, the density of the used components in
particular region is much higher than that from other regions and the densities
of nets vary greatly in different regions. For instance, the density of nets in
the left clock region is much lower than that in the right part, as seen in Fig
2. The routing resource competition of the routing channels is severe and the
conflict of routing pairs would take place with a high probability in the region
with congested wires, especially after the copy-paste process. Furthermore, the
success rate of routing repair work would descend while the number of wires is
exceeding the resource threshold of the routing channel. Therefore, the region
with a high logic density (i.e., all components in the region are used) is exceeding,
the conflict rate of the routing channel rises after the copy-paste process and the
routing repair success rate get lower as a domino effect.

In addition, the routing repair algorithms presented in [11][12][13] employ a
greedy brute force mechanism to thoroughly find-and-test all the possible iden-
tical paths for both T/F nets. In some cases, the local optimization is hard to
realize. It means that some conflict routings would be repaired successfully by the
global optimization algorithm. The repair success rate is likely to be decreased
when that case takes place at a real repair process.

3.2 Unacceptable Time-Consuming Path Selection

As previously mentioned, the routing repair algorithm developed based on Rapid-
Smith is an exhaustive search. It is worthy to note that this process basically

222 C. Tu et al.

Left Right

Fig. 2. Different densities of nets in different local region

doesn’t touch other logic paths when it is amending a certain pair of nets. It
leads to local rather than global optimization. In other words, a case would take
place with a high possibility that some routing pairs at the top of the conflict
nets list are easy to be repaired and other routing pairs at the bottom of the list
are getting retardant to be healed (success with several times of modification or
failure after many times of modification). This congestion would exacerbate if
the design scale is large.

We perform an experiment that directly implements AES-128 coprocessor over
Xilinx Virtex-5 FPGA. The experiment shows that the repair process has run
more than 100 hours without an outcome on DELL Server (PowerEdge R610).
There are 1032 non-identical routing pairs existing, and the repair success rate is
no more than 60% in the completed portion. It is hence hard to directly apply the
existing technique to a complex algorithm implementation by the experimental
result. Even using a more powerful computer, this retarded process rate makes
the technique not attractive in practice. Hence, some optimization techniques
must be replied on to achieve a viable way to mitigate this problem.

4 Progressive Repair Mechanism

4.1 The Overview of Progressive Repair Mechanism

To expedite the repair process of identical routing pairs for a whole crypto algo-
rithm, a progressive repair mechanism based on the logic division is developed
to expand the existing technique to a broader range of real-world applications.
The new approach splits the whole cryptographic circuit to functional blocks,
maps each block individually to the corresponding local region, and takes differ-
ent executions to individual functional block. The functional block has balanced
logic density in each individual. This strategy brings higher repair success rate
for the sake of an eased routing competition.

A Progressive Dual-Rail Routing Repair Approach 223

The process for generating dual-rail pairs of a whole cryptographic design by
our improved approach is shown in Fig 3. Firstly, the program loads an orig-
inal single rail design, and splits the whole design to different cryptographic
functional blocks. Then, the program find out a block that requires DPL trans-
formation, and converts it to a dual-rail format by directly cloning the original
T rail to a reserved new fabric, performing as the complementary F rail. All
the conflicts are found out afterwards, and then to be repaired. The executable
repair procedure consists of three steps: (a) The first step is to unroute both
T/F nets by removing all the “nodes” for the nets; (b) The second step aims to
find a new routable path for the T net. It is stressed that only T net is routed by
the custom router, and the F net is completely copied from the new T net and
be pasted to the new location; (c) The third step dedicates to review the newly
generated F net, to find the existing conflict nodes. A judgment is inserted here:
once new conflict exists, the repair process would jump to the next pending net
pairs, and otherwise, the process would start again from the first step. When no
pending net pair exists in the block, the program would deal with other blocks
sequentially until all blocks that need DPL are processed. Finally, the program
would process the nets between blocks and generate the whole DPL design.

Block Design DPL Design in
One Block Conflict List

Copy and paste

DPL
Intermediate

Find out
all conflict pairs Delete all conflict F nets

Update the
conflict list

The Whole
DPL Design

Reroute the corresponding
T net and generate F net

Still Conflict?
Yes

Is Conflict List Null?
No

No

Yes

Initial Design

Split

Block List
(Need DPL)

Find out all blocks
 that need DPL

Is Block List Null?

No

Update the
block list

Yes DPL Block
Intermediate

Globally process the
nets between blocks

Fig. 3. The process flow of the improved approach

The testbed in our experiment is a complete AES-128 coprocessor which per-
forms one round of an AES encryption in one single clock cycle, and generates
128 bits encrypted data in total after 10 rounds, as diagrammed in Fig 4. Even
though the use of Block RAM significantly reduces the leakages [8], this test
still implements the S-box by logic elements (slice in Xilinx FPGA, rather than
Block RAM) in order to have a closely deployed dual-rail format.

4.2 FPGA Block Division Relevant to Algorithm Structure

In FPGA scenario, the block is defined as a local region to house one functional
module, such as buffer, RAM, CLB and pin. The conventional conception is
not applicable to this cryptography; hence, a new definition of cryptographic
functional block is necessary.

The new definition of block should be proposed from the perspective of cryp-
tographic algorithms. The cryptographic functional block is defined as a local
region to realize one special cryptographic function, such as S-box, key expan-
sion and controller. The new block definition corresponds to the function or

224 C. Tu et al.

Plaintext
128-bit AddRoundKey SBOX_T

ShiftRows

Mixcolumn

/

Ciphertext
128-bit

SBOX_F
ShiftRowsAddRoundKey

Last Round

Control Logic
&

FSM
&

PRNG

Mixcolumn Reg_T

Reg_F
/

Key
128-bit

/

Last Round

Last Round

Last Round

Other Rounds

Other Rounds

Other Rounds

Other Rounds

Fig. 4. DPL implementation of the whole AES

module in cryptographic algorithm. It puts the signals generated from one func-
tion or module into the same block. Due to the same DPL security requirement
of all signals from the same function or module, it is reasonable that the cor-
responding components and nets are placed into the same block region. Yet
different cryptographic modules do not uniformly desire the same security grade
in consideration of overall resource expense. Take a wrapped AES in use as an
example, the wrapper block which provisions execution commands to the crypto
core is not necessary to be protected. The encryption module enclosing all spe-
cial encrypted functions and submodules would be placed separately. And other
special encrypted functions and submodules should be mapped as a row-crossed
interleaved placement transform to dual-rail format.

Looking into an AES-128, according to the relationship of modules in Ver-
ilog source description, the complete design is divided into diversity of func-
tional submodules, including S-box, Key-Expansion, Mix-Column, Encryption
packaging all special encrypted functions and Control. For these functional sub-
modules, several blocks are divided over FPGA chip as follows: four functional
blocks called SB0, SB1, SB2 and SB3 to enclose 4 responsible S-box respectively;
a functional block called SBK to execute Key-Expansion; two function blocks
called Mxor and MX to realize Mix-Column; a functional block named Enc for
encapsulating all blocks described above; as well as a functional block Cont to
supply clock signal, control I/O and be the top package. The functional blocks
are mapped on the FPGA chip as described in Fig 5(a) and Fig 5(b).

4.3 Different DPL Realization for a Single Block

To those functional blocks with interleaved placement, the density of the used
components in these regions should be reduced in order to relieve the resource
competition in routing channels. Thus, the possibility of the routing conflicts is
decreased, and the repair success rate arises, which favorably reduces the time
spent on the whole repair process.

For those blocks that need to be transformed into interleaved format, it’s nec-
essary to set aside the same number of the components as in the original circuit
in order to implement the duplications. We hereafter name the mapping way
as “2VS1” placement, which divides the block regions consisting of functional

A Progressive Dual-Rail Routing Repair Approach 225

modules into a number of 2 ∗ 1 slice arrays. We only utilize the bottom slice
with the upper one forbidden, as illustrated in Fig 5(a). Then, Xilinx XST tool
grants optimized paths for all the T-rail nets. However, the DPL circuit using
2VS1 placement has higher routing density in each block region.

(a) (b)

Fig. 5. Different mapping in 2VS1 placement and 4VS1 placement leading to different
densities of the used components

We further reduced the logic density by employing a “4VS1” placement ap-
proach. Unlike the 2VS1 solution, each block in clock region is divided into a
series of 2 ∗ 2 slice arrays, and only the slice in the lower left corner is used with
the other three forbidden ones, as depicted in Fig 5(b). As well, Xilinx router is
adopted to route all the T nets. The motivation here is to leave a more relaxed
routing conditions for facilitating (i) to provide sufficient routing resource for T
nets, which, in this way, can result in comparatively shorter routing paths, and
(ii) give higher routability for each duplicated F net with a less number of repair
iteration, so as to increase the success rate and speed up the repair process.

When the 4VS1 placement is completed, the duplication execution is per-
formed into each 4VS1 block and then all the conflict routings are to be pro-
cessed by the provided repair tool. The global routing pairs on FPGA chip and
the repaired complementary routing pairs inside each block are illustrated in
Fig 6. The difference between 2VS1 and 4VS1 placement method influences the
number of the occurred conflicts and observed repair success rates.

4.4 Global Process about the Nets between Blocks

Compared to the prior approach of direct global repair, the proposal discussed
in this paper achieves a feasible repair task to a whole cryptographic algorithm
with regionally identical routing networks at the expense of sacrificing dual-rail
protection to a portion of nets. The difference here is that some security-sensitive
nets are not guaranteed in duplicated F rails, as those feedback signals that are
deleted in block approach, as given in Fig 7. However, this sacrifice can be
minimized by meticulously scheming the partition tactics, to ensure that the

226 C. Tu et al.

SB0 SB1

SB2 SB3

Enc

Cont

SBK

Mxor

MX

(a) (b)

Fig. 6. The global DPL routing result on FPGA chip and several highlighted comple-
mentary routing pairs inside each block

sources of each pair of security-critical nets are exclusively deployed inside each
single module. Another effort to mitigate this pitfall is to optimize the routing
repair efficiency to be able to rapidly find a routing paths for each high-fanout
pending nets, thus a global repair can be yielded.

5 Validation on AES-128

We implemented PA-DPL dual-rail style with row-crossed placement format on
a Virtex-5 Xilinx FPGA on SASEBO-GII board. Pearson Correlation Coefficient
based ElectroMagnetic Analysis (CEMA) is applied during the security analysis.
The objective is to attack the AES-128 which was diagrammed in Fig 4. The
testbed core (xc5vlx50ff324) owes 12 independent clock regions that are sufficient
for housing 9 partitioned submodules.

5.1 Estimation of Conflict Rate and Repair Success Rate

In contrary to the direct routing repair approach of which the repair objective is
to globally repair a whole circuit in only one process, the progressive repair pro-
cess places the global circuit components into a set of sub-regions by partitioning

A Progressive Dual-Rail Routing Repair Approach 227

Surrounding logic

T rail Block F rail Block

Inverted signal
Abandoned signal
Normal routing

Inverted signal
Abandoned signal
Normal routing

Fig. 7. Feedback signals sacrificed in duplicated F rails

the algorithm according to its functions and hierarchies using 4vs1 placement
scheme. Thus the density of the used components in each 4VS1 block is greatly
reduced.

Placing each submodule into a single clock region helps to reduce the intra
routings. More importantly, this solution also prevents the massive use of long
routings, which in practice bring in extra routing delay. However, the long wires
between neighboring partitions still exist and remain unprotected. Owing to the
small size of each block, the net number within each region is relatively small,
and the lengths of them are short. All of these lead to less conflicts among routing
pairs, and the velocity and success rate of repair process are relatively high.

Table 1. The repair result of original approach with 4VS1 placement

Part Format
Regional
Net Pairs

Conflicts
Conflict
Rate

Repair
Time

Repair
Complete

Enc Transformed 2803 1032 36.82%
More than
100 hours

no

Cont Uncharged * * * * *

We launched two experiments over AES-128 on the same FPGA in parallel.
The first experiment uses the original and the improved dividing scheme with
4VS1 placement respectively, and the other one employs the proposed progres-
sive partition scheme with 2VS1 and 4VS1 placements. Then the outcomes are
illustrated in Table 1, Table 2 and Table 3.

The counted problematic (conflict) routing pairs are 1032 and the conflict
rate during the repair process in the original approach is 36.82%. Contrarily, the
total number of the conflict routing pairs in original scheme where the dividing
method processed with 2VS1 and 4VS1 placements is decreased to 620 and 502,

228 C. Tu et al.

Table 2. The repair result of block approach with 2VS1 placement

Part Format
Regional
Net Pairs

Conflicts
Conflict
Rate

Failed
Exeecd

Threshold
Success
Rate

SB0 Transformed 355 128 36.06% 15 20 72.66%

SB1 Transformed 348 128 36.78% 24 4 78.13%

SB2 Transformed 351 138 39.32% 29 1 78.26%

SB3 Transformed 348 115 33.05% 18 1 83.48%

SBK Transformed 333 102 30.63% 17 4 79.41%

MX Transformed 244 8 3.28% 0 0 100.00%

Mxor Transformed 136 1 0.74% 0 0 100.00%

Enc Single-Rail * * * * * *

Cont Single-Rail * * * * * *

and the conflict rates are reduced to 29.31% and 23.74% respectively. Besides
the proposed progressive partition, the repair process has been concluded in
several hours while the original one has not yet been completed within several
days. The repair success rate of the completed section with the original scheme
is lower than 60%. In the case of 2VS1, repair success rate rises up to higher
than 72%. Furthermore, repair success rate rises up to higher than 84% in the
4VS1 partition approach (Actually, all the blocks, except one, favors success rate
more than 90% in this case study).

Table 3. The repair result of block approach with 4VS1 placement

Part Format
Regional
Net Pairs

Conflicts
Conflict
Rate

Failed
Exeecd

Threshold
Success
Rate

SB0 Transformed 355 108 30.42% 10 7 84.26%

SB1 Transformed 348 95 27.30% 1 6 92.63%

SB2 Transformed 351 104 29.63% 3 0 97.12%

SB3 Transformed 348 100 28.74% 5 5 90.00%

SBK Transformed 333 87 26.13% 3 1 95.40%

MX Transformed 244 8 3.28% 0 0 100.00%

Mxor Transformed 136 0 * 0 0 *

Enc Single-Rail * * * * * *

Cont Single-Rail * * * * * *

5.2 Attack Results

A series of comparison attacks have been launched to validate the achieved se-
curity level among three circuits. (a) In the first circuit, the same 128 bit AES
algorithm is implemented using default settings, except I/O pin configurations;
(b) In the second circuit, 4VS1 placement is applied to security-critical parti-
tions, however it is kept as single-rail without introducing the transformation;

A Progressive Dual-Rail Routing Repair Approach 229

(c) The third circuit is transformed from the second circuit, being processed by
the proposed progressive repair strategy as aforementioned. For the two single-
rail (SR) circuits, equally 10,000 EM traces are inspected from the last encryp-
tion rounds with a same sampling rate. For the first circuit, correlation EM
analysis successfully recovered all the 16 subkey bytes (See Table 4). For the at-
tack to the second SR circuit, 15 out of the 16 subkey bytes are recovered, with
exception of the 15th subkey, where a hexadecimal value 18 is differentiated in
contrast to the real subkey 77 (See Table 5). For the attack to the third exported
dual-rail (DR) AES-128, correlation analysis over 300,000 traces have not yet
disclosed any of the real subkey(See Table 6). The “rank” parameter in Table 4,
5 and 6 represents the correlation coefficient rank of the found key among the
256 kinds of the assumed keys.

Table 4. The attack result of unconstrained SR scheme by 10,000 EM traces

Key
16 last round subkeybytes (hex)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

real F3 AC 78 29 F0 77 E7 4E 3D CD 7A D4 81 C8 99 E1

found F3 AC 78 29 F0 77 E7 4E 3D CD 7A D4 81 C8 99 E1

rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5. The attack result of placement constrained SR scheme by 10,000 EM traces

Key
16 last round subkeybytes (hex)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

real F3 AC 78 29 F0 77 E7 4E 3D CD 7A D4 81 C8 99 E1

found F3 AC 78 29 F0 18 E7 4E 3D CD 7A D4 81 C8 99 E1

rank 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

Table 6. The attack result of progressively repaired DR scheme by 300,000 EM traces

Key
16 last round subkeybytes (hex)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

real F3 AC 78 29 F0 77 E7 4E 3D CD 7A D4 81 C8 99 E1

found 37 18 CF 7B F4 66 6E 3C 4C 13 8A 59 55 B2 72 F2

rank 124 66 45 252 186 191 226 5 212 110 206 99 253 110 242 241

Observing from the first two circuitries, they merely have slight difference
from the attack results upon the analyzed 10,000 traces. However, it is not safe
to claim identical security levels for the two parties. As just stated, unconstrained
circuit doesn’t employ user placement constrained, hence the default map tool
would place the components “seemingly” randomly across the FPGA fabric. In
this case, the security-critical routings might traverse a large territory, which

230 C. Tu et al.

would practically result in longer routing path (Assuming that the timing clo-
sure is not violated). Comparatively, the placement constrained circuit has been
meticulously partitioned by logic function and hierarchy. The security-sensitive
routings are more likely to be restricted inside a local territory. By this way, the
local routing paths for those nets are shorter compared to the prior approach.
Therefore, the routing relevant leakage from placement constrained one would be
less than that from the placement unconstrained one. This conceptually grants
higher security level to the second circuit, where in this case study, one subkey
byte is failed to be recovered.

The third produced dual-rail circuit has demonstrated profound safety in con-
trast to the previous two counterparts, where none of the 16 key bytes is cracked
by analyzing up to 300,000 traces. The key rank index also foresees that most
real subkeys are not likely to be differentiated if not to substantially increase
the analysis samples or to employ more suitable analysis models. Note that the
attack to the last round of AES-128 makes sense unless all the subkeys have
been retrieved. A failure to any bit of the last round key crumbles the initial key
recovery.

5.3 The Expense of Extra Performance Overhead

Furthermore, the main expense of extra performance overhead is the utilization
of occupied slices on the FPGA chip. The number of used slices is 977 and the
utilization rate is 13% at both unconstrained and constrained single-rail circuits.
The total number of 4VS1 dual-rail circuit is 2614 (i.e., the utilization rate is
36.3%), which is less than 3 times of the corresponding single-rail circuit due to
some blocks without 4VS1 placement, such as Cont.

6 Conclusion and Future Work

The routing pairs between T and F rails in DPL logic are unbalanced, which is
generated by commercial FPGA design tools. And the original dual-rail creation
technique for FPGA implemented DPL is only validated with a very tiny design.
In this paper, we proposed a progressive repair strategy based on a partition
solution to expedite the auto routing technique. In our approach, we splitted the
complex cryptographic design to several functional blocks, afterwards to map the
circuit components into each block and took different executions to individual
blocks. Several different mapping ways are investigated including 2VS1 and 4VS1
placements. Experimental result shows that the 4VS1 solution performs better
in terms of the conflict rate and the repair success rate.

We applied this technique to a row-crossed interleaved PA-DPL and carried
comparison EM attacks to validate the increased resistance of this approach.
Attack results show that the produced dual-rail circuit on FPGA is resistant
against classical correlation analysis. What’s more, the elevated security with
more identical routing pairs and the acceleration of entire process are achieved
at the expense of resource and area.

A Progressive Dual-Rail Routing Repair Approach 231

In future work, we plan to improve the routing algorithm to obtain globally
optimized paths to decrease the expenses from logic partition. Meanwhile, ap-
plying the technique to other dual-rail logics will be another direction of the
future work.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Clarke, J.A., Constantinides, G.A., Cheung, P.Y.K.: On the feasibility of early
routing capacitance estimation for FPGAs. In: FPL, pp. 234–239. IEEE Press,
New York (2007)

3. He, W., Otero, A., de la Torre, E., et al.: Automatic generation of identical routing
pairs for FPGA implemented DPL logic. In: International Conference on Recon-
figurable Computing and FPGAs, pp. 1–6. IEEE Press, New York (2012)

4. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Proceedings of the Conference on
Design, Automation and Test in Europe, vol. 1, pp. 246–251. IEEE Computer
Society (2004)

5. Tiri, K., Verbauwhede, I.: Synthesis of Secure FPGA Implementations. In: The
Proceedings of the International Workshop on Logic and Synthesis (IWLS 2004),
pp. 224–231 (June 2004)

6. Lavin, C., Padilla, M., Lundrigan, P., et al.: Rapid prototyping tools for FPGA
designs: RapidSmith. In: International Conference on Field-Programmable Tech-
nology, pp. 353–356. IEEE Press, New York (2010)

7. Velegalati, R., Kaps, J.-P.: Improving Security of SDDL Designs Through Inter-
leaved Placement on Xilinx FPGAs. In: 21st IEEE International Conference on
Field Programmable Logic and Applications, Crete, Greece, pp. 506–511. IEEE
Press, New York (2011)

8. Shah, S., Velegalati, R., Kaps, J.-P., Hwang, D.: Investigation of DPA Resistance
of Block RAMs in Cryptographic Implementations on FPGAs. In: Prasanna, V.K.,
Becker, J., Cumplido, R. (eds.) ReConFig, pp. 274–279. IEEE Computer Society
(2010)

9. Tiri, K., Verbauwhede, I.: Secure Logic Synthesis. In: Becker, J., Platzner, M.,
Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 1052–1056. Springer, Heidelberg
(2004)

10. He, W., de la Torre, E., Riesgo, T.: An interleaved EPE-immune PA-DPL struc-
ture for resisting concentrated EM side channel attacks on FPGA implementation.
In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 39–53.
Springer, Heidelberg (2012)

11. Lavin, C., Padilla, M., Lamprecht, J., et al.: RapidSmith: Do-It-Yourself CAD
Tools for Xilinx FPGAs. In: 21st IEEE International Conference on Field Pro-
grammable Logic and Applications, pp. 349–355. IEEE Press, New York (2011)

12. Lavin, C., Padilla, M., Lamprecht, J., et al.: HMFlow: Accelerating FPGA Com-
pilation with Hard Macros for Rapid Prototyping. In: IEEE 19th Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines,
pp. 117–124. IEEE Press, New York (2011)

13. RAPIDSMITH: A Library for Low-level Manipulation of Partially Placed-and-
Routed FPGA Designs. Technical Report and Documentation (November 2013),
http://rapidsmith.sourceforge.net/doc/TechReportAndDocumentation.pdf

http://rapidsmith.sourceforge.net/doc/TechReportAndDocumentation.pdf

Fault-Tolerant Linear Collision Attack:

A Combination with Correlation Power Analysis

Danhui Wang1, An Wang2,�, and Xuexin Zheng1

1 Key Lab of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

{wangdanhui,zhxuexin}@mail.sdu.edu.cn
2 Institute of Microelectronics, Tsinghua University, Beijing 100084, China

wanganl@tsinghua.edu.cn

Abstract. The framework of test of chain was presented by Bogdanov
et al. in 2012, which combines collision attack with divide-and-conquer
side-channel attacks. Its success rate highly depends on the correctness
of the chain established from collision attack. In this paper, we construct
a fault-tolerant chain which consists of 15 paths, and each path includes
only one step. In order to decrease the misjudgments, we combine this
chain with correlation power analysis, linear collision attack and search.
So the fault-tolerant linear collision attack is proposed. Our experiments
show that the new attack is more efficient than the method of Bogdanov
et al. Furthermore, we give a fault-identification mechanism to find the
positions of wrong key bytes, and thus the subsequent search space can
be reduced a great deal. Finally, the choice of threshold in correlation
power analysis is discussed in order to optimize our attack.

Keywords: power analysis attack, correlation power analysis, test of
chain, linear collision attack.

1 Introduction

Differential power analysis was proposed at CRYPTO 1999 by Kocher et al. [1].
This method can recover key by analyzing the information of intermediate value
which is obtained from the instantaneous power consumption of the cryptographic
chip [2]. In 2002, Chari et al. proposed template attack for distinguishing the dif-
ferent intermediate values corresponding to the different keys [3]. Two years later,
Brier et al. put forward correlation power analysis (CPA) which uses the correla-
tion coefficient model to recovery key [4]. In 2008, Gierlichs et al. gave mutual
information analysis attack based on the information theory [5]. Masking is usu-
ally employed against the first-order power analysis attacks [6,7,8,9,10]. However,
it can only increase the difficulty of attacks instead of providing absolute security.

Collision attack was proposed in 2003 [11,12], which broke the cipher device
by looking for the internal collisions of specific intermediate values. In 2007, Bog-
danov proposed linear collision attack [13], which established the relationships

� Corresponding Author.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 232–246, 2014.
c© Springer International Publishing Switzerland 2014

Fault-Tolerant Linear Collision Attack 233

among several key bytes based on the collisions between different S-boxes. Sub-
sequently, he presented multiple-differential side-channel collision attacks based
on the voting method [14]. In 2010, Moradi et al. proposed correlation-enhanced
collision attack which can be regarded as a tool of linear collision detection [15].
Their attack was improved by Clavier et al. in CHES 2011 [16].

In 2012, according to the new concept of test of chain, Bogdanov et al. com-
bined CPA with collision attack [1,17], which can recover key more efficiently
than both stand-alone CPA and collision attacks. Although the test of chain dis-
cussed the high efficiency of their combined attack, they did not give a practical
attack scheme. On the other hand, their method can only correct the errors in
CPA, but can not in the part of collision attack. In other words, once a step
error occurs in a path of the chain, it will lead to consecutive errors. And the
errors will take place in the entire path, which will result a failed attack. Indeed,
the efficiency of typical collision attack is much lower than CPA, which may lead
to the unavailability of Bogdanov’s method.

Our Contribution. In this paper, we propose a fault-tolerant combination
between CPA and collision attack. Specifically,

– A concept of fault-tolerant chain is presented, which significantly improve
the success rate of the collision attack part.

– A new framework of practical combination between correlation power anal-
ysis and correlation-enhanced collision attack is proposed.

– The step where error occurred can be identified with high probability ac-
cording to a specific threshold. Thus, the search space of the key is greatly
reduced.

Organization. The remainder of this paper is organized as follows. In Section 2,
we briefly describe CPA , correlation-enhanced collision attack, and Bogdanov’s
attack. Section 3 introduces our fault-tolerant attack followed by the experiments
and discussions of efficiency. In Section 4, We propose the fault-identification
mechanism, and then discuss the threshold value of CPA based on experiments.
Finally, we conclude the whole paper in Section 5.

2 Preliminary

2.1 Notations

This article focuses on AES algorithm. We use the following notations to rep-
resent the variables. K = {ki|i = 1, 2, . . . , 16} is the 16-byte user-supplied
key. P j = {pji |i = 1, 2, . . . , 16} denotes an 16-byte AES plaintext, where j =
1, 2, . . . , N is the number of an AES execution. For the jth plaintext P j , let
{T j

i |i = 1, 2, . . . , 16} denote 16 sections of the power trace corresponding to
16 S-boxes. Each trace section consists of l interesting points. We use {xi|i =
1, 2, . . . , 16} to denote the input bytes of S-boxes in the first round. The out-
put bytes of S-boxes are expressed by {S(xi)|i = 1, 2, . . . , 16}. ThCPA is the
threshold in CPA, and ThCA is the threshold in collision attack.

234 D. Wang, A. Wang, and X. Zheng

2.2 Bogdanov’s Combined Side-Channel Collision Attack

A combined collision attack was proposed by Bogdanov et al. in 2012 [17], which
combines linear collision attack with side-channel attacks such as CPA [1]. For
simplicity, their work is built on AES-128, and uses the key-recovery technique
based on linear collisions. Notably, all the techniques of their work may extend
to other ciphers which can be broken by collisions.

2.2.1 Correlation Power Analysis

In this section we describe CPA [4] which is used in Bogdanov’s attack and
our work. The algorithm is described as follows (an example of the first S-box is
given).

Algorithm 1. Correlation Power Analysis on S-box 1

Online Stage:
1: P = (P 1, P 2, . . . , PN) ← RandomPlaintexts()

2: {T j
1 |j = 1, 2, . . . , N} ← AcquireTraces(P)

Key-recovery Stage:
1: for each guess k1 ∈ {0, 1, . . . , 255} do

2: {HW j(x1)|j = 1, 2, . . . , N} ← ComputeValue({pj1|j = 1, 2, . . . , N}, k1)
3: ρk1 ← CorrelationCoefficient({HW j(x1)}, {T j

1 })
4: end for
5: return k1 ← argmax

k1

ρk1

In the online stage, the attacker randomly choosesN 16-byte plaintexts {P j|j =
1, 2, . . . , N} (RandomPlaintexts), and then records the relevant sections of
traces {T j

1 |j = 1, 2, . . . , N} for the first AES S-box (AcquireTraces). Further-
more, 16 sets of trace sections can be extracted corresponding to 16 S-boxes.

In the key-recovery stage, the attacker guesses the first key byte k1 from 0
to 255, and then for each k1 computes the hamming weights of {pj1 ⊕ k1|j =
1, 2, . . . , N} (ComputeValue). Subsequently, the 256 correlation coefficients
ρk1 (CorrelationCoefficient) of the hamming weights and power traces can
be computed. Then these correlation coefficients are sorted to obtain a corre-
sponding rank ξ which consists of the 256 candidates of k1. The candidate of
k1 which corresponds to the max ρk1 is returned as the recovered key byte. The
attacker may repeat Algorithm 1 for the other 15 key bytes until all the key
bytes are recovered.

Suppose that each of the trace sections {T j
1 |j = 1, 2, . . . , N} consists of l in-

teresting points which are aligned as abscissas, for each abscissa, the attacker
looks up the N corresponding points of trace sections. A vector is constructed
by these N points. Then the correlation coefficient between this vector and

Fault-Tolerant Linear Collision Attack 235

{HW j(x1)|j = 1, 2, . . . , N} for a fixed k1 is computed. Attacker will get l cor-
relation coefficients for the l abscissas. The average value of these l correlation
coefficients is ρk1 which is the output of CorrelationCoefficient().

Remark. In order to decrease the misjudgements, the attacker may choose the
largest ThCPA correlation coefficients from {ρ0, ρ1, . . . , ρ255}, and then find out
their corresponding key-byte candidates, where ThCPA is the threshold in CPA.
Let γ1 denote this set of survived key-byte candidates for the first S-box. After
using Algorithm 1 to the other S-boxes, 16 sets γ1, γ2, ..., γ16 can be gotten.
Each of these sets consists of ThCPA survived key-byte candidates. They contain
the user-supplied key with an extremely high probability.

2.2.2 Linear Collision Attack

In 2007, Bogdanov proposed the concept of linear collision attack [13] : If a
collision between two S-boxes can be detected by some methods (as described
in Fig.1), i.e.

S(p1 ⊕ k1) = S(p2 ⊕ k2),

then we will obtain a linear equation concerning key-bytes k1 and k2

k1 ⊕ k2 = p1 ⊕ p2 = Δ1,2.

If attacker finds M collisions by a collision detection method, a system of M

Fig. 1. A linear collision between two AES S-boxes

linear equations can be obtained:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ki1 ⊕ ki2 = Δi1,i2

ki3 ⊕ ki4 = Δi3,i4

...

ki2M−1 ⊕ ki2M = Δi2M−1,i2M .

236 D. Wang, A. Wang, and X. Zheng

It is worth noting that some of these equations have no correlation. Thus they
can be divided into h0 independent subsystems with respect to the parts of the
key [17], of which each may have one free variable and one or more equations. Let
h1 denotes the number of all missing variables which are not in those subsystems.
Each of the subsystems or missing variables is called a chain. And one equation
is defined as a step of a chain. Hence the number of chains is h = h0 + h1.

For instance, a classic chain is expressed as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k1 ⊕ k2 = Δ1,2

k2 ⊕ k3 = Δ2,3

...

k15 ⊕ k16 = Δ15,16.

(1)

2.2.3 Framework of Combined Side-Channel Collision Attack

There are three stages in the framework of Bogdanov’s attack: online stage,
process stage and key-recovery stage [17]. For an example, we use the classic
chain (1) to describe the attack.

In the online stage, the attacker randomly chooses N plaintexts {P j|j =
1, 2, . . . , N}. Through the AES device, the attacker obtains N power traces, of
which each contains 16 sections {T j

i |i = 1, 2, . . . , 16} for 16 S-boxes.
In the process stage, collision detection method is used to obtain linear col-

lisions. On the other hand, for each S-box, the attacker sorts the correlation
cofficientsto obtain a rank of 256 key-byte candidates in CPA. The 16 ranks are
denoted by {ξi|i = 1, 2, . . . , 16}.

In the key-recovery stage, attacker determines a threshold ThCPA and the
free variable of the chain, and then picks the ThCPA most possible candidates
of the key-byte variable. For each of these survived candidates, the attacker may
compute the other 15 key bytes through the chain, and then verify whether they
are in their candidate sets (each set has ThCPA candidates) in turn. If all of
them are survived, the 16 key bytes should be returned as a correct 128-bit key.

With an example in Fig.2, the chain is represented by the solid arrow lines.
The 16 vertical lines express the key-byte ranks {ξi|i = 1, 2, . . . , 16}, and the hori-
zontal line stands for the threshold line of CPA. Only the sets {γi|i = 1, 2, . . . , 16}
of survived key-byte candidates are over the threshold line. For each of the
ThCPA candidates of k1, we compute k2, k3, . . . , k16 according to the chain. If
the computed {ki|i = 1, 2, . . . , 16} are all over the threshold line, we conclude
that the 16 key bytes are correct, else they are wrong. Bogdanov called this
method test of chain.

Remark. This framework can only tolerate faults in CPA, but faults in collision
attack will cause a failed attack. The reason is as follow: In order to recover the
key efficiently, attacker usually hopes that a chain includes 15 steps. For a chain,
one of the common cases is that there are several steps in the path from the free
variable to the end. If an error takes place in one of these steps (e.g. the step

Fault-Tolerant Linear Collision Attack 237

Fig. 2. Test of chain from Bogdanov et al.

from k2 to k3 described by the dotted line in Fig. 2), the key bytes computed
from the following steps will be wrong in the key-recovery stage, which will result
the failure of the whole attack. Unfortunately, this kind of errors happens with
non-negligible probability. It leads to low efficiency of Bogdanov’s attack.

2.3 Correlation-Enhanced Collision Attack

Due to lacking a practical scheme in Bogdanov’s work, we use correlation-
enhanced collision attack [15] for collision detection.

As mentioned in Section 2.2.2, if a collision is occurred between two S-boxes
(e.g. S-box 1 and S-box 2), they have equal outputs

S(x1) = S(x2).

Moreover, they also have equal inputs

k1 ⊕ p1 = k2 ⊕ p2.

Therefore, there is a linear relationship between the two key bytes k1 and k2.
What is more,

Δ = k1 ⊕ k2 = p1 ⊕ p2

is a constant. The attack algorithm is given in Algorithm 2.
In the online stage, the attacker chooses plaintexts {P j|j = 1, 2, . . . , N}

(RandomPlaintexts), then records the corresponding trace sections {T j
1 |j =

1, 2, . . . , N} and {T j
2 |j = 1, 2, . . . , N} for the first two S-boxes (AcquireTraces).

In the key-recovery stage, the attacker sorts the traces corresponding to the
plaintext byte which equals a certain value from 0 to 255, and then averages the
trace sections to obtain {Ma

1 |a = 0, 1, 2, . . . , 255} and {Ma
2 |a = 0, 1, 2, . . . , 255}

238 D. Wang, A. Wang, and X. Zheng

Algorithm 2. Correlation-enhanced collision attack between S-box 1 and 2

Online Stage:
1: P = (P 1, P 2, . . . , PN) ← RandomPlaintexts()

2: {T j
1 |j = 1, 2, . . . , N}, {T j

2 |j = 1, 2, . . . , N} ← AcquireTraces(P)
Key-recovery Stage:

1: {M i
1|i = 0, 1, 2, . . . , 255} ← AverageTraces({T j

1 |j = 1, 2, . . . , N})
2: {M i

2|i = 0, 1, 2, . . . , 255} ← AverageTraces({T j
2 |j = 1, 2, . . . , N})

3: for each guess Δ ∈ {0, 1, · · · , 255} do

4: ρΔ ← CorrelationCoefficient({(Mp1
1 ,Mp1⊕Δ

2)|p1 = 0, 1, 2, . . . , 255})
5: end
6: return argmax

Δ
ρΔ

for the two S-boxes (AverageTraces). The attacker guesses Δ from 0 to 255,
and then computes p2 = p1⊕Δ from all the 256 values of p1. For each Δ, the 256
average power traces Mp1⊕Δ

2 are found to calculate the correlation coefficient

ρΔ of Mp1

1 and Mp1⊕Δ
2 (CorrelationCoefficient). Finally, 256 correlation co-

efficients are gotten. If Δ is correct, ρΔ should be the maximum. As a result, Δ
is given by

argmax
Δ

ρ(Mp1

1 ,Mp1⊕Δ
2).

3 Fault-Tolerant Linear Collision Attack

Because of the limits of Bogdanov’s attack described in Section 2.2.3, we propose
a more efficient work which can tolerant faults in both CPA and collision attack.

3.1 Fault-Tolerant Chain

In this section, we construct a new system of chain, which is more integrated
and powerful. First, we regard k1 as the origin of the chain, i.e. k1 is the only
free variable in this chain. Then we detect collisions between S-box 1 and the
others.

S(p1 ⊕ k1) = S(pi ⊕ ki), for i ≥ 2.

Thus, 15 equations with respect to k1 can be gotten:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k1 ⊕ k2 = Δ1,2

k1 ⊕ k3 = Δ1,3

...

k1 ⊕ k16 = Δ1,16.

From these equations, we construct a new chain named fault-tolerant chain.
In this system, ki(i ≥ 2) only depends on k1 instead of the other 14 key bytes.
There are 15 paths which begin from k1 to the ends in one chain (as shown

Fault-Tolerant Linear Collision Attack 239

Fig. 3. Fault-tolerant chain

in Fig.3). If one ki is wrong (under the threshold line), we can still attempt to
recover others. So we may take a threshold ThCA in collision attack. For example
if ThCA = 1, i.e. no less than 14 ki(i ≥ 2) survived (at most one ki is under
the threshold line), we can deduce that one path in the chain may be wrong.
Subsequently, a practical exhaust search can find the correct key.

3.2 Framework of Fault-Tolerant Linear Collision Attack

Based on the fault-tolerant chain, our work is named fault-tolerant linear collision
attack. The detailed process is outlined in Algorithm 3.

In the online stage, we encrypt random plaintexts {P j|j = 1, 2, . . . , N}
(RandomPlaintexts), then record the power traces and extract the sections
for AES S-boxes (AcquireTraces).

In the process stage, CPA is employed to get the sets {γi|i = 1, 2, . . . , 16} of
key-byte candidates (CorrelationPowerAnalysis). Each set has ThCPA can-
didates. Meanwhile, the correlation-enhanced collision attack is adopted for col-
lision detection. Then we construct a fault-tolerant chain, and obtain {Δ1,i|i =
2, 3, . . . , 16} from the collisions (CollisionDetection).

In the test of chain stage, for each k1 ∈ {0, 1, . . . , 255}, we compute the other
15 key bytes by ki = k1 ⊕ Δ1,i, and denote error as the number of key bytes
those are not in {γi|i = 2, 3, . . . , 16}. For convenience, Algorithm 3 describes
the case of tolerating one wrong key byte. If finally error ≤ 1 (here ThCA = 1),
the recorded key bytes are user-supplied with high probability. Otherwise this
attack fails. Usually, the test of chain stage does not return more than one 128-
bit key candidate. In this paper, we did not consider the case of two or more key
candidates temporarily.

In the key-recovery stage, we verify the 16 key bytes which are returned from
the test of chain stage through anAES encryption (VerifyKey). If we get a wrong
AES output, there are one or more wrong key bytes. In Algorithm 3, only one

240 D. Wang, A. Wang, and X. Zheng

Algorithm 3. Framework of Fault-Tolerant Linear Collision Attack

Online Stage:
1: P = (P 1, P 2, · · · , PN) ← RandomPlaintexts()

2: {{T j
i |j = 1, 2, . . . , N}|i = 1, 2, . . . , 16} ← AcquireTraces(P)

Process Stage:
1: for i = 1, 2, . . . , 16 do

2: γi ← CorrelationPowerAnalysis(P,{T j
i }, ThCPA)

3: end
4: for i = 2, 3, . . . , 16 do

5: Δ1,i ← CollisionDetection(P, {T j
1 }, {T

j
i }, ThCA)

6: end
Test of Chain Stage:

1: for each k1 ∈ {0, 1, . . . , 255} do
2: error = 0
3: for i = 2, 3, . . . , 16 do
4: ki ← k1 ⊕Δ1,i

5: if ki /∈ γi
6: error ← error + 1
7: if error > 1 (ThCA = 1)
8: break for (Exit the current loop)
9: end if

10: end if
11: if i == 16 (More than 14 ki survived)
12: Record({ki|i = 1, 2, . . . , 16})
13: end if
14: end for
15: end for

Key-Recovery Stage:
1: if no {ki|i = 1, 2, . . . , 16} is recorded
2: return failure
3: else
4: if VerifyKey ({ki|i = 1, 2, . . . , 16}) == 1
5: Return {ki|i = 1, 2, . . . , 16}
6: else
7: for each {k∗

i |i = 1, 2, . . . , 16} ∈ SearchKeyByte({ki|i = 1, 2, . . . , 16})
8: if VerifyKey({k∗

i |i = 1, 2, . . . , 16}) == 1
9: Return {k∗

i |i = 1, 2, . . . , 16}
10: end if
11: end for
12: end if
13: end if

wrong key byte is tolerated, otherwise this attack fails. The key bytes k2, k3, . . . , k16
are searched (SearchKeyByte), and the key candidates are verified in turn. As
a result, we recover the full key {k∗i |i = 1, 2, . . . , 16}.

Fault-Tolerant Linear Collision Attack 241

Search Complexity. We can not control the correctness of the first key byte.
So once error occurs, the first key byte must be exhaustively searched. If there
is one wrong key byte in {k2, k3, . . . , k16}, we may need to search at most

28 · 28 ·
(
15

1

)
≈ 220

times. furthermore, if there are two wrong key bytes, the maximum number of
search times is

28 · (28)2 ·
(
15

2

)
≈ 231.

Thereupon, the number is 28 · (28)n ·
(
15
n

)
for n wrong key bytes.

Remark. In this work, we use correlation-enhanced collision attack to detect
collisions for two reasons:

– During the collision detection stage, we must find the relationships between
k1 and the other 15 key bytes. The correlation-enhanced collision attack can
finish it in parallel after acquiring enough power traces.

– We hope that the same set of power traces can be reused to mount both
CPA and collision attack. The SNR (Signal-to-Noise Ratio) of correlation-
enhanced collision attack is close to that of CPA.

3.3 Experiments and Efficiency

In order to evaluate our attack, we made some simulations in MATLAB. In an
experiment, we generated lots of power traces to mount Algorithm 3. If in the
test of chain stage, the recorded key candidate differs from the user-supplied
key just in no more than one byte except k1, this experiment is regarded as a
successful one (The correct key can be subsequently searched). Let the standard
deviation of noise σ = 2.7, the experiment was repeated 100 times to compute
a success rate.

We fixed ThCPA = 10. With the number of power traces picked from 256 to
1792, a relation curve between success rate and the trace number could be gotten
(as described in Fig.4). The vertical axis stands for the success rate, and the
horizontal axis represents the trace number. The solid line signifies the success
rate of our fault-tolerant collision attack, and the dotted line corresponds to the
success rate of Bogdanov’s attack.

It is clear that the solid line is approaching 1 faster than the dotted line. For
example, when the success rates are both about 92%, the trace number of our
attack is 1024, while that of Bogdanov’s attack is 1408.

Then we selected σ = 4 to obtain another group of experimental data, and
the trace number was chosen from 1024 to 3328. This result is shown in Fig.5.
Similarly, the solid line is also higher than the dotted line. It is obviously that
our framework improved the success rate greatly. The experimental data confirm
the theoretical conjecture.

242 D. Wang, A. Wang, and X. Zheng

200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

Number of power traces

Su
cc

es
s

ra
te

Bogdanov’s attack
Fault−tolerant attack

Fig. 4. The comparison between the success rates of two frameworks when σ = 2.7

1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Number of power traces

Su
cc

es
s

ra
te

Bogdanov’s attack
Fault−tolerant attack

Fig. 5. The comparison between the success rates of two frameworks when σ = 4

4 Fault-Identification Mechanism

In this section, we try to identify the position of wrong key byte with high
probability so that the search space may be reduced greatly.

4.1 Procedure and Effectiveness

In the test of chain stage of Algorithm 3, for a specific key byte ki(i ≥ 2), if
ki /∈ γi, it is likely a wrong key byte. We add a step

Record(k1, i)

between step 6 and 7. If this 128-bit key is not recorded in step 12 at last, the
previously recorded (k1, i) should be dropped. At last, a 128-bit key candidate
and the position where error mostly occurred are recorded.

Fault-Tolerant Linear Collision Attack 243

Subsequently in the key-recovery stage, if the 128-bit key candidate {ki|i =
1, 2, . . . , 16} is verified as a wrong key, we record i as the position of the wrong
key byte. Then we search ki and verify it.

Search Complexity. If ThCA = 1, we only need to search one key byte. The
number of search times will be reduced to 28 · 28 = 216. If there are two wrong
key bytes, we may search 28 · (28)2 = 224 times, which is also easy to finish. And
so on, n wrong key bytes will be searched 28 · (28)n times.

Effectiveness. The errors which lead to wrong key bytes may occur in collision
attack or in CPA. In other words, the steps of the chain or the key-byte candidate
sets may be wrong. If the threshold in CPA is chosen as small as possible, and the
wrong key bytes are under the threshold line, it indicates that the errors occurred
in collision attack. Thus the fault-identification mechanism can be used to record
the wrong positions, and then reduce the search space.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Threshold value of CPA

Pr
ob

ab
ili

ty

Fig. 6. The relation between the probability of the case that the two wrong key bytes
are all under the threshold line and ThCPA

First, we discuss it in the case of one wrong key byte (ThCA = 1). It consists
of two cases:

1. The wrong key byte is over the threshold line.
2. The wrong key byte is under the threshold line.

Obviously that the probability of case 2 is extremely high when ThCPA is
small, so the fault-identification mechanism is efficient.

Second, if there are two wrong key bytes (ThCA = 2), we discuss the proba-
bility of the case that the two wrong key bytes are all under the threshold line.
Here, we also made a simulation experiments. We chose σ = 2.7, and the number

244 D. Wang, A. Wang, and X. Zheng

of power traces was 1024. For different ThCPA, we could get the corresponding
probability with which the two wrong key bytes are all under the threshold line.
The relation curve between this probability and ThCPA is described in Fig.6.
As a result, the probability is over 90%, while ThCPA is about less than 30.

If ThCPA is too large, we can not use fault-identification mechanism to confirm
the positions. Then the search times are tended to exhaustive search.

4.2 Choice of Threshold in CPA

We discussed the choice of threshold in CPA for the effectiveness of fault-
identification mechanism in Section 4.1. The result is in a wide range. For ex-
ample in Fig.6, ThCPA is picked from 1 to 30, when ThCA = 2.

Actually, the success rate is also determined by ThCPA. We wish to give
a more precise value range of ThCPA on further experiments. Supposed that
ThCA = 2, we have made 100 experiments for each ThCPA.

0 50 100 150 200 250
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Threshold value of CPA

Su
cc

es
s

ra
te

Fig. 7. The relation between the success rate and ThCPA

Fig.7 shows the success rate curve with respect to ThCPA. In this experiment,
the number of power traces was also fixed 1024, and σ = 2.7. We note that the
success rate reaches the maximum when ThCPA is from 5 to 20.

We hope the number of search times is as small as possible, while the suc-
cess rate is high enough. So, we suggest that ThCPA is chosen as 10, which
corresponds to the maximum success rate in this experiment.

5 Conclusion

In this paper, we present fault-tolerant linear collision attack which enhances
collision attack with fault-tolerant chain. We use correlation-enhanced collision
attack to construct fault-tolerant chain. The key-byte candidates are ranked

Fault-Tolerant Linear Collision Attack 245

by CPA and filtered with a threshold. We indicate the fact that our attack is
more powerful and practicable than Bogdanov’s basic test of chain. On the basis
of experimental data, simulation results show the feasibility of our algorithm
and the range of threshold in CPA. The techniques used in our work may be
extended to the cryptographic symmetric algorithms which can be attacked by
the collision method.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (No. 61133013), the 973 Program (No.2013CB834205), and
the Foundation of Science and Technology on Information Assurance Laboratory
(No. KJ-13-101).

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

6. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold Implementations
of All 33 and 44 S-Boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

7. Canright, D., Batina, L.: A Very Compact “Perfectly Masked” S-Box for AES. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446–459. Springer, Heidelberg (2008)

8. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-Order Mask-
ing Schemes for S-Boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 366–384. Springer, Heidelberg (2012)

9. Genelle, L., Prouff, E., Quisquater, M.: Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

10. Roy, A., Vivek, S.: Analysis and Improvement of the Generic Higher-Order Mask-
ing Scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 417–434. Springer, Heidelberg (2013)

11. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES Com-
bining Side Channel- and Differential- Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

12. Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and Its Ap-
plication to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222.
Springer, Heidelberg (2003)

246 D. Wang, A. Wang, and X. Zheng

13. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg
(2007)

14. Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

15. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 125–139. Springer, Heidelberg (2010)

16. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved
Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel,
B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg
(2011)

17. Bogdanov, A., Kizhvatov, I.: Beyond the Limits of DPA: Combined Side-Channel
Collision Attacks. IEEE Trans. Computers 61(8), 1153–1164 (2012)

Implementing a Covert Timing Channel

Based on Mimic Function

Jing Wang1,2,3, Le Guan1,2,3, Limin Liu1,2,�, and Daren Zha3

1 Data Assurance and Communication Security Research Center, CAS,
Beijing, China

2 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China
{jwang,lguan,lmliu}@lois.cn,

zhadaren@ucas.ac.cn

Abstract. Covert timing channel is a mechanism that can be exploited
by an attacker to conceal secrets in timing intervals of transmitted pack-
ets. With the development of detection techniques against such channel,
it has become increasingly difficult to exploit a practical covert timing
channel that is both detection-resistant and of high capacity. In this
paper, we introduce a new type of covert timing channel. Our novel en-
coding technique uses mimic functions as the basis to accomplish the
mimicry of legitimate traffic behaviors. We also design and implement
a mimicry framework for automatically creating this new type of covert
timing channel. In the end, we utilize the state-of-the-art detection tests
to validate the effectiveness of our mimicry approach. The experimen-
tal results show that the created covert timing channel can successfully
evade the detection tests while achieving a considerable channel capacity.

Keywords: network security, covert timing channel, mimic function,
detection resistance.

1 Introduction

Covert channel was first introduced by Lampson [15], and originally, studied in
the context of multi-level secure systems. Ever since Girling started the study
of covert channel in the network scenario [10], the security threat posed by net-
work covert channel has attracted increasing attention. Network covert channel
involves in a wide range of attacks, e.g., data exfiltration [18], DDoS attacks [12],
privacy enhancement [13], and packet traceback [20].

Traditionally, network covert channel is classified into storage channel and
timing channel. The former exploits the redundancy of network protocols, i.e.,
random/unused bits in packet header, while the latter manipulates inter-packet
delays (IPDs) of network traffic. Storage channels can be discovered by observing
the anomalies in the patterns of packet header fields. The detection of timing

� Corresponding Author.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 247–261, 2014.
© Springer International Publishing Switzerland 2014

248 J. Wang et al.

channels is usually based on statistical analysis of shape and regularity in packet
timing intervals. Compared with storage channels, it is more difficult to detect
timing channels due to the high variation in timing intervals. To thwart such
channels, researchers have proposed substantial detection techniques [2,16,8],
the focus among which is on using entropy-based method [8]. This promising
method has been proven an effective way for detecting various covert timing
channels.

In recent years, in order to evade detection, several works propose to cre-
ate covert timing channels by mimicking the statistical properties of legitimate
traffic [9,19,14]. In particular, Walls et al. [19] first revealed the entropy-based
detection method can be defeated. Their approach uses a half of packets to
smooth out the anomalies caused by covert traffic. As a consequence, the de-
tection resistance results in a significant reduction in channel capacity. By far,
it remains a challenge work to implement a covert timing channel that is both
detection-resistant and of high capacity.

In this paper, we propose a new type of detection-resistant covert timing
channel with a considerable channel capacity. Leveraging a stenographic tech-
nique—mimic function in the encoding method, covert traffic generated has the
similar statistical properties with legitimate traffic. The statistical properties in-
clude the first-order and high-order statistics, which actually correspond to the
shape of distribution and inter-packet dependencies in network traffic, respec-
tively.

To construct practical covert timing channels, we also develop and implement
a mimicry framework, which is intended for automatically mimicking, encoding,
and transmitting. More specifically, the framework includes five phases: filter-
ing, symbolization, modeling, encoding, and transmission. Through these phases,
covert traffic which is statistically approximate to legitimate traffic is generated,
and finally is transmitted to the Internet. The covert timing channel constructed
by the framework can also be adjusted by certain parameters in line with differ-
ent requirements in undetectability, error rate, and capacity.

In the end, we conduct a series of experiments to validate the effectiveness of
our mimicry approach. Experimental results show that the covert timing channel
built from the mimicry framework can successfully evade the entropy-based tests
while achieving almost 3-6 times the throughput of Liquid [19].

The rest of this paper is organized as follows. Section 2 introduces the related
work in covert timing channel. Section 3 describes mimic functions and our
mimicry framework. Section 4 shows the experiment results on the effectiveness
of our mimicry approach. Finally, Section 5 concludes this paper.

2 Related Work

The timing of network packets can be utilized to leak secret information. In [2],
Cabuk et al. presented IPCTC, the first IP covert timing channel. IPCTC employs
a simple on/off encoding scheme. During a specific timing interval, the sender
transmits a 1-bit by sending a packet and a 0-bit by not sending a packet. Gi-
anvecchio et al. [9] explored a model-based covert timing channel, which is named

Implementing a Covert Timing Channel Based on Mimic Function 249

MBCTC in short. MBCTC models distribution functions for legitimate traffic,
and mimics its first-order statistics. In [18], Shah et al. proposed a novel passive
covert timing channel, which can leak typed passwords over the network without
compromising the host or creating additional traffic. Sellke et al. [17] proposed the
“L-bits to N-packets” encoding scheme for building a high-capacity covert timing
channel, and quantified the data rate of that scheme. Walls et al. [19] presented
a detection-resistant covert timing channel relying on the idea of Jitterbug. The
main idea is to insert shaping IPDs into covert traffic, so as to smooth out shape
distortion generated by Jitterbug.

On the other hand, researchers have proposed various disruption and detec-
tion techniques to defend against those channels. Compared with disruption
techniques, channel detection has two major advantages: 1) it has no effect on
network performance; 2) it has an additional benefit that the hosts transmit-
ting covert information can be located. Detection techniques are based on the
fact that the creation of covert timing channels causes shape or regularity dis-
tortion in traffic’s timing characteristics. The Kolmogorov-Smirnov test [16] is
a nonparametric test that is used to determine whether a sample comes from
a reference distribution or tell the difference between two samples. It has been
experimentally proven that this test is able to sniff out abnormal traffic which
distorts in shape. Cabuk et al. [2] investigated two detection tests, namely ε-
similarity and regularity test. However, they are only effective to a minority of
covert timing channels, because they are over-sensitive to the variation of traffic.
Gianvecchio et al. [8] introduced a fruitful detection method using the combina-
tion of entropy and corrected conditional entropy, which is effective in finding
out the anomalies in the shape and regularity, respectively. In the literature, this
detection method has the best performance on detecting a wide variety of covert
timing channels.

To evade the detection tests, the technology of mimicking legitimate traffic has
been used in intelligent channel design [9,19,14]. In [9], the distribution of covert
traffic is very close to that of legitimate traffic. However, owing to the lack of
inter-packet dependencies, this kind of channel fails to evade the entropy-based
detection method [8]. In [19], the goal of channel design is to defeat the entropy-
based detection method. Its encoding method is based on that proposed by Shah
et al. [18] but sacrifices a half of IPDs to evade detection tests, therefore, it has a
low channel capacity, which is nearly 0.5 bit/packet. Kothari et al. [14] proposed
an undetectable timing channel that uses a mechanism of Regularity Tree to
mimic the irregularity of legitimate traffic. This channel maintains throughput
of 1 bit/packet.

3 Our Scheme

In this section, we first introduce mimic functions, the basis of our encoding
scheme. Then, we describe the mimicry framework that is designed to automat-
ically create the new type of detection-resistant covert timing channel.

250 J. Wang et al.

3.1 Mimic Functions

Mimic functions [21], which were introduced by Peter Wayner, are used to trans-
mit hidden information as a subliminal technique. A mimic function changes
input data so it assumes the statistical properties of another type of data, and
consequently accomplishes the mimicry of identity. This technique has been ap-
plied in various scenarios, e.g., text steganography [1], digital watermarking [5],
and code obfuscation [22]. Nevertheless, to the best of our knowledge, this tech-
nique has not yet been employed in the field of covert timing channel.

Regular Mimic Functions. Regular mimic functions use Huffman coding al-
gorithm as the base. In Huffman coding, a table of occurrence frequency for each
symbol in the input is required to build a variable-length code table, according
to which a binary tree of nodes, namely a huffman tree, is generated. As a re-
sult, the symbols which occur frequently reside at the top, that is, they are given
short representations, while the rare symbols are represented as long codes and
located at the deep.

The inverse of Huffman coding can be used as mimic functions if the input
is a random bit stream. The mimic process consists of two parts: compression
phase and expansion phase. In the compression phase, the frequency table of
each symbol in a data set A is estimated and the corresponding huffman tree
is constructed. In the second phase, a data set B of random bits is expanded,
specifically, variable length blocks are converted into fixed length blocks due to
the huffman decoding operation, which is based on the huffman tree of A.

However, there is a problem that symbols occur in regular mimic functions
output with different probabilities from the original ones. In fact, the regular
model limits all symbols to have a probability which is a negative power of two,
e.g., .5, .25, .125, and so on. The following technique can be used to solve this
problem.

String 3

Symbol A frequency

Symbol B frequency

Symbol Z frequency F B

C

N

String 3

String 2

Symbol A frequency

Symbol B frequency

Symbol Z frequency N B

A

C

String 2

String 1

Symbol A frequency

Symbol B frequency

Symbol N frequency

String 1

E

M P

B

Fig. 1. The huffman forest

High-order Mimic Functions. Compared with regular mimic functions, high-
order mimic functions capture more detailed statistical profile of data. In order

Implementing a Covert Timing Channel Based on Mimic Function 251

Fig. 2. The mimicry framework

to maintain regularity in the data, high-order mimic functions extract the inter-
symbol dependencies by estimating the frequency of each symbol that follows a
specific string of length n− 1. High-order mimic functions build a huffman tree
for each occurred string of length n − 1, which results in a forest of huffman
trees, as shown in Figure 1.

As a start, the encoding of high-order mimic functions requires one possible
string as a seed. Given the seed, the encoding program locates the right huffman
tree with the prefix of that selected string in the forest, and then uses the huffman
decoding operation to determine the symbol that will follow the string. The
resulting symbol and its preceding string of length n − 2 form a new prefix
of length n − 1. The encoding program will take iterations in this order and
output one by one. As the order n increases, the results become more and more
approximate to the original data.

3.2 The Mimicry Framework

Given the advantage of high-order mimic functions, we decide to use their encod-
ing technique as the basis for our scheme. To construct practical covert timing
channels, we design a mimicry framework for mimicking, encoding, and trans-
mitting. This framework includes five phases: filtering, symbolization, modeling,
encoding, and transmission. Figure 2 gives an overview of our framework and a
concise description of each phase. Details are expanded in the following para-
graphs.

I. Filtering
In this phase, the packet sniffer captures packets from legitimate network connec-
tions. The packets are then classified into individual flows according to protocols,
and source and destination IP addresses and ports. Generally, different types of
traffic have different statistical properties. For example, HTTP and SSH proto-
cols are both based on TCP/IP, but the difference between their traffic behaviors
also exists and has been revealed by statistical tests [8]. Furthermore, the more
specific traffic we filter out, the more precise statistical properties we can mimic.

252 J. Wang et al.

For this reason, we choose a specific application protocol as a filtering condition.
After trace classification, the packet analyzer calculates timing intervals between
adjacent packets from each trace.

II. Symbolization
The input IPDs are mapped into corresponding symbols in this phase. In

our application scenario, the objective is to mimic the statistical properties of
legitimate traffic and thereby cover up the presence of covert timing channels.
If IPD values are mapped to symbols one-to-one, the symbol set will be oversize
due to the high variation in HTTP traffic, resulting in overload of the encoding
program. To solve this problem, we sort all IPDs in ascending order, and partition
IPD range into several sub-ranges. IPDs in the same sub-range are mapped to
the same symbol.

The partitioning approach is of vital importance to the effectiveness of mim-
icking. Our approach is based on the observation that the IPD data is intensive
in some ranges and rare in the other ones, and hence, the parameter of proba-
bility density provides a critical basis for partitioning. Specifically, the principle
of our approach is that data has nearly uniform density within each sub-range.
To achieve this, we firstly calculate the cumulative distribution function for IPD
data. If data is uniformly distributed within a certain range, this part of the cu-
mulative distribution curve exhibits a straight line. An inflection point is likely
to exist between a high-density area and a low-density area on the cumulative
distribution curve. Due to finite samples, the obtained cumulative distribution
curve is very rough, and actually, composed of many line segments. In consid-
eration of the objective and analysis described hereinbefore, we choose to use
Douglas-Peucker algorithm [7] as the appropriate method of locating inflection
points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timing Interval (sec)

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

cumulative distribution curve

inflection points

Fig. 3. Inflection points located by Douglas-Peucker algorithm (ε = 0.01)

The Douglas-Peucker algorithm is also known as the line simplification al-
gorithm. The purpose of the algorithm is to produce a simplified polyline that
approximates the original one within a specified tolerance ε. Figure 3 shows the

Implementing a Covert Timing Channel Based on Mimic Function 253

effect of Douglas-Peucker algorithm on locating inflection points in a cumulative
distribution curve. According to these points, sub-ranges are determined and
then legitimate IPDs are mapped to corresponding symbols.
III. Modeling

The modeling phase is a phase of extracting statistical properties of legitimate
IPDs by constructing huffman trees. This phase takes the sequence of symbolized
IPDs as the modeling object and mimicry target.

The first step is building frequency tables for all occurred strings of length
n−1 in order to extract the nth order statistics. The modeling function processes
the input sequence in a sequential manner. When moving onto a string of length
n − 1, the function determines whether this pattern has already occurred. If
so, the function gets the symbol that follows the string, and increments the
corresponding frequency counter in the table appended to this pattern. If it is
absent, then a new table is created and appended to it. These operations are
repeatedly conducted until the search is completed. If the input sequence has a
total of 2000 symbols, 2001 − n strings of length n − 1 can be collected, some
of which may have the same pattern. The strings of length n− 1, acting as the
“prefixes” in mimic functions, are the indexes of their frequency tables. At the
end of modeling phase, each frequency table is converted into a huffman tree.
All the huffman trees with corresponding indexes are output to the next phase.
IV. Encoding

Based upon the modeling results, the encoding phase converts an arbitrary
binary stream into a sequence of symbols, which has similar statistics with the
mimicry target. The encoding function has three components: randomization,
mimic encoding process, and inverse mapping.

Covert messages are mostly encoded into binary sequences with ASCII scheme
[3], and each letter is represented as a code with length of 8 bits. Due to differ-
ent occurrence frequency of letters [6], these binary sequences are non-random,
whereas the input of mimic functions is required to be random. To solve this
problem, each binary sequence is randomized by XORing with a pseudo-random
bit stream. This stream is assumed to be known by the sender and receiver of
the covert timing channel.

After randomization, the input of mimic encoding process is an arbitrary
binary stream. To start the encoding of nth order mimic functions, the first string
of length n− 1 is chosen as a seed. The right huffman tree of the specific string
is located according to its index. Then the process performs the operation of
walking the tree. From the root node, the process selects left or right branches
according to the input bit, until it arrives at a leaf node, which represents a
symbol. The most recently generated symbol and its preceding string of length
n−2 forms a new string of length n−1. The encoding program will take iterations
in this order and output one by one. In the end, a sequence of symbols is obtained.

Inverse mapping refers to an operation of inversely mapping symbols to IPD
values. First, one symbol is mapped into the corresponding sub-range. Then, an
IPD value is randomly selected from the sub-range.

254 J. Wang et al.

V. Transmission
In this phase, the sender of the covert timing channel modulates the timing of

packets corresponding to the sequence of IPDs, and then forwards the packets
to the Internet.

3.3 Design Details

Prior Agreement: In this channel, there is a prerequisite that the sender and
receiver should share the same mimicry target and have the same modeling
results. One choice is to transmit the modeling results from the sender to the
receiver. However, this solution requires a large amount of communication traffic
before the covert channel is built up. The other choice is to collect the same
legitimate traffic as the mimicry target by the two parties. They agree in advance
on a particular period and a particular network trace. For instance, they single
out the given trace during 8:00 AM and 8:05 AM. Even if several packets are lost
or effected by network jitters, the modeling results will stay the same. This is
because our partitioning method is based on the cumulative distribution function
of IPDs, and thus slight changes during the transmission almost have no effect
on the overall distribution. Moreover, slight changes have little influence on the
generated huffman trees.

Decreasing Error Rate: In the symbolization phase, the distribution of IPDs in
each sub-range is treated as the uniform distribution approximately. Accordingly,
an IPD value is uniformly selected from the corresponding sub-range in the
inverse mapping operation. When the selected IPD value is close to the cut-off
point between the adjacent sub-ranges, a transmission error will probably arise
due to network jitters. One solution is adding error correcting bits to covert
data. In addition, the areas with a certain distance apart from cut-off points can
be removed from the selection ranges, but this solution theoretically has a little
influence on the mimicry effectiveness.

Parameter Selection: The tolerance ε in the Douglas-Peucker algorithm has
dual influence on the practicality of our scheme. If ε is large, then the number
of inflection points is small and sub-ranges are wide, thus the approximation
to legitimate traffic is inaccurate. In contrast, if ε is small, then sub-ranges are
narrow, causing a relatively high decoding error rate. Moreover, increasing the
number of sub-ranges will increase the number of huffman trees. A large number
of huffman trees will result in low efficiency of modeling and encoding. After
comprehensive consideration, we choose ε = 0.01 in the following experiments.

4 Experimental Evaluation

We conducted a series of experiments to validate the effectiveness of our mimicry
approach. The emphasis of our experiments is on determining if the covert timing
channel exploited from the mimicry framework can evade the state-of-the-art
detection tests. In addition, we examined the capacity of this new type of covert
timing channel.

Implementing a Covert Timing Channel Based on Mimic Function 255

4.1 Experimental Setup

The detection tests are based on statistical analysis, therefore a large volume of
network data is necessary in order to perform these tests. The selection of test
data is detailed in the following paragraphs.

Legitimate Data Collection. In our experiments, we selected HTTP traffic
as our mimicry target. The reasons include: 1) HTTP is the most widely used
protocol on the Internet, thus the defensive perimeter of a network commonly
allows HTTP packets to pass through. 2) The large volume of HTTP traffic
makes it an ideal medium for covert communication. The HTTP traffic used in
our experiments was extracted from publicly available data sets named NZIX-
II [11]. The data sets contain the mixed traces of diverse network protocols.
To filter out only HTTP traces, we used the destination port number 80 as the
filtering condition. After that, HTTP streams were grouped into individual flows
according to the source and destination IP addresses. IPDs calculated from each
individual flow were jointed together to be our legitimate data set.

For different purposes, the legitimate data set is divided into two subsets:
training set and test set. The training set, composed of 10,000,000 IPDs, is
intended to initialize detection tests. The test set is used as the mimicry target
for generating covert traffic, as well as the comparison object for the detection
tests. This set contains 100 samples, each of which has 2000 IPDs.

Covert Data Generation. To automatically create the new type of covert
timing channel, referred to as MFCTC hereinafter, we implemented each func-
tion of the framework on our testing machine, and integrated each into a com-
plete pipeline for generating covert traffic. We then input legitimate data as
the mimicry target. In the experiments, we set the tolerance ε in the Douglas-
Peucker algorithm to be 0.01. The order of mimic functions was tuned to create
different MFCTC data sets.

For the comparison purpose, we also implemented two existing covert timing
channels: MBCTC [9] and IPCTC [2]. For MBCTC, each 100 packets of the test
set are fitted to a model, which is used to generate covert traffic. For IPCTC,
the timing interval is rotated among 0.04, 0.06, and 0.08 seconds after each 100
packets as suggested by Cabuk et al. [2].

4.2 Detection Resistance

The detection resistance is the objective of our mimicry approach. It can be es-
timated from two aspects: the shape and regularity of network traffic. The shape
of traffic is described by first-order statistics, e.g., distribution. The regularity of
traffic is described by high-order statistics, e.g., correction. In the experiments,
we utilized the most advanced detection method—the entropy-based method
[8], which uses the combination of entropy and corrected conditional entropy to
examine the shape and regularity respectively. To our knowledge, the entropy-
based detection method has the best performance on detecting various covert
timing channels. In this section, we detail this detection method and show the
detection results.

256 J. Wang et al.

The Entropy-based Detection Method. This detection method is based on
the observation that the creation of a covert timing channel changes the entropy
of the original traffic in a certain extent. In information theory, entropy is used
as a measure of the uncertainty in a random variable [4].

This detection method utilizes two metrics: entropy (EN) and corrected con-
ditional entropy (CCE). The definition of entropy of a random variable X is
given as:

EN(X) = −
∑
X

P (x)logP (x)

The entropy describes the first-order statistics of traffic and can be used as a
shape test. In addition, the corrected conditional entropy that is used to estimate
the entropy rate can be used as a regularity test:

CCE(Xm|X1, ..., Xm−1) = CE(Xm|X1, ..., Xm−1) + perc(Xm) ∗ EN(X1)

Where CE(Xm|X1, ..., Xm−1) is the conditional entropy of a random process
X = Xi, perc(Xm) is the percentage of unique sequence patterns of length m,
and EN(X1) is the first-order entropy.

The detection method requires a large number of legitimate IPDs for train-
ing. For maximum effectiveness, this method divides the training data into Q
equiprobable bins. When the Q bins have the same number of IPDs, the entropy
reaches a maximum. Abnormal traffic, which has a different distribution, usually
gets a low entropy score. Gianvecchio et al. chose Q = 65536 for EN test while
Q = 5 for CCE test.

Dataset. In our experiments, we used seven data sets, including:

 HTTP training set: 10,000,000 HTTP IPDs

 HTTP test set: 200,000 HTTP IPDs

 IPCTC test set: 200,000 HTTP IPDs

 MBCTC test set: 200,000 HTTP IPDs

 3rd-MFCTC test set: 200,000 HTTP IPDs

 4th-MFCTC test set: 200,000 HTTP IPDs

 5th-MFCTC test set: 200,000 HTTP IPDs

To initialize the detection tests, we used the HTTP training set to determine
the bin ranges for EN and CCE tests, respectively. MBCTC and MFCTC test
sets are both generated by mimicking the HTTP test set. The three MFCTC
test sets are based on third-order, forth-order, and fifth-order mimic functions,
respectively.

Detection Results. Our first set of experiments is to investigate the effect of
the order of mimic functions on approximation. Theoretically, mimic functions
with higher order capture more detailed statistical profile of data. Therefore,
the statistics of the corresponding MFCTC traffic are more similar to those of
original traffic. However, it is impractical to employ a mimic function with a very
high order. Increasing n will increase the number of huffman trees exponentially.
This means the order has the direct effect on the performance of data processing.
In our experiments, we chose n = 3, 4, 5 for generating covert traffic, respectively.

In order to investigate the effect in reality, we ran EN and CCE test 100
times against HTTP test set and three MFCTC test sets, respectively. A sample

Implementing a Covert Timing Channel Based on Mimic Function 257

of 2000 IPDs was used in each time. To compare the results, we calculate the
difference between the test score for each sample of covert data and that for the
corresponding sample of legitimate data. The mean of the test scores and the
comparative scores are shown in Table 1. The test scores for the three MFCTC
test sets are all higher on average than those of legitimate test set. Whereas, with
the increasing of the order, the comparative scores are decreasing gradually. This
indicates that the higher order results in the more accurate approximation.

Table 1. The mean of the test scores and the comparative scores

test
LEGIT 3rd-MFCTC 4th-MFCTC 5th-MFCTC
Mean Mean Diff Mean Diff Mean Diff

EN 16.214 19.566 3.894 19.416 3.666 19.340 3.565

CCE 1.949 2.016 0.117 1.996 0.106 1.987 0.098

Our second set of experiments is to determine if MFCTC traffic created
from our mimicry framework can evade the entropy-based detection method.
We ran each detection test 100 times against legitimate, 4th-MFCTC, IPCTC,
and MBCTC traffic, respectively. A sample of 2000 IPDs was used in each time.
The mean of EN and CCE test scores are shown in Figure 4 and Figure 5, re-
spectively. In theory, a low EN test score indicates the first-order probability of
the test traffic is distinct from that of training data, and hence suggests this
traffic is abnormal. In turn, the higher EN test score the traffic gets, the more
similar to legitimate data it is. Analyzing in the same way, when the CCE test
score is very high, the traffic lacks regularity. When the CCE test score is very
low, the traffic is too regular. Our test results show that the mean EN test score
of MFCTC is much higher than that of legitimate traffic, while the mean CCE
test score is very close to that of legitimate traffic. The EN and CCE test scores
of IPCTC are both too low. For MBCTC, the EN test score is higher than that
of legitimate traffic, however, the CCE test score is too much higher.

In order to estimate the detection rates, we introduce a criterion called false
positive rate, which was also used by Gianvecchio et al [8]. The false positive rate
refers to the rate of legitimate samples that are incorrectly classified as covert.
We calculate the cutoff scores for both tests to achieve a false positive rate of
1%. Any sample with a test score beyond the normal range, partitioned by the
cutoff, would be identified as covert. The detection rates for MFCTC, IPCTC,
and MBCTC samples are shown in Table 2.

The EN and CCE tests are both able to detect the presence of IPCTC. Al-
though the EN detection rate for MBCTC is 0%, the CCE detection rate reaches
up to 90%. This reveals that MBCTC only exploits the first-order statistics of
legitimate traffic, but ignores the regularity. The EN detection rate for MFCTC
is 0%, while the CCE detection rate is very low, only 6%.

We also investigate the distributions of the CCE test scores for legitimate
and MFCTC samples, which are illustrated in Figure 6. Most scores for both fall
between 1.8 and 2.2. There is a heavy overlap between the distributions. More-
over, with the increasing of the order of mimic functions, the overlap becomes

258 J. Wang et al.

16.214

19.416

3.051

20.862

LEGIT MFCTC IPCTC MBCTC

0

4

8

12

16

20

E
N

S
C

O
R

E

cutoff ≥ 14.451

Fig. 4. EN test scores for legitimate, MFCTC, IPCTC, and MBCTC IPDs

1.949 1.996

1.016

2.208

LEGIT MFCTC IPCTC MBCTC

0.0

0.4

0.8

1.2

1.6

2.0

2.4

cutoff ≤ 2.133

cutoff ≥ 1.544

C
C

E
S

C
O

R
E

Fig. 5. CCE test scores for legitimate, MFCTC, IPCTC, and MBCTC IPDs

Table 2. The detection rates for MFCTC, IPCTC, and MBCTC samples

Test
LEGIT MFCTC IPCTC MBCTC

False Positive Detection Rate Detection Rate Detection Rate

EN ≤ 14.451 1% 0% 100% 0%

CCE ≤ 1.544 1% 0% 100% 0%

CCE ≥ 2.133 1% 6% 0% 90%

heavier. This implies that the detection rate can be reduced by increasing the
order. In conclusion, the detection results indicate that our new type of covert
timing channel is undetectable by the entropy-based detection tests.

Implementing a Covert Timing Channel Based on Mimic Function 259

0.01

0.06

0.74

0.19

0.01

0.43

0.55

0.01
0.03

0.49
0.47

0.01
0.03

0.54

0.42

0.01

1.4 1.6 1.8 2.0 2.2 2.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P

R
O

P
O

R
T

IO
N

SCORE

LEGIT

3
rd
-MFCTC

4
th
-MFCTC

5
th
-MFCTC

Fig. 6. The proportion of CCE test scores

Other Detection Tests. To be more convincing, we also ran Kolmogorov-
Smirnov test [16] and regularity test [2] against MFCTC. The Kolmogorov-
Smirnov test quantifies the maximum distance between two empirical distribu-
tion functions, so it can be used to examine the shape of traffic. If the test score
is small, it implies that the sample is close to the legitimate behavior. For the
regularity test, network traffic is separated to several windows with the same
size, and the standard deviation is computed for each window. In general, the
regularity score of legitimate traffic is high, because legitimate traffic changes
over time. This test can be used to examine the regularity of traffic. Our results
showed that the two detection tests both get 0% detection rate for MFCTC
when the false positive rate is 1%.

4.3 Capacity

The channel capacity of MFCTC depends on the sizes and heights of huffman
trees. Due to different mimicry targets and modeling results, the capacity of
MFCTC is indefinite. To estimate the channel capacity, we count up the num-
ber of sub-ranges for 100 samples. When the tolerance ε = 0.01, these samples
have 1044 sub-ranges in total, that is, there is nearly 10 sub-ranges on average.
Consequently, for the first-order mimic function, each huffman tree has approxi-
mately 10 leaf nodes, thus the corresponding channel capacity is between 2 and
3.25 bits/packet in theory. Whereas, owing to the limited size of the mimicry
target, only 2000 IPDs in each sample, huffman trees of high-order mimic func-
tions have much fewer leaf nodes. For these 100 samples of 4th-MFCTC, the
mean of bit transmission rate is 1.5 bits/packet. When we enlarge the size to
be 20000 and 200000 IPDs in each sample, the transmission rate increases to be
1.7 and 1.9 bits/packet, respectively. On the whole, the capacity of our encoding
scheme is much higher than that of Liquid [19] and Mimic [14], which delivery
0.5 and 1 bit per packet respectively.

260 J. Wang et al.

5 Conclusion

In this paper, we utilized mimic function to construct a new type of detection-
resistant covert timing channel, which is undetectable by current detection tests
while maintaining a relatively high channel capacity. We implemented a mimicry
framework to automatically generate covert traffic. The framework includes five
phases: filtering, symbolization, modeling, encoding, and transmission. The traf-
fic generation process is as follows. Firstly, IPD values are filtered from legit-
imate traffic. Secondly, they are mapped into corresponding symbols. Thirdly,
the statistical properties are extracted through building huffman trees. Next,
based upon the modeling results, the encoding phase converts an arbitrary bi-
nary stream into a sequence of symbols, which has similar statistics with the
mimicry target, and then inversely maps the symbols into IPD values. Finally,
network packets with the mimicry IPDs are forwarded to the Internet.

In order to validate the effectiveness of the mimicry approach, we performed
the state-of-the-art detection tests against our new type of channel (MFCTC)
and known channels (IPCTC and MBCTC). The results show that only MFCTC
can successfully evade the detection tests. Moreover, MFCTC is able to main-
tain a considerable capacity, which is much higher than existing undetectable
channels, i.e., Liquid and Mimic.

Acknowledgement. This work was supported by the National Basic Research
Program (973 Program) of China (No. 2013CB338001) and the Strategy Pilot
Project of Chinese Academy of Sciences Sub-Project XDA06010702.

References

1. Atallah, M.J., Raskin, V., Hempelmann, C.F., Karahan, M., Sion, R., Topkara,
U., Triezenberg, K.E.: Natural language watermarking and tamperproofing. In:
Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 196–212. Springer, Heidelberg
(2003)

2. Cabuk, S., Brodley, C., Shields, C.: IP covert timing channels: Design and detec-
tion. In: Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, pp. 178–187 (2004)

3. Cabuk, S., Brodley, C., Shields, C.: IP covert channel detection. ACM Transactions
on Information and System Security (TISSEC) 12(4), 22 (2009)

4. Cover, T., Thomas, J.: Elements of information theory. Wiley-interscience (2006)
5. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital watermarking and

steganography. Morgan Kaufmann (2007)
6. Dewey, G.: Relative frequency of English spellings. Teachers College Press, NewYork

(1970)
7. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisualization 10(2), 112–122
(1973)

8. Gianvecchio, S., Wang, H.: Detecting covert timing channels: An entropy-based
approach. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pp. 307–316 (2007)

Implementing a Covert Timing Channel Based on Mimic Function 261

9. Gianvecchio, S., Wang, H., Wijesekera, D., Jajodia, S.: Model-based covert timing
channels: Automated modeling and evasion. In: Proceedings of the 11th Interna-
tional Symposium on Recent Advances in Intrusion Detection, pp. 211–230 (2008)

10. Girling, C.: Covert channels in LAN’s. IEEE Transactions on Software Engineering,
292–296 (1987)

11. WAND Research Group. Waikato internet traffic storage,
http://wand.net.nz/wits/nzix/2/

12. Henry, P.A.: Covert channels provided hackers the opportunity and the means for
the current distributed denial of service attacks. CyberGuard Corporation (2000)

13. Houmansadr, A., Nguyen, G.T., Caesar, M., Borisov, N.: Cirripede: Circumven-
tion infrastructure using router redirection with plausible deniability. In: Proceed-
ings of the 18th ACM Conference on Computer and Communications Security,
pp. 187–200 (2011)

14. Kothari, K., Wright, M.: Mimic: An active covert channel that evades regularity-
based detection. Computer Networks (2012)

15. Lampson, B.: A note on the confinement problem. Communications of the
ACM 16(10), 613–615 (1973)

16. Peng, P., Ning, P., Reeves, D.: On the secrecy of timing-based active watermarking
trace-back techniques. In: IEEE Symposium on Security and Privacy, pp. 334–349
(2006)

17. Sellke, S., Wang, C., Bagchi, S., Shroff, N.: TCP/IP timing channels: Theory to
implementation. In: INFOCOM, pp. 2204–2212 (2009)

18. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: Proceedings
of the 15th Conference on USENIX Security Symposium, vol. 15 (2006)

19. Walls, R., Kothari, K., Wright, M.: Liquid: A detection-resistant covert timing
channel based on IPD shaping. Computer Networks 55(6), 1217–1228 (2011)

20. Wang, X., Reeves, D.S.: Robust correlation of encrypted attack traffic through
stepping stones by manipulation of interpacket delays. In: Proceedings of the 10th
ACM Conference on Computer and Communications Security, pp. 20–29 (2003)

21. Wayner, P.: Mimic functions. Cryptologia 16(3), 193–214 (1992)
22. Wu, Z., Gianvecchio, S., Xie, M., Wang, H.: Mimimorphism: A new approach to

binary code obfuscation. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, pp. 536–546 (2010)

http://wand.net.nz/wits/nzix/2/

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 262–270, 2014.
© Springer International Publishing Switzerland 2014

Detecting Frame Deletion in H.264 Video

Hongmei Liu, Songtao Li, and Shan Bian

School of Information Science and Technology, Sun Yat-sen University,
Higher Education Mega Center, Guangzhou, China

isslhm@mail.sysu.edu.cn, lisongt@mail2.sysu.edu.cn
bianshan.sysu@gmail.com

Abstract. Frame deletion is one of the common video tampering operations.
The existing schemes in detecting frame deletion all focus on MPEG. This
paper proposes a novel method to detect frame deletion in H.264. We introduce
the sequence of average residual of P-frames (SARP) and use its time- and
frequency- domain features to classify the tampered videos and original videos.
Specifically, in the time domain, we analyze the periodicity of the SARP of
videos with frame deleted and define a position vector to describe this feature.
In the frequency domain, we demonstrate that the periodicity of SARP results in
spikes (frequency-domain feature) at certain positions in the DTFT(Discrete
Time Fourier Transform) spectrum. The time- and frequency- domain features
of tampered videos are different from that of original videos and thus can be
used to separate these videos apart. Experimental results show that the proposed
method is very effective with the detection rate as high as 92%.

1 Introduction

Digital videos are almost ubiquitous now. With ever-developing video editing me-
thods, people can tamper the video with ease. Tampered videos may convey inaccu-
rate messages which tend to mislead the mass media. When used in court, tampered
video may cause severe effects. Thus it is imperative to authenticate the integrity of
digital videos.

The existing methods that aim to authenticate videos fall into two groups: active
authentication and passive authentication. An example of active authentication is
using digital watermark. In most cases, however, videos do not contain such water-
mark. In contrast, passive authentication that does not need previously embedded data
is gaining strength. Some passive authentication methods leverage noise features
introduced by cameras during video formation[1-2]. Many other passive authentica-
tion methods employ artifacts introduced during video compression [3-8].

The methods to detect double video compression are proposed in [3-5] while me-
thods that aim to detect frame deletion are proposed in [6-8]. In [6], block artifacts are
used to form a feature curve whose change indicates frame deletion. In [7], the au-
thors propose a method based on Motion-Compensation Edge Artifact to detect frame
deletion. In [8], the authors analyze the periodicity of motion error sequence which is

 Detecting Frame Deletion in H.264 Video 263

transformed into the frequency domain. Spikes on both sides in the frequency domain
which are peculiar to tampered videos suggest frame deletion.

The methods in [6-8] are performed in MPEG. However, there is little method that
aims to detect frame deletion in H.264 which is more complicated than MPEG. The
methods that work well in MPEG may fail in H.264. For example, method in [6]
using block artifact to detect frame deletion in MPEG may not work well in H.264
because there is a de-blocking filter in H.264 which largely attenuates the block arti-
fact. The method in [8] fails to yield ideal results in H.264 either. This will be illu-
strated later in Section 2.

In this paper, we propose a novel method by using the sequence of average residual
of P-frames (SARP) both in the time and frequency domain to detect frame deletion.
Many videos with different content are tested and experiments show that our method is
quite effective. The rest of this paper is organized as follows. Section 2 analyzes the
statistical features of frame deletion in H.264 video. Section 3 is our proposed method to
detect frame deletion. Section 4 shows experimental results. Section 5 is the conclusion.

2 Statistical Features of Frame Deletion in H.264 Video

H.264 is a new video compression standard. Compared with early standards like
MPEG, the main changes in H.264 are details of each part. For example, intra predic-
tion in H.264 is used in the pixel domain to produce the residual. Inter prediction in
H.264 may use multiple reference frames. H.264 also supports a range of block sizes
and subsample motion vectors and the de-blocking filter is also peculiar to H.264 [9].

Frame (I, B, P) and GOP are also general terms in H.264 as in MPEG. In this pa-
per, of our particular interest is P-frame. With original P-frame and its reference
frames, we can get the predicted frame via motion estimation and compensation.
P-frame residual is acquired by subtracting the predicted frame from the original
frame. GOP is short for a group of pictures that refers to frames between two adjacent
I-frames.

A video forger needs to decode a video (encoded bit streams) to the pixel domain
before deleting some frames. After frame deletion this video should be encoded again
and thus a tampered video is usually encoded twice. We now analyze the effects of
frame deletion in H.264 video. Let matrix Yk be the kth frame, Yt＇be the tth recon-
structed frame, thus we have

 (1)

where matrix rk is the residual of the kth frame, C is the motion compensation opera-
tor, Yt＇serves as the reference frame of Yk. Thus we get the following equation in the
decoding process

(2)

where matrix Yk＇is the kth reconstructed frame, F is the de-blocking operator which

will not be considered from now on just for simplicity, rk＇is the kth decoded resi-
dual. The compression noise of the kth frame is defined as

()tkk C YYr ′−=

())(tkk CF YrY ′+′=′

264 H. Liu, S. Li, and S. Bian

Fig. 1. The upper and lower rows stand for the original H.264 video and tampered H.264 video
respectively

>>

(3)

and thus rk＇can be expressed as

(4)

where matrix nt is compression noise of the tth frame. The SARP of a video is de-
fined as

(5)

where N is the number of pixels in one frame, ()jin ,r′ is the residual of the nth P-frame

at pixel location (i, j).
In one GOP, the P-frames are strongly correlated because they refer to the initial

I-frame directly or indirectly. Therefore the correlation between nk and nt is relatively
strong if if the kth and tth frames belong to the same GOP during the first compression.
So the term nk–C(nt) in (4) can be approximately cancelled and rk＇can be expressed as

(6)

and thus the corresponding r(k) is small. However, if the kth and tth frames belong to
different GOPs, the term nk–C(nt) cannot be cancelled and thus the corresponding r(k)
is likely to be large. In summary, if the kth P-frame and its reference frame belong to
the same GOP, r(k) is likely to be small, otherwise r(k) is likely to be large. Thus
there is a sign of periodicity in the SARP. We will give examples to illustrate this
periodicity in more details.

Without loss of generality, we set the GOP to be I B B P B B P B B P B P(12
frames) which contains 4 P-frames. In our paper, 20 GOPs are considered. Fig.1 illu-
strates the case of deleting the frame b2 from an original H.264 video. When b2 is
deleted, b3, b5, b7, i2 are re-encoded to be P1, P2, P3, P4 whose reference frames are I1,
P1, P2, P3 respectively.

Please refer to Fig.1, the upper and lower rows stand for the first and second com-
pression respectively. It can be seen that Pj (j= 1, 2, 3) and its reference frame

kkk YYn −′=

)()(tktkk CC nnYYr −+−=′

)(tkk C YYr −=′

() () ′=
i j

n ji
N

nr ,
1

r

 Detecting Frame Deletion in H.264 Video 265

belong to the same GOP(GOP1) during the first compression while P4 and its refer-
ence frame belong to different GOPs(GOP1 and GOP2) during the first compression.
From the above analysis, we know that r(1), r(2) and r(3) are likely to be small while
r(4) is likely to be large in the first GOP. The same phenomena also exist in other
GOPs. Fig.2(a) and Fig.2(b) show the SARPs for original and tampered videos re-
spectively. In each GOP, ‘l’ is used to denote the P-frame whose average residual is
the largest and ‘s’ denotes the other P-frames. Thus the SARP in Fig.2(b) can be de-
noted as “s s s l; s s s l; s s s l; s s s l; s s s l…” which shows signs of periodicity. In
contrast, the SARP in Fig.2(a) does not show this periodicity. To distinguish the tam-
pered videos from original videos, we will extract useful features in the time domain
from the SARP in Section 3.

In order to analyze SARP more thoroughly, we transform the SARPs in Fig.2(a) and
Fig.2(b) into the frequency domain by DTFT. The DTFT curves are shown in Fig.3(a)
and Fig.3(b) respectively. In [8], the authors state that spikes in the frequency domain
suggest frame deletion. However, Fig.3(a) shows that there may also exist spikes in the
frequency domain for original H.264 video. This is mainly because the H.264 mechan-
ism differs from MPEG. We have tested many other original H.264 videos and found
out that they possess such spikes too. So the spikes in the frequency domain do not
necessarily suggest tampering in H.264 any longer. To tackle this problem, we will
extract new and useful features in the frequency domain in Section 3.

3 Proposed Method

In this section, we address the problems stated in Section 2 and propose our method to
detect frame deletion.

Fig. 2. (a) SARP for the original H.264 video

Fig. 2. (b) SARP for the tampered H.264 video

266 H. Liu, S. Li, and S. Bian

Let T be number of P-frames in one GOP and G be the number of GOPs, so the
periodicity of the SARP after deleting some frames is also T. In the ith GOP, let)(iϕ
be the position of the P-frame whose average residual is the largest among the T P-
frames. The position vector of SARP is defined as

(7)

where i = 1, 2,…,G, TiV ≤≤)(1 . Thus the position vectors for Fig.2(a) and Fig.2(b)

are [2,1,2,4,4,2,3,2,1,1,3,1,3,3,2,4,2,3,3,2] and [4,4,4,4,4,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4]
respectively. Let S(j) be the times that value j occurs in V(i), μ be the mean value of S

and 2σ be the variance of S. Therefore we get the following equations

()2

12

()

1

T

j

S j

T

μ
σ =

−
=

−

 (8)

1

()

/

T

j

S j

G T
T

μ == =

 (9)

() ()()2 2

2
m ax

/ 1 /

1

G G T T G T

T
σ

− + −
=

−
(10)

We know that the sum of all elements in S is G, so 2σ achieves its largest value
when one element in S is G and all the other elements are 0. Therefore

2
maxσ is

Fig. 3. (a) DTFT curve of Fig.2(a) (Original)

Fig. 3. (b) DTFT curve of Fig.2(b) (Tampered)

=

TofmultipleanotisiifTi

TofmultipleaisiifT
iV

)(mod)(

)(
)(

ϕϕ
ϕ

 Detecting Frame Deletion in H.264 Video 267

()

()

2

2
1

2 2
m a x

() /

1

T

j
t

T S j G T

Q
T G

σ
σ

=
−

= =
−

 (11)

We use the normalized 2σ to define the time domain feature ratio Qt by
It is clear that S is relatively scattered for the tampered video and results in larger

variance. Therefore Qt is relatively small for the original video. This is the time-
domain feature.

We use DTFT to transform the SARP(i.e. r(n)) into the frequency domain. The
DTFT of SARP is denoted as R(ejω). It is obvious that the periodicity of |R(ejω)| is 2π
and is symmetric with respect to the vertical axis, so we only have to consider the
interval [0, π]. |R(ejω)| achieves largest value when ω is 0. We have shown that the
SARP is T when some frames are deleted. We can demonstrate the following equation
if r(n) is strictly periodic

(2 /() ()j T jR e R eω π ω+ = (12)

In such situation, there is also a large value when ω is a multiple of 2π/T. In our ac-
tual experiment, r(n) shows signs of periodicity but it is not strictly periodic for the
tampered video. Therefore there also exist a spike at 2kπ/T(k is a nonzero integer) but
this spike is not as strong as the spike at 0(largest value). We define hmin to be

2 /
min min| () |j m Th R e π= (13)

where Km∈ , K is the set of all integers in (0, T/2]. Thus hmin is likely to be smaller
for the original video. This phenomenon can also be seen from Fig.3(a) and Fig.3(b).

We know that |R(ejω)| achieves its largest value at 0, namely

max 0
1

() () ()
N

j j

n

R e R e r nω ω
ω=

=

= = (14)

Compared with Fig.2(a), some values in Fig.2(b) become smaller and some be-
come larger. We assume that the sum of all values in SARP is relatively stable after
deleting some frames. Therefore, |R(ejω)|max is relatively stable. This assumption is
confirmed by our actual experiments that |R(ejω)|max changes little when some frames
are deleted. The frequency domain feature ratio Qf is then defined as

m in

m ax| () |f j

h
Q

R e ω= (15)

From the analysis above, we know that Qf is likely to be smaller for the original
video. This is our proposed frequency-domain feature. Incidentally, the larger the
r(n), the larger the |R(ejω)| will be, yet Qf can counteract this effect and thus robust to
different video content whether the SARP of which is large or small.

Let the time- and frequency- domain thresholds be
tτ and fτ . Based on the analy-

sis above, an H.264 video is considered as an original video if Qt < tτ and Qf <
fτ .

If either of these two conditions is violated, the H.264 video is then considered as a
tampered video.

268 H. Liu, S. Li, and S. Bian

4 Experiments

In our experiments, 20 YUV videos[10-11] are used. Each YUV video has 300 frames
and the resolution is 176×144. We choose x264[12] as the encoder and H.264 Joint
Model (JM)[13] as the decoder. The encoding GOP is I B B P B B P B B P B P.

The 20 original YUV videos are encoded to generate 20 original H.264 videos
which are then decoded back into the pixel domain. For each decoded YUV video, we
delete 1 to 11 frames to generate 11 tampered YUV videos. Thus we get 220
(20×11) tampered YUV videos in total. The 20 original YUV videos and 220 tam-
pered YUV videos are then encoded and decoded again. We extract the SARPs in the
decoding process, so the time-domain feature ratio Qt and the frequency-domain
feature ratio Qf are acquired from the SARPs.

Fig.4 shows the Qt and Qf for 240 videos (20+220). The small rectangles stand for
20 original H.264 videos and the small circles stand for 220 tampered H.264 videos.
For a video to be tested, we can get a (Qt , Qf) pair. With a certain (tτ , fτ) pair, we are

able to tell whether this video has undergone frame deletion or not by using our me-
thod in Section 3. It can be seen from Fig.4 that the original videos and tampered
videos can be roughly separated by a large rectangle whose location is related to the
(tτ , fτ) pair.

For all the videos to be tested, a certain (tτ , fτ) pair determines a (fp, tp) pair in

which fp denotes false positive rate and tp denotes true positive rate. With different
(tτ , fτ) pairs, we are able to get their corresponding (fp, tp) pairs which together form

a ROC curve shown in Fig.5.
According to Fig.4, we finally set the (tτ , fτ) pair to be (0.30, 0.05) for reference.

The false positive rate is 5% and the true positive rate is 91.82%. The average detec-
tion accuracy is 92.08%. It can be seen from Fig.4 that if we only consider the time-
or frequency- domain feature ratio solely, the average detection accuracy is not

Fig. 4. Time- and frequency-domain feature ratios

 Detecting Frame Deletion in H.264 Video 269

very good (79.60% or 82.50% respectively). Therefore, higher accuracy can be
achieved by combining both the time- and frequency- domain features.

Existing methods in literature[6-8] to detect frame deletion are almost based on
MPEG. Authors in [6] detect frame deletion by visually checking the change of the
feature curve and the final detection accuracy is not given. Their method fails to work
when the number of deleted frames is a multiple of 3 and may not work in H.264 ow-
ing to the de-blocking filter. Authors in [8] only consider the frequency-domain cha-
racteristics and distinguish tampered videos from original videos by visually checking
frequency-domain spikes. The positions of the spikes to be checked are not stated and
the final detection accuracy is not presented. Their method may not work quite effec-
tively in H.264 as illustrated in part Ⅱ. Compared with methods in [6] and [8], our
method combine both the time- and frequency- domain features to detect frame dele-
tion in H.264 and the average detection accuracy is 92.08%. Our method can remedy
the above-stated limitations in [6] and [8]. Compared with the method in [7], our me-
thod works well for videos with low motion, such as ‘akiyo’, ‘mother’ and so on.

5 Conclusion and Future Works

In this paper, we have proposed a novel method to detect frame deletion in H.264.
Tampered videos are distinguished from original videos by using the SARP both in
the time and frequency domain. A large number of videos are tested in our experi-
ments and the detection results show that our method is fairly effective in H.264.

The tampered videos and original videos are separated by setting hard thresholds in
this paper. Our future work is to set the thresholds adaptively or introduce machine
learning methods in the decision stage. Moreover, new features in H.264 should be
considered in our future work.

References

1. Kobayashi, M., Okabe, T., Sato, Y.: Detecting video forgeries based on noise characteris-
tics. In: Proc. of the 3rd Pacific-Rim Symposium on Image and Video Technology, Tokyo,
Japan, pp. 306–317 (2009)

Fig. 5. ROC curve

270 H. Liu, S. Li, and S. Bian

2. Kobayashi, M., Okabe, T., Sato, Y.: Detecting forgery from static-scene video based on
inconsistency in noise level function. IEEE Trans. on Information Forensics and Security,
883–892 (2010)

3. Su, Y., Xu, J.: Detection of double-compression in MPEG-2 videos. In: Proc. of Interna-
tional Workshop on Intelligent Systems and Applications, Wuhan, pp. 1–4 (2010)

4. Chen, W., Shi, Y.-Q.: Detection of double MPEG compression based on first digit statis-
tics. In: Proc. of International Workshop on Digital Watermarking, pp. 16–30 (2010)

5. Liao, D., Yang, R., Liu, H., Li, J., Huang, J.: Double H.264/AVC compression detection
using quantized nonzero AC coefficients. In: Proc. of SPIE on Media Watermarking, Secu-
rity, and Forensics III, 7880 (2011)

6. Luo, W., Wu, M., Huang, J.: MPEG recompression detection based on block artifacts. In:
Proc. of SPIE on Security, Forensics, Steganography, and Watermarking of Multimedia
Contents 6819 (2008)

7. Su, Y., Zhang, J., Liu, J.: Exposing digital video forgery by detecting motion-compensated
edge artifact. In: Proc. of Inter. Conf. on Computational Intelligence and Software
Engineering, pp. 1–4 (2009)

8. Wang, W., Farid, H.: Exposing digital forgeries in video by detecting double MPEG
compression. In: Proc. of the 8th Workshop on Multimedia and Security, pp. 37–47 (2006)

9. Richardson Iain, E.G.: H.264 and MPEG-4 Video Compression. John Wiley & Sons,
New York (2003)

10. YUV Video Sequences, http://trace.eas.asu.edu/yuv/
11. The Consumer Digital Video Library, http://www.cdvl.org/
12. x264, http://www.videolan.org/developers/x264.html
13. JM, http://iphome.hhi.de/suehring/tml/download/old_jm

Efficient Adaptive Oblivious Transfer

in UC Framework

Vandana Guleria and Ratna Dutta

Indian Institute of Technology, Kharagpur, India
vandana.math@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract. We propose an efficient universally composable (UC) adap-
tive k-out-of-n (OTn×1

k) protocol. Our scheme is proven to be secure
in the presence of malicious adversary in static corruption model under
the Decision Linear (DLIN) and q-Strong Diffie-Hellman (SDH) assump-
tions. We use Groth-Sahai proofs and trapdoor commitments of Fischlin
et al. The proposed protocol outperforms the existing similar schemes
in terms of both communication and computation. More interestingly,
our construction guarantees the receiver that he has learnt the correct
information at the end of each transfer phase.

Keywords: Oblivious transfer, universally composable security, Groth-
Sahai proofs.

1 Introduction

Adaptive oblivious transfer (OT) protocol is a widely used primitive in cryptog-
raphy and is useful in adaptive oblivious search of large database such as patent
database and medical database where the database holder does not want to re-
veal the entire database to the recipient. OT protocols have been extensively
used in many cryptographic applications including fair exchange in e-commerce
and secure multi-party computation. A typical OT protocol is a two party proto-
col with a sender S and a receiver R. At the beginning of the protocol, S has the
databasem1,m2, . . . ,mn and R has index σ ∈ {1, 2, . . . , n}. The receiverR inter-
acts with S in such a way that at the end of the protocol, R learns onlymσ and S
is unable to get any knowledge about the index σ. This is 1-out-of-n OT protocol
which has been extended to non-adaptive k-out-of-n (OTn

k) [1] and adaptive k-
out-of-n (OTn×1

k) [9], [15]. In the non-adaptive setting, R simultaneously learns
all the k messages mσ1 ,mσ2 , . . . ,mσk

, σj ∈ {1, 2, . . . , n}, j = 1, 2, . . . , k, whereas
in adaptive setting, R learns one message at a time. In adaptive setting, R may
learn mσi−1 before deciding on σi.

The first oblivious transfer protocol was introduced by Rabin [20] which was
later generalized in [6], [13] to construct secure protocols for multiparty com-
putation. Since then many OT schemes have been proposed and studied. The
security of the OT protocols [6], [9], [13], [18], [20] are in simulation-based-model
where the simulator uses adversarial rewinding. Although the aforementioned
OT protocols satisfy both sender’s security and receiver’s security, they become

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 271–286, 2014.
c© Springer International Publishing Switzerland 2014

272 V. Guleria and R. Dutta

insecure under concurrent execution when composed with arbitrary protocols.
To address this, Canetti and Fischlin [11] introduced ideal functionality for OT
protocol in universal composable (UC) framework [11]. The UC secure [11] OT
protocols can be securely composed with arbitrary protocols even under concur-
rent execution. Peikert et al. [19] introduced first efficient, UC secure 1-out-of-2
OT protocols under the Decisional Diffie-Hellman (DDH), quadratic residuosity
and worst-case lattice assumptions. Later, Choi et al. [12] proposed UC-secure
1-out-of-2 OT protocols based on Decision Linear (DLIN), Symmetric External
Diffie-Hellman (SXDH), DDH and Decision composite residuosity (DCR) as-
sumption. Very recently, Abdalla et al. [1] designed an 1-out-of-n OT protocol
using smooth projective hash framework. Green and Hohenberger [15] introduced
UC secure OTn×1

k protocol. It combines Boneh, Boyen and Shacham (BBS) [5]
encryption, Camenisch-Lysyanskaya (CL) signature [8] and Boneh-Boyen signa-
ture [3]. Later, Rial et al. [21] proposed an efficient UC secure priced OTn×1

k

protocol by employing BBS [5] encryption and P-signatures [2].

Our Contribution. We construct an UC secure, efficient adaptive OTn×1
k pro-

tocol inspired by OTn×1
k of [15], [21]. Our scheme couples BBS [5] encryption

and batch Boneh and Boyen (BB) [4] signature with Groth-sahai proofs [16] and
exploits trapdoor commitments of Fischlin et al. [14]. Unlike the construction in
[15], [21], we rely on batch BB [4] signature, instead of CL signature [8], Boneh-
Boyen signature [3] and P-signatures [2]. Besides, Fischlin et al. [14] trapdoor
commitment is used to commit the sender’s input database m1,m2, . . . ,mn, in
our scheme. It enables the receiver to verify that he has learnt the correct mes-
sage at the end of each transfer phase. This feature is not achievable in [15],
[21]. The verification of pairing product equations is done in non-interactive
way using Groth-Sahai proofs [16]. The UC security holds against malicious
adversary which can deviate from its protocol specification under DLIN and q-
Strong Diffie-Hellman (SDH) assumptions. We consider static corruption model
in which adversary pre-decides the corrupted parties before the execution of the
protocol. Corrupted parties remain corrupted and honest parties remain honest
throughout the protocol execution.

The proposed adaptive OTn×1
k protocol is computationally efficient with low

communication overhead. The computation overhead is measured by counting
the number of pairing and exponentiation operations which are the most expen-
sive operations as compared to addition and multiplication. The initialization
phase of our OTn×1

k protocol requires 5n+1 pairings and 17n+5 exponentiations
whereas k transfer phases need a total 147k pairings and 150k exponentiations.
In addition, 18 exponentiation operations are performed to generate common
reference string. The communication overhead is 12n+ 5 group elements in ini-
tialization phase and 47k + 28k = 75k group elements in k transfer phases. As
illustrated in table 1, our protocol outperforms the best known schemes so far
[15], [21] with similar security levels.

Efficient Adaptive Oblivious Transfer in UC Framework 273

Table 1. Comparison Summary (PO stands for number of pairing operations, EXP for
number of exponentiation operations, IP for initialization phase, TP for transfer phase,
CRSG for crs generation, T for a ciphertext database, PK for public key, αX + βY for
α elements from the group X and β elements from the group Y)

OTn×1
k Pairing Exponentiation Communication Storage

PO EXP
TP IP TP IP CRSG Request Response crs-Size (T + PK)Size

[15] ≥ 207k 24n + 1 249k 20n + 13 18 (68G1+ (20G1+ 7G1+ (15n + 5)G1+
38G2)k 18G2)k 7G2 (3n + 6)G2

[21] > 450k 15n + 1 223k 12n + 9 15 (65G)k (28G)k 23G (12n + 7)G
Ours 147k 5n + 1 150k 17n + 5 18 (47G)k (28G)k 16G (12n + 5)G

2 Preliminaries

Notations: Throughout, we use ρ as the security parameter, x
$←− A means

sample an element x uniformly at random from the set A, y ← B indicates y is
the output of algorithm B and N denotes the set of natural numbers. A function
f(n) is negligible if f = o(n−c) for every fixed positive constant c.

Definition 1. Two probability distributions X = {Xr}r∈N and Y = {Yr}r∈N

are said to be computationally indistinguishable, denoted by X
c≈ Y , if for every

probabilistic polynomial time (PPT) distinguisher D, there exists a negligible

function ε(r) such that
∣∣∣Pr [D(Xr, 1

r) = 1]−Pr [D(Yr, 1
r) = 1]

∣∣∣ ≤ ε(r), ∀ r ∈ N.

2.1 Bilinear Pairing and Complexity Assumptions

Bilinear Pairing: Let G1,G2 be two multiplicative cyclic groups of prime or-
der p, g1 a generator for G1 and g2 for G2. Then the map e : G1 × G2 →
GT is bilinear if it satisfies the following conditions: (i) (Bilinear) e(xa, yb) =
e(x, y)ab ∀ x ∈ G1, y ∈ G2, a, b ∈ Zp, (ii) (Non-Degenerate) e(x, y) generates
GT ∀ x ∈ G1, y ∈ G2, x �= 1, y �= 1 and (iii) (Computable) the pairing e(x, y) is
computable efficiently ∀ x ∈ G1, y ∈ G2.
If G1 = G2, then e is symmetric bilinear pairing. Otherwise, e is asymmetric
bilinear pairing. Throughout the paper, we use symmetric bilinear pairing.

q-Strong Diffie-Hellman (SDH) Assumption [4]: Let G be a multiplicative
cyclic group of prime order p with generator g. The q-SDH assumption inG states
that given (q+1)-tuple (g, gx, gx

2

, . . . , gx
q

), x ∈ Zp as input, it is hard to output

a pair (c, g
1

x+c), c ∈ Zp.
The q-SDH is proven to be true in generic group model [4].

Decision Linear (DLIN) Assumption [5]: Let G be a multiplicative cyclic
group of prime order p with generator g. Let g1 = ga, g2 = gb ∈ G, a, b ∈ Zp.

The DLIN assumption in G states that given g1, g2, g and gr1 , g
s
2, g

t, r, s, t
$←− Zp,

it is hard to distinguish r + s from t.
If DLIN problem is easy, then decisional Diffie-Hellman (DDH) problem is easy.
In generic group model DLIN is proven to be hard even if DDH is easy [22].

274 V. Guleria and R. Dutta

2.2 Groth-Sahai Proofs [16]

We discuss non-interactive zero-knowledge (NIZK) proofs and non-interactive
witness indistinguishable (NIWI) proofs by Groth and Sahai [16] under the DLIN
assumption. These proofs are used in our protocol construction. Let us first
briefly explain Groth-Sahai commitments. Depending on the public parameters,
there are two types of settings in Groth-Sahai proofs - perfectly sound setting
and witness indistinguishability setting. We discuss below how to commit a group
element X ∈ G in both the settings for Groth-Sahai proofs. The product of two
vectors is defined component wise, i.e, (a1, a2, a3)(b1, b2, b3) = (a1b1, a2b2, a3b3)
for (a1, a2, a3), (b1, b2, b3) ∈ G3 for a finite order group G.

Commitment in Perfectly Sound Setting: Generate public parameters
params = (p,G,GT , e, g) ← BilinearSetup(1ρ), where BilinearSetup is an algo-
rithm which on input security parameter ρ generates params = (p,G,GT , e, g),
where e : G × G → GT , g is a generator of group G and p, the order of the
groups G and GT , is prime. In this setting, the common reference string is
GS = (params, u1, u2, u3), where u1 = (g1, 1, g), u2 = (1, g2, g), u3 = uξ1

1 u
ξ2
2 =

(gξ11 , gξ22 , gξ1+ξ2) ∈ G3, ξ1, ξ2
$←− Zp, g1 = ga, g2 = gb, a, b

$←− Zp. To commit

X ∈ G, one picks r1, r2, r3
$←− Zp and sets Com(X) = (1, 1, X)ur1

1 u
r2
2 u

r3
3 =

(gr1+ξ1r3
1 , gr2+ξ2r3

2 , X · gr1+r2+r3(ξ1+ξ2)). Note that Com(X) forms a BBS cipher-
text [5] which is fully extractable as it can be decrypted using a = logg(g1), b =
logg(g2).

Commitment in Witness Indistinguishability Setting: Generate public
parameters params = (p,G,GT , e, g) ← BilinearSetup(1ρ). In this setting, the
common reference string is GS′ = (params, u1, u2, u3), where u1 = (g1, 1, g) ∈
G3, u2 = (1, g2, g) ∈ G3, u3 = uξ1

1 u
ξ2
2 (1, 1, g) = (gξ11 , gξ22 , gξ1+ξ2+1), ξ1, ξ2

$←− Zp,

g1 = ga, g2 = gb, a, b
$←− Zp. To commit X ∈ G, one picks r1, r2, r3

$←− Zp and sets

Com(X) = (1, 1, X)ur1
1 u

r2
2 u

r3
3 = (gr1+ξ1r3

1 , gr2+ξ2r3
2 , X · gr1+r2+r3(ξ1+ξ2+1)). One

can note that Com(X) perfectly hides the message X which cannot be decrypted
using a = logg(g1), b = logg(g2).

Let Commit be an algorithm which on input X ∈ G and GS, generates Com(X),
i.e, Com(X) ← Commit(GS, X).

The commitments in both the setting are computationally indistinguishable by
the following theorem.

Theorem 1. [16] The common reference string in perfectly sound setting and
witness indistinguishability setting is computationally indistinguishable under the
DLIN assumption.

Non-interactive Verification of Pairing Product Equation: Groth-Sahai
proofs verify the pairing product equation

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi,Bi)
m∏
i=1

n∏
j=1

e(Xi,Yi)
ai,j = tT , (1)

Efficient Adaptive Oblivious Transfer in UC Framework 275

in a non-interactive way, where the variables Xi=1,2,...,m ∈ G1,Yj=1,2,...,n ∈ G2,
constants Ai=1,2,...,n ∈ G1,Bj=1,2,...,m ∈ G2, ai,j ∈ Zp and tT ∈ GT . The
Groth-Sahai proofs are two party protocols with the prover and the verifier.
The Groth-Sahai proofs consist of three PPT algorithms AGSSetup, AGSProve
and AGSVerify described in Algorithms 1-3 respectively. In our construction, we
will use following type of pairing product equations for a symmetric bilinear
pairing e.

e(x, g)e(y, w) = e(g, g), (2)

e(x, y) = e(g, g), (3)

where, x, y ∈ G are secret values and g, w ∈ G, e(g, g) ∈ GT are public. Let
us illustrate how the prover and the verifier use Algorithms 1-3 to verify the
pairing product equations 2 and 3. The equation 2 is linear and 3 non-linear.
The prover wants to convince the verifier in a non-interactive way that he knows
the solution x, y to equations 2 and 3 without revealing anything about x and
y to the verifier. Let E be the set of all equations which the prover wishes
to prove in non-interactive way to the verifier and W be the set of all secret
values in E . The set W is referred as witnesses of statement E . We follow the
notation of [10] for writing equations in statement. In reference to equations 2
and 3, E = {e(x, g)e(y, w) = e(g, g) ∧ e(x, y) = e(g, g)} and W = (x, y). Let
params = (p,G,GT , e, g)← BilinearSetup(1ρ).

Algorithm 1. AGSSetup
Input: params = (p,G,GT , e, g).
Output: GS = (u1, u2, u3),

u1, u2, u3 ∈ G
3.

1: a, b, ξ1, ξ2
$←− Zp;

2: g1 = ga, g2 = gb;
3: u1 = (g1, 1, g), u2 = (1, g2, g);

4: u3 = u
ξ1
1 u

ξ2
2 = (g

ξ1
1 , g

ξ2
2 , gξ1+ξ2);

5: GS = (u1, u2, u3);

Algorithm 2. AGSProve
Input: GS = (u1, u2, u3), E = (eq1, eq2, . . . , eqm),

W = (h1, h2, . . . , hl).
Output: π.
1: for (i = 1, 2, . . . , l) do
2: Com(hi) ← Commit(GS, hi);
3: for (i = 1, 2, . . . ,m) do
4: Generate Pi for equation eqi ∈ E;
5: π = (Com(h1),Com(h2), . . . ,Com(hl),P1,P2, . . . ,Pm);

The algorithm AGSSetup is run by a trusted party which on input params gener-
ates the common reference string GS in perfectly sound setting so that 〈g1, g2, g,
u
(1)
3 , u

(2)
3 , u

(3)
3 〉 forms a DLIN instance, where u3 = (u

(1)
3 , u

(2)
3 , u

(3)
3) . The trusted

party makes GS public.
The prover runs AGSProve and generates commitments to x and y in perfectly
sound setting using algorithm Commit. The proof components P1 and P2 for
equations 2 and 3 are also generated by the prover using random values which

were used to generate Com(x) and Com(y), where P1 = (P
(1)
1 ,P

(2)
1 ,P

(3)
1) con-

sists of 3 group elements and P2 = (P
(1)
2 ,P

(2)
2 ,P

(3)
2 ,P

(4)
2 ,P

(5)
2 ,P

(6)
2 ,P

(7)
2 ,P

(8)
2 ,P

(9)
2)

consists of 9 group elements as equation 2 is linear and equation 3 is non-
linear respectively. The prover sets the proof π = (Com(x), Com(y), P1,P2)
← AGSProve(GS, E ,W) and gives π to the verifier.

Algorithm 3. AGSVerify
Input: GS = (u1, u2, u3), π = (Com(h1),Com(h2), . . . ,Com(hl),P1,P2, . . . ,Pm).
Output: Either ACCEPT or REJECT.
1: for (i = 1, 2, . . . ,m) do
2: Replace the variables in eqi by their commitments;
3: Use proof components Pi of eqi to check the validity of eqi;

276 V. Guleria and R. Dutta

4: if (All eqi, i = 1, 2, . . . ,m are valid) then
5: return ACCEPT;
6: else
7: return REJECT;

The algorithm AGSVerify is run by the verifier. The verifier checks whether
Com(x), Com(y), and proof components P1, P2 satisfy

F (Com(x), g)F (Com(y), w) = (1, 1, e(g, g))F (u1,P
(1)
1)F (u2,P

(2)
1)F (u3,P

(3)
1), (4)

F ′(Com(x),Com(y)) =

⎛⎝1 1 1
1 1 1
1 1 e(g, g)

⎞⎠F ′(u1, (P
(1)
2 ,P

(2)
2 ,P

(3)
2))

F ′(u2, (P
(4)
2 ,P

(5)
2 ,P

(6)
2))F ′(u3, (P

(7)
2 ,P

(8)
2 ,P

(9)
2)), (5)

where F : G3 ×G→ G3
T and F ′ : G3 ×G3 → G9

T are respectively defined as

F ((A,B,C), D) = (e(A,D), e(B,D), e(C,D)),

F ′((x1, x2, x3), (y1, y2, y3)) =

⎛⎝e(x1, y1) e(x1, y2)e(x2, y1) e(x1, y3)e(x3, y1)
0 e(x2, y2) e(x2, y3)e(x3, y2)
0 0 e(x3, y3)

⎞⎠ .

If equations 4 and 5 hold, the verifier outputs ACCEPT, otherwise, REJECT.
Note that equations 4 and 5 hold if and only if equations 2 and 3 hold. For more
details, we refer to [17].

2.3 Security Model

Universally Composable (UC) Framework [11]: This framework consists
of a environment machine Z, a real world adversary A, an ideal world adversary
A′, an ideal functionality F , parties P1, P2, . . . , PN running the protocol Π in
the real world and dummy parties P̃1, P̃2, . . . , P̃N interacting with F in the ideal
world. The environment machine Z is always activated first. It interacts freely
with A throughout the execution of the protocol Π in the real world and with
A′ throughout the execution of F in the ideal world. It oversees the execution
of F in the ideal world and the execution of Π in the real world. The task of Z
is to distinguish with non-negligible probability between the execution of Π in
the real world and the execution of F in the ideal world.

FD
CRS Hybrid Model: As OT protocol can be UC-realized only in the presence

of common reference string (CRS) model, let us describe the FD
CRS-hybrid model

[11] that UC realizes a protocol parameterized by some specific distribution D.
Upon receiving a message (sid, Pi), i = 1, 2, . . . , N , from the party Pi, where sid
is session identity, FD

CRS first checks if there is a recorded value crs. If not, FD
CRS

generates crs
$←− D(1ρ) and records it. Finally, FD

CRS sends (sid, crs) to the party
Pi and the adversary.

Functionality of Oblivious Transfer: In the ideal world, the parties give
their inputs to the ideal functionality Fn×1

OT and get back their respective outputs.

Efficient Adaptive Oblivious Transfer in UC Framework 277

These requirements are shown in Fig. 1 by the oblivious transfer functionality
Fn×1

OT following [11].

Definition 2. Let Fn×1
OT be the oblivious transfer functionality described in Fig.

1. A protocol Π securely realizes the ideal functionality Fn×1
OT if for any real

world adversary A, there exists an ideal world adversary A′ such that for any

environment machine Z, IDEALFn×1
OT ,A′,Z

c≈ REALΠ,A,Z , where IDEALFn×1
OT ,A′,Z

is the output of Z after interacting with A′ and dummy parties interacting with
Fn×1

OT in the ideal world and REALΠ,A,Z is the output of Z after interacting with
A and the parties running the protocol Π in the real world.

The functionality Fn×1
OT interacts with S and R as follows:

1. Upon receiving a message (sid,S, 〈m1,m2, . . . ,mn〉) from S, Fn×1
OT stores

〈m1,m2, . . . ,mn〉, where mi ∈ {0, 1}l, i = 1, 2, . . . , n and l is the fixed length of
mi which is known to both the parties.
2. Upon receiving a message (sid,R, σ) from R, Fn×1

OT checks if a message
(sid, S, 〈m1, m2, . . . ,mn〉) was previously recorded.
- If no, Fn×1

OT sends nothing to R.
- Otherwise, Fn×1

OT sends (sid, request) to S. The sender S sends (sid,S, b), b ∈ {0, 1}
in response to the request by Fn×1

OT . Also, S sends (sid,S, b) to the adversary. If b = 0,
Fn×1

OT sends (sid,⊥) to R. Otherwise, Fn×1
OT returns (sid,mσ) to R.

Fig. 1. Functionality for adaptive oblivious transfer

3 Protocol

The communication flow in our adaptive k-out-of-n OT protocol is given in
Figure 2 with five randomized algorithms, namely, AOTCrsGen, AOTInitialize,
AOTInitializeVerify, AOTRequest, AOTRespond and a deterministic algorithm
AOTComplete as described below in Algorithms 4-9 respectively. We will use
algorithms AGSSetup, AGSProve and AGSVerify discussed in section 2.2.

Algorithm 4. AOTCrsGen
Input: Security parameter ρ.
Output: crs = (params, FC,GSS,GSR).
1: params = (p,G,GT , e, g) ← BilinearSetup(1ρ);
2: FC = (u1, u2, u3) ← AGSSetup(params);
3: GSS ← AGSSetup(params);
4: GSR ← AGSSetup(params);

The algorithm AOTCrsGen is run by the trusted party FD
CRS which on input the

security parameter ρ generates the common reference string crs consisting of
params,FC,GSS and GSR in perfectly sound setting. The sender S uses Groth-
Sahai common reference string GSS to create non-interactive zero-knowledge
(NIZK) proof and R uses Groth-Sahai common reference string GSR for the
creation of non-interactive witness indistinguishable (NIWI) proof. The common
reference string crs is made public.

278 V. Guleria and R. Dutta

crs = (params, FC, GSS , GSR)
params = (p,G,GT , e, g)

Sender S (m1,m2, . . . ,mn) Initialization Phase Receiver R

(PK,BSK, SK,T) ← AOTInitialize
PK = (w1, w2, y, y1, y2)
SK = (x1, x2)
BSK = (α, β1, β2)
T = (φ1, φ2, . . . , φn)

(sid,S,PK,T)−−−−−−−−→
ACCEPT ← AOTInitilaizeVerify

Transfer Phase
σj ∈ {1, 2, . . . , n}, j = 1, 2, . . . , k
(Qrequestj ,Qprivatej

) ← AOTRequest

Qrequestj
= (d1,j , d2,j , πj)

Qprivatej
= (σj , v1,j , v2,j)

πj ← AGSProve
(sid,R,Qrequestj

)

←−−−−−−−−−−−
(sj , δj) ← AOTRespond
sj = d

x1
1,jd

x2
2,j

δj ← AGSProve
(sid,S,sj,δj)

−−−−−−−−−→
mσj

← AOTComplete

Fig. 2. Communication flow for the jth transfer phase, j = 1, 2, . . . , k

Algorithm 5. AOTInitialize
Input: crs = (params, FC,GSS,GSR),m1,m2, . . . , mn ∈ G.
Output: (PK,BSK, SK,T).

1: x1, x2, α, β1, β2
$←− Zp;

2: w1 = g
1
x1 , w2 = g

1
x2 , y = gα, y1 = gβ1 , y2 = gβ2 ;

3: PK = (w1, w2, y, y1, y2), SK = (x1, x2),BSK = (α, β1, β2);

4: Parse FC as (u1, u2, u3), where u1 = (g1, 1, g), u2 = (1, g2, g), u3 = u
ξ1
1 u

ξ2
2 = (u

(1)
3 , u

(2)
3 , u

(3)
3),

g1 = ga, g2 = gb, u
(1)
3 = g

ξ1
1 , u

(2)
3 = g

ξ2
2 , u

(3)
3 = gξ1+ξ2 , a, b, ξ1, ξ2

$←− Zp;
5: for (i = 1, 2, . . . , n) do

6: r1i, r2i, r3i, ri, si
$←− Zp;

7: Com(mi) = (1, 1,mi)u
r1i
1 u

r2i
2 u

r3i
3 = (g

r1i
1 (u

(1)
3)r3i , g

r2i
2 (u

(2)
3)r3i ,mig

r1i+r2i (u
(3)
3)r3i);

8: Batch BB signature on (i, ri, si) is sigi = g
1

α+i+riβ1+siβ2 ;

9: Ciphertext φi = (Com(mi), g
r1i , gr2i , gr3i , w

ri
1 , w

si
2 ,mig

ri+si , y
ri
1 , y

si
2 , sigi);

10: T = (φ1, φ2, . . . , φn);

The algorithm AOTInitialize is run by S. On input crs, n messages (m1,m2, . . .,
mn), AOTInitialize generates public key PK, signature secret key BSK, secret
key SK and ciphertext T of n messages for R. The sender S gives (PK,T) to

R and keeps (BSK, SK) secret to itself. In each φi = (c
(1)
i , c

(2
i , c

(3)
i , c

(4)
i , c

(5)
i , c

(6)
i ,

c
(7)
i , c

(8)
i , c

(9)
i , c

(10)
i , c

(11)
i , c

(12)
i), i = 1, 2, . . . , n,, (c

(1)
i , c

(2)
i , c

(3)
i) = (gr1i1 (u

(1)
3)r3i ,

gr2i2 (u
(2)
3)r3i , mig

r1i+r2i(u
(3)
3)r3i) is Com(mi), (c

(4)
i , c

(5)
i , c

(6)
i) = (gr1i , gr2i , gr3i)

are the opening values to Com(mi) used by R to verify that he got the cor-
rect message from S at the end of each transfer phase. The opening values to

these commitments are generated following [14]. Also, (c
(7)
i , c

(8)
i , c

(9)
i) = (wri

1 , w
si
2 ,

mig
ri+si) is a BBS ciphertext [5] of mi, (c

(10)
i , c

(11)
i) = (yri

1 , y
si
2) is for signature

verification and c
(12)
i = sigi = g

1
α+i+riβ1+siβ2 is a batch BB signature [7].

Efficient Adaptive Oblivious Transfer in UC Framework 279

Algorithm 6. AOTInitializeVerify
Input: PK = (w1, w2, y, y1, y2),T = (φ1, φ2, . . . , φn).
Output: (Either ACCEPT or REJECT).
1: for (i = 1, 2, . . . , n) do

2: Parse φi as (c
(1)
i , c

(2
i , c

(3)
i , c

(4)
i , c

(5)
i , c

(6)
i , c

(7)
i , c

(8)
i , c

(9)
i , c

(10)
i , c

(11)
i , c

(12)
i);

3: if
(
e(c

(12)
i , y · gi · c(10)i · c(11)i = e(g, g) ∧ e(w1, c

(10)
i) = e(c

(7)
i , y1) ∧ e(w2, c

(11)
i) = e(c

(8)
i , y2)

)
4: then
5: φi is correct
6: else
7: return REJECT;
8: break;
9: return ACCEPT;

The algorithm AOTInitializeVerify is run by R in the initialization phase. If all the
ciphertext are valid, the transfer phase will take place, otherwise the execution
will be aborted by R. The validity of the ciphertext φi, i = 1, 2, . . . , n, is checked
in line 3 of Algorithm 6.

Algorithm 7. AOTRequest
Input: crs = (params, FC,GSS,GSR),PK = (w1, w2, y, y1, y2),T = (φ1, φ2, . . . , φn), σj ∈ {1, 2, . . . , n}.
Output: (Qrequestj ,Qprivatej

), j = 1, 2, . . . , k.

1: Parse φσj
as (c(1)σj

, c(2σj
, c(3)σj

, c(4)σj
, c(5)σj

, c(6)σj
, c(7)σj

, c(8)σj
, c(9)σj

, c(10)σj
, c(11)σj

, c(12)σj
);

2: v1,j , v2,j
$←− Zp;

3: d1,j = c(7)σj
· w

v1,j
1 , d2,j = c(8)σj

· w
v2,j
2 , t1,j = gv1,j , t2,j = gv2,j ;

4: E1,j = {e(c(7)σj
, g)e(t1,j , w1) = e(d1,j , g) ∧ e(c(8)σj

, g)e(t2,j , w2) = e(d2,j , g)∧
e(c(12)σj

, y · gσj · c(10)σj
· c(11)σj

) = e(g, g) ∧ e(w1, c
(10)
σj

) = e(c(7)σj
, y1) ∧ e(w2, c

(11)
σj

) = e(c(8)σj
, y2)};

5: W1,j = (c(7)σj
, c(8)σj

, t1,j , t2,j , c
(10)
σj

, c(11)σj
, c(12)σj

, gσj);

6: πj ← AGSProve(GSR, E1,j,W1,j);
7: Qrequestj

= (d1,j , d2,j , πj),Qprivatej
= (σj , v1,j , v2,j);

The algorithm AOTRequest is run by R. On input crs, T and R’s choice of σj for
jth transfer phase, AOTRequest generates (Qrequestj ,Qprivatej) using GSR for S,
where j = 1, 2, . . . , k. The receiver R sends Qrequestj to S and keeps Qprivatej se-
cret to itself. In Qrequestj , the values d1,j , d2,j correspond to the masked versions

of c
(7)
σj , c

(8)
σj respectively and NIWI proof πj generated by AGSProve in Algorithm

2 consists of commitments to witnesses in W1,j and proof components for veri-
fications of equations in statement E1,j. The proof generations for 1st, 2nd, 4th
and 5th equation in E1,j are similar to equation 2 and that for 3rd equation in
E1,j is similar to equation 3. Following the notation of [10] for writing equations

in E1,j, the first two equations guarantee the masked versions of c
(7)
σj , c

(8)
σj and

remaining three equations correspond to valid signature held by R. These checks
enable one to detect whether R deviates from the protocol execution. Thus E1,j
in line 4 of Algorithm 7 is a statement set by R to convince S that Qrequestj is
framed correctly.

Algorithm 8. AOTRespond
Input: crs = (params, FC,GSS,GSR),PK = (w1, w2, y, y1, y2), SK = (x1, x2),Qrequestj = (d1,j , d2,j , πj).

Output: (sj , δj).
1: if (AGSVerify(GSR, πj) == ACCEPT) then
2: Extract g from params;
3: a1 = d

x1
1,j , a2 = d

x2
2,j , sj = a1 · a2;

4: E2,j = {e(a1, w1)e(d
−1
1,j , a3) = 1 ∧ e(a2, w2)e(d

−1
2,j , a3) = 1 ∧ e(a1a2, a3)e(s

−1
j , g) = 1∧

e(w1, a3) = e(w1, g)};
5: W2,j = (a1, a2, a3);

280 V. Guleria and R. Dutta

6: δj ← AGSProve(GSS, E2,j,W2,j);
7: else
8: abort the execution;

On input crs, PK, SK and Qrequestj , S runs the algorithm AOTRespond which
first verifies the NIWI proof πj using GSR. If the proof πj is valid, AOTRespond
generates sj using secret key SK and NIZK proof δj using GSS. The proof δj
consists of commitments to elements in W2,j and proof components for equa-
tions in statement E2,j . The proof generations for 1st, 2nd and 4th equation in
statement E2,j are similar to equation 2 and that for 3rd equation in statement
E2,j is similar to equation 3. The first two equations in statement E2,j guarantee
that a1, a2 are generated using SK. The third equation corresponds to sj = a1 ·a2
and the fourth equation indicates that a3 is equal to g. Thus E2,j in line 4 of
Algorithm 8 is a statement framed by S in order to convince R that the response
sj is correctly framed.

Algorithm 9. AOTComplete
Input: crs = (params, FC,GSS,GSR),T = (φ1, φ2, . . . , φn), sj , δj ,Qprivatej

= (σj , v1,j , v2,j).

Output: mσj
.

1: if (AGSVerify(GSS, δj) == ACCEPT) then

2: Extract g from params and u3 = (u
(1)
3 , u

(2)
3 , u

(3)
3) from FC = (u1, u2, u3);

3: Parse Qprivatej
as σj , v1,j , v2,j ;

4: Parse φσj
as (c(1)σj

, c(2σj
, c(3)σj

, c(4)σj
, c(5)σj

, c(6)σj
, c(7)σj

, c(8)σj
, c(9)σj

, c(10)σj
, c(11)σj

, c(12)σj
);

5: mσj
= c

(9)
σj

·gv1,j ·gv2,j/sj ;

6: E3,j = {e(c(1)σj
, g) = e(g1, c

(4)
σj

)e(u
(1)
3 , c(6)σj

) ∧ e(c(2)σj
, g) = e(g2, c

(5)
σj

)e(u
(2)
3 , c(6)σj

)∧
e(c(3)σj

, g) = e(mσj
c(4)σj

c(5)σj
, g)e(u

(3)
3 , c(6)σj

)};
7: if (E3,j is valid) then
8: return mσj

;

9: else
10: abort the execution;
11: else
12: abort the execution;

The algorithm AOTComplete is run by R which on input crs, T, sj , δj and
Qprivatej first checks the validity of NIZK proof δj using GSS following AGSVerify

in Algorithm 3. If the proof δj is valid, AOTComplete computes mσj using sj ,
Qprivatej and checks the correctness of message mσj by verifying the equations

in statement E3,j which is given in line 6 of Algorithm 9. If all checks hold,
AOTComplete outputs mσj for R. The algorithm correctly recovers the message
mσj in line 5 of Algorithm 9 as follows:

c
(9)
σj · gv1,j · gv2,j

sj
=

mσjg
rσj

+sσj gv1,j · gv2,j

(w
rσj

1)x1(w
sσj

2)x2(w
v1,j
1)x1(w

v2,j
2)x2

= mσj as wx1
1 = wx2

2 = g.

4 Security Analysis

Theorem 2. The adaptive oblivious transfer protocol Π presented in section 3
securely realizes the ideal functionality Fn×1

OT in the FD
CRS-hybrid model described

in section 2.3 under the DLIN and q-SDH assumption.

Efficient Adaptive Oblivious Transfer in UC Framework 281

Proof. Let A be a static adversary in the real world interacting with the protocol
Π . We construct an ideal world adversary A′ also called simulator interacting
with the ideal functionality Fn×1

OT in the ideal world such that no environment
machine Z can distinguish with non-negligible probability whether it is inter-
acting with Π and A in the real world or with Fn×1

OT and A′ in the ideal world.
Let IDEALFn×1

OT ,A′,Z and REALΠ,A,Z are as defined in section 2.3. We will show

IDEALFn×1
OT ,A′,Z

c≈ REALΠ,A,Z in each of the cases: (a) simulation when R is

corrupted and S is honest, (b) simulation when S is corrupted and R is honest.
We do not discuss the cases when both the parties are honest and when both
the parties are corrupt.
We present the security proof using sequence of hybrid games. Let Pr[Game i] be
the probability that Z distinguishes the transcript of Game i from the real execu-
tion. Let us start with describing four PPT algorithms namely AGSExtractSetup,
AGSExtract, AGSSimSetup and AGSSimProve in Algorithms 10-13 respectively
which are used in these games by A′ to simulate Groth-Sahai proofs. Let params
= (p,G,GT , e, g) ← BilinearSetup(1ρ).

Algorithm 10. AGSExtractSetup
Input: params = (p,G,GT , e, g).
Output: GS′ = (u1, u2, u3), u1, u2, u3 ∈ G

3, trapdoor text = (a, b, ξ1, ξ2).

1: a, b, ξ1, ξ2
$←− Zp;

2: g1 = ga, g2 = gb;
3: u1 = (g1, 1, g), u2 = (1, g2, g);

4: u3 = u
ξ1
1 u

ξ2
2 = (g

ξ1
1 , g

ξ2
2 , gξ1+ξ2);

5: GS′ = (u1, u2, u3);
6: text = (a, b, ξ1, ξ2);

The simulator A′ runs the algorithm AGSExtractSetup which has same distribu-
tion as AGSSetup and generates the common reference string GS′ and trapdoor
text in perfectly sound setting. The simulator A′ makes GS′ public and keeps the
trapdoor text secret to itself.
The algorithm AGSExtract given below enables A′ to extract the witnesses from
the commitments embedded in a proof π generated using GS′ and text.
The algorithm AGSSimSetup given below run by A′ generates the common ref-
erence string GS′′ = (u1, u2, u3) and trapdoor tsim = (a, b, ξ1, ξ2) in witness in-
distinguishability setting. The common reference string GS′′ in AGSSimSetup is

such that 〈g1, g2, g, u(1)3 , u
(2)
3 , u

(3)
3 〉 is not a DLIN instance whereas the common

Algorithm 11. AGSExtract
Input: GS′ = (u1, u2, u3),

text = (a, b, ξ1, ξ2), π.
Output: Witnesses W.
1: W = φ;
2: for (each Com(X) embedded in π) do
3: Parse Com(X) as (A1, A2, A3);

4: X = A3/(A
1
a
1 A

1
b
2);

5: W = W
⋃
{X};

Algorithm 12. AGSSimSetup
Input: params = (p,G,GT , e, g).
Output: GS′′ = (u1, u2, u3), u1, u2, u3 ∈ G

3,
tsim = (a, b, ξ1, ξ2).

1: a, b, ξ1, ξ2
$←− Zp;

2: g1 = ga, g2 = gb;
3: u1 = (g1, 1, g), u2 = (1, g2, g);

4: u3 = u
ξ1
1 u

ξ2
2 (1, 1, g) = (g

ξ1
1 , g

ξ2
2 , gξ1+ξ2+1);

5: GS′′ = (u1, u2, u3);
6: tsim = (a, b, ξ1, ξ2);

282 V. Guleria and R. Dutta

reference string GS′ in AGSExtractSetup is such that 〈g1, g2, g, u(1)3 , u
(2)
3 , u

(3)
3 〉 is a

DLIN instance, where u3 = (u
(1)
3 , u

(2)
3 , u

(3)
3). Thus the outputGS′′ ofAGSSimSetup

is computationally indistinguishable from the output GS′ of AGSExtractSetup and
the output GS of AGSSetup under the DLIN assumption by Theorem 1.

Algorithm 13. AGSSimProve
Input: GS′′, tsim = (a, b, ξ1, ξ2), E′ = (eq1, eq2, . . . , eqm),W′ = (h1, h2, . . . , hl).
Output: δ′.
1: for (i = 1, 2, . . . , l) do

2: Generate commitment to each element in W′ by randomly picking b1, b2, b3
$←− Zp such that

Com(hi) = (gb1 , gb2 , gb3)’;
3: for (i = 1, 2, . . . ,m) do
4: if (eqi is linear equation) then
5: Generate proof component Pi for equation eqi by randomly picking 3 group elements;
6: else
7: Generate proof component Pi for equation eqi by randomly picking 9 group elements;
8: Open the commitment of each element in W′ to any value gγ by using the trapdoor tsim

such that all equations in E′ are satisfied;
9: δ′ = (Com(h1),Com(h2), . . . ,Com(hl),P1,P2, . . . ,Pm);

The algorithm AGSSimProve enables A′ to generate the proof δ′ using GS′′ and
tsim such that AGSVerify(GS′′, δ′) = ACCEPT. We have the following Claim es-
tablished by Groth-Sahai in [16].
Claim 1. Groth-Sahai proofs are composable NIWI and NIZK for satisfiability
of a set of equations over a bilinear group under the DLIN assumption.
(a) Simulation when R is corrupted and S is honest.
Game 0: This game corresponds to the real world protocol interaction in which
R interacts with honest S. So, Pr[Game 0] = 0.
Game 1: This game is the same as Game 0 except that crs is generated by
A′. Let params = (p,G,GT , e, g) ← BilinearSetup(1ρ). The adversary A′ gener-
ates (FC′, t)← AGSSimSetup(params), (GS′S, tsim)← AGSSimsSetup(params) and
(GS′R, text) ← AGSExtractSetup(params) and sets crs = (params,FC′,GS′S,GS

′
R).

The adversary A′ makes params, FC′, GS′S,GS
′
R public and keeps the trap-

doors t, tsim, text secret to itself. The part GS′R of crs generated by A′ is dis-
tributed identically to the output GSR of AGSSetup whereas FC′ and GS′S are not
based on DLIN instances. By Theorem 1 in section 2.2, crs generated by A′ and
AOTCrsGen in actual protocol run are computationally indistinguishable. There-
fore, there exists a negligible function ε1(ρ) such that |Pr[Game 1]−Pr[Game 0]| ≤
ε1(ρ).
Game 2: This game is exactly the same as Game 1 except that for each re-
quest by A, the adversary A′ extracts the index σj as follows for transfer phase
j = 1, 2, . . . , k. It parses Qrequestj as (d1,j , d2,j , πj) and extracts πj . Note that

d1,j = c
(7)
σj ·w

v1,j

1 , d2,j = c
(8)
σj ·w

v2,j

2 , v1,j , v2,j
$←− Zp in Qrequestj according to the real

protocol AOTRequest in Algorithm 7. As the proof πj is generated by using GS′R,
the adversaryA′ runs AGSVerify(GS′R, πj) to check the validity of πj . If REJECT,
A′ aborts the execution. So, Pr[Game 2] = Pr[Game 1]. Otherwise,A′ extracts the
witnessW ′ = (γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8)← AGSExtract(GS′R, text, πj) using text.

The adversary A′ parses T as (φ1, φ2, . . . , φn) and for each φi = (c
(1)
i , c

(2)
i , c

(3)
i ,

c
(4)
i , c

(5)
i , c

(6)
i , c

(7)
i , c

(8)
i , c

(9)
i , c

(10)
i , c

(11)
i , c

(12)
i), i = 1, 2, . . . , n, checks if (γ1, γ2) =

Efficient Adaptive Oblivious Transfer in UC Framework 283

(c
(7)
i , c

(8)
i). Let σj be the matching index. The adversary A′ checks if gσj =

γ8. If check holds then W ′ = (c
(7)
σj , c

(8)
σj , t1,j, t2,j , c

(10)
σj , c

(11)
σj , c

(12)
σj , gσj), t1,j =

gv1,j , t2,j = gv2,j in the witnesses W ′ extracted by A′. The adversary A′ queries
Fn×1

OT with the message (sid,R, σj). The ideal functionality Fn×1
OT gives mσj to

A′. If no matching ciphertext found, it aborts the execution. However, this event
occurs with negligible probability under the q-SDH assumption. If no matching
index found, i.e, σj /∈ {1, 2, . . . , n}, then A has to construct a valid proof πj

for the ciphertext φσj /∈ T = (φ1, φ2, . . . , φn) to generate Qrequestj . This eventu-

ally means that A has framed the ciphertext φσj = (c
(1)
σj , c

(2)
σj , c

(3)
σj , c

(4)
σj , c

(5)
σj , c

(6)
σj ,

c
(7)
σj , c

(8)
σj , c

(9)
σj , c

(10)
σj , c

(11)
σj , c

(12)
σj) on its own which must be a correct ciphertext

as the proof πj generated by A for φσj is valid. This in turn indicates that

A is able to come up with a valid batch BB signature c
(12)
σj , thereby A out-

puts (c
(10)
σj , c

(11)
σj , c

(12)
σj) as a forgery contradicting the fact that the batch BB

signature is unforgeable under chosen-message attack assuming q-SDH prob-
lem is hard [4]. Therefore, there exists a negligible function ε2(ρ) such that
|Pr[Game 2]− Pr[Game 1]| ≤ ε2(ρ).
Game 3: This game is the same as Game 2 except that A′ simulates the response
sj and proof δj for each transfer phase j = 1, 2, . . . , k. The adversary A′ parses

the ciphertext φσj as (c
(1)
σj , c

(2)
σj , c

(3)
σj , c

(4)
σj , c

(5)
σj , c

(6)
σj , c

(7)
σj , c

(8)
σj , c

(9)
σj , c

(10)
σj , c

(11)
σj , c

(12)
σj),

extracts γ3, γ4 from the witnessesW ′ = (γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8) = (c
(7)
σj , c

(8)
σj ,

t1,j , t2,j, c
(10)
σj , c

(11)
σj , c

(12)
σj , gσj), computes the simulated response s′j = c(9)σj

γ3γ4/mσj
,

γ3 = t1,j = gv1,j , γ4 = t2,j = gv2,j and proof δ′j ← AGSSimProve(GS′S, tsim, E2,j),
where E2,j is a statement set by the sender S to convince the receiver R that re-
sponse sj is correctly formed. The adversaryA′ thus simulates the proof δ′j for the
statement E2,j such that s′j is correctly framed. By Claim 2 provided below, there
exists a negligible function ε3(ρ) such that |Pr[Game 3]− Pr[Game 2]| ≤ ε3(ρ).
Claim 2. Under the DLIN assumption, the response sj and the proof δj in the
real protocol honestly generated by the sender S are computationally indistin-
guishable from the response s′j and proof δ′j simulated by the simulator A′.

Proof of Claim 2. The simulated response by A′ in Game 3 is s′j = c(9)σj
γ3γ4/mσj

=
(c(7)σj

)x1(c(8)σj
)x2 ·mσj

·gv1,j ·gv2,j/mσj
and the honestly generated response sj in Game 2

is sj = (d1,j)
x1(d2,j)

x2 , d1,j = c
(7)
σj · g

v1,j
x1 , d2,j = c

(8)
σj · g

v2,j
x2 which shows that

s′j is distributed identically to sj . Now consider the proof δj of statement E2,j =
{e(a1, w1)e((d1,j)

−1, a3) = 1∧e(a2, w2)e((d2,j)
−1, a3) = 1∧e(a1a2, a3)e(s−1

j , g) =
1∧ e(w1, a3) = e(w1, g)} and witnessesW2,j = (a1, a2, a3). The proof δj consists
of commitments to secret values a1, a2, a3 and proof components to equations
in statement E2,j . For simulation, A′ generates commitments to a1, a2, a3 and
proof components such that each equation in statement E2,j is satisfied. With
the help of trapdoor tsim, A′ can open the commitment differently to any value
of its choice in each equation of statement E2,j . To simulate the proof δ′j , A′

sets a1 = a2 = a3 = g0 in first three equations of statement E2,j and gen-
erate commitments to these values. The adversary A′ opens the commitment
of a3 to g0 in first three equations and a3 to g1 in fourth equation using tsim.

284 V. Guleria and R. Dutta

As Groth-Sahai proofs are composable NIZK by Claim 1, the simulated proof
δ′j ← AGSSimProve(GS′S, tsim, E2,j) is computationally indistinguishable from the
honestly generated proof δj ← AGSProve(GSS, E2,j ,W2,j) under the DLIN as-
sumption.
Game 4: This game is the same as Game 3 except that the messages m1,m2, . . .,
mn are replaced by the random messages m̂1, m̂2, . . . , m̂n ∈ G. The adver-
sary A′ replaces the sender S’s first message (sid, S,PK,T) by (sid, S,PK,T′),
where T′ ← AOTInitialize(crs, m̂1, m̂2, . . . , m̂n). In each transfer phase, the re-
sponse (sid, S, sj , δj) is replaced by the simulated response (sid, S, s′j , δ

′
j) as in

above game, but here the simulated response is computed on invalid state-
ment. The only difference between Game 4 and Game 3 is in the generation
of ciphertexts. In Game 4, (sid, S,PK,T) is replaced by (sid, S,PK,T′), where
T′ ← AOTInitialize(crs, m̂1, m̂2, . . . , m̂n). While T is BBS encryptions of per-
fect messages, T′ is that of random messages. By the semantic security of BBS
encryption scheme under the DLIN assumption, Game 3 and Game 4 are compu-
tationally indistinguishable. Therefore, |Pr[Game 4]−Pr[Game 3]| ≤ ε4(ρ), where
ε4(ρ) is a negligible function.
Thus Game 4 is the ideal world interaction whereas Game 0 is the real world in-
teraction. Now |Pr[Game 4]− [Game 0]| ≤ |Pr[Game 4]− [Game 3]|+ |Pr[Game 3]−
[Game 2]| + |Pr[Game 2] − [Game 1]| + |Pr[Game 1] − [Game 0]| ≤ ε5(ρ), where
ε5(ρ) = ε4(ρ)+ε3(ρ)+ε2(ρ)+ε1(ρ) is a negligible function. Hence, IDEALFn×1

OT ,A′,Z
c≈ REALΠ,A,Z .
(b) Simulation when S is corrupted and R is honest.
Game 0: This game corresponds to the real world protocol interaction in which
S interacts with honest R. So, Pr[Game 0] = 0.
Game 1: This game is the same as Game 0 except that the crs is generated by
A′. Let params = (p,G,GT , e, g) ← BilinearSetup(1ρ). The adversary A′ gen-
erates (FC, t) ← AGSExtractSetup(params), GSS ← AGSSetup(params), GSR ←
AGSSetup(params). The adversary A′ makes params,FC,GSS,GSR public and
keeps the trapdoor t secret to itself. In this Game, FC, GSS, GSR, all are based on
DLIN instance as in Game 0. Therefore, crs generated in Game 1 has the same
distribution as in Game 0. Hence, |Pr[Game 1]− Pr[Game 0]| = 0.
Game 2: For each transfer phase, j = 1, 2, . . . , k, A′ parses T to get φ1. The
adversary A′ generates (Q′

request1
,Q′

private1
) ← AOTRequest(crs,PK,T, 1) and re-

placesR’s request Qrequestj in each transfer phase by simulated request Q′
request1

=

(d1,1, d2,1, π1), d1,1 = c
(7)
1 w

v1,1

1 , d2,1 = c
(8)
1 w

v2,1

2 , where v1,1, v2,1 ∈ Zp. For each

φi, there exists witnesses (c
(7)
i , c

(8)
i , t1,i, t2,i, c

(10)
i , c

(11)
i , c

(12)
i , gi) which satisfy the

equations in statement E1,i = {e(c(7)i , g)e(t1,i, w1) = e(d1,i, g)∧e(c(8)i , g)e(t2,i, w2)

=e(d2,i, g) ∧ e(c
(12)
i , y · gi · c(10)i · c(11)i) = e(g, g) ∧ e(w1, c

(10)
i) = e(c

(7)
i , y1) ∧

e(w2, c
(11)
i) = e(c

(8)
i , y2)}. In each transfer phase, A′ replaces Qrequestj by Q′

request1

= (d1,1, d2,1, π1) which also satisfy all the equations in statement E1,1 = {e(c(7)1 , g)

e(t1,1, w1) = e(d1,1, g)∧e(c(8)1 , g)e(t2,1, w2) = e(d2,1, g)∧e(c(12)1 , y·g1·c(10)1 ·c(11)1) =

e(g, g) ∧ e(w1, c
(10)
1) = e(c

(7)
1 , y1) ∧ e(w2, c

(11)
1) = e(c

(8)
1 , y2)}. As Groth-Sahai

Efficient Adaptive Oblivious Transfer in UC Framework 285

proofs are composable NIWI by Claim 1, the simulated request Q′
request1

is
computationally indistinguishable from the honestly generated request Qrequestj .

Therefore, we have |Pr[Game 2]−Pr[Game 1]| ≤ ε1(ρ), where ε1(ρ) is a negligible
function.
Thus Game 2 is the ideal world interaction whereas Game 0 is the real world in-
teraction. Now |Pr[Game 2]− [Game 0]| ≤ |Pr[Game 2]− [Game 1]|+ |Pr[Game 1]−
[Game 0]| ≤ ε1(ρ), where ε1(ρ) is a negligible function. Hence, IDEALFn×1

OT ,A′,Z
c≈

REALΠ,A,Z .
It remains to show that the output of the honest R running the protocol with
S and output of the ideal R interacting with the Fn×1

OT is the same. The ci-

phertext φi = (c
(1)
i = gr1i1 (u

(1)
3)r3i , c

(2)
i = gr2i2 (u

(2)
3)r3i , c

(3)
i = mig

r1i+r2i(u
(3)
3)r3i ,

c
(4)
i , c

(5)
i , c

(6)
i , c

(7)
i = wri

1 , c
(8)
i = wsi

2 , c
(9)
i = mig

ri+si , c
(10)
i , c

(11)
i , c

(12)
i), where

w1 = g
1
x1 , w2 = g

1
x2 , g1 = ga, g2 = gb, u

(1)
3 = gξ11 , u

(2)
3 = gξ22 , u

3)
3 = gξ1+ξ2 .

The message obtained by the real R using si generated with sender’s secret key

SK = (x1, x2) in the real protocol is
c
(9)
i

sig
−v1,ig−v2,i

= mig
ri+si

(d1,i)x1(d2,i)x2g−v1,i g−v2,i
=

mig
ri+si

(w
ri
1)x1(w

si
2)x2

= mi, as the receiver R has v1,i, v2,i and receives c
(9)
i , si from the

sender S. The adversary A′ parses the trapdoor t, extracts (a, b) and computes
c
(3)
i

(c
(1)
i)1/a(c

(2)
i)1/b

=
mig

r1i+r2i (u
(3)
3)r3i

(g
r1i
1 (u

(1)
3)r3i)

1
a (g

r2i
2 (u

(2)
3)r3i)

1
b

= mig
r1i+r2i (gξ1+ξ2)r3i

(g
r1i
1 (g

ξ1
1)r3i)

1
a (g

r2i
2 (g

ξ2
2)r3i)

1
b

=

mi, as A′ receives the BBS ciphertext (c
(1)
i , c

(2)
i , c

(3)
i) from the sender S and

g1 = ga, g2 = gb. The adversary A′ gives mi to Fn×1
OT for each i = 1, 2, . . . , n.

The ideal receiver R gets mi when it asks Fn×1
OT for index i. Hence the output

of the receiver of the ideal world is same as the output of the the real world

receiver. Therefore, IDEALFn×1
OT ,A′,Z

c≈ REALΠ,A,Z .
��

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: Sphf-
friendlynon-interactive commitments.Tech. rep.,Cryptology ePrintArchive,Report
2013/588 (2013), http://eprint.iacr.org

2. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

3. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

http://eprint.iacr.org

286 V. Guleria and R. Dutta

7. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: ACM 2009, pp. 131–140 (2009)

8. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous creden-
tials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 56–72. Springer, Heidelberg (2004)

9. Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

10. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: ACM 2002, pp. 494–503 (2002)

12. Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and com-
posable oblivious transfer with a single, global crs. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013)

13. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

14. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally
composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg
(2011)

15. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

17. Haralambiev, K.: Efficient cryptographic primitives for noninteractive zero-
knowledge proofs and applications. Ph.D. thesis, New York University (2011)

18. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

19. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

20. Rabin, M.O.: How to exchange secrets by oblivious transfer. Tech. rep., Technical
Report TR-81, Harvard Aiken Computation Laboratory (1981)

21. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced obliv-
ious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671,
pp. 231–247. Springer, Heidelberg (2009)

22. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. IACR Cryptology ePrint Archive 2007,
74 (2007)

Multi-receiver Authentication Scheme for Multiple
Messages Based on Linear Codes�

Jun Zhang1, Xinran Li1,2, and Fang-Wei Fu1

1 Chern Institute of Mathematics and LPMC,
Nankai University, Tianjin, 300071, China

{zhangjun04,xinranli}@mail.nankai.edu.cn,
fwfu@nankai.edu.cn

2 Cryptography Engineering Institute,
Information Engineering University,

Zhengzhou 450004, China

Abstract. In this paper, we construct an authentication scheme for multi-receivers
and multiple messages based on a linear code C. This construction can be re-
garded as a generalization of the authentication scheme given by Safavi-Naini
and Wang [1]. Actually, we notice that the scheme of Safavi-Naini and Wang is
constructed with Reed-Solomon codes. The generalization to linear codes has the
similar advantages as generalizing Shamir’s secret sharing scheme to linear se-
cret sharing sceme based on linear codes [2–6]. For a fixed message base field
Fq, our scheme allows arbitrarily many receivers to check the integrity of their
own messages, while the scheme of Safavi-Naini and Wang has a constraint on
the number of verifying receivers V � q. We further introduce access structure in
our scheme. Massey [4] characterized the access structure of linear secret sharing
scheme by minimal codewords in the dual code whose first component is 1. We
slightly modify the definition of minimal codewords in [4]. Let C be a [V, k] linear
code. For any coordinate i ∈ {1, 2, · · · ,V}, a codeword c in C is called minimal
respect to i if the codeword c has component 1 at the i-th coordinate and there is
no other codeword whose i-th component is 1 with support strictly contained in
that of c. Then the security of receiver Ri in our authentication scheme is char-
acterized by the minimal codewords respect to i in the dual code C⊥. Finally, we
illustrate our authentication scheme based on the elliptic curve codes, a special
class of algebraic geometry codes. We use the group of rational points on the
elliptic curve to determine all the malicious groups that can successfully make a
substitution attack to any fixed receiver.

Keywords: Authentication scheme, linear codes, secret sharing, minimal code-
words, substitution attack.

1 Introduction

One of the important goals of cryptographic scheme is authentication, which is con-
cerned with the approaches of providing data integrity and data origin validation

� This paper is supported by the National Key Basic Research Program of China (973 Pro-
gram Grant No. 2013CB834204), and the National Natural Science Foundation of China (No.
61171082).

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 287–301, 2014.
c© Springer International Publishing Switzerland 2014

288 J. Zhang, X. Li, and F.-W. Fu

between two communication entities in computer network. Traditionally, it simply deals
with the data authentication problem from a single sender to a single receiver. With the
rapid progress of network communication, the urgent need for providing data authenti-
cation has escalated to multi-receiver and/or multi-sender scenarios. However, the orig-
inal point-to-point authentication techniques are not suitable for multi-point commu-
nication. In [7], the authors considered a sender group and one receiver authentication
model which was introduced by Boyd [8] and by Desmedt and Frankel [9]. In that paper,
they studied unconditionally secure group authentication schemes based on linear per-
fect secret sharing and authentication schemes, and gave a construction based on max-
imum rank distance codes. In this paper, we discuss the multi-receiver authentication
model where a sender broadcasts an authenticated message such that all the receivers
can independently verify the authenticity of the message with their own private keys.
It requires a security that malicious groups of up to a given size of receivers can not
successfully impersonate the transmitter, or substitute a transmitted message. Desmedt
et al. [10] gave an authentication scheme of single message for multi-receivers. Safavi-
Naini and Wang [1] extended the DFY scheme [10] to be an authentication scheme of
multiple messages for multi-receivers.

The receivers independently verify the authenticity of the message using each own
private key. So multi-receiver authentication scheme involves a procedure of secret shar-
ing. To introduce the linear secret sharing scheme based on linear codes, we recall some
definitions in coding theory.

Let FV
q be the V-dimensional vector space over the finite field Fq with q elements.

For any vector x = (x1, x2, · · · , xV) ∈ FV
q , the Hamming weight Wt(x) of x is de-

fined to be the number of non-zero coordinates, i.e., Wt(x) = # {i | 1 � i � V, xi � 0}.
A linear [V, k] code C is a k-dimensional linear subspace of FV

q . The minimum dis-
tance d(C) of C is the minimum Hamming weight of all non-zero vectors in C, i.e.,
d(C) = min{Wt(c) | c ∈ C \ {0}}. A linear [V, k] code C ⊆ FV

q is called a [V, k, d] linear
code if C has minimum distance d. A vector in C is called a codeword of C. A matrix
G ∈ Fk×V

q is called a generator matrix of C if the rows of G form a basis for C. A well
known trade-off between the parameters of a linear [V, k, d] code is the Singleton bound
which states that

d � V − k + 1 .

A [V, k, d] linear code is called a maximum distance separable (MDS) code if d =
V − k + 1. The dual code C⊥ of C is defined as the set

{
x ∈ FV

q | x · c = 0 for all c ∈ C
}
,

where x · c is the inner product of vectors x and c, i.e., x · c = x1c1 + x2c2 + · · ·+ xVcV .
The secret sharing scheme provides security of a secret key by “splitting” it to several

parts which are kept by different persons. In this way, it might need many persons
to recover the original key. It can achieve to resist the attack of malicious groups of
persons. Shamir [2] used polynomials over finite fields to give an (S , T) threshold secret
sharing scheme such that any T persons of the S shares can uniquely determine the
secret key but any T − 1 persons can not get any information of the key. A linear secret
sharing scheme based on a linear code [4] is constructed as follows: encrypt the secret
to be the first coordinate of a codeword and distribute the rest of the codeword (except
the first secret coordinate) to the group of shares. McEliece and Sarwate [3] pointed
out that the Shamir’s construction is essentially a linear secret sharing scheme based on

Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes 289

Reed-Solomon codes. Also as a natural generalization of Shamir’s construction and a
specialization of Massey’s construction [4, 5], Chen and Cramer [6] constructed a linear
secret sharing scheme based on algebraic geometric codes.

The qualified subset of a linear secret sharing scheme is a subset of shares such
that the shares in the subset can recover the secret key. A qualified subset is called
minimal if any share is removed from the qualified subset, the rests cannot recover the
secret key. The access structure of a linear secret sharing scheme consists of all the
minimal qualified subsets. A codeword v in a linear code C is said to be minimal if v
is a non-zero codeword whose leftmost nonzero component is 1 and no other codeword
v′ whose leftmost nonzero component is 1 has support strictly contained in the support
of v. Massey [4, 5] showed that the access structure of a linear secret sharing scheme
based on a linear code are completely determined by the minimal codewords in the dual
code whose first component is 1.

Proposition 1 ([4]). The access structure of the linear secret-sharing scheme corre-
sponding to the linear code C is specified by those minimal codewords in the dual
code C⊥ whose first component is 1. In the manner that the set of shares specified by
a minimal codeword whose first component is 1 in the dual code is the set of shares
corresponding to those locations after the first in the support of this minimal codeword.

In both schemes of Desmedt et al. [10] and Safavi-Naini and Wang [1], the key
distribution is similar to that in Shamir’s secret sharing scheme [2], using polynomials.
Both schemes are (V, k) threshold authentication scheme, i.e., any malicious groups of
up to k − 1 receivers can not successfully (unconditionally secure in the meaning of
information theory) impersonate the transmitter, or substitute a transmitted message to
any other receiver, while any k receivers or more receivers can successfully impersonate
the transmitter, or substitute a transmitted message to any other receiver. Actually, in the
proof of security of the authentication scheme of Safavi-Naini and Wang, the security is
equivalent to the difficulty to recover the private key of other receivers. So the security
essentially depends on the security of key distribution.

In this paper, we use general linear codes to generalize the scheme of Safavi-Naini
and Wang. Our scheme is an unconditionally secure authentication scheme and has all
the same advantages as the generalization of Shamir’s secret sharing scheme to linear
secret sharing sceme based on linear codes [4, 5]. Similarly as [4, 5], we introduce the
concept of minimal codeword respect to each coordinate, which helps to characterize
the capability of resisting substitution attack in our authentication scheme, similarly
to the linear secret sharing scheme. It guarantees higher security for some important
receivers.

The rest of this paper is organized as follows. In Section 2, we present our construc-
tion and main results about the security of our scheme. In Section 3, we give the security
analysis of our scheme. In Section 4, we show the relationship between the security of
our scheme and parameters of the linear code. Finally, in Section 5, the example of
authentication schemes based on elliptic curve codes is given, and we use the group of
rational points on the elliptic curve to characterize all malicious groups that can make a
substitution attack to some other receiver.

290 J. Zhang, X. Li, and F.-W. Fu

2 Our Construction and Main Results

In a multi-receiver authentication model for multiple messages, a trusted authority
chooses random parameters as the secret key and generates shares of private keys se-
cretly. Then the trusted authority transmits a private key to each receiver and secret
parameters to the source. For each fixed message, the source computes the authenti-
cation tag using the secret parameters and sends the message adding with the tag. In
the verification phase, the receiver verifies the integrity of each tagged message using
his private key. Groups of malicious receivers are considered in the model those who
collude to perform an impersonation attack by constructing a fake message, or a substi-
tution attack by altering the message content such that the new tagged message can be
accepted by some other receiver or specific receiver.

In this section, we present our construction of an authentication scheme based on a
linear code for multi-receivers and multiple messages. It will be shown that the ability of
our scheme to resist the attack of the malicious receivers is measured by the minimum
distance of the dual code and minimal codewords respect to specific coordinate in the
dual code.

Let C ⊆ F
V
q be a linear code with minimum distance d(C) � 2. Assume that the

minimum distance of the dual code C⊥ is d(C⊥) � 2. Fix a generator matrix G of C

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,1 g1,2 · · · g1,V

g2,1 g2,2 · · · g2,V
...
...
. . .

...
gk,1 gk,2 · · · gk,V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then make G public. Our scheme is as follows.

– Key Generation: A trusted authority randomly chooses parameters

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,1 a0,2 · · · a0,k

a1,1 a1,2 · · · a1,k
...
...
. . .

...
aM,1 aM,2 · · · aM,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ F(M+1)×k

q .

– Key Distribution: The trusted authority computes

B = A ·G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0,1 b0,2 · · · b0,V

b1,1 b1,2 · · · b1,V
...
...
. . .

...
bM,1 bM,2 · · · bM,V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the trusted authority distributes each receiver Ri the i-th column of B as his
private key, for i = 1, 2, · · · ,V . Note that in this step, we can use public key cryp-
tography method to complete the key distribution process. We don’t expand it here
since in this paper we only focus on the main authentication scheme.

Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes 291

– Authentication Tag: For message s ∈ Fq, the source computes the tag map

L = [L1, L2, · · · , Lk] : Fq → Fk
q

s �→ [L1(s), L2(s), · · · , Lk(s)] ,

where the map Li (i = 1, 2, · · · , k) is defined by

Li(s) =
M∑

j=0

a j,is
j .

Instead of sending the message s ∈ Fq, the source actually sends the authenticated
message x of the form

x = [s, L(s)] ∈ F1+k
q .

– Verification: The receiver Ri accepts the message [s, L(s)] if
∑M

t=0 stbt,i =∑k
j=1 L j(s)g j,i. Under the integrity of the tagged message, one can easily verify the

following

M∑

t=0

stbt,i =

M∑

t=0

st
k∑

j=1

at, jg j,i =

k∑

j=1

(
M∑

t=0

at, js
t)g j,i =

k∑

j=1

L j(s)g j,i .

Here, we call the result
∑M

t=0 stbt,i the label of Ri for message s.

If we take C to be the Reed-Solomon code, i.e., the generator matrix G is of the form

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xV

x2
1 x2

2 · · · x2
V

...
...
. . .

...
xk−1

1 xk−1
2 · · · xk−1

V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.1)

for pairwise distinct x1, x2, · · · , xV ∈ Fq, then the scheme is the scheme of Safavi-Naini
and Wang [1].

The security of the above authentication scheme is summarized in the following two
theorems. The proofs of the two theorems will be given in Sections 3 and 4.

Theorem 2. The scheme we constructed above is a unconditionally secure multi-
receiver authentication code against a coalition of up to (d(C⊥)−2) malicious receivers
in which every key can be used to authentication up to M messages.

More specifically, we consider what a coalition of malicious receivers can success-
fully make a substitution attack to one fixed receiver Ri. To characterize this malicious
group, we slightly modify the definition of minimal codeword in [4].

Definition 1. Let C be a [V, k] linear code. For any i ∈ {1, 2, · · · ,V}, a codeword c in C
is called minimal respect to i if the codeword c has component 1 at the i-th location and
there is no other codeword whose i-th component is 1 with support strictly contained in
that of c.

292 J. Zhang, X. Li, and F.-W. Fu

Then we have

Theorem 3. For the authentication scheme we constructed, we have

(i) The set of all minimal malicious groups that can successfully make a substitution
attack to the receiver Ri is determined completely by all the minimal codewords
respect to i in the dual code C⊥.

(ii) All malicious groups that can not produce a fake authenticated message which can
be accepted by the receiver Ri are one-to-one corresponding to subsets of [V] \ {i}
such that each of them together with i does not contain any support of minimal
codeword respect to i in the dual code C⊥, where [V] = {1, 2, · · · ,V}.

Compared with Safavi-Naini and Wang’s scheme, our scheme has all the advantages
as the generalization of secret sharing scheme based on polynomials [2, 3] to that
based on linear codes [4, 5]. The scheme of Safavi-Naini and Wang is a (V, k) threshold
authentication scheme, so any coalition of k malicious receivers can easily make a sub-
stitution attack to any other receiver. While in our scheme, by Theorem 3, sometimes it
can withstand the attack of coalitions of k or more malicious receivers to Ri. Indeed, it
is in general NP-hard to list all coalitions of malicious receivers that can make a sub-
stitution attack to the receiver Ri. So our scheme has better security than the previous
one.

3 Security Analysis of Our Authentication Scheme

In this section, we present the security analysis of our scheme. From the verification
step, we notice that a tagged message [s, v1, v2, · · · , vk] can be accepted by the receiver
Ri if and only if

∑M
t=0 stbt,i =

∑k
j=1 v jg j,i. So in order to make a substitution attack to Ri,

it suffices to know the label
∑M

t=0 stbt,i for some s ∈ Fq not sent by the transmitter, then
it is trivial to construct a tag (v1, v2, · · · , vk) such that

∑M
t=0 stbt,i =

∑k
j=1 v jg j,i.

Indeed, we will find that the security of the above authentication scheme depends on
the hardness of finding the key matrix A from a system of linear equations. Suppose a
group of K malicious receivers collaborate to recover A and make a substitution attack.
Without loss of generality, we assume that the malicious receivers are R1,R2, · · · ,RK .
Suppose s1, s2, · · · , sM have been sent. Each Ri has some information about the key A:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...
...
. . .
...

1 sM s2
M · · · sM

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1(s1) L2(s1) · · · Lk(s1)
L1(s2) L2(s2) · · · Lk(s2)
...

...
. . .

...
L1(sM) L2(sM) · · · Lk(sM)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

A ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,i

g2,i
...

gk,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0,i

b1,i
...

bM,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes 293

The group of malicious receivers combines their equations, and they get a system of
linear equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S M · A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...
...
. . .
...

1 sM s2
M · · · sM

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1(s1) L2(s1) · · · Lk(s1)
L1(s2) L2(s2) · · · Lk(s2)
...

...
. . .

...
L1(sM) L2(sM) · · · Lk(sM)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,1 g1,2 · · · g1,K

g2,1 g2,2 · · · g2,K
...
...
. . .

...
gk,1 gk,2 · · · gk,K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0,1 b0,2 · · · b0,K

b1,1 b1,2 · · · b1,K
...
...
. . .

...
bM,1 bM,2 · · · bM,K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.1)

Lemma 4. Let P be the subspace of Fk
q generated by {g j | j = 1, 2, · · · ,K}, where g j

represents the j-th column of the generator matrix G. Suppose K0 = dim P � k − 1.
Then there exist exact qk−K0 matrices A satisfying the system of equations (3.1).

Proof. Rewrite the matrix A of variables ai, j as a single column of k(M + 1) variables.
Then System (3.1) becomes

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S M

S M

. . .

S M

g1,1IM+1 g2,1IM+1 · · · gk,1IM+1

g1,2IM+1 g2,2IM+1 · · · gk,2IM+1
...

...
. . .

...
g1,K IM+1 g2,K IM+1 · · · gk,K IM+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛⎜⎜⎜⎝

a0,1

a1,1
...

aM,1

a0,2

a1,2
...

aM,2
...

a0,k

a1,k
...

aM,k

⎞⎟⎟⎟⎠

= T (3.2)

where IM+1 is the identity matrix with rank (M + 1) and T is the column vector of
constants in System (3.1) with proper order. Notice that the space generated by rows of
S M is contained in the space FM+1

q generated by gi, jIM+1 if gi, j � 0. So the rank of the
big matrix of coefficients in System (3.2) equals to

M · k + K0

which is less than k(M+1), the number of variables. So System (3.2) has qk(M+1)−kM−K0 =

qk−K0 solutions, i.e., System (3.1) has qk−K0 solutions. 	

Note that if C is a [V, k, d = V − k + 1] MDS code, e.g., Reed-Solomon code, then

whenever K � k − 1 the vectors in any K-subset of columns of G are linearly indepen-
dent.

By Lemma 4, part of the security of our authentication scheme follows.

294 J. Zhang, X. Li, and F.-W. Fu

Theorem 5. The scheme we constructed above is an unconditionally secure multi-
receiver authentication scheme against a coalition of up to (d(C⊥) − 2) malicious re-
ceivers in which every key can be used to authentication up to M messages.

Proof. Suppose the source receiver has sent messages s1, s2, · · · , sM. It is enough to
consider the case that K = d(C⊥) − 2 malicious receivers R1, · · · ,RK have received the
M messages, since in this case they know the most information about the key matrix A.

What they try to do is to guess the label b0,K+1 + b1,K+1sM+1 + b2,K+1s2
M+1 + · · · +

bM,K+1sM
M+1 for some sM+1 � {s1, s2, · · · , sM} and construct a vector (v1, v2, · · · , vk) such

that
k∑

i=1

vigi,K+1 = b0,K+1 + b1,K+1sM+1 + b2,K+1s2
M+1 + · · · + bM,K+1sM

M+1 .

Then the fake message [sM+1, v1, v2, · · · , vk] can be accepted by RK+1.
It is easy to see that any K = d(C⊥)−2 columns of the generator matrix G is linearly

independent over Fq. Otherwise there exist x1, · · · , xK ∈ Fq, not all zeros, such that∑K
j=1 x j g j = 0 where g j is the j-th column of G, then the dual code C⊥ will have a code-

word (x1, · · · , xK , 0, · · · , 0) with Hamming weight � d(C⊥)−2 which is a contradiction.
By Lemma 4, there exist qk−d(C⊥)+2 matrices A satisfying the system of equations (3.1).

For any sM+1 � {s1, s2, · · · , sM}, we define the label map

ϕsM+1 : {Solutions of System (3.1)} −→ Fq

A �→ (1, sM+1, s2
M+1, · · · , sM

M+1)A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,K+1

g2,K+1
...

gk,K+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By Lemma 4 and knowledge of linear algebra, one can prove the following two state-
ments (due to the restriction of the length of the paper, the proof is omitted here):

(1) ϕsM+1 is surjective.
(2) for any y ∈ Fq, the number of the inverse image of y is |ϕ−1

sM+1
(y)| = qk−d(C⊥)+1.

So the information held by the colluders allows them to calculate q equally likely differ-
ent labels for sM+1 and hence the probability of success is 1/q which is equal to that of
guessing a label b0,K+1 + b1,K+1sM+1 + b2,K+1s2

M+1 + · · ·+ bM,K+1sM
M+1 for sM+1 randomly

from Fq. Hence we finish the proof of the theorem. 	

Remark 1. From the proofs of Lemma 4 and Theorem 5, the coalition of malicious
receivers B can successfully make a substitution attack to the receiver Ri if and only if
gi is contained in the subspace of Fk

q generated by {g j | j ∈ B}, where g j represents the
j-th column of the generator matrix G. In this case, they can recover the private key of
Ri. This is the motivation of the next section.

4 Code-Based Authentication Scheme and Minimal Codewords

In the previous section, we considered that any coalition of K malicious receivers can
not obtain any information about any other receiver’s label to make a substitution attack.

Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes 295

To consider a weak point, we propose that for a fixed receiver Ri, what a coalition of
malicious receivers that can not get any information of the label of Ri. By Theorem 5,
we have seen that any coalition of up to (d(C⊥)−2) malicious receivers can not generate
a valid codeword [s, L(s)] for Ri in a probability better than guessing a label from Fq

randomly for the fake message s.
Denote [V] = {1, 2, · · · ,V} andP = {R1,R2, · · · ,RV} as the index set and the receiver

set respectively.

Definition 2. A subset of P \ {Ri} is called an adversary group to Ri if their coalition
can not obtain any information of the label of Ri when they want to make a substitution
attack to Ri. Define ti(C) to be the largest integer τi such that any subset A ⊆ P \ {Ri}
with cardinality τi is an adversary group to Ri.

Definition 3. A subset ofP\{Ri} that can successfully make a substitution attack to Ri is
called a substitution group to Ri. Moreover, a substitution group is called minimal if any
one receiver is removed from the group, then the rests can not obtain any information of
the label of Ri. Define ri(C) to be the smallest integer ρi such that any subset B ⊆ P\{Ri}
with cardinality ρi is a substitution group to Ri.

For any A ⊆ [V], πA is the projection of FV
q to F

|A|
q defined by

πA((x1, x2, · · · , xV)) = (x j) j∈A,

for any (x1, x2, · · · , xV) ∈ F
V
q . Denote by πi = π{i} for short. For any receiver Ri, the

substitution groups to Ri are completely characterized as follows.

Proposition 6. For any receiver Ri, the following conditions are equivalent:

(i) B ⊆ P \ {Ri} is a substitution group to Ri;
(ii) gi is contained in the subspace of Fk

q generated by {g j | j ∈ B}, where g j represents
the j-th column of the generator matrix G;

(iii) there exists a codeword c ∈ C⊥ such that

πi(c) = 1 and πBc(c) = 0 ,

where Bc = (P \ {Ri}) \ B is the complement of B in P \ {Ri};
(iv) there is an Fq-linear map

fB,i : πB(C) −→ Fq

such that fB,i(πB(c)) = πi(c) for all c ∈ C;
(v) there is no codeword c ∈ C such that

πi(c) = 1 and πB(c) = 0 .

Proof. By Remark 1, conditions (i) and (ii) are equivalent.
First, we show that there exists a codeword c ∈ C⊥ such that πi(c) � 0. If not,

that is, for any codeword c ∈ C⊥, it holds πi(c) = 0. Then the unit vector with the
unique nonzero component 1 at the i-th coordinate belongs to C, which contradicts to
the assumption that d(C) � 2.

296 J. Zhang, X. Li, and F.-W. Fu

So there exists a codeword c ∈ C⊥ such that πi(c) = 1 by the linearity of C. The rest
of the proof that conditions (ii) and (iii) are equivalent is clear.

(iii)=⇒(iv). For any codeword y ∈ C⊥ with πi(y) = 1 and πBc(y) = 0, and for any
codeword c ∈ C, we have

∑

j∈B

π j(y)π j(c) + πi(c) = 0.

So define fB,i : πB(C)→ Fq by setting

fB,i(πB(c)) = −
∑

j∈B

π j(y)π j(c),

for all c ∈ C. Then fB,i satisfies the condition.
(iv)=⇒(iii). From the proof of “(iii)=⇒(iv)”, we see that the required codeword in

C⊥ is actually the coefficients of the map

φB,i = πi − fB,i.

(iv)=⇒(v). If the statement (v) does not hold, then there exists a codeword c ∈ C
such that πi(c) = 1 and πB(c) = 0. This contradicts to the fact that fB,i(πB(c)) = πi(c).

(v)=⇒(iv). A map fB,i : πB(C) −→ Fq satisfying fB,i(πB(c)) = πi(c) for all c ∈ C is
always linear over Fq by the linearity of C. So if the map fB,i : πB(C) −→ Fq satisfying
fB,i(πB(c)) = πi(c) for all c ∈ C does not exist, then there exist two different codewords
c, c′ ∈ C such that πi(c) � πi(c′) and πB(c) = πB(c′). That is, the codeword x = c− c′ ∈
C satisfies πi(x) = πi(c− c′) � 0 and πB(x) = πB(c− c′) = 0. This contradicts to (v). 	

By Proposition 6, adversary groups to Ri can be completely characterized by

Proposition 7. For any receiver Ri, the following conditions are equivalent:

(i) A ⊆ P \ {Ri} is an adversary group to Ri;
(ii) gi is not contained in the subspace of Fk

q generated by {g j | j ∈ A};
(iii) there is no codeword c ∈ C⊥ such that

πi(c) = 1 and πAc(c) = 0 ;

(iv) there exists a codeword c ∈ C such that

πi(c) = 1 and πA(c) = 0 .

Corollary 8. (i) For any i = 1, 2, · · · ,V, we have

d(C⊥) − 1 � ri(C) � V − d(C) + 1 ,

and

max{ri(C) | i = 1, 2, · · · ,V} = V − d(C) + 1, min{ri(C) | i = 1, 2, · · · ,V} = d(C⊥) − 1 .

Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes 297

(ii) For any i = 1, 2, · · · ,V, we have

d(C⊥) − 2 � ti(C) � ri(C) − 1 ,

and
min{ti(C) | i = 1, 2, · · · ,V} = d(C⊥) − 2 .

Proof. (i) Suppose B ⊆ P \ {Ri} is any substitution group to Ri. By Proposition 6 (iii),
there is a codeword c ∈ C⊥ such that πi(c) = 1 and πBc(c) = 0. Then we have

d(C⊥) � Wt(c) � |B| + 1 .

So
ri(C) � |B| � d(C⊥) − 1 .

For any B ⊆ P\ {Ri} with cardinality � V −d(C)+1, it is obvious that any codeword
c ∈ C with πi(c) = 1 (in the proof of Proposition 6, we have seen that such a codeword
does exist.) has πB(c) � 0. Otherwise, the minimum distance d(C) � V−(V−d(C)+1) =
d(C) − 1. So by Proposition 6 (v), it follows

ri(C) � V − d(C) + 1 .

Let c be a codeword in C with minimum Hamming weight. Denote by S the support
of c. Let B = [V] \ S . Then by Proposition 6 (v), B is not a substitution group to Ri for
any i ∈ S . So

max{ri(C) | i = 1, 2, · · · ,V} � max{ri(C) | i ∈ S } � |B| + 1 = V − d(C) + 1 .

Hence
max{ri(C) | i = 1, 2, · · · ,V} = V − d(C) + 1 .

To prove min{ri(C) | i = 1, 2, · · · ,V} − 1 = d(C⊥) − 1, it suffices to show

ri(C) = d(C⊥) − 1

for some i = 1, 2, · · · ,V . Let y be a codeword in C⊥ with minimum Hamming weight.
Denote by T the support of y. For any i ∈ T , T \ {i} is a substitution group to Ri with
cardinality d(C⊥) − 1. On the other hand, by Proposition 6 (ii), any subset of P \ {Ri}
with cardinality � d(C⊥) − 2 could not be a substitution group to Ri. So

ri(C) = d(C⊥) − 1

for any i ∈ T .
(ii) Notw that ti(C) � ri(C)−1 by the definition. For any B ⊆ P\{Ri}with cardinality

� d(C⊥) − 2, there is no codeword c ∈ C⊥ such that πi(c) = 1 and πBc(c) = 0. If not,
then there is a codeword c ∈ C⊥ such that πi(c) = 1 and πBc(c) = 0. Then C⊥ has a
codeword c with Hamming weight � |B| + 1(� d(C⊥) − 1) which is impossible. So by
Proposition 7, B is an adversary group to Ri. Hence

d(C⊥) − 2 � ti(C) .

298 J. Zhang, X. Li, and F.-W. Fu

Since d(C⊥) − 2 � ti(C) � ri(C) − 1, we have

d(C⊥)− 2 � min{ti(C) | i = 1, 2, · · · ,V} � min{ri(C) | i = 1, 2, · · · ,V} − 1 = d(C⊥)− 2 .

So
min{ti(C) | i = 1, 2, · · · ,V} = d(C⊥) − 2 .

	

By Corollary 8, it is natural to get

Corollary 9. For any receiver Ri, we have

(i) Subsets of P \ {Ri} with cardinality � (V − d(C) + 1) are substitution groups to Ri.
(ii) Subsets of P \ {Ri} with cardinality � (d(C⊥) − 2) are adversary groups to Ri.
(iii) For MDS codes C, subsets of P \ {Ri} with cardinality � (d(C⊥) − 2) are all the

adversary groups to Ri.

There is a gap in Corollary 9 in general that we do not known whether a subset of
size in the gap is a substitution group to Ri or not for general code-based authentication
scheme. Actually, it is NP-hard to list all substitution groups to Ri in general. Even
for authentication scheme based on algebraic geometric codes from elliptic curves, it
is already NP-hard (under RP-reduction) to list all substitution groups to Ri which we
will see later in Section 5.

By Proposition 6, we obtain the main result of this section, a generalization of Propo-
sition 1:

Theorem 10. For the authentication scheme we constructed, we have

(i) The set of all minimal substitution groups to the receiver Ri is determined completely
by all the minimal codewords respect to i in C⊥.

(ii) All adversary groups to the receiver Ri are one-to-one corresponding to subsets
of [V] \ {i} such that each of them together with i does not contain any support of
minimal codewords respect to i in C⊥.

5 The Authentication Scheme Based on Algebraic Geometry
Codes

In this section, we give examples of our authentication schemes based on some ex-
plicit linear codes, algebraic geometry (AG) codes from elliptic curves. First, recall the
definition of AG codes.

Let X/Fq be a geometrically irreducible smooth projective curve of genus g over
the finite field Fq with function field Fq(X). Denote by X(Fq) the set of all Fq-rational
points on X. Let D = {R1,R2, · · · ,Rn} be a proper subset of rational points X(Fq). Also
write D = R1 + R2 + · · · + Rn. Let G be a divisor of degree k (2g − 2 < k < n) with
Supp(G) ∩ D = ∅.

Let V be a divisor on X. Denote by L (V) the Fq-vector space of all rational functions
f ∈ Fq(X) with the principal divisor div(f) � −V , together with the zero function.

Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes 299

Denote by Ω(V) the Fq-vector space of all Weil differentialsω with divisor div(ω) � V ,
together with the zero differential (cf. [11]).

The residue AG code CΩ(D,G) is defined to be the image of the following residue
map:

res : Ω(G − D)→ F
n
q; ω �→ (resR1 (ω), resR2(ω), · · · , resRn (ω)) .

Its dual code, the functional AG code CL (D,G), is defined to be the image of the
following evaluation map:

ev : L (G)→ F
n
q; f �→ (f (R1), f (R2), · · · , f (Rn)) .

They have the code parameters [n, n−k+g−1, d � k−2g+2] and [n, k−g+1, d � n−k],
respectively. Moreover, we have the following isomorphism

CΩ(D,G) � CL (D,D −G + (η))

for some Weil differential η satisfying υPi(η) = −1 and ηPi (1) = 1 for all i = 0, 1, 2, · · · , n
([11, Proposition 2.2.10]).

For the authentication scheme based on the simplest AG codes, i.e., generalized
Reed-Solomon codes, we have determined all the malicious groups that can make a
substitution attack to any (not necessarily all) other in Corollary 9. Next, we consider
the authentication scheme based on AG codes CΩ(D,G) from elliptic curves. The fol-
lowing theorem is a generalization of the main result in [12]. Using the Riemann-Roch
theorem, the malicious groups who together are able to make a substitution attack to
any (not necessarily all) other or not can be characterized completely as follows.

Theorem 11. Let X = E be an elliptic curve over Fq with a rational point O, D =
{R1,R2, · · · ,Rn} a subset of E(Fq) such that O � D and let divisor G = kO (0 <
k < n). Endow E(Fq) a group structure [13] with the zero element O. Then for the
authentication scheme based on the [n, n − k] AG code CΩ(D,G), we have

(i) Any coalition of up to (n − k − 2) malicious receivers can not make a substitution
attack to any other receiver.

(ii) A malicious group A ⊆ D, |A| = n − k − 1, can successfully make a substitution
attack to the receiver R j ∈ D \ A if and only if

∑

P∈D\A
P = R j

in the group E(Fq). Moreover, we note that they can only successfully make a sub-
stitution attack to the receiver

∑
P∈D\A P if

∑
P∈D\A P ∈ D \ A.

(iii) A malicious group A ⊆ D, |A| = n − k, can successfully make a substitution attack
to the receiver R j ∈ D \ A if and only if there exists some Q ∈ E(Fq) \ {R j} such that
the sum

Q +
∑

P∈D\A
P = R j

in the group E(Fq), which is equivalent to that in the group E(Fq), we have
∑

P∈D\A
P � O .

300 J. Zhang, X. Li, and F.-W. Fu

Note that the latter condition is independent of R j, and hence, such a malicious
group can successfully make a substitution attack to any other receiver.

(iv) A malicious group with at least (n − k + 1) members can successfully make a
substitution attack to any other receiver.

Proof. The statement (i) follows from Theorem 5 as the minimum distance

d⊥(CΩ(D,G)) = d(CL (D,G)) ≥ n − k .

For the statement (ii), if the malicious group A ⊆ D, |A| = n− k − 1, can successfully
make a substitution attack to the receiver R j ∈ D \ A, then there exists some non-zero
function in the dual code f ∈ L (kO−∑R∈D\A R+R j), i.e., div(f) � ∑R∈D\A R−R j−kO.
Both sides of the above inequality have degree 0, so it forces div(f) =

∑
R∈D\A R − R j −

kO. That is, in the group E(Fq), we have
∑

R∈D\A
R = R j .

Similarly for the statement (iii), if a malicious group A ⊆ D, |A| = n − k, can suc-
cessfully make a substitution attack to the receiver R j ∈ D \ A, there exists some non-
zero function f ∈ L (kO − ∑R∈D\A R + R j) \ L (kO − ∑R∈D\A R), i.e., f (R j) � 0 and
div(f) � ∑R∈D\A R − R j − kO. So there is an extra zero Q ∈ E(Fq) \ {R j} of f such that
div(f) =

∑
R∈D\A R − R j + Q − kO. That is,

∑

R∈A
R + Q = R j .

The rest of (iii) is obvious.
We prove the statement (iv) by contradiction. A malicious group A can not suc-

cessfully make a substitution attack to the receiver R j if and only if there exists a lin-
ear function f ∈ L (D − G + (η)) such that f (R j) = 1, and f (R) = 0 ∀R ∈ A. As
f ∈ L (D−G + (η)), f has at most deg(D−G + (η)) = n− k zeros. So if |A| ≥ n− k+ 1,
the malicious group A can successfully make a substitution attack to any other receiver.

	

Remark 2. (1) From the statements (ii) and (iii) in the above theorem and the result

in [14], it is in general an NP-hard problem (under RP-reduction) to list all the
substitution groups of size n − k + 1 and n − k to any receiver.

(2) Comparing with the scheme of Safavi-Naini and Wang, from the statement (iii),
there are groups of n−k malicious receivers which can not make an efficient substi-
tution attack to any other receiver. But in their scheme, any group of n−k malicious
receivers which can easily make a substitution attack to any other receiver.

6 Conclusion

In this paper, we construct an authentication scheme for multi-receivers and multiple
messages based on linear code C [V, k, d]. Compared with schemes based on MACs or

Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes 301

digital signatures which depend on computational security, our scheme is an uncondi-
tionally secure authentication scheme, which can offer robustness against a coalition
of up to (d(C⊥) − 2) malicious receivers. Our scheme has all the same advantages as
the generalization of Shamir’s secret sharing scheme to linear secret sharing sceme
based on linear codes [4, 5]. Compared with the scheme of Safavi-Naini and Wang [1]
which has a constraint on the number of verifying receivers that can not be larger than
the size of the finite field, our scheme allows arbitrary receivers for a fixed message
base field. Moreover, for some important receiver, coalitions of k or more malicious
receivers might not make a substitution attack on the receiver more efficiently than ran-
domly guessing a label from the finite field for a fake message. While the authentication
scheme of Safavi-Naini and Wang is a (V, k) threshold authentication scheme, any k of
the V receivers can easily produce a fake message that can be accepted by the receiver.
In general, it is very hard to list all the malicious groups respect to a fixed receiver. If we
choose elliptic curve codes for the linear codes in our authentication scheme, then we
can use the group of rational points on the elliptic curve to give a complete description
of all the substitution groups to each receiver.

References

1. Safavi-Naini, R., Wang, H.: New results on multi-receiver authentication codes. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 527–541. Springer, Heidelberg (1998)

2. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
3. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Commun.

ACM 24, 583–584 (1981)
4. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint

Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)
5. Massey, J.L.: Some applications of coding theory in cryptography. In: Codes and Ciphers:

Cryptography and Coding IV, pp. 33–47 (1995)
6. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party

computation over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 521–536. Springer, Heidelberg (2006)

7. Van Dijk, M., Gehrmann, C., Smeets, B.: Unconditionally secure group authentication.
Designs, Codes and Cryptography 14, 281–296 (1998)

8. Boyd, C.: Digital multisignatures. In: Beker, H., Piper, F. (eds.) Cryptography and Coding,
pp. 241–246. Clarendon Press (1986)

9. Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)

10. Desmedt, Y., Frankel, Y., Yung, M.: Multi-receiver/multi-sender network security: efficient
authenticated multicast/feedback. In: IEEE INFOCOM 1992, Eleventh Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, pp. 2045–2054 (1992)

11. Stichtenoth, H.: Recent Advances in Nonlinear Dynamics and Synchronization, 2nd edn.
Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009)

12. Chen, H., Ling, S., Xing, C.: Access structures of elliptic secret sharing schemes. IEEE
Transactions on Information Theory 54, 850–852 (2008)

13. Silverman, J.H.: The arithmetic of elliptic curves, 2nd edn. Graduate Texts in Mathematics,
vol. 106. Springer, Dordrecht (2009)

14. Cheng, Q.: Hard problems of algebraic geometry codes. IEEE Transactions on Information
Theory 54, 402–406 (2008)

Efficient Sealed-Bid Auction Protocols

Using Verifiable Secret Sharing

Mehrdad Nojoumian1 and Douglas R. Stinson2

1 Department of Computer Science
Southern Illinois University, Carbondale, Illinois, USA

nojoumian@cs.siu.edu
2 David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada

dstinson@math.uwaterloo.ca

Abstract. This article proposes efficient solutions for the construction
of sealed-bid second-price and combinatorial auction protocols in an ac-
tive adversary setting. The main reason for constructing secure auction
protocols is that the losing bids can be used in the future auctions as well
as negotiations if they are not kept private. Our motivation is to apply
verifiable secret sharing in order to construct various kinds of sealed-bid
auctions. We initially propose two secure second-price auction protocols
with different masking methods. Subsequently, we provide two secure
combinatorial auction protocols based on our second masking approach.
In the first scheme, we apply an existing dynamic programming method.
In the second protocol, we use inter-agent negotiation as an approximate
solution in the multiple traveling salesman problem to determine auction
outcomes. It is worth mentioning that our protocols are independent of
the secret sharing scheme that is being used.

Keywords: Applied cryptography, security and privacy in auctions.

1 Introduction

The growth of e-commerce technologies has created a remarkable opportunity
for secure auctions where bidders submit sealed-bids to auctioneers and then
the auctioneers define outcomes without revealing the losing bids. The main
motivation for protection of the losing bids is that the bidders’ valuations can be
used in the future auctions and negotiations by different parties, say auctioneers
to maximize their revenues or competitors to win the auction. This problem can
be resolved by constructing privacy-preserving auction protocols.

In fact, secure comparison, as the main building block of sealed-bid auctions,
is first motivated by the millionaires’ problem [38]. In this problem, the goal
is to determine whether x > y, where both x and y are private secrets of two
players. The answer to this question becomes known to the parties only after
the execution of the protocol. The millionaires’ problem ultimately leaded to the
introduction of secure multiparty computation MPC, where n players cooperate
to perform a computation task based on the private data they each provide.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 302–317, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Sealed-Bid Auction Protocols 303

Other methods were later proposed in order to construct protocols for secure
comparison, interval test and equality test. For instance, [9] proposes multiparty
computation techniques to implement these operations. The main building block
of this construction is a protocol, named bit-decomposition, that converts a poly-
nomial sharing of a secret into shares of its bits. This protocol is simplified in [22].
As a counterpart, [11] implements these operations by homomorphic encryption
in a computationally secure setting. We later clarify why these operations are
too expensive to build practical sealed-bid auctions, as shown in Table 2.

There exist many sealed-bid auctions in both passive and active adversary
models. In the former, players follow protocols correctly but are curious to learn
private bids. In the latter, players may also deviate from protocols. The majority
of the sealed-bid auction protocols either are secure only in the passive adversary
model or they apply costly bitwise approaches, e.g., using verifiable secret sharing
VSS for every single bit of each bid rather than a single VSS for the entire bid.

1.1 Literature Review

All the following protocols utilize “secret sharing” as their main building block.
In the initial construction of the first-price sealed-bid auction protocols, the
authors in [10] implement a secure auction service by using verifiable secret
sharing as well as verifiable signature sharing. At the end of the bidding time,
auctioneers open bids to define outcomes, therefore, they learn the losing bids.

The authors in [12] illustrate a set of protocols for sealed-bid auctions by using
secure distributed computation. The bidders’ valuations are never revealed to
any party even when the auction is completed. Their constructions support the
first-price and second-price auctions. The general idea of their approach is to
compare bids digit-by-digit by applying secret sharing techniques. This protocol
is computationally very expensive.

The proposed first-price construction in [14] (modified in [15]) demonstrates
a multi-round secure auction protocol in which winners from an auction round
take part in a subsequent tie-breaking second auction round. The authors use
the addition operation of secure multiparty computation in a passive adversary
model. Later, the authors in [27] detected some shortcomings in this scheme such
as the lack of verifiability. They then resolved those problems.

The authors in [13] present a protocol for the (M + 1)st-price auction. They
illustrate a new method where bidders’ valuations are encoded by the degree of
distributed polynomials. The proposed construction requires only two rounds of
computations; one round for bidders and one round for auctioneers. The pro-
posed scheme in [6] is a fully private (M + 1)st-price auction protocol in which
only the winning bidders and the seller learn the selling price. It has two main
shortcomings. First, the scheme is not able to handle ties among multiple win-
ners. Second, it is not an efficient construction in the computational setting.

Finally, the authors in [26] design a new first-price secure auction protocol
based on a homomorphic secret sharing scheme. Their construction relies on
hard computation problems and does not depend on any trust. They also show
that the proposed protocol is secure against different kinds of attacks.

304 M. Nojoumian and D.R. Stinson

1.2 Motivation and Contributions

Our motivation is to propose efficient solutions for the construction of secure
second-price as well as combinatorial auction protocols where losing bids are
kept private in an active adversary model. We would like to use secret sharing
techniques to define auction outcomes without using costly bitwise operations.
This helps us to design approximate secure solutions for the general combina-
torial auction that is expensive even without using sealed-bids. Even by having
unlimited computational power, one can significantly reduce the communication
cost by avoiding the use of bitwise operations, that is, sharing each bid as a single
field element is more efficient compared to sharing every single bit/digit of that
element, for an example of such a scheme, see [12]. Our constructions consist of
an initializer I, n bidders and m auctioneers. Here are our contributions:

• Our first solution is proposed for the second-price auction by using VSS. In
this protocol, all bids are masked by using + operation, consequently, bids
are sealed but their differences are revealed only to auctioneers. Although
the general idea is similar to the comparison protocol in [22], our protocol
works in an active adversary setting without using any bitwise operation. In
that article, the authors use bitwise operations in a passive adversary model.

• We then improve our previous solution in order to prevent the revelation
of the difference between each pair of bids. We propose another sealed-bid
second-price auction protocol where all bids are masked by using + and ×
operations. As a result, both bids and their differences are sealed, however,
the ratio of the bids are revealed only to auctioneers. We should stress that
this protocol can be simply extended to the secure (M + 1)st-price auction.

• Finally, we provide two secure combinatorial auction protocols based on
our second masking approach: (a) we use an existing dynamic programming
method [33] to define auction outcomes. In that paper, the authors encode
bids as the degree of secret sharing polynomials. As a result, their protocol
only works in the passive adversary model whereas our construction works
in an active adversary setting, (b) we apply the inter-agent negotiation ap-
proach, introduced in [16], as an approximate solution in a multiple traveling
salesman problem in order to determine auction outcomes.

2 Preliminaries

2.1 Auction Protocols

In an auction, winner is a bidder who has submitted the highest bid. To define
the selling price, there are two main approaches: first-price and second-price
auctions. In the former, the winner pays the amount that he has proposed, i.e.,
highest bid. In the latter, the winner pays the amount of the second-highest bid.
There exist other types of auctions such as (M + 1)st-price and combinatorial
auctions. In the former, the highestM bidders win the auction and pay a uniform

Efficient Sealed-Bid Auction Protocols 305

price defined by (M +1)-price. In the latter, multiple items with interdependent
values are sold while bidders can bid on any combination of items.

In the first-price auction, a bidder potentially is able to define the winner as
well as the selling price at the same time. On the other hand, in the second-price
auction, a bidder potentially is able to define either the winner or the selling price
for the winner. As a result, he proposes the actual highest value, say κ, he can
afford to pay, which is also a profitable price for him [35]. Suppose the proposed
bid is less than κ. In this case, the bidder decreases his chance of winning. If the
proposed bid is bigger than κ, the bidder might win with an unprofitable price.
This property forces the bidders to propose their true valuations.

2.2 Secret Sharing

In secret sharing schemes, a secret is divided into various shares in order to be
distributed among participants, then a subset of players cooperate to reveal the
secret [31,5]. In a (t, n)-secret sharing scheme where t < n, the secret is divided
into n shares such that any t+ 1 players can combine their shares to reveal the
secret, but any subset of t parties cannot learn anything about the secret.

In verifiable secret sharing VSS [8], players can verify the consistency of their
shares with other players’ shares. There are various techniques for performing the
verification procedure, such as using zero knowledge proof with small probability
of error, or applying bivariate polynomials without any probability of errors [4];
the latter construction works under the assumption that n ≥ 3t+1 by considering
secure pairwise channels among players. The proposed scheme in [29] applies the
same communication model along with a broadcast channel to construct a new
scheme with n ≥ 2t + 1. The authors in [32] construct a VSS protocol based
on symmetric bivariate polynomials. This construction is simple and uses both
pairwise channels and a broadcast channel under the assumption that n ≥ 4t+1.

3 Our Constructions

Our model, Figure 1, consists of n bidders B1 . . .Bn, m auctioneers A1 . . .Am

and a seller. We consider communication model of VSS that is being used [32].
In addition, a trusted initializer I distributes some information and then

leaves the scheme before our protocols start. This is preferable to a trusted party
who remains in the scheme. In the literature, trusted authorities are assumed
in many secure auction protocols, for instance, semi-trusted third party [7,2],

Initializer

Auctioneers

B
id

de
rs

 A 1
B 1

B n
A m

Fig. 1. Proposed Secure Auction Model

306 M. Nojoumian and D.R. Stinson

trusted third party [37,21], trusted centers [30], trusted authority [1,34], trustee
[36]. It is worth mentioning that by paying an extra computational cost, a trusted
party or initializer can be removed from any scheme to be replaced by MPC.
Since each bidder acts as an independent dealer and the auctioneers perform the
computation, our protocols have the following properties and assumptions:

• They can tolerate colluding auctioneers ∇ where m ≥ 4t + 1 and t ≥ |∇|
due to VSS of [32]. If the complicated VSS of [29] is used, our protocols can
tolerate m ≥ 2t+ 1 since these protocols are independent of their VSS.

• They can tolerate dishonest bidders who submit inconsistent shares. Note
that we assume the majority of the bidders are honest.

• We assume bidders do not collude with auctioneers similar to [25], and multi-
auctioneer and multi-bidder protocols in [10,14].

There also exist other kinds of collusion assumptions in the literature, e.g.,
[20] assumes auctioneers do not collude with the auction issuer, [18] assumes the
seller does not collude with the auction authority, etc. In Table 1, we have listed
some protocols that have an assumption similar to our constructions.

Table 1. Protocols Where the Auctioneers Cannot Collude With the Bidders

Protocol Cryptographic Technique Adversary Model

Here Verifiable Secret Sharing Active

[25] Homomorphic Encryption Active

[14,15] Secret Sharing Passive

[10] Verifiable Secret and Signature Sharing Active

To construct our sealed-bid auction protocols, we use (1) + operation for
adding two shared secrets, (2) × operation for multiplying two shared secrets.
Although any arbitrary VSS can be used in our constructions, we apply the
verifiable secret sharing scheme proposed in [32] due to its simplicity. This means
our protocols would tolerate more dishonest auctioneers if the VSS of [4,29] were
used. All computations are performed in a large enough finite field Zq.

3.1 Sealed-Bid Second-Price Auction Protocol Using +

In our first construction, bidders initially distribute shares of their bids βi among
auctioneers by VSS. Auctioneers then mask all shared secrets by adding an
unknown value δ to bids, i.e., computing βi + δ for 1 ≤ i ≤ n: this increases
valuations equally in order to preserve the ordering. Finally, auctioneers reveal
the masked values to determine auction outcomes without revealing actual bids.

We assume that the total number of colluding auctioneers is limited to our
secret sharing threshold, i.e., |∇| ≤ t. We also select a large enough finite field

Efficient Sealed-Bid Auction Protocols 307

to prevent the modular reduction after using the addition operation. Our first
solution is shown in Figures 2 and 3. The first phase is repeated n times, i.e., it
is used for each bidder Bk where 1 ≤ k ≤ n.

Initialization

1. I initiates a secret sharing scheme by a symmetric polynomial, that is, he
generates h(x, y) ∈ Zq[x, y] of degree t in which h(0, 0) = δ, where q > κ+ δ to
prevent the modular reduction and κ denotes the maximum possible price.

2. He then sends shares of auctioneers Ai for 1 ≤ i ≤ m accordingly and leaves
the scheme, i.e., hi(x) = h(x, ωi) where ω is a primitive element in the field.
Now, each auctioneer has a share of an unknown value δ.

Bid Submission

1. Each bidder Bk chooses a random symmetric polynomial gk(x, y) ∈ Zq[x, y] of
degree t to send shares gki(x) = gk(x, ω

i) to Ai for 1 ≤ i ≤ m through a private
channel where gk(0, 0) = βk.

2. To verify distributed shares, auctioneers Ai and Aj perform pairwise checks,
i.e., they verify that gki(ω

j) = gkj(ω
i), similar to VSS of [32]. They will either

accept shares of βk or disqualify Bk.

Fig. 2. A. Secure Auction Protocol Using Addition Operation

Outcome Computation

1. Each auctioneer Ai locally adds hi(x) to the share that he has received from
each bidder Bk, that is, ψki(x) = gki(x) + hi(x) for 1 ≤ k ≤ n. In fact, ψki(x)
are shares of βk + δ for 1 ≤ k ≤ n where δ is unknown to everyone.

2. Each Ai then sends ψki(0) to a selected auctioneer Aj where i, j ∈ Γ , i.e., the
set of good auctioneers. All computations performed by Aj are only visible to
the auctioneers. Aj computes ϕk(0, y) such that ϕk(0, ω

i) = ψki(0) for at least
m− 2|∇| values of i.

3. In fact, ϕk(x, y) = gk + h. Aj computes masked values ϕk(0, 0) = βk + δ and
then sorts them in decreasing order, i.e., ϕ1

w(0, 0), ϕ
2
s(0, 0), . . . , ϕ

n
∗ (0, 0), where

w is the index of the winner and s is the index of the second highest bid.

4. Auctioneers send the winner’s index along with shares gsi(x)-s to all bidders
through private channels. Each bidder locally computes the selling price by
gs(0, 0) = βs. They can agree on βs due to the honest majority assumption.

Fig. 3. B. Secure Auction Protocol Using Addition Operation

Since equal bids have equal masked values, ties among multiple winners can be
detected and handled by assigning priority to bidders or by a random selection.

308 M. Nojoumian and D.R. Stinson

Theorem 1. The proposed protocol defines auction outcomes correctly and only
reveals the difference between each pair of bids to the auctioneers in an active ad-
versary setting. We require m ≥ 4t+1 even if one bidder is dishonest, otherwise,
we require m ≥ 3t+ 1 when we use VSS of [32].

Proof. The security of the verifiable secret sharing scheme that we use is proven
in [32]. We provide further clarifications on the condition of this construction.
Dishonest auctioneers have two possibilities: (a) they either collude to recover
secret bids or (b) they send incorrect shares to disrupt the protocol.
(a) t-privacy: If all colluding auctioneers |∇| ≤ t collect their shares, they are
not able to recover secret bids βk since all secret sharing polynomials gk(x, y)’s
are of degree t and each of which requires t+ 1 shares to be interpolated.
(b) t-resilience: On the other hand, dishonest auctioneers cannot disrupt the
protocol. In the worst case scenario, if a dishonest bidder sends incorrect shares
(i.e., less than 1

4 of shares can be corrupted for an acceptable bid submission)
to honest auctioneers during bid submission and also colluding auctioneers send
incorrect shares (i.e., less than 1

4 of the remaining 3
4 shares) to the selected

auctioneer Aj for the reconstruction of ϕk(0, 0) in the outcome computation
phase, Aj can then use an error correction technique, such as the Reed-Solomon
Codes [19], to interpolate ϕk(0, y). Finally, if dishonest auctioneers |∇| ≤ t send
incorrect shares to bidders in the step-4 of the outcome computation phase, they
can each use error correction to recover βs. If all bidders are honest, m ≥ 3t+1
satisfies the required condition of error correction.

Note that the dishonest bidders cannot disrupt the protocol if they collude
with each others because they are only involved in two tasks. (a) Bid submission
by VSS: either honest auctioneers receive consistent shares with respect to a
secret bid and accept secret sharing, or the bidder is disqualified. In the former
case, the bidder cannot repudiate his bid since those consistent shares are a
strong commitment. (b) Selling price reconstruction: each bidder receives the
winner’s index along with shares of the selling price from auctioneers in order to
compute the outcome, therefore, colluding bidders cannot disrupt the protocol
since majority of bidders are honest and they are able to agree on the winner’s
index and a correct selling price.

At the end of the protocol, all bidders only know auction outcomes. Assuming
bidders do not collude with auctioneers, all losing bids are kept secret from all
parties because δ is an anonymous constant term only known to I. It is worth
mentioning that revealing ϕk(0, 0)’s only discloses the masked values βk + δ and
the difference of each pair of bids to auctioneers, but not the actual bids βk. ��

3.2 Sealed-Bid Second-Price Auction Protocol Using × and +

We now apply a practical approach to hide bids as well as their exact distances.
Similar to the previous approach, bidders initially distribute shares of their bids
among auctioneers by VSS. Then, auctioneers mask shared secrets to define
outcomes. They start by comparing each pair of consecutive bids from β1 all the
way to βn to find the maximum element and repeat this process to define the
second maximum element, i.e., (n− 1) + (n− 2) = 2n− 3 comparisons in total.

Efficient Sealed-Bid Auction Protocols 309

For each comparison, they multiply two bids by a new unknown secret 1 < αl

and then add two new random secrets δl1 and δl2 (as noise) to the resulting values
such that the order of two bids are maintained, i.e., αlβk + δl1 and αlβk+1 + δl2
where 1 ≤ δl1 �= δl2 < αl, shown in Figures 4 and 5. Each time, after executing ×
operation, the degree reduction protocol in [24] is used to adjust the threshold.

Initialization

1. Initializer I generates symmetric polynomials fl, hl1, hl2 ∈ Zq [x, y] of degree t
for 1 ≤ l ≤ (2n − 3) with constant terms αl, δl1, δl2, where q > αl(κ + 1) to
prevent the modular reduction. In fact, we use different l for each comparison.

2. He then sends shares of fl, hl1, hl2 to Ai for 1 ≤ i ≤ m and leaves the scheme.
That is, f i

l (x) = fl(x,ω
i), hi

l1(x) = hl1(x, ω
i) and hi

l2(x) = hl2(x, ω
i) where ω

is a primitive element.

Bid Submission

• We apply the bid submission protocol of the previous construction, that is,
each bidder Bk chooses a random symmetric polynomial gk(x, y) of degree t to
send gki(x) = gk(x, ω

i) to Ai for 1 ≤ i ≤ m through private channels such that
gk(0, 0) = βk. Auctioneers also verify shares similar to that protocol.

Fig. 4. Secure Auction Using Addition and Multiplication Operations

In this protocol, equal bids are not distinguished due to the random noise
δl1 and δl2. Therefore, auctioneers can execute a secure equality test on βw and
βk to detect potential ties between them, i.e., compute γl(βw − βk) where γl is
unknown. If it is zero, two bids are equal, otherwise, they are different.

Theorem 2. The proposed protocol defines auction outcomes correctly and only
reveals the ratio of bids to the auctioneers in an active adversary setting. We
require m ≥ 4t+1 even if a single bidder is dishonest, otherwise, we only require
m ≥ 3t+ 1 when we use VSS of [32].

Proof. We provide a short clarification since the security proof is straightforward
and the same as the previous theorem. In this protocol, the actual difference of
each pair of bids are kept private due to the additive factors δl1 and δl2, where
1 ≤ δl1 �= δl2 < αl. In other words, considering two consequtive bids βk < βk+1

where βk+1−βk = 1, their corresponding masked values have the same ordering,
that is, αlβk + δl1 < αlβk+1 + δl2 even if δl1 = αl − 1 and δl2 = 1. However,
upper and lower bounds of the bids’ ratios are revealed only to auctioneers:

ratio =
αlβk + δl1
αlβk+1 + δl2

<
αlβk + αl

αlβk+1
<

βk + 1

βk+1

ratio =
αlβk + δl1
αlβk+1 + δl2

>
αlβk

αlβk+1 + αl
>

βk

βk+1 + 1

310 M. Nojoumian and D.R. Stinson

Outcome Computation

1. Auctioneers select shares of a pair of bids βk and βk′ . Each Ai locally computes
ψki(x) = f i

l (x) × gki(x) and ψk′i(x) = f i
l (x) × gk′i(x), that is, shares of new

symmetric polynomials. They execute a degree reduction protocol for thresh-
old adjustment [24]. After that, each Ai adds shares hi

l1(x) and hi
l2(x) to the

previous shares, i.e., ψki(x) ← ψki(x) + hi
l1(x) and ψk′i(x) ← ψk′i(x) + hi

l2(x).

2. Each Ai then sends ψki(0) and ψk′i(0) to a selected Aj where i, j ∈ Γ , i.e.,
the set of good auctioneers. Computations performed by Aj are only visible
to the auctioneers. Aj computes polynomials ϕk(0, y) and ϕk′(0, y) such that
ϕk(0, ω

i) = ψki(0) and ϕk′(0, ωi) = ψk′i(0) for at least m− 2|∇| values of i.
3. In fact, ϕk(x, y) = fl × gk + hl1 and ϕk′(x, y) = fl × gk′ + hl2. Therefore, Aj

reveals ϕk(0, 0) = αlβk + δl1 and ϕk′(0, 0) = αlβk′ + δl2. Now, auctioneers can
define which bid is larger by comparing masked values αlβk+δl1 and αlβk′+δl2,
where αl, δl1, δl2 are unknown to everyone.

4. Auctioneers repeat steps 1−3 to determine two highest bids βw and βs accord-
ingly. The winner’s id along with shares gsi(x)-s are sent to all bidders through
private channels. Each Bk locally computes the selling price by gs(0, 0) = βs.
They can agree on βs due to the honest majority assumption.

Fig. 5. Secure Auction Using Addition and Multiplication Operations

It is now easy to observe that the ratio of two bids are bounded as follows:

βk

βk+1 + 1
< ratio <

βk + 1

βk+1

During the outcome computation phase and the execution of a degree re-
duction protocol, auctioneers can verify all computations by means of pairwise
checks (similar to VSS of [32]) to make sure everyone is following the protocols
correctly since all polynomials remain symmetric. We should mention that the
degree reduction is avoidable in some other settings, e.g., having honest bidders
under m ≥ 4t+1 assumption, auctioneers can interpolate a polynomial of degree
2t in the existence of t malicious parties by using error correction [19]. ��

3.3 Sealed-Bid Combinatorial Auction Protocol by Dynamic
Programming

The first unconditionally secure combinatorial auction protocol was proposed
in [33]. (For other type of unconditionally secure auction protocols see [23,17],
i.e., sealed-bid Dutch-style auctions.) [33] applies a dynamic programming DP
technique to determine auction outcomes. This solution is secure only in the
passive adversary model and it is not verifiable. In addition, the number of
auctioneers must be larger than the maximum possible revenue.

In this construction, weight publishers (bidders) submit their valuations as
the degree of secret sharing polynomials. Then, evaluators (auctioneers) use
deg(gk) + deg(gl) = deg(gk × gl) and max{deg(gk), deg(gl)} = deg(gk + gl) to

Efficient Sealed-Bid Auction Protocols 311

implement addition and max operations accordingly. They also use mask pub-
lishers (trusted third parties) to execute these operations securely. The authors
later propose the counterpart construction of this scheme in a computational
setting based on the homomorphic encryption [39].

We first provide an example to show a combinatorial auction model based on
a directed graph, Figure 6. We then illustrate the dynamic programming method
in order to define auction outcomes. Finally, we explain our secure solution to
this problem in an active adversary setting.

Example 1. Suppose six bidders B1, . . . ,B6 propose their evaluations on various
subsets of three items {a, b, c}. For instance, β5 = $5 for all three items, β2 = $3
for {a}, and so on. As you can see, auctioneers earn the maximum revenue if
they sell {b} to the first bidder for $1 and {a, c} to the last bidder for $5.

0: {a,b,c} 1: {a,c} 2: {c} 3: { }
{b}: β1 = $1 {a}: β2 = $3 {c}: β3 = $1

{a,c}: β6 = $5

{a,b}: β4 = $2
{a,b,c}: β5 = $5

Fig. 6. Directed Graph to Model Combinatorial Auctions

r = 3 : f(3) = 0 destination function

r = 2 : f(2) = max{w23 + f(3)} = max{1} = 1

r = 1 : f(1) = max{w12 + f(2), w13 + f(3)} = max{4, 5} = 5

r = 0 : f(0) = max{w01 + f(1), w02 + f(2), w03 + f(3)} = max{6, 3, 5} = 6

More generally, f(r) =
link:r→s
max {wrs + f(s)}, where the value of the destination

function is zero and wrs is the weight of the link between two subsequent nodes r
and s. Therefore, we need two operations addition andmax in order to implement
a sealed-bid combinatorial auction protocol in the active adversary setting.

Similar to the previous construction, I first distributes some multiplicative
and additive factors based on the size of the directed graph. Bidders B1, . . . ,Bn

then distribute their bids by symmetric bivariate polynomials of degree t. In
the computation stage, auctioneers A1, . . . ,Am use the same addition operation
to execute wrs + f(s) = βk + f(s). They also apply the previous comparison
approach to implement themax operation. Finally, they define auction outcomes.

3.4 Sealed-Bid Combinatorial Auction Protocol by Multiple-TSP

In our last construction, we design an approximate secure solution in order to
solve the combinatorial auction problem through a multiple traveling salesman
problem MTSP, where more than one salesman is allowed to be used for finding
the solution. In the fixed destination version of this problem, each salesman

312 M. Nojoumian and D.R. Stinson

returns to his original depot after completing the tour. Similar to the traveling
salesman problem, each city is visited exactly once and the total cost of visiting
cities is minimized [3]. We first illustrate how to model a combinatorial auction
based on the multiple traveling salesman problem and then we demonstrate an
inter-agent negotiation approach [16] to solve this problem, Figure 7.

Example 2. Suppose three bidders B1,B2,B3 propose their bids on various sub-
sets of seven items {a, b, c, d, e, f, g}, as shown below.

B1 → {a, b, c} : $12 or {a, b} : $5 or {a, c} : $7
B2 → {d, e} : $7 or {b, d, e} : $13 or {c, d, e} : $11
B3 → {f, g} : $9 or {b, f, g} : $16 or {c, f, g} : $14

In the initialization phase, auctioneers assign all items to three bidders for
the total price of $28, Figure 7 left-hand side. In the subsequent negotiation
stages, they maximize the selling price. For instance, both items {b} and {c}
can be release from the first bidder’s set. Since B1 pays more money for {a, c}
compared to {a, b}, therefore {b} is released with 12− 7 = $5 cost. On the other
hand, B2 pays extra 13−7 = $6 > $5 for {b} while B3 pays extra 16−9 = $7 > $5
for that. Therefore, {b} is assigned to the last bidder and the total selling price
is increased to $30 through one round of negotiation, Figure 7 right-hand side.

{a,b,c}: 1 = $12 {d,e}: 2 = $7 {f,g}: 3 = $9 {a,c}: 1 = $7 {d,e}: 2 = $7 {b,f,g}: 3 = $16{ , , } 1

b d f

{ , } 2 { g} 3 { , } 1

bd f

{ , } 2 { g} 3

Plus $2

a c e g a c e g

Fig. 7. Multiple Traveling Salesman Problem for Modeling Combinatorial Auctions

Similar to our previous construction, we require addition (minus is the same)
and max (or comparison) operations to implement the negotiation protocol in a
secure setting. We can also define a time interval for the entire protocol in order
to limit the number of negotiation rounds for an approximate solution.

4 Complexity and Properties

We now clarify why the existing bitwise operations are too expensive to construct
sealed-bid auction protocols. As we stated earlier, these protocols use VSS for
every single bit of each bid rather than a single VSS for each bid. Let � = !log2 q"
denotes the number of bits of each bid, i.e., the size of each finite field’s element.

The round complexity is measured by the number of rounds in which players
execute the multiplication protocol and the communication complexity is mea-
sured by the number of invocations of the multiplication protocol. For instance,

Efficient Sealed-Bid Auction Protocols 313

to compute α1α2α3α4, α1α2 and (α1α2)α3 and (α1α2α3)α4 can be computed
sequentially, or α1α2 and α3α4 can be computed in parallel in order to compute
(α1α2)(α3α4). The former method takes 3 rounds with 3 invocations whereas
the later method takes 2 rounds with 3 invocations. In all complexity analyses,
the goal is to perform parallel multiplications as much as possible.

To construct bitwise operations, Bit-Decomposition BD protocol is proposed
in [9] to convert a polynomial sharing of a secret into shares of its bits. This
protocol takes 114 rounds and 118� + 110 � log � invocations. The authors also
provide a protocol, named Bitwise Less-Than BIT-LT, to compare two decom-
posed elements in 19 rounds with 22� invocations. Therefore, to compare two
elements, they must be decomposed in parallel and then they can be compared,
i.e., (114 + 19) rounds and (2 ∗ (118�+ 110 � log �) + 22�) invocations.

The authors in [22] show that the comparison protocol can be simplified by
using simpler subprotocols, i.e., (38 + 6) rounds and (2 ∗ (93�+94 � log �) + 19�)
invocations. They also show that the BD protocol itself can be simplified to
achieve even a better result, i.e., (25+6) rounds and (2 ∗ (93�+47 � log �)+ 19�)
invocations. Finally, they propose a new comparison protocol without applying
the DB protocol while using other bitwise operations. This construction takes
(13 + 2) rounds and (3 ∗ (93� + 1) + 2) invocations. Note that our comparison
protocol only takes 1 round for two multiplications in parallel and 2 invocations.

The summary of these analyses are presented in Table 2. Even by using ele-
ments with � = 128 bits, it is impractical to use any of these bitwise operations.
For instance, in the best case scenario, it requires 35, 717 secure multiplications in
order to perform one single comparison. Having only 10 bids, it requires 350, 717
secure multiplications to find the highest bid whereas our protocol only requires
20 multiplications. This implies that avoiding bitwise operations is better than
revealing partial information like ratio of bids.

Table 2. Single Comparison’s Cost in Terms of the Number of Multiplications

Secure Comparison Number Communication � = 128: Number of

Protocol of Rounds Complexity Secure Multiplications

Our 2nd Protocol 1 2 2

[22] not using BD 15 279� + 5 35, 717

[22] using BD 31 205� + 94 � log � 110, 464

[22] simplifying [9] 44 205� + 188 � log � 194, 688

[9] 133 258� + 220 � log � 230, 144

In general, sealed-bid auction protocols have some essential properties [28] as
listed below. (a) Correctness : determining auction outcomes correctly, i.e., the
winners and the selling price. (b) Privacy: preserving privacy of the losing bids.
(c) Verifiability: parties who exchange money such as bidders and the seller (if
applicable) must be able to verify auction outcomes. (d) Fairness : bidders must
not be able to modify and/or deny (a.k.a non-repudiation) the submitted bids.

314 M. Nojoumian and D.R. Stinson

(e) Robustness : none of the active parties are assumed to be honest and malicious
behavior must be tolerated. (f) Anonymity: the identities of the losers must be
kept secret. Excluding property (f), our protocols have all the above features.

We also would like to highlight some important points regarding our protocols.
Although partial information like the ratio of the bids might be revealed to
auctioneers, our protocols keep the actual values of the losing bids secret. This
is much better than using impractical bitwise approach to fully hide the losing
bids. Moreover, revealing the ratio of the bids is better than revealing the exact
difference between two bids, i.e., saying the 2nd-highest bid is 3/4 of the winning
bid or saying the 2nd-highest bid is exactly $10 less than the winning bid. In our
schemes, auctioneers perform similar to an intermediate computation engine. In
other words, bidders determine the actual value of the selling price themselves by
outsourcing part of the computation, as in the client-server MPC model. Finally,
our initializer, who can be replaced by MPC, is not an active party when the
auction starts.

5 Concluding Remarks

We initially illustrated the lack of efficient solutions for the sealed-bid auction
protocols that are secure in an active adversary setting (without using costly bit-
wise operations). We therefore proposed four secure constructions with different
properties and applications. The summary of our contributions are presented in
Table 3. Note that m ≥ 2t+ 1 can be tolerated using complicated VSS of [29].

Table 3. Sealed-Bid Auction Protocols Using VSS of [32]

Protocol Adv. A1..m B1..n Assumption Opt. Reveal

2nd-price + bids’

honest m ≥ 3t+ 1 differences

2nd-price active dishonest or or ratio

combinatorial DP dishonest m ≥ 4t+ 1 +,× of

combinatorial MTSP bids

It is quite challenging to construct sealed-bid auction protocols in an active
adversary model without using a trusted party. In other words, if one relaxes
these assumptions, he can decrease the computation and communication com-
plexities. For instance, constructing the proposed schemes by considering the
simple passive adversary model or using a trusted authority who remains in the
scheme while the protocol is being executed. In addition, the winner determi-
nation problem of a general combinatorial auction is NP-complete and imple-
menting this problem in a secure fashion adds extra computational cost to the
protocol. Therefore, it is reasonable to apply simpler protocols (compared to
bitwise approach where every single bit of bids is shared) along with approxi-
mate solutions to define auction outcomes. In this case, even by having unlimited
computational power, we can significantly improve the communication cost.

Efficient Sealed-Bid Auction Protocols 315

References

1. Abe, M., Suzuki, K.: M+1-st price auction using homomorphic encryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer,
Heidelberg (2002)

2. Baudron, O., Stern, J.: Non-interactive private auctions. In: Syverson, P.F. (ed.)
FC 2001. LNCS, vol. 2339, pp. 354–377. Springer, Heidelberg (2002)

3. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Sym-
posium on Theory of Computing, STOC, pp. 1–10 (1988)

5. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Confer-
ence, vol. 48, pp. 313–317. AFIPS Press (1979)

6. Brandt, F.: A verifiable, bidder-resolved auction protocol. In: 5th Int. Workshop
on Deception, Fraud and Trust in Agent Societies, Special Track on Privacy and
Protection with Multi-Agent Systems, pp. 18–25 (2002)

7. Cachin, C.: Efficient private bidding and auctions with an oblivious third party. In:
ACM Conference on Computer and Communications Security, pp. 120–127 (1999)

8. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pp. 383–395 (1985)

9. Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally se-
cure constant-rounds multi-party computation for equality, comparison, bits and
exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 285–304. Springer, Heidelberg (2006)

10. Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction
service. IEEE Transactions on Software Eng. 22(5), 302–312 (1996)

11. Garay, J.A., Schoenmakers, B., Villegas, J.: Practical and secure solutions for in-
teger comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 330–342. Springer, Heidelberg (2007)

12. Harkavy, M., Tygar, J.D., Kikuchi, H.: Electronic auctions with private bids. In:
3rd Workshop on E-Commerce, pp. 61–74. USENIX Association (1998)

13. Kikuchi, H.: (M+1)st-price auction protocol. In: Syverson, P.F. (ed.) FC 2001.
LNCS, vol. 2339, pp. 341–363. Springer, Heidelberg (2002)

14. Kikuchi, H., Harkavy, M., Tygar, J.D.: Multi-round anonymous auction protocols.
IEICE Transaction on Information and Systems 82, 769–777 (1999)

15. Kikuchi, H., Hotta, S., Abe, K., Nakanishi, S.: Distributed auction servers resolving
winner and winning bid without revealing privacy of bids. In: 7th Int. Conference
on Parallel and Distributed Systems, pp. 307–312. IEEE (2000)

16. Kim, I.C.: Task reallocation in multiagent systems based on vickrey auctioning.
In: International Conference on Knowledge-Based and Intelligent Information and
Engineering Systems, pp. 40–44. IOS Press (2002)

17. Krishnamachari, S., Nojoumian, M., Akkaya, K.: Implementation and analysis of
dutch-style sealed-bid auctions: Computational vs unconditional security (2014)
(Under Review Manuscript)

18. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg
(2003)

316 M. Nojoumian and D.R. Stinson

19. MacWilliams, F., Sloane, N.: The theory of error-correcting codes. North-Holland
Amsterdam (1978)

20. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)

21. Nguyen, K.Q., Traoré, J.: An online public auction protocol protecting bidder
privacy. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841,
pp. 427–442. Springer, Heidelberg (2000)

22. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

23. Nojoumian, M., Stinson, D.R.: Unconditionally secure first-price auction protocols
using a multicomponent commitment scheme. In: Soriano, M., Qing, S., López, J.
(eds.) ICICS 2010. LNCS, vol. 6476, pp. 266–280. Springer, Heidelberg (2010)

24. Nojoumian, M., Stinson, D.R.: On dealer-free dynamic threshold schemes. Ad-
vances in Mathematics of Communications, AMC 7(1), 39–56 (2013)

25. Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.: Practical secrecy-preserving,
verifiably correct and trustworthy auctions. Electronic Commerce Research and
Applications 7(3), 294–312 (2008)

26. Peng, K., Boyd, C., Dawson, E.: Optimization of electronic first-bid sealed-bid
auction based on homomorphic secret sharing. In: Dawson, E., Vaudenay, S. (eds.)
Mycrypt 2005. LNCS, vol. 3715, pp. 84–98. Springer, Heidelberg (2005)

27. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: Robust, privacy protecting and
publicly verifiable sealed-bid auction. In: Deng, R.H., Qing, S., Bao, F., Zhou, J.
(eds.) ICICS 2002. LNCS, vol. 2513, pp. 147–159. Springer, Heidelberg (2002)

28. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: Five sealed-bid auction models.
In: Australasian Information Security Workshop Conference, pp. 77–86. Australian
Computer Society (2003)

29. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority. In: 21th Annual ACM Symposium on Theory of Computing, STOC,
pp. 73–85 (1989)

30. Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng, Y.
(eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000)

31. Shamir, A.: How to share a secret. Comm. of the ACM 22(11), 612–613 (1979)
32. Stinson, D.R., Wei, R.: Unconditionally secure proactive secret sharing scheme with

combinatorial structures. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 200–214. Springer, Heidelberg (2000)

33. Suzuki, K., Yokoo, M.: Secure combinatorial auctions by dynamic programming
with polynomial secret sharing. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357,
pp. 44–56. Springer, Heidelberg (2003)

34. Suzuki, K., Yokoo, M.: Secure multi-attribute procurement auction. In: Song, J.-S.,
Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 306–317. Springer,
Heidelberg (2006)

35. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal
of Finance 16(1), 8–37 (1961)

36. Viswanathan, K., Boyd, C., Dawson, E.: A three phased schema for sealed bid
auction system design. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000.
LNCS, vol. 1841, pp. 412–426. Springer, Heidelberg (2000)

Efficient Sealed-Bid Auction Protocols 317

37. Watanabe, Y., Imai, H.: Reducing the round complexity of a sealed-bid auction
protocol with an off-line ttp. In: ACM Conference on Computer and Communica-
tions Security, CCS, pp. 80–86 (2000)

38. Yao, A.C.-C.: Protocols for secure computations. In: 23rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pp. 160–164 (1982)

39. Yokoo, M., Suzuki, K.: Secure multi-agent dynamic programming based on homo-
morphic encryption and its application to combinatorial auctions. In: 1st Interna-
tional Joint Conference on AAMAS, pp. 112–119. ACM (2002)

Information-Theoretical Secure Verifiable Secret

Sharing with Vector Space Access Structures
over Bilinear Groups

Jie Zhang1 and Futai Zhang1,2

1 School of Computer Science and Technology, Nanjing Normal University
2 Jiangsu engineering research center on information security and privacy protection

Technology
210097, Nanjing, China

Abstract. Verifiable secret sharing (VSS) is a fundamental tool of
threshold cryptography and distributed computing. A number of VSS
schemes for sharing a secret that is an element of a finite field, either
on threshold access structures or on general access structures have been
available. In this paper, we study the verifiably sharing of a random el-
ement of a bilinear group on vector space access structures. We propose
such two information-theoretical secure schemes: a basic scheme and a
modified one with improved efficiency. The basic one is more general for
applications while the modified one has a smaller computational cost
compared with the basic one. The computational cost as well as the
security analysis for the proposed schemes are presented.

Keywords: Secret sharing, Verifiable secret sharing, Information-
theoretical secure, Vector space access structure, Bilinear pairing.

1 Introduction

Secret sharing [1] is a method of distributing shares of a secret among a set P of
participants in such a way that only qualified subsets of P can reconstruct the
secret from their shares. The earliest and most common secret sharing schemes
are threshold ones. In a (t, n) threshold secret sharing scheme, the dealer uses
a probabilistic polynomial time algorithm to split the secret into n shares and
sends them secretly to the n participants (or share-holders) such that using
t (the threshold) or more shares can reconstruct the secret, while using less
than t shares can not recover or even reveal any information of the secret. In
real applications, the traditional threshold secret sharing schemes have some
limitations: the first limit is that the dealer should always be honest, and the
second is it requires all participants possess exactly the equal position, power
and reliability.

To over the first limitation, the concept of Verifiable secret sharing (VSS) [2]
was introduced. a VSS scheme is a secret sharing scheme with the special prop-
erty that every participant is able to verify whether the share distributed to him

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 318–329, 2014.
c© Springer International Publishing Switzerland 2014

Information-Theoretical Secure Verifiable Secret Sharing 319

by a dealer is correct. Its emergence comes from the reasonable distrust to the
dealer. In order to deal with the second limitation, general secret sharing schemes
have been studied, which can be used to share a secret on any access structures
as needed and do not have to assume the same position of share-holders. By
now, a number of VSS schemes for sharing secrets from a finite field, both on
threshold access structures[3, 4] and on general access structures[5–9], have been
available.

The vector space construction[10, 11], with good algebraic properties, is a
method to implement secret sharing schemes for a family of access structures
called vector space access structures that includes threshold access structures as
a particular case. F.Zhang et al. specially studied VSS for sharing a secret from
a finite field on vector space access structures and proposed two schemes: the ef-
ficient one in [8] and the information-theoretical secure one in [9]. Recently, the
bilinear pairing-based cryptography has received much attention from crypto-
graphic researchers and many bilinear pairing-based schemes and protocols have
been proposed[12–16]. In many of the pairing based cryptosystems, the private
key of a user is an element (or elements) of a bilinear group. To the secure
management of such privates, verifiably sharing of secrets from a bilinear group
is needed. However, few VSS schemes for sharing secrets from a bilinear group
on vector space access structures can be found in the literature. For the good
properties of vector space access structures and the prosperous of pairing based
cryptosystems, in this paper we investigate VSS on vector space access struc-
tures that shares secrets from bilinear groups. We present a basic VSS scheme
with detailed description and particularly analyze its security and computational
cost. Then we give a modified one with improved efficiency while enjoy the same
level of security with the first one.

Organization:

In Section 2 we briefly describe the concepts of bilinear pairing and access struc-
ture and some related mathematical operations. Then in Section 3 we present
a basic VSS scheme for sharing a random secret of a bilinear group on vector
space access structures with detailed description. We also analyze the security
and computational cost of our basic scheme. After that in Section 4 we give
a modified VSS scheme with a brief analysis of its security and computational
cost. At last we conclude our paper in Section 5.

2 Preliminaries and Definitions

We briefly review the concepts of bilinear pairing and access structure. Then we
give two mathematical operations on vector space and bilinear group which will
be used in the construction of our VSS schemes.

2.1 Bilinear Pairings

Let G1 and G2 be two groups with the same order q, where q is a large prime.
Here, we assume that G1 is an additive cyclic group, and G2 is a multiplicative

320 J. Zhang and F. Zhang

cyclic group. A map ê: G1 ×G1 −→ G2 is called a bilinear pairing (or bilinear
map) if it satisfies the following three conditions:

1. Bilinear: For all P,Q ∈ G1 and a, b ∈ Z∗
q , ê(aP, bQ) = ê(P,Q)ab.

2. Non-degenerate: There exist P,Q ∈ G1 such that ê(P,Q) �= 1.
3. Computable: For all P,Q ∈ G1, there exists an efficient algorithm to compute

ê(P,Q).

We say that G1 is a bilinear group if there exists a group G2 and a bilinear
pairing ê : G×G1 −→ G2 as above, where ê and the group action in G1 and G2

can be computed efficiently.

2.2 Access Structure

A secret sharing scheme involves of a dealer D who holds the secret and a set
H = {H1, ..., Hn} of participants (share-holders) who receive shares of a secret
from the dealer. An access structure Γ onH specifies a family of qualified subsets
of H that are allowed to reconstruct the shared secret using their secret shares.
We denote by Γ0 = {A1, ..., Am} the basis of Γ , that is the set of minimal
elements of Γ under inclusion. Here we briefly describe the notion of the most
common threshold access structure and the more general vector space one which
actually involves the threshold one.

– Threshold Access Structure: A (k, n) threshold access structure consists
of all those subsets of H containing at least t of the n share-holders.

– Vector Space Access Structure: Let the secret space K = GF (q) be a
finite field and L = Kt the vector space over K with dimension t. An access
structure Γ is said to be a vector space access structure if there exists a
function

ψ : {D} ∪H → L (1)

such that A ∈ Γ if and only if the vector ψ(D) can be expressed as a linear
combination of the vectors in the set {ψ(P)|P ∈ A}.

The vector space construction is a method to implement secret sharing schemes
for vector space access structures that includes threshold access structures as
a particular case. Obviously the Shamir’s threshold scheme[17] can be seen
as a vector space secret sharing scheme by taking ψ(D) = (1, 0, ..., 0) and
ψ(Hi) = (1, xi, ..., xi

t−1), where x1, x2..., xn are n distinct, nonzero elements
of K[18].

2.3 Notations for Two Mathematical Operations

Let G1, q be the same as specified in section 2.1. Denote by K = GF (q) the finite
field with q elements. Assume α = (a1, ..., at), ν = (v1, ..., vt), V = (V1, ..., Vt),
where a1, ..., at, v1, ..., vt are elements of finite field K and V1, ..., Vt are elements
of the additive group G1. In our construction, we will use the operation of inner
product in Kt, and an operation of an element of Kt with an element in Gt

1.
They are defined as follows.

Information-Theoretical Secure Verifiable Secret Sharing 321

– α • ν = a1v1 + · · ·+ atvt
– α ◦ V = a1V1 + · · ·+ atVt

Obviously the result of the first operation is an element in K and the second
belongs to G1.

3 Verifiable Secret Sharing on Vector Space Access
Structures over Bilinear Groups

In this section, firstly we show a technique of sharing a secret that is a random el-
ement of a bilinear group on vector space access structures. Then we present the
corresponding information-theoretical secure VSS scheme. After that we demon-
strate the correctness and analyze the security and the computational cost of
our scheme.

3.1 Secret Sharing on Vector Space Access Structures over Bilinear
Groups

LetD be dealer and H = {H1, ..., Hn} a set of n players (share-holders). Suppose
Γ is the vector space access structure with basis Γ0 defined on H . Both the secret
space and the share space are G1 which is an additive bilinear group with order
q as specified in section 2.

To share a random secret S ∈ G1, the dealer D firstly publishes a map ψ:
{D} ∪H → Zt

q. Then D randomly chooses a secret vector V = (V1, ..., Vt) from
Gt

1 such that ψ(D) ◦ V = a1V1 + · · · + atVt = S. Denote by α = ψ(D) =
(a1, ..., at), αj = ψ(Hj) = (aj1, ..., ajt). The share distributed to Hj by D is
Sj = ψ(Hj) ◦ V = aj1V1 + · · ·+ ajtVt.

When a qualified subset A = {Hi1, ..., Hil} of Γ intends to reconstruct the
secret, members of A firstly compute χ from χ ◦ ψ(A) = ψ(D), where χ is a
vector belongs to Z l

q and ψ(A) is a matrix with row vectors ψ(Hj1), ..., ψ(Hjl).
And then the secret can be calculated from S = χ ◦ SA with SA = (Sj1, ..., Sjl),
where Sji is the share held by player Hji.

3.2 Verifiable Secret Sharing on Vector Space Access Structures
over Bilinear Groups

– Parameters:
Assume G1, G2 are two groups with the same order q and ê : G1×G1 −→ G2

is the bilinear map as we refer previously in Section 2. Let P , Q be two
different generators of G1 and nobody knows logP Q. The elements P,Q can
either be chosen by a trusted center when the system is initialized, or by
(some of) the participants using a coin-flipping protocol. The secret space
and the share space are G1 and G

2
1 respectively and Gt

1 = {(W1,W2, ...,Wt) :
Wi ∈ G1, i = 1, 2, ..., t}. The access structure Γ is a vector space access
structure with basis Γ0. Assume S is the secret randomly chosen from G1 to
be shared and t is the maximum cardinal number of the minimum qualified
subsets.

322 J. Zhang and F. Zhang

– Algorithm of Sharing:
• The dealer D publishes map ψ: {D} ∪ H → Zt

q. Assume that ψ(D) =
(a1, ..., at) = α and ψ(Hj) = (aj1, ..., ajt) = αj .

• D randomly chooses two secret vectorsV = (V1, ..., Vt) andB = (B1, ..., Bt)
fromGt

1 such thatψ(D)◦V = a1V1+ · · ·+atVt = S. LetR = ψ(D)◦B =
a1B1 + · · ·+ atBt.

• D computes and broadcasts E0 = E(S,R) = ê(S, P)ê(R,Q) and Ek =
E(Vk, Bk) = ê(Vk, P)ê(Bk, Q) for k = 1, ..., t, which are generally known
as commitments of the secret S and the vector V .

• D computes

Sj = ψ(Hj) ◦ V = aj1V1 + · · ·+ ajtVt, (2)

Rj = ψ(Hj) ◦B = aj1B1 + · · ·+ ajtBt (3)

and sends (Sj , Rj) secretly to Hj for j = 1, ..., n.
– Algorithm of Verification:

When Hj has received his share (Sj , Rj) he checks if

E0 =
t∏

k=1

Ek
ak (4)

E(Sj , Rj) = ê(Sj , P)ê(Rj , Q) =

t∏
k=1

Ek
ajk (5)

– Algorithm of Reconstruction:
Suppose A = {Hi1, ..., Hil} ∈ Γ is a qualified subset of H . And the players in
A cooperate to reconstruct the shared secret. Each player Hj(j = i1, ..., il)
broadcasts his secret share (Sj , Rj) to others in A. Every one can verify the
validity of shares provided by the others through Eq.(5).
After receiving all the valid shares of players in A, they firstly computes χ
from χ◦ψ(A) = ψ(D) where χ is a vector belongs to Z l

q and ψ(A) is a matrix
with row vectors ψ(Hj1), ..., ψ(Hjl). And then the secret can be calculated
from S = χ ◦ SA, where SA = (Sj1, ..., Sjl) and Sji comes from the secret
share (Sji, Rji) of the share-holder Hji. Actually, as long as they obtain the
shares whose holders are enough to determine a minimum qualified subset
of A, the secret can be reconstructed effectively.

3.3 Correctness

In this subsection we show the correctness of the newly proposed VSS scheme
from two aspects: correctness of the verification algorithm and correctness of the
reconstruction algorithm.

– Correctness of the Verification Algorithm:

Theorem 1. Verification is successful if and only if the dealer follows the
protocol correctly.

Information-Theoretical Secure Verifiable Secret Sharing 323

Proof. On one hand, if the dealer D follows the protocol correctly, then we
can obtain the following equations:

S = ψ(D) ◦ V = a1V1 + · · ·+ atVt, R = ψ(D) ◦B = a1B1 + · · ·+ atBt (6)

Sj = ψ(Hj) ◦V = aj1V1 + · · ·+ ajtVt, Rj = ψ(Hj) ◦B = aj1B1 + · · ·+ ajtBt

(7)
So we have

E0 = ê(S, P)ê(R,Q)

= ê(a1V1 + · · ·+ atVt, P)ê(a1B1 + · · ·+ atBt, Q)

= (ê(V1, P)ê(B1, Q))a1 · · · (ê(Vt, P)ê(Bt, Q))at

=

t∏
k=1

(ê(Vk, P)ê(Bk, Q))ak =

t∏
k=1

Ek
ak

and

E(Sj , Rj) = ê(Sj , P)ê(Rj , Q)

= ê(aj1V1 + · · ·+ ajtVt, P)ê(aj1B1 + · · ·+ ajtBt, Q)

= (ê(V1, P)ê(B1, Q))aj1 · · · (ê(Vt, P)ê(Bt, Q))ajt

=

t∏
k=1

(ê(Vk, P)ê(Rk, Q))ajk =

t∏
k=1

Ek
ajk

On they other hand, if E0 =
∏t

k=1Ek
ak and E(Sj , Rj) =

∏t
k=1Ek

ajk , then

ê(S, P)ê(R,Q) = E(S,R) =

t∏
k=1

Ek
ak

=

t∏
k=1

(ê(Vk, P)ê(Bk, Q))ak

=

t∏
k=1

(ê(Vk, P)ak ê(Bk, Q)ak)

=
t∏

k=1

ê(Vk, P)ak

t∏
k=1

ê(Bk, Q)ak

= ê(

t∑
k=1

akVk, P)ê(

t∑
k=1

akBk, Q)

ê(Sj , P)ê(Rj , Q) = E(Sj , Rj) =

t∏
k=1

Ek
ajk

324 J. Zhang and F. Zhang

=
t∏

k=1

(ê(Vk, P)ê(Bk, Q))ajk

=
t∏

k=1

(ê(Vk, P)
t∏

k=1

ê(Bk, Q))ajk

=

t∏
k=1

ê(Vk, P)ajk

t∏
k=1

ê(Bk, Q)ajk

= ê(

t∑
k=1

ajkVk, P)ê(

t∑
k=1

ajkBk, Q)

So we have S =
∑t

k=1 akVk = ψ(D) ◦ V and Sj =
∑t

k=1 ajkVk = ψ(Hj) ◦ V
which means that the vector V has been properly chosen and the share Sj

sent to Hj is valid.

– Correctness of the Reconstruction Algorithm:
From the distribution algorithm we know that S = ψ(D) ◦ V = α ◦ V =
a1V1 + · · · + atVt and Sj = ψ(Hj) ◦ V = αj ◦ V = aj1V1 + · · · + ajtVt

for j = 1, ..., n. For a qualified subset A ∈ Γ , without loss of generality
we assume A = {H1, ..., Hk}, the vector ψ(D) can be expressed as a linear
combination of the vectors ψ(H1), ..., ψ(Hk). That is, there must be a vector
χ = (x1, ..., xk) ∈ Zk

q such that x1α1 + · · · + xkαk = α. So we have ai =
x1a1i + · · ·+ xkaki for i = 1, ..., t. Hence

S = a1V1 + · · ·+ atVt

= (x1a11 + · · ·+ xkak1)V1 + · · ·+ (x1a1t + · · ·+ xkakt)Vt

= x1(a11V1 + · · ·+ a1tVt) + · · ·+ xk(ak1V1 + · · ·+ aktVt)

= x1S1 + · · ·+ xkSk = χ ◦ (S1, ..., Sk) = χ ◦ SA.

3.4 Security Analysis

Consider a static and strong admissible adversary[19], i.e. the adversary has de-
termined which share-holders to corrupt before the protocol being implemented,
and can corrupt all but one player in an authorized subset. The only constraint
on this adversary is that at least one authorized subset must remain pure i.e.
composed of all uncorrupted players. The security of a VSS scheme involves the
following three aspects.

– The public information reveals no information about the secret and the
shares.

– Adversary cannot calculate the secret from the shares of those corrupted
players.

– There must be at lest one qualified subset whose members are all uncor-
rupted, and adversary can not prevent such a qualified subset from recon-
structing the secret.

Information-Theoretical Secure Verifiable Secret Sharing 325

We analyze our scheme’s security including the three aspects above and present
the following theorems with proofs.

Theorem 2. The adversary can not get any information about the secret S
and the shares (Sj , Rj) from the open information, i.e. the commitments of the
secret S and the vectors V do not reveal any information about the secret and
the shares.

Proof. The public commitments are E0 = E(S,R) = ê(S, P)ê(R,Q) and Ek =
E(Vk, Bk) = ê(Vk, P)ê(Bk, Q) for k = 1, ..., t. As R is randomly chosen from G1

and B is a random vector in Gt
1, ê(R,Q) and ê(Bk, Q) are uniformly distributed

in G2. Consequently, E0 = ê(S, P)ê(R,Q) and Ek = ê(Vk, P)ê(Bk, Q) are uni-
formly distributed in G2. This means that the public commitment E0 reveals no
information about S and those commitments Ek do not reveal any information
about Vk, Bk and thus reveals no information about V,B.

According to the distribution algorithm, for each j = 1, ..., n, the share
(Sj , Rj) of Hj is calculated from Sj = ψ(Hj) ◦ V and Rj = ψ(Hj) ◦ B. As
the public commitments reveal no information about V and B, the adversary
can not acquire any information about (Sj , Rj) from the public commitments
either.

Theorem 3. With the shares of those corrupted participants, the static and
strong admissible adversary can derive no information about the share kept by
any honest one and consequently the secret S.

Proof. We learn that the adversary can not get any information about the secret
vectors V and B from Theorem 2. Nevertheless according to the distribution
algorithm, to acquire the shares of honest players, the adversary has no choice
but compute V and B merely using the shares of corrupted ones. Suppose that
the corrupted players are H1, ..., Hk. The adversary has to compute V from the
following set of equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ(H1) ◦ V = α1 ◦ V = a11V1 + a12V2 + · · ·+ a1tVt = S1

ψ(H2) ◦ V = α2 ◦ V = a21V1 + a22V2 + · · ·+ a2tVt = S2

...
ψ(Hk) ◦ V = αk ◦ V = ak1V1 + ak2V2 + · · ·+ aktVt = Sk

(8)

i.e. ⎡⎢⎢⎢⎣
a11 a12 · · · a1t
a21 a22 · · · a2t
...

...
ak1 ak2 · · · akt

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
V1
V2
...
Vt

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
S1

S2

...
Sk

⎤⎥⎥⎥⎦ (9)

326 J. Zhang and F. Zhang

Since {H1, ..., Hk} /∈ Γ , the vector collection {ψ(H1), ..., ψ(Hk)} can not lin-
early express ψ(D), i.e. there does not exist any vector (x1, ..., xk) such that

(x1, · · · , xk)

⎡⎢⎢⎢⎣
ψ(H1)
ψ(H2)

...
ψ(Hk)

⎤⎥⎥⎥⎦ = (a1, · · · , at) (10)

Thus the rank of vector collection {ψ(H1), · · · , ψ(Hk)} must be no more than
k, which means that Eq.(8) has at least q answers and the probability for
the adversary to dope out the genuine V is not more than 1

q . Accordingly the
probability to calculate the correct share of any uncorrupted player is not more
than 1

q . As q is a large primer, this probability can be ignored.

Theorem 4. The adversary can not prevent uncorrupted players from recon-
structing the secret

Proof. From the definition of the adversary we know that there is at least one
qualified subset must remain pure, i.e. all its members are uncorrupted. The dis-
tribution and reconstruction algorithms imply that the adversary cannot prevent
such a qualified subsect from recovering the secret.

3.5 Computational Cost

We just count those time-consuming operations in distribution phase, verification
phase and reconstruction phase. Let P , S and E denote the operation of bilinear
pairing from G1 to G2, scalar multiplication in G1 and exponentiation in G2

respectively. Assume there are t participants and the cost of verification is not
included in the reconstruction phase. The result is list in the following table.

P S E
distribution phase 2t+ 2 2t+ 2nt 0
verification phase 2n 0 nt+ t
reconstruction phase 0 t 0

Our reconstruction algorithm requires no pairing operations and no exponenti-
ations in G2, so it is very efficient.

4 A Modified Scheme with Improved Efficiency

In this section we propose a modified scheme with higher efficiency. The only
constraint on the modified scheme is that the dealer knows the discrete logarithm
of the secret, i.e. the secret can be generated by the dealer as his wish. We just
describe the procedure of the new scheme and analyze its efficiency comparing
with the former one. The correctness and security are similar as what we have
described for the basic scheme thus we omit them here.

Information-Theoretical Secure Verifiable Secret Sharing 327

4.1 Description of the Scheme

– Parameters: Let D be the dealer, H = {H1, ..., Hn} the set of share-
holders. The common parameters (G1, G2, ê, P,Q, q), and the access struc-
ture Γ are defined the same as in the former scheme. The only difference is
that before distribution, D firstly chooses a random s ∈ Zq and set S = sP
as the secret to be shared.

– Algorithm of Sharing:
• D publishes map ψ: {D}∪H → Zt

q. Assume that ψ(D) = (a1, ..., at) = α
and ψ(Hj) = (aj1, ..., ajt) = αj .

• D randomly chooses two secret vectors ν = (v1, ..., vt) and β = (b1, ..., bt)
from Zt

q such that ψ(D) • ν = a1v1 + · · ·+ atvt = s. Set r = ψ(D) • β =
a1b1 + · · ·+ atbt.

• Compute and broadcast E0 = ê(P, P)sê(P,Q)r and Ek = ê(P, P)vk

ê(P,Q)bk for k = 1, ..., t.
• D computes

Sj = (ψ(Hj) • ν)P = (aj1v1 + · · ·+ ajtvt)P, (11)

Rj = (ψ(Hj) • β)P = (aj1b1 + · · ·+ ajtbt)P (12)

and sends (Sj , Rj) secretly to Hj for j = 1, ..., n.
– Algorithm of Verification:

When Hj has received his share (Sj , Rj) he checks if

E0 =

t∏
k=1

Ek
ak (13)

E(Sj , Rj) = ê(Sj , P)ê(Rj , Q) =
t∏

k=1

Ek
ajk (14)

– Algorithm of Reconstruction:
Let A = {Hi1, ..., Hil} ∈ Γ be a qualified subset of H to reconstruct the
shared secret. Each player Hj(j = i1, ..., il) broadcasts his secret share
(Sj , Rj) to others in A. Every one can verify the validity of shares provided
by others through Eq.(14).
After receiving all the valid shares of a qualified subset, they firstly computes
χ from χψ(A) = ψ(D) where χ is a vector belongs to Z l

q and ψ(A) is a matrix
with row vectors ψ(Hj1), ..., ψ(Hjl). And then the secret can be calculated
from S = χ◦SA with SA = (Sj1, ..., Sjl). Actually as long as they obtain the
shares whose holders are enough to determine a minimum qualified subset
of A, the secret can be reconstructed effectively.

4.2 Computational Cost

To compare the computational cost of the modified scheme with the former one,
we count those time-consuming operations in different phases and list them in
the following table. The notation is defined the same as in Section 4.

328 J. Zhang and F. Zhang

scheme in Section 3 scheme in Section 4
distribution phase (2t+ 2)P + (2nt+ t)S 2P + 2nS + (2t+ 2)E
verification phase 2nP + (nt+ t)E 2nP + (nt+ t)E
reconstruction phase tS tS

Although exponentiation in G2 increases in the modified scheme, bilinear pairing
and scalar multiplication in G1 are reduced. As computing bilinear pairings is
the most time-consuming operation, it is reasonable to say that the modified
scheme has a smaller computational cost.

5 Conclusion

General VSS is widely used in cryptography and the pairing-based cryptography
is a very active research field recent years. In this paper, we have investigated the
VSS on vector space access structures over bilinear groups. We have presented
two unconditionally secure VSS schemes on vector space access structures for
sharing secrets in a bilinear group which may be private keys of some pairing
based cryptosystems. In addition to analyze the the correctness and computa-
tional cost of the proposed schemes, we also present security proofs to show the
information-theoretic security of the basic scheme. Our newly proposed schemes
are efficient and may have practical applications in multiparty computations in-
volving bilinear pairings, safeguarding the private keys of some pairing based
cryptosystems.

Acknowledgments. This work is supported by National Natural Science Foun-
dation of China (No.61170298), Natural Science Fund for Colleges and Universi-
ties in Jiangsu Province (No. 12KJD520007), NSF of Jiangsu Province of China
(No. BK20130908).

References

1. Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)
2. Chor, B., Goldwasser, S., Micall, S., Awerbuch, B.: Verifiable secret sharing and

achieving simultaneity in the presence of faults, FOCS (1985)
3. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:

The 28th IEEE Symposium on the Foundations of Computer Science, pp. 427–437
(1987)

4. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

5. Zhang, F., Wang, Y.: Construction of secret sharing schemes on access structure
with transfer property. Acta Electronica Sinica 29, 1582–1584 (2001)

6. Zhang, F., Wang, Y.: An unconditional secure general verifiable secret sharing
protocol. Jouranl of Computer Research and Development 39, 1199–1204 (2002)

7. Zhang, F., Zhang, F., Wang, Y.: A secure and efficient general VSS protocol.
Journal of Software 13, 1187–1192 (2002)

Information-Theoretical Secure Verifiable Secret Sharing 329

8. Zhang, F., Gou, X., Wang, Y.: Efficient verifiable secret sharing on vector space
access structures. Computer Engineering and Applications (2002)

9. Zhang, F., Shi, J., Wang, Y.: Information-theoretical secure verifiable secret sharing
on vector space access structures. Journal of Electronics and Information Technol-
ogy (8), 1288–1293 (2004)

10. Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. and Combin.
Comput. 9, 105–113 (1989)

11. Padro, C., Sáez, G., Villar, J.L.: Detection of cheaters in vector space secret sharing
schemes. Designs, Codes and cryptography (1999)

12. Baek, J., Zheng, Y.: Identity-based threshold signature scheme from the bilinear
pairings. In: Proceedings of the international Conference on Information and Tech-
nology: Coding and Computing (2004)

13. Wu, T.Y., Tseng, Y.M.: A paring-based publicly verifiable secret sharing scheme.
Journal of Systems Science and Complexity (2011)

14. Kiltz, E., Pietrzak, K.: Leakage resilient elGamal encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

15. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J.
Computing 32(3), 586–615 (2003)

16. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

17. Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)
18. Stinson, D.R.: An explication of secret sharing schemes. Designs, Codes and Cryp-

tography 2, 357–390 (1992)
19. Gennaro, R.: Theory and practice of verifiable secret sharing. [Ph.D.Thesis]. MIT,

pp. 51–107 (1996)

Proofs of Retrievability Based on MRD Codes�

Shuai Han1, Shengli Liu1, Kefei Chen2, and Dawu Gu1

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

2 School of Science, Hangzhou Normal University, Hangzhou 310036, China
{dalen17,slliu,kfchen,dwgu}@sjtu.edu.cn

Abstract. Proofs of Data Possession (PoDP) scheme is essential to data
outsourcing. It provides an efficient audit to convince a client that his/her
file is available at the storage server, ready for retrieval when needed. An
updated version of PoDP is Proofs of Retrievability (PoR), which proves
the client’s file can be recovered by interactions with the storage server.
We propose a PoR scheme based on Maximum Rank Distance (MRD)
codes. The client file is encoded block-wise to generate homomorphic
tags with help of an MRD code. In an audit, the storage provider is
able to aggregate the blocks and tags into one block and one tag, due
to the homomorphic property of tags. The algebraic structure of MRD
codewords enables the aggregation to be operated over a binary field,
which simplifies the computation of storage provider to be the most
efficient XOR operation. With properties of MRD codes, we also prove
an important security notion, namely soundness of PoR.

Keywords: Proofs of retrievability, MRD codes, data integrity, cloud
storage.

1 Introduction

Data outsourcing to cloud storage reduces the storage cost and makes the data
maintenance easier at both personal and business level. When clients move their
data to a service provider for storage, they can enjoy the convenience of out-
sourcing storage with a relative low fee. However, they may also worry about the
security of their data, as their data is out of their hands, and can be manipulated
by the untrustworthy storage provider.

An efficient way is that a client performs an audit of the storage provider. A
successful audit verifies that the provider stores the data, without the retrieval
and transfer of all the data from the provider to the client. The ability of a
storage system to generate proofs of possession of client’s data, without having
to retrieve the whole file, is called Proofs of Data Possession(PoDP). PoDP only

� Corresponding Author: Shengli Liu. Funded by NSFC Nos.61170229, 61133014,
61373153, Innovation Project (No.12ZZ021) of Shanghai Municipal Education Com-
mission, and Specialized Research Fund (No.20110073110016) for the Doctoral Pro-
gram of Higher Education, Major State Basic Research Development Program (973
Plan)(No.2013CB338004).

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 330–345, 2014.
c© Springer International Publishing Switzerland 2014

Proofs of Retrievability Based on MRD Codes 331

concerns the provider’s proof of data possession. An improved version of PoDP is
known as Proof of Retrievability (PoR), which enables the provider to convince
the client that the original data could be recovered through enough interactions
between the client and provider.

Related Works. It was Juels and Kaliski [8] (2007) who first formulated
the concept of Proof of Retrievability and defined the corresponding security
model. Dodis, Vadhan and Wichs [6] (2009) presented Proof of Retrievability
Codes (PoR codes) for PoR schemes. More constructions of PoR schemes are
given by Ateniese et al. [5] (2007), Shacham and Waters [11] (2008), or Schwarz
and Miller [10] (2006). Oggier and Fathi [14] (2011) proposed an unconditionally
secure authentication scheme that deals with multiple receivers.

Among all the PoDP/PoR schemes, the most charming ones are those with
homomorphic authenticators. These schemes were identified as homomorphic
linear authenticator schemes in [6]. Ateniese et al. [5] (2007) proposed construc-
tions of PoDP scheme with homomorphic verifiable authenticator based on the
RSA assumption. The PoDP security model was further extended to be against
arbitrary adaptive PPT adversaries by Shacham and Waters [11](2008), who
presented PoR schemes (called the SW scheme), and their security was given
in the full security model. The file of a client is divided into blocks, and an
authenticator (tag) is computed for each block. In the audit, the client samples
blocks/authenticators (tags). The authenticator (tag) helps the owner of the
file to check the integrity of the block with an authentication key. Because of
the homomorphic property, multiple file blocks resp. authenticators can be com-
bined into a single aggregated block/authenticator pair. And the verification is
simplified to integrity check of the aggregated block. Therefore, both the com-
putational complexity and communication complexity of an audit are greatly
reduced, due to the homomorphic property of authenticators.

Our Contributions. In this paper, we proposed a PoR scheme based on MRD
codes.

The linearity of the MRD code results in homomorphic authenticators (tag),
just like the scheme by Shacham and Waters (the SW scheme). However, our
proposal has different features from the SW scheme.

– Efficient Computation by the Service Provider. The MRD encoding
plants algebraic structure in blocks so that the generation of tags and ag-
gregation of messages and tags can be computed over a small field Fq. As
to the instantiation of F2, the challenge vector can be taken as a random
binary sequence of length w, where w is the number of blocks of a storage
file, and the computation of the storage server for the response is simply
XOR. This is the most efficient operation for the storage server. For com-
parison, the SW scheme is based on a large prime field Fp with p at least 80
bits. To reduce the communication band and the computational overhead of
the storage provider, the SW scheme suggests that only l (l ≤ w) random
locations in the challenge vector are chosen to take values from a small set

332 S. Han et al.

B ⊆ Fp. If B = {1}, the computation for the response is reduced to addition
over the prime field Fp. Unfortunately, B = {1} is vulnerable to an attack,
hence compromising the security of the SW scheme, as shown in [11]. There-
fore, it is inevitable for the storage provider to use multiplications over Fp

to prepare the aggregated response in the SW scheme.

– Mild Amount of Pre-computation by the Client. The MRD encod-
ing is applied block-wise. If we take a file as a matrix, then each row, as
a block, is encoded into an MRD codeword. The file encoding involves w
MRD encoding, so the encoding computational complexity is of O(w) in
terms of MRD encoding. When parameters of the MRD code are fixed, the
MRD encoding consumes a constant amount of computation. While in the
SW scheme, each column of the file is encoded into an Erasure Correction
Codeword, and such an encoding needs at least O(w2) multiplications over
the prime field Fp. This imposes a great computational burden for the client
to encode the file.

– Our Proposal Considers PoR with the Security Notion ε-Soundness,
Which Justify the Sufficiency of the Audit Strategy. We define the
security notion served for the sufficiency of the audit strategy, namely ε-
soundness. ε-soundness considers the proof of retrievability, which suggests
that if the provider answers challenges with consistent responses with prob-
ability at least ε, it is possible for an extractor to retrieve the original file.
The security proof strongly relies on the property of MRD codewords. The
algebraic property of MRD codewords makes an adversary impossible to
forge a response, which passes client’s verification but is not computed as it
is supposed to be. This helps to prove the ε-soundness of the scheme and
justify the rationality of the audit strategy.

Performance Comparison. Below gives a comparison among the SW[11]
and our schemes. For a 1GB file, the block size is 1KB(the SW scheme [11]),
4KB(as suggested in Section 5, our proposal). The block number is w = 220, 218

respectively.
Suppose the multiplication in Fp has computational complexity O((log p)2)

and exponentiation in Fp has computational complexity O((log p)3) in terms of
bit-XOR. The SW scheme takes a 80-bit p for Fp. Our proposal takes a binary
field as suggested in Section 5.

With the same sampling strategy as our scheme, namely, each block is sampled
with probability 1/2, we show the computation complexity and communication
complexity of the two schemes in Table 1. The table includes precomputation,
computation of the client in one interaction, computation of the server in one
interaction, length of challenge in one interaction, and length of response in one
interaction. Length of response of our scheme is larger than that of the SW
scheme, but it is still affordable. A response in one interaction is an aggregated
block/tag pair, thus length of response is mainly determined by the block size.

Proofs of Retrievability Based on MRD Codes 333

Table 1. Computational and Communication Complexity of the SW and Our Schemes

Scheme
Precomput.
(bit-XOR)

Client Comput.
(bit-XOR)

Server Comput.
(bit-XOR)

Length of
Challenge

(KB)

Length of
Response
(KB)

SW O(259) O(231) O(238) O(210) ≈ 1

Ours O(249) O(231) O(233) 25 ≈ 8

2 PoR Scheme: Definition and Security Model

2.1 Notations and Assumptions

We use the following notations throughout the paper. Let λ denote the security
parameter, which is an integer tending to infinity. The current security standard
requires that λ ≥ 80.

Let Fq be a finite field with q elements, i.e., GF (q). Let k denote a column

vector of dimension t over Fq, or an element in Fqt , and kT denote transpose of

the vector k. The notation (C1, · · · , Cn)
T represents

⎛⎜⎝C1

...
Cn

⎞⎟⎠ instead of

⎛⎜⎝CT
1
...
CT

n

⎞⎟⎠,

where C1, · · · , Cn are matrices. Let “◦” denote scalar multiplication over Fq.

For example, k =
(
k(1), k(2), · · · , k(n)

)T ∈ (Fq)
n and v ∈ Fq, then v ◦ k =(

v · k(1), v · k(2), · · · , v · k(n)
)T

, where · is the multiplication over Fq. Let a denote
a row vector of column vectors, i.e., a = (a1, a2, . . . , an), where ai is a column
vector over Fq. It can also be regarded as a matrix over Fq. Then v ◦ a =
(v ◦ a1, v ◦ a2, · · · , v ◦ an).

Let A||B denote the concatenation of A and B. Let |S| denote the cardinality
of set S, and |s| denote the bit length of string s. The notation s← S indicates
that s is chosen uniformly at random from set S. The notation a← Alg(x) means
that run the algorithm Alg with input x and obtain a as an output, which is
distributed according to the internal randomness of the algorithm.

A function f(λ) is negligible if for every c > 0 there exists a λc such that
f(λ) < 1/λc for all λ > λc. If the running time of probabilistic algorithm Alg is
polynomial in λ, then Alg is a probabilistic polynomial time (PPT) algorithm.

Pseudo-Random Functions. Let l1 and l2 be two positive integers, which are
polynomially bounded functions in security parameter λ. Let PRF = {Fs}s∈S be
a family of functions indexed by s, and Fs : {0, 1}l1 → {0, 1}l2. Function Fs(·)
can also be represented by F (s, ·). Let Γl1,l2 be the set of all functions from
{0, 1}l1 to {0, 1}l2.

Definition 1. [9] Given an adversary A which has oracle access to a function
in Γl1,l2 , suppose that A always outputs a bit. The advantage of A over PRF is

334 S. Han et al.

defined as

AdvAPRF(1
λ) =

∣∣∣Pr [AFs(1λ) = 1
∣∣ s← S

]
− Pr

[
Af (1λ) = 1

∣∣ f ← Γl1,l2

] ∣∣∣.
Define the advantage of PRF as AdvPRF(λ) = max

PPTA
AdvAPRF(1

λ). PRF is called

pseudo-random if AdvPRF(λ) is negligible.

Obviously, the output of a pseudo-random function is a pseudo-random se-
quence, which is indistinguishable from a real random sequence to any PPT
adversary.

2.2 PoR Scheme

A PoR scheme consists of seven PPT algorithms KeyGen, Encode, Decode,
Challenge, Response, Verification and an audit algorithm Audit, where the al-
gorithms Challenge, Response and Verification constitute an interaction protocol.
A PoR system associates a data storage service provider(P) with clients(V). The
algorithms in a PoR scheme work as follows.

Key Generation: (sk, pp)← KeyGen(1λ). Each client V calls (sk, pp)← Key-
Gen(1λ) to get his own private key sk and a public parameter pp. V keeps
the private key sk secret and stores (sk, pp) locally.

Storage Encoding: M∗ ← Encode(sk, pp,M). When a client V prepares a file
M for outsourced storage, he/she will call M∗ ← Encode(sk, pp,M) to en-
code M to M∗. The client V submits M∗ to the storage provider.

Storage Recovery: {M,⊥} ← Decode(sk, pp,M∗). When a client V gets back
the out-sourced fileM∗, he/she will call {M,⊥} ← Decode(sk, pp,M∗) to re-
cover the original file M or ⊥ indicating that M∗ is too corrupted to recover
M .

Storage. The storage provider P stores M∗ submitted by the client V .
Audit: β ← Audit (u, Interaction(P(M∗, pp) � V(sk, pp))). A client V can run

the interactive protocol Interaction(P(M∗, pp) � V(sk, pp)) with the storage
provider P for u times, which is polynomial in λ. The storage provider P
possesses M∗ and the client V keeps secret key sk. The protocol consists of
the following three algorithms.

Interaction (P(M∗, pp) � V(sk, pp))
(1) ch← Challenge(1λ): This is a PPT algorithm run by the verifier V .
On input the security parameter λ, it outputs a challenge ch.
(2) re← Response(pp,M∗, ch): This is a deterministic algorithm run
by the prover P . On input the public parameter pp, the encoded file M∗

and the challenge ch, the algorithm returns a corresponding response re.
(3) b← Verification(pp, sk, ch, re): This is a deterministic algorithm run
by the verifier V . On input the public parameter pp, the secret key sk, the
challenge/response pair (ch, re), the algorithm returns a bit b ∈ {0, 1},
indicating acceptance with 1 or rejection with 0.

Proofs of Retrievability Based on MRD Codes 335

If b = 0, the interaction protocol outputs ⊥; otherwise the protocol
outputs (ch, re), and we call (ch, re) a consistent pair and the execution
of the protocol successful.

After u executions of the interaction protocol in the audit, the client will
output a bit β according to some audit strategy. If β = 1, the audit succeeds
and the client will be convinced that the storage provider is still storing the
file M∗. If β = 0, the audit fails, and the client will consider that his/her file
M∗ has been corrupted or lost.

Correctness of a PoR scheme requires that for all (sk, pp,M∗) such that
(sk, pp) ← KeyGen(1λ) and M∗ ← Encode(sk, pp,M), the following two state-
ments hold with probability 1.

– The original file M is always recovered from the correctly encoded file M∗,
i.e., M = Decode(sk, pp, M∗) if M∗ ← Encode(sk, pp,M).

– For honest P and V , algorithm Verification(pp, sk, ch, re) always outputs 1
in the interaction protocol, hence the interaction protocol outputs a chal-
lenge/response, i.e, (ch, re)← Interaction(P(M∗, pp) � V(sk, pp)).

Security of a PoR scheme is characterized by the following security notion.

Soundness for PoR. Each successful execution of Interaction protocol brings
some confidence to the client that his/her file is still stored by the stor-
age provider. Successful executions of Interaction protocol provide consistent
challenge/response (chi, rei) pairs and each pair may provide some informa-
tion about the original M . The soundness of the PoR scheme suggests that
the original fileM can be extracted from those consistent challenge/response
(chi, rei) pairs collected from successful interactions as long as the number
(polynomial in λ) of executions of Interaction protocol is big enough.

2.3 Soundness of PoR Scheme

Even a truthful storage provider may malfunction in an audit, due to temporary
system failure, and that does not imply that the provider does not possess the
audited data. To be more robust, it is desirable that the PoR system supports an
ε-admissible storage prover, where the storage prover convincingly answers an ε
fraction of the challenges in an audit. We want to prove that it is still possible
to distill the original file M , as long as ε is larger than some threshold and the
number of executions of Interaction protocol in the audit is big enough. This can
be characterized by the soundness of Proof of Retrievability (PoR).

A (cheating) prover P̃ε is ε-admissible, if it convincingly answers a challenge
with probability at least ε, i.e.,

Pr
[
Verification(pp, sk, ch, re′) = 1

∣∣∣ ch← Challenge(1λ), re′ ← P̃ε(pp, ch)
]
≥ ε.

The PoR system is ε-sound if there exists a PPT algorithm Extractor, which
recovers M on input the public parameter pp, the secret key sk and the output
of the interactive protocol Interaction(P̃ε(pp, ·) � V(sk, pp)), i.e.,

Extractor
(
pp, sk, Interaction(P̃ε(pp, ·) � V(sk, pp))

)
= M,

336 S. Han et al.

with overwhelming probability.
The formal definition of soundness of PoR scheme has been presented in [6],

[11]. Here we give a refined description.
Given a PoR scheme (KeyGen,Encode,Decode,Challenge,Response, Verification,

Audit), we define the following soundness game SoundPoR
A (λ) between an adver-

sary A and a challenger V . A is going to create an adversarial prover P̃ε, and a
PPT Extractor aims to extract the original file from interactions with P̃ε.

SoundPoR
A (λ)

1. The challenger V obtains a secret key and a public parameter by (sk, pp)←
KeyGen(1λ), and sends pp to the adversary A.

2. A chooses a message M from the message spaceM, and sends M to V .
3. V encodes M to M∗ with M∗ ← Encode(sk, pp,M), and sends M∗ to A.
4. Test stage. The adversaryA gets protocol access to V(sk, pp) and can interact

with V for a polynomial times. Then the adversaryA outputs an ε-admissible
prover P̃ε. This ε-admissible prover P̃ε functions as an oracle, which will
output a consistent re for a proper query (challenge) ch with probability at
least ε.

5. A PPT Extractor is given the public parameter pp, the secret key sk and or-
acle access to the ε-admissible prover P̃ε. After querying P̃ε for a polynomial
times, the Extractor outputs a file M ′.

Definition 2. [6] A PoR scheme (KeyGen, Encode, Decode, Challenge, Response,
Verification, Audit) is ε-sound, if there exists a PPT Extractor, such that for any
PPT adversary A which outputs an ε-admissible P̃ε through interacting with V
in the above game SoundPoR

A (λ), Extractor is able to recover the original file M
by querying P̃ε except with negligible probability. In formula,

Pr

⎡⎢⎢⎣M ′ �= M

∣∣∣∣∣∣∣∣
(sk, pp)← KeyGen(1λ),M ← A(pp),
M∗ ← Encode(sk, pp,M),

P̃ε ← A (pp,M,M∗, access to V(sk, pp)) ,
M ′ ← Extractor(pp, sk, P̃ε)

⎤⎥⎥⎦
is negligible.

3 Maximum Rank Distance Codes and Gabidulin Codes

Rank distance was first considered for error-correcting codes by Delsarte [4], and
lots of work has been devoted to rank distance properties, code construction,
and efficient decoding. In [4], [3], [2], a Singleton bound on the minimum rank
distance of codes was established, and a class of codes achieving the bound with
equality was constructed, e.g. MRD codes. Gabidulin codes is one of MRD codes,
which can be considered as the rank metric analogues of Reed-Solomon codes.

Proofs of Retrievability Based on MRD Codes 337

3.1 Rank Distance Codes

Let Fq be a finite field, and Fqt be an extended field of degree t. Let (Fqt)
n
be the

n-dimensional vector space over Fqt . Given a vector a = (a1, a2, . . . , an) ∈ (Fqt)
n,

each entry ai ∈ Fqt can be expressed as a t-dimensional column vector over Fq,

i.e., ai =
(
a
(1)
i , a

(2)
i , · · · , a(t)i

)T

. Consequently, vector a can be expressed as a

t× n matrix over Fq by expanding all the entries of a.

Definition 3. [1] A rank distance code CR over finite field Fqt is a subspace of
(Fqt)

n, satisfying the following properties.

(a) For each codeword c ∈ CR, the rank weight (over Fq) of c, denoted as
rank(c|Fq), is defined as the rank of the corresponding t × n matrix over
Fq when c is expressed as a matrix over Fq.

(b) For any two codewords a, b ∈ CR, the rank distance (over Fq) of a and b is
defined as dR(a, b) = rank(a− b|Fq).

(c) The minimum rank distance of the code CR, denoted as dR(CR), is the min-
imum rank distance of all possible pairs of distinct codewords in CR, i.e.,
dR(CR) = min

a =b∈CR

dR(a, b).

We call CR a [q, c, n, t, d] rank distance code, if each codeword consists of
n elements in Fqt , c = |CR| is the number of codewords, d = dR(CR) is the
minimum rank distance.

3.2 Maximum Rank Distance Codes and Gabidulin Code

For a [q, c, n, t, d] rank distance code CR with t ≥ n, it was shown that dR ≤
dH in [3], where dH denotes the minimum Hamming distance of CR. With the
Singleton Bound for block codes, we have the minimum rank distance of CR
satisfies d = dR ≤ n− k + 1, where k = logqt c.

Definition 4. A [q, c, n, t, d] rank distance code CR with t ≥ n is called the
maximum-rank-distance code(MRD code), if CR achieves the bound d = n−k+1,
where k = logqt c.

Definition 5. A [q, k, n, t] Gabidulin code CR with t ≥ n consists of a genera-
tion matrix Gk×n, a parity check matrix Hn×(n−k) over Fqt and two algorithms
(GabiEncode, GabiDecode).

Generation Matrix Gk×n/Parity Check Matrix Hn×(n−k). Thegeneration
matrix Gk×n is determined by n elements (g1, g2, . . . , gn), with gi ∈ Fqt , i =
1, 2, · · · , n, and all the n elements are linearly independent over Fq. The parity
check matrix Hn×(n−k) is determined by the generation matrix Gk×n satisfying
Gk×n · Hn×(n−k) = 0. In [12], a fast algorithm was shown to find hi ∈ Fqt ,
i = 1, 2, · · · , n such that

338 S. Han et al.

Gk×n =

⎛⎜⎜⎜⎝
g1 g2 · · · gn
gq1 gq2 · · · gqn
...

...
...

gq
k−1

1 gq
k−1

2 · · · gqk−1

n

⎞⎟⎟⎟⎠ , Hn×(n−k) =

⎛⎜⎜⎜⎜⎝
h1 hq1 · · · h

qn−k−1

1

h2 hq2 · · · h
qn−k−1

2
...

...
...

hn hqn · · · hqn−k−1

n

⎞⎟⎟⎟⎟⎠ .

(1)
GabiEncode(m,Gk×n). Taking as input the generation matrix Gk×n and the

message vector m = (m1,m2, · · · ,mk) ∈ (Fqt)
k, it computes c = m · Gk×n,

and outputs the codeword c = (c1, c2, · · · , cn).
GabiDecode(r,Hn×(n−k)). Taking as input the parity check matrix Hn×(n−k)

and a vector r = (r1, r2, · · · , rn) ∈ (Fqt)
n, it outputs m = (m1,m2, · · · ,mk).

Refer to [7] for the specific decoding algorithm.

A [q, k, n, t] Gabidulin code CR is a [q, qtk, n, t, n−k+1] MRD code and CR =
{c | c = m · Gk×n,m = (m1, m2, · · · ,mk),mi ∈ Fqt , i = 1, 2, · · · , k} ⊆ (Fqt)

n.
The correctness of Gabidulin Code requires that m =

GabiDecode(c,Hn×(n−k)) if c← GabiEncode(m,Gk×n) for all m ∈ (Fqt)
k.

Lots of work has been done on the efficient decoding of Gabidulin and other
MRD Codes. Decoding algorithms have been proposed to decode erasures or
errors or both of them simultaneously.

4 PoR Scheme from MRD Codes

We will use Gabidulin Code as an instantiation of MRD code. The only reason to
use Gabidulin Code instead of a general MRD code is that Gabidulin Code has
explicit generation matrix and parity check matrix, which helps us to analyze
the performance of our proposal.

The primitives involved in the PoR scheme are

– a Pseudo-Random Function PRF : Kprf × {0, 1}∗ → Fqt , which uses a seed
k′, randomly chosen from space Kprf , to generate pseudo-random keys with
PRF(k′, i) for i = 1, 2, · · · . The length of the seed k′ is determined by the
security parameter λ.

– A [q, k, n, t] Gabidulin code CR with t ≥ n, which is associated with (Gk×n,
Hn×(n−k), GabiEncode, GabiDecode) defined in Definition 5.

The PoR scheme constructed from Gabidulin codes consists of the following
algorithms.

• (sk, pp)← KeyGen(1λ): The key generation algorithm takes as input the se-
curity parameter λ, chooses random elements k ∈ Fqn and k′ ∈ Kprf . Choose
a Pseudo-Random Function (PRF) PRF : Kprf × {0, 1}∗ → Fqt and a
[q, k, n, t] Gabidulin code CR. Output the public parameter pp = (PRF, CR)
and the secret key sk = (k, k′).

Proofs of Retrievability Based on MRD Codes 339

• M∗ ← Encode(sk, pp,M): The storage encoding algorithm takes as input the
secret key sk, the public parameter pp and the original fileM . It will compute
an encoded file M∗ as follows.

(1) Block Division: The original file M is divided into w blocks, denoted
by (M1,M2, · · · , Mw)

T, each block Mi = (mi1,mi2, · · · ,mik) ∈ (Fqt)
k

consisting of k elements of Fqt .
(2) Gabidulin Encoding: The original file M is encoded into Gabidulin

codewords block by block with Ci ← GabiEncode(Mi,Gk×n), i =
1, 2, · · · , w. More precisely, given blockMi = (mi1,mi2, · · · ,mik)∈(Fqt)

k,
the codeword Ci = (ci1, ci2, · · · , cin) ∈ (Fqt)

n is computed as Ci =
(ci1, ci2, · · · , cin) = (mi1,mi2, · · · ,mik) · Gk×n. It should be noted that
the encoding is a matrix multiplication over finite field Fqt .
Express each cij as a column vector of dimension t over Fq, i.e., cij =(
c
(1)
ij , c

(2)
ij , · · · , c

(t)
ij

)T

. Then each codeword Ci can be expressed as a t×n
matrix over Fq.

(3) Tag Generation: Compute a tag σσσi for each codeword Ci with the
secret key sk = (k, k′).
(i) Express k ∈ Fqn as a vector of dimension n over Fq, i.e., k =(

k(1), k(2), · · · , k(n)
)T

.
(ii) Compute ki = PRF(k′, i) for i = 1, 2, · · · , w. Express ki ∈ Fqt as a

vector of dimension t over Fq, i.e., ki =
(
k
(1)
i , k

(2)
i , · · · , k(t)i

)T

.

(iii) For each codeword Ci, a tag σσσi ∈ Fqt is computed with

σσσi = Ci · k+ ki =

⎛⎜⎜⎜⎜⎝
c
(1)
i1 c

(1)
i2 · · · c

(1)
in

c
(2)
i1 c

(2)
i2 · · · c

(2)
in

...
...

...

c
(t)
i1 c

(t)
i2 · · · c

(t)
in

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝
k(1)

k(2)

...

k(n)

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
k
(1)
i

k
(2)
i
...

k
(t)
i

⎞⎟⎟⎟⎟⎠ , (2)

where all the operations are in the basic field Fq.
(4) Storage File M∗ : Each blockMi is encoded as (Ci||σσσi) = (ci1, ci2, · · · ,

cin,σσσi). The final encoded file M∗ consists of blocks attached with tags:

M∗ = (C1||σσσ1, C2||σσσ2, · · · , Cw||σσσw)
T =

⎛⎜⎜⎜⎝
c11 c12 · · · c1n σσσ1

c21 c22 · · · c2n σσσ2

...
...

...
...

cw1 cw2 · · · cwn σσσw

⎞⎟⎟⎟⎠ ,

where each entry in the matrix is an element from Fqt .

• {M,⊥} ← Decode(sk, pp,M∗): Parse M∗ as M∗ =

(C′
1||σσσ′

1, C
′
2||σσσ′

2, · · · , C′
w||σσσ′

w)
T
.

for i = 1, 2, · · · , w do
If C′

i · Hn×(n−k) �= 0 return “⊥”.
If σσσ′

i �= C′
i · k+ ki return “⊥”.

340 S. Han et al.

M ′
i ← GabiDecode(C′

i,Hn×(n−k)).

end for

Return M = (M ′
1,M

′
2, · · · ,M ′

w)
T
.

• {(ch, re),⊥} ← Interaction(P(M∗, pp) � V(sk, pp)): The interactive protocol
consists of three algorithms.

� ch← Challenge(1λ): The challenge ch = (v1, v2, · · · , vw) is chosen uni-
formly at random from (Fq)

w.

� re← Response(pp,M∗, ch): (i) First the encoded file M∗ is segmented

into w blocks. Let M∗ = (C1||σσσ1, C2||σσσ2, · · · , Cw||σσσw)
T
.

(ii) Then the response re is computed with aggregation.

re = ch ◦M∗ = (v1, v2, · · · , vw) ◦

⎛⎜⎜⎜⎝
c11 · · · c1n σσσ1

c21 · · · c2n σσσ2

...
...

...
cw1 · · · cwn σσσw

⎞⎟⎟⎟⎠
=

(
w∑

i=1

vi ◦ ci1, · · · ,
w∑

i=1

vi ◦ cin,
w∑

i=1

vi ◦ σσσi

)
,

where “◦” is scalar multiplication over vector space on Fq. More pre-

cisely, express cij =
(
c
(1)
ij , c

(2)
ij , · · · , c

(t)
ij

)T

as a t-dimentional vector

over Fq. Then vi ◦ cij =
(
vi · c(1)ij , vi · c

(2)
ij , · · · , vi · c

(t)
ij

)T

.

� b← Verification(pp, sk, ch, re): The input is given by the public param-
eter pp = (PRF, CR), where CR is associated with the generation matrix
Gk×n and parity check matrix Hn×(n−k), the secret key sk = (k, k′) ∈
Fqn × Kprf , the challenge ch = (v1, v2, · · · , vw) ∈ (Fq)

w, and response
re = (c̄1, c̄2, · · · , c̄n, σ̄̄σ̄σ) ∈ (Fqt)

n+1.

(i) Parse re as (C̄, σ̄̄σ̄σ), where C̄ = (c̄1, c̄2, · · · , c̄n). Check whether C̄ is
an MRD codeword by testing C̄ ·Hn×(n−k) = 0. If not, output b = 0.

(ii) Express k ∈ Fqn as a vector of dimension n over Fq, i.e., k =(
k(1), k(2), · · · , k(n)

)T
. Compute ki = PRF(k′, i) ∈ Fqt for i =

1, 2, · · · , w. Express ki as a vector of dimension t over Fq, i.e.,

ki =
(
k
(1)
i , k

(2)
i , · · · , k(t)i

)T

.

(iii) Express C̄ as a matrix over Fq, i.e., C̄ =

⎛⎜⎜⎜⎜⎝
c̄
(1)
1 c̄

(1)
2 · · · c̄(1)n

c̄
(2)
1 c̄

(2)
2 · · · c̄(2)n

...
...

...

c̄
(t)
1 c̄

(t)
2 · · · c̄(t)n

⎞⎟⎟⎟⎟⎠ and

σ̄̄σ̄σ =
(
σ̄(1), σ̄(2), · · · , σ̄(t)

)T
.

Proofs of Retrievability Based on MRD Codes 341

(iv) Check

σ̄̄σ̄σ =

⎛⎜⎜⎜⎜⎝
c̄
(1)
1 c̄

(1)
2 · · · c̄(1)n

c̄
(2)
1 c̄

(2)
2 · · · c̄(2)n

...
...

...

c̄
(t)
1 c̄

(t)
2 · · · c̄(t)n

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝
k(1)

k(2)

...
k(n)

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
∑w

i=1 vi · k
(1)
i∑w

i=1 vi · k
(2)
i

...∑w
i=1 vi · k

(t)
i

⎞⎟⎟⎟⎟⎠ , (3)

where all the operations are in the field Fq. If Eq.(3) holds, return
1, otherwise return 0.

• {0,1}← Audit. The client V executes the Interaction protocol u times.

b = 0;

for i = 1 to u do Interaction(P(M∗, pp) � V(sk, pp))
ch← Challenge(1λ);

re← Response(pp,M∗, ch);

If Verification(pp, ch, re) = 1 then b← b+ 1;

end for

If (b/u > 1
q) return 1, otherwise return 0.

In the audit, b/u > 1
q means b/u− 1

q is non-negligible, since u is polynomial
in λ.

The Correctness of the above PoR scheme is guaranteed by the following
facts. For all (sk, pp,M∗) such that (sk, pp) ← KeyGen(1λ) and M∗ ← Encode
(sk, pp,M),

– the original file M is always recovered from the correctly encoded file M∗,
due to the correctness of the encoding/decoding algorithms of Gabidulin
codes;

– the interaction protocol between honest P and V results in 1← Verification(pp,
sk, ch, re), hence the interaction protocol outputs a challenge/response, i.e,
(ch, re)← Interaction(P(M∗, pp) � V(sk, pp)), due to the following facts:

w∑
i=1

vi ◦ σσσi = (v1, v2, · · · , vw) ◦

⎛
⎜⎜⎜⎝

σσσ1

σσσ2

.

.

.
σσσw

⎞
⎟⎟⎟⎠ = (v1, v2, · · · , vw) ◦

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

C1

C2

.

.

.
Cw

⎞
⎟⎟⎟⎠ · k +

⎛
⎜⎜⎜⎝

k1
k2
.
.
.
kw

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

=

(
w∑

i=1

vi ◦ ci1,
w∑

i=1

vi ◦ ci2, · · · ,

w∑
i=1

vi ◦ cin

)
· k +

w∑
i=1

vi ◦ ki

= (c̄1, c̄2, · · · , c̄n) · k +

w∑
i=1

vi ◦ ki,

where c̄j =
(
c̄
(1)
j , c̄

(2)
j , · · · , c̄(t)j

)T

, k =
(
k(1), k(2), · · · , k(n)

)T
and ki =

(
k
(1)
i ,

k
(2)
i , · · · , k(t)i

)T

, which are vectors over Fq.

342 S. Han et al.

5 Performance Analysis

To evaluate the efficiency of the proposed PoR scheme, we will analyze the local
storage of the client, the expansion rate θ of the storage, which is defined as the
ratio of the length of encoded file M∗ to that of the original file M , the length of
the challenge, denoted by |ch|, the length of the response, denoted by |re|, the
computational complexity of the storage provider to compute the response, and
the computational complexity of the client to verify the response.

Let MulFq denote a multiplication and AddFq denote an addition over finite
field Fq.

We will use a pseudo-random function PRF : {0, 1}λ × {0, 1}∗ → Fqt as an
instantiation.

Local Storage: The client will store the key k ∈ Fqn , the seed k′ ∈ {0, 1}λ of
PRF, and the parity check matrix Hn×(n−k) of the [q, k, n, t] Gabidulin code.
The parity check matrix is determined by hi ∈ Fqt , i = 1, 2, · · · , n according
to Eq.(1). Hence the local storage is (n log q + λ+ nt log q) bits.

Storage Expansion Rate: θ = |M∗|
|M| = n+1

k .

Length of Challenge: ch ∈ (Fq)
w, hence |ch| = w log q bits.

Length of Response: re consists of a Gabidulin codeword and a tag, hence
|re| = (n+ 1)t log q bits.

Computational Complexity of the Storage Server: To compute re, the
storage server will do (n + 1)tw(q − 1)/q multiplications and (n + 1)t(w −
1)(q−1)/q additions over Fq on average. Hence there are totally (n+1)tw(q−
1)/qMulFq + (n+ 1)t(w − 1)(q − 1)/qAddFq on average.

Computational Complexity of the Client: To test the consistency of
(ch, re), the client needs (n − k)n multiplications and (n − k)(n − 1) ad-
ditions over Fqt to test Gabidulin codeword, and another tn + wt(q − 1)/q
multiplications and t(n−1)+ t(w−1)(q−1)/q additions over Fq on average.
Hence there are totally (n−k)nMulFqt

+(n−k)(n− 1)AddFqt
+(tn+wt(q−

1)/q)MulFq + (t(n− 1) + t(w − 1)(q − 1)/q)AddFq .

Now we instantiate the PoR scheme with security parameter λ = 80, and a
[q, k, n, t] Gabidulin Code with q = 2, k = 128, n = t = 256 and d = 129. q = 2
means that the addition over the binary field is reduced to XOR.

We consider a file M of size 1GB. The number of blocks is w = 218.
During an interaction, the server will implement 233 bit-XOR to prepare a

response re. To verify the consistency of the response, the client’s computation

Table 2. Instantiation of PoR Scheme with [2, 128, 256, 256]-Gabidulin Code

Local Rate θ |ch| |re| Server Comput. Client Comput.

|sk|= 336 bits, |pp|=8KB ≈ 2 32KB ≈ 8KB O(233) bit-XOR O(231) bit-XOR

Proofs of Retrievability Based on MRD Codes 343

is dominated by 215MulF2256
. One MulF2256

needs O(256 · 256) = O(216) bit
operations. Hence the client’s computation complexity is O(231).

Consider a modular exponentiation in RSA with a 1024-bit modulus. It will
take 1024 modular squares and about 512 modular multiplications. One modu-
lar multiplication needs O(1024 · 1024) = O(220) bit operations. So a modular
exponentiation in RSA with a 1024-bit modulus has computation complexity of
O(230).

Therefore, to audit the storage of 1GB file, the computational complexity
of both client and server in an interaction is comparable to 2 and 8 modular
exponentiations with a 1024-bit modulus respectively.

6 The Security of the Proposed PoR Scheme

Recall that in the audit of the PoR scheme, the audit strategy is determined
by a threshold 1

q . Only if ε fraction, ε > 1
q , of the u executions of Interaction

protocol is successful, does the audit claim success.
The ε-soundness of the PoR scheme will justifiy the sufficiency of the thresh-

old 1
q . We will prove that as long as a storage provider replies a response re

that passes verification with probability ε > 1
q , there exists a PPT extractor

recovering the original file M as long as the number of executions of Interaction
protocol is big enough.

Definition 6. A response re is called valid to a challenge ch if re = Response(pp,
M∗, ch) and the challenge/response (ch, re) is called a valid pair. A response re
is called consistent to a challenge ch if Verification(pp, sk, ch, re) = 1, and the
challenge/response (ch, re) is called a consistent pair.

Given a challenge ch, there may exists many consistent responses, but there
is only one valid response due to the deterministic algorithm Response. Hence,
a consistent pair is not necessarily a valid pair.

Before the formal proof of soundness of the MRD-based PoR scheme, we
will slightly change the PoR scheme. The key sequence ki = PRF(k′, i), i =
1, 2, · · · , w, which is used to compute tags for blocks and to verify the consistency
of a challeng/response pair, is replaced with a truly random sequence over Fqt .
Then we have the following lemma.

Lemma 1. Suppose that ki, i = 1, 2, · · · , w is randomly chosen from Fqt instead
of setting ki = PRF(k′, i). In an execution of Interaction Protocol of the PoR
scheme, given a valid challenge/response pair (ch, re), any adversary A outputs
a consistent but invalid response re′ with respect to the same challenge ch, i.e.,
re′ �= re but Verification(pp, sk, ch, re′) = 1, with probability at most 1/qd, where
d is the minimum rank distance of the MRD Code.

The proof is omitted here due to the space limitation. See [13] for the full version
of this paper.

344 S. Han et al.

6.1 ε-Soundness of the PoR Scheme

Now we consider how a PPT Extractor extracts the original file M through
executions of the Interaction protocol with an ε-admissible storage provider. The
idea is as follows: ε should be big enough to ensure that Extractor always gains
information about M as the number of interactions with P̃ε increases. When the
number of interactions in the audit is big enough,M can be recovered by solving
equations.

Theorem 2. The MRD-code-based PoR system is ε-sound for ε > 1
q , given

secure PRF and [q, k, n, t] Gabidulin code with t ≥ n and n− k + 1 = Ω(λ).

The proof will be given in the full version [13] of the paper due to the space
limitation.

7 Conclusion

In this paper, we propose a PoR scheme based on MRD codes. The MRD codes
helps in two ways. Firstly, the MRD code can be applied over small field, and
that help the storage provider efficiently computes responses in an audit. As to
the binary field, the computation can be as simple as XOR. Secondly, the rank
property of the MRD codewords helps the security proof of the PoR scheme. Even
if the storage provider knows a correct response with respect to a challenge, it
still cannot forge a different response to pass the client verification. This helps
to prove the soundness of the PoR scheme.

References

1. Maximilien, G., Zhiyuan, Y.: Properties of codes with the rank metric. Arxiv
preprint cs/0610099 (2006)

2. Roth, R.: Maximum-rank array codes and their application to crisscross error cor-
rection. IEEE Transactions on Information Theory 32(2), 328–336 (1991)

3. Gabidulin, E.: Theory of code with maximum rank distance. Problems of Informa-
tion Transmission 21(1), 1–12 (1985)

4. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory.
Journal of Combinatorial Theory, Series A 25(3), 226–241 (1978)

5. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: De Capitani di Vimercati, S.,
Syverson, P. (eds.) Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS 2007), pp. 598–609. ACM, New York (2007)

6. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

7. Gabidulin, E., Pilipchuk, N.: Error and erasure correcting algorithms for rank
codes. Designs, Codes and Cryptography 49(1-3), 105–122 (2008)

8. Juels, A., Kaliski, B.: PORs: proofs of retrievability for large files. In: De Capitani
di Vimercati, S., Syverson, P. (eds.) Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS 2007), pp. 584–597. ACM, NewYork
(2007)

Proofs of Retrievability Based on MRD Codes 345

9. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, Report 2004/332 (2004)

10. Schwarz, T., Miller, E.: Store, forget, and check: using algebraic signatures to check
remotely administered storage. In: Ahamad, M., Rodrigues, L. (eds.) Proceedings
of ICDCS 2006, p. 12. IEEE Computer Society, Los Alamitos (2006)

11. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

12. Wachter, A., Sidorenko, A., Bossert, M.: A fast linearized Euclidean algorithm for
decoding Gabidulin codes. In: Twelfth International Workshop on Algebraic and
Combinatorial Coding Theory (ACCT 2010), pp. 298–303 (2010)

13. Han, S., Liu, S., Chen, K., Gu, D.: Proofs of data possession and retrievability
based on MRD codes. IACR Cryptology ePrint Archive, Report 2013/789 (2013)

14. Oggier, F., Fathi, H.: An authentication code against pollution attacks in network
coding. IEEE/ACM Transactions on Networking (TON) 19(6), 1587–1596 (2011)

TIMER: Secure and Reliable Cloud Storage

against Data Re-outsourcing

Tao Jiang1, Xiaofeng Chen1, Jin Li2, Duncan S. Wong3,
Jianfeng Ma1, and Joseph Liu4

1 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an, P.R. China

jiangt2009@gmail.com, {xfchen,jfma}@xidian.edu.cn
2 School of Computer Science, Guangzhou University, China

lijin@gzhu.edu.cn
3 Department of Computer Science, City University of Hong Kong, Hong Kong

duncan@cityu.edu.hk
4 Institute for Infocomm Research, Singapore

ksliu@i2r.a-star.edu.sg

Abstract. The semi-trusted servers in cloud environment may outsource
the files of their clients to some low expensive servers to increase their
profit. To some extent, such behavior may violate the wishes of cloud
users and impair their legitimate rights and interests. In this paper, a
probabilistic challenge-response scheme is proposed to prove that the
clients’ files are available and stored in a specified cloud server. In or-
der to resist the collusion of cloud servers, common cloud infrastructure
with some reasonable limits, such as rational economic security model,
semi-collusion security model and response time bound, are exploited.
These limits guarantee that a malicious cloud server could not conduct a
t-round communication in a finite time. We analyze the security and per-
formance of the proposed scheme and demonstrate that our scheme pro-
vides strong incentives for economically rational cloud providers against
re-outsourcing the clients’ data to some other cloud providers.

Keywords: Cloud storage, Economical server collusion, Storage secu-
rity, Probabilistic scheme.

1 Introduction

In the cloud computing environment, the Cloud Storage Providers (CSPs) offer
paid storage space on its infrastructure to store customers’ data. Since the CSPs
are not necessarily trusted in cloud storage system, efficient and secure schemes
should be built to constrain their malicious activities.

For sensitive data, legitimate concerns are necessary when using cloud stor-
age services. The failure of cloud storage server at Amazon results in the per-
manent loss of customer data [4]. Also, there are a variety of economical and
legal restrictions that may compel a customer to choose to store data in a spe-
cific cloud storage provider. For example, many companies are willing to store

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 346–358, 2014.
c© Springer International Publishing Switzerland 2014

TIMER: Secure and Reliable Cloud Storage against Data Re-outsourcing 347

their sensitive data in the same cloud storage server and many privacy laws
in Nova Scotia, British Columbia, Australia and EU [8] require personal data
stored within a political border or other nations with comparable protections.
Further, the cross server deduplication will greatly reduce the storage overhead
of cloud servers, which will reduce the costs of the service providers and en-
hance their competitiveness. However, the data deduplication may violate the
intention of users and undermine the interests of them. Therefore, we see that
it is necessary to constrain the activity of the CSPs and verify that their ac-
tivity meet the storage obligations. Since the clients data is stored in remote
server without a local copy, it is very difficult to provide transparency to the
users that their sensitive data is correctly handled by the cloud provider. We
need to use challenge-response scheme to provide an efficient method to prove
the malicious storage re-outsourcing activity. However, the existing challenge-
response scheme could not provide a proof that the data of clients stored in a
semi-trusted remote cloud storage is not re-outsourced in the economical server
collusion network model [6, 7].

In this paper, we demonstrate that it is possible to design a challenge-response
protocol which imposes a strong incentive onto the cloud providers to store
their clients’ data at rest. In particular, we present a probabilistic challenge-
response scheme where semi-collusion bound, communication and computation
bound and response time bound are adopted. A malicious cloud server S who
has re-outsourced its client data to some other cloud server S′ should conduct
a t-round communication with S′ to generate a correct response. If t is large
enough, the malicious server could not generate the response in time even if with
unlimited computation power. It is demonstrated that our scheme is secure under
cryptography assumption and our analysis shows that as long as the designed
communication round t is large enough, TIMER scheme will provide a strong
incentive for the rational economic cloud providers to store the data of their
clients in their storage servers.

2 Related Works

Provable Data Possession: To protect the availability of the clients’ files
stored in remote data storage server, Ateniese et al. [1] proposed a formal-
ized model called Provable Data Possession (PDP). Unlike the low efficiency
deterministic schemes [10, 14, 23] and probability scheme [22], PDP could effi-
ciently check whether the clients’ files stored in remote server have been tam-
pered or deleted with very high probability. Several variations of their proposed
scheme, such as static PDP schemes [11,18,24] and limited dynamic or dynamic
schemes [2,13], are proposed to achieve efficient proof of remote data availability.

Secure Deduplication: Conducting deduplication will reduce the data stor-
age burden and maintenance cost, which can promote price reductions of data
storage service and enhance the competition of CSPs. Recent researches on stor-
age deduplication [12, 25] show that deduplication achieves a higher level of
scalability, availability, and durability. However, Harnik et al. [16] point out that

348 T. Jiang et al.

client-side deduplication introduces security problems that an attacker is able to
get the entire file from the server by learning just a small piece of the hash value
about the file. Therefore, Halevi et al. [15] proposed a scheme called Proofs of
Ownership (PoWs), where a client proves to the server that it actually holds a
copy of the file and not just some short information about it based on Merkle
trees [20] and specific encodings.

Location Sensitive Services: In data storage system, users’ data is impor-
tant for some location sensitive services. Some schemes [19, 26] proposed to use
semi-trusted landmarks to provide geolocation solutions for data storage. Also,
to provide the security against the colluding of adversaries, hidden landmarks
are used in geolocation system [5] in wireless networks. Bowers et al. [4] pro-
posed an hourglass scheme to verify a cloud storage service provider is duplicate
data from multiple drives through the measurements of network delay. Gondree
and Peterson proposed a provable data geolocation and they detect the network
delay of different distance and they point that their system could be built on
any exiting PDP scheme.

The PDP relevant solutions are proposed to realize efficient data availability
check on remote data storage servers. The data storage deduplication relevant
solution PoWs is proposed to protect against an attacker from gaining access
to potentially huge files of other users based on a very small amount of side
information. However, all these schemes focus on the authentication of data
integrity and availability problems between clients and servers, which could not
prevent a semi-trusted server from re-outsourcing clients’ data to some other
servers to save its storage space or increase its profit. Such behavior may reduce
the security and availability guarantee of clients’ data and the benefit of the
clients may be violated in this situation.

3 Problem Statement and Design Goals

3.1 System and Threat Model

In cloud storage environment, the clients’ data may be re-outsourced multiple
times and stored in some unknown servers with low quality of service, which will
cause some serious economical and security problems in cloud storage outsourc-
ing service.

Conspiracy to Profit: A CSP may offload the clients’ data to some other
CSPs when the sum of their payment is lower than that from its clients. Thus,
on one hand, the CSP will be able to enlarge its profit by the difference between
the payment of itself and the sum payment of all the other CSPs. Also, data
re-outsourcing may be used to save the storage space to store the data from
other clients. On the other hand, the colluded CSPs will get payment from the
CSP. As a result, the conspiracy to profit model will promote the collusion of
CSPs driven by the interests.

Storage Location Security: In the multiple time storage re-outsourcing
scenario, the data owner will not be able to control the data re-outsourcing
behavior of the malicious CSP and the location of its data is uncontrollable.

TIMER: Secure and Reliable Cloud Storage against Data Re-outsourcing 349

Therefore, the clients’ data may be stored in some servers controlled by its
competitors or in some servers beyond the scope of legal protection. Then, some
data security and privacy issues will arise.

Low Service Quality: If the cloud storage service is provided in a multi-hop
mode in storage re-outsourcing scenario, the CSPs may not be able to respond
the request from their clients in time. Worse still, the CSPs will not be able to
respond the clients when any CSP in the storage re-outsourcing chain is out of
service. Also, the client’s data will be stored in a lower payment data store which
usually provides lower data security and quality of service guarantee.

3.2 Design Goals

To design a secure and practical TIMER scheme, our system should achieve the
following security and performance guarantees.

1. Correctness: Any cloud server that faithfully follows the mechanism must
produce an output that can be decrypted and verified by the customer.

2. Soundness: No cloud server can generate an incorrect output that can be
decrypted and verified by the customer with non-negligible probability.

3. Efficiency: The local computations done by customer should be substantially
less than the whole data.

4 Proposed Scheme

In this section, we first present the bounds of our scheme. Then, we introduce
the definition and designing detail of our scheme.

4.1 Construction Overview

As the first idea, we have to make a cryptography design where the challenges
from the client C could not be responded correctly in time, when a cloud server
S storing the client’s files F colludes with some other cloud server S′ and re-
outsources F to it. Thus, we propose probabilistic TIMER scheme based on
communication time delay to prove that the client data is available and stored
in specified data store. The proposed scheme adopts cryptographical assump-
tion and network delay to restrict the collusion re-outsourcing behavior of cloud
servers. We properly parameterize some bounds on the protocol as follow:

Semi-Collusion Bound (SC-Bound): In TIMER scheme, every cloud
provider runs the public key generation algorithm and produces a pair of keys
(pk, sk). The cloud provider then publicizes its public key pk and keeps its pri-
vate key sk secret. It should be emphasized that a cloud provider will not conduct
a full proxy signature delegation activity [28] with any other cloud server even
in the collusion situation.

Communication and Computation Bound (CC-Bound): The cloud
providers are rational. They would not like to sign for every possible combination

350 T. Jiang et al.

of u tags, chosen from n tags, beforehand and outsourcing all the clients’ files
with these singed tags.(Actually, it is impossible for a cloud provider to conduct
this kind of activity when u and n are relative large.)

Time Bound (T-Bound): The time for a cloud storage provider to compute
the proof TC is much less than the time to conduct a 1-round challenge-response
commutation TT . The maximum time delay for an honest server to response
the client in the TIMER scheme is Δt. S and S′ could not conduct t-round
communication in Δt, even if they collude with each other.(Since multi-hop re-
outsourcing needs much more response time than the 1-hop re-outsourcing, we
only need to analyze the 1-hop re-outsourcing security in our scheme.)

With the above bounds, we could provide an explanation of our TIMER
scheme based on network delay. On one hand, Papagiannaki et al. [21] showed
that the single-hop average communication delay of packet in the backbone expe-
rience is around 0.1ms. On the other hand, Jansma et al. [17] showed that 10ms
is needed to compute an RSA signature on an Intel P4 2.0GHz machine with
512MB of RAM. As in T −Bound, we assume that the cloud storage providers
have much powerful computation ability which makes the time to generate a
proof TC much less than the time TT . Thus the maximum time for an honest
server S to response the challenge in TIMER scheme is T ime1 = TT + tTC+Δt
where TC is the proof computation time of S. The minimum time for a dishon-
est server S, who has re-outsourced file F to another server S′, to response the
challenge is T ime2 = (t+1)TT + tTC′ where TC′ is the joint computation time
of server S and S′. According to the T −Bound, TC and TC′ is much less than

TT and Δt is smaller than tTC. We obtain that Time2
Time1

= (t+1)TT+t×TC′×TC+Δt
TT+t

and the challenger C will be able to prove that its file F is not stored in the
data storage server S.

In general, TIMER scheme is a challenge-response scheme based on PDP
and it forces S to conduct a t-round communication with S′ when the file F is
offloaded from S and stored at S′. The colluded servers S and S′ would not be
able to generate a correct proof in a time delay Δt if t is chosen properly.

4.2 TIMER Scheme

In this section, we present the constructions of TIMER scheme. We start by
introducing some additional notations used by the constructions. Let p = 2p′+1
and q = 2q′+1 be secure primes and let N = pq be an RSA modulus. Let g be a
generator of QRN , the unique cyclic subgroup of Z∗

N of order p′q′. We can obtain

g as g = a2, where a
R← Z∗

N such that gcd(a± 1, N) = 1. All exponentiations are
performed modulo N , and we sometimes omit writing it explicitly for simplicity.
Let h : {0, 1}∗ → QRN be a secure deterministic hash function that maps
strings uniformly to QRN . Let k, l, λ be security parameters (λ is a positive
integer) and let H be a cryptographic full domain hash function as used in the
provably secure FDH signature scheme [3, 9]. We get H : {0, 1}k → Z∗

N . In
addition, we make use of a pseudo-random function (PRF) f and a pseudo-
random permutation (PRP) π that f : {0, 1}k × {0, 1}log2(n) → {0, 1}l and
π : {0, 1}k × {0, 1}log2(n) → {0, 1}log2(n).

TIMER: Secure and Reliable Cloud Storage against Data Re-outsourcing 351

We write fk(x) to denote f keyed with key k applied on input x. The algo-
rithms of TIMER scheme are described in Algorithm 1. We are able to maintain
1-round communication cost between C and S with a combined value ρ, and
verification materials Tl and ρl(0 ≤ l ≤ t− 1).

As previously defined, let f be a pseudo-random function, π be a pseudo-
random permutation and H be a cryptographic hash function.

According to the TIMER algorithms in Algorithm 1, We construct the TIMER
system in two phases, Setup and Challenge:

Setup: The client C runs GenC(1
k) → (pkC , skC), stores (skC , pkC) and sets

(NC , g) = pkC , (eC , dC , v) = skC . C then runs Tag(pkC , skC , bi, i) → (Ti,bi ,Wi)
for all 1 ≤ i ≤ n and sends pkC , F and TAG = (T1,b1 , ..., Tn,bn) to S for storage.
C may now delete F and TAG from its local storage.

Challenge: C requests proof of possession for c = ut distinct blocks of the file
F (with 1 ≤ c ≤ n):

1. C generates the challenge CHAL = (r, k0, k
′, gs, u, t), where k1

R← {0, 1}k, k′
R← {0, 1}k, gs = gs mod N, s

R← Z∗
N , CT1 is the machine time when C sends

the challenge, u and t are used to decide the number of blocks to verify and
the round number that S has to sign the intermediate results and Δt is the
upper bound of time for S to respond a challenge. C sends CHAL to S and
stores the current system time CT1.

2. S runs GenS(1
k)→ (pkS , skS) and then runs Prof(pkC , skS , F, CHAL, TAG)

→ V and sends to C the proof of possession V .
3. When C receives the response from S, it stores the current system time CT2.

Then C sets CHAL = (k1, k
′, u, t, s, CT1, CT2, Δt) and checks the validity

of the proof V by running Vrfy (pkS , pkC , skC , CHAL,V).

It is obvious that, the additional tags do not change the storage requirements
for the server, since the size of the file is O(n). Considering the efficiency of the
proposed scheme, we need to remark that 2t + 1 values are needed among the
communication between C and S. It means that the client needs to conduct t
times signatures verification in each request. In the TIMER system, we consider
a 1024-bit modulus N . In the Challenge phase, C sends to S 5 value with total
298 bytes (r and gs are both 128 bytes, k0 is 16 bytes, k′ is 20 bytes, u is 4
byte and t is 1 byte). The values contained in the server’s response are related
with the communication round t and the total length is (148t + 20) bytes (
Tl(0 ≤ l ≤ t − 1) is 128 bytes, ρl(0 ≤ l ≤ t − 1) is 20 bytes and ρ is 20
bytes). The communication rounds t is decided according to Δt in full data
re-outsourcing situation. However, in partial data re-outsourcing, it will grow
when the allowed percent of the re-outsourced data becomes smaller, and we
will provide a detailed analysis in the next section. According to out TIMER
system above, we only need to send a small number of values and the server
does not need to send back to the client the file blocks. The storage of a client
is O(1), and the communication overhead and computation overhead of a client
are both O(t).

352 T. Jiang et al.

Algorithm 1. The TIMER Algorithms

GenC(1
k):

1. Generate pkC = (N, g) and skC = (eC , dC , v), such that eCdC ≡ 1(mod
p′Cq

′
C), eC > λ is a large secret prime and dC > λ, g is a generator of

QRN and v
R← {0, 1}k.

2. Output (pkC , skC).

GenS(1
k):

1. Generate pkS = (N, eS) and skS = (N, dS), such that ed ≡ 1(mod p′Sq
′
S),

eS > λ is a large secret prime and dS > λ, g is a generator of QRN .
2. Output (pkS , skS).

Tag(pkC = (N, g), skC = (dC , v), b, i):

1. Generate Wi = v||i. Compute Ti,b = (h(Wi) · gb)dC mod N .
2. Output (Ti, b,Wi).

Prof(pkC = (N, g), skS = dS , F = (b1, ..., bn), CHAL = (r, k0, k
′, gs, u,

t), TAG = (T1,b1 , ..., Tn,bn)):

1. Let c = ut.
for 0 ≤ l ≤ t− 1 do

for 1 ≤ j ≤ u do
Compute coefficients:al,j = fk′(ul + j) ; Compute the indices of
the blocks for which the proof is generated: il,j = πkl

(ul + j);

Compute Tl = (h(Wil,1)
al,1 · ... · h(Wil,u)

al,u · gal,1bil,1+·...·+al,ubil,u)dC ;

Compute ρl = (H(Tl||r))dS . let kl+1 = ρl;

2. Compute ρ = H(
�t−1

l=0 g
al,1bil,1+·...·+al,ubil,u
s mod N);

3. Output V = (ρ, T0, ..., Tt−1, ρ0, ..., ρt−1).

Vrfy(pkS = eS , pkC = (N, g), skC = (eC , v), CHAL = (r, k0, k, u, t,
s, CT1, CT2, Δt),V = (ρ, T0, ..., Tt−1, ρ0, ..., ρt−1)):

if CT2 − CT1 < Δt then

Compute T = T0· ... · Tt−1 = (
�t−1

l=0 h(Wil,1)
al,1 · ... ·

h(Wil,u)
al,ugal,1bil,1+...+al,ubil,u); for 0 ≤ l ≤ t− 1 do

Compute H(Tl ‖ r) = θl Let kl+1 = ρl and τ = T eC . for 1 ≤
j ≤ u do

Compute al,j = fk′(ul + j);// Compute il,j = πkl
(ul +

j),Wil,j = v||il,j , and ;

if θl = (ρl))
eS (0 ≤ l ≤ t− 1) and H(τs mod N) = ρ then

Output Accept.

else
Output reject.

TIMER: Secure and Reliable Cloud Storage against Data Re-outsourcing 353

5 Security and Performance Analysis

In this section, we present the security and performance analysis of our TIMER
scheme.

5.1 Security Proof of TIMER Scheme

We suppose that the maximum time delay that a client allows the server to
respond the proof is Δt. According to the T − Bound, when the file F is re-
outsourced to S′ from S, the collusion servers would not conduct a t round
communication between each other. However, S will be able to forge a proof of
possession V for the blocks indicated by CHAL without conducting a t-round
interaction with S′. Thus, we have to prove that the colluded servers could forge
a valid proof in each phase Phi(0 ≤ i ≤ t− 1) with a negligible probability.

The initial key k0, used to choose the blocks, is from the client while the phase
key used to choose the blocks in each phase is generated from the result of the
previous phase of the current phase. Thus, we have to prove that a Probability
Polynomial Time (PPT) adversary will forge each phase key kl(1 ≤ l ≤ t − 1)
with only a negligible probability. If the PDP scheme [1] adopted in our scheme
is secure under the RSA and KEA-r assumption [27], we could start the security
proof for TIMER system by the phrase key unforgeability. We construct the
phase key generation scheme according to our TIMER scheme as follow:

The Phrase Key Generation Scheme

Let f and π be the pseudo-random function and pseudo-random permutation
respectively as defined before and some other parameters r, k0 k′, F and TAG are as
defined in TIMER algorithms.

Key Generation: Compute(N, e, d) ← GenRSA (1k) and the public key is (N, e) and
the secret is d. Let H : {0, 1}k → Z

∗
N be a hash function.

Phrase Key Generation: When kl(1 ≤ l ≤ t − 1) is needed to compute, the pa-
rameter Tl−1 has been computed as defined in TIMER algorithms. Then compute
ρl = (H(Tl||r))dS mod N and kl+1 = ρl. At last, output (r, k0, k

′, {T0, T1, ..., Tt−1},
{k1, k2, ..., kt−1}).

Phrase Key Verification: Input (r, k0, k
′, {T ′

0, T
′
1, ..., T

′
t−1}, {k′

1, k
′
2, ..., k

′
t−1}) and

check whether all the ρ′l
eS ?

= H(T ′
l ‖ r) and k′

l+1 = ρ′l where 0 ≤ l ≤ t− 1.

Theorem 1. If the PDP scheme is provably secure under the RSA and KEA1-r
assumption, and H and h are modeled as random oracles, the construction of
the Phase Key Generation Scheme is unforgeable under adaptive chosen-message
attack.

Proof. On one hand, the PDP scheme is secure under RSA and KEA1-r as-
sumption, which assures that an adversary can forge T0 with only a negligible
probability. On the other hand, the RSA-signature is a trapdoor permutation

354 T. Jiang et al.

and H is assumed to be a full-domain hash function, which guarantees that the
output of the signature scheme in the phrase key generation scheme has a unique
signature. Then, we get that the probability for an adversary to forge a phase
key k′1 = ρ′0 and ρ′0

eS = H(T ′
0 ‖ r) is negligible. As a result, if a PPT adver-

sary could forge the key k′l with only a negligible probability, the probability
that k′l+1 can be correctly generated is negligible. Consequently, the phase key
{k1, k2, ..., kt−1} is unforgeable when the phase key seed k0 is determined.

Theorem 2. For any phase Phl(0 ≤ l ≤ t − 1), on input dS , {k0, k1, ..., kl−1}
and {T0, T1, ..., Tl−1}, the probability that S could forge a signature Tl =

(h(Wil,1)
al.1 · ... · h(Wil,u)

al,u · gal,1bil,1+...+al,ubil,u)dC is negligible without inter-
acting with S′; On input F = b1, ..., bn, W and {k0, k1, ..., kl−1}, the probability
that S′ could forge the phase key kl+1 is negligible without interacting with S.

Proof. We model h as a random oracle. Then, the block identity il,j =
hkl−1

(j)(1 ≤ j ≤ u) is uniform distribution. Since S has re-outsourced F =
b1, ..., bn to S′, S could not compute a value Tl = (h(Wil,1)

al.1 · ... · h(Wil,u)
al,u ·

gal,1bil,1+...+al,ubil,u)dC from a random set of u blocks without communicating
with S′. Then, we have to prove that S′ could not forge Tα(l + 1 ≤ α ≤ t − 1)
without communicating with S.

According to the SC − Bound, S would not conduct a full proxy signa-
ture with S′. Thus, S′ will not get the secret key dS of S. Under the as-
sumption SC − Bound, We consider a game in which a challenger generates
an RSA key (N, e), chooses random m ∈ {0, 1}k and r ∈ Z∗

N , and sends
(N, e, y = h(m||r) ∈ Z∗

N) to adversary A. The goal is for A to compute y1/e

mod N . Assume that A can query the random oracle H : Z∗
N → Z∗

N at
any sequence of points x1, ..., x� ∈ Z∗

N receiving in return the output values
y1 = H(x1), ..., y� = H(x�) and, without loss of generality, these points are dis-
tinct. The challenger then gives to A the value y1/e mod N for all i, assuming
that the challenger knows the factorization of N and can compute these values.
We claim that A still can not compute a signature σ = y1/e mod N except with
negligible probability. We construct the following adversary A′ which computes
y1/e mod N with the same probability at A, but without any additional help
from the challenger:

Algorithm 2. Algorithm A′

Given (N, e, y) as input, and its goal is to compute y1/e mod N .

1. Run A on input (N, e, y).
2. Oracle Query:

for each random oracle query H(xi) of A do
Choose Ri ← Z∗

N . Answer the query using yi := Re
i mod N .

3. Give R1, ...R� to A, output whatever value is output by A.

TIMER: Secure and Reliable Cloud Storage against Data Re-outsourcing 355

According to Theorem 1 and Theorem 2, if server S has re-outsourced F to
S′, it must conduct a t-round interaction with S′ to generate a correct proof.
Combining with T − Bound, they will not respond in time and the client will
detect the malicious behavior of server S.

5.2 Probabilistic Analysis of Data Re-outsourcing

Our TIMER scheme is a probability scheme, where server S may re-outsource
x blocks of the n-block file F to S′ to break through the T − Bound. Let u be
the number of different blocks for which client C asks proof in each phase of a
challenge. Let X be a discrete random variable that is defined to be the number
of blocks chosen by C that matches the blocks deleted by S. We could compute
the probability PX that at least one of the blocks picked by C matches one of
the blocks re-outsourced to S′ by S in each phases. We have:

PX =P{X ≥ 1} = 1− P{X = 0}

=1− n− x

n
· n− x− 1

n− 1
· ... · n− u+ 1− x

n− u+ 1
.

(1)

Since n−i−x
n−i ≥ n−i−1−x

n−i−1 , we get:

1− (
n− x

n
)u ≤ PX ≤ 1− (

n− u+ 1− x

n− u+ 1
)u (2)

If x blocks of F are offloaded to S′ from S, PX indicates the probability that a
challenger C will detect the misbehavior of server S, when it asks proof for u out
of n blocks. Since secure parameter t is the maximum communication rounds in
a finite time delay Δt according to T −Bound, we have to guarantee that server
S should conduct the communication rounds not less than t from the viewpoint
of probability. Then, we get the relation between ideal communication rounds t
and the actual communication rounds t′ as t′ × PX = t. That is:

t′ =
t

PX
≥ t

1− (n−x
n)u

. (3)

Then, we assume that S re-outsources y out of n blocks of file F . Let Y be a
discrete random variable that is defined to be the number of blocks chosen by C
and matches the blocks destroyed by S. The probability PY that at least one of
the blocks picked by C matches one of the blocks destroyed by S in each phase
can be computed. We have:

PY =P{Y ≥ 1} = 1− P{Y = 0}

=1− n− y

n
· n− y − 1

n− 1
· ... · n− u+ 1− y

n− u+ 1
.

(4)

We define the probability P that, in all the t′ phases, at least one of the blocks
picked in each phase matches one of the blocks destroyed by S. we get:

P = 1− [1− PY]
t′ . (5)

356 T. Jiang et al.

Then we have:

1− (
n− y

y
)ut′ ≤ P ≤ 1− (

n− u+ 1− y

n− u+ 1
)ut′ . (6)

Let c = ut′ be the number of blocks chosen for the proof of data availability in
PDP [1]. The lower bound of inequalities (5) is the same as detection probability
expressed in PDP. If y equals to 1% of n, then C needs to ask for ut = 460 blocks
and ut = 300 blocks in order to achieve P of at least 99% and 95%, respectively.
Fig.1 shows the relation between t′ and t when the total blocks asked by C are
460 and 300 respectively.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

t′ (number of ideal communication round)

t (
nu

m
be

r
of

 a
ct

ua
l c

om
m

un
ic

at
io

n
ro

un
d)

x/n=1%
x/n=3%
x/n=5%
x/n=10%
x/n=20%
x/n=100%

(a) ut = 460

0 5 10 15 20 25 30
0

5

10

15

20

25

30

t′ (number of ideal communication round)

t (
nu

m
be

r
of

 a
ct

ua
l c

om
m

un
ic

at
io

n
ro

un
d)

x/n=1%
x/n=3%
x/n=5%
x/n=10%
x/n=20%
x/n=100%

(b) ut = 300

Fig. 1. Relationship between the ideal communication round t and the actual commu-
nication round t′ when different percents of file are re-outsourced

According to Fig. 1, it is obvious that t′ = t when F is re-outsourced from
S to S′. However, when only a part of F is re-outsourced from S to S′, the
TIMER scheme should also be able to tolerate a t-round communication delay.
Thus, t′ rounds communication needs to be adopted to prevent from partial data
re-outsourcing and the relation between t and t′ is shown in Fig. 1. We need to
choose appropriate t′ to prevent against different percent of data re-outsourcing,
because the smaller t′ is , the more efficient our scheme will be. If t′ is relatively
small, it means the allowed response delay Δt is not very large compared with a
1-round communication time delay in the network. From this point of view, the
efficiency of our scheme, to some extent, depends on precise measurement of the
maximum response delay Δt.

TIMER scheme is efficient when t′ is relative small and the total challenge
block number c = ut′ is fixed. However, to detect the malicious activity of S,
when only a small percent data is re-outsourced, 1 percent or even smaller, t′

may become too large compared to t. As a result, u = c/t′ may become a relative
small number and the package composition number Cu

n may not be large enough
as a secure parameter. In this situation, we need to fix u and compute the relative
t′. Therefore, the total number of random blocks that C challenges will be linear
correlation with the actual communication rounds t′.

TIMER: Secure and Reliable Cloud Storage against Data Re-outsourcing 357

6 Conclusion

Server side clients’ data re-outsourcingmay cause some security problems in cloud
storage environment. In this paper, the proposed probabilistic TIMER schemewill
provide an efficient way to detect this malicious behavior of cloud servers. It adopts
cryptographic assumptions and network delay to prevent servers from collusion in
cloud storage, which will provide a strong incentive for the economically rational
cloud server to store clients’ data in their stores.We provide a security and perfor-
mance analysis of our scheme. The analysis shows that our scheme is secure and
efficient. The storage overhead of clients in TIMER scheme isO(1) and the compu-
tation and communication overhead are both O(t) in full data re-outsourcing sce-
nario and the client storage overhead, computation and communication overhead
become O(1), O(t′) andO(t′), respectively. However, t and t′ will become relative
large when only a small percent of clients’ data is re-outsourced. In the future, we
will explore some new methods to construct a scheme with constant computation
and communication overhead.

Acknowledgement. This work is supported by the National Natural Science
Foundation of China (Nos. 61272455 and 61100224), Doctoral Fund of Min-
istry of Education of China (No. 20130203110004), Program for New Century
Excellent Talents in University (No. NCET-13-0946), China 111 Project (No.
B08038), and the Fundamental Research Funds for the Central Universities (No.
BDY151402).

References

1. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proc. of ACM
CCS, Virginia, USA, pp. 598–609 (October 2007)

2. Ateniese, G., et al.: Scalable and efficient provable data possession. In: Proc. of
SecureComm, VA, USA, pp. 1–10 (September 2008)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
effficient protocols. In: Proc. of ACM CCS, VA, USA, pp. 62–73 (November 1993)

4. Bowers, K.D., et al.: How to tell if your cloud files are vulnerable to drive crashes.
In: Proceedings of the ACM Conference on Computer and Communications Secu-
rity, IL, USA, pp. 501–514 (October 2011)

5. Capkun, S., Cagalj, M., Srivastava, M.: Secure localization with hidden and mobile
base stations. In: Proceedings of the IEEE International Conference on Computer
Communications, Catalunya, Spain, pp. 1–10 (April 2006)

6. Chen, X., Li, J., Susilo, W.: Efficient fair conditional payments for outsourcing
computations. IEEE Transactions on Information Forensics and Security 7(6),
1687–1694 (2012)

7. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourc-
ing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

8. Commission, E.: Regulation of the european parliament and of the council on the
protection of individuals with regard to the processing of personal data and on the
free movement of such data. general data protection regulation, directive 95/46/EC
(2012)

358 T. Jiang et al.

9. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

10. Deswarte, Y., Quisquater, J.J., Saidane, A.: Remote integrity checking. In: Proc. of
Conference on Integrity and Internal Control in Information Systems (IICIS 2003),
Lausanne, Switzerland, pp. 1–11 (November 2003)

11. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

12. Dubnicki, C., et al.: Hydrastor a scalable secondary storage. In: Proc. of the 7th
USENIX Conference on File and Storage Technologies, CA, USA, pp. 197–210
(February 2009)

13. Erway, C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proc. of ACM CCS. pp. 213–222. Illinois, USA (November 2009)

14. Filho, D.L.G., Baretto, P.S.L.M.: Demonstrating data possession and uncheatable
data transfer. IACR ePrint archive 2006 (2006),
http://eprint.iacr.org/2006/150

15. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proof of ownership in remote
storage system. In: Proc. of ACM CCS, Illinois, USA, pp. 491–500 (October 2011)

16. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services:
Deduplication in cloud storage. In: Proc. of IEEE Security & Privicy, CA, USA,
pp. 40–47 (November 2010)

17. Jansma, N., Arrendondo, B.: Performance comparison of elliptic curve and rsa
digital signatures. Tech. Rep. MI, University of Michigan, Ann Arbor (May 2004)

18. Juels, A., Kaliski, B.S.: Pors: Proofs of retrievability for large files. In: Proc. of
ACM CCS, Virginia, USA, pp. 584–597 (2007)

19. Laki, S., et al.: A detailed path-latency model for router geolocation. In: The Inter-
national Conference on Testbeds and Research Infrastructures for the Development
of Networks Communities and Workshops, DC, USA, pp. 1–6 (April 2009)

20. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

21. Papagiannaki, K., et al.: Provable data possession at untrusted stores. In: Proc.
IEEE INFOCOM 2002, NY, USA, pp. 535–544 (June 2002)

22. Schwarz, T.S.J., Miller, E.L.: Store, forget, and check: Using algebraic signatures
to check remotely administered storage. In: Proceedings of ICDCS 2006, Lisboa,
Portugal, pp. 1–12 (July 2006)

23. Sebe, F., et al.: Time-bounded remote file integrity checking. Tech. Rep. 04429,
Universitat Rovira i Virgili, Tarragona, Spain (July 2004)

24. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Proc. of ASIACRYP-
T, Melbourne, Australia, pp. 90–107 (December 2008)

25. Ungureanu, C., et al.: Hydrafs A high-throughput file system for the hydrastor
content-addressable storage system. In: Proc. of the 8th USENIX Conference on
File and Storage Technologies, CA, USA, p. 17 (February 2010)

26. Wong, B., Stoyanov, I., Sirer, E.G.: Octant: A comprehensive framework for the ge-
olocalization of internet hosts. In: Proceedings of the USENIX Networked Systems
Design and Implementation, MA, USA, pp. 313–326 (April 2007)

27. Yamamoto, G., Fujisaki, E., Abe, M.: An efficiently-verifiable zero-knowledge
argument for proofs of knowledge. IEICE Technical Report ISEC2005-48 105,
41–45 (July 2005)

28. Zhang, F., Kim, K.: Efficient id-based blind signature and proxy signature from
bilinear pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 312–323. Springer, Heidelberg (2003)

http://eprint.iacr.org/2006/150

Improvement of a Remote Data Possession

Checking Protocol from Algebraic Signatures�

Yong Yu1,2, Jianbing Ni1, Jian Ren3, Wei Wu4, Lanxiang Chen4, and Qi Xia1

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, 611731, China

{yyucd2012,nimengze,weiwu81,xiaqi0769}@gmail.com
2 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China
3 Department of Electrical and Computer Engineering,

Michigan State University, MI, 4882, USA
renjian@egr.msu.edu

4 School of Mathematics and Computer Science,
Fujian Normal University, Fuzhou, 350007, China

lxiangchen@fjnu.edu.cn

Abstract. Cloud storage allows cloud users to enjoy the on-demand
and high quality data storage services without the burden of local data
storage and maintenance. However, the cloud servers are not necessarily
fully trusted. As a consequence, whether the data stored on the cloud
are intact becomes a major concern. To solve this challenging problem,
recently, Chen proposed a remote data possession checking (RDPC) pro-
tocol using algebraic signatures. It achieves many desirable features such
as high efficiency, small challenges and responses, non-block verification.
In this paper, we find that the protocol is vulnerable to replay attack and
deletion attack launched by a dishonest server. Specifically, the server can
either fool the user to believe that the data is well maintained but ac-
tually only a proof of the challenge is stored, or can generate a valid
response in the integrity checking process after deleting the entire file of
the user. We then propose an improved scheme to fix the security flaws of
the original protocol without losing the desirable features of the original
protocol.

1 Introduction

Cloud storage provides a novel service model wherein data are maintained, man-
aged and backed up remotely and accessed by the users over the network at

� This work is supported by the NSFC of China under Grants 61003232, 61370203,
61202450, the National Research Foundation for the Doctoral Program of Higher
Education of China under Grants 20100185120012, 20123503120001, the NSFC of
China for International Young Scientists under Grant 61250110543, Department of
Education, Fujian Province, A-Class Project under Grant JA12076, and the Funda-
mental Research Funds for the Central Universities under Grant ZYGX2011J067.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 359–372, 2014.
c© Springer International Publishing Switzerland 2014

360 Y. Yu et al.

anytime and from anywhere [1]. Although cloud storage is targeted to take up
much of the workload from the client, it is fraught with security risks [2]. On
the one hand, frequent data access increases the probability of disk corruption,
as a result, loss of the data may occur constantly. Simultaneously, cloud service
providers may try to hide data loss incidents in order to maintain their repu-
tation. On the other hand, cloud providers are not fully trusted and thus, they
might discard the data that have not been or are rarely accessed for monetary
reasons. Therefore, whether the stored data keeps virgin is a major concern of
the cloud users.

In order to check the data integrity at untrusted stores, in 2007, Ateniese
et al. [3, 4] proposed the notion of provable data possession (PDP) for the
first time and presented two efficient and provably-secure PDP schemes based
on homomorphic verifiable tags. In their protocols, users are allowed to ver-
ify data integrity without accessing the entire file. At the same time, Juels
et al. [5] formalized the model of proof of retrievability (PoR) which enables
the server to produce a concise proof that a user can retrieve data, and then,
presented a sentinel-based PoR scheme using error-correcting code. In 2008,
Shacham and Waters [6,7] described two efficient and compact PoR schemes. In
2009, Ateniese et al. [8] provided a framework for building public-key homomor-
phic linear authenticators from any identification protocol, and then described
how to turn any public-key homomorphic linear authenticator into a publicly-
verifiable PDP scheme with an unbounded number of verifications. Subsequently,
a number of data auditing protocols [9–16] from some efficient PDP and PoR
schemes [5–7, 17–19], were proposed to ensure the integrity of users’ data. In
2013, Chen [20] proposed an algebraic signature based remote data possession
checking (RDPC) protocol, which is a similar notion inherited from PDP, but
the number of verifications in their basic protocol is limited. To overcome this
drawback, an improved scheme supporting to refresh tags after t verifications
was also proposed in [20]. Both protocols provide a number of desirable features
of a remote data possession checking protocol such as high efficiency, small chal-
lenges and responses, no-block verification and were suggested to be adopted to
the cloud storage scenario.

Our Contribution. In this paper, we identify several security flaws in the
RDPC protocols in [20]. Firstly, neither the basic protocol nor the improved one
is secure against the replay attack, in which the server is able to generate a valid
proof from the previous proofs, without accessing the actual data. Consequently,
the server needs only to store a previous proof and replay it as a valid response
when required. Secondly, the improved protocol is vulnerable to a malicious
server’s deletion attack; namely, the server can generate a valid response in the
integrity checking process after deleting the original data file. Then, we propose
a new RDPC protocol to fix these security problems. Finally, we show the fixed
protocol is secure based on the security model due to Ateniese et al. [3] and
maintains the desirable features of the original protocol on performance.

Improvement of a Remote Data Possession Checking Protocol 361

Organization. Section 2 gives some preliminaries used in this paper. Section 3
reviews the RDPC protocols in [20] and discusses the security of the protocols.
Section 4 describes our new RPDC protocol. Section 5 provides security proofs
for the new RDPC protocol and Section 6 concludes the paper.

2 Preliminaries

In this section, we review basic knowledge of the RDPC protocols, including
security model, components and security requirements of a RDPC protocol.

2.1 System Model

The remote data possession checking architecture for cloud storage involves two
kinds of entities: a cloud server and its users. The cloud server, which has signif-
icant storage space and computation resources, stores users’ data and provides
data access service. The users have large amount of data to be stored on the
cloud in order to eliminate the overhead of local storage. As users no longer
possess the entire data locally and the cloud server is not fully-trusted, it is of
critical importance for users to ensure their data are correctly stored and main-
tained in the cloud. Therefore, the users should be able to efficiently check the
integrity and correctness of their outsourced data.

2.2 Components of a RDPC Protocol

A remote data possession checking protocol, which can be used to verify the in-
tegrity of the users’ data, consists of five phases: Setup, TagBlock, Challenge,
ProofGen and ProofVerify [3, 4].

– Setup is a probabilistic algorithm run by the user to setup the protocol. It
takes a security parameter κ as input and returns k as the secret key of the
user.

– TagBlock is a probabilistic algorithm that is run by the user to generate
tags for a file. It takes the secret key k and a file F as input and returns the
set of tags T for file F .

– Challenge is a probabilistic algorithm that is run by the user to gener-
ate a challenge. It takes the security parameter κ as input and returns the
challenge chal.

– ProofGen is a deterministic algorithm that is run by the cloud server in
order to generate a proof of possession. It takes the blocks of file F and the
set of tags T as input and returns a proof of possession R for the challenged
blocks in F .

– ProofVerify is a deterministic algorithm that is run by the user in order to
evaluate a proof of possession. It takes his secret key k, the challenge chal
and the proof of possession R as input, and returns whether the proof is a
correct proof of possession for the blocks challenged by chal.

362 Y. Yu et al.

2.3 Security Requirements

In cloud storage, the cloud server could be self-interested and might hide data
corruption incidents to maintain its reputation. So a practical remote data pos-
session checking protocol should be secure against the internal attacks a cloud
server can launch, namely replace attack, forge attack, replay attack and deletion
attack [14].

– Replace attack: The server may choose another valid pair of data block and
tag (Fi, Ti) to replace a challenged pair of data block and tag (Fj , Tj), when
it has already discarded Fj or Tj.

– Forge attack: The server may forge valid tags of data blocks to deceive the
user.

– Replay attack: The server may generate a valid proof of possession R from
previous proofs or other information, without accessing the outsourced data.

– Deletion attack: The server may generate a valid proof R making use of the
tags T or other information, even the user’s entire file has been deleted.

The security game due to Ateniese et al. [4] covers all the attacks mentioned
above by capturing that an adversary cannot produce a valid proof without
possessing all the blocks corresponding to a given challenge, unless it guesses all
the missing blocks. The details of the game are as follows:

– Setup: The challenger runs Setup algorithm to generate a secret key k and
keeps it secret.

– Query: The adversary chooses some data blocks Fi(i = 1, · · · , n) and makes
tag queries adaptively. The challenger computes the corresponding tags
Ti(i = 1, · · · , n) for the blocks and sends them back to the adversary.

– Challenge: The challenger generates a challenge chal and requests the adver-
sary to respond a proof of possession R for the challenged blocks.

– Forge: The adversary computes a proof R for the challenged blocks and
returns it to the challenger.

The adversary wins the game if VerifyProof(k, chal, Ti(i = 1, · · · , n), R)
holds. A RDPC protocol is secure against a malicious server if for any (prob-
abilistic polynomial-time) adversary the probability that it wins the security
game on a set of file blocks is negligible.

3 On the Security of the RDPC Protocols

In this section, we review the basic RDPC protocol and the improved one in [20]
and show that both protocols are insecure against the replay attack, and the
improved scheme is also susceptible to the deletion attack.

Improvement of a Remote Data Possession Checking Protocol 363

3.1 A Brief Review of the RDPC Protocols

The following symbols are used in the RDPC protocols in [20].

– t: the number of verifications;
– c: the number of blocks challenged in each challenge;
– Ekt(·), Dkt(·): the encryption and decryption algorithms of a symmetric
cryptosystem, where kt is the symmetric key;

– F = F [1], · · · , F [n]: F denotes a file name, and F [i] denotes the ith data
block of the file F ;

– T = T1, · · · , Tt: T denotes the set of block tags and Ti denotes the ith tag;
– f(·): {0, 1}κ × {0, 1}l → {0, 1}l, denotes a pseudo-random function (PRF);
– σ(·): {0, 1}κ × {1, · · · , n} → {1, · · · , n}, denotes a pseudo-random permuta-
tion (PRP);

– ASg(·): denotes an algebraic signature algorithm. Here the algebraic signa-
ture on a block s0, s1, · · · , sn−1 is defined as:

ASg(s0, s1, · · · , sn−1) =
∑n−1

i=0 si · gi,

where g is a primitive element of a Galois field [21].

The details of the basic RDPC protocol in [20] are described in Figure 1.

Setup: The user generates a master

key k
R←−− {0, 1}κ, an encryption key

kt
R←−− {0, 1}κ, and two random

values r1, r2
R←−− {0, 1}κ.

TagBlock:

0 < i ≤ t

ki = fk(r1 + i)

s = 0

for 0 < j ≤ c

lj = σki(r2 + j)

s = s+ F [lj]

δi = ASg(s)

Ti = Ekt(δi)

The user sends < F, T > to the server.

Challenge: For the ith challenge,

the user computes ki = fk(r1 + i),

and sends < r2, ki > to the server.

ProofGen:

F ′
i = 0

for 0 < j ≤ c

lj = σki(r2 + j)

F ′
i = F ′

i + F [lj]

return < F ′
i , T

′
i >.

ProofVerify:The user checks whether

ASg(F
′
i) = Dkt(T

′
i) holds.

Fig. 1. The basic RDPC protocol in [20]

An improved scheme using challenge updating was proposed as well to over-
come the drawback of limited number of data verifications in the basic protocol.
The new tag generation and challenge updating are shown in Figure 2 and the
other processes are the same as those of the basic protocol.

364 Y. Yu et al.

Setup: The user picks a master key k
R←−− {0, 1}κ, the encryption key

kt
R←−− {0, 1}κ, and three random numbers r1, r2, r3

R←−− {0, 1}κ.

TagBlock:

for 0 < i ≤ n

τi = ASg(F [i])

for 0 < i ≤ t

s = 0

ki=fk(r1 + i)

for 0 < j ≤ c

lj = σki(r2 + j)

s = s+ τlj

Ti = Ekt(s)

Forward < F, T, τ > to the server.

Challenge-updating:

For the mth updating

ku
m = fk(r3 +m)

for 0 < i ≤ t

s=0

ki = fku
m
(r1 + i)

for 0 < j ≤ c

lj = σki(r2 + j)

s = s+ τlj

T ′′
i = Ekt(s)

Send < T ′′ > to the server.

Fig. 2. The improved RDPC protocol in [20]

3.2 Replay Attacks on the Protocols

The User

1.For the first challenge,

compute k1 = fk(r1 + 1) �< r2, k1 >

The Server

2.Compute lj = σk1(r2 + j) for

1 ≤ j ≤ c and F ′
1 =

∑c
j=1 F [lj]� < F ′

1, T
′
1 >

3.Verify ASg(F
′
1) = Dkt(T

′
1)

4.If the proof is available, discard

< F, T >, and keep < F ′
1, T

′
1 >

5.For the ith challenge,

compute ki = fk(r1 + i) �< r2, ki >

6.Replay < F ′
1, T

′
1 >� < F ′

1, T
′
1 >

7.Verify ASg(F
′
1) = Dkt(T

′
1)

Fig. 3. Replay attack on the RDPC protocols

The replay attack, a serious security threat to RDPC protocols, says that the
server can generate a valid proof from previous proofs or other information

Improvement of a Remote Data Possession Checking Protocol 365

without accessing the actual data of the user. In the RDPC protocols in [20], since
the replayed proof < F ′

1, T
′
1 > can always make the equation ASg(F

′
1) = Dkt(T

′
1)

hold and as a consequence, the server only needs to keep < F ′
1, T

′
1 > instead of

the entire file and verifiable tags < F, T > of the user. Thus, the RPDC protocols
in [20] are insecure against replay attack as shown in Figure 3.

3.3 Deletion Attack on the Improved Protocol

The deletion attack enables the server to generate a valid proof from the block
tags or other information after deleting all the stored data of the user. In the
improved protocol in [20], the server can launch deletion attack to fool the user
to believe that the data in the cloud are well maintained, while actually only the
block tags are stored. The details of the attack are shown below:

– Receiving the stored file < F, T, τ > from the user, the server keeps the
values < T, τ > and discards the file F .

– When receiving the ith challenge < r2, ki > from the user, the server com-
putes lj = σki(r2 + j) for each j ∈ [1, c], and generates the lj-th data block
F ∗[lj] = s∗lj,0, · · · , s

∗
lj ,n−1 using τlj as follows: pick n − 1 random values

s∗lj ,1, · · · , s
∗
lj ,n−1, and compute s∗lj ,0 as:

s∗lj ,0 = τlj −
n−1∑
j=1

s∗lj ,j · g
j .

– After generating all the challenged data blocks {F ∗
l1
, · · · , F ∗

lc
}, the server

computes F ∗
i =

∑c
j=1 F

∗
lj

and responds the proof < F ∗
i , Ti > to the user.

The verification equation ASg(F
∗
i) = Dkt(T1) holds since F ∗

i is equal to Fi

and thus, the user believes that the data in the cloud are well maintained. But
in fact, the server stores only the block tags of the file < T, τ > instead of the
whole data < F, T, τ >. As a consequence, the server can delete the file F and
rent the storage space to other cloud users without being detected by the user
in data possession checking process.

4 Our RDPC Protocol

To enhance the security of original RDPC protocols in [20], we incorporate the
basic RDPC scheme and the tricks due to Shacham and Waters [6, 7], namely,
we involve the name of the file Fid and the block sequence numbers i in generat-
ing block tags. Besides, since algebraic signatures in [20] are non-cryptographic
encoding methods rather than digital signatures, the server can generate a valid
proof using the block tags τ after deleting all the data of the user. In our proto-
col, we enhance the algebraic signature algorithm by involving pseudo-random
functions. Moreover, to improve the efficiency of the RDPC protocol, we make
use of the random sampling technique to challenge the server. It’s not necessary

366 Y. Yu et al.

for the user to update the tags after t times verifications in the new protocol.
Besides, the communication flows of our RDPC protocol should be transmit-
ted via an authenticated and reliable channel in order to avoid the attack by
Ni et al. [22]. The details of Setup, TagBlock, Challenge, ProofGen and
ProofVerify are shown below.

– Setup: κ denotes the security parameter which determines the size of a prime
q. Let G1 be a cyclic group generated by g with order q. The user generates

a secret key k
R←−− Z∗

q , and defines two pseudo-random functions (PRF): δ:
{0, 1}∗ × Z∗

q → Z∗
q and φ: Z∗

q × Z∗
q → Z∗

q . π: Z
∗
q × {1, · · · , n} → {1, · · · , n}

represents a pseudo-random permutation (PRP); H : {0, 1}∗ → Z∗
q stands

for a hash function. Choose kenc as the secret key of a symmetric encryption
scheme Enc(·) and Dec(·).

– TagBlock: Given a file F , the user firstly splits F into m blocks
F = {F [1], · · · , F [m]}, further divides each block say F [i] into n sectors
{si,1, · · · , si,n}. Next, the user picks n random values {α1, · · · , αn} in Z∗

q

and generates τ = Fid||m||n||Enckenc(α1|| · · · ||αn) as the file tag of the file
F where Fid is the name of the file F . Then, the user computes the verifiable
tag of F [i] as

Ti =

n∑
j=1

(αj · si,j +H(Fid||gid||i)) · gjid,

where gid is computed as gid = δk(Fid). Finally, the user sets T =
{T1, · · · , Tm} and sends (τ, F, T) to the server.

– Challenge: The user chooses a value c as the number of the blocks chal-

lenged, and generates two random numbers k1
R←−− Z∗

q , k2
R←−− Z∗

q , then
sends the challenge chal = (c, k1, k2) to the server.

– ProofGen: Upon receiving the challenge from the user, the server computes
the lt = πk1 (t) and at = φk2(t) for 1 ≤ t ≤ c. Then the server generates
σ =

∑c
t=1 at · Tlt and ρj =

∑c
t=1 atslt,j for 1 ≤ j ≤ n. Finally, the server

sets ρ = {ρ1, ρ2, · · · , ρn} and responds (τ, σ, ρ) to the user.

– ProofVerify: Upon receiving the proof from the server, the user computes
lt = πk1(t), at = φk2(t) for 1 ≤ t ≤ c and gid = δk(Fid), then decrypts
α1|| · · · ||αn = Deckenc(Enckenc(α1|| · · · ||αn)) and checks whether the iden-
tity holds:

σ =
n∑

j=1

(αj · ρj +
c∑

t=1

(at ·H(Fid||gid||lt))) · gjid.

If the equation holds, it indicates the user’s data are well maintained; Oth-
erwise, the data have been corrupted. The protocol is illustrated in Figure
4.

Improvement of a Remote Data Possession Checking Protocol 367

The User

1.Compute τ and Ti =∑n
j=1(αjsi,j +H(Fid||gid||i))gjid

for F [i] where gid = δk(Fid). �(τ, F, T)

The Server

2.Store (τ, F, T).

3.Generate a random challenge:

chal = (c, k1, k2) �(c, k1, k2) 4.Compute lt = πk1(t) and

at = φk2 (t) for 1 ≤ t ≤ c.

5.Generate σ =
∑c

t=1 at · Tlt .

6.Generate ρj =
∑c

t=1 atslt,j

for 1 ≤ j ≤ n.�(τ, σ, ρ)
7.Compute lt = πk1(t) and

at = φk2 (t) for 1 ≤ t ≤ c

and gid = δk(Fid).

8.Decrypt τ and check whether the equation

σ =
∑n

j=1(αj · ρj +
∑c

t=1(at ·H(Fid||gid||lt))) · gjid holds.

Fig. 4. Our new RDPC protocol

The correctness of the protocol is elaborated as follows:

σ =

c∑
t=1

at · Tlt (1)

=

c∑
t=1

at ·
n∑

j=1

(αj · slt,j +H(Fid||gid||lt)) · gjid (2)

=

n∑
j=1

c∑
t=1

at(αj · slt,j +H(Fid||gid||lt)) · gjid (3)

=
n∑

j=1

(
c∑

t=1

at · αj · slt,j +
c∑

t=1

at ·H(Fid||gid||lt)) · gjid (4)

=
n∑

j=1

(αj · ρj +
c∑

t=1

(at ·H(Fid||gid||lt))) · gjid (5)

5 Security Proofs

In this section, we prove that our RDPC protocol is secure under the security
model of Ateniese et al. [3] using the tricks due to Shacham and Waters [6, 7].
Intuitively, without maintaining the whole file, an adversary cannot generate
a valid response to a challenge. That is, we will prove that the ProofVerify

368 Y. Yu et al.

algorithm will reject except when the prover’s ρj are computed correctly, i.e. are
such that ρj =

∑c
t=1 atslt,j .

Theorem 1. If the pseudo-random function is secure and the symmetric en-
cryption scheme is semantically secure, then there exists no adversary to break
our RDPC protocol, that cause the user to accept a corrupted proof in the re-
mote data possession checking process, within non-negligible probability, except
the responding proof (σ, ρ) is computed correctly by ProofGen phase.

In order to prove theorem 1, we construct a series of games and interleave
the game description by limiting the difference in adversary’s behavior between
successive games.

Game 0. The first game, Game 0, is defined the same as the security game
defined in Section 2.3.

Game 1. In Game 1, the challenger uses the a random bit-string of the same
length as encryption of α1|| · · · ||αn to replace the ciphertext. When given a
challenged tag, the adversary can distinguish the encrypted value of the tag,
rather than attempting to decrypt the ciphertext, the challenger declares failure
and aborts.
Analysis. In Game 1, the challenger keeps a table of plaintexts α1|| · · · ||αn and
their tags to respond queries in decryption oracles. The challenger can break the
semantic security of the symmetric encryption scheme employing the adversary
if the probability of the adversary’s success between Game 0 and Game 1 is non-
negligible. In order to bridge the gap between Game 0 and Game 1, we must use
a hybrid argument between “all valid encryption” and “no valid encryption”,
which will cause the reduction suffer a 1/qs security loss, where qs is the number
of queries made by the adversary.

Specifically, the challenger interacts with the adversary A following the se-
curity game in section 2.3 and keeps track of the files stored by A. Then, if A
succeeds in some data integrity checking interaction with a proof that is differ-
ent from that would be generated by the ProofGen algorithm, the challenger
aborts and outputs 1; Otherwise, outputs 0. Assume the challenger outputs 1
with some non-negligible probability ε0 if its behavior is as specified in Game
0, and the challenger outputs 1 with some non-negligible probability ε1 if its
behavior is as specified in Game 1, we will show that the gap between ε0 and ε1
is negligible as long as the symmetric encryption scheme is semantic secure.

In game 0, the challenger uses the ciphertext of α1|| · · · ||αn to generate each
tag. In Game 1, the challenger encrypts a random string of the same length
in generating each tag. Suppose that |ε1 − ε0| is non-negligible. Consider the
hybrid argument in which the challenger generates the first i tags using random
ciphertexts, and the remaining qs − i tags involving random values. Thus, there
must be a value of i such that the difference between the challenger’s outputs in
hybrid i and hybrid i+1 is at least |ε1−ε0|/qs, which is non-negligible. According
to this, we will construct an algorithm B to break the security of the symmetric
encryption scheme.

Improvement of a Remote Data Possession Checking Protocol 369

The encryption oracle for kenc is accessible to B, as well as a left-or-right
oracle which given stringsm0 and m1 of the same length, outputs the encryption
of mb, where b is a random bit. B interacts with A acting as the challenger. In
answeringA’s first i queries, B uses its encryption oracle to obtain the encryption
of α1|| · · · ||αn, which includes in the tag. In answering A’s the (i + 1)th query,
B generates the correct plaintext m0 = α1|| · · · ||αn and a random plaintext m1

of the same length and submits both to its left-or-right oracle. In answering A’s
remaining queries, B encrypts a random plaintext which has the same length as
the correct plaintext using its encryption oracles and includes the result in the
tags. B keeps track of the files stored by the adversary. If A succeeds in some
data possession checking interaction but the proof is different from that would
be generated by the ProofGen algorithm, the challenger aborts and outputs 1;
Otherwise, outputs 0.

If the left-or-right oracle receives its left input, B is interacting with A accord-
ing to hybrid i. If the left-or-right oracle receives its right input, B is interacting
with A according to hybrid i + 1. There is a non-negligible difference in A’s
behavior and therefore in B’s, which breaks the security of the symmetric en-
cryption scheme. Note that, since the values α1|| · · · ||αn are randomly chosen
and independent with each file, the values given by B to its left-or-right ora-
cle are consistent with a query it makes to its encryption oracle with negligible
probability.

Game 2. In Game 2, the challenger uses truly random values in Z∗
p instead of

the outputs of the pseudo-random function δ, remembering these values to use in
verifying the validation of the adversary’s responses in data possession checking
instances. More specifically, the challenger evaluates gid not by applying the
PRF gid = δk(Fid), but by generating a random value r ← Z∗

q and inserting an
entry (k, Fid, r) in a table; it queries this table when evaluating the PRF δ to
ensure consistency.
Analysis. In Game 2, the challenger uses random values to replace the outputs
of the PRF δ and then keeps a table of (k, Fid, r) to ensure the verification of the
adversary’s proof. If there is a difference in the adversary’s success probability
between Games 1 and 2, we can use the adversary to break the security of the
PRF δ. This means that if the adversary can distinguish random values from
the outputs of PRF, the challenger can break the security of the PRF involving
the adversary.

As in the analysis of Game 2, the difference in behavior we use to break the
security of PRF is the event that the adversary succeeds in a data possession
checking interaction but responded values (σ, ρ) are different from those that
would be by the ProofGen algorithm. Similar to the analysis of Game 1, a
hybrid argument is necessary to proof Game 2 with a security loss 1/(mqs)
in the reduction, where m is a bound on the number of blocks in any file the
adversary requests to have stored.

Game 3. In Game 3, the challenger handles RDPC protocol executions initiated
by the adversary differently than in Game 2. In each such RDPC protocol execu-

370 Y. Yu et al.

tion, the challenger issues a challenge as before. However, the challenger verifies
the adversary’s response differently from what it specified in ProofVerify phase.

The challenger keeps a table of the TagBlock queries made by the adversary
and the corresponding responses to maintain consistency; the challenger knows
the values ρj and σ that the sever would have produced in response to the query
it issued. If the values the adversary sent were exactly these values, the challenger
accepts the adversary’s response. If in any of these interactions the adversary
responds in such a way that (1) passes the verification algorithm but (2) is not
what would have been computed by an honest server, the challenger declares
failure and aborts.
Analysis. The adversary’s view is different in Game 3 and Game 2 only when
the response of adversary (1) can make the verification algorithm satisfied but
(2) is not what would have been computed by the challenger, which acts as an
honest server, in some RDPC protocol interaction. We show that the probability
that this happens is negligible.

Before analyzing the difference in probabilities between Game 3 and Game
2, we firstly describe the notion and draw a few conclusions. Suppose the file F
that causes the abort is divided into m data blocks F = F [1], · · · , F [m], further
divides each block into n sectors F [i] = si,1, · · · , si,n. Fid denotes the name of
the file F and i represents the block number of F [i]. Assume chal = (c, k1, k2)
is the query that causes the challenger to abort and the adversary’s response to
that query is (σ∗, ρ∗). If the adversary’s response satisfies the verification–i.e., if

σ∗ =

n∑
j=1

(αj · ρ∗j +
c∑

t=1

(at ·H(Fid||r||lt))) · rj ,

where lt = πk1(t) and at = φk2 (t) for 1 ≤ t ≤ c and r is the random value
substituted by Game 2 for gid. Let the expected response, which would have
been obtained from an honest prover, be (σ, ρ), where σ =

∑c
t=1 at ·Tlt and ρj =∑c

t=1 atslt,j . Because of the correctness of the protocol, the expected response
can pass the verification equation, that is

σ =

n∑
j=1

(αj · ρj +
c∑

t=1

(at ·H(Fid||r||lt))) · rj .

Observe that if ρ∗j = ρj for each j, the value of σ∗ should be equal to σ, which
contradicts our assumption above. Therefore, let us define Δσ = σ∗ − σ and
Δρj = ρ∗j − ρj for 1 ≤ j ≤ n and subtracte the verification equation for σ from
that for σ∗, we have

Δσ =

n∑
j=1

αj ·Δρj · rj .

The bad event occurs exactly when some Δρj is not zero, which means that
the adversary’s submitting a convincing response is different from an honest
server’s response.

Improvement of a Remote Data Possession Checking Protocol 371

However, the values {α1, · · · , αn} for every file are randomly chosen and there-
fore independent of the adversary’s view. There is no other needed to consider
the encryption in generating the tags, and the appearance is in computing Ti =∑n

j=1(αj ·si,j+H(Fid||r||i))·rj , whereH(Fid||r||i) is a secure hash function. Since
the output of δ is replaced by a random value r, Ti is independent of {α1, · · · , αn}.
Therefore, the probability that the bad event happens if the challenger first picks
the random values {α1, · · · , αn} for each stored file and then undertakes the data
possession checking interactions is the same as the probability that the bad event
happens if the challenger first undertakes the data possession checking interac-
tions and then chooses the value {α1, · · · , αn} for each file.

Consider the values Δρj and Δσ in responses from the adversary and the
choice of {α1, · · · , αn}. The probability makes the equation Δσ =

∑n
j=1 αj ·Δρj ·

rj hold for a specific entry in an interaction is 1/p. Therefore, the probability
that the equation holds for a nonzero number of entries is at most qP /p, where
qP is the number of RDPC protocol interactions initiated by the adversary.
Thus, except with negligible probability qP /p, the adversary never generates a
convincing response which is different from an honest server’s response, so the
probability of the challenger aborts is negligible.

Wrapping Up. Yet we have argued that, assuming the PRF is secure and the
symmetric encryption is semantic security, there is only a negligible difference in
the success probability of the adversary in Game 3 compared to Game 0, where
the adversary is not constrained in this manner. This completes the proof of
Theorem 1.

6 Conclusion

In this paper, we presented a security analysis on a remote data possession check-
ing protocol using algebraic signature in [20], and showed that it suffers from the
replay attack and deletion attack. We also proposed an improved protocol by
using the techniques of Shacham and Waters [6,7] to fix these security flaws. In-
volving the security model due to Ateniese et al [3], we provided formal security
proofs of our new RDPC protocol.

References

1. Buyyaa, R., Yeoa, C., Broberga, J., Brandicc, I.: Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems 25(6), 599–616 (2009)

2. Zissis, D., Lekkas, D.: Addressing cloud computing security issues. Future
Generation Computer Systems 28(3), 583–592 (2012)

3. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.: Provable data possession at untrusted stores. In: Proceeding of ACM
CCS 2007, Alexandria, Virginia, USA, pp. 598–609. ACM (2007)

4. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.: Remote data checking using provable data possession. ACM Trans. Inf.
Syst. Security 14(1), 12 (2011)

372 Y. Yu et al.

5. Juels, A., Kaliski, B.S.: PORs: proofs of retrievability for large files. In: Proceeding
of ACM CCS 2007, Alexandria, Virginia, USA, pp. 584–597. ACM (2007)

6. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

7. Shacham, H., Waters, B.: Compact proofs of retrievability. Journal of
Cryptology 26(3), 442–483 (2013)

8. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic iden-
tification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 319–333. Springer, Heidelberg (2009)

9. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

10. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib.
Syst. 22(5), 847–859 (2012)

11. Wang, C., Ren, K., Lou, W., Li, J.: Toward public auditable secure cloud data
storage services. IEEE Network 24(4), 19–24 (2010)

12. Zhu, Y., Hu, H., Ahn, G.J., Stephen, S.: Yau: efficient audit service outsourcing for
data integrity in clouds. Journal of Systems and Software 85(5), 1083–1095 (2012)

13. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession
for integrity verification in multicloud storage. IEEE Trans. Parallel Distrib.
Syst. 23(12), 2231–2244 (2012)

14. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013)

15. Zhu, Y., Wang, S.B., Hu, H., Ahn, G.J., Ma, D.: Secure collaborative integrity
verification for hybrid cloud environments. Int. J. Cooperative Inf. Syst. 21(3),
165–198 (2012)

16. Wang, C., Chow, S.S.M., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public
auditing for secure cloud storage. IEEE Trans. Computers 62(2), 362–375 (2013)

17. Curtmola, R., Khan, O., Burns, R.: Robust remote data checking. In: Proceeding
of Storage SS 2008, Fairfax, Virginia, USA, pp. 63–68. ACM (2008)

18. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implemen-
tation. In: Proceeding of CCSW 2009, Chicago, Illinois, USA, pp. 43–54. ACM
(2009)

19. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

20. Chen, L.: Using algebraic signatures to check data possession in cloud storage.
Future Generation Computer Systems 29(7), 1709–1715 (2013)

21. Schwarz, T., Miller, E.: Store, forget, and check: using algebraic signatures to check
remotely administered storage. In: Proceeding of ICDCS 2006, Lisbon, Portugal,
p. 12. IEEE Computer Society (2006)

22. Ni, J., Yu, Y., Mu, Y., Xia, Q.: On the security of an efficient dynamic auditing
protocol in cloud storage. IEEE Transactions on Parallel and Distributed Systems
(2013), doi:10.1109/TPDS.2013.199

23. Erway, C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proceeding of ACM CC 2009, Hyatt Regency Chicago, Chicago, IL,
USA, pp. 213–222. ACM (2009)

24. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient
provable data possession. In: Proceeding of SecureComm 2008, Stanbul, Turkey,
pp. 1–10. IEEE Computer Society (2008)

Distributed Pseudo-Random Number

Generation and Its Application
to Cloud Database

Jiageng Chen, Atsuko Miyaji, and Chunhua Su

School of Information Science,
Japan Advanced Institute of Science and Technology, Japan

{jg-chen,miyaji,su}@jaist.ac.jp

Abstract. Cloud database is now a rapidly growing trend in cloud com-
puting market recently. It enables the clients run their computation on
out-sourcing databases or access to some distributed database service on
the cloud. At the same time, the security and privacy concerns is major
challenge for cloud database to continue growing. To enhance the security
and privacy of the cloud database technology, the pseudo-random num-
ber generation (PRNG) plays an important roles in data encryptions and
privacy-preserving data processing as solutions. In this paper, we focus
on the security and privacy risks in cloud database and provide a solution
for the clients who want to generate the pseudo-random number collab-
oratively in a distributed way which can be reasonably secure, fast and
low cost to meet requirement of cloud database. We provide two solutions
in this paper, the first one is a construction of distributed PRNG which
is faster than the traditional Linux PRNG. The second one is a protocol
for users to execute the random data perturbation collaboratively before
uploading the data to the cloud database.

Keywords: cloud database, pseudo-random number generators,
distributed computation, data randomization.

1 Introduction

In the so-called “big data” era, huge volumes of data are being created from
the organizations procedure, business activities, social network and scientific
research. Databases are ubiquitous and of immense importance and the cloud
database technology offers many benefits such as data storage and outsource
computing to meet the new technological requirements. Many cloud database
service and computation are in the distributed environment, as an important
security primitive, pseudo-random number generator play an extremly important
role in such cloud based data service. In this paper, we propose a framework for
pseudo-random number generator (PRNG) which is used in distributed cloud
database, our proposal is based on the collection of high entropy from operation
system such as Linux.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 373–387, 2014.
c© Springer International Publishing Switzerland 2014

374 J. Chen, A. Miyaji, and C. Su

In Linux PRNG, there are two devices dev/random and dev/urandom. dev/
random is nearly a true random number generator consists of a physical non
deterministic phenomenon produces a raw binary sequence and a deterministic
function, compress this sequence in order to reduce statistical weakness. But
these procedures to produce the nearly true random number sequences from
dev/random are expensive and low-speed for practical cloud database applica-
tion. So usually for practical usage, we use pseudo-random number generators
which are deterministic random bit generators such as Linux dev/urandom, Linux
dev/urandom use algorithms for generating a sequence of numbers that approx-
imates the properties of true random number but with lower security bound.
Our research purpose is to make the robust and secure dev/random which is
more secure and robust to be faster to meet the need of cloud database service.

1.1 Related Works

Many random number generators exists (e.g., [15,18,23,1,20,21]. Shamir was first
to provide SPRNG [23] while Blum-Blum-Shub [1] and many other PRNGs fol-
lowed. A high-quality source of randomness must be used to design a high-quality
true random data generator for cryptographic purposes. In a typical environ-
ment of general purpose computer systems, some good sources of randomness
may exist in almost any user input - the exact timing of keystrokes and the
exact movements of mouse are well known. Some other possible sources are for
example microphone (if unplugged then A/D convertor yields electronic noise
[9]), video camera (focused ideally on some kind of chaotic source as lava lamp
[16]), or fluctuations in hard disk access time [6].

Following the unsuitability of the so called statistical PRNGs for cryptograph-
ical purposes, special PRNGs, intended for cryptography uses, were developed.
The most related works to ours are Linux PRNG. The first security analysis
of Linux PRNGs was given in 2006 by Gutterman et. al [10], based on kernel
version 2.6.10 released in 2004. In 2012, Lacharme et. al [19] gave a detailed an-
alyze the PRNG architecture in the Linux system and provide its first accurate
mathematical description and a precise analysis of the building blocks, including
entropy estimation and extraction.

1.2 Problem Definition and Our Contributions

There are two common deployment models of cloud database: users can run
databases on the cloud independently, using a virtual machine image, or they can
purchase access to a database service, maintained by a cloud database provider
such as Distributed database as a service (DBaaS). However, cloud database
adoption may be hampered by concerns about security, privacy, and proprietary
issues, such distributed DBaaS are vulnerable to threats such as unauthorized
access and malicious adversaries who want to compromise the privacy of the
data storage. Our protocol is constructed based on Linux kernel, the internal
state of the Linux PRNG is composed of three pools, namely the input pool, the
blocking pool for dev/random output and the nonblocking pool for dev/urandom

Distributed Pseudo-Random Number Generation and Its Application 375

output, according to the source code. We assume that there are many severs who
provide outsourcing distributed database services and need to generate pseudo-
random number for encryption or data random perturbation. If the blocking
pool cannot accumulate enough entropy, the PRNG output will be blocked.
However, the Linux OS dev/random is extremely suitable for use when very high
quality randomness is desired (for example, for key generation, one-time pads and
sensitive data randomization), but it will only return a maximum of the number
of bits of randomness contained in the entropy pool. The major problem we focus
in this paper is to construct a fast dev/random in the distributed environment
to achieve a higher speed.

– For the cryptographic purposes, the distributed clients and the cloud servers
may need to generate encryption or decryption keys to secure their commu-
nication or create some fresh nonce or to execute the protocols for authen-
tication. In this case, pseudo-random numbers are necessary for both key
generations, encryption authentication.

– For data privacy purpose, the clients who purchase the services for the cloud
database may store their database on the cloud servers. In order to aggregate
information that contains personal data without involving a trusted aggre-
gator, two important constraints must be fulfilled: 1) privacy of individuals
or data subjects whose data are being collected, and 2) security of data con-
tributors who need to protect their data from other contributors as well as
the untrusted aggregation.

For an OS-based pseudo-random generator, Linux PRNG is a good candidate
for the distributed environment. Because it is an open-source OS and it plays
a huge role in virtualized cloud operations including the DBaaS. The theory of
computational pseudo-randomness discussed in our paper emerged from cryp-
tography, where researchers sought a definition that would ensure that using
pseudo-random bits instead of truly random bits would retain security against
all computationally feasible attacks.

Our Contributions. In this paper, we propose a framework for pseudo-random
number generators under the distributed environment.

– We clarify the necessary conditions for implementing secure and fast PRNGs
for the distributed cloud database.

– We propose a protocol based on Linux PRNG for the distributed pseudo-
random number generation which is faster than stand-alone Linux PRNG.
We let all parties execute the collection of entropy for distributed ran-
dom source and then mix them securely to form a local random pool for
the pseudo-random number generation. The second one is to apply Barak-
Shaltiel-Tromer randomness extractor randomness exactor to generate the
pseudo-random number with the same probability distribution for the data
aggregation in cloud database.

– We also provide the security proof and show that the security of our proposals
holds as long as the adversary has limited influence on the high-entropy
source.

376 J. Chen, A. Miyaji, and C. Su

The rest of the paper is constructed as follows: We outline preliminaries for
pseudo-random number generator in Section 2. The constructions of our schemes
are in Section 3 and Section 4, respectively. In Section 5, we provide the security
proofs for our proposed distributed PRNGs and our experimental analysis. We
draw the conclusions in Section 6.

2 Preliminaries

In this section, we give a brief descriptions about the building blocks used in our
schemes and the security definition.

2.1 Building Blocks

Linux PRNG. The Linux PRNG is part of the Linux kernel since 1994. The
original version was written by Tsfo [24], and later modified by Mackall [22]. The
PRNG is implemented in C with more than about 1700 lines code in a single
source file, drivers/char/random.c. There are many build-in function which we
can use to construct our distributed PRNG.

Barak-Halevi Model. Let us briefly recall construction of PRNG with input
due to Barak and Halevi [3]. This model (which we call BH model) involves a
randomness extraction function: Extract : {0, 1}p → {0, 1}n and a standard de-
terministic PNRG G; {0, 1}n → {0, 1}n+l In the Barak-Halevi’s framework, two
functions are defined in the pseudo-random number generator: function next(s)
that generates the next output and then updates the state accordingly and a
function refresh(s, x) that refreshes the current state s using some additional
input x.

Twisted Generalized Feedback Shift Register (TGFSR)[20]. It is a improved
version of Generalized Feedback Shift Register (GFSR) which can be used to
run w Linear Feed Back Registers (LFSR) in parallel, where w is the size of the
machine word and its cycle length 2p − 1 with a memory of p words. TGFSR
achieves a period of 2wp−1 and removes the dependence of a initialized sequence
in GFSR, without the necessary of polynomial being a trinomial.

Verifiable Secret Sharing. The VSS protocol has a two-phase structure: In a
primary phase, the dealer D distributes a secret s, while in a second, later phase,
the players cooperate in order to retrieve it. More specifically, the structure is
as follows:

– Sharing phase: The dealer initially holds secret s ∈ K whereK is a finite field
of sufficient size; and each player Pi finally holds some private information
vi.

– Reconstruction phase: In this phase, each player Pi reveals (some of) his
private information vi. Then, on the revealed information v′i (a dishonest
player may reveal v′i �= vi), a reconstruction function is applied in order to
compute the secret, s = Rec(v′1, ..., v

′
n)

Distributed Pseudo-Random Number Generation and Its Application 377

2.2 Security Definitions and Model

A deterministic function G : {0, 1}d → {0, 1}m is a (t, ε) pseudo-random gen-
erator (G) if d < m, G(Ud) and Um are (t, ε) indistinguishable. Information
disclosure in G refers to the leaking of the internal state, or seed value, of a
PRNG. Leaks of this kind can make predicting future output from the PRNG
in use much easier. Here in this paper. we follow the formal security model for
PRNGs with input was proposed in 2005 by Barak and Halevi (BH model) [3]
and its extension by Dodis et al. [8].There is a proof that the security definition
imply the following security notions in [8].

– Resilience: The internal state and future output of PRNG must not able to
predict even if an adversary can influence or attain the entropy source used
to initialize or refresh the internal state of the PRNG;

– Forward security and backward security: an adversary must not be able to
predict past and future outputs even if he can compromise the internal state
of the PRNG.

Our security model is based on Dodis et al. [8]’s modified BH model, the
adversary A can access several oracle calls as follows:

– D-refresh. This is the key procedure where the distribution sampler D is run,
and where its output I is used to refresh the current state ST . Additionally,
one adds the amount of fresh entropy to the entropy counter c, and resets
the corrupt flag to false when c crosses the threshold γ.

– get-state and set-state. These procedures provide A with the ability to either
learn the current state ST , or set it to any value ST ∗. In either case c is
reset to 0 and corrupt is set to true. We denote by qS the total number of
calls to get-state and set-state.

– next-ror and get-next. These procedures provide A with either the real-or-
random challenge (provided that corrupt = false) or the true PRNG output.
As a small subtlety, a gprematureh call to get-next before corrupt = false
resets the counter c to 0, since then A might learn something non-trivial
about the (low-entropy) state ST in this case. We denote by qR the total
number of calls to next-ror and get-next.

This model involves an internal state that is refreshed with a (potentially bi-
ased) external random source, and a cryptographic function that outputs random
numbers from the continually internal state. The game continues in this fashion
until the attacker decides to halt with some output in {0, 1}. For a particular
construction G = (setup, next, refresh), we let Pr[A(m,H)I(G) = 1] denote the
probability that adversary A outputs the bit 1 after interacting as above with
the system. Here I(G) stands for the ideal random process and note that we only
use G in this game to answer queries that are made while the compromised flag
is set to true.

378 J. Chen, A. Miyaji, and C. Su

Definition 1. We say that G = (setup, next, refresh) is a robust pseudo-random
generator (with respect to a family H of distributions) if for every probabilistic
polynomial-time attacker algorithm A, the difference

Pr[A(m,H)G = 1]− Pr[A(m,H)I(G) = 1] < ε

in some security parameter as follows:

– G with input has (t, qD, γ∗, ε)-recovering security if for any adversary A and
legitimate sampler D, both running in time t, the advantage of recovering
the internal state with parameters qD is at most ε.

– G with input has (t, ε)-preserving security if the advantage of any adversary
A running in time t of distinguishable G output and internal state from true
random sample is at most aε.

3 Our Proposal on Distributed PRNG

The PRNG used by the cloud server relies on external entropy sources. Entropy
samples are collected from system events inside the kernel, asynchronously and
independently from output generation. These inputs are then accumulated into
the input pool. Beyond the difficulty of collecting truly random data from various
randomness sources, the problem of insufficient amount of truly random data
which can be effectively solved by using pseudo-random data is also important.
Our protocol overcomes this problem by sharing the collecting the entropy in
cloud computing environment.

1. We apply a hash function or symmetric key encryption scheme to protect the
vulnerable PRNG outputs. If a PRNG is suspected to be vulnerable to direct
cryptanalytic attack, then outputs from the PRNG should be preprocessed
with a cryptographic hash function.

2. Occasionally generate a new starting PRNG state, a whole new PRNG state
should occasionally be generated from the current PRNG. This will ensure
that any PRNG can fully reseed itself, given enough time and input entropy.
The best way to resist all the state-compromise extension attacks is simply
never to have the PRNG’s state compromised.

3.1 Distributed Pseudo-Random Number Generator

A nice PRNG should always have a component for harvesting entropy. Even if
entropy is only used to seed a PRNG, the infrastructures using PRNG should
still harvest their own entropy, because experience shows that pawning the re-
sponsibility for entropy harvesting onto clients leads to a large number of systems
with inadequately seeded PRNGs. Entropy gathering should be a separate com-
ponent from the PRNG. This component is responsible for producing outputs
that are believed to be truly random. The following work reviewed is due to
Gutterman, Pinkas and Reinman [10].

Distributed Pseudo-Random Number Generation and Its Application 379

Our work focus on how to overcome the security problems in existing PRNG
based on Linux. Furthermore, we apply the Lacharme’s linear corrector [17] to
implement the entropy addition and update to get more high entropy compared
to existing Linx-based PRNG [10].

We assume that there are k distributed users or cloud servers online to gen-
erate the pseudo-random number. Let Gi : {0, 1}m → {0, 1}n+l be a distributed
pseudo-random generator, where 1 ≤ i ≤ k, and a ensemble of external input I.
We then model our PRNG construction as follows:

– Initial phase: It uses a function setup() to generate the seed = (s, s′) ←
{0, 1}n+l at first.

– State refresh phase: Given seed = (s, s′) as input, the refresh algorithm
refresh(ST, I) outputs a next internal state ST ′

– Random bits output phase: The generator Gi outputs a random string R
and a new state ST ′.

The Protocol for Distributed Pseudo-random Number Generation

1. Each party translates system events into bits which represent the underlying
entropy and then share out their entropy to other parties.

2. Each party also collecting entropy for other other party. Because the system can-
not consume more entropy than it has collected, and once the entropy counter
for the input pool has reached its maximum value, the party starts ignoring
any incoming events in order to save CPU resources. Thus, it collects no more
entropy.

3. Each party run the setup() to get the initial seeds as input of PRNGG, after that
each party adds these bits to the generator pools using add input randomness()
function in Linux PRNG.

4. Each party use function refresh() to extract entropy and update the entropy
pool. If the accumulated entropy from both internal events and external events
of other parties can pass the test of entropy estimator, send the bits as input of
function next().

5. When bits are read from the generator, each party uses function next() to gen-
erates the output of the generator and the feedback which is entered back into
the pool.

6. Each party runs its internal G, let the random data generation be done in
blocks of 10 output bytes. For each output block, 20 bytes, produced during the
process, are injected and mixed back into the source pool to update it.

Fig. 1. The Distributed PRNG

3.2 The Details of Our Protocol

There are four asynchronous procedures: the initialization, the entropy accumu-
lation, pool updating with entropy addition and the random number output. We
provide some details of our construction in the following paragraphs.

380 J. Chen, A. Miyaji, and C. Su

Initialization. Operating system start-up includes a sequence of routine actions.
This sequence, including initializing the PRNG with constant OS parameters and
time-of-day, can easily be predicted by an adversary. If no special actions are
taken, the PRNG state will include very low entropy. The time of day is given
as seconds and micro-seconds, each is 32-bits. In reality this has very limited
entropy as one can find computer uptime within an accuracy of a minute, which
leads to a brute-force search of 60seconds×106microseconds < 226 which is feasible
according the [11]. Even if the adversary cannot get the system uptime, he can
check the last modification time of files that are created or modified during the
system start-up, and know the uptime in an accuracy of minutes.

To solve this problem, PRNG simulate continuity along shut-downs and start-
ups. This is done by skipping system boots. A random-seed is saved at shut-down
and is written to the pools at start-up. A script that is activated during system
start-ups and shut-downs uses the read and write capabilities of /dev/urandom
interface to perform this maintenance.

The script saves 512 bytes of randomness between boots in a file. During
shut-down it reads 512 bytes from /dev/random and writes them to the file,
and during start-up these bits are written back to /dev/random. Writing to
/dev/random modifies the primary pool and not the random pool, as one could
expect. The secondary and the random pool get their entropy from the primary
pool, so the script operation actually affects all three pools.

The author of [24] instructs Linux distribution developers to add the access
control of initial seed in order to ensure unpredictability at system start-ups.
This implies that the security of the PRNG is not completely stand-alone but
dependent on an external component which can be predictable in a certain Linux
distribution.

2. Collecting and Sharing Entropy. Each party collects entropy from events
originating from the keyboard, mouse, disk and interrupts on each client’s local
computer while collecting the event entropy from other parties. When such an
event occurs, four 32-bit words are used as input to the entropy pools: For each
entropy event fed into the Linux PRNG, three 32-bit values are considered: the
num value, which is specific to the type of event 2, the current CPU cycle count
and the jiffies count at the time the event is mixed into the pool. Here, we can use
three functions for Linux PRNG: add disk randomness(), add input randomness()
and add interrupt randomness().

The sequence from the three function represent the jiffies counts (the time
between two ticks of the system timer interrupt) of the events, and is thus an
increasing sequence. Since the estimation of the entropy should not depend on
the time elapsed since the system was booted (beginning of the jiffies count),
only the sequence of time differences are considered. A built-in estimator Ent is
used to give an estimation of the entropy of the input data used to refresh the
state ST . It is implemented in function add timer randomness which is used to
refresh the input pool.

Distributed Pseudo-Random Number Generation and Its Application 381

3. Entropy Addition and Pool Updating. LINUX PRNG uses an internal mixing
function which is implemented in the built-in function mix pool bytes. It is used
in two contexts, once to refresh the internal state with new input and secondly to
transfer data between the input pool and the output pools., used to refresh the
internal state with new input and to transfer data between the pools. The design
of the mixing function relies on a Twisted Generalized Feedback Shift Register
(TGFSR) as defined in Section 2. In the entropy pools, we add Lacharme’s linear
corrector with mixing function to update the pool, it is a deterministic function
to compress random sequence in order to reduce statistical weakness [17]. Let C
the [255, 21, 111] BCH code, D the [256, 234, 6] dual code of C, with generator
polynomial

H(X) = X21 +X19 +X14 +X10 +X7 +X2 + 1 (1)

The input 255-tuple (m1, ...,m255) is coded by a binary polynomial m(X) =∑2
55i=1miX

i. Therefore the function f mapping F 255
2 to F 21

2 , defined by
m(X) %→ m(X) mod H(X) is a (255, 21, 110)-resilient function. This poly-
nomial reduction is implemented by a shift register of length 21 with only seven
xor gates.In this case, with an important input bias e/2 = 0.25, it give an output
bias of: ∀y ∈ F 21

2 |P (f(X) = y)− 2−21| ≤ 2−111. Therefore, the minimal entropy
of the output is very close to 21.

We can use a general constructions of good post-processing functions. We
have shown that linear correcting codes and resilient functions provide many
correctors achieving good bias reduction with variable input sizes. Linear feed-
back shift register are suitable for an hardware implementation where the chip
area is limited.

If input pool does not contain enough entropy. Otherwise, estimated entropy
of the input pool is increased with new input from external event. Entropy
estimation of the output pool is decreased on generation. Data is transferred
from the input pool to the output pools if they require entropy. When the pools
do not contain enough entropy, no output can be generated with /dev/random.

4. Random Bits Output. Entropy estimations of the participating pools are up-
dated according to the transferred entropy amount. Extracting entropy from a
pool involves hashing the extracted bits, modifying the pool inner-state ST and
decrementing the entropy amount estimation by the number of extracted bits.
Such tasks are executed by next() function in G. It extracts 80 random bytes
from the secondary pool one time.It uses SHA-1 and entropy-addition opera-
tions before actually outputting entropy in order to avoid backtracking attacks.
In addition it uses folding to blur recognizable patterns from 160 bits SHA-1
output into 80 bits.

Once mixed with the pool content, the 5 words computed in the first step are
used as an initial value or chaining value when hashing another 16 words from the
pool. These 16 words overlap with the last word changed by the feedback data. In
the case of an output pool (pool length = 32 words), they also overlap with the
first 3 changed words. The 20 bytes of output from this second hash are folded

382 J. Chen, A. Miyaji, and C. Su

in half to compute 11 the 10 bytes to be extracted: if w [m...n] denotes the bits
m, ..., n of the word w, the folding operation of the five words w0, w1, w2, w3, w4 is
done by w0⊕w3, w1⊕w4, w2 [0...15]⊕w2 [16...31]. Finally, the estimated entropy
counter of the affected pool is decremented by the number of generated bytes.

4 Application to Distributed Data Random Perturbation

Data random perturbation is a technology when preserve the data privacy by
adding the random noise to the original data, in recent years, it has been reviewed
and the such as differential privacy is the state-of-the-art privacy notion [7] that
gives a strong and provable privacy guarantee for aggregated data. The basic
idea is partial random noise is generated by all participants, which draw random
variables from Gamma or Gaussian distributions, such that the aggregated noise
follows Laplace distribution to satisfy differential privacy.

Here in this section, we propose a application of our distributed PRNG. Com-
bined with randomness extractor We assume that the adversary has some control
over the environment in which the device operates (temperature, voltage, fre-
quency, timing, etc.), and it is possible that that changes in this environment
affect the distribution of X . In the Barak-Shaltiel-Tromer model, they assumed
that the adversary can control at most t boolean properties of the environment,
and can thus create at most 2t different environments.

Definition 2. (Barak-Shaltiel-Tromer randomness extractor [2]) A function E:
{0, 1}n×{0, 1}t → {0, 1}m is a (k, ε)-extractor if for every random variable X of
min-entropy at least k it holds that E(X,Ut) is ε-close to the uniform distribution
over {0, 1}m.

Definition 3. (The security definition of Barak-Shaltiel-Tromer randomness
extractor [2])

– An adversary chooses 2t distributions D1, . . . , D2t over {0, 1}n, such that
H∞(Di) > k for all i = 1 · · · , 2t.

– A public parameter π is chosen at random and independently of the choices
of Di.

– The adversary is given π, and selects i ∈ {1, ..., 2t}.
– The user computes Eπ(X), where X is drawn from Di.

Given n, k, m, ε, δ and t, an extractor E is t-resilient if, in the above setting,
with probability 1-ε over the choice of the public parameter the statistical distance
between Eπ(X) and Um is at most δ.

We can apply this random extractor to a distributed environment with k par-
ticipated database owners Pi, i = 1, ..., k by using the Verifiable Secret Sharing
scheme [5] which allows any party distributes his shares of a secret, which can
be verified for consistency. The Gaussian noise can be generated and all the par-
ticipants cooperatively verify that the shared values are legitimate. Finally, each
party site Pi, i = 1, ..., n can cooperatively reconstruct the original datadensity

Distributed Pseudo-Random Number Generation and Its Application 383

by using the reconstruction technique of the verifiable secret sharing scheme. In
our proposal, we need that all parties must generate the noise from the same
probability distribution. yi and bi can be generated interactively among all par-
ties. The protocol is shown in Fig.2.

Protocol for distributed random noise generation for cloud database service

1. Before upload data to cloud database, the client i will generate random bits
string using the G we proposed in last section and get a1,i, ..., ak,i.

2. Every client collaborative executing the coin tossing protocol some random bits
b1, ..., bn with a pre-determined distribution and share out those bits via
verifiable secret sharing.

3. The client i can apply a randomness extractor Ext() with the input πi(b1, ..., bn)
where πi is a random permutation and get the random bits c1,i, ..., ck,i

4. Then client i computes a1,i ⊕ ck,i, ..., a1,i ⊕ ck,i and then converts these random
bits GF (2) to random noise on GF (q). The sequences of random noise is
serially uncorrelated and the output has good statistical characteristics due to
the randomness extractor.

Fig. 2. The Distributed Random Noise Generation

Each party i shares a random bit by sharing out a value bi ∈ {0, 1}GF (q),
using a non-malleable verifiable secret sharing scheme, where q is sufficiently
large, and engages in a simple protocol to prove that the shared value is indeed
in the specified set. And then suppose for a moment that we have a public source
of unbiased bits, c1, c2, ..., cn. By XORing together the corresponding b’s and c’s,
we can transform the low quality bits bi (in shares) into high-quality bits bi⊕ ci
in shares. Finally, each participant party sums her shares to get a share of the
random noise.

The principal costs are the multiplications for verifying random noise in
{0, 1}GF (q) and the executions of verifiable secret sharing. Note that all the
verifications of random noise parameters are performed simultaneously, so the
messages from the different executions can be bundled together. The same is
true for the verifications in the VSS. The total cost of the scheme is Θ(n) mul-
tiplications and additions in shares, which can be all done in a constant number
of rounds.

5 Security Proofs and Experimental Analysis

In this section, we provide security proofs and the experimental analysis.

5.1 Security Proof of the Distributed PRNG

We show the security of our scheme in Theorem 1 and Theorem 2 as follows:

384 J. Chen, A. Miyaji, and C. Su

Theorem 1. Our PRNG has t′, qD, ε-recovering security.

Proof. The adversary A compromised a state and get the value ST0 of the G,
let’s consider the game as follows:

– The challenger choose a seed seed ← setup(), after that he sample the D
and get some assemble σk, Ik, γk, zk), where k = 1, ..., qD. Here γ is some
fresh entropy estimation of I, z is the leakage about I given to the A.

– The adversay get γ1, ..., γqD and z1, ..., zqD , after that he launch an attack
against qD + 1 step computation of G, he can call D-fresh along with other
oracle

– The challenger sequentially computes STj = refresh(STj−1, Ij , seed) for j =
1, ..., d. If b = 0, A is given (ST ∗, R) = next(STd) and if b = 1, A is given
(ST ∗, R)← {0, 1}n+l.

– The adversary A output a bit b∗.

Adversary can query the oracles in security definition and try to distinguish the
internal state from the random sample. Let Game 0 be the original recovering
security game above: the game outputs a bit which is set to 1 iff the A guesses the
challenge bit b∗ = b. We define Game1 where, during the challengerfs computa-
tion of (ST ∗, R)← next(Sd) for the challenge bit b = 0, it chooses U ← {0, 1}m
uniformly. We can know that Pr[(Game0) = 1]−Pr[(Game1) = 1] ≤ ε according
the argument in [8].

Theorem 2. Our PRNG has t, ε-preserving security.

Proof. Intuitively, it says that if the state S0 starts uniformly random and un-
compromised, and then is refreshed with arbitrary (adversarial) samples. Here
in this paper, we adapt the security notions which is simplified by Dodis [8]
based on BH model we mentioned above. I1, ..., Id resulting in some final state
Sd, then the output (S∗, R) ← next(Sd) looks indistinguishable from uniform.
Formally, we consider the following security game with an adversary A who try
to compromise the PRNG. We consider the game as follows:

– The challenger chooses an initial state S0 ← {0, 1}n, a seed seed ← setup,
and a bit b← {0, 1} uniformly at random.

– A gets seed and specifies arbitrarily long sequence of values I1, ..., Id with
Ij ∈ {0, 1}n for all j ∈ [d].

– The challenger sequentially computes STj = refresh(STj−1, Ij , seed) for j =
1, ..., d. If b = 0, A is given (ST ∗, R) = next(STd) and if b = 1, A is given
(ST ∗, R)← {0, 1}n+l.

– A outputs a bit b∗.

Without loss of generality, we will assume that all compromised next queries
that the A makes are to get − next. Let Game 0 be the original preserving
security game: the game outputs a bit which is set to 1 iff the attacker guesses
the challenge bit b∗ = b. If the initial state is ST0 ← {0, 1}n, the seed is seed =

Distributed Pseudo-Random Number Generation and Its Application 385

(X,X ′), and the adversarial samples are Id, ..., I0 (indexed in reverse order where
Id is the earliest sample) then the refreshed state that incorporates these samples
will be Sd := S0 ·Xd+Pj = Ij ·Xj. As long as X = 0, the value STd is uniformly
random (over the choice of S0). We consider a modified Game 1, where the
challenger simply chooses STd ← {0, 1}n. We can use using the hybrid argument
and get the advantage of A is |Pr[b]− 1

2 | < ε.

5.2 Security Analysis of Application of PRNG in Random Data
Perturbation

In order to determine the effect of a perturbation method, it is necessary to
consider the security provided by that method. If two data matrics X and X ′

differ in a single row, the statistical difference between X and X ′ is 1/n. Let X
be a random variable and Pr[X = x] be the probability that X assigns to an
element x. Let H∞(X) = log(1

maxx∈XPr[X=x]). By definition, it is easy to verify

that the following claims:

– If maxx∈XPr[X = x] ≤ 2−k if and only if H∞(X) ≥ k;
– If maxx∈XPr[X = x] ≥ 2−k if and only if H∞(X) ≤ k.

To design randomness extractor E : {0, 1}n → {0, 1}m, we need to consider
its input and mathematical structure. It is well-known result that one cannot
extract m bits from a distribution X with H∞(X) ≤ m − 1. H∞(X) ≤ m − 1
implies Pr[X = x] ≥ 2−(m−1). For any candidate extractor function E : {0, 1}n
→ {0, 1}m, we know that Pr[y = E(x)] ≥ 2−(m−1). It follows that E(x) is far
from being uniformly distributed. Another well-known result is that there exists
no single deterministic randomness extractor for all high-entropy sources X .
Consider the goal of designing an extractor for all distributions X with H∞(X)
≤ n−1. One can show that there exists a design for function E : {0, 1}n → {0, 1}.
For an arbitrary adversaryA, there are two statistically similar data matrix, only
differ in on row, after the linear transformation, he can not indistinguish between

the transcript T (X) and T (X ′). Because T (X)/T (X ′) is at most e−
X−X′

σ , where
σ is . Using the law of conditional probability, and writing ti for the indices of

t, Pr(T (X)=t)
Pr(X′+Y =t) ∈ exp(± |X−X′|

σ).

5.3 Experimental Analysis

Our experiment is executed on Note PCs with 2.6GHz, the OS is 32-bit Ubuntu
13.10. We collect the entropy from three other PC and generate the
pseudo-random from 100 bytes to 1000 bytes. We did not use linux kernel APIs
in linux/net.h and /linux/netpoll.h to send UDP packets, but to collect three
PC’s entropy and form them into a file which is used for the fourth experiment
PC. So we only calculate the computation time as shown in Fig. 3.

From the Fig.3, we can see that our proposed is faster than the stand-alone
Linux PRNG dev/random. We also can see that the time for generating pseudo-
random number from dev/random does not always increases progressively with

386 J. Chen, A. Miyaji, and C. Su

Fig. 3. A Comparison of Stand-alone Linux PRNG and our Distributed PRNG

the output size. That is due to the unpredictability of the event entropy which
imply a stronger security and robustness than dev/urandom which repeatedly
use the pool entropy without enough update input for random events.

6 Conclusion and Future Works

In this paper, we proposed a distributed pseudo-random number generator based
on Linux kernel and its PRNG. After that, we provide a solution for using the
proposed PRNG to do the distributed random data perturbation which can be
used to preserve the data privacy before using the cloud database service. The
future direction should be modifying the our PRNG to make it more efficient
and secure, we may try to use of a newer hash function, for example SHA-3 or
AES to do the extracting output. It would require a significant change of the
design, and an investigation of Linux PRNG.

References

1. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number
generators, pp. 61–78. Plenum Press, New York (1983)

2. Barak, B., Shaltiel, R., Tromer, E.: True Random Number Generators Secure in a
Changing Environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)

3. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: ACM Conference on Computer and Communi-
cations Security, pp. 203–212 (2005)

4. Bellare, M., Rompel, J.: Randomness-Efficient Oblivious Sampling FOCS,
pp. 276–287 (1994)

5. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and
Achieving Simultaneity in The Presence of Faults. In: Proceedings of the 26th
Annual IEEE Symposium on Foundations of Computer Science, pp. 383–395 (1985)

Distributed Pseudo-Random Number Generation and Its Application 387

6. Davis, D., Ihaka, R., Fenstermacher, P.: Cryptographic Randomness from Air Tur-
bulence in Disk Drives. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 114–120. Springer, Heidelberg (1994)

7. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008)

8. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: dev/random is not robust. In:
Proceedings of the 2013 Conference on Computer & Communications Security,
USA, pp. 647–658 (2013)

9. Ellison, C.: IEEE. P1363 Appendix E Cryptographic Random Numbers
cme/P1363/ ranno.html (1995), http://theworld.com/~cme/P1363/ranno.html

(online; accessed 2009)
10. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux Random Number

Generator. In: Proc. of IEEE Security and Privacy, pp. 371–385 (2006)
11. Gutmann, P.: Cryptographic Security Architecture Design and Verification (2004)

ISBN: 978-0-387-95387-8
12. Krawczyk, H.: How to predict congruential generators. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 138–153. Springer, Heidelberg (1990)
13. Krhovjak, J., Kur, J., Lorenc, V., Matyas, V., Pecho, P., Riha, Z., Staudek, J.,

Svenda, P.: Zizkovsky. Smartcards, final report for the Czech National Security
Authority (December 2008)

14. Knuth, D.E.: Seminumerical Algorithms, 3rd edn. The Art of Computer Program-
ming, vol. 2. Addison-Wesley (2001)

15. Lehmer, D.H.: Mathematical methods in large-scale computing units. In: Proc.
2nd Sympos. on Large-Scale Digital Calculating Machinery, Cambridge, MA, pp.
141–146. Harvard University Press (1949, 1951)

16. The LavaRnd Random Number Generator (2000), http://www.lavarnd.org/

(online; accessed 2009)
17. Lacharme, P.: Post-Processing Functions for a Biased Physical Random Number

Generator. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 334–342. Springer,
Heidelberg (2008)

18. Lewis, T.G., Payne, W.H.: Generalized feedback shift register pseudorandom num-
ber algorithm. Journal of the ACM 20(3), 456–468 (1973)

19. Lacharme, P., Rock, A., Strubel, V., Videau, M.: The linux pseudorandom number
generator revisited. Cryptology ePrint Archive, Report 2012/251 (2012)

20. Matsumoto, M., Kurita, Y.: Twisted GFSR generators. ACM Transactions on Mod-
eling and Computer Simulation 2(3), 179–194 (1992)

21. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS) 8(1), 3–30 (1998)

22. Mackall, M., Ts’o, T.: random.c A strong random number generator,
/driver/char/random.c in Linux Kernel 2.6.30.7 (2009), http://www.kernel.org/

23. Shamir, A.: On the generation of cryptographically strong pseudo-random se-
quences. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 544–550.
Springer, Heidelberg (1981)

24. Ts’o, T.: random.c Linux kernel random number generator,
http://www.kernel.org

http://theworld.com/~cme/P1363/ranno.html
http://www.lavarnd.org/
http://www.kernel.org/
http://www.kernel.org

A Provably Secure Ring Signature Scheme

with Bounded Leakage Resilience

Huaqun Wang1,2, Qianhong Wu3, Bo Qin4,
Futai Zhang5, and Josep Domingo-Ferrer6

1School of Information Engineering, Dalian Ocean University
2Shanghai Key Laboratory of Integrate Administration Technologies for Information

Security
3School of Electronic and Information Engineering, Beihang University

4School of Information, Renmin University of China
5School of Computer Science and Technology, Nanjing Normal University

6Dept. of Computer Engineering and Maths, Universitat Rovira i Virgili, Catalonia
wanghuaqun@aliyun.com, qhwu@xidian.edu.cn, qinboo@xaut.edu.cn,

zhangfutai@njnu.edu.cn, josep.domingo@urv.cat

Abstract. Conventionally, the unforgeability of ring signature schemes
is defined in an ideal environment where the attackers cannot access any
information about the secret keys of the signers. This assumption is too
strong to be satisfied in the real world since the cryptographic opera-
tions involves the secret key information leakage in various ways due to
power/time consumption difference in operations on the 0/1 bits of the
secret key. An attacker can obtain this information both passively by
collecting power consumption information or actively by injecting faults
during the signing operations. Thus, provably secure ring signature in
the conventional security definition may be insecure in the real world
due to the key information leakage. To address this problem, we formal-
ize the first bounded leakage resilience definition for ring signature. A
leakage resilient ring signature scheme remains secure even if arbitrary,
but bounded, information about the secret key is leaked to an adversary.
A bound on the leaked information is necessary because a ring signa-
ture cannot be secure if some signer’s secret key is fully leaked. Then we
propose the first ring signature scheme with bounded leakage resilience.
Following the enhanced security definition with leakage resilience, the
proposed scheme is provably secure based on the difficulty of the second
l-representation problem in finite field.

Keywords: Ring signature, Secret key leakage, Leakage resilience.

1 Introduction

A useful model when proving the security of a cryptographic primitive is to
think of it as a black box, that is, to assume that the adversary can only use
and observe the primitive in a pre-specified and limited way. This simplified

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 388–402, 2014.
c© Springer International Publishing Switzerland 2014

A Provably Secure Ring Signature Scheme with Bounded Leakage Resilience 389

model commonly assumes that no information on the secret key is accessible
to the adversary. However, when cryptographic primitives are implemented in
the real world, they actually become “translucent” boxes to a clever adversary.
Indeed, the adversary may succeed in recovering significant information on the
secret key through side-channel cryptanalysis [1,2], fault attacks [3,4], timing
attacks [5], et al. As a result, some bits of the secret key are at risk of being
leaked. The conventional security definitions of cryptosystem do not capture
this kind of attacks. A secure cryptographic scheme should remain secure even
if some bits of the secret key have been leaked to the adversary. It can make
cryptographic schemes secure after they are implemented in the real world, not
just theoretically secure in an ideal security model.

We formalize an appropriate model of what information the adversary can
learn during a leakage attack. We also need to bound how much information the
adversary can learn since a cryptographic scheme cannot be secure if all the bits
of the secret key are leaked. Therefore, in this work we assume that the attacker
can repeatedly and adaptively learn arbitrary function values of the secret key
sk, as long as the total number of bits leaked during the lifetime of the system is
bounded by some parameter l. A cryptographic scheme is said to be secure with
bounded leakage resilience if it remains secure under this attack. Specially, we
study secure ring signature scheme in the model of bounded leakage resilience.
We allow the leakage function to be arbitrary as long as the total leakage is
bounded as some function of the secret key length |sk|. If the secret key is
unchanging, such a restriction on the leakage is essential.

1.1 Related Work

In recent years, there has been impressive progress in leakage-resilient cryp-
tography. The early efforts were made to obtain leakage resilience encryption
schemes [6,7]. In 2009, Akavia et al. proposed memory attacks and proved that
two lattice-based public-key encryption schemes are secure in the face of these
attacks [8]. Subsequently, Naor et al. proposed a leakage-resilient public-key
encryption scheme based on a universal hash proof system [9].

There has also been works on leakage-resilient signatures. Katz et al. gave
a signature scheme tolerating the secret key leakage [10]. Faust et al. gave a
tree-based, stateful leakage-resilient signature scheme from any 3-time signature
scheme [11]. Boyle et al. constructed fully leakage-resilient signature schemes
without random oracles [12]. Malkin et al. [13] presented the first signature
scheme that is resilient to fully continual leakage: memory leakage as well as
leakage from processing during signing, key generation and updates (both of the
secret key and the randomness). Faust et al. [14] proposed the first construc-
tions of digital signature schemes that are secure in the auxiliary input model.
They designed a digital signature scheme that is secure against chosen-message
attacks when given an exponentially hard-to-invert function of the secret key.
Phong et al. [15] considered the continual key leakage scenario of strong key-
insulated signature design. Guo et al. proposed efficient online/offline signatures

390 H. Wang et al.

with computational leakage resilience in the online phase [16]. Alwen et al. stud-
ied the design of cryptographic primitives resilient to key leakage attacks [17].

Most efforts have been devoted to leakage-resilient signatures in the single-
signer setting. Motivated by group-oriented applications, ring signature were
introduced in 2001 by Rivest et al. [18]. In a ring signature scheme, one user can
form an on-the-fly group in an ad hoc way by simply adding other users’ public
keys to the group key list, without getting other users’ agreements. Then he can
sign any message on behalf of that temporal group. The resulting signature is
verifiable by anyone who knows the public keys of the group members in the
temporal group. For a secure ring signature, it is required that only users in the
group member list can generate a valid signature and the signatures generated
by different members are theoretically indistinguishable. The former property is
referred to as unforgeability and the latter as unconditional anonymity. It has
been shown that ring signature is a very useful cryptographic primitive in many
applications [19,20,21,22]. However, to the best of our knowledge, no leakage-
resilient ring signature was proposed in the public literature. This motivates
us to investigate security-enhanced ring signature that can withstand bounded
leakage of the secret key.

1.2 Our Contribution

This paper focuses on leakage-resilient ring signature. More specifically, our con-
tributions are twofold:

– First, we formalize the model of ring signature with bounded leakage re-
silience. We focus on existential unforgeability under adaptively chosen-
message and bounded leakage attacks. In these attacks, an attacker is al-
lowed not only to adaptively query for ring signature on any message of his
choice, but also to access a leakage oracle through a leakage function f to
gain information about the secret keys of the signers. The constraint is that
the output of the leakage function after all the leakage queries should be
bounded. Unforgeability states that no polynomial-time attacker can forge
a valid ring signature with non-negligible probability in probabilistic poly-
nomial time.

– Second, we propose the first ring signature scheme with bounded leakage
resilience. Specifically, we follow the above model and prove that our scheme
is unforgeable under the adaptively chosen message and bounded leakage at-
tacks. The proof relies on the hardness of the second l-representation problem
which is related to the well-known discrete logarithm problem. We also show
that our ring signature scheme preserves unconditional anonymity even if the
attacker is provided with the secret keys in the group. Thus, the anonymity
of our ring signature scheme is perfectly leakage-resilient without any bound
on the information leakage on the secret keys.

A Provably Secure Ring Signature Scheme with Bounded Leakage Resilience 391

1.3 Plan of This Paper

The rest of this paper is organized as follows. Section 2 contains some technical
preliminaries. Section 3 formalizes the security model of ring signature with
bounded leakage resilience. Section 4 presents our concrete ring signature scheme
with bounded leakage resilience. Section 5 evaluates the security of our scheme.
Finally, Section 6 contains some conclusions and sketches future work directions.

2 Preliminaries

We review some information theory results and computational assumptions.

2.1 Information Theory Lemmas

The following two definitions come from the reference [23].

Definition 1 (Min-entropy). The min-entropy of a random variable X, de-

noted by H∞(X), is H∞(X)
def
= minx∈{0,1}n{− log2 Pr[X = x]}.

Definition 2 (Average-conditional min-entropy). The average-conditional
min-entropy of a random variable X given Z, denoted as H̃∞(X |Z), is

H̃∞(X |Z) def
= − log2(Ez←Z [max

x
Pr[X = x|Z = z]])=− log2(Ez←Z [2

H∞[X|Z=z]])

where Ez←Z(·) means taking average of the argument over all values z of Z.

The following lemma is proven in [23].

Lemma 1. Let X,Y, Z be random variables where Y takes values in a set of
size at most 2l. Then, H̃∞(X |(Y, Z)) ≥ H̃∞((X,Y)|Z)− l ≥ H̃∞(X |Z)− l, and
in particular, H̃∞(X |Y)) ≥ H̃∞(X)− l.

The following lemma is proven in [10].

Lemma 2. Let X be a random variable with H
def
= H∞(X), and fix Δ ∈ [0, H].

Let f be an arbitrary function with range {0, 1}λ, and set

Y
def
= {y ∈ {0, 1}λ|H∞(X |y = f(X)) ≤ H −Δ}

Then, Pr[f(X) ∈ Y] ≤ 2λ−Δ.

In other words, the probability that knowledge of f(X) decreases the min-
entropy of X by Δ or more is at most 2λ−Δ. Put differently, the min-entropy of
X after observing the value of f(X) is greater than H ′ except with probability
at most 2λ−H+H′

.

392 H. Wang et al.

2.2 Computational Assumptions

We recall the computationally difficult problems underlying our constructions.
In this paper, let q and p denote two secure prime numbers that satisfy q|(p−1).

On the other hand, k̂ is the security parameter.

Assumption 1 (Discrete logarithm problem). Let G be a probabilistic al-

gorithm which takes a security parameter k̂ as input and outputs (G, q, p), where
G is a finite cyclic subgroup of order q which belongs to a group of order p. We
say the discrete logarithm problem is hard for the group G if, for any probabilis-
tic polynomial-time (PPT) algorithm A, the advantage of A is negligible. The
advantage of A can be defined below

AdvDLP
A = Pr

[
(G, q, p)← G (1k̂)
g, h← G

∣∣∣∣ x← A (G, q, g, h,) ∧ gx = h

]
where x ∈ Z∗

q , g
x = h mod p, g is a generator of G.

Assumption 2 (First l-representation problem). [10] We say that the
first l-representation problem is hard for the group G if, for any PPT algorithm
A, the advantage of A is negligible. The advantage of A can be defined below

Advl-FRPA =Pr

⎡⎣ (G, q, p)← G (1k̂)
g1, g2, · · · , gl ← G

∣∣∣∣
(
x1, x2, · · · , xl

x′1, x
′
2, · · · , x′l

)
← A (G, q, g1, g2, · · · , gl)

∧
∏

i g
xi

i =
∏

i g
x′
i

i

∧−→x �= −→x ′

⎤⎦
where q is the order of the group G, p is the size of G, (x1, x2, · · · , xl) ∈ (Z∗

q)
l,

(x′1, x
′
2, · · · , x′l) ∈ (Z∗

q)
l,
∏

i g
xi

i =
∏

i g
x′
i

i mod p, g is a generator of G.

Notes: The discrete logarithm problem and the first l-representation problem
are equivalent.

1. If the first l-representation problem is easy, then when l = 2, we can solve the
discrete logarithm problem. Given g, h, then A can get two different tuples
(x, y), (x′, y′) that satisfy gxhy = gx

′
hy′

mod p. Denote h = gω, then we can

get ω = x′−x
y−y′ mod q. Thus, the discrete logarithm problem is solved.

2. On the other hand, if the discrete logarithm problem is easy, then A can
get ri that satisfy gi = gri for 1 ≤ i ≤ l. A can pick a random tuple
−→x = (x1, x2, · · · , xl) and compute x̂ =

∑l
i=1 rixi mod q. Then, A solves the

equation
∑l

i=1 rix
′
i = x̂ mod q. It is easy to calculate another tuple

−→
x′ =

(x′1, x
′
2, · · · , x′l) that satisfies

∑l
i=1 rixi =

∑l
i=1 rix

′
i mod q, i.e.,

∏
i g

xi

i =∏
i g

x′
i

i . Thus, the first l-representation problem is solved.

According to the above analysis, we know that the discrete logarithm problem
and the first l-representation problem are equivalent.

A Provably Secure Ring Signature Scheme with Bounded Leakage Resilience 393

Assumption 3 (Second l-representation problem).We say that the second
l-representation problem is hard for the group G if, for any PPT algorithm A,
the advantage of A is negligible. The advantage of A is defined below

Advl-SRP
A = Pr

[
(G, q, p) ← G (1k̂)
g1, g2, · · · , gl ← G

∣∣∣∣
(
x′
1, x

′
2, · · · , x′

l

)
← A(G, q, g1, g2, · · · , gl, (x1,

x2, · · · , xl)) ∧
∏

i g
xi
i =

∏
i g

x′
i

i

∧−→x �= −→x ′

]

where q is the order of the group G, p is the size of G, (x1, x2, · · · , xl) ∈ (Z∗
q)

l is

randomly chosen beforehand, (x′1, x
′
2, · · · , x′l) ∈ (Z∗

q)
l,
∏

i g
xi

i =
∏

i g
x′
i

i mod p, g
is a generator of G.

In this paper, our proposed leakage-resilient ring signature scheme is built on
some subgroup of Z∗

p with the order q. The discrete logarithm problem, the first
l-representation problem and the second l-representation problem are difficult
on the subgroup of Z∗

p.
Notes: The first l-representation problem assumption is stronger than the

second l-representation problem assumption. If the assumption 3 does not hold,
the adversary A can pick a random tuple (x1, x2, · · · , xl) as the input, it can
output another tuple (x′1, x

′
2, · · · , x′l) by taking use of the second l-representation

oracle. Thus, the adversary A gets the two tuples −→x = (x1, x2, · · · , xl) and
−→x ′ = (x′1, x

′
2, · · · , x′l) that satisfy

∏
i g

xi

i =
∏

i g
x′
i

i

∧−→x �= −→x ′. Thus, the second
l-representation problem assumption is weaker than the first l-representation
problem assumption.

3 Modeling Ring Signature with Bounded Leakage
Resilience

We provide a formal definition of bounded leakage-resilient ring signature, and
we state some technical lemmas that will be used in our security analysis. The
security definitions are the variants of the reference [10].

Definition 3 (Ring signature). A ring signature scheme is a tuple of PPT
algorithms (Setup, Ring-Sign, Ring-Vrfy) defined as follows.

Setup. Each potential user Ui generates his secret/public key pair (ski, pki) by

using a key generation protocol that takes as input a security parameter k̂.
Ring-Sign. If a user Uk wants to compute a ring signature on behalf of a ring

L = {U1, · · · , Un} that contains himself, i.e., Uk ∈ L, Uk executes this prob-
abilistic polynomial time algorithm with input a message m, the public keys
pk1, · · · , pkn of the ring and his secret key skk. The output of this algorithm
is a ring signature σ for the message m and the ring L.

Ring-Vrfy. This is a deterministic polynomial time algorithm that takes as in-
put a message m and a ring signature σ, that includes the public keys of
all the members of the corresponding ring L, and outputs “True” if the ring
signature is valid, or “False” otherwise.

394 H. Wang et al.

The resulting ring signature scheme must satisfy the following properties:

1. Correctness : A ring signature generated in a correct way must be accepted
by any verifier with overwhelming probability.

2. Anonymity: If a signer computes a ring signature on behalf of a ring of n
members, any verifier not belonging to the ring should not have probability
greater than 1

n to guess the signer’s identity. If the verifier is a member of the
signer’s ring, but is not the signer himself, then his probability of guessing
the signer’s identity should not be greater than 1

n−1 .
3. Unforgeability: Any attacker has only negligible probability in forging a valid

ring signature for some message m on behalf of a ring that does not contain
him, even if he knows valid ring signature for messages, different from m,
that he can adaptively choose.

The definition of ring signature with bounded leakage resilience is the same
as the standard definition of ring signature. The security model definition of
ring signature with bounded leakage resilience is similar to the standard secu-
rity model definition of ring signature, except that we additionally allow the
adversary to specify arbitrary leakage functions {fi} and obtain the value of
these functions applied to the secret key. The formal security properties of ring
signature with bounded leakage resilience are stated next.

Definition 4 (Unforgeability of ring signature with bounded leakage
resilience). Let

∏
={Setup, Ring-Sign, Ring-Vrfy} be a ring signature scheme,

and let λ be a function. Given an adversary A, the experiment is defined as
follows:

1. The user Ui can obtain the corresponding secret/public key pair (ski, pki)

by running (ski, pki) ← Gen(1k̂, ri), 1 ≤ i ≤ n, where Gen denotes an
algorithm that can generate the secret/public key pair.

2. Run A(1k̂, pk1, · · · , pkn). The adversary may adaptively access a ring sign-
ing oracle Ring-Sign(·) and a leakage oracle Leak(·) that have the following
functionalities:

– Let the i-th ring signature query be Ring-Signskk
(mi, pkj1 , · · · , pkji), where

Li = {pkj1 , · · · , pkji} ⊆ {pk1, · · · , pkn} and pkk ∈ Li. The ring signature
oracle computes σi = Ring-Signskk

(mi, pkj1 , · · · , pkji), and returns σi

to A.
– In order to respond to the i-th leakage query Leak(fi, skk) (where fi is

specified as a circuit), the leakage oracle returns fi(skk) to A, where skk
is the secret key to be used for computing the ring signature. skk may
be other secret key whose corresponding public key belongs to the signing
set Li and A queries Uk to sign the message. (To make the definition
meaningful in the random oracle model, the {fi} are allowed to be oracle
circuits that depend on the random oracle.) The {fi} can be arbitrary,

A Provably Secure Ring Signature Scheme with Bounded Leakage Resilience 395

subject to the restriction that the total output length of all the fi(skk) is
at most λ(|skk|).

3. At some point, A outputs (m,L, σ) where L ⊆ {pk1, pk2, · · · , pkn}.
We say A succeeds if (1) Ring-Vrfypkj1 ,···,pkjl

(m,σ) = 1, and (2) m was not
previously queried to the Ring-Signskj (·) oracle. We denote the probability of this

event by Prλ−leakage
A,

∏ (k̂). If Prλ−leakage
A,

∏ (k̂) is negligible for any PPT adversary

A, we say
∏

is λ-leakage resilient.

Definition 4 gives the unforgeability of ring signature with bounded leakage
resilience. Unconditional anonymity is another important security property of
ring signature that can be defined as follows.

Definition 5 (Anonymity of ring signature with bounded leakage re-
silience). If a signer computes a ring signature on behalf of a ring of n members,
any verifier not belonging to the ring should not have probability greater than 1

n
to guess the signer’s identity even some bits of the secret key are leaked . If the
verifier is a member of the signer’s ring, but is not the signer himself, then his
probability of guessing the signer’s identity should not be greater than 1

n−1 even
if some bits of the secret key are leaked .

Note that unconditional anonymity means that the scheme remains anony-
mous even all the secret keys are exposed to the adversary. Thus, if we can prove
that a ring signature scheme satisfies unconditional anonymity, then this scheme
remains anonymous with bounded leakage.

The anonymity property is closely related to the witness indistinguishability
notion [24]. In general, an NP statement may have multiple witnesses. For ex-
ample, a Hamiltonian graph may have multiple Hamiltonian cycles; a 3-colorable
graph may have multiple (non-isomorphic) 3-colorings; etc. In leakage-resilient
public-key cryptography, we are interested in proof systems (for languages in
NP) that do not leak information about which witness the prover is using, even
to a malicious verifier. In the sequel, we let 〈A(y),B(z)〉(x) denote the view (i.e.,
inputs, internal coin tosses, incoming messages) of B when interacting with A
on common input x, A has auxiliary input y and B has auxiliary input z. The
definition of witness indistinguishability can be used to decide whether our pro-
posed scheme satisfies the property. It is also important to prove our scheme’s
unforgeability based on witness indistinguishability.

Definition 6 (Witness indistinguishability). Let L ∈ NP and let (P ,V) be
an interactive proof system for L with perfect completeness. We say that (P ,V)
is witness-indistinguishable (WI) if for every PPT algorithm V∗ and every two
sequences {ω1

x}x∈L and {ω2
x}x∈L such that ω1

x and ω2
x are both witnesses for x,

the following ensembles are computationally indistinguishable:

1. {〈P(ω1
x),V∗(z)〉(x)}x∈L,z∈{0,1}∗

2. {〈P(ω2
x),V∗(z)〉(x)}x∈L,z∈{0,1}∗

(When the security parameter is not written explicitly, we simply take |x| = k̂
without confusion.) In particular, we may have z = (ω1

x, ω
2
x).

396 H. Wang et al.

4 Our Ring Signature Scheme with Bounded Leakage
Resilience

In this section, we describe our ring signature scheme with bounded leakage
resilience. Our concrete scheme is based on Schnorr signature [25] and Rivest
et al.’s ring signature construction skeleton [18]. Here, by a ∈R Z∗

q we denote
drawing a random number a from Z

∗
q according to the uniform distribution. Also,

by H : {0, 1}∗ → Z∗
q we denote a collision-resistant hash function. Our scheme

consists of three phases: Setup, Ring-Sign, Ring-Vrfy.

Setup. Suppose that there exist n users in the system. Assume that g1, · · · , gl
are generators of some subgroup SG of Z∗

p , where the order of the subgroup
SG is q. Let (n, p, q, g1, · · · , gl) be the publicly accessible global system pa-
rameters. For i = 1, 2, · · · , n and j = 1, 2, · · · , l, select xij ∈ Z∗

q . Then, the
i-th user’s secret/public key pair is (ski, pki), where

ski = (xi1, xi2, · · · , xil), pki =

l∏
j=1

g
xij

j mod p.

Ring-Sign. Suppose that the actual signer is Uk. He selects a signer set L con-
taining Uk. Without loss of generality, we assume that L = {U1, U2, · · · , Uk−1,
Uk, Uk+1, · · · , Us}. The actual signer Uk performs the procedures as follows.
1. Pick α1, · · · , αl ∈R Z∗

q and calculate

ck+1 = H(L,m, gα1
1 gα2

2 · · · gαl

l mod p)

2. For i = k+1, · · · , s, 1, · · · , k− 1, pick si1, si2, · · · , sil ∈R Z∗
q and calculate

ci+1 = H(L,m, gsi11 gsi22 · · · gsill pkci
i mod p)

where 1 = s+ 1 mod s, i.e., they are cycle.
3. Calculate sk1 = α1−xk1ck mod q, · · · , skl = αl−xklck mod q. Finally,

Uk outputs {c1, sij , 1 ≤ i ≤ s, 1 ≤ j ≤ l} as the ring signature for m,L.
Ring-Vrfy. Upon receiving the ring signature {c1, sij , 1 ≤ i ≤ s, 1 ≤ j ≤ l} for

m and L, the verifier does:
1. For i = 1, · · · , s, calculate ei = gsi11 · · · gsill pkci

i mod p, ci+1 = H(L,m, ei).

2. Check whether c1
?
= H(L,m, es) holds or not. If it holds, accept this

signature. Otherwise, reject it.

Theorem 1 (Correctness). If the signer and the verifier are honest, our ring
signature with bounded leakage resilience can pass the verification.

Proof. Without loss of generality, suppose the actual signer is Uk. The received
ring signature is {c1, sij , 1 ≤ i ≤ s, 1 ≤ j ≤ l} for m and L. According to
the signature process, we know that if ek = gα1

1 gα2
2 · · · gαl

l mod p holds, it is
straightforward that our ring signature scheme can pass the verification.

A Provably Secure Ring Signature Scheme with Bounded Leakage Resilience 397

According to the signature process, we know that

gα1
1 gα2

2 · · · gαl

l mod p = gsk1+xk1ck
1 gsk2+xk2ck

2 · · · gskl+xklck
l mod p

= gsk1
1 gsk2

2 · · · gskl

l gxk1ck
1 gxk2ck

2 · · · gxklck
l mod p

= gsk1
1 gsk2

2 · · · gskl

l pkck
k mod p

= ek

Thus, our scheme satisfies the correctness. ��

5 Security Analysis

A secure ring signature scheme with bounded leakage resilience must satisfy the
following requirements: unconditional anonymity and unforgeability.

Theorem 2. Our proposed ring signature scheme with bounded leakage resilience
is unconditionally anonymous.

Proof. From the above ring signature process, we know that (si1, si2, · · · , sil) ∈R

Z
∗
q
l, where i ∈ {1, 2, · · · , k−1, k+1, · · · , s}. For the signer’s subscript k, we have

that sk1, sk2, · · · , skl are also uniformly distributed over Z∗
q because (αk1, · · · , αkl)

∈R Z∗
q
l. Therefore, for fixed (L,m), (si1, si2, · · · , sil), 1 ≤ i ≤ s has qsl variations

that are equally likely regardless of the signer’s subscript k. The remaining ele-
ment c1 is a hash value which is determined uniquely by (L,m), ssj , 1 ≤ j ≤ l
and pks. In random oracle model, c1 is a random value which does not expose
the true signer’s identity. Thus, our proposed ring signature scheme is uncondi-
tionally anonymous. ��

Lemma 3. Our proposed ring signature scheme with bounded leakage resilience
satisfies the property of witness indistinguishability.

Proof. To prove this, for two different witnesses, (xk1, xk2, · · · , xkl) and (x′k1,

x′k2, · · ·, x′kl) satisfying pkk =
∏l

j=1 g
xkj

j =
∏l

j=1 g
x′
kj

j mod p (1), we show
that even an infinitely powerful adversary B cannot determine which witness
was used from the ring signature.

Let δkj = x′kj−xkj mod q where 1 ≤ j ≤ l. Suppose the actual signer is Uk and
the ring signature is {c1, sij , 1 ≤ i ≤ s, 1 ≤ j ≤ l} for m and L. Due to the ring
signature procedures, we know that all the sij are random for i �= k, 1 ≤ j ≤ l.
When i = k and 1 ≤ j ≤ l, from the ring signature procedure, the following
equation holds for the chosen random numbers αkj that were picked in the
phase of Ring-Sign.

skj = αj − xkjck = αj + δkjck − (δkj + xkj)ck = αj + δkjck−1 − x′kjck−1 mod q

From Equation (1), it follows that

l∏
j=1

g
xkj

j =
l∏

j=1

g
xkj+δkj

j mod p,
l∏

j=1

g
δkj

j = 1 mod p

398 H. Wang et al.

Let α′
j = αj + δkjck. We obtain

Ak =
∏l

j=1 g
αj

j =
∏l

j=1 g
α′

j−δkjck
j =

∏l
j=1 g

α′
j

j

∏l
j=1 g

−δkjck
j

=
∏l

j=1 g
α′

j

j (
∏l

j=1 g
δkj

j)−ck =
∏l

j=1 g
α′

j

j mod p

Thus, the distributions of −→α = (α1, · · · , αl) and −→α ′ = (α′
1, · · · , α′

l) are exactly
equivalent. To the two different tuples −→α and −→α ′, the signer Uk can get the
same ring signature {c1, sij , 1 ≤ i ≤ s, 1 ≤ j ≤ l} when it picks the same
random numbers sij for i �= k, 1 ≤ j ≤ l. Hence, even an infinitely powerful
adversary B cannot determine which witness was used from the ring signature.
Our proposed ring signature scheme with bounded leakage resilience satisfies the
property of witness indistinguishability. ��

Theorem 3. Suppose A is a (T, ε, qH , qS , λ)-forger against our ring signature
scheme, i.e., A can forge a valid ring signature with probability ε within time T
after qH hash queries, qS signature queries and leakage of at most λ = (12 −

1
2l −

ε) · l · log2 q bits of the secret key, where the length of the secret key is l · log2 q
bits. Then, the second l-representation problem can be solved with probability
1
2n (1−

qH
q2εl) within time T ′ ≤ 144823Vqh,n(T+qsTs)

ε , where VQ,n denotes the number

of n-permutations of Q elements, that is, VQ,n = Q(Q−1) · · · (Q−n+1). Based
on the difficulty of the second l-representation problem, our scheme is λ-leakage
resilient.

Proof. Let
∏

denote the scheme given above, and let A be a PPT adversary with

success probability ε
def
= Pr[Succλ−leakage

A,
∏ (k̂)], where k̂ is the security parameter.

Input the second l-representation problem (SG, q, g1, g2, · · · , gl, (x1, x2, · · · , xl)),
we construct a challenger B solving the second l-representation problem with

probability 1
2 (1 −

qH
q2εl

) within time T ′ ≤ 144823Vqh,n(T+qsTs)

ε .
B is given some secret keys ski, 1 ≤ i ≤ n, where ski is a secret key that

corresponds to the user Ui. Algorithm B then answers the signing and leaking
queries of A using the secret keys ski, 1 ≤ i ≤ n that it knows. Since the
secret keys are distributed identically to the secret key of an honest signer, the
simulation for A is perfect.

Without loss of generality, we make a number of assumptions about A. First,
we assume that if A outputs {c1, sij , 1 ≤ i ≤ s, 1 ≤ j ≤ l} on m and L and
computes the value Ai = gsi11 · · · gsill pkci

i mod p, then (1)A at some point queried
H(m,L,Ak), 1 ≤ k ≤ s and (2) A never requested a signature on m. Second,
for any leakage query Leak(fi) we assume fi(state) makes the same number of
H-oracle calls regardless of the value of state (this can always be ensured by
adding dummy queries, as needed).

We construct a probabilistic polynomial-time algorithm B solving the second l-
representation problem. Algorithm B proceeds as follows: Input (SG, q, g1, g2, · · · ,
gl, (x1, x2, · · · , xl)), for 1 ≤ z ≤ n, B designs xz1 = x1, xz2 = x2, · · · , xzl = xl

and calculate pkz =
∏l

j=1 g
xzj

j mod p , then it chooses random {xij , 1 ≤ i ≤
n, 1 ≤ j ≤ l, i �= z} and computes pki =

∏l
j=1 g

xij

j mod p, 1 ≤ i ≤ n. It gives the

A Provably Secure Ring Signature Scheme with Bounded Leakage Resilience 399

system parameters (p, q, g1, · · · , gl) and public keys pki, 1 ≤ i ≤ n to A. Thus,
the challenger B can easily respond to the ring signature queries and leakage
queries because he knows one of the secret keys.

When A terminates, B examines A’s output {c1,1, sij,1, 1 ≤ i ≤ s, 1 ≤ j ≤ l}
on the message m and the set L of ring members. If A’s output can pass the
signature verification, this forged signature is successful. According to the forking
lemma of ring signature [26], the attacker A can also forge another ring signature
{c′1,1, sij,1, 1 ≤ i ≤ s, 1 ≤ j ≤ l} on the same message m, the same set L of ring
members and the same randomness. With non-negligible probability, the two
forged ring signatures satisfy the following properties:

1. cj,1 �= c′j,1 for one j ∈ {1, 2, · · · , s};
2. ci,1 = c′i,1 for all i = 1, · · · , s such that i �= j;

Thus, due to the same randomness, we can get

g
sj1,1
1 · · · gsjl,1l pk

cj,1
i = g

s′j1,1
1 · · · gs

′
jl,1

l pk
c′j,1
i mod p∏l

i=1 g
sji,1+cj,1x

′
ji

i =
∏l

i=1 g
s′ji,1+c′j,1x

′
ji

i mod p∏l
i=1 g

(sji,1+cj,1x
′
ji)−(s′ji,1+c′j,1x

′
ji)

i = 1 mod p

We denote g1 = gα1 , g2 = gα2 , · · · , gl = gαl . Then, we can get

l∑
i=1

αi[(sji,1 + cj,1x
′
ji)− (s′ji,1 + c′j,1x

′
ji)] = 0 mod q

After sl times to perform the above procedures, we can get sl equations

l∑
i=1

αi[(sji,w + cj,wx
′
ji)− (s′ji,w + c′j,wx

′
ji)] = 0 mod q

where 1 ≤ j ≤ s, 1 ≤ w ≤ sl + 1. Thus, there must exist at least one
user, denoted as j = u, has the following l equations which correspond to l
different w:

l∑
i=1

αi[(sui,w + cu,wx
′
ui)− (s′ui,w + c′u,wx

′
ui)] = 0 mod q

We can compute all the corresponding discrete logarithms αi if (sui,w+cu,wx
′
ui)−

(s′ui,w + c′u,wx
′
ui) �= 0 mod q by calculating the above equation group. Based on

the difficulty of discrete logarithm problem, we know that all the l + 1 equa-
tions satisfy the following (sui,w + cu,wx

′
ui) − (s′ui,w + c′u,wx

′
ui) = 0 mod q.

The probability of u = z is s
n ×

1
s = 1

n . When u = z, it must hold that

s′zi,1 + c′z,1x
′
zi = szi,1 + cz,1x

′
zi mod q, i.e., x′zi =

szi,1−s′zi,1
c′z,1−cz,1

mod q for 1 ≤ i ≤ l.

At last, the challenger B gets another l-representation (xz1, xz2, · · · , xzl) of the
value pkz .

400 H. Wang et al.

Next, we consider the success probability of B as follows.
Suppose that the adversaryA can forge a valid ring signature with probability

ε within time T . According to the forking lemma of ring signature [26], the
adversary A can produce two valid ring signature such that cj �= c′j , for some
j ∈ {1, 2, · · · , n} and ci = c′i for all i = 1, · · · , n such that i �= j, in the expected

time T ′ ≤ 144823Vqh,n(T+qsTs)

ε . Then, we consider the probability that B can solve
the second l-representation problem.

When B succeeds in obtaining two different forged ring signature, we need to
evaluate the probability that the extracted l-representation −→x ′ = (x′1, · · · , x′l) is
equal to the original l-representation −→x = (x1, · · · , xl).

Let λ = (12 −
1
2l − ε) · l · log2 q, an upper bound on the number of leaked

bits in each run of A. The public key pkj constrains −→x to lie in an (l − 1)-
dimensional vector space, and signature queries do not further constrain −→x [27].
Thus, the min-entropy of −→x conditioned on the public key and the observed
signatures is (l − 1) log2 q bits. The views of A in its two runs contain only the
following additional information about −→x : at most 2 · λ bits from the leakage
functions (i.e., λ bits in each view), and log2 qH bits indicating the relevant state
associated with the first forgery. According to Lemmas 2 and 3, we can see that
the conditional min-entropy of −→x is greater than 0 except with probability at
most

22λ+log2 qH−(l−1) log2 q ≤ qHq
−2εl.

From the above analysis, if the adversary A can forge a valid ring signature
with probability ε within time T , then the second l-representation problem can
be solved with probability 1

2 (1−
qH
q2εl

)× 1
n = 1

2n (1−
qH
q2εl

) within time

T ′ ≤ 144823Vqh,n(T + qsTs)

ε

under the condition that λ = (12 −
1
2l − ε) · l · log2 q bits of the secret key are

leaked. Based on the difficulty of the second l-representation problem, our scheme
is secure. ��

Thus, based on Theorem 2 and Theorem 3, we know that our proposed ring
signature scheme with bounded leakage resilience is provably secure.

6 Conclusions and Future Work

In this paper, we have proposed the first definition of ring signature resilient
to bounded leakage and we have given a concrete instantiation of such ring
signature. Based on the difficulty of the second l-representation problem, our
proposed ring signature scheme with bounded leakage resilience is provably se-
cure in the random oracle model. Our model does not cover attacks in which the
attacker may obtain some information about the system’s internal randomness
state during the signing process. It seems interesting to explore as future work
ring signature that can resist bounded leakage of the system’s internal state. We
plan to develop a more general leakage resiliency model for ring signature that
takes internal state leaks into account.

A Provably Secure Ring Signature Scheme with Bounded Leakage Resilience 401

Acknowledgement. This work was partly supported by the NSF of China
through projects (No. 61272522, No. 61173154, No. 61370190, No. 61003214, No.
61170298), the Opening Project of Shanghai Key Laboratory of Integrate Admin-
istration Technologies for Information Security(No. AGK2013005), and by the
Spanish Government through projects TIN2011-27076-C03-01 “CO-PRIVACY”
and CONSOLIDER INGENIO 2010 CSD2007-00004 “ARES”, by the Govern-
ment of Catalonia under grant 2009 SGR 1135, by the European Commission
under FP7 projects “DwB” and “Inter-Trust”. The last author is partially sup-
ported as an ICREA-Acadèmia researcher by the Catalan Government; he leads
the UNESCO Chair in Data Privacy, but this paper does not necessarily reflect
the position of UNESCO nor does it commit that organization.

References

1. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

5. Boneh, D., Brumley, D.: Remote timing attacks are practical. Computer Net-
works 48(5), 701–716 (2005)

6. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

7. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

8. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

9. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

10. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

11. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer,
Heidelberg (2010)

12. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

13. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to contin-
ual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

402 H. Wang et al.

14. Faust, S., Hazay, C., Nielsen, J.-B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage, http://eprint.iacr.org/2012/045.pdf

15. Phong, L.T., Matsuo, S., Yung, M.: Leakage resilient strong key-insulated signa-
tures in public channel. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS,
vol. 6802, pp. 160–172. Springer, Heidelberg (2011)

16. Guo, F., Mu, Y., Susilo, W.: Efficient online/offline signatures with computational
leakage resilience in online phase. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt
2010. LNCS, vol. 6584, pp. 455–470. Springer, Heidelberg (2011)

17. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

18. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

19. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing,
S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28.
Springer, Heidelberg (2011)

20. Liu, J.K., Yuen, T.H., Zhou, J.: Forward secure ring signature without random
oracles. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS,
vol. 7043, pp. 1–14. Springer, Heidelberg (2011)

21. Zeng, S., Jiang, S., Qin, Z.: A new conditionally anonymous ring signature.
In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 479–491. Springer,
Heidelberg (2011)

22. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles.
In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer,
Heidelberg (2011)

23. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to
generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing 38(1), 97–139 (2008)

24. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols.
In: 22nd ACM Symposium on Theory of Computing, pp. 416–426 (1990)

25. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

26. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003)

27. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740,
pp. 31–53. Springer, Heidelberg (1993)

http://eprint.iacr.org/2012/045.pdf

Two-Party (Blind) Ring Signatures
and Their Applications

Man Ho Au and Willy Susilo�

Centre for Computer and Information Security Research (CCISR)
School of Computer Science and Software Engineering

University of Wollongong, Australia
{aau,wsusilo}@uow.edu.au

Abstract. Ring signatures, introduced by Rivest, Shamir and Tauman, attest the
fact that one member from a ring of signers has endorsed the message but no one
can identify who from the ring is actually responsible for its generation. It was de-
signed canonically for secret leaking. Since then, various applications have been
discovered. For instance, it is a building block of optimistic fair exchange, des-
tinated verifier signatures and ad-hoc key exchange. Interestingly, many of these
applications require the signer to create a ring signature on behalf of two possible
signers (a two-party ring signature) only. An efficient two-party ring signature
scheme due to Bender, Katz, and Morselli, is known. Unfortunately, it cannot
be used in many of the aforementioned applications since it is secure only in a
weaker model. In this paper, we revisit their construction and proposed a scheme
that is secure in the strongest sense. In addition, we extend the construction to
a two-party blind ring signature. Our proposals are secure in the standard model
under well-known number-theoretic assumptions. Finally, we discuss the applica-
tions of our construction, which include designated verifier signatures, optimistic
fair exchange and fair outsourcing of computational task.

1 Introduction

The notion of ring signatures, introduced by Rivest, Shamir and Tauman [14], is a
group-oriented signature which takes into account privacy concerns. A user can au-
tonomously sign on behalf of a group, while group members can be totally unaware
of being included in the group. Any verifier can be assured that a message has been
endorsed by one of the members in this group, but the actual identity of the signer
remains hidden. Unlike group signatures [6], there is no group manager and no revo-
cation. Following the terminology, the group is usually called a ring since the original
proposal arrange the group members in a ring during the process of signature genera-
tion. The formation of the ring is spontaneous and the original motivation is for Whistle
Blowing.

If the ring consists of two members only, the resulting signature is called a two-
party ring signature, which is the focus of this paper. The reason is that most of the
applications of ring signatures only require a ring size of 2. Nonetheless, even with this

� This work is supported by ARC Future Fellowship FT0991397.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 403–417, 2014.
c© Springer International Publishing Switzerland 2014

404 M.H. Au and W. Susilo

relaxation, construction in the standard model under well-established assumption still
remains daunting.

Chow et al. [8] gave a construction with a formal security analysis in the standard
model under a new assumption. The general version of Bender et al. [2] uses generic
ZAPs for NP as a building block and is inefficient. They also proposed an efficient two-
party ring signature scheme under standard assumptions in a weaker security model.
Shacham and Waters [17] proposed an efficient ring signature scheme without using
random oracles but anonymity is computational and required a trusted setup assump-
tion. Chandran et al. [4] presented a scheme in the untrusted common reference string
model while providing “heuristically statistical” anonymity. Schäge and Schwenk [16]
provided another ring signature scheme in the standard model using basic assumptions,
again, in a weaker security model. Recently, Ghadafi [9] offered both ring signatures
and blind ring signatures in the standard model. Again, the anonymity is computational
and required a trusted setup assumption.

As mentioned, the focus of our paper is on two-party ring signatures. We start from
the specific construction due to Bender et al. due to its simplicity and efficiency. All
other existing schemes employ non-interactive proof of some sort in the signature and
it is hard to improve their efficiency. In addition, due to the use of non-interactive
proof, the anonymity is often computational due to the use of the Groth-Sahai proof
system [11] which requires a trusted setup for the common reference string. The major
issue with Bender et al.’s two-party ring signature scheme is its insecurity under the
chosen key model where an attacker is allowed to generate its own public key. An at-
tack of this kind in this model is presented in [17]. This limits the use of this scheme
as a building block in a larger system involving multiple users who could be malicious
and are allowed to generate their own keys.

We observe that the problem can be solved if all the keys introduced by the attackers
are “certified” to be properly generated. In other words, if we require all users to make
a zero-knowledge proof-of-knowledge of the secret keys, the system could be proven
secure. For if this is the case, the simulator in the security proof could “extract” the
secret key for each public key presented by the adversary and uses this key to answer
the query. The only remaining issue is that the prove has to be non-interactive so that
it could be viewed as part of this public key. In this regard, we make use of the proof
system from Groth-Sahai and present two useful non-interactive protocols as building
blocks. The advantage of our approach is that these complex non-interactive proof are
only added as part of the public key which only needs to be verified once in practice.
Thus, our proposal retains most of the computational advantage of the two-party ring
signature scheme from Bender et al. Finally, we equip our scheme with a blind signature
generation protocol. We believe our construction can be used as a building block for
many larger systems.

1.1 Our Contribution

1. We present efficient non-interactive zero-knowledge proof-of-knowledge protocols
for discrete logarithm and commitment.

Two-Party (Blind) Ring Signatures and Their Applications 405

2. We present an efficient two-party ring signature construction in the standard model
and equip it with a blind signing procedure.

3. We discuss various applications of two-party (blind) ring signatures.

Organization. The rest of the paper is organized as follows. In Sec. 2, we review the
syntax of a two-party (blind) ring signature scheme its security definitions. We present
two non-interactive zero-knowledge proof-of-knowledge protocols in Sec. 3. Based on
our protocols, we present an efficient construction of two-party ring signatures and its
blind version in Sec. 4. We discuss various applications of our proposal in Sec. 5 before
concluding our paper in Sec. 6.

2 Preliminary

If n is a positive integer, we use [n] to denote the set {1, . . . , n}. We review the follow-
ing well-known computational assumptions.

Definition 1 (DL Assumption). Let G = 〈g〉 be a cyclic group of prime order p. The
discrete logarithm assumption states that given a tuple (g, Z) ∈ (G,G), it is computa-
tionally infeasible to compute the value z ∈ Zp such that Z = gz .

Definition 2 (CDH Assumption). Let G = 〈g〉 be a cyclic group of prime order p.
The computational Diffie-Hellman assumption states that given a tuple (g, ga, gb) ∈
(G,G,G), it is computationally infeasible to compute the value gab.

Definition 3 (DLIN Assumption). Let G = 〈g〉 be a cyclic group of prime order p. The
decision linear (DLIN) assumption states that given a tuple (u, v, w, ua, vb, T) ∈ (G,
G, G, G, G, G), it is computationally infeasible to decide if T = wa+b.

2.1 Bilinear Pairing

Let G,GT be two cyclic groups of the same prime order p. Let g be a generator of G.
A mapping ê : G×G→ GT is a bilinear pairing if the following are true:

– (Unique Representation) Each element of G and GT has a unique binary represen-
tation.

– (Bilinear) For all a, b ∈ Zp, ê(ga, gb) = ê(g, g)ab.
– (Non-degenerate) ê(g, g) �= 1GT , where 1GT is the identity element of the group
GT .

The setting we present here is often referred to as a symmetric pairing. We abuse
the notation and use 1 to represent the identity element regardless of the group. For
example, we will use 1 to represent 1GT in the subsequent text.

406 M.H. Au and W. Susilo

2.2 Groth-Sahai Non-interactive Witness-Indistinguishable Proof System

We briefly review the non-interactive witness-indistinguishable proof system developed
by Groth and Sahai [11] (referred to as GS proof hereafter). They gave three instantia-
tions and we employ the version that depends on the decision linear assumption since
it is often regarded as the weakest assumption amongst the three and works in the sym-
metric pairing setting.

Consider a set of variables {Xi}ni=1 ∈ Gn and public constants {Ai}ni=1 ∈ Gn,
{bi,j ∈ Zp}i,j∈[n], tT ∈ GT . A pairing product equation is of the form:

n∏
i=1

ê(Xi, Ai)

n∏
i=1

n∏
j=1

ê(Xi, Xj)
xi,j = tT .

The GS proof system requires a common reference string which allows a prover to
make commitments of a set of variables {Xi}. It also allows the prover to produce
an non-interactive proof that these committed variables satisfy a set of pairing product
equations. The proof is witness-indistinguishable in the sense the the proof generated
by one set of variables is indistinguishable to another. There are two kinds of common
reference string in a GS proof system, namely, soundness string and simulation string.
The former allows the string creator to open the “commitments” and thus guarantees the
soundness of the system. The latter provides perfectly hiding commitments and guaran-
tees witness-indistinguishably. These two strings are computationally indistinguishable.

As an example, consider a variable X and a constants A and the following pairing
product equation:

ê(X,X)ê(X,A) = 1.

A GS proof of a variable X satisfying the above equation could be produced using
X = 1 or X = A−1 and the proofs produced by these two values (often called wit-
nesses) are indistinguishable. Indeed, proof of satisfaction of the above equation would
assure the verifier that either X = 1 or X = A−1.

Throughout this paper, we will use the following notation to represent a GS proof of
knowledge of variables satisfying a set of pairing product equations. All symbols that
appear on the left hand side inside the brackets are variables while all other symbols
on the right hand side after the colon are the public constants of the pairing product
equations. For example,

NIWI

{
(X1, X2, X3) :

ê(X1, X1)ê(X1, A) = 1 ∧
ê(X1, X2)ê(X2, X3) = T

}
means a proof of the variables X1, X2, X3 that satisfies the two equations, with A and
T being public constants.

2.3 Syntax of Two-Party Ring Signatures

We adapt the definitions and security models of ring signatures from various litera-
tures. A ring signature scheme in the common reference string model consists of four
algorithms, namely, Setup, Gen, Sign, Verify, whose functions are enumerated below.

Two-Party (Blind) Ring Signatures and Their Applications 407

param ← Setup(1λ): On input a security parameter λ, this algorithm outputs the
public parameter param for the system. We assume param is an implicit input to all
algorithms listed below.

(pk, sk)← Gen(): This algorithm outputs a key pair (pk, sk) for a signer. If (pk, sk) is
an output of the algorithm Gen(), we say pk is the corresponding public key of sk
(and vice versa).

(σ,R) ← Sign(skS ,R,m) : On input a message m, a secret key of a signer skS
(whose public key is pkS) and a set public keys R with pkS ∈ R, this algorithm
outputs a signature σ, which is a ring signature of m with respect to the ringR.

valid/invalid← Verify(σ,R,m) : On input a public key a message m, a signa-
ture σ with a set of public keysR, this algorithm verifies the signature and outputs
valid/invalid.

A ring signature scheme must possess Correctness, Unforgeability and Anonmity, to
be reviewed below.

Correctness. For any security parameter λ and param ← Setup(1λ), (pkS , skS) ←
Gen() andR = {pk1, . . ., pkn} such that (pki, ski)← Gen() for i ∈ [n] with pkS ∈ R.
For any message m, if (σ,R)← Sign(skS ,R,m), then valid← Verify(σ, R, m).

In this paper, our focus is on two-party ring signature. That is, |R| = 2 for all
signatures.

Unforgeability. The following game between a challenger C and an adversary A for-
mally captures the requirement of Unforgeability.

Setup C invokesSetup(1λ) and subsequentlyGen() to obtain (param, {(pki, ski)}i∈[n]).
Denote the set {pki}i∈[n] by R. (param, pkS ,R) is given to A.

Query A is allowed to make the following queries:
– Corruption Query.A submits a public key pki ∈ R and receives ski.
– Signature Query. A submits a message m, an arbitrary ring R′ = {pk′0, pk′1}

and a bit b, and receives (σ, R′) ← Sign(sk′b, R′, m) where sk′b is the corre-
sponding private key of pk′b.

Output A submits (σ∗,R∗,m∗) and wins if and only if
1. valid← Verify(σ∗,R∗, m∗) andR∗ ⊂ R.
2. A has not submitted a Signature Query with input m∗, R∗.
3. A has not submitted a Corruption Query on input pk such that pk ∈ R∗.

Definition 4 (Unforgeability). A two-party ring signature scheme is unforgeable if no
PPT adversary wins the above game with non-negligible probability.

Our definition of unforgeability is slightly stronger than the strongest notion, ex-
istential unforgeability with respect to insider corruption [2], in which we allow the
adversary to issue signature query on behalf of arbitrary ring without supplying the
corresponding secret key.

Anonymity. It means that given a message m and a signature (σ,R), it is infeasible to
determine who created the signature, even if all the secret keys are known. The formal

408 M.H. Au and W. Susilo

definition is adapted from [2] for general ring signatures against full key exposure. Note
that we allow the common reference string to be maliciously generated in this model.

The following game between a challenger C and an adversary A formally captures
the requirement of Anonymity.

Setup A gives param to C. C invokes Gen() to obtain {(pki, ski)}i∈[n]). Denote the set
{pki}i∈[n] byR. (pki, ski) for i ∈ [n]) is given to A.

Challenge A gives two indexes i0, i1 and a message m to C. C filps a fair coin b and
computes (σ, {pki0 , pki1})← Sign(skb,m{pki0 , pki1}). σ is returned to A.

Output A submits a guess bit b′ and wins if and only if b′ = b.

Definition 5 (Anonymity). A two-party ring signature is unconditionally anonymous
if no computationally unbounded adversray A wins the above game with probability
that is non-negligibly higher than 1/2.

2.4 Syntax of Two-Party Blind Ring Signatures

A signature is blind if there exists a protocol between the signer and a user in which
the user obtains a signature from the signer on message m in such a way that the signer
learns nothing about the m nor the signature issued. More formally, a blind signature
scheme is a scheme with the following additional protocol BSign.

Setup, Gen, Verify are the same as above.
BSign : This is a protocol between the signer and a user. The common input is param

and a ring of two public keysR = (pk0, pk1). The signer has additionally a private
input a private key (skb) such that the corresponding public key (pkb) is in the ring
R. The user has a private input m. Upon successful completion of the protocol, the
user obtains a ring signature σ on message m with respect to ringR.

Unforgeability. The following game between a challenger C and an adversary A for-
mally captures the requirement of Unforgeability for any two-party blind ring signa-
tures.

Setup C invokesSetup(1λ) and subsequentlyGen() to obtain (param,{(pki, ski)}i∈[n]).
Denote the set {pki}i∈[n] byR. (param, pkS ,R) is given to A.

Query A is allowed to make the following queries:
– Corruption Query.A submits a public key pki ∈ R and receives ski.
– Blind Sign Query. A submits an arbitrary ring R′ = {pk′0, pk′1} and a bit b,

and interacts with C who plays the role of a signer (with public key pk′b and
secret key sk′b).

Output A submits a ringR∗ and (k+1) distinct messages (m∗
i) and their correspond-

ing signatures (σ∗
i) for i = 1 to k + 1 and wins if and only if

1. R∗ ⊂ R and A has not submitted a Corruption Query on input pk such that
pk ∈ R∗.

2. valid← Verify(σ∗
i ,R∗, m∗

i) for i = 1 to k + 1.
3. A has submitted at most k blind sign queries with inputR∗.

Definition 6 (Unforgeability). A two-party blind ring signature scheme is unforgeable
if no PPT adversary wins the above game with non-negligible probability.

Two-Party (Blind) Ring Signatures and Their Applications 409

Anonymity Anonymity for the blind version is shown as follows.
The following game between a challenger C and an adversary A formally captures

the requirement of Anonymity.

Setup A gives param to C. C invokes Gen() to obtain {(pki, ski)}i∈[n]). Denote the set
{pki}i∈[n] byR. C gives (pki, ski) for i ∈ [n] to A.

Challenge A gives two indexes i0, i1 to C. C filps a fair coin b and interacts with A as
a signer in protocol BSign with private input skib .

Output A submits a guess bit b′ and wins if and only if b′ = b.

Definition 7 (Anonymity). A two-party blind ring signature is unconditionally anony-
mous if no computationally unbounded adversray A wins the above game with proba-
bility that is non-negligibly higher than 1/2.

Blindness Blindness refers to the fact that the signer learns nothing about the mes-
sage being signed nor the signature created during a blind sign protocol. The following
game between a challenger C and an adversaryA formally captures the requirement of
Blindness.

Setup C invokes Setup() and subsequently Gen() to obtain param, {(pki, ski)}i∈[n]).
Denote the set {pki}i∈[n] byR. C gives param and (pki, ski) for i ∈ [n] to A.

Challenge A gives a ring R∗ ⊂ R and two messages m0, m1 to C. C filps a fair coin
b and obtains two signatures from A in protocol BSign in the following order: the
first interaction is to obtain signature on message mb and the second interaction
is for signature on message m1−b. C gives σ0, σ1 to A which are the resulting
signatures from these interactions. Note that the index i is arbitrary, meaning that
σi could be the result from the first run or the second interaction. Further, σi =⊥ if
the interaction does not terminate successfully.

Output A submits a guess bit b′ and wins if and only if b′ = b.

Definition 8 (Blindness). A two-party blind ring signature is blind if no PPT adversray
A wins the above game with probability that is non-negligibly higher than 1/2.

3 Non-interative Zero-Knowledge Proof-of-Knowledge

Our construction relies on an non-interactive zero-knowledge proof-of-knowledge of
discrete logarithm satisfying the requirement of what is commonly referred to as signa-
ture proof-of-knowledge. More formally, it has to be simulatable and extractable under
the same common reference string. Being simulatable means that given a trapdoor of the
common reference string, there exists an efficient algorithm, called simulator, which is
capable of simulating a proof-of-knowledge of discrete logarithm of an element with-
out actually knowing the discrete logarithm. Being extractable means that given the
trapdoor of the common reference string, there exists another efficient algorithm, called
extractor, which is capable of outputting the discrete logarithm of an element given a
proof-of-knowledge of discrete logarithm of that element.

Many secure constructions requires a proof system that allows simulations and ex-
traction under the same string and this is not readily achievable in the GS proof system.

410 M.H. Au and W. Susilo

Nonetheless, Bernhard et al. [3], following the technique employed in [10], showed
how a GS proof for pairing product equations can be turned into signature of knowl-
edges offering simulatability and extractability simultaneously. Our protocol follows
their concept and the difference is discussed after the presentation of the protocol.

3.1 Proof PDL

We use the notationPDL{(x) : Y = gx} to represent an non-interactive zero-knowledge
proof-of-knowledge of the discrete logarithm of Y to base g. The protocol makes use
of the GS witness-indistinguishable proof system on a set of pairing-product equations.
Our protocol is inspired by various constructions in the literature and we introduce sev-
eral optimizations for efficiency considerations.

Setup Let n be the security parameter. The common reference string of PDL consists
of crsGS, the soundness string of the GS proof system, and the following elements
v′, v1, . . . , vn, h1, h2 ∈ G and a collision-resistant hash function H : {0, 1}∗ →
Zp.

Proof Generation Intuition We first present the intuition of the non-interactive proof
of knowledge of x such that Y = gx. The prover first express x as

∑n−1
i=0 2ix[i]

where x[n − 1] . . . x[0] is the binary representation of x. The prover generates a
witness-indistinguishable proof of the following fact:

NIWI

⎧⎪⎪⎪⎨⎪⎪⎪⎩(X0, . . . , Xn−1, S1) :

(∧n−1
i=0 (Xi = g2

i ∨Xi = 1) ∧
Y =

∏n−1
i=0 Xi ∧

)
∨(

ê(S1, h) = ê(h1, h2)ê(V(statement), S2)
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where V(statement) is the waters hash of the statement being proved. Specifically,
let C be the commitments of the witnesses of {Xi}’s in the GS proof system. Fur-

ther, let s = H(C||Y ||S2) and V(statement) is defined as v′
∏
v
s[i]
i where s[i]

is the i-th bit of s. The idea of the proof is that Xi = g2
i

if x[i] is 1 and Xi = 1
(the identity element of G) if x[i] = 0. Due to the soundness of the GS proof
system, knowing the set of Xi’s implies knowing a set of values x[i] ∈ {0, 1}.
Since the later part assures the verifier that Y =

∏n−1
i=0 Xi, knowing a set of val-

ues x[i] ∈ {0, 1} is equivalent to knowing the value x =
∑n−1

i=0 x[i] such that
Y = gx. One could view the final equation as knowing a Waters’ signature on the
statement. In fact, (S1, S2) is a Waters’ signature on the value s = H(C||Y ||S2).
This is purely for the simulatablility of the proof as the simulator who generates the
common reference string knows the “secret key” (α) such that h1 = hα would be
capable of generating (S1, S2) and use it for the proof simulation. Due to witness-
indistinguishability of the GS proof system, the simulated proof is indistinguishable
to the proof generating using witness {Xi}. The remaining challenge is to trans-
form the above idea into a set of pairing-product equations where the GS proof
system can be used.

Two-Party (Blind) Ring Signatures and Their Applications 411

Proof Generation The prover randomly picks r ∈R Zp, computes S2 = hr
1 ∈ G and

computes the following GS proof.

NIWI

⎧⎪⎪⎨⎪⎪⎩(X0, . . . , Xn−1, S1, S) :

ê(S/h, S/h1) = 1 ∧∧n−1
i=0 (ê(Xi, Xi/g

2i) = 1) ∧
ê(Y, S/h) = ê(

∏n−1
i=0 Xi, S/h) ∧

ê(S1, S)= ê(h2, h1)ê(V(statement), S2)

⎫⎪⎪⎬⎪⎪⎭
using the set of witnesses {Xi = gx[i]2

i}, S = h1, S1 = V(statement)hr
2. Again,

let C be the commitments of {Xi}’s and S in the GS proof system. Let s =

H(C||Y ||S2) and V(statement) is defined as v′
∏
v
s[i]
i where s[i] is the i-th bit

of s.
Proof Verification The verifier validates the NIWI proof and that S2 �= 1.

Discussions Various optimization techniques have been employed for the realization
of PDL. Firstly, one could note that the variable S acts as a selector. The first equa-
tion guarantees that S = h or S = h1. When S = h1, the prover can simulate the
last equation without knowing the Waters signature on the statement as shown above.
Specifically, the prover can set S2 = hr

1 and use the witness S1 = V(statement)hr
2. In

this setting, the prover is forced to set Xi to be gx[i]2
i

so that the equation ê(Y, h1/h) =
ê(
∏n

i=0Xi, h1/h) holds. Finally, one could note that the equation ê(Xi, Xi/g
2i) = 1

guarantees that Xi = 1 or g2
i

.
To produce a simulated proof, the simulator would have to generate the common

reference string so that it knows α such that h1 = hα. With this trapdoor (α), the
simulator could set Xi = 1, S = h so that all but the last equation holds. For the
last equation, the simulator creates a Waters signature on the statement. Specifically, it
randomly picks r ∈R Zp, computes S2 = hr and S1 = hα

2V(statement)r.
While the general idea is similar to that of [3] in the construction of signature proof

of knowledge, our realization contains several optimizations. Firstly, only part of the
Waters’ signature (S1) is a variable. The reason is that S2 can be computed without
knowing the signing key and can be “simulated” by the real prover. Secondly, we make
use of the symmetric pairing to save the number of variables for the “OR” proofs. For
instance, proving the knowledge of variable X satisfying the relation e(X/A,X/B) =
1 is equivalent to proving X = A or X = B with one pairing-product equation in one
variable.

3.2 Proof PWH

Let g, u1, . . . , un ∈ G be generators of group G. Consider a message m ∈ Zp, we

consider the commitment ofm as
∏n

i=1 u
m[i]
i gr for a random value r ∈R Zp wherem[i]

is the i-th bit ofm. We use the notation PWH{(m, r) : M =
∏n

i=1 u
m[i]
i gr} to represent

the non-interactive zero-knowledge proof-of-knowledgeof how the commitmentM can
be openned.

Common Reference String is the same as the proof PDL.

412 M.H. Au and W. Susilo

Proof Generation The prover randomly picks t ∈R Zp, computes S2 = ht
1 ∈ G and

computes the following GS proof.

NIWI

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎝R0, . . . , Rn−1,

U1, . . . , Un,
S1, S

⎞⎠ :

ê(S/h, S/h1) = 1 ∧∧n
i=1(ê(Ui, Ui/ui) = 1) ∧∧n−1

i=0 (ê(Ri, Ri/g
2i) = 1) ∧

ê(M,S/h) = ê(
∏n

i=1 Ui

∏n−1
i=0 Ri, S/h) ∧

ê(S1, S) = ê(h2, h1)ê(V(statement), S2)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
using the set of witnesses {Ri = gr[i]2

i}, {Ui = u
m[i]
i }, S = h1, S1 =

V(statement)ht
2. Here r[n − 1] . . . r[0] is the binary representation of r. Again,

let C be the commitments of {Ri}’s, {Ui}’s and S in the GS proof system. Let

s = H(C||M ||S2) and V(statement) is defined as v′
∏
v
s[i]
i where s[i] is the i-th

bit of s.
Proof Verification The verifier validates the NIWI proof and that S2 �= 1.

Regarding the security of these two non-interactive proofs, we have the following
theorem whose proof can be found in Appendix A.

Theorem 1. PDL andPWH are simulatable under the DLIN assumption and extractable
under the CDH assumption in the standard model.

4 Constructions

We first describe our construction of a two-party ring signature, which is essentially the
scheme from [2] with a proof-of-correctness added to the public key.

4.1 A Two-Party Ring Signature Scheme

param ← Setup(1λ): On input a security parameter λ, this algorithm chooses two
cyclic groups G, GT of prime order p such that |p| = λ and that there exists a
bilinear map ê : G × G → GT . It also generates the common reference string of
the non-interactive proof system discussed in section 3. Finally, it chooses several
generator g, u′, u1, . . . , un ∈ G, where n is the bit-length of the message.

(pk, sk) ← Gen(): This algorithm randomly picks x ∈R Zp and computes Y = gx.
It also computes the non-interactive proof πY = PDL{(x) : Y = gx}. The public
key is (Y, πY) and the secret key is x.

(σ,R)← Sign(skS ,R,m) : On input a message m, a secret key of a signer x and two
public keys (Y, πY) and (Y ′, πY ′) where Y = gx, this algorithm first validates πY ′ .

Next, it computesM = u′
∏n

i=1 u
m[i]
i . It then chooses r ∈R Zp, computesS2 = gr

and S1 = Y ′xM r. Output σ as (S1, S2) and the ring as {(Y, πY), (Y
′, πY ′)}.

valid/invalid← Verify(σ,R,m) : On input a a message m, a signature σ and a
rinf {(Y, πY), (Y

′, πY ′)}, this algorithm first validates πY and πY ′ . Next, it outputs
valid if and only if

ê(S1, g) = ê(Y, Y ′)ê(u′
n∏

i=1

u
m[i]
i , S2).

Two-Party (Blind) Ring Signatures and Their Applications 413

Note that the signature size is only 2 elements. While the validations of πY and πY ′

is quite expensive, it is required to be conducted once per each public key. Thus, in a
long run, our scheme is nearly as efficient as the original scheme from [2] if the public
key of the users are relatively stable.

4.2 A Blind Signature Generation Protocol for Our Two-Party Ring Signature
Scheme

The blind signature generation protocol is a two-round protocol described below. The
public keys of the ring, (Y, πY) and (Y ′, πY ′) are known to both the signer and the user.
Without loss of generality, the signer has an additional input x such that Y = gx. The
user has an additional input m.

The user validates (Y, πY) and (Y ′, πY ′). Then it computes a commitment of m as

M ′ =
∏n

i=1 u
m[i]
i gr for some random r ∈R Zp and the non-interactive proof

πM ′ = PWH{(m, r) : M ′ =
∏n

i=1 u
m[i]
i gr}. It sends M ′, πM ′ to the signer.

Upon receive M ′, πM ′ , the signer validates πM ′ and πY ′ . Next, it computes S2 = gt

for some randomly generated t ∈R Zp, S1 = Y ′x(u′M ′)t and returns (S′
1, S

′
2) to

the user.
The user picks a ∈R Zp, computes S1 = (S′

1/(S
′
2)

r)(u′M ′)a and S2 = S′
2g

a. It
outputs the signature on m as (S1, S2).

It is straightforward to see that the signature created using the blind signature gener-
ation protocol has the same distribution as those outputted from the sign algorithm.

Regarding the security of our two-party ring signatures, we have the following theo-
rem whose proof can be found in Appendix B.

Theorem 2. Our construction of two-party ring signatures is unforgeable under the
DLIN and CDH assumption. It is unconditionally anonymous. The blind signature ver-
sion possesses blindness under the DLIN and CDH assumption.

5 Applications

Designated Verifier Signatures A direct application of our two-party ring signature
scheme is on designated verifier signatures, Jakobsson, Sako and Impagliazzo [13], and
independently by Chaum [5] in 1996. A DVS scheme allows a signer Alice to convince a
designated verifier Bob that Alice has endorsed the message while Bob cannot transfer
this conviction to anyone else. As discussed in [15], if Alice create a ring signature
on behalf of the ring with Alice and Bob and sends the ring signature to Bob, Bob
will be convinced that the message has been endorsed by Alice. On the other hand, the
signature will not be able to convince any outsider since Bob could have been the creater
of the signature. Hence, a two-party ring signature is sufficient for the construction of
designated verifier signature. Our construction secure in the strong model is necessary
for it allows the resulting designated verifier signatures to be secure against the vogue
key attack [13,18]. On the other hand, some existing schemes make use of some ad-hoc
techniques [20] to defend against this attack.

414 M.H. Au and W. Susilo

Optimistic Fair Exchange. Optimistic fair exchange, introduced by Asokan, Schunter
and Waidner [1] allows two parties, Alice and Bob, to exchange digital signatures with
the help of a passive trusted third party. Haung et al. [12] presents an elegant realization
based on a secure two-party ring signatures. Their construction is generic in which any
secure two-party ring signature scheme can be used. Having said that, since optimistic
fair exchange is supposed to work in the multi-user setting, the security requirement of
the underlying ring signature is stronger than the model guaranteed by the two-party
ring signatures in [2]. On the other hand, our scheme satisfies their security require-
ments and can be used. We also make the following observation. If the blind version
of our ring signature scheme is employed, the resulting optimistic fair exchange proto-
col enjoys an additional property in which the trusted third party cannot learn anything
about the messages and signatures being exchanged even if it is called upon for protocol
completion. This will improve the applicability of this protocol since they exchanging
parties might be reluctant to reveal the information of the exchange.

Fair Outsourcing. Following the fair exchange paradigm, Chen et al. [7] consider the
problem of the exchange of payment and outsourcing computation. In their proposal,
the job owner outsourced some computationally expensive task to a set of workers and
upon completion of its assigned computation, the worker shall receive the payment
from the job owner. A fair exchange protocol is used to ensure fairness. Specifically, the
computation result is used in exchange of the job owner’s payment. As a two-party ring
signature can be used as a building block for a fair exchange protocol, our construction
is also useful in the fair outsourcing system.

6 Conclusion

In this paper, we present two useful non-interactivezero-knowledgeproof-of-knowledge
protocols. With these protocols, we proposed an efficient two-party ring signatures and
its extension to support blind signature generation. Finally, we discussed several appli-
cations of our constructions.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: Grave-
man, R., Janson, P.A., Neumann, C., Gong, L. (eds.) ACM Conference on Computer and
Communications Security, pp. 7–17. ACM (1997)

2. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions
without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
60–79. Springer, Heidelberg (2006)

3. Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and DAA in the
standard model. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS
2013. LNCS, vol. 7954, pp. 518–533. Springer, Heidelberg (2013)

4. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles.
In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 423–434. Springer, Heidelberg (2007)

5. Chaum, D.: Private Signature and Proof Systems, US Patent 5,493,614 (1996)

Two-Party (Blind) Ring Signatures and Their Applications 415

6. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

7. Chen, X., Li, J., Susilo, W.: Efficient fair conditional payments for outsourcing computations.
IEEE Transactions on Information Forensics and Security 7(6), 1687–1694 (2012)

8. Chow, S.S.M., Liu, J.K., Wei, V.K., Yuen, T.H.: Ring Signatures Without Random Oracles.
In: ASIACCS 2006, pp. 297–302. ACM Press (2006)

9. Ghadafi, E.: Sub-linear blind ring signatures without random oracles. Cryptology ePrint
Archive, Report 2013/612 (2013), http://eprint.iacr.org/

10. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459.
Springer, Heidelberg (2006)

11. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg
(2008)

12. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient optimistic fair exchange secure in
the multi-user setting and chosen-key model without random oracles. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg (2008)

13. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applica-
tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer,
Heidelberg (1996)

14. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

15. Saeednia, S., Kremer, S., Markowitch, O.: An Efficient Strong Designated Verifier Signature
Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 40–54. Springer,
Heidelberg (2004)

16. Schäge, S., Schwenk, J.: A CDH-based ring signature scheme with short signatures and
public keys. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 129–142. Springer, Heidelberg
(2010)

17. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T.,
Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007)

18. Shim, K.-A.: Rogue-key Attacks on the Multi-designated Verifiers Signature Scheme. Inf.
Process. Lett. 107(2), 83–86 (2008)

19. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs. IACR
Cryptology ePrint Archive 2004, 332 (2004)

20. Zhang, Y., Au, M.H., Yang, G., Susilo, W.: (Strong) multi-designated verifiers signatures
secure against rogue key attack. In: Xu, L., Bertino, E., Mu, Y. (eds.) NSS 2012. LNCS,
vol. 7645, pp. 334–347. Springer, Heidelberg (2012)

A Proof of Theorem 1

We sketch the proof idea for PDL. The proof for PWH is similar and is thus omitted.

Simulatability. In the intuition of PDL, we already discussed how a simulator, with the
knowledge of α such that h1 = hα can produce a simulated proof PDL. It remains to
argue this simulated proof is indistinguishable from the real proof. The argument makes
use of the game-hoping technique [19] which involves a sequence of games defined
below.

1. Game0: This is the real game.

http://eprint.iacr.org/

416 M.H. Au and W. Susilo

2. Game1: Same is Game0 except the common reference string of the GS proof system
crsGS is chosen in the simulation setting instead of the soundness setting.

3. Game2: Same as Game1 except the non-interactive proofs PDL given to the adver-
sary is generated by the simulator.

4. Game3: Same as Game2 except the common reference string of the GS proof sys-
tem crsGS is chosen to be in the soundness setting instead of the simulation setting.

The setting in Game3 is where the adversary is given simulated proofs instead of real
proofs. It remains to show the advantage of an adversary trying to distinguish whether
it is playing Game0 and Game3 is negligible. The argument goes as follows. The differ-
ence between Game0 and Game1 is negligible under the DLIN assumption due to the
computational indistinguishably of the common reference string of the GS proof sys-
tem. For Game1 and Game2, observe that the distribution of S2 is the same (uniformly
at random from G) and that the distribution of the GS proof is also the same (since
the commitments are perfectly hiding in the simulation string), the difference between
Game1 and Game2 is negligible. Finally, the difference between Game2 and Game3
is negligible under the DLIN assumption. Thus, PDL is simulatable under the DLIN
assumption.

Extractability. Due to the soundness of the GS proof system, the extractor can always
extracts fromPDL a set of witnesses (X0, . . . , Xn−1, S1, S) satisfying the set of pairing
product equations. From the equation

ê(S/h, S/h1) = 1,

S can only be h or h1. If S = h, the last equation

ê(S1, S) = ê(h2, h1)ê(V(statement), S2)

means that the witness S1 together with the value S2 is a Waters signature on the mes-
sage “statement”. Since the adversary must be producing a new statement. It is easy
to setup the simulator which breaks the existential unforgeability of Waters signature,
which is equivalent to solve the CDH problem. (The simulator is given a signing oracle
of the Waters signature and use it to produce all the simulated proof. Finally, we then
adversary produces a new proof, the simulator extracts a new Waters signature.)

When S = h1, we have

ê(Y, S/h) = ê(

n−1∏
i=0

Xi, S/h),

which implies Y =
∏n−1

i=0 Xi. Recall that for all i,

ê(Xi, Xi/g
2i) = 1,

it means Xi = 1 or Xi = g2
i

. From this, the simulator can calculate x =
∑n−1

i=0 x[i]2i

where x[i] = 0 if Xi = 1 and x[i] = 2i otherwise.
Thus, PDL is extractable under the CDH assumption.

Two-Party (Blind) Ring Signatures and Their Applications 417

B Proof of Theorem 2

We sketch the proof idea for our construction of two-party (blind) ring signatures.

Unforgeability. The signature generation and verification is the same as the construc-
tion of [2], which is unforgeable against chosen sub-ring attack. The only difference is
the addition of the non-interactive proof of knowledge of the secret key attached in the
public key. For all public keys presented by the adversary, the simulator can extract the
corresponding signing keys and use it to answer all queries related to these keys chosen
by the adversary. This in turns allow our scheme to be proven secure in the stronger
model where the adversary can introduce keys into the system. For the blind signa-
ture generation protocol, the simulator can always extract from PWH the message to be
signed in the protocol and the rest is the same as the origin version. Due to the need to
produce a simulated proof for the challenge public key and the need of extractions, our
construction is secure under the CDH and the DLIN assumption in the standard model.

Anonymity. The original two-party ring signature of [2] is unconditionally anonymous
and it is straightforward to see our construction retains this desirable property. Consider
a given signature (S1, S2), {PK,PK ′} on message m. For any public key PK =

(Y, πY), there exists a random value r such that S1 = gyy
′
(u′

∏m
i=1 u

m[i]
i)r and S2 =

gr. In other words, it can be generated by user with public key PK or PK ′ and thus
the signature is unconditionally anonymous.

Blindness. Consider two transcripts of the blind signature generation protocol (M ′,
πM ′ , S′

1, S′
2) and (M̄ ′, πM̄ ′ , S̄′

1,S̄′
2) and a given message-signature pair (m,S1, S2).

There exists a set of randomness (r, a) such that M ′ =
∏n

i=1 u
m[i]
i gr, S2 = S′

2g
a

and S1 = (u′M ′)aS′
1/(S

′
2)

r (this only holds when S′
1, S′

2 are correctly computed by
the signer for M ′ yet if the signer does not, the user can detect this misbehavior and
abort).

At the same time, there exists another set of randomness (r̄, ā) such that M ′ =∏n
i=1 u

m[i]
i gr̄, S2 = S̄′

2g
ā and S1 = (u′M ′)āS̄′

1/(S̄
′
2)

r̄ (again, assume S′
1 and S′

2 are
correctly computed).

This means that a message-signature pair can be the result of interaction M ′, S′
1, S

′
2

or M̄ ′, S̄′
1, S̄

′
2. Finally, due to the simulatablility of PWH, πM ′ nor πM̄ ′ leaks no infor-

mation about m and r under the DLIN and CDH assumption. Thus, our construction
possesses blindness under the DLIN and CDH assumption.

Efficient Leakage-Resilient Signature Schemes

in the Generic Bilinear Group Model�

Fei Tang1,2, Hongda Li1,2, Qihua Niu1,2, and Bei Liang1,2

1 The Data Assurance and Communication Security Research Center
of Chinese Academy of Sciences, Beijing, China

2 State Key Laboratory of Information Security, Institute of Information Engineering
of Chinese Academy of Sciences, Beijing, China

tangfei127@163.com, hdli@ucas.ac.cn, {niuqihua,liangbei}@iie.ac.cn

Abstract. We extend the techniques of Kiltz et al. (in ASIACRYPT
2010) and Galindo et al. (in SAC 2012) to construct two efficient leakage-
resilient signature schemes. Our schemes based on Boneh-Lynn-Shacham
(BLS) short signature and Waters signature schemes, respectively. Both
of them are more efficient than Galindo et al.’s scheme, and can tolerate
leakage of (1 − o(1))/2 of the secret key at every signature invocation.
The security of the proposed schemes are proved in the generic bilinear
group model (in our first scheme which is based on the BLS signature, a
random oracle is needed for the proof).

Keywords: Digital signature, leakage-resilient cryptography, generic
bilinear group model.

1 Introduction

In the traditional security proof of the cryptographic schemes, there has a basic
assumption that the secret state is completely hidden to the adversary. However,
it is almost impossible to realize this assumption in the real world. Many cryp-
tographic engineers have designed some side-channel attacks can detect some
leakage information about the secret state. For example, power consumption
[23], fault attacks [5,8], and timing attacks [7], etc.

Leakage-resilient cryptography is a countermeasure to resist such side-channel
attacks with some algorithmic techniques, which means that designing algo-
rithms such that their description already provides security against those at-
tacks. Leakage-resilient cryptography is an increasingly active area in recent
years and many leakage models have been proposed, such as only computa-
tion leaks information (OCLI) [18,20,24,22], memory leakage [1,17], bounded
retrieval [2,3,14], and auxiliary input models [15,20,19], etc. In this work, we
design leakage-resilient signature schemes based on the following two leakage
models:
� This research is supported by the National Natural Science Foundation of China
(Grant No. 60970139), the Strategic Priority Program of Chinese Academy of Sci-
ences (Grant No. XDA06010702), and the IIEs Cryptography Research Project.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 418–432, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Leakage-Resilient Signature Schemes 419

– OCLI model: leakage is assumed to only occur on values that currently ac-
cessed during the computation.

– Continual leakage model: the amount of leakage is assumed to be bounded
only in between any two successive key refreshes but the overall amount can
be unbounded.

Bounded leakage model [21,6] is a weaker notion, corresponding to the continual
leakage model, means that the amount of the leakage information is bounded
with a fixed value throughout the lifetime of the system. Obviously, the contin-
ual leakage model is more closer to the real-world scenarios. Note that in the
continual leakage setting, the secret state should be stateful, i.e., the secret state
should be updated after (or before) every round of the invocation of the secret
state. Otherwise, the entire secret state will be completely leaked after multiple
invocations.

Kiltz and Pietrzak [22] designed a leakage-resilient PKE scheme which is a
bilinear version of the ElGamal key encapsulation mechanism and it is secure in
the presence of continual leakage in the generic bilinear group (GBG) model [10].
It is more important that their scheme is very efficient, just less than a little time
slower than the standard ElGamal scheme. Galindo and Vivek [20] then adapted
their techniques (i.e., blinding the secret key) to construct a practical signature
scheme based on the Boneh-Boyen IBE scheme [9]. Its efficiency is close to the
non leakage-resilient one and it tolerates leakage of almost half of the bits of the
secret key at every signature invocation.

In this paper, we follow the techniques by Kiltz et al. [22] and Galindo et al.
[20], construct two leakage-resilient signature schemes based on the OCLI and
continual leakage models. Our first scheme is based on the BLS signature scheme
[12], its signing algorithm is deterministic, we adapt it to a probabilistic one and
the resulting scheme can tolerate leakage of (1−o(1))/2 of the secret key at every
signature invocation. Our second scheme is based on the Waters signature scheme
[28], the resulting scheme also can tolerate leakage of (1 − o(1))/2 of the secret
key at every signature invocation. Both of them are provable leakage-resilience in
the GBG model (the BLS-based one needs an additional random oracle for the
proof), and more efficient than Galindo and Vivek’s signature scheme, more pre-
cisely, one exponentiation is decreased in the signing and verification algorithm,
respectively.

2 Preliminaries

In this section, we review some basic notions and preliminaries for this paper:
bilinear groups and two intractability assumptions CDH and DBDH, generic
bilinear groups model, entropy, and Schwartz-Zippel lemma.

The following notations will be used in this paper. Let Z be the set of integers
and Zp be the ring modulo p. 1k denotes the string of k ones for k ∈ N. |x| denotes
the length of the bit string x. s

$← S means randomly choosing an element s
form the set S. [n] is a shorthand for the set {1, 2, . . . , n}. We write y ← A(x) to

420 F. Tang et al.

indicate that running the algorithm A with input x and then outputs y, y
$← A(x)

has the same indication except that A is a probabilistic algorithm, and if we want
to explicitly denote the randomness r used during the computation we write it
y

r← A(x). Lastly we write PPT for the probabilistic polynomial time.

2.1 Bilinear Groups

Let G1 and G2 be two multiplicative cyclic groups with a same prime order p,
and g be an arbitrary generator of G1. We say that ê : G1 × G1 → G2 be an
admissible bilinear mapping if it satisfies the the following properties:

– Bilinearity: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Zp.
– Non-degeneracy: ê(g, g) �= 1.
– Computability: there exists efficient algorithm to calculate ê(ga, gb) for all
a, b ∈ Zp.

We assume that BGen(1k) be a PPT algorithm can generate parameters P =
(G1, G2, p, g, ê) to satisfy the above properties on input a security parameter k.
The group G1 is said to be a bilinear group, and it is also called the base group
and G2 be the target group.

Definition 1. (CDH Assumption). For any PPT adversary A, any polynomial
p(·), and all sufficiently large k ∈ N,

Pr

⎡⎣ (G1, G2, p, g, ê)← BGen(1k);

a, b
$← Zp; : v = gab

v← A(G1, p, g, g
a, gb)

⎤⎦ <
1

p(k)
.

Definition 2. (DBDH Assumption). For any PPT adversaryA, any polynomial
p(·), and all sufficiently large k ∈ N,∣∣∣∣∣Pr

⎡⎣ (G1, G2, p, g, ê)← BGen(1k);

a, b, c
$← Zp; : d = 1

d← A(P, ga, gb, gc, ê(g, g)abc)

⎤⎦−

Pr

⎡⎣ (G1, G2, p, g, ê)← BGen(1k);

a, b, c, r
$← Zp; : d = 1

d← A(P, ga, gb, gc, ê(g, g)r)

⎤⎦ ∣∣∣∣∣ < 1

p(k)
.

2.2 Generic Bilinear Group Model

In the generic group model [25], the elements of the group encoded by unique
but randomly chosen strings, and thus the only property that can be tested by
adversary is equality. Boneh et al. [10] extended it to a generic bilinear group
(GBG) model. In the GBG model, the encoding is given by randomly chosen
injective functions ξ1 : Zp → Ξ1 and ξ2 : Zp → Ξ2 which are the representations

Efficient Leakage-Resilient Signature Schemes 421

of the elements of the base group G1 and target group G2, respectively (w.l.o.g.,
we assume that Ξ1 ∩ Ξ2 = ∅). The operations of the groups and the bilinear
map are performed by three public oracles O1,O2, and Oê, respectively. For any
a, b ∈ Zp,

– O1(ξ1(a), ξ1(b))→ ξ1(a+ b (mod p))
– O2(ξ2(a), ξ2(b))→ ξ2(a+ b (mod p))
– Oê(ξ1(a), ξ1(b))→ ξ2(ab (mod p))

For a fixed generator g of G1 we have g = ξ1(1) and gT = ê(g, g) = ξ2(1).

2.3 Entropy

LetX be a finite randomvariable, then themin-entropy ofX definedbyH∞(X)
def
=

− log2(maxx Pr[X = x]), and the average conditional min-entropy of X given a

random variable Y defined by H̃∞(X |Y)
def
= − log2(Ey←Y [maxx Pr[X = x|Y =

y]]).
We have the following lemma which is from [16].

Lemma 1. Let f : X → {0, 1}Δ be a function on X. Then H̃∞(X |f(X)) ≥
H∞(X)−Δ.

2.4 Schwartz-Zippel Lemma

We follow the result of [20,25], it is a simple variant of the Schwartz-Zippel
lemma [26,29].

Lemma 2. Let F ∈ Zp[X1, . . . , Xn] be a non-zero polynomial of total degree
at most d. Let Pi(i = 1, . . . , n) be probability distributions on Zp such that

H∞(Pi) ≥ log p−Δ, where 0 ≤ Δ ≤ log p. If xi
Pi← Zp(i = 1, . . . , n) are chosen

independently, then Pr[F (x1, . . . , xn) = 0] ≤ d
p2

Δ.

This lemma can be proved by mathematical induction (please refer to [20,25] for
detailed proof). Based on this lemma, we can get the following result directly.

Corollary 1. If Δ = (1 − o(1)) log p in Lemma 2, then Pr[F (x1, . . . , xn) = 0]
is negligible (in log p).

3 Definitions

3.1 Signature Scheme

A signature scheme Σ generally consists of three algorithms, key generation,
signing, and verification, denoted by KGen, Sign, and Vrfy, respectively.

Definition 3. Σ=(KGen, Sign, Vrfy) is a signature scheme if it satisfies:

422 F. Tang et al.

– KGen is a PPT algorithm takes as input a security parameter k, then outputs

the signer’s public key pk and secret key sk. We write it (pk, sk)
$←KGen(1k).

– Sign is a PPT algorithm run by the signer who takes as input its secret key sk

and a messagemi, then outputs a signature σi. We write it σi
$←Sign(sk,mi).

– Vrfy is a deterministic algorithm run by the verifier who takes as input
the signer’s public key pk, the signed message mi, and the correspond-
ing signature σi, then outputs 1 if it is valid, else outputs 0. We write it
1/0←Vrfy(pk,mi, σi).

For any index i, we require that 1← Vrfy(pk,mi, Sign(sk,mi)).

We say that a signature scheme is stateful if its signing algorithm is stateful, it
means that the secret key will be updated before (or after) each signing algorithm
invocation while the public key remains fixed.

3.2 Security

The notion of existential unforgeability against adaptive chosen message attack
(EUF-CMA) for the signature scheme is defined by the following game Geuf−cma

Σ,A .

Game Geuf−cma
Σ,A (1k) Oracle OSign(mi)

(pk, sk)
$← KGen(1k) σi

$← Sign(sk,mi)

(m∗, σ∗)
$← A

OSign(pk) return σi and set i← i + 1
if 1← Vrfy(pk,m∗, σ∗) and m∗ �∈ {m1, . . . ,mi}
then output 1 else output 0

Adversary A wants to give a forgery (m∗, σ∗) by means of adaptively query to
the signing oracle OSign. We denote the advantage of A wins the above game

by Adveuf−cma
Σ,A .

Definition 4. The signature scheme Σ is EUF-CMA secure if have no PPT
adversary can win the above game with a non-negligible advantage.

3.3 Security in the Presence of Leakage

Following the techniques of [20,22], we split the signing key into two parts, and
store them in two different parts of the memory. Then the signing process be
divided into two corresponding phases. However, the input/output behavior will
exactly the same as in the original one.

Formally, Σ∗ = (KGen∗, Sign∗,Vrfy∗) be a stateful signature scheme, in the
KGen∗ algorithm, the secret key sk is split into two initial states S0 and S′

0,
correspondingly, the signing algorithm is processed with a sequence of two phases
Sign∗ = (Sign∗Phase1, Sign

∗
Phase2). The i

th invocation of signing (with secret state
(Si−1, S

′
i−1)) is computed as

(Si, wi)
ri← Sign∗Phase1(Si−1,mi); (S

′
i, σi)

r′
i← Sign∗Phase2(S

′
i−1, wi), (1)

Efficient Leakage-Resilient Signature Schemes 423

where the parameter wi is some state information passed from Sign∗Phase1 to
Sign∗Phase2. After this round of signing, the secret state will be updated to
(Si, S

′
i).

In the presence of leakage, an adversary A∗ can obtain some leakage infor-
mation in addition to the signatures for some messages of its choice. In order to

model such behavior, we define a Sign&Leak oracleOLeakSign . In this oracle, besides

the messages chosen by A∗ to the signing oracle, it also allowed to specify two
leakage functions fi and hi with bounded range {0, 1}λ (where λ be the leakage
parameter). The leakage functions defined as

Λi = fi(Si−1, ri);Λ
′
i = hi(S

′
i−1, r

′
i, wi). (2)

We define the security notion of existential unforgeability under adaptive
chosen message and leakage attacks (EUF-CMLA) through the following game

Geuf−cmla
Σ∗,A∗ , where |fi| denotes the length of the output of fi.

Game Geuf−cmla
Σ∗,A∗ (1k) Oracle OLeakSign (mi, fi, hi)

(pk, (S0, S
′
0))

$← KGen∗(1k), i← 1 if |fi| �= λ or |hi| �= λ, return ⊥

(m∗, σ∗)
$← A

∗OLeak
Sign (pk) (Si, wi)

ri← Sign∗Phase1(Si−1,mi)

if 1← Vrfy∗(pk,m∗, σ∗) and (S′
i, σi)

r′
i← Sign∗Phase2(S

′
i−1, wi)

m∗ �∈ {m1, . . . ,mi} Λi = fi(Si−1, ri)
then output 1 else output 0 Λ′

i = hi(S
′
i−1, r

′
i, wi)

return (σi, Λi, Λ
′
i) and set i← i+ 1

Adversary A∗ wants to give a forgery (m∗, σ∗) by means of adaptively query to

the Sign&Leakage oracle OLeakSign . We denote the advantage of A∗ wins the above

game by Adveuf−cmla
Σ∗,A∗ .

Definition 5. We say that the signature scheme Σ∗ is EUF-CMLA secure if
have no polynomial-bounded adversary can win the above game with a non-
negligible advantage.

4 Boneh-Lynn-Shacham Signature Scheme

In ASIACRYPT 2001, Boneh, Lynn, and Shacham [12] proposed a very efficient
short signature scheme. (See [12] for the BLS signature scheme construction.) It
has been received great attention and adopted to construct many more compli-
cated cryptographic schemes (e.g. [11,13]).

4.1 Probabilistic BLS Signature Scheme

We adapt the deterministic BLS signature to a probabilistic scheme. We denote
it by ΣpBLS = (KGenpBLS, SignpBLS,VrfypBLS), it constructed as follows:

424 F. Tang et al.

– KGenpBLS(1
k):

• Run (G1, G2, p, g, ê)
$← BGen(1k) and choose a cryptographic hash func-

tion H : {0, 1}∗ → G1, then set the system public parameter as P =
(G1, G2, p, g, ê, H).

• Choose random x
$← Zp, then compute X = gx ∈ G1 and XT =

ê(X, g) = ê(g, g)x ∈ G2.
• Output pk = XT and sk = X .

– SignpBLS(P, sk,m):

• Choose random r
$← Zp.

• Compute and output σ = (σ1, σ2) = (X ·H(m)r, gr).

– VrfypBLS(P, pk,m, σ): Check whether ê(σ1,g)
ê(σ2,H(m))

?
= XT .

In fact, the above probabilistic BLS signature scheme is similar to Galindo
et al.’s basic signature scheme (cf. Section 3 of [20]). In their scheme, σ1 =
X · (X0 ·Xm

1)r, it can be regarded as a design without random oracles. However,
the probabilistic BLS signature has advantages of efficiency and the length of
the public key.

Similarly to the Galindo et al.’s basic scheme (cannot proved in the standard
model), we cannot prove the security of the probabilistic BLS scheme in the
random oracle model as the original BLS scheme does. In the following theorem,
we prove it in the combinational model of the random oracle and generic bilinear
group, this means that in the generic bilinear groups model, the hash function
H is treated as a random oracle.

Theorem 1. The probabilistic BLS signature scheme ΣpBLS is EUF-CMA se-

cure w.r.t. the Definition 4 in the combinational models of random oracle and

generic bilinear group. The advantage of a q-query adversary is O(q
2

p).

Proof. Let A be an adversary can break the security of the scheme ΣpBLS.

Without loss of generality, we assume that A is allowed to make totally at most
q queries, which contains qg group oracles (O1,O2,Oê) queries, qh random oracle
(OH) queries, and qs signing oracle (OSign) queries, i.e., qg + qh + qs ≤ q. We

bound the advantage of A against ΣpBLS in the following game G. A plays the

game G with a simulator S as follows.
Game G: Let X, {Hi : i ∈ [qh]}, {Ri : i ∈ [qs]}, {Yi : i ∈ [qg1], qg1 ∈ [0, 2qg +
2]}, and {Zi : i ∈ [qg2], qg2 ∈ [0, 2qg]} be indeterminates. They correspond to
randomly chosen group elements in the scheme ΣpBLS, or more precisely their

discrete logarithms, that is to say, X corresponds to x. Ri corresponds to the
randomness ri that used in the signature invocation. Besides that, A can query
the group oracles with some bit strings that not previously obtained from the
group oracles. In order to record thus values we introduce indeterminates Yi

and Zi which correspond to the discrete logarithm of the elements of G1 and
G2, respectively. Hi corresponds to the discrete logarithms of the random and
independent elements chosen from G1, it means the hash values of the messages.

Efficient Leakage-Resilient Signature Schemes 425

Without loss of generality, we assume that the first qs queries of the OH , i.e.,
{Hi : i ∈ [qs]}, correspond to the hash values of messages {mi : i ∈ [qs]} that
chosen by A used to query to the signing oracle, and the (qs + 1)th query, i.e.,
Hqs+1, corresponds to message m∗ that also chosen by A as the message of
its forgery. For simplicity sake, we denote them by {R}, {Y }, {Z}, and {H},
respectively.
S maintains the following two lists of polynomial-string pair to answer and

record A’s queries
L1 = {(F1,i, ξ1,i) : i ∈ [τ1]}, (3)

L2 = {(F2,i, ξ2,i) : i ∈ [τ2]}, (4)

whereF1,i ∈ Zp[X, {H}, {R}, {Y }], F2,i ∈ Zp[X, {H}, {R}, {Y }, {Z}] and ξ1,i, ξ2,i
are bit strings from the encoding sets Ξ1 (of group G1) and Ξ2 (of group G2),
respectively.

Initially, i.e., at step τ = 0 and τ1 = 2qs + qh + qg1 +1, τ2 = qg2 +1, S creates
the following lists

L1 =
{
(1, ξ1,1), {(Hi, ξ1,i+1) : i ∈ [qh]}, {(Yi, ξ1,i+qh+1) : i ∈ [qg1]},

{(X +RiHi, ξ1,2i+qh+qg1
), (Ri, ξ1,2i+qh+qg1+1) : i ∈ [qs]}

}
,

L2 =
{
(X, ξ2,1), {(Zi, ξ2,i+1) : i ∈ [qg2]}

}
,

where ξ1,i, ξ2,i are chosen randomly and distinctly from Ξ1 and Ξ2, respectively.
We assume that the entries in the sets Ξ1 and Ξ2 are recorded in order, and thus
given a string ξ1,i or ξ2,i, it is able to determine its index in the lists if it exists.
Similarly, the entries {(Hi, ξ1,i+1) : i ∈ [qh]} has an ordering and thus given a
message m, then it is able to determine its index in these entries if it exists. At
step τ ∈ [0, qg + qh] of the game,

τ1 + τ2 = τ + 2qs + qh + qg1 + qg2 + 2. (5)

For the initial entries of the two lists, they correspond to the group elements of
the public parameters and the signatures on the corresponding messages chosen
by A. {Y } and {Z} correspond to the group elements that A will guess in the
actual interaction. In the game, A can query the group oracles with at most two
new (guessed) elements and it also will output two new elements from G1 as
the forgery, hence qg1 + qg2 ≤ 2qg + 2. Therefore, from the equation (5) we have
(w.l.o.g., assuming qh + qs ≥ 4)

τ1 + τ2 ≤ qg + qh + 2qs + qh + 2qg + 2 + 2 ≤ 3(qg + qh + qs) ≤ 3q. (6)

Random Oracle OH : A queries the random oracle OH with input m, S searches
the entries {(Hi, ξ1,i) : i ∈ [qh]} in L1, if there exists entry {(Hk, ξ1,k)} for k ≤ qh
corresponds to m, then S returns ξ1,k to A. Otherwise, it first increments the
counter τ1 := τ1 + 1 and τ := τ + 1, then returns a random string ξ1,i distinct
from those already contained in L1 to A. Finally, adding (Hi, ξ1,i) to L1.

426 F. Tang et al.

Group Oracles O1,O2: For the group operations in group G1, A takes as input
two elements ξ1,i, ξ1,j(i, j ∈ [τ1]) in L1 and specifies whether to multiply or divide
them. S first increments the counters τ1 := τ1+1 and τ := τ +1, then computes
F1,τ1 = F1,i+F1,j if A calls for multiplication, or else F1,τ1 = F1,i−F1,j . If there
exists k < τ1 such that F1,τ1 = F1,k, then sets ξ1,τ1 := ξ1,k. Otherwise, S chooses
a random string ξ1,τ1 that distinct from those already contained in L1. Finally,
S adds the entry (F1,τ1 , ξ1,τ1) to L1. Note that the degree of the polynomials F1,i

in L is at most two. Similarly, S answers A’s queries to the oracle O2, updates
the list L2 and the counters τ2 and τ .
Pairing Oracle Oê: A takes as input two elements ξ1,i, ξ1,j(i, j ∈ [τ1]) from the
list L1 to this oracle. S first increments the counters τ2 := τ2 +1 and τ := τ +1,
and then computes F2,τ2 = F1,i·F1,j . If there exists k < τ2 such that F2,τ1 = F2,k,
then sets ξ2,τ1 := ξ2,k. Otherwise, S chooses random string ξ2,τ2 that distinct
from those already contained in L2. Finally, S adds the entry (F2,τ2 , ξ2,τ2) to the
list L2. The degree of the polynomials F2,i ∈ L2 is at most four.
Output: After finishing the queries, A outputs (m∗, (ξ1,σ1 , ξ1,σ2)) ∈ Zp × L1 ×
L1(σ1, σ2 ∈ [τ1]). It corresponds to the forgery outputted by A in the actual
interaction and m∗ was not taken as input to the signing oracle. Let F1,σ1 and
F1,σ2 be the polynomials that correspond to ξ1,σ1 and ξ1,σ2 in L1, respectively.
S computes the polynomial

F1,σ = X + F1,σ2Hqs+1 − F1,σ1 . (7)

The degree of F1,σ is at most three. Then S chooses random and independent
values x, {h}, {r}, {y} and {z} from Zp and evaluates the polynomials in the lists
L1 and L2. We say that A wins the game G if one of the following cases occurs:

– Case 1: F1,i(x, {h}, {r}, {y}) = F1,j(x, {h}, {r}, {y}) in Zp, for some two
polynomials F1,i �= F1,j in list L1.

– Case 2: F2,i(x, {h}, {r}, {y}, {z}) = F2,j(x, {h}, {r}, {y}, {z}) in Zp, for some
two polynomials F2,i �= F2,j in list L2.

– Case 3: F1,σ(x, {h}, {r}, {y}) = 0 in Zp.

Game G vs. actual EUF-CMA game: The success probability of A in the actual
EUF-CMA game is bounded by its success probability in the above game G with
a negligible probability gap. The reasons are as follows:

– Case 1 means that A can provoke collisions among group elements of G1,
i.e., F1,i �= F1,j but gF1,i(x,{h},{r},{y}) = gF1,j(x,{h},{r},{y}) in the actual
EUF-CMA game with a fixed generator g of the group G1, this can be
used to solve the discrete logarithm problem of the group G1 (cf. Lemma
1 of the full version of the paper [22]). Similarly, case 2 means that A can
provoke collisions among group elements of G2. As long as these two cases
do not occur, then the view of A is identical that in the game G and in
the actual interaction. Therefore, if A cannot provoke collisions, then its

Efficient Leakage-Resilient Signature Schemes 427

adaptive strategies are no more powerful than non-adaptive ones (for more
details, please refer to [25]).

– Case 3 means that (ξ1,σ1 , ξ1,σ2) is a valid forgery on a new message m∗.

Advantage: We now analyze the advantage of A in the game G. Since F1,i �=
F1,j ⇔ F ′ = F1,i − F1,j �= 0, and the degree of the polynomials in the list L1 at
most two. According to the Schwartz-Zippel lemma (with Δ = 0), Pr[F ′(x, {h},
{r}, {y}) = 0] ≤ 2

p . The list L1 has τ1 entries, so there exists at most C2
τ1

distinct pairs (F1,i, F1,j), the probability of the case 1 occurs is at most C2
τ1 ·

2
p .

Similarly, the probability of the case 2 occurs is at most C2
τ2 ·

4
p . The degree of

the polynomial F1,σ is at most three, so if it is non-zero (proved in Lemma 3
below), then we can use the Schwartz-Zippel Lemma to compute the probability
of the case 3 occurs is at most 3

p . In conclusion, the advantage of A wins the
game G is

Adveuf−cma
ΣpBLS,A ≤ C2

τ1 ·
2

p
+ C2

τ2 ·
4

p
+

3

p
≤ 2

p
(τ1 + τ2)

2 ≤ 18q2

p
= O(

q2

p
). (8)

Therefore, let q = poly(log p), then Adveuf−cma
ΣpBLS,A is negligible.

Lemma 3. F1,σ is a non-zero polynomial in Zp[X, {H}, {R}, {Y }].
Proof. From the design of the group oracles and the initial elements of the list
L1, we can see that any polynomial in L1 is computed by either adding or
subtracting two polynomials previously existing in the list. Therefore, w.l.o.g.,
we can write the forgery (F1,σ1 , F1,σ2) as follows

F1,σ1 = c1 +

qh∑
i=1

c2,iHi +

qs∑
i=1

c3,iRi +

qg1∑
i=1

c4,iYi +

qs∑
i=1

c5,i(X +RiHi), (9)

F1,σ2 = d1 +

qh∑
i=1

d2,iHi +

qs∑
i=1

d3,iRi +

qg1∑
i=1

d4,iYi +

qs∑
i=1

d5,i(X +RiHi), (10)

where c1, d1, cj,i, dj,i(j = 2, 3, 4, 5) ∈ Zp are chosen by A. We divide them into
two cases:

– Case 1: c5,i = d5,i = 0, for ∀i ∈ [qs].
In this case, both F1,σ1 and F1,σ2 do not contain the indeterminate X . Hence
the polynomial F1,σ2Hqs+1 − F1,σ1 in (7) also does not contain the determi-
nate X . Therefore, in the polynomial F1,σ, the coefficient of the term X is
non-zero, and thus F1,σ is non-zero.

– Case 2: c5,k �= 0 or d5,k �= 0, for ∃k ∈ [qs].
• If d5,k �= 0, then the coefficient of the term RkHkHqs+1 is non-zero, and
thus F1,σ is non-zero.

• If c5,k �= 0, then the coefficient of the term RkHk is non-zero, and thus
F1,σ is non-zero.

Therefore, the polynomial F1,σ is non-zero. This completes the proof of
Theorem 2. �

428 F. Tang et al.

4.2 Leakage-Resilient Probabilistic BLS Signature Scheme

We now adapt the probabilistic BLS signature scheme to the leakage-resilient
setting, i.e., leakage-resilient probabilistic BLS signature scheme. It denoted by
Σ∗
pBLS = (KGen∗pBLS, Sign

∗
pBLS,Vrfy

∗
pBLS) and constructed as follows:

– KGen∗pBLS(1
k):

• Run (G1, G2, p, g, ê)
$← BGen(1k) and choose a cryptographic hash func-

tion H : {0, 1}∗ → G1, then set the system public parameter as P =
(G1, G2, p, g, ê, H).

• Choose random x
$← Zp, then compute X = gx ∈ G1 and XT =

ê(X, g) = ê(g, g)x ∈ G2.

• Choose random l0
$← Zp and set (S0, S

′
0) = (gl0 , gx−l0).

• Output pk = XT and sk0 = (S0, S
′
0).

– Sign∗pBLS(P, ski−1,m):

• Phase 1 (P, Si−1,m):

∗ Choose random li
$← Zp and compute Si = Si−1 · gli .

∗ Choose random r
$← Zp and compute (σ′

1, σ
′
2) = (Si ·H(m)r, gr).

∗ Output wi = (li, σ
′
1, σ

′
2).

• Phase 2 (P, S′
i−1, wi):

∗ Compute S′
i = S′

i−1 · g−li .
∗ Compute and output σ = (σ1, σ2) = (S′

i · σ′
1, σ

′
2).

– Vrfy∗pBLS(P, pk,m, σ): Check whether ê(σ1,g)
ê(σ2,H(m))

?
= XT .

At the beginning of the each signing phase, the partial secret key will be re-
randomized, however, for any i, let Li :=

∑i
j=0 lj , then Si ·S′

i = gLi ·gα−Li = X .
Hence the signatures of the scheme Σ∗

pBLS identical to that from schemeΣpBLS,

however, precisely because of the re-randomized process, adversary cannot collect
enough leakage information from the “fresh” secret state to recover the real secret
key X .

In the first phase of the the signing algorithm, it requires three exponentia-
tions, and no exponentiation in the second phase if we see g−l as the inverse
element of gl which has been calculated in the first phase. Hence it requires
three exponentiations in every signature calculation. In addition, it requires two
pairing operations in the verification algorithm.

Because of the values of the input and output of the schemes Σ∗
pBLS and

ΣpBLS are identical, the security of Σ∗
pBLS in the non-leakage setting is obvious.

Lemma 4. The probabilistic BLS signature scheme Σ∗
pBLS is EUF-CMA secure

w.r.t. the Definition 4 in the combinational models of random oracle and generic

bilinear group. The advantage of a q-query adversary is O(q
2

p).

The security of the above scheme in the leakage-resilient setting is as follows.
For the sake of space, we give the following theorem, please see the full version
[27] for the detailed proof.

Efficient Leakage-Resilient Signature Schemes 429

Theorem 2. The probabilistic BLS signature scheme Σ∗
pBLS is EUF-CMLA

secure w.r.t. the Definition 5 in the combinational models of random oracle and
generic bilinear group. The advantage of a q-query adversary who gets at most

λ bits of leakage per each invocation of Sign∗Phase1 or Sign∗Phase2 is O(q
2

p 22λ).

5 Waters Signature Scheme

In this section we construct a leakage-resilient signature scheme based on the
Waters signature [28].

5.1 Leakage-Resilient Waters Signature Scheme

We now adapt the Waters signature scheme to the leakage-resilient setting, i.e.,
leakage-resilient Waters signature scheme Σ∗

W = (KGen∗W, Sign∗W,Vrfy∗W), it
constructed as follows:

– KGen∗W(P):

• Run P = (G1, G2, p, g, ê)
$← BGen(1k).

• Choose random x1, x2
$← Zp and compute (X1, X2) = (gx1 , gx2), then

set XT = ê(X1, X2).

• Choose random ui
$← Zp, i ∈ [0, n] and compute Ui = gui ∈ G1, then set

U = {Ui}i∈[0,n].

• Choose random l0
$← Zp and set (S0, S

′
0) = (X l0

2 , X
x1−l0
2).

• Output pk = (XT ,U) and sk0 = (S0, S
′
0).

– Sign∗W(P, ski−1,m):
• Phase 1 (P, Si−1,m):

∗ Let m = m1m2 · · ·mn, where mi denotes the i
th bit of the m.

∗ Choose random li
$← Zp and compute Si = Si−1 ·X li

2 .
∗ Choose random r $←Zp andcompute (σ′

1, σ
′
2)=(Si·(U0

∏
i∈M Ui)

r, gr).
∗ Output wi = (li, σ

′
1, σ

′
2).

• Phase 2 (P, S′
i−1, wi):

∗ Compute S′
i = S′

i−1 ·X−li
2 .

∗ Compute and output σ = (σ1, σ2) = (S′
i · σ′

1, σ
′
2).

– Vrfy∗W(P, pk,m, σ): Check whether ê(σ1,g)
ê(σ2,U0

∏
i∈M Ui)

?
= XT .

At the beginning of the each signing phase, the partial secret key will be re-
randomized, however, for any i, let Li :=

∑i
j=0 lj , then Si ·S′

i = XLi
2 ·Xx1−Li

2 =
X . Hence the signature of this scheme Σ∗

W identical to that from scheme ΣW.
In the first phase of the the signing algorithm, it requires three exponentia-

tions, and no exponentiation in the second phase if we see X−l
2 as the inverse

element of X l
2 which has been calculated in the first phase. Hence it requires

430 F. Tang et al.

three exponentiations in every signature calculation. In addition, it requires two
pairing operations in the verification algorithm.

Because of the input-output behavior of the schemes Σ∗
W and ΣW are iden-

tical, the security of Σ∗
W in the non-leakage setting is obvious.

Lemma 5. The signature scheme Σ∗
W is EUF-CMA secure in standard model

based on the DBDH assumption.

The security of the scheme Σ∗
W in the leakage-resilient setting is as follows.

For the sake of space, the detailed proof of the following theorem is given in the
full version [27].

Theorem 3. The signature scheme Σ∗
W is EUF-CMLA secure w.r.t. the Defini-

tion 5 in the generic bilinear group model. The advantage of a q-query adversary
who gets at most λ bits of leakage per each invocation of Sign∗Phase1 or Sign∗Phase2

is O(q
2

p 22λ).

6 Comparison

We compare our schemes Σ∗
pBLS and Σ∗

W to Galindo et al.’s scheme Σ∗
BB [20].

All of them have similar security results: if allowing λ bits of leakage at every
signing process then the security of the schemes decreased by at most a factor

22λ, and thus they can tolerate 1−o(1)
2 log p bits per each signing invocation. We

now compare them from the aspects of their length of public key, signing cost,
and verification cost, respectively. The results of the comparison in the table
below, where |G1|, |G2| denote the length of the element in group G1 and G2,
respectively, e denotes an exponentiation computation and p denotes a pairing
computation.

Table 1. Comparing the three schemes

Scheme Length of public key Signing cost Verification cost
Σ∗
BB 2|G1|+ |G2| 4e e + 2p

Σ∗
pBLS |G2| 3e 2p

Σ∗
W (n+ 1)|G1|+ |G2| 3e 2p

From the above table we can see that both of our two schemes are more
efficient than the scheme Σ∗

BB, especially the scheme Σ∗
pBLS not only has a low

computation cost, but also has a short public key. The public key of the scheme
Σ∗
W is long, however, its security can be guaranteed in the standard model in

the black-box model, that is to say, there is no information leakage (both Σ∗
BB

and Σ∗
pBLS do not have this property), and from this point of view, we can see

that proving cryptographic scheme’s security in the leakage-resilient setting is
more intractable than in the traditional black-box model.

Efficient Leakage-Resilient Signature Schemes 431

Acknowledgement. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

4. Aggarwal, D., Maurer, U.: The leakage-resilience limit of a computational problem
is equal to its unpredictability entropy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 686–701. Springer, Heidelberg (2011)

5. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

6. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

7. Boneh, D., Brumley, D.: Remote timing attacks are practical. Computer
Networks 48(5), 701–716 (2005)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

11. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

13. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

14. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: CCS 2010, pp. 152–161.
ACM (2010)

15. Dodis, Y., Kalai, Y., Lovett, S.: On cryptography with auxiliary input. In: STOC
2009, pp. 621–630. ACM (2009)

16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how tow generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

432 F. Tang et al.

17. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against
continuous memory attacks. In: Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science, pp. 511–520 (2010)

18. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Hei-
delberg (2010)

19. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 98–115. Springer, Heidelberg (2012)

20. Galindo, D., Vivek, S.: A practical leakage-resilient signature scheme in the generic
group model. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707,
pp. 50–65. Springer, Heidelberg (2013)

21. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

22. Kiltz, E., Pietrzak, K.: Leakage resilient elGamal encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

24. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

25. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

26. Schwartz, J.T.: Fast probabilistic algorithms for verfication of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

27. Tang, F., Li, H., Niu, Q., Liang, B.: Efficient leakage-resilient signature schemes in
the generic bilinear group model. In: Cryptology ePrint Archive, Report 2013/785
(2013) http://eprint.iacr.org/

28. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

29. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.)
EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer,
Heidelberg (1979)

http://eprint.iacr.org/

Attribute-Based Signature

with Message Recovery

Kefeng Wang, Yi Mu, Willy Susilo, and Fuchun Guo

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Wollongong NSW 2522, Australia
{kw909,ymu,wsusilo,fuchun}@uow.edu.au

Abstract. We present a new notion called the attribute-based signa-
ture with message recovery. Compared with the existing attribute-based
signature schemes, an attribute-based signature with message recovery
scheme does not require transmission of the original message to verify
the validity of the signature, since the original message can be recovered
from the signature. Therefore, this scheme shortens the total length of
the original message and the appended attribute-based signature. The
contributions of this paper are threefold. First, we introduce the notion
of attribute-based signature with message recovery. Second, we present
a concrete construction of an attribute-based signature with message re-
covery scheme based on bilinear pairing. Finally, we extend our scheme to
deal with large messages. The proposed schemes support flexible thresh-
old predicates and are proven to be existentially unforgeable against
adaptively chosen message attacks in the random oracle model under
the assumption that the Computational Diffie-Hellman problem is hard.
We demonstrate that the proposed schemes are also equipped with the
attribute privacy property.

Keywords: Signature, Attribute-Based Signature, Message Recovery.

1 Introduction

Essentially, there are two general classes of digital signature schemes. Signature
schemes with appendix require the original message as input to the verification
algorithm. Signature schemes with message recovery do not require the original
message as input to the verification algorithm. In networks with limited band-
width and lightweight mobile devices, long digital signatures will obviously be
a drawback. Apart from shortening the signature itself, the other effective ap-
proach for saving bandwidth is to eliminate the requirement of transmitting the
signed original message for the sake of verifying the attached digital signature.
In this work, we consider the latter approach. In signature schemes with message
recovery, all or part of the original message is embedded within the signature and
can be recovered from the signature itself. It is somewhat related to the problem
of signing short messages using a scheme that minimizes the total length of the

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 433–447, 2014.
c© Springer International Publishing Switzerland 2014

434 K. Wang et al.

original message and the appended signature, and hence it is useful in an organi-
zation where bandwidth is one of the main concerns and useful for applications
in which short messages should be signed.

An attribute-based signature is an elaborated cryptographic notion that sup-
ports fine-grain access control in anonymous authentication systems. A related
approach, but much simpler, to an attribute-based signature is identity-based
signature. Compared with an identity-based signature in which a single string
representing the signer’s identity, in an attribute-based signature, a signer who
obtains a certificate for a set of attributes from the attribute authority is defined
by a set of attributes. An attribute-based signature attests not to the identity of
the individual who signed a message, but assures the verifier that a signer whose
set of attributes satisfies a predicate has endorsed the message. In an attribute-
based signature, the signature reveals no more than the fact that a single user
with some set of attributes satisfying the predicate has attested to the message.
In particular, the signature hides the attributes used to satisfy the predicate and
any identifying information about the signer. Furthermore, users cannot collude
to pool their attributes together.

Our Contributions. In this paper, we introduce the notion of attribute-based
signature with message recovery. This notion allows fine-grain access control
as well as enjoys the shortness of message-signature length. We propose two
efficient schemes supporting flexible threshold predicate. The first one embeds
short original message in the signature and it will be recovered in the process of
verification, while keeping the signature size the same as existing scheme which
requires transmission of the original message to verify the signature. For large
messages, the second scheme separates the original message to two parts. The
signature is appended to a truncated message and the discarded bytes can be
recovered by the verification algorithm. The security of our schemes are proven
to be existentially unforgeable against adaptively chosen message attacks in the
random oracle model under the assumption that the CDH problem is hard. These
schemes are also equipped with attribute-privacy property.

Paper Organization. The rest of this paper is organized as follows: In
Section 2, we introduce some related work that has been studied in the literature.
In Section 3, we introduce some preliminaries used throughout this paper. In
Section 4, we propose a notion of attribute-based signature with message re-
covery scheme and present a concrete scheme based on bilinear pairing. We
also present a security model and security proofs about existential unforgeabil-
ity against adaptively chosen message attacks and attribute-privacy property.
Section 5 extends the first scheme in order to deal with large messages.
Section 6 concludes the paper.

2 Related Work

Attribute-based signatures extend the identity-based signature of Shamir [11] by
allowing the identity of a signer to be a set of descriptive attributes rather than

Attribute-Based Signature with Message Recovery 435

a single string. As a related notion to attribute-based signature, fuzzy identity-
based signature was proposed and formalized in [13], which enables users to
generate signatures with part of their attributes. An attribute-based signature
was also proposed in [12], to achieve almost the same goal. However, these kinds
of signatures do not consider the anonymity for signers. Khader [3,2] proposed a
notion called attribute-based group signatures. This primitive hides the identity
of the signer, but reveals which attributes the signer used to satisfy the predi-
cate. It also allows a group manager to identify the signer of any signature. In
Khader [4] and Maji et al. [7,8], they treated attribute-privacy as a fundamental
requirement of attribute-based signatures.

Maji et al. [7] constructed an attribute-based signature scheme that supports
a powerful set of predicates, namely, any predicate consists of AND, OR and
Threshold gates. However, their construction is only proved in the generic group
model. Li and Kim [6] first proposed an attribute-based signature scheme that
is secure under the standard CDH assumption. Their scheme only considered
(n, n)-threshold, where n is the number of attributes purported in the signa-
ture. Shahandashti and Safavi-Naini [10] extended Li and Kim’s scheme [6] and
presented an attribute-based signature scheme supporting (k, n)-threshold. Li
et al. [5] explored a new signing technique integrating all the secret attributes
components into one. Their constructions provide better efficiency in terms of
both the computational cost and signature size.

In order to minimize the total length of the original message and the appended
signature, message recovery schemes were introduced (e.g. [9]). Zhang et al.
[14] presented the seminal construction of an identity-based message recovery
signature scheme. Inspired by the schemes due to Zhang et al. [14] and Li et al.
[5], we propose our attribute-based signature with message recovery scheme.

Comparison. As we have mentioned above, the scheme of Li et al. [5] have
improved schemes of [6,10] to provide better efficiency in terms of both the
computational cost and signature size. Compared with the scheme of Li et al.
[5] which requires transmission of the original message, our scheme embeds the
original message in the signature while keeping the signature size same as that of
[5]. We also note that Gagné et al. [1] proposed a new threshold attribute-based
signature scheme which they claimed the signature size is independent of the
number of attributes. However, this result is restricted only to a very special
(t, t) threshold scenario. For general attribute policies such as (t, n) threshold
scenario, the signature size still grows linearly with the number of attributes
used to generate the signature. Furthermore, the scheme of Gagné et al. [1] only
deals with fixed threshold. While our scheme can deal with flexible threshold
from 1 to d which is predefined in the setup step.

3 Preliminaries

3.1 Lagrange Interpolation

Given d points q(1), · · · , q(d) on a d−1 degree polynomial, let S be this d-element
set. The Lagrange coefficient Δj,S(i) of q(j) in the computation of q(i) is:

436 K. Wang et al.

Δj,S(i) =
∏

η∈S,η =j

i− η

j − η

We can use Lagrange interpolation to compute q(i) for any i ∈ Zp.

3.2 Bilinear Pairing

Let G1 be a cyclic additive group whose order is a prime p. Let G2 be a cyclic
multiplicative group with the same order p. Let ê : G1 ×G1 → G2 be a bilinear
mapping with the following properties:

– Bilinearity: ê(aP, bQ) = ê(P,Q)ab for all {P,Q} ∈ G1, {a, b} ∈ Zq.
– Non-degeneracy: There exists P ∈ G1 such that ê(P, P) �= 1.
– Computability: There exists an efficient algorithm to compute ê(P,Q) for all
{P,Q} ∈ G1.

3.3 CDH Problem

Let G1 be a group of prime order p. Let g be a generator of G1. Let A be an
attacker. A tries to solve the following problem: Given (g, ga, gb) for some
unknown a, b ∈ Z∗

p, compute gab.
The CDH problem is said to be intractable, if for every probabilistic polyno-

mial time algorithm A, the success probability is negligible.

4 Attribute-Based Signature with Message Recovery

4.1 Definitions

We assume there is a universal set of attributes U . Each signer is associated
with a subset ω ⊂ U of attributes that is verified by an attribute authority. Our
scheme consists of the following four algorithms.

Setup: On input of a security parameter, this algorithm selects the master secret
key and generates the corresponding public key.
Extract: When a party requires its attribute private key {Di}i∈ω corresponding
to an attribute set ω, this algorithm generates the attribute private key using the
master key and attributes in ω if he is eligible to be issued with these attributes.
Sign: This scheme supports all predicates Υt,ω̄(·) → 0/1 consisting of t out of
n threshold gates, in which ω̄ is an n-element attribute set with threshold value
t flexible from 1 to d where Υt,ω̄(ω) = 1 when |ω ∩ ω̄| ≥ t. On input a message
m, a predicate Υt,ω̄(·)→ 0/1, and a sender’s private key {Di}i∈ω, this algorithm
generates a signature σ when |ω ∩ ω̄| ≥ t.
Verify: When receiving a signature σ and a predicate Υt,ω̄(·) → 0/1, this al-
gorithm checks whether the signature is valid corresponding to the predicate
Υt,ω̄(·) → 0/1. If the signature σ is valid, this algorithm recovers the original
message m.

Attribute-Based Signature with Message Recovery 437

4.2 Our Scheme

Setup: First, define the attributes in universe U as elements in Z∗
p where p

is a sufficient large prime. A (d − 1) default attribute set from Z
∗
p is given as

Ω = {Ω1, Ω2, · · · , Ωd−1}. Select a random generator g ∈ G1, a random x ∈ Z∗
p,

and set g1 = gx. Next, pick a random element g2 ∈ G1. Five hash functions are
also chosen such that H1 : Z∗

p → G1, H2 : {0, 1}∗ → Z∗
p, H3 : {0, 1}∗ → G1,

F1 : {0, 1}k2 → {0, 1}k1, F2 : {0, 1}k1 → {0, 1}k2. The public parameters are
params = (g, g1, g2, d,H1, H2, H3, F1, F2), the master secret key is x.
Extract: To generate private key for an attribute set ω,

– First, randomly choose a (d− 1) degree polynomial q(z) such that q(0) = x;
– Generate a new attribute set ω̂ = ω ∪ Ω. For each i ∈ ω̂, choose ri ∈R Zp

and compute di0 = g
q(i)
2 ·H1(i)

ri and di1 = gri ;
– Finally, output Di = (di0, di1) as the private key for each i ∈ ω̂.

Sign: Suppose one has private key for the attribute set ω. To sign a message
m which length is equal to k2 with predicate Υt,ω̄(·), namely, to prove owning
at least t attributes among an n-element attribute set ω̄, he selects a t-element
subset ω′ ⊆ ω ∩ ω̄ and selects randomly an element j from subset ω̄/ω′, and
proceeds as follows:

– First, select a default attribute subset Ω′ ⊆ Ω with |Ω′| = d− t and choose
(n + d − t − 1) random values r′i ∈ Z∗

p for i ∈ (ω̄/j) ∪ Ω′, choose a random
value s ∈ Z∗

p;
– Compute v = e(g1, g2);
– Compute f = F1(m)||(F2(F1(m))⊕m);
– Compute r = H2(v) + f ;

– Compute σi = d
Δi,S(0)
i1 · gr′

i for i ∈ ω′ ∪Ω′;

– Compute σi = gr
′
i for i ∈ ω̄/(ω′ ∪ j);

– Compute σj = gs;

– Compute σ0 =
[∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

]
·
[∏

i∈(ω̄∪Ω′)/j H1(i)
r′
i

]
·
(
H1(j) ·H3(r, {σi}i∈(ω̄∪Ω′)/j , σj)

)s
;

– Finally, output the signature σ = (r, σ0, {σi}i∈(ω̄∪Ω′)/j , σj).

To sign a message m which length is shorter than k2, one can just pad spaces
after the message until k2.
Verify: To verify the validity of a signature σ = (r, σ0, {σi}i∈(ω̄∪Ω′)/j , σj) with
threshold t for attributes ω̄, the verifier performs the following verification pro-
cedure to recover the message m:

e (g, σ0)∏
i∈ω̄∪Ω′ e (H1(i), σi) · e

(
σj , H3

(
r, {σi}i∈(ω̄∪Ω′)/j , σj

)) = v

r −H2(v) = f.

Then, m = [f]k2 ⊕F2([f]
k1) is recovered from f . The verifier checks whether the

equation [f]k1 = F1(m) holds. If it holds, output accept and the message m is
recovered. Otherwise, output reject to denote the signature is not valid.

438 K. Wang et al.

In the above computation, the subscript k2 of f denotes the least significant
k2 bits of f , and the superscript k1 of f denotes the most significant k1 bits of f .

4.3 Security Model

Existential Unforgeability against Chosen Message Attacks
It can be defined using a game between an adversary A and a challenger C.

The adversary A knows the public key of the signer. Its goal is to forge a valid
signature of a message m∗ with a predicate Υt,ω̄(·)→ 0/1 that his attributes do
not satisfy.

Firstly, challenger C runs the Setup algorithm to get the master secret key
with respect to a security parameter and the system’s public parameters params.
Then, C sends params to adversary A. A can access polynomially bounded
number of the following oracles.

H1 Oracle: For each H1 hash query with respect to an attribute i ∈ Z∗
p, C

returns a hash value H1(i) ∈R G1 corresponding to the attribute i.
H3 Oracle: For eachH3 hash query with respect to a tuple (r, {σi}i∈(ω̄∪Ω′)/j , σj)
in which the first r ∈ Z∗

p and the rest elements all come from group G1, C
returns a hash value H3(r, {σi}i∈(ω̄∪Ω′)/j , σj) ∈R G1 corresponding to the tuple
(r, {σi}i∈(ω̄∪Ω′)/j, σj).
Extract Oracle: For each Extract query with respect to an attribute set ω such
that |ω̄ ∩ ω| < t, C returns Di = (di0, di1) for each i ∈ ω as the private key of
attribute set ω.
Sign Oracle: For each Sign query on arbitrary designated attribute set ω and
arbitrary message m, C returns a valid signature σ with respect to m on behalf
of the designated signer who possesses the attribute set ω.
Output: A outputs an alleged signature σ∗ on message m∗ on behalf of a user
who possesses an attribute set ω∗ such that |ω̄ ∩ ω∗| ≥ t. If no Sign queries of
message m∗ with an attribute set ω such that |ω̄∩ω| ≥ t and no Extract queries
with respect to an attribute set ω such that |ω̄ ∩ ω| ≥ t have been queried, A
wins the game if the signature σ∗ is valid.

If there is no such polynomial-time adversary A that can forge a valid signa-
ture in the game described above, we say this scheme is secure against existential
forgery under chosen message attacks.

It is worth noting that this model also guarantees collusion resistance. This is
because if a group of signers can cooperate to construct a signature that none of
them could individually produce, then they can build another adversary which
can forge a valid signature to win the above game.

Attribute Privacy
In an attribute-based signature scheme, a legitimate signer is indistinguishable
among all the users whose attributes satisfying the predicate specified in the
signature. The signature reveals nothing about the identity or attributes of the
signer beyond what is explicitly revealed by the claim being made.

It can be defined using a game between an adversary A and a challenger C.

Attribute-Based Signature with Message Recovery 439

The adversary A even knows the master secret key. So he could generate all
signer’s private keys as well as public keys. Its goal is to distinguish between two
signers which one generates the valid signature of a message with a predicate
such that both of their attributes satisfy the predicate.

Firstly, challenger C runs the Setup algorithm to get the master secret key
and the public parameters params. Then, C sends params as well as the master
secret key to adversary A. A can access polynomially bounded number of H1

and H3 oracles which are the same as described in the previous game. A can
generate private keys and signatures itself, because he has got the master secret
key.

Challenge: A outputs a message m∗, two attribute sets ω∗
0 , ω

∗
1 , and challenged

attribute set ω∗ for signature query, where ω∗ ⊆ ω∗
0 ∩ ω∗

1 . C chooses b ∈ {0, 1},
computes the challenge signature σ∗ on behalf of the signer who possesses at-
tribute set ω∗ selected from ω∗

b and provides σ∗ to A.
Guess:A tries to guess which attribute set between ω∗

0 and ω∗
1 is used to generate

the challenge signature σ∗. Finally, A outputs a guess b′ ∈ {0, 1} and wins the
game if b′ = b.

If there is no such polynomial-time adversary A that can win the game de-
scribed above, we say this scheme holds attribute privacy property.

It is worth noting that this property holds even for the attribute authority,
because the master secret key is also given to the adversary.

4.4 Security Analysis

Theorem 1. This attribute-based signature with message recovery scheme is
correct.

Proof. The correctness of this scheme can be justified as follows:

e (g, σ0)∏
i∈ω̄∪Ω′ e (H1(i), σi) · e

(
σj , H3

(
r, {σi}i∈(ω̄∪Ω′)/j , σj

))
=

e
(
g,
[∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

]
·
[∏

i∈(ω̄∪Ω′)/j H1(i)
r′
i

]
·H1(j)

s
)

∏
i∈ω̄∪Ω′ e (H1(i), σi)

=
e
(
g,
[∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

]
·
[∏

i∈(ω̄∪Ω′)/j H1(i)
r′
i

]
·H1(j)

s
)

∏
i∈ω′∪Ω′ e

(
H1(i), d

Δi,S(0)
i1 · gr′

i

)
·
∏

i∈ω̄/(ω′∪j) e
(
H1(i), gr

′
i

)
· e (H1(j), gs)

=
e
(
g,
∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

)
· e
(
g,
∏

i∈(ω̄∪Ω′)/j H1(i)
r′
i

)
∏

i∈ω′∪Ω′ e
(
H1(i), d

Δi,S(0)
i1 · gr′

i

)
·
∏

i∈ω̄/(ω′∪j) e
(
H1(i), gr

′
i

)
=

e
(
g,
∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

)
· e
(
g,
∏

i∈ω′∪Ω′ H1(i)
r′
i

)
· e
(
g,
∏

i∈ω̄/(ω′∪j)H1(i)
r′
i

)
∏

i∈ω′∪Ω′ e
(
H1(i), d

Δi,S(0)
i1 · gr′

i

)
·
∏

i∈ω̄/(ω′∪j) e
(
H1(i), gr

′
i

)

440 K. Wang et al.

=
e
(
g,
∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

)
· e
(
g,
∏

i∈ω′∪Ω′ H1(i)
r′
i

)
∏

i∈ω′∪Ω′ e
(
H1(i), d

Δi,S(0)
i1 · gr′

i

)
=

e
(
g,
∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

)
∏

i∈ω′∪Ω′ e
(
H1(i), d

Δi,S(0)
i1

)

=

e

(
g,
∏

i∈ω′∪Ω′

(
g
q(i)
2 ·H1(i)

ri
)Δi,S(0)

)
∏

i∈ω′∪Ω′ e
(
H1(i), (gri)

Δi,S(0)
)

= e
(
g, g

∑
i∈ω′∪Ω′ q(i)Δi,S (0)

2

)
= v

Then, using this v and r, we can recover f from the following computation.

r −H(v) = f

Since f is computed from f = F1(m)||(F2(F1(m))⊕m), the original message
m will be recovered from f like this:

[f]k2 ⊕ F2([f]
k1)

= [F1(m)||(F2(F1(m))⊕m)]k2 ⊕ F2([F1(m)||(F2(F1(m))⊕m)]k1)

= F2(F1(m)) ⊕m⊕ F2(F1(m))

= m ��

Theorem 2. This attribute-based signature with message recovery scheme is ex-
istentially unforgeable under chosen message attacks in the random oracle model,
under the assumption that the CDH problem is hard.

Proof. Assume there is an algorithm A that can forge a valid signature under
chosen message attacks. There will be another algorithm B that can run the
algorithm A as a subroutine to solve the CDH problem.

We assume that the instance of the CDH problem consists of group elements
(g, gx, gy) ∈ G3

1, and our goal is to compute an element gxy ∈ G1.

Setup: Let the default attribute set be Ω = {Ω1, Ω2, · · · , Ωd−1}. Since the
threshold in our scheme is flexible from 1 to d, without loss of generality, we fix
the threshold to t ≤ d in this proof. Firstly, B selects randomly a subset Ω′ ⊆ Ω
with |Ω′| = d − t. B selects g as the generator of G1, and sets g1 = gx and
g2 = gy. B sends public system parameters params to adversary A.
H1 Queries: B creates and keeps one listH1-List to simulateH1 Oracle. This list
is used to store tuples like (i, αi, H1(i)). In this type of tuples, the first element
i ∈ Z∗

p indicates an attribute. The second element αi is a random number in Z∗
p.

The last element H1(i) is a random element selected from G1.

Attribute-Based Signature with Message Recovery 441

Upon receiving an H1 hash query with respect to an attribute i, if this i is not
included in this H1-List and i ∈ ω̄ ∪ Ω′, B randomly selects a number αi ∈ Z∗

q

and returns H1(i) = gαi as the H1 hash value of this i. Then, B records the tuple
(i, αi, g

αi) in this H1-List. If this i is not included in this H1-List and i /∈ (ω̄∪Ω′),
B randomly selects a number αi ∈ Z∗

q and returns H1(i) = g−αi
1 as the H1 hash

value of this i. Then, B records the tuple (i, αi, g
−αi
1) in this H1-List. If the i is

already in a record in this H1-List, B only returns the corresponding H1(i) in
the record as the H1 hash value.

H3 Queries: B creates and keeps one list H3-List to simulate H3 Oracle. This
list is used to store tuples like(

(r, {σi}i∈(ω̄∪Ω′)/j , σj), β, H3(r, {σi}i∈(ω̄∪Ω′)/j , σj)
)
.

In this type of tuples, the first tuple (r, {σi}i∈(ω̄∪Ω′)/j , σj) includes an element
in Z∗

p and some other elements in G1. The second element β is a random number
in Z∗

p. The last element H3(r, {σi}i∈(ω̄∪Ω′)/j , σj) is a random element selected
from G1.

Part of the records in this H3-List corresponding to the queries which are
queried by the adversary A. We will discuss this situation soon. The other part
of the records in this H3-List corresponding to the queries which are conducted
by the simulator B when B responds to the Sign queries. We will postpone to
discuss this situation in the Sign Queries.

Upon receiving the k-th H3 hash query which is conducted by the adver-
sary A with respect to a tuple (r, {σi}i∈(ω̄∪Ω′)/j , σj)k, if this tuple is not in-
cluded in this H3-List, B randomly selects a number βk ∈ Z∗

q and returns

H3((r, {σi}i∈(ω̄∪Ω′)/j , σj)k) = gβk as the H3 hash value of this tuple. B records

((r, {σi}i∈(ω̄∪Ω′)/j , σj)k, βk, g
βk) in thisH3-List. If the tuple is already in a record

in this H3-List, B only returns the corresponding H3((r, {σi}i∈(ω̄∪Ω′)/j , σj)k) in
the record as the H3 hash value.

Extract Queries: A can make requests for private keys of attribute set ω
such that |ω̄ ∩ ω| < t. First define three sets Γ, Γ ′, S in the following manner:
Γ = (ω ∩ ω̄) ∪Ω′, Γ ′ such that Γ ⊆ Γ ′ ⊆ S and |Γ ′| = d− 1, and S = Γ ′ ∪ {0}.

Similar to the case in the normal scheme, B should randomly choose a (d− 1)
degree polynomial q(z) such that q(0) = x. We will show how B simulate private
keys for attribute sets although B does not know exactly the value of x.

For i ∈ Γ ′, B randomly selects two numbers τi, ri ∈ Z∗
p. In this case, B

assumes the value q(i) corresponding to this i of the randomly chosen (d − 1)
degree polynomial q(z) is q(i) = τi. Then, B can compute Di for i ∈ Γ ′ as
follows:

Di = (g
q(i)
2 ·H1(i)

ri , gri) = (gτi2 ·H1(i)
ri , gri)

For i /∈ Γ ′, B looks up the H1-List which is created by H1 Oracle to find
the record about attribute i and get the corresponding αi. B randomly selects a
number r′i ∈ Z∗

p, and let

ri =
Δ0,S(i)

αi
y + r′i

442 K. Wang et al.

We will show how B simulate private keys for attribute i /∈ Γ ′ although B
does not know exactly the value of y. In case of the values q(i) for i ∈ Γ ′ are
determined in the previous stage, B can compute the value q(i) corresponding to
i /∈ Γ ′ of the randomly chosen (d− 1) degree polynomial q(z) by using Lagrange
interpolation as

q(i) =
∑
j∈Γ ′

Δj,S(i) · q(j) +Δ0,S(i) · q(0)

in which q(0) = x. Then, B can compute Di for i /∈ Γ ′ as follows:

Di = (g
q(i)
2 ·H1(i)

ri , gri)

= (g
∑

j∈Γ ′ Δj,S(i)·q(j)
2 · (g−αi

1)r
′
i , g

Δ0,S(i)

αi
2 · gr

′
i)

although B does not know exactly the value of x and y.
B returns Di for each i ∈ (ω ∪Ω) as the private key of ω.

Sign Queries: For a Sign query on message m with respect to an attribute set
ω. If |ω̄∩ω| < t, B can get a simulated private key with respect to ω by querying
the Extract Oracle, and compute a signature on message m with respect to ω
normally.

If |ω̄ ∩ ω| ≥ t, B selects a t-element subset ω′ ⊆ ω̄ ∩ ω and selects randomly
an element j from subset ω̄/ω′, and simulates the signature as follows:

Firstly, B selects a random (d− t)-element subset Ω′ from Ω. Then, B chooses
two random numbers ri and r

′′
i for each i ∈ ω′∪Ω′, and let r′i = ri ·Δi,S(0)+ r′′i .

It is obviously that r′i is still a random number for each i ∈ ω′ ∪ Ω′. B also
chooses random number r′i for each i ∈ ω̄/(ω′ ∪ j). B also chooses two random
values βh, s

′ ∈ Z∗
p and let s = 1

βh
y + s′ which is also a random number because

βh and s′ are randomly chosen. We will show how B simulate a correct signature
although B does not know exactly the value of y.

Firstly, B computes the following parts by using previous parameters as in
the normal scheme:

– Compute v = e(g1, g2);
– Compute f = F1(m)||(F2(F1(m))⊕m);
– Compute r = H2(v) + f ;
– Compute σi = (gri)Δi,S(0) · gr′′

i = gri·Δi,S(0)+r′′
i = gr

′
i for i ∈ ω′ ∪Ω′;

– Compute σi = gr
′
i for i ∈ ω̄/(ω′ ∪ j);

– Compute σj = gs = g
1

βh
y+s′

= g
1

βh
2 · gs′ ;

After this computation, B inserts a record ((r, {σi}i∈(ω̄∪Ω′)/j , σj), βh, g
−βh

1) in
the H3-List. Then, B computes σ0 as follows:

σ0 = gx2 ·

⎡⎣ ∏
i∈(ω̄∪Ω′)/j

H1(i)
r′
i

⎤⎦ ·H1(j)
s ·H3(r, {σi}i∈(ω̄∪Ω′)/j , σj)

s

Attribute-Based Signature with Message Recovery 443

= gx2 ·H3(r, {σi}i∈(ω̄∪Ω′)/j , σj)
s ·

⎡⎣ ∏
i∈(ω̄∪Ω′)/j

H1(i)
r′
i

⎤⎦ ·H1(j)
s

= gx2 · (g
−βh

1)
1

βh
y+s′ ·

⎡⎣ ∏
i∈(ω̄∪Ω′)/j

H1(i)
r′
i

⎤⎦ · (gαj)
1

βh
y+s′

= gx2 · g
−y
1 · g−βhs′

1 ·

⎡⎣ ∏
i∈(ω̄∪Ω′)/j

H1(i)
r′
i

⎤⎦ · (g αj
βh
2 · gαjs

′
)

= g−βhs′
1 · (g

αj
βh
2 · gαjs

′
) ·

⎡⎣ ∏
i∈(ω̄∪Ω′)/j

H1(i)
r′
i

⎤⎦
We will show this simulated σ0 have the same form as in the normal scheme

as follows:

σ0 = gx2 ·

⎡⎣ ∏
i∈(ω̄∪Ω′)/j

H1(i)
r′
i

⎤⎦ · (H1(j) ·H3(r, {σi}i∈(ω̄∪Ω′)/j , σj))
s

= g
∑

i∈ω′∪Ω′ q(i)·Δi,S(0)

2 ·
∏

i∈ω′∪Ω′
H1(i)

r′
i ·

∏
i∈ω̄/(ω′∪j)

H1(i)
r′
i

·(H1(j) ·H3(r, {σi}i∈(ω̄∪Ω′)/j , σj))
s

=
∏

i∈ω′∪Ω′
g
q(i)·Δi,S(0)
2 ·

∏
i∈ω′∪Ω′

H1(i)
ri·Δi,S(0) ·

∏
i∈ω′∪Ω′

H1(i)
r′′
i

·
∏

i∈ω̄/(ω′∪j)

H1(i)
r′
i · (H1(j) ·H3(r, {σi}i∈(ω̄∪Ω′)/j , σj))

s

=
∏

i∈ω′∪Ω′
(g

q(i)
2 ·H1(i)

ri)Δi,S(0) ·
∏

i∈ω′∪Ω′
H1(i)

r′′
i ·

∏
i∈ω̄/(ω′∪j)

H1(i)
r′
i

·(H1(j) ·H3(r, {σi}i∈(ω̄∪Ω′)/j , σj))
s

Compared with a signature generated from the normal scheme, we will find
out that this simulated signature can be regarded as a normal signature which

is generated by a signer who possesses private keys Di = (g
q(i)
2 ·H1(i)

ri , gri) for
attribute i ∈ ω′ ∪ Ω′ in which q(z) is a random (d − 1) degree polynomial such
that q(0) = x. It is worth noting that although r′′i and r′i are not the same form
at the first glance, they are indeed the same form because both of r′′i and r′i are

random numbers. So the two parts
∏

i∈ω′∪Ω′ H1(i)
r′′
i and

∏
i∈ω̄/(ω′∪j)H1(i)

r′
i

can be merged into one part as
∏

i∈(ω̄∪Ω′)/j H1(i)
r′
i in the normal scheme.

Verify: While |ω̄ ∩ ω| < t, the simulated signature on message m with respect
to ω is computed by querying the Extract Oracle to get a simulated private key
with respect to ω normally. It will certainly pass the normal verification process.
While |ω̄ ∩ ω| ≥ t, we can check that the simulated signature can also pass the
normal verification process by straight-forward substitutions.

444 K. Wang et al.

Finally, The adversary outputs a forged signature σ∗ on message m∗ for at-
tribute set ω∗ such that |ω̄ ∩ω∗| ≥ t. It satisfies the verification equation, which
means that

σ∗ = {r∗, gx2 ·

⎡⎣ ∏
i∈(ω̄∪Ω′)/j

H1(i)
r′
i

⎤⎦ ·H1(j)
s ·H3(r

∗, {σ∗
i }i∈(ω̄∪Ω′)/j, σ

∗
j)

s,

{gr
′
i}i∈(ω̄∪Ω′)/j , g

s}.
Then, B can compute

σ∗
0∏

i∈(ω̄∪Ω′)/j(σ
∗
i)

αi · (σ∗
j)

αj · (σ∗
j)

βk
= gxy.

So, B can solve an CDH problem if A is able to forge valid signatures.
If there is no such polynomial-time adversary that can forge a valid attribute-

based signature with a predicate that his attributes do not satisfy, we say that
this attribute-based signature with message recovery scheme is secure against
existential forgery under chosen message attacks. ��

Theorem 3. This attribute-based signature with message recovery scheme is
equipped with the attribute privacy property in the random oracle model.

Proof. Setup: First, a (d − 1) default attribute set from Z∗
p is given as Ω =

{Ω1, Ω2, · · · , Ωd−1} for some predefined integer d. C selects a random generator
g ∈ G1, a random x ∈ Z

∗
p as the master secret key, and set g1 = gx. Next, C

picks a random element g2 ∈ G1. C sends these public parameters params as
well as the master secret key x to adversary A.

Both of the H1 oracle and H3 oracle are the same as described in Theorem 2.

Challenge: The adversary outputs two attribute sets ω∗
0 and ω∗

1 . Both the
adversary A and the challenger C can generate secret keys corresponding to
these two attribute sets as D0

i for i ∈ ω∗
0 ∪Ω and D1

i for i ∈ ω∗
1 ∪Ω respectively.

Then, the adversary outputs a message m∗ and a t-element challenge attribute
subset ω∗ ⊆ ω∗

0∩ω∗
1 . The adversaryA asks the challenger to generate a signature

on messagem∗ with respect to ω∗ from either ω∗
0 or ω∗

1 . The challenger C chooses
a random bit b ∈ {0, 1}, a (d−t)-element subset Ω′ ⊆ Ω, and outputs a signature
σ∗ = {r∗, σ∗

0 , {σ∗
i }i∈(ω̄∪Ω′)/j , σ

∗
j } by running algorithm which is described as the

Sign oracle in Theorem 2 using the secret key Db
i for i ∈ ω∗

b ∪Ω.
As we have mentioned in Theorem 2, part of the signature σ∗

0 can be written as∏
i∈ω∗∪Ω′(g

q(i)
2 ·H1(i)

ri)Δi,S(0) ·
∏

i∈ω∗∪Ω′ H1(i)
r′′
i ·
∏

i∈ω̄/(ω∗∪j)H1(i)
r′
i · (H1(j) ·

H3(r, {σi}i∈(ω̄∪Ω′)/j , σj))
s, σi for i ∈ ω∗∪Ω′ can be written as σi = (gri)Δi,S(0) ·

gr
′′
i = gri·Δi,S(0)+r′′

i = gr
′
i .

So, the challenge signature can be regarded as generated by a signer who

possesses private keys Di = (g
q(i)
2 · H1(i)

ri , gri) for attributes i ∈ ω∗ ∪ Ω′ in
which q(z) is a random (d − 1) degree polynomial such that q(0) = x. Thus, if

Attribute-Based Signature with Message Recovery 445

this challenge signature is generated by using the secret key D0
i for i ∈ ω∗

0 ∪Ω, it
can also be generated by using the secret key D1

i for i ∈ ω∗
1 ∪Ω since the secret

key D1
i for i ∈ ω∗

1 ∪ Ω also satisfy the situation mentioned above. Similarly, if
this challenge signature is generated by using the secret key D1

i for i ∈ ω∗
1 ∪Ω,

it can also be generated by using the secret key D0
i for i ∈ ω∗

0 ∪Ω.
Therefore, even the adversary has access to the master secret key and has

unbounded computation ability, he cannot distinguish between two signers which
one generates a valid signature of a message with a predicate such that both of
their attributes satisfy the predicate. ��

5 Extended Scheme

In order to deal with messages which are larger than k2, we can extend the
previous scheme as follows.

Setup: The Setup algorithm is same as in the previous scheme.

Extract: The Extract algorithm is also same as in the previous scheme.

Sign: Suppose one has private key for the attribute set ω. To sign a message m
which length is larger than k2 with predicate Υt,ω̄(·), namely, to prove owning
at least t attributes among an n-element attribute set ω̄, he selects a t-element
subset ω′ ⊆ ω ∩ ω̄ and selects randomly an element j from subset ω̄/ω′, and
proceeds as follows:

– First, separate the messagem into two partsm = m1||m2, and let the length
of m1 be k2.

– Select a default attribute subset Ω′ ⊆ Ω with |Ω′| = d − t and choose
(n + d − t − 1) random values r′i ∈ Z∗

p for i ∈ (ω̄/j) ∪ Ω′, choose a random
value s ∈ Z∗

p;
– Compute v = e(g1, g2);
– Compute f = F1(m1)||(F2(F1(m1))⊕m1);
– Compute r = H2(v) + f ;
– Compute c = H2(r,m2);

– Compute σi = d
Δi,S(0)
i1 · gr′

i for i ∈ ω′ ∪Ω′;
– Compute σi = gr

′
i for i ∈ ω̄/(ω′ ∪ j);

– Compute σj = gs;

– Compute σ0 =
[∏

i∈ω′∪Ω′ d
Δi,S(0)
i0

]
·
[∏

i∈(ω̄∪Ω′)/j H1(i)
r′
i

]
·
(
H1(j) ·H3(c, {σi}i∈(ω̄∪Ω′)/j , σj)

)s
;

– Finally, output the signature σ = (m2, r, σ0, {σi}i∈(ω̄∪Ω′)/j , σj).

Verify: To verify the validity of a signature σ = (m2, r, σ0, {σi}i∈(ω̄∪Ω′)/j , σj)
with threshold t for attributes ω̄, the verifier performs the following verification
procedure to recover the message m1:

e (g, σ0)∏
i∈ω̄∪Ω′ e (H1(i), σi) · e

(
σj , H3

(
H2(r,m2), {σi}i∈(ω̄∪Ω′)/j , σj

)) = v

r −H2(v) = f.

446 K. Wang et al.

Then, m1 = [f]k2 ⊕ F2([f]
k1) is recovered from f . The verifier checks whether

the equation [f]k1 = F1(m1) holds. If it holds, output accept. Then the verifier
combines m = m1||m2 and the message m is recovered. Otherwise, output reject
to denote the signature is not valid.

In the above computation, the subscript k2 of f denotes the least significant k2
bits of f , and the superscript k1 of f denotes the most significant k1 bits of f .

Theorem 4. This extended attribute-based signature with message recovery sche-
me is correct.

Proof. Correctness can be verified similarly with the above attribute-based sig-
nature with message recovery scheme in Theorem 1. ��

Theorem 5. This extended attribute-based signature with message recovery sche-
me is existentially unforgeable under chosen message attacks in the random oracle
model, under the assumption that the CDH problem is hard.

Proof. This proof is similar to the proof of Theorem 2 and therefore it is omitted.
��

Theorem 6. This extended attribute-based signature with message recovery sche-
me is equipped with the attribute privacy property in the random oracle model.

Proof. This proof is similar to the proof of Theorem 3 and therefore it is omitted.
��

6 Conclusion

We proposed a new notion of attribute-based signature with message recov-
ery, and presented two concrete attribute-based signature with message recov-
ery schemes based on bilinear pairing that support flexible threshold predicates.
The first scheme allows the signer to embed the original message in the sig-
nature without the need of sending the original message to the verifier, while
keeping the same signature size. The original message can be recovered from the
signature. Therefore, our first scheme minimizes the total length of the origi-
nal message and the appended signature. The second scheme is extended from
the first scheme in order to deal with large messages. These schemes have been
proven to be existentially unforgeable against adaptively chosen message attacks
in the random oracle model under the assumption that the CDH problem is hard.
These schemes have also been proven to have the attribute privacy property.

References

1. Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-
attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013)

Attribute-Based Signature with Message Recovery 447

2. Khader, D.: Attribute based group signature with revocation. IACR Cryptology
ePrint Archive 2007, 241 (2007)

3. Khader, D.: Attribute based group signatures. IACR Cryptology ePrint
Archive 2007, 159 (2007)

4. Khader, D.: Authenticating with attributes. IACR Cryptology ePrint Archive 2008,
31 (2008)

5. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pp. 60–69. ACM (2010)

6. Li, J., Kim, K.: Attribute-based ring signatures. IACR Cryptology ePrint
Archive 2008, 394 (2008)

7. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: Achieving
attribute-privacy and collusion-resistance. IACR Cryptology ePrint Archive 2008,
328 (2008)

8. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Topics
in Cryptology–CT-RSA 2011, pp. 376–392. Springer (2011)

9. Nyberg, K., Rueppel, R.: A new signature scheme based on the dsa giving message
recovery. In: Proceedings of the 1st ACM Conference on Computer and Commu-
nications Security, pp. 58–61. ACM (1993)

10. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and
their application to anonymous credential systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

11. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

12. Shaniqng, G., Yingpei, Z.: Attribute-based signature scheme. In: International
Conference on Information Security and Assurance, ISA 2008, pp. 509–511. IEEE
(2008)

13. Yang, P., Cao, Z., Dong, X.: Fuzzy identity based signature. In: IACR Cryptology
ePrint Archive, p. 2 (2008)

14. Zhang, F., Susilo, W., Mu, Y.: Identity-based partial message recovery signatures
(or how to shorten id-based signatures). In: Patrick, A.S., Yung, M. (eds.) FC 2005.
LNCS, vol. 3570, pp. 45–56. Springer, Heidelberg (2005)

An Adaptively CCA-Secure Ciphertext-Policy

Attribute-Based Proxy Re-Encryption for Cloud
Data Sharing

Kaitai Liang1, Man Ho Au2, Willy Susilo2,�, Duncan S. Wong1,��,
Guomin Yang2, and Yong Yu2,� � �

1 Department of Computer Science, City University of Hong Kong, China
kliang4-c@my.cityu.edu.hk, duncan@cityu.edu.hk

2 Centre for Computer and Information Security Research, School of Computer
Science and Software Engineering, University of Wollongong, Wollongong, NSW 2522,

Australia
{aau,wsusilo,gyang,yyong}@uow.edu.au

Abstract. A Ciphertext-Policy Attribute-Based Proxy Re-Encryption
(CP-ABPRE) employs the PRE technology in the attribute-based en-
cryption cryptographic setting, in which the proxy is allowed to convert
an encryption under an access policy to another encryption under a new
access policy. CP-ABPRE is applicable to many real world applications,
such as network data sharing. The existing CP-ABPRE systems, how-
ever, leave how to achieve adaptive CCA security as an interesting open
problem. This paper, for the first time, proposes a new CP-ABPRE to
tackle the problem by integrating the dual system encryption technology
with selective proof technique. The new scheme supports any monotonic
access structures. Although our scheme is built in the composite order
bilinear group, it is proven adaptively CCA secure in the standard model
without jeopardizing the expressiveness of access policy.

Keywords: Ciphertext-Policy Attribute-Based Encryption, Ciphertext-
Policy Attribute-Based Proxy Re-Encryption, Adaptive Chosen-Cipher
text Security.

1 Introduction

Attribute-Based Encryption (ABE) [10,21], which is a generalization of Pub-
lic Key Encryption (PKE), provides flexibility of data sharing for system users
such that a data encryptor is allowed to specify some descriptive values x for an
encryption and thus, the encryption can be decrypted successfully by a secret

� W. Susilo is partially supported by the Australian Research Council Linkage
Project LP120200052.

�� D. S. Wong is supported by a grant from the RGC of the HKSAR, China (Project
No. CityU 121512).

� � � Y. Yu is supported by the Vice Chancellor’s research fellowship of University of
Wollongong and the NSFC of China under Grant 61003232.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 448–461, 2014.
c© Springer International Publishing Switzerland 2014

An Adaptively CCA-Secure Ciphertext-Policy 449

key associated with some descriptive values y matching x. ABE has many ap-
plications, such as audit log applications [10]. It usually has two classifications:
Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In a KP-
ABE system, ciphertexts are associated with attribute sets and secret keys are
associated with access policies. However, CP-ABE is complementary. This paper
deals with the case of CP-ABE.

In a cloud storage system, a user, say Alice, may encrypt a data under a spec-
ified access policy such that other system users satisfying this policy can access
the data. She might encrypt her profile under a policy AP1 = (“Department :
Human Resource” and “Position : Team manager or above”) before upload-
ing to the cloud. The system users satisfying AP1 then can download the cipher-
text from the cloud, and next access the data by using the corresponding secret
keys. This data sharing pattern, nonetheless, does not scale well when the policy
needs to be updated frequently. Suppose the policy above is updated as AP2 =
(“Department : Human Resource or Materials Storage” and “Position :
Team manager only”), Alice then should generate a new encryption accord-
ingly. If Alice does not back up the data locally, she needs to download the
ciphertext so as to recovers the data first. If the access policy is updated N
times, Alice needs to construct N new encryptions. This might not be desir-
able as Alice’s workload is linearly in N . Besides, if she is off-line or using some
resource-limited devices which cannot afford such heavy computational cost, the
data sharing might not be handled effectively.

To efficiently share data, we may leverage Proxy Re-Encryption (PRE). PRE
is introduced by Mambo and Okamoto [19], and further studied by Blaze, Bleumer
and Strauss [5]. It is an interesting extension of PKE providing the delegation
of decryption rights. Specifically, it allows a semi-trusted proxy to transform a
ciphertext intended for Alice into another ciphertext of the same plaintext in-
tended for another system user, say Bob, without revealing knowledge of the
secret keys and the underlying plaintext. It is applicable to many network ap-
plications, such as secure distributed files systems [1] and email forwarding [5].

To integrate PRE in the ABE cryptographic setting, Liang et al. [16] defined
Ciphertext-Policy Attribute-Based PRE (CP-ABPRE), and proposed a concrete
CP-ABPRE system enabling proxy to transform an encryption under a specified
access policy into another encryption under a new access policy. We refer to this
special functionality as attribute-based re-encryption. By using the technology
of CP-ABPRE, Alice can share the data more efficiently. She first generates a
re-encryption key from her own attribute set to a new access policy AP2, and
next uploads the key to the cloud such that the cloud server then can convert
the original encryption under AP1 to a new encryption under AP2. The server,
nevertheless, cannot learn the data during the conversion of cipehrtexts.

Although CP-ABPRE explores the applications of PRE, they leave us inter-
esting open problems. All the existing CP-ABPRE schemes in the literature are
secure against selective chosen-plaintext attacks (selective CPA) only except [15]
which is selective chosen-ciphertext attacks (selective CCA) secure. We state
that CPA security might not be sufficient enough in an open network as it only

450 K. Liang et al.

guarantees the secrecy of data which only allows an encryption to be secure
against “static” adversaries. Nevertheless, in a real network scenario, there might
exist “active” adversaries trying to tamper an encryption in transit and next ob-
serving its decryption so as to obtain useful information related to the underlying
data. Accordingly, a CP-ABPRE system being secure against CCA is needed as
CCA security not only helps the system preclude the above subtle attacks but
also enables the system to be further developed and next securely “embedded”
to a large protocol/system implementing in arbitrary network environments. In
addition, a CP-ABPRE system with selective security, which limits an adver-
sary to choose an attack target before playing security game, might not scale in
practice as well. This is so because a realistic adversary can adaptively choose
his attack target upon attacking a cryptosystem. Therefore, an adaptively CCA
secure CP-ABPRE scheme is needed in most of practical network applications.

The expressiveness of access policy is another crucial factor for a practical CP-
ABPRE system. An access policy should be embedded with AND, OR gates,
and even more meaningful expression. For instance, Alice might choose to share
her profile with some officials of the same company under the access policy
AP3 = (“Department : allexcept Human
Resource” and “Position : Project head or team manager”). Nevertheless,
most of the existing CP-ABPRE schemes only support access policy with AND
gates operating over attributes. This limits their practical use. Thus it is desirable
to propose a CP-ABPRE system supporting more expressive access policy.

1.1 Our Contributions

This work first formalizes the notion of adaptive CCA security for CP-ABPRE
systems. Compared to the selective CPA security notion, our new notion enables
an adversary to commit to a target access policy in the challenge phase, and
to gain access to re-encryption and decryption oracles additionally. To tackle
the open problems mentioned previously, this paper proposes a novel single-hop
unidirectional CP-ABPRE system. In addition, the new system supports any
monotonic access policy such that system users are allowed to fulfill more flexible
delegation of decryption rights. Despite our scheme is built in the composite
order bilinear group, it is proven adaptively CCA secure in the standard model
by integrating the dual system encryption technology with the selective proof
technique.

1.2 Related Work

Below we review some ABE systems related to this work. Following the intro-
duction of ABE due to Sahai and Waters [21], Goyal et al. [10] proposed the
first KP-ABE system. Later, Bethencourt, Sahai and Waters [4] defined a com-
plementary notion, i.e. CP-ABE. After that there are some CP-ABE schemes
(e.g. [7,9,22,2]) that have been proposed. Recently, Waters [23] proposed a deter-
ministic finite automata-based functional encryption where policy is expressed
by arbitrary-size regular language.

An Adaptively CCA-Secure Ciphertext-Policy 451

The aforementioned schemes, nonetheless, are only selective secure (except
for [4] being proven in the generic group model). To convert one of the CP-ABE
systems [22] to achieve fully security, Lewko et al. [13] leveraged the dual system
encryption technology. But their conversion yields some loss of expressiveness.
Later, Lewko and Waters [14] introduced a new method to guarantee the ex-
pressiveness by employing the selective proof technique into the dual system
encryption technology. Inspired by [14,22], this paper focuses on constructing
the first CP-ABPRE with adaptive CCA security in the standard model.

Decryption rights delegation is introduced in [19]. Later, Blaze, Bleumer and
Strauss [5] defined PRE. PRE can be classified as: unidirectional and bidirec-
tional PRE, and single-hop and multi-hop PRE [1]. This present work deals with
the single-hop unidirectional case. Since its introduction many PRE systems have
been proposed, e.g., [1,6,12,17,11,24,25,26].

To employ PRE in the context of ABE, Liang et al. [16] defined CP-ABPRE,
and further extended [7] to support proxy re-encryption. Their work provides
AND gates over positive and negative attributes. Luo et al. [18] proposed an
extension of [16] supporting policy with AND gates on multi-valued and negative
attributes. To combine ABE with IBE by using PRE technique, Mizuno and
Doi [20] proposed a special type of CP-ABPRE scheme where encryptions in
the form of ABE can be converted to the ones being decrypted in the context of
IBE. The previously introduced systems, however, are selectively CPA secure,
and their policies are lack of expressiveness due to supporting AND gates over
attributes only. Thus an adaptively CCA-secure CP-ABPRE scheme with more
expressive access policy remains open. This paper deals with this problem.

Below we compare this work with some CP-ABPRE schemes. We let p be
the number of attributes used in an access policy, a be the number of attributes
embedded in a user’s secret key and u be the total number of attributes used in
the system. In the worst case, an access policy and a user’s secret key might be
embedded with all system attributes, that is p = a = u. Thus we have p, a ≤ u.
We use ce and cp to denote the computational cost of an exponentiation and a
bilinear pairing. To the best of our knowledge, our scheme is the first to achieve
adaptive CCA security, and to support any monotonic access formula.

Table 1. Comparison with [16,18,20]

Schemes Public/Secret Ciphertext Re-Encryption Adaptive CCA
Key Size Size Cost Security Security

[16] O(u)/O(u) O(u) O(u) · cp � �

[18] O(u2)/O(u) O(u) O(u) · cp � �

[20] O(u)/O(u) O(u) O(1) · ce +O(u) · cp � �

Ours O(u)/O(a) O(p) O(a) · ce +O(a) · cp � �

452 K. Liang et al.

2 Definitions and Security Models

We review the definition of CP-ABPRE systems, and next define the adaptive
CCA security notion. Due to limited space we refer the reader to [22] for the
details of access structure and Linear Secret Sharing Schemes.

2.1 Definition of CP-ABPRE

We review the definition of single-hop unidirectional CP-ABPRE [16,18].

Definition 1. A Single-Hop Unidirectional Ciphertext-Policy Attribute-Based
Proxy Re-Encryption (CP-ABPRE) scheme consists of the following algorithms:

1. (param,msk) ← Setup(1k,U): on input a security parameter k ∈ N and
an attribute universe U , output the public parameters param and a master
secret key msk.

2. skS ← KeyGen(param,msk, S): on input param, msk and an attribute set
S describing the key, output a secret key skS for S.

3. rkS→(A′,ρ′) ← ReKeyGen(param, skS, (A
′, ρ′)): on input param, skS , and

an access structure (A′, ρ′) for attributes over U , output a re-encryption
key rkS→(A′,ρ′) which can be used to transform a ciphertext under (A, ρ)
to another ciphertext under (A′, ρ′), where S |= (A, ρ), S � (A′, ρ′), (A, ρ)
and (A′, ρ′) are two disjoint access structures. Note by two disjoint access
structures we mean for any attribute x satisfies (A, ρ), x does not satisfy
(A′, ρ′).

4. C ← Encrypt(param, (A, ρ),m): on input param, (A, ρ), and a message
m ∈ {0, 1}k, output an original ciphertext C which can be further re-encrypted.
Note (A, ρ) is implicitly included in the ciphertext.

5. CR ← ReEnc(param, rkS→(A′,ρ′), C): on input param, rkS→(A′,ρ′), and a C
under (A, ρ), output a re-encrypted ciphertext CR under (A′, ρ′) if S |= (A, ρ)
or a symbol ⊥ indicating either C is invalid or S � (A, ρ). Note CR cannot
be further re-encrypted.

6. m ← Dec(param, skS , C): on input param, skS, and a C under (A, ρ),
output a message m if S |= (A, ρ) or a symbol ⊥ indicating either C is
invalid or S � (A, ρ).

7. m← DecR(param, skS , CR): on input param, skS , and a CR under (A, ρ),
output a message m if S |= (A, ρ) or a symbol ⊥ indicating either CR is
invalid or S � (M,ρ).

2.2 Security Models

Definition 2. A single-hop unidirectional CP-ABPRE scheme is IND-CCA se-
cure at original ciphertext if no Probabilistic Polynomial Time (PPT) adversary
A can win the game below with non-negligible advantage. Below C is the game
challenger.

1. Setup. C runs Setup(1k,U) and sends param to A.

An Adaptively CCA-Secure Ciphertext-Policy 453

2. Phase 1.

(a) Secret key extraction oracle Osk(S): on input an attribute set S, C runs
skS ← KeyGen(param, msk, S) and returns skS to A.

(b) Re-encryption key extraction oracle Ork(S, (A
′, ρ′)): on input S, and

an access structure (A′, ρ′), C outputs rkS→(A′,ρ′) ← ReKeyGen
(param, skS , (A

′, ρ′)), where skS ← KeyGen(param, msk, S).

(c) Re-encryption oracle Ore(S, (A
′, ρ′), C): on input S, (A′, ρ′), an original

ciphertext C under (A, ρ), C outputs CR ← ReEnc(param, rkS→(A′,ρ′),
C), where rkS→(A′,ρ′) ← ReKeyGen(param, skS, (A′, ρ′)), skS ←
KeyGen(param,msk, S) and S |= (A, ρ).

(d) Original ciphertext decryption oracle Odec(S,C): on input S and a C
under (A, ρ), C returns m ← Dec(param, skS, C) to A, where skS ←
KeyGen(param, msk, S) and S |= (A, ρ).

(e) Re-encrypted ciphertext decryption oracle OdecR(S, CR): on input S and
a CR under (A, ρ), C returnsm← DecR(param, skS, CR), where skS ←
KeyGen(param, msk, S) and S |= (A, ρ).

If ciphertexts issued to Ore, Odec and OdecR are invalid, outputs ⊥.
3. Challenge. A outputs two equal length messages m0 and m1, and a chal-

lenge access structure (A∗, ρ∗) to C. If the following queries

Osk(S) for any S |= (A∗, ρ∗); and

Ork(S, (A
′, ρ′)) for any S |= (A∗, ρ∗),Osk(S

′) for any S′ |= (A′, ρ′)

are never made, C returns C∗ = Encrypt(param, (A∗, ρ∗), mb) to A, where
b ∈R {0, 1}.

4. Phase 2. A continues making queries except the followings:

(a) Osk(S) for any S |= (A∗, ρ∗);

(b) Ork(S, (A
′, ρ′)) for any S |= (A∗, ρ∗), and Osk(S

′) for any S′ |= (A′, ρ′);

(c) Ore(S, (A
′, ρ′), C∗) for any S |= (A∗, ρ∗), and Osk(S

′) for any S′ |=
(A′, ρ′);

(d) Odec(S,C
∗) for any S |= (A∗, ρ∗); and

(e) OdecR(S,CR) for any CR under (A, ρ), S |= (A, ρ), where CR is a deriva-
tive of C∗. As of [6], the derivative of C∗ is defined as:

i. C∗ is a derivative of itself.
ii. If A has issued a re-encryption key query on (S∗, (A′, ρ′)) to get

rkS∗→(A′,ρ′), obtained CR ← ReEnc(param, rkS∗→(A′,ρ′), C
∗) such

that DecR(param, skS′ , CR) ∈ {m0,m1}, then CR is a derivative of
C∗, where S∗ |= (A∗, ρ∗) and S′ |= (A′, ρ′).

iii. If A has issued a re-encryption query on (S, (A′, ρ′), C∗) and ob-
tained the re-encrypted ciphertext CR, then CR is a derivative of
C∗, where S |= (A∗, ρ∗).

5. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, A wins.

A’s advantage is defined as AdvIND-CCA-Or
CP-ABPRE,A(1

k,U) = |Pr[b′ = b]− 1
2 |.

454 K. Liang et al.

Definition 3. A single-hop unidirectional CP-ABPRE scheme is IND-CCA se-
cure at re-encrypted ciphertext if the advantage AdvIND-CCA-Re

CP-ABPRE,A(1
k, U) is neg-

ligible for any PPT adversary A in the following experiment. Set O = {Osk,
Ork, Odec, OdecR}.

AdvIND-CCA-Re
CP-ABPRE,A(1

k,U) = |Pr[b′ = b : (param,msk)← Setup(1k,U);
(m0,m1, (A

∗, ρ∗), (A, ρ))← AO(param); b ∈R {0, 1};

C∗
R ← ReEnc(param, rkS→(A∗,ρ∗), C); b′ ← AO(C∗

R)]−
1

2
|,

where (A, ρ) and (A∗, ρ∗) are disjoint, (A∗, ρ∗) is the challenge access structure,
S |= (A, ρ), rkS→(A∗,ρ∗) ← ReKeyGen(param, skS, (A

∗, ρ∗)), C
← Encrypt(param, (A, ρ), mb), Osk,Ork,Odec,OdecR are the oracles defined in
Definition 2. However, these oracles are restricted by the following constraints.
For Osk, any query S |= (A∗, ρ∗) is rejected. There is no restriction to Ork and
Odec (note invalid ciphertexts issued to Odec are rejected). If A queries to OdecR

on either (S,C∗
R) in which S |= (A∗, ρ∗) or any invalid re-encrypted ciphertext,

the oracle outputs ⊥.

Remarks. Definition 3 implies collusion resistance. If A can compromise skS∗

from either rkS∗→(A,ρ) or rkS→(A∗,ρ∗), A wins the game with non-negligible
probability, where S |= (A, ρ), S∗ |= (A∗, ρ∗) and skS is given.

3 An Adaptively CCA-Secure CP-ABPRE

3.1 Construction

Due to limited space we review composite order bilinear groups, complexity
assumptions, and one-time symmetric encryption in Appendix A.

1. Setup(1k,U). Run (N,G,GT , e) ← G(1k), where N = p1p2p3 is the or-
der of group G and p1, p2, p3 are distinct primes. Let Gpi denote the sub-
group of order pi in group G. Choose a, α, κ, β, ε ∈R ZN , g, ĝ1 ∈R Gp1 ,
two Target Collision Resistance hash functions [8] TCR1 : GT → ZN ,

TCR2 : GT → {0, 1}poly(1k), a CCA-secure one-time symmetric encryp-
tion system SYM and a strongly existential unforgeable one-time signature
system [3] OTS. For each attribute i ∈ U , choose hi ∈R ZN . The param is
(N, g, ĝ1, g

a, gκ, gβ, gε, e(g, g)α, ∀i ∈ U Hi = ghi , TCR1, TCR2, SYM,OTS),
and the msk is (gα, g3), where g3 is a generator of Gp3 .

2. KeyGen(param,msk, S). Choose t, u ∈R ZN , R,R
′, R′′, {Ri}i∈S ∈R Gp3 ,

and set the secret key skS as

(S,K = gαgatgκuR,K ′ = guR′,K ′′ = gtR′′, ∀i ∈ S Ki = Ht
iRi).

3. Encrypt(param, (A, ρ),m). Given an LSSS access structure (A, ρ) and a
message m ∈ GT in which A is an l × n matrix and ρ is a map from each
row Aj to an attribute ρ(j),

An Adaptively CCA-Secure Ciphertext-Policy 455

(a) Choose a random vector v = (s, v2, ..., vn) ∈R Zn
N .

(b) For each Aj , choose rj ∈R ZN , run (ssk, svk)← OTS.KeyGen(1k) and
set

B0 = m · e(g, g)αs, B1 = gs, B2 = (gκ)s, B3 = (ĝsvk1 gβ)s, B4 = (gε)s,

∀j ∈ [1, l](Cj = (ga)AjvHρ(j)
−rj , Dj = grj),

E = OTS.Sign(ssk, (B0, B1, B3, ∀j ∈ [1, l] (Cj , Dj))).

(c) Output C = (svk, B0, B1, B2, B3, B4, ∀j ∈ [1, l] (Cj , Dj), E). Note
{ρ(j)|1 ≤ j ≤ l} are the attributes used in (A, ρ).

4. ReKeyGen(param, skS , (A
′, ρ′)). Given skS = (S,K,K ′,K ′′, ∀i ∈ S Ki)

and an LSSS access structure (A′, ρ′),
(a) Choose θ1, θ2, θ3 ∈R ZN , δ ∈R GT , set rk1 = (Kgκθ1gaθ2)TCR1(δ)gεθ3 ,

rk2 = (K ′gθ1)TCR1(δ), rk3 = (K ′′gθ2)TCR1(δ), rk4 = gθ3 , ∀i ∈ S rk5,i =

(KiH
θ2
i)TCR1(δ).

(b) Choose a random vector v(rk) = (s(rk), v
(rk)
2 , ..., v

(rk)
n) ∈R Zn

N . For

each row A′
j of A′, choose r

(rk)
j ∈R ZN , run (ssk(rk), svk(rk)) ←

OTS.KeyGen(1k) and set rk6 as

svk(rk), B
(rk)
0 = δ · e(g, g)αs(rk)

, B
(rk)
1 = gs

(rk)

, B
(rk)
2 = (gκ)s

(rk)

,

B
(rk)
3 = (ĝsvk

(rk)

1 gβ)s
(rk)

, ∀j ∈ [1, l] (C
(rk)
j = (ga)A

′
jv

(rk)

Hρ′(j)
−r

(rk)
j ,

D
(rk)
j = gr

(rk)
j), E(rk) = OTS.Sign(ssk(rk), (B

(rk)
0 , B

(rk)
1 , B

(rk)
3 ,

∀j ∈ [1, l] (C
(rk)
j , D

(rk)
j))).

(c) Output rkS→(A′,ρ′) = (rk1, rk2, rk3, rk4, ∀i ∈ S rk5,i, rk6).
5. ReEnc(param, rkS→(A′,ρ′), C). Parse the original ciphertext C under (A, ρ)

as (svk, B0, B1, B2, B3, B4, ∀j ∈ [1, l] (Cj , Dj), E), and the re-encryption
key rkS→(A′,ρ′) as (rk1, rk2, rk3, rk4, ∀i ∈ S rk5,i, rk6).
(a) Check the validity of the original ciphertext C as

e(B1, g
κ)

?
= e(B2, g), e(B1, ĝ

svk
1 gβ)

?
= e(B3, g), e(B1, g

ε)
?
= e(B4, g),

e(
∏

ρ(j)∈S

C
wj

j , g)
?
= e(B1, g

a) ·
∏

ρ(j)∈S

(e(D−1
j , H

wj

ρ(j))), S
?

|= (A, ρ),

OTS.V erify(svk, (E, (B0, B1, B3, ∀j ∈ [1, l] (Cj , Dj))))
?
= 1, (1)

where wj are chosen by the proxy so that
∑

ρ(j)∈S wjAj = (1, 0, ..., 0).

If Eq. (1) does not hold, output ⊥. Otherwise, proceed.

(b) Compute F = e(B1,rk1)e(B2,rk2)
−1e(B4,rk4)

−1

(
∏

ρ(j)∈S (e(Cj ,rk3)e(Dj ,rk5,j))
wj)

, run σ1 = SYM.Enc(

TCR2(key), G), where G = (C||rk6||F) and key ∈R GT .

(c) Choose a random vector v(re) = (s(re), v
(re)
2 , ..., v

(re)
n) ∈R Zn

N . For

each row A′
j of A′, choose r

(re)
j ∈R ZN , run (ssk(re), svk(re)) ←

456 K. Liang et al.

OTS.KeyGen(1k) and set σ2 as

svk(re), B
(re)
0 = key · e(g, g)αs(re) , B

(re)
1 = gs

(re)

, B
(re)
2 = (gκ)s

(re)

,

B
(re)
3 = (ĝsvk

(re)

1 gβ)s
(re)

, ∀j ∈ [1, l] (C
(re)
j = (ga)A

′
jv

(re)

Hρ′(j)
−r

(re)
j ,

D
(re)
j = gr

(re)
j), E(re) = OTS.Sign(ssk(re), (B

(re)
0 , B

(re)
1 , B

(re)
3 ,

∀j ∈ [1, l] (C
(re)
j , D

(re)
j))).

(d) Output CR = (σ1, σ2) under (A
′, ρ′).

6. Dec(param, skS , C). Parse the original ciphertext C under (A, ρ) as (svk,
B0, B1, B2, B3, B4, ∀j ∈ [1, l] (Cj , Dj), E), and the secret key skS as
(S,K,K ′,K ′′, ∀i ∈ S Ki). The decryption algorithm chooses a set of con-
stants wj ∈R ZN such that

∑
ρ(j)∈S wjAj = (1, 0, ..., 0), and next recovers

the message as follows.
(a) If Eq. (1) does not hold, output ⊥. Otherwise, proceed.
(b) Compute e(B1,K)e(B2,K

′)−1/(
∏

ρ(j)∈S(e(Cj ,K
′′)e(Dj ,Kρ(j)))

wj)

= e(g, g)αs, and output the message m = B0/e(g, g)
αs.

7. DecR(param, skS , CR). Parse the re-encrypted ciphertext CR under (A′, ρ′)
as (σ1, σ2), and the secret key skS as (S,K,K ′,K ′′, ∀i ∈ S Ki).
(a) Check the validity of σ2 as

e(B
(re)
1 , gκ)

?
= e(B

(re)
2 , g), e(B

(re)
1 , ĝsvk

(re)

1 gβ)
?
= e(B

(re)
3 , g),

e(
∏

ρ′(j)∈S

(C
(re)
j)w

(re)
j , g)

?
= e(B

(re)
1 , ga) ·

∏
ρ′(j)∈S

(e((D
(re)
j)−1, H

w
(re)
j

ρ′(j))),

OTS.V erify(svk(re), (E(re), (B
(re)
0 , B

(re)
1 , B

(re)
3 ,

∀j ∈ [1, l] (C
(re)
j , D

(re)
j))))

?
= 1, S

?

|= (A′, ρ′), (2)

where w
(re)
j are chosen by the decryptor so that

∑
ρ′(j)∈S w

(re)
j A′

j =

(1, 0, ..., 0). If Eq. (2) does not hold, output ⊥. Otherwise, proceed.

(b) Compute e(B
(re)
1 ,K)e(B

(re)
2 ,K ′)−1/(

∏
ρ′(j)∈S(e(C

(re)
j ,K ′′)e(D

(re)
j ,

Kρ′(j)))
w

(re)
j) = e(g, g)αs(re) , and output key = B

(re)
0 /e(g, g)αs(re) .

(c) Run G = SYM.Dec(TCR2(key), σ1).
(d) Parse G as (C, rk6, F). If either Eq. (1) or the following verification for

rk6 does not hold, output ⊥. Otherwise, proceed.

e(B
(rk)
1 , gκ)

?
= e(B

(rk)
2 , g), e(B

(rk)
1 , ĝsvk

(rk)

1 gβ)
?
= e(B

(rk)
3 , g),

e(
∏

ρ′(j)∈S

(C
(rk)
j)w

(rk)
j , g)

?
= e(B

(rk)
1 , ga) ·

∏
ρ′(j)∈S

(e((D
(rk)
j)−1, H

w
(rk)
j

ρ′(j))),

OTS.V erify(svk(rk), (E(rk), (B
(rk)
0 , B

(rk)
1 , B

(rk)
3 ,

∀j ∈ [1, l] (C
(rk)
j , D

(rk)
j))))

?
= 1, S

?

|= (A′, ρ′), (3)

An Adaptively CCA-Secure Ciphertext-Policy 457

where w
(rk)
j are chosen by the decryptor so that

∑
ρ′(j)∈S w

(rk)
j A′

j =

(1, 0, ..., 0).

(e) Compute e(B
(rk)
1 ,K)e(B

(rk)
2 ,K ′)−1/(

∏
ρ′(j)∈S(e(C

(rk)
j ,K ′′)e(D

(rk)
j ,

Kρ′(j)))
w

(rk)
j) = e(g, g)αs(rk)

, and then B
(rk)
0 /e(g, g)αs(rk)

= δ. Compute

FTCR1(δ)
−1

= e(g, g)αs, and finally output m = B0/e(g, g)
αs.

3.2 Security Analysis

Theorem 1. Suppose Assumption 1, the general subgroup decision assumption,
the three party Diffie-Hellman assumption in a subgroup, and the source q-
parallel BDHE assumption in a subgroup hold, SYM is a CCA-secure one-time
symmetric encryption, OTS is a strongly existential unforgeable one-time signa-
ture, and TCR1, TCR2 are the TCR hash functions, our system is IND-CCA
secure in the standard model.

We prove our scheme by following [14]. Due to limited space, we present our
construction for semi-functional ciphertexts and semi-functional keys in the full
version.

We will prove Theorem 1 in a hybrid argument over a sequence of games. We
let the total number of queries be q = qsk+qrk+qre+qdec, where qsk, qrk, qre, qdec
denote the number of the secret key, re-encryption key, re-encryption and de-
cryption queries, respectively. Gamereal is the first game that is the IND-CCA
security game for CP-ABPRE systems in which the challenge ciphertext (origi-
nal ciphertext/re-encrypted ciphertext) is normal. Here, C will use normal secret
keys to respond secret key extraction queries. Besides, C will first generate normal
secret keys, and next leverage these keys to respond the re-encryption key, re-
encryption and decryption queries, namely, the re-encryption keys, re-encryption
results and decryption results are indirectly computed from the normal secret
keys. Game0 is the second game which is identical to Gamereal except that the
challenge ciphertext is semi-functional.

Hereafter by “keys” (resp. “key”) we mean the secret key(s) (constructed by
C) used to respond the secret key extraction, re-encryption key extraction, re-
encryption and decryption queries. In the following, we will convert the “keys”
to be semi-functional one by one. But for clarity we first turn the “keys” for the
secret key extraction queries, and then convert the “keys” for the re-encryption
key queries, the re-encryption queries and the decryption queries in sequence.
Besides, A issues one query in each of the following games. We define Gamei
as follows, where i ∈ [1, q]. We let jτ ∈ [1, qτ], where τ ∈ {sk, rk, re, dec}. In
Gamejτ we define two sub-games GameNjτ and GameTjτ in which the challenge

ciphertext is semi-functional. In GameNjτ the first (j − 1)τ “keys” are semi-
functional, the jτ -th “key” is nominal semi-functional, and the rest of “keys”
are normal. In GameTjτ the first (j − 1)τ “keys” are semi-functional, the jτ -th
“key” is temporary semi-functional, and the remaining “keys” are normal.

To transform Game(j−1)τ (where jτ -th “key” is normal) to Gamejτ (where
jτ -th “key” is semi-functional) , we first convert Game(j−1)τ to GameNjτ , then

458 K. Liang et al.

to GameTjτ , and finally to Gamejτ . To get from GameNjτ to GameTjτ , we treat
the simulations for the queries of Phase 1 and that of Phase 2 differently: the
former is based on the three party Diffie-Hellman assumption, and the latter is
based on the source group q-parallel BDHE assumption. In Gameq = Gameqdec
all “keys” are semi-functional, and the challenge ciphertext is semi-functional for
one of the given messages.Gamefinal is the final game where all “keys” are semi-
functional and the challenge ciphertext is semi-functional for a random message,
independent of the two message given by A. We will prove the above games to
be indistinguishable by the following lemmas. Note we implicitly assume SYM
is a CCA-secure one-time symmetric encryption, OTS is a strongly existential
unforgeable one-time signature, TCR1, TCR2 are TCR hash functions and it is
hard to find a non-trivial factor of N (for Lemma 3 and Lemma 4).

Lemma 1. If there is an algorithm A such that GamerealAdv
CP-ABPRE
A −

Game0Adv
CP-ABPRE
A = ϕ, we build an algorithm C that breaks the general

subgroup decision assumption with advantage ϕ.

Lemma 2. If there is an algorithm A such that Game(j−1)τAdv
CP-ABPRE
A −

GameNjτAdv
CP-ABPRE
A = ϕ (for any jτ ∈ [1, qτ]), we build an algorithm C that

breaks the general subgroup decision assumption with advantage ϕ.

Lemma 3. If there is an algorithm A such that GameNjτAdv
CP-ABPRE
A −

GameTjτAdv
CP-ABPRE
A = ϕ for a jτ belonging to the Phase 1 queries, we build an

algorithm C that breaks the three party Diffie-Hellman assumption in a subgroup
with advantage ϕ.

Lemma 4. If there is an algorithm A such that GameNjτAdv
CP-ABPRE
A −

GameTjτAdv
CP-ABPRE
A = ϕ for a jτ belonging to the Phase 2 queries, we build

an algorithm C that breaks the source group q-parallel BDHE assumption in a
subgroup with advantage ϕ.

Lemma 5. If there is an algorithm A such that GameTjτAdv
CP-ABPRE
A −

GamejτAdv
CP-ABPRE
A = ϕ (for any jτ ∈ [1, qτ]), we build an algorithm C that

breaks the general subgroup decision assumption with advantage ϕ.

Lemma 6. If there is an algorithm A such that GameqAdv
CP-ABPRE
A −

GamefinalAdv
CP-ABPRE
A = ϕ, we can build a reduction algorithm C that breaks

Assumption 1 with advantage ϕ.

Due to limited space, we will provide the proofs of the lemmas in the full version
of this paper.

4 Conclusions

This paper defined the IND-CCA security notion for CP-ABPRE systems, and
proposed the first adaptively CCA-secure CP-ABPRE scheme without loss of
expressiveness on access policy by integrating the dual system encryption tech-
nology with selective proof technique. Following the proof framework introduced

An Adaptively CCA-Secure Ciphertext-Policy 459

by Lewko and Waters, our scheme was proved in the standard model. This paper
also motivates interesting open problems, such as, converting our system in the
prime order bilinear group.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

2. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Rafols,
C.: Attribute-based encryption schemes with constant-size ciphertexts. Theoretical
Computer Science 422, 15–38 (2012)

3. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society (2007)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

6. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer
and Communications Security, pp. 185–194. ACM (2007)

7. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Ning, P.,
di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and
Communications Security, pp. 456–465. ACM (2007)

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2004)

9. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimer-
cati, S.D.C. (eds.) ACM Conference on Computer and Communications Security,
pp. 89–98. ACM (2006)

11. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.:
Generic construction of chosen ciphertext secure proxy re-encryption. In: Dunkel-
man, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg
(2012)

12. Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger security
model extended from CT-RSA2012. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 277–292. Springer, Heidelberg (2013)

13. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

460 K. Liang et al.

14. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

15. Liang, K., Fang, L., Susilo, W., Wong, D.S.: A ciphertext-policy attribute-based
proxy re-encryption with chosen-ciphertext security. In: INCoS, pp. 552–559. IEEE
(2013)

16. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with
delegating capabilities. In: Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R.,
Varadharajan, V. (eds.) ASIACCS, pp. 276–286. ACM (2009)

17. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

18. Luo, S., Hu, J., Chen, Z.: Ciphertext policy attribute-based proxy re-encryption. In:
Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 401–415.
Springer, Heidelberg (2010)

19. Mambo, M., Okamoto, E.: Proxy cryptosystems: Delegation of the power to decrypt
ciphertexts. IEICE Transactions E80-A(1), 54–63 (1997)

20. Mizuno, T., Doi, H.: Hybrid proxy re-encryption scheme for attribute-based en-
cryption. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS,
vol. 6151, pp. 288–302. Springer, Heidelberg (2010)

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

22. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

23. Waters,B.:Functional encryption for regular languages. In: Safavi-Naini,R.,Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012)

24. Weng, J., Chen, M., Yang, Y., Deng, R.H., Chen, K., Bao, F.: CCA-secure uni-
directional proxy re-encryption in the adaptive corruption model without random
oracles. Science China Information Sciences 53(3), 593–606 (2010)

25. Weng, J., Yang, Y., Tang, Q., Deng, R.H., Bao, F.: Efficient conditional proxy
re-encryption with chosen-ciphertext security. In: Samarati, P., Yung, M., Mar-
tinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 151–166. Springer,
Heidelberg (2009)

26. Weng, J., Zhao, Y., Hanaoka, G.: On the security of a bidirectional proxy re-
encryption scheme from PKC 2010. In: Catalano, D., Fazio, N., Gennaro, R., Ni-
colosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 284–295. Springer, Heidelberg
(2011)

A Preliminaries

Due to limited space, we refer the reader to [14] for the definition of composite or-
der bilinear groups, assumption 1, the general subgroup decision assumption, the
three party Diffie-Hellman assumption in a subgroup, the source group q-parallel
BDHE assumption in a subgroup. We here review the one-time symmetric en-
cryption system.

An Adaptively CCA-Secure Ciphertext-Policy 461

One-time Symmetric Encryption. A one-time symmetric encryption [8] con-

sists of the following algorithms. Note let KD be the key space {0, 1}poly(1k), and
SYM be a symmetric encryption scheme, where poly(1k) is the fixed polynomial
size (bound) with respect to the security parameter k. The encryption algorithm
SYM.Enc intakes a key K ∈ KD and a message M , outputs a ciphertext C.
The decryption algorithm SYM.Dec intakes K and C, outputs M or a symbol
⊥. The CCA security model for SYM systems is given in [12], we hence omit
the details.

Multi-recipient Encryption

in Heterogeneous Setting

Puwen Wei1,�, Yuliang Zheng2,�, and Wei Wang1,�

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

{pwei,weiwangsdu}@sdu.edu.cn
2 Department of Software and Information Systems,

University of North Carolina at Charlotte, Charlotte, NC 28223, USA
yzheng@uncc.edu

Abstract. This paper presents an efficient method for securely broad-
casting a message to multiple recipients in a heterogeneous environment
where each recipient is allowed to choose his or her preferred secure
encryption scheme independently of other recipients’ choices. Previous
work pertinent to this direction of research, namely multi-recipient en-
cryption scheme (MRES), generally requires all recipients adhere to the
same public key encapsulation mechanism (KEM) for the sake of deliv-
ering promised savings in computation and bandwidth via randomness
reuse. Our work eliminates the requirement of using the same KEM by
all recipients, whereby removing a practical barrier to the adoption of
MRES in real world applications. A second advantage is the method’s
capability to cope with a dynamically changing group of recipients where
old recipients may be deleted and new recipients may be added, while
ensuring the security of messages shared in future. Additional features
of our method include decryption by a sender, anonymity of recipients
and stateful key encapsulation which significantly reduces computational
costs for securely transmitting or sharing new messages. All these at-
tributes would be useful in building applications for secure data sharing
in a cloud computing environment.

Keywords: multi-recipient, public key encryption, sender recovery, KEM,
DEM.

1 Introduction

The primary goal of multi-recipient encryption is for a sender to transmit en-
crypted messages to multiple recipients in an efficient manner in terms of compu-
tation and bandwidth. Although in its broadest form multi-recipient encryption
could be defined to allow multiple messages intended for different recipients to
be included in a single ciphertext, we focus our attention on the case of most
relevance to practical applications, namely single message multi-recipient en-
cryption whereby the same message is transmitted to all intended recipients.

� Corresponding Authors.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 462–480, 2014.
c© Springer International Publishing Switzerland 2014

Multi-recipient Encryption in Heterogeneous Setting 463

A simple construction for a multi-recipient encryption scheme (MRES) could
follow an approach specified in S/MIME [1]: generate a symmetric key k for a
data encapsulation mechanism (DEM), encrypt k for intended recipients followed
by encrypting the message using the DEM under k. It is however unclear whether
the ad hoc construction admits provable security under reasonable assumptions.
A further issue is with efficiency in terms of computational and bandwidth re-
quirements when a full-fledged public key encryption scheme is employed as a
key encapsulation mechanism (KEM) for each recipient.

In pursuit of a more efficient MRES that admits a rigorous security analysis,
Kurosawa [2] proposed the first MRES with a shortened ciphertext. Smart [3]
introduced the notion of mKEM, which can be viewed as an efficient key encap-
sulation technique for multiple recipients. Bellare et al. [4][5] systematically stud-
ied the technique of randomness reuse and provided several generic and efficient
constructions for MRES. Specifically, they introduced a so-called reproducibility
theorem [5] to determine whether a standard encryption scheme permits secure
randomness reuse. This was followed by Barbosa and Farshim [6] who proposed
the notion of weak reproducibility which enabled them to construct a wider class
of efficient (single message) MRESs. Hiwatari et al. [7] considered yet another
approach by way of examining the behavior of a simulator in a security proof.
We also note an earlier effort to design a multi-recipient signcryption scheme in
which a sender and all recipients share the same group parameters [8]. While
(public key) broadcast encryption [9] and multi-recipient encryption share a sim-
ilar goal, researchers differentiate between these two types of security techniques
by noting how public/secret key pairs for recipients are generated. Generally
speaking, with broadcast encryption all recipients’ public/secret key pairs are
generated centrally by a sender or by a trusted key generation center, whereas
with multi-recipient encryption each recipient is allowed to generate his or her
own public/seciret key pair. In theory, multi-recipient encryption offers more
flexibility for recipients than does broadcast encryption. In practice though, the
flexibility is curtailed by previously proposed MRESs which generally require
that all recipients use the same KEM or at the least share some easy-to-handle
mathematical structures such as the same cyclic group. The main reason for
the necessity of imposing limitations on recipients’ choices of public/secret key
pairs is due to the fact that these early MRESs employ randomness reuse as
a tool to achieve savings in computation and bandwidth. We believe that the
limitation as explained above would be a barrier to the adoption of MRES in
some real world applications where each recipient may prefer to choose his or
her own public/secret key pairs due to either organizational policy requirements
or purely personal preferences. As a concrete example, one can imagine that in
a cloud computing environment, recipient 1 might have to use RSA in order to
comply with his company’s security policy, recipient 2 might prefer to use elliptic
curve cryptography (ECC), recipient 3 might be quite happy to use the latest
standard technique for lattice based cryptography, and recipient 4 might want
to stick to her choice of group parameters for ECC that are different from those
for recipient 2.

464 P. Wei, Y. Zheng, and W. Wang

1.1 Our Contributions

The goal of this paper is to address the above problem by designing an efficient
MRES with provable security for a heterogeneous environment where a recipient
is free to choose a secure KEM of his or her liking. Further, our scheme can be
optimized in a stateful manner. That is, state information that includes ran-
domness and other data used to generate a ciphertext can be reused to improve
the efficiency of the multi-recipient encryption scheme. More interestingly, the
scheme can be securely extended to a more general, heterogeneous setting where
some of the recipients may not possess public/secret key pairs but instead share
with the sender some symmetric keys which may be established in an out-of-
band manner or as an outcome of a previous secure communication session. An
added feature of our scheme is decryption of a ciphertext by the sender which
was first advocated in [10,11]. Such a property would be useful in practice when
the sender wishes to recover a message he or she sent earlier from the cipher-
text only without access to the original plaintext or any of the recipients’ secret
decryption keys.

In some applications it may be important to protect the identity of a re-
cipient. We show how to adapt our scheme in such a way that other than the
sender and an intended recipient herself, no-one else can determine whether the
recipient is an intended one or not. For the security model of anonymity, we
mostly follow the idea of [12] on the definition of anonymity for broadcast en-
cryption. However, modifications must be made to reflect a major difference:
unlike broadcast encryption, the public/secret key pairs of our MRES are gen-
erated by different recipients instead of a key generation center. So it provides
a potential opportunity for an adversary to choose public keys of his liking and
compromise anonymity. We define a security model for anonymity in a hetero-
geneous environment and prove that our adapted scheme satisfies the stringent
requirement of anonymity. All these attributes make our scheme a useful tool for
secure data sharing in a heterogeneous environment, e.g., encrypted file system
in a cloud computing environment.

1.2 Overview of Main Techniques

Map t Strings to One String. As mentioned above, researchers constructed
efficient MRES by employing a key encapsulation mechanism (KEM) in lieu
of full-fledged public key encryption. However, previous efficient schemes, e.g.,
[2,3,4,5,6,7] are not applicable in a heterogeneous public key setting. The main
difficulty of employing KEMs is how to map ephemeral keys that are indepen-
dently generated with different recipients’ KEMs, to the same string that is
used as a key in a symmetric data encapsulation mechanism (DEM). We over-
come this difficulty with the help of a universal hash function family with colli-
sion accessibility. Cryptographic applications of a universal hash function fam-
ily with collision accessibility, denoted by UHCA, were discussed extensively in
early work including [13] and explored more recently in [11]. Simply speaking, a

Multi-recipient Encryption in Heterogeneous Setting 465

t-universal hash function family with collision accessibility is one that, given t
initial strings, the hash values of them can be made to collide with one another.
By using UHCA, [11] provides an efficient method for public key encryption
with sender recovery. Extending the work of [11], we find that ephemeral keys
for different recipients’ KEMs can be mapped into the same symmetric key for
a DEM thanks to the collision accessibility of UHCA. However, it turns out that
this straightforward extension has its drawback in that it is not quite scalable
when the number of recipients increases. To address this drawback we consider
alternative structures to a “flat” t-universal hash function family. An example
of such alternatives is derived from the Merkle-Damgard hash chain. Another
example takes the form of a hash tree. These alternative structures enable us to
use a 2-universal hash function family only to realize in an efficient and scalable
manner the “collision” of t ephemeral keys and more importantly, to work out
a security proof using an idea similar to length-extension attack.

Secure State Reuse. Stateful public key cryptosystem introduced in [14] per-
mits the reuse of state information across different encryptions, resulting in a
more efficient technique. The authors of [14] demonstrated stateful versions of
the DHIES and Kurosawa-Desmedt schemes which requires one exponentiation
only to encrypt. A potential problem with the randomness reuse, when applied
to a stateful (single message) MRES as advocated in [14,5], lies in the fact that
the symmetric key for a subsequent DEM is fixed. This issue of fixed DEM keys
can be seen clearly when one applies the above randomness reuse technique to
the construction of stateful MRESs from concrete MRESs in [3,6,7]. With a fixed
DEM key, the resultant stateful MRESs are exposed to potential attacks when
a recipient is removed from the group of intended recipients, as the removed
recipient would still be able to decrypt future ciphertexts as long as the sender
does not reset the state. While resetting the state could prevent such attacks, it
would severely decrease the efficiency of a stateful MRES. To better understand
it we note that all previous MRESs work more or less like this: a symmetric key
(or the seed of the symmetric key) k is chosen at random and then “mapped”1

to t ciphertexts for KEMs, which correspond exactly to t recipients. Since the
state depends on k, it has to be changed once k is changed.

The MRES we propose in this paper can be viewed as the exact opposite of
the above: t random ephemeral keys and their corresponding KEM ciphertexts,
say (k1, c1), (k2, c2), ..., (kt, ct), are generated for all t recipients independently;
they are then “mapped” to the same DEM key k by UHCA. One can see that
if (k1, c1), (k2, c2), ..., (kt, ct) are cached the first time when they are computed,
they can be reused in subsequent encryptions for the same recipients. When a
recipient, say U1, is removed from the group of recipients, the sender can still
reuse the remaining (k2, c2), ..., (kt, ct) to generate a new DEM key k which will
be no longer accessible to the removed recipient. An example is given in Table 1,
which shows that when recipient U1 is removed, the subsequent computational
costs for the current recipients U2,U3,...,Ut in our MRES are less than that of

1 Indeed, k is encrypted as a symmetric key for all recipients or reused as randomness
in a ciphertext for a KEM.

466 P. Wei, Y. Zheng, and W. Wang

the traditional method, e.g, the method specified in S/MIME. If on the other
hand a new recipient Ut+1 is added to the group, the sender needs to generate
a new pair (kt+1, ct+1) for the new recipient only while keeping existing pairs
(k1, c1), (k2, c2), ..., (kt, ct) unchanged. These t + 1 pairs can then be used to
generate a new DEM key k. By recycling (ki, ci)s, computational costs for each
recipient can be reduced to merely two multiplications and one multiplicative
inversion in GF (2256).

Table 1. Efficiency comparison of encryption of our MRES with traditional method.
RSA 2048, ElGamal 1024, ElGamal 2048,..., ECIES 256 are the public key encryption
schemes used by recipient U2,U3,...,Ut, respectively. Inv-GF (2256) denotes the multi-
plicative inversion in GF (2256). Exp-xxx and ECMul-xxx denotes the exponentiation
and the elliptic curve point multiplication on the corresponding groups, respectively.

U2 U3 U4 ... Ut

RSA 2048 ElGamal 1024 ElGamal 2048 ECIES 256

Our MRES 1 Inv-GF (2256) 1 Inv-GF (2256) 1 Inv-GF (2256) ... 1 Inv-GF (2256)

Traditional method 1 Exp-2048 2 Exp-1024 2 Exp-2048 ... 2 ECMul-256

2 Basic Definitions

Notation. If x is a string, then |x| is the length of x. x||y denotes the concate-

nation of x and y. If X is a set, then x
R← X denotes the operation of picking an

element x of X uniformly at random. If A is an algorithm, then z ← A(x, y, ...)
denotes the operation of running A on input (x, y, ...) with its output being saved
in z.

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM)
consists of three algorithms KEM.Gen, KEM.Enc and KEM.Dec. KEM.Gen
takes as input a security parameter 1λ and outputs a public/secret key pair
(pk, sk). KEM.Enc takes as input a public key pk and outputs a ciphertext c
and an ephemeral key k. Let {0, 1}λk denote the KEM’s key space, where λk is
a polynomial in security parameter λ. KEM.Dec takes as input a secret key sk
and a ciphertext c, and outputs the ephemeral key k or a special failure symbol
“⊥”.

A standard notion of security for a KEM is indistinguishability security against
adaptive chosen ciphertext attack, or IND-CCA2 security. This notion is defined
by a two-party game played between a challenger and an adversary A. Through-
out the game, the adversary can query a KEM oracle OKEM , which upon a
decapsulation query c returns KEM.Dec(sk, c).

Multi-recipient Encryption in Heterogeneous Setting 467

GameIND−CCA2
KEM :

(pk, sk)← KEM.Gen(1λ)

(c∗, k∗0)← KEM.Enc(pk), k∗1
R← {0, 1}λk , b

R← {0, 1}
b′ ← AOKEM (pk, c∗, k∗b)

Note that after receiving (c∗, k∗b), the adversary can query OKEM with any ci-
phertext c with the restriction that c �= c∗. We say that A wins the game if b = b′.
A KEM is said to be εKEM -IND-CCA2 secure if |Pr[b = b′]− 1/2| ≤ εKEM for
any probabilistic polynomial time (PPT) adversary, where εKEM is a negligible
function in security parameter λ.

Data Encapsulation Mechanism. A data encapsulation mechanism (DEM)
is composed of two algorithms, these being an encryption algorithm DEM.Enc
and a decryption algorithm DEM.Dec. DEM.Enc takes as input a symmet-
ric key k and a plaintext m and outputs a ciphertext c. The key space for the
algorithm is denoted by {0, 1}λEnc, where λEnc is a polynomial in the security
parameter λ. DEM.Dec takes as input a symmetric key k and a ciphertext c
and outputs m.

For the security of DEM, we adopt the notion of one-time symmetric-key
encryption against passive attack (IND-OPA) [15] defined by the following game
involving an adversary A:

GameIND−OPA
DEM :

A chooses a pair of plaintexts (m0,m1), where |m0| = |m1|
k

R← {0, 1}λEnc, c∗ ← DEM.Enc(k,mb), b
R← {0, 1}

b′ ← A(c∗)

We say that the adversaryA wins the game if b = b′. An one-time symmetric-key
encryption is said to be εDEM -IND-OPA secure if |Pr[b = b′]− 1/2| ≤ εDEM for
any PPT adversary, where εDEM is a negligible function in λ.

One-Time Signature. An one-time signature Sig = (GenSig, Sign, V rfy) re-
quires a signer generate new verification/signing keys each time when he signs a
message. It consists of three algorithms specified below. GenSig takes as input
a security parameter 1λ and outputs a verification/signing key pair (vk, skSig).
Sign takes as input skSig and a message m and outputs a signature σ. V rfy
takes as input vk, m and σ and outputs “1” if σ is valid; otherwise, “0”.

The security of Sig required in this paper is the strong unforgeability under
chosen message attack (SU-CMA), which is defined by the following game.

GameSU−CMA
Sig :

(vk, skSig)← GenSig(1
λ)

(m∗, σ∗)← AOSign(vk)

Notice that A can make at most one query m to the signing oracle OSign, which
returns the corresponding signature σ = Sign(skSig,m). We say the adversary
wins the game if V rfy(vk,m∗, σ∗) = 1 and (m∗, σ∗) �= (m,σ). Sig is said to be

468 P. Wei, Y. Zheng, and W. Wang

εSig-SU-CMA secure if Pr[A wins] ≤ εSig for any PPT adversary, where εSig is
a negligible function in λ.

A Useful Lemma

Lemma 1. [16] Let A1, A2, B be events defined over a probability space such
that Pr[A1

⋂
B] = Pr[A2

⋂
B]. Then we have |Pr[A1]− Pr[A2]| ≤ Pr[B].

3 Security Model

In this section, we define a multi-recipient encryption scheme with sender recov-
ery (MRES-SR) together with a security model for MRES-SR.

Let Ui denote the i-th recipient, for 1 ≤ i ≤ t. A MRES-SR is a tuple of
algorithms (GenMR, EncMR, DecMR, RecMR) defined as follows:

– A probabilistic key generation algorithm GenMR, which in turn consists of
sub-algorithms GenMR.S and GenMR.Ui, for all 1 ≤ i ≤ t.
• GenMR.S takes as input the security parameter 1λ and outputs a sender’s
secret recovery key skrcv.

• GenMR.Ui takes as input the security parameter 1λ
(i)

and outputs a
recipient Ui’s public/secret key pair (pki, ski).

– An encryption algorithm EncMR, which takes as input the sender’s secret
recovery key skrcv, the recipients’ public keys pk = (pk1, pk2, ..., pkt) and a
plaintext m, outputs a ciphertext cMR.

– A decryption algorithm DecMR (of Ui), which takes as input the recipient’s
secret key ski and a ciphertext cMR, outputs the corresponding plaintext m
or the error symbol “⊥”.

– A recovery algorithm RecMR, which takes as input skrcv and cMR, outputs
the corresponding plaintext m or the error symbol “⊥”.

Remark. Since recipients may use different types of public key encryption algo-
rithms, descriptions of EncMR (or DecMR) are dependent on specific recipients’
algorithms. For simplicity, we use the same notation EncMR (DecMR) for all
recipients.

IND-CCA2 Security of MRES-SR. The security of MRES-SR is defined
by an IND-CCA2 game GameIND−CCA2

MR played between an adversary A and
a challenger. During the game, the adversary A has access to three oracles: (1)
an encryption oracle OEnc, which upon an encryption query qEnc = (pk′,m)
returns a ciphertext cMR = EncMR(skrcv,pk

′,m). (2) a decryption oracle
ODec i for recipient Ui, which upon a decryption query qDec = cMR returns
DecMR(ski, cMR). (3) a recovery oracle ORec, which upon a recovery query
qRec = cMR returns RecMR(skrcv, cMR). GameIND−CCA2

MR proceeds as follows.

– The challenger runs GenMR to generate a target sender’s secret recovery key
skrcv and target recipient Ui’s public/secret key pair (pki, ski), for 1 ≤ i ≤ t.
Let pk = (pk1, pk2, ..., pkt).

Multi-recipient Encryption in Heterogeneous Setting 469

– The adversary A generates a pair of plaintexts (m0,m1) such that |m0| =
|m1|, and sends (m0,m1) to the challenger. The challenger returns a target

ciphertext c∗MR ← EncMR(skrcv,pk,mb), where b
R← {0, 1}.

– Finally, A terminates by returning a guess b′.

Notice that after the challenge phase, the adversary A can still query all the
three oracles OEnc, ODec i and ORec with any input, provided that qDec �= c∗MR

and qRec �= c∗MR.
The above gamemodels a sender transmitting a message to recipients U1,...,Ut,

who have public keys pk1,...,pkt, respectively. The adversary A can make query
qEnc = (pk′,m) with any public keys pk′, which captures the security of MRES-
SR under maliciously chosen recipients’ public keys. Unlike a traditional secu-
rity model for MRES, queries qEnc and qRec should be considered in our security
model since the sender’s secret key skrcv is taken as part of the inputs to EncMR

and RecMR.
We say that the adversary A wins the above game if b′ = b. MRES-SR is said

to be ε-IND-CCA2 secure if, for any PPT adversary A, |Pr[A wins]− 1/2| ≤ ε.

4 Constructions

The main idea of constructing a MRES-SR is that the sender runs t different
recipients’ KEMs to generate t different ephemeral keys and then maps those
keys to the same random string, which is used to generate a symmetric key for a
DEM. During the decryption phase, a ciphertext for the DEM can be decrypted
using any of t ephemeral keys. Hence, the function which maps t strings to one
string plays a central role in our MRES-SR. Let us first show how to realize this
function efficiently.

4.1 Map t Strings to One String

We follow ideas presented in [13] to employ universal hash function families
UHCA with t-collision accessibility property. Such functions can map t different
strings, say k0, k1, ..., kt−1 ∈ GF (22λ), to the same string, say kCA ∈ GF (2λ). To
construct UHCA such that UHCA(k0) = UHCA(k1) = ... = UHCA(kt−1) = kCA,
we choose w0,...,wt−1 and kCA at random from GF (2λ) and solve the following
set of linear equations for a0, a1, ..., at−1 ∈ GF (22λ):⎧⎪⎪⎪⎨⎪⎪⎪⎩

w0||kCA = a0 + a1k0 + a2k
2
0 + ...+ at−1k

t−1
0

w1||kCA = a0 + a1k1 + a2k
2
1 + ...+ at−1k

t−1
1

...
wt−1||kCA = a0 + a1kt−1 + a2k

2
t−1 + ...+ at−1k

t−1
t−1

The description of UHCA can be completely specified by (a0, a1, ..., at−1) and
the output of UHCA(ki) is kCA, which is part of a0+a1ki+a2k

2
i + ...+at−1k

t−1
i .

Notice that the computational cost for solving the above equations grows as
a cubic function of t, the number of recipients. This does not really scale well

470 P. Wei, Y. Zheng, and W. Wang

for a large t, say when t > 10, 000. To overcome this problem, we considered an
iterated version of UHCA, which adopts a MD like structure and uses UHCA

with 2-collision accessibility as a building block. (Other types of structures such
as tree structure can also realize the “collision” of different strings using UHCA

with 2-collision accessibility.) The resulting construction is illustrated in Fig. 1,
where kCA,0, k1,...,kt−1 are mapped to kCA,t−1. In an iteration, kCA,i−1 and ki
are mapped to the same string kCA,i by UHCA with 2-collision accessibility. For a
large t, the generation of t−1 UHCA with 2-collision accessibility is significantly
more efficient than that of UHCA with t-collision accessibility.

Fig. 1. UHCA with MD like structure

We note that kCA,i the output of one UHCA cannot be taken as input directly
to generate the UHCA of the next iteration, since the output length of UHCA

is shorter than its input length. Hence, additional randomness should be added
to generate the next UHCA. To that end, we resort to the verification key of
one-time signature and hash functions, which is shown in the construction of
MRES-SR.

A Useful Claim. Suppose the description (a0, a1) ∈ {0, 1}λ1 × {0, 1}λ1 of a
UHCA with 2-collision accessibility is generated by (1),{

w0||kCA = a0 + a1s0
w1||kCA = a0 + a1s1

(1)

and (w0, w1, kCA, s0, s1) ∈ {0, 1}λ3 × {0, 1}λ3 × {0, 1}λ4 × {0, 1}λ1 × {0, 1}λ1 is
said to be a valid tuple if s0 �= s1, where λ1 = λ3+λ4. The following claim, which
is proved in [11], is a very useful property of UHCA with 2-collision accessibility.

Claim 1. [11] Consider the following ensemble,

Wβ = {(a(1)0 , a
(1)
1 , s

(1)
1), (a

(2)
0 , a

(2)
1 , s

(2)
1), ..., (a

(N−1)
0 , a

(N−1)
1 , s

(N−1)
1), (a∗0, a

∗
1, s

∗
1)},

where (a
(i)
0 , a

(i)
1 , s

(i)
1), 1 ≤ i ≤ N−1, are generated by (1) using random and valid

tuples and β
R← {0, 1}. If β = 0, then (a∗0, a

∗
1, s

∗
1) is generated by UHCA using

a random and valid tuple (w∗
0 , w

∗
1 , k

∗
CA, s

∗
0, s

∗
1) ∈ {0, 1}λ3 × {0, 1}λ3 × {0, 1}λ4 ×

{0, 1}λ1 × {0, 1}λ1. Otherwise, (a∗0, a
∗
1, s

∗
1) is chosen uniformly at random from

{0, 1}λ1 ×{0, 1}λ1 ×{0, 1}λ1. Then the statistical difference between W0 and W1

is at most 1
2λ3−1 .

Multi-recipient Encryption in Heterogeneous Setting 471

4.2 Basic Multi-recipient Encryption with Sender Recovery

In this section we describe the construction of a basic MRES-SR, which will be
further optimized in the next section. Since ephemeral keys generated by different
KEMs may be of different lengths or on different groups, we cannot use those
keys to generate the description of UHCA directly. To solve the problem, we
prepare two hash functions H0 : {0, 1}∗ → {0, 1}2λ1, H1 : {0, 1}∗ → {0, 1}λ1+λ3 ,
and a key derivation function HKDF : {0, 1}∗ → {0, 1}λk to generate UHCA.
To realize the sender recovery property, the sender’s recovery key together with
other ephemeral keys are mapped to the same string, which is the symmetric
key of a DEM. An one-time signature Sig = (GenSig, Sign, V rfy) is applied to
thwart adaptively chosen ciphertext attacks.

The generation of UHCA must take into account a verification key vk for
an one-time signature in addition to (ki, kCA,i−1). The advantage of adding
vk is two fold. First, vk is used to generate the description of UHCA and the
sender can recover the ephemeral key kCA,t by vk. Second, the ephemeral keys
and the ciphertexts of KEM can be reused thanks to a fresh vk, which will be
explained later. More details of the basic MRES-SR are described below and Fig
2 illustrates the structure of the basic MRES-SR.

– Key generation GenMR

• GenMR.Ui: Each recipient Ui, where 1 ≤ i ≤ t, runs his key generation
algorithm KEM.Gen to generate a public/secret key pair (pki, ski). Let

{0, 1}λ
(i)
KEM denote Ui’s KEM keyspace. Let pk = (pk1, pk2, ..., pkt).

• GenMR.S: The sender chooses at random skrcv ∈ {0, 1}λ1 as her secret
key for the recovery of a message from a ciphertext.

– Encryption EncMR(skrcv,pk,m) by the sender

1. (vk, skSig)← GenSig(1
λ). Set kCA,0 = skrcv.

For i = 1, ..., t, do
(a) (ki, ci) ← KEM.Enc(pki), w0,i−1||s0,i−1||kCA,i ← H0(kCA,i−1||vk)

and w1,i||s1,i ← H1(ki||vk). If s1,i = s0,i−1, compute (ki, ci) ←
KEM.Enc(pki) and w1,i||s1,i ← H1(ki||vk) until s1,i �= s0,i−1. Note
that the lengths of wj,i, sj,i and kCA,i are λ3, λ1 and λ4, respectively.

(b) Solve the system of linear equations below for (a0,i, a1,i).{
w0,i−1||kCA,i = a0,i + a1,is0,i−1

w1,i||kCA,i = a0,i + a1,is1,i

Let a = {(a0,i, a1,i)} and cKEM = (c1, c2, ..., ct), where {(a0,i, a1,i)}
denotes an ordered list of (a0,1, a1,1), ..., (a0,t, a1,t).

2. kEnc ← HKDF (kCA,t||a) and cDEM ← DEM.Enc(kEnc,m). tag ←
Sign(skSig, a||c), where c = (cKEM , cDEM).

3. Output cMR = (vk, a, c, tag).

– Decryption DecMR(ski, cMR) by a recipient Ui

1. If V rfy(vk, a||c, tag) �= 1, output ⊥ and halt.
2. Let ki ← KEM.Dec(ski, ci). If ki = ⊥, output ⊥ and halt.

472 P. Wei, Y. Zheng, and W. Wang

3. Let w1,i||s1,i ← H1(ki||vk) and w′
1,i||kCA,i ← a0,i+a1,is1,i. If w

′
1,i �= w1,i,

output ⊥ and halt.
4. If i = t, go to step 5. Otherwise, for j = i+ 1, ..., t, do

• w0,j−1||s0,j−1||kCA,j ← H0(kCA,j−1||vk).
5. kEnc ← HKDF (kCA,t||a), m′ ← DEM.Dec(kEnc, cDEM).
6. Output m′.

– Recovery RecMR(skrcv, cMR) by the sender
1. If V rfy(vk, a||c, tag) �= 1, output ⊥ and halt.
2. Let w0,0||s0,0||kCA,1 ← H0(skrcv||vk) and w′

0,0||k′CA,1 ← a0,1 + a1,1s0,0.
If w′

0,0||k′CA,1 �= w0,0||kCA,1, output ⊥ and halt.
3. For j = 2, ..., t, do

• w0,j−1||s0,j−1||kCA,j ← H0(kCA,j−1||vk).
4. kEnc ← HKDF (kCA,t||a), m′ ← DEM.Dec(kEnc, cDEM).
5. Output m′.

Note that KEM.Gen, KEM.Enc and KEM.Dec could be different for each

Fig. 2. Encrypting with MRES-SR, where GenUH denotes the generation of a and
kCA,t

recipient, being determined by the specific public key cryptosystem used by
the recipient. For simplicity, we use the same notations. On the other hand,
DEM.Dec and the verification algorithm V rfy for the one-time signature are
the same across all recipients. In order to decrypt correctly, each recipient Ui

needs to know the “position” of his ciphertext (ci, a0,i, a1,i) in cMR, which is
usually an implicit requirement for multi-recipient encryption.

Multi-recipient Encryption in Heterogeneous Setting 473

MRES-SR with Tree Structure. Computational costs for recipients are not
the same in that Ui−j has to compute j more hashing operations than does Ui, for
0 ≤ j < i ≤ t. Although the differences may be immaterial in most applications,
we do need to keep in mind that the depth of the hash chain increases linearly
with the number of recipients. This problem can be alleviated by a logarithmic
factor by the use of the tree structured construction. More precisely, a tree can
be defined recursively starting at leaf nodes: skrcv, k1,...,kt are set to leaf nodes

k
[0]
CA,0,...,k

[t]
CA,0, respectively, and each pair of nodes, say k

[i]
CA,0 and k

[i+1]
CA,0, for

i = 0, 2, 4, ..., are mapped to their parent node, say k
[i]
CA,1, using UHCA. If the

number of nodes on a level is odd, the rightmost node on that level is set to his
parent node directly. Finally, skrcv, k1,...,kt are mapped to the same root node,
which can be generated using any one of the leaf nodes and the corresponding
leaf to root path. Security of the tree structured MRES-SR can be proven by
following a similar analysis to that for the basic MRES-SR shown in section 4.3.
Details of the proof will be provided in the full version of the paper.

4.3 Security Analysis

Theorem 1. The basic MRES-SR is ε-IND-CCA2 secure in the random oracle
model if recipient Ui’s KEM is ε

(i)
KEM -IND-CCA2 secure, for 1 ≤ i ≤ t, DEM is

εDEM -IND-OPA secure and Sig is εSig-SU-CMA secure where ε ≤ 2tεKEM +
εDEM +εSig+(1

2λ1−1 +
1

2λk−1)NRO+(1
2λ1−2 +

1
2λ3−1)NRec+

1
2λ1

+ 1
2λ3−1 , εKEM =

max{ε(1)KEM , ..., ε
(t)
KEM}, NRec denotes an upper bound on the number of recovery

queries, NRO = max{N0, N1}, and N0 and N1 denote upper bounds on the
numbers of queries on H0 and H1, respectively.

Proof. In order to show that any PPT adversary can win the IND-CCA2 game
of MRES-SR with a negligible advantage only, we introduce three new games
described below.

– Game 0 is the same as the original IND-CCA2 game of MRES-SR. During the
challenge phase, the target ciphertext c∗MR = (vk∗, a∗, c∗, tag∗) is computed
as follows.
• (vk∗, sk∗Sig)← GenSig(1

λ), k∗CA,0 ← skrcv.
For i = 1, ..., t, do
1. (k∗i , c

∗
i)← KEM.Enc(pki), w

∗
0,i−1||s∗0,i−1||k∗CA,i ← H0(k

∗
CA,i−1||vk∗)

and w∗
1,i||s∗1,i ← H1(k

∗
i ||vk∗) such that s∗1,i �= s∗0,i−1.

2. Solve the system of linear equations below for (a∗0,i, a
∗
1,i).{

w∗
0,i−1||k∗CA,i = a∗0,i + a∗1,is

∗
0,i−1

w∗
1,i||k∗CA,i = a∗0,i + a∗1,is

∗
1,i

Let a∗ = {(a∗0,i, a∗1,i)} and c∗KEM = (c∗1, c
∗
2, ..., c

∗
t).

• k∗Enc ← HKDF (k
∗
CA,t||a∗), c∗DEM ← DEM.Enc(k∗Enc,mb) and tag∗ ←

Sign(sk∗Sig, a
∗||c∗), where c∗ = (c∗KEM , c∗DEM).

– Game 1 is similar to Game 0, but with the following differences:

474 P. Wei, Y. Zheng, and W. Wang

• At the beginning of the game, the challenger computes part of the tar-
get ciphertext as follows: (vk∗, sk∗Sig) ← GenSig(1

λ), k∗CA,0 ← skrcv,

(k∗i , c
∗
i) ← KEM.Enc(pki) and k∗∗i

R← {0, 1}λ
(i)
KEM , for 1 ≤ i ≤ t. Then

let c∗KEM = (c∗1, c
∗
2, ..., c

∗
t).

For i = 1, ..., t, do
1. w∗

0,i−1||s∗0,i−1||k∗CA,i ← H0(k
∗
CA,i−1||vk∗) and w∗∗

1,i||s∗∗1,i ← H1(k
∗∗
i ||vk∗)

such that s∗∗1,i �= s∗0,i−1.
2. Solve the system of linear equations below for (a∗∗0,i, a

∗∗
1,i).{

w∗
0,i−1||k∗CA,i = a∗∗0,i + a∗∗1,is

∗
0,i−1

w∗∗
1,i||k∗CA,i = a∗∗0,i + a∗∗1,is

∗∗
1,i

Let k∗∗Enc ← HKDF (k
∗
CA,t||a∗∗), where a∗∗ = {(a∗∗0,i, a∗∗1,i)}.

• In the challenge phase, c∗∗DEM ← DEM.Enc(k∗∗Enc,mb) and tag∗∗ ←
Sign(sk∗Sig, a

∗∗||c∗∗), where c∗∗ = (c∗KEM , c∗∗DEM). The target ciphertext
of Game 1 is c∗∗MR = (vk∗, a∗∗, c∗∗, tag∗∗).

• After the challenge phase,ODec j returns⊥ for decryption queries cMR =
(vk, a, (c1, ..., ct, cDEM), tag) satisfying cj = c∗j , for j ∈ {1, ..., t}.

– Game 2 is similar to Game 1 except that the challenger randomly chooses
(a+0,1, a

+
1,1) and k+Enc in place of (a∗∗0,1, a

∗∗
1,1) and k∗∗Enc, respectively. Let a

+ =

{(a+0,1, a+1,1), (a∗∗0,2, a∗∗1,2) , ..., (a∗∗0,t, a
∗∗
1,t)}. In the challenge phase, c+DEM ←

DEM.Enc(k+Enc,mb), and tag
+ ← Sign(sk∗Sig, a

+||c+), where c+ = (c∗KEM ,

c+DEM). The target ciphertext is c+MR = (vk∗, a+, c+, tag+).

Claim 2. If recipient Ui’s KEM is ε
(i)
KEM -IND-CCA2 secure, for 1 ≤ i ≤ t,

and Sig is εSig-SU-CMA secure, then |Pr[Game 0 = 1] − Pr[Game 1 = 1]| ≤
1

2λ1
+ (t + 1)εKEM + εSig, where εKEM = max{ε(1)KEM , ε

(2)
KEM , ..., ε

(t)
KEM} and

Pr[Game j = 1] denotes the probability that the adversary wins in Game j.

Proof. We proceed with a sequence of t games to show the indistinguishability
between Game 0 and Game 1.

– Game 0(0) is similar to Game 0, except that, after the challenge phase,
ODec j returns ⊥ for decryption queries cMR = (vk, a, (c1, ..., ct, cDEM), tag)
satisfying cj = c∗j , for j ∈ {1, ..., t}.

– Game 0(1) is similar to Game 0(0), except for the following modifications.
At the beginning of the game, the challenger computes part of the target
ciphertext: Compute vk∗ and c∗KEM as in the challenge phase. Then, let

k∗∗1
R← {0, 1}λ

(1)
KEM . k∗∗1 instead of k∗1 will be used to compute the target

ciphertext.
...

– Game 0(i) is similar to Game 0(i−1), but at the beginning of the game,

k∗∗i
R← {0, 1}λ

(i)
KEM and k∗∗i instead of k∗i will be used to compute the target

ciphertext.
...

Multi-recipient Encryption in Heterogeneous Setting 475

– Game 0(t) is similar to Game 0(t−1), but at the beginning of the game,

k∗∗t
R← {0, 1}λ

(t)
KEM and k∗∗t instead of k∗t will be used to compute the target

ciphertext. Indeed, Pr[Game 0(t) = 1] = Pr[Game 1 = 1].

We call cMR is valid if cMR can pass the validity check in step 1, 2 and 3 of
decryption. Notice that Amay queryODec j with a valid cMR = (vk, a, (c1, ..., ct,
cDEM), tag) such that cMR �= c∗MR and cj = c∗j . Let V ALID denote such an

event. If V ALID does not happen, Game 0 and Game 0(0) are the same. That
is, Pr[Game 0 = 1|V ALID] = Pr[Game 0(0) = 1|V ALID]. Therefore,

Pr[Game 0 = 1]− Pr[Game 0(0) = 1] ≤ Pr[V ALID].

Next, we show Pr[V ALID] is negligible by considering two cases below.

– vk = vk∗. If this case happens with a non-negligible probability, we can
construct an algorithm to break the security of the underlying one-time
signature and we have Pr[V ALID] ≤ εSig.

– vk �= vk∗.
• A presents queries k∗realj ||vk to H1 where k

∗real
j is the real ephemeral key

corresponding to c∗j . If this case happens with a non-negligible proba-
bility, we can construct an algorithm to break the IND-CCA security
of one of t underlying KEMs. Hence, Pr[V ALID] ≤ tεKEM , where

εKEM = max{ε(1)KEM , ε
(2)
KEM , ..., ε

(t)
KEM}.

• A did not make queries k∗realj ||vk to oracle H1. Since the output of

H1(k
∗real
j ||vk) is distributed uniformly over the range of H1, the proba-

bility that the ciphertext can pass the validity check in step 3 of decryp-
tion is at most 1

2λ1
.

Therefore we have Pr[V ALID] ≤ 1
2λ1

+ tεKEM + εSig.

Indistinguishability between Game 0(i−1) and Game 0(i) relies on the IND-
CCA2 security of Ui’s KEM, for i = 1, ..., t. It is not difficult to prove

that |Pr[Game 0(i−1)] − Pr[Game 0(i)]| ≤ ε
(i)
KEM and |Pr[Game 0(0)] −

Pr[Game 0(t)]| ≤ tεKEM . Therefore, |Pr[Game 0 = 1] − Pr[Game 1 = 1]| ≤
|Pr[Game 0 = 1]−Pr[Game 0(0) = 1]|+|Pr[Game 0(0) = 1]−Pr[Game 0(t) = 1]|
≤ 1

2λ1
+ 2tεKEM + εSig.

Claim 3. |Pr[Game 1 = 1]−Pr[Game 2 = 1]| ≤ (1
2λ1−1 +

1
2λk−1)NRO+(1

2λ1−2 +
1

2λ3−1)NRec +
1

2λ3−1 , where NRO = max{N0, N1} and N0 and N1 denote upper
bounds on the numbers of queries on H0 and H1, respectively.

Sketch of Proof. Indistinguishability between Game 1 and Game 2 is closely
related to Claim 1. Assume that there exists a PPT adversary A12 such that
|Pr[Game 1 = 1]−Pr[Game 2 = 1]| is non-negligible, we show how to construct
a PPT algorithm MUH , which takes as input

Wβ = {(a(1)0 , a
(1)
1 , s

(1)
1), (a

(2)
0 , a

(2)
1 , s

(2)
1), ..., (a

(N−1)
0 , a

(N−1)
1 , s

(N−1)
1), (a∗0, a

∗
1, s

∗
1)}

and outputs β with a non-negligible advantage.

476 P. Wei, Y. Zheng, and W. Wang

The main idea of the proof is similar to that of [11], where there is only
one UHCA. Notice that if the inputs to a random oracle H(·) are different, the
corresponding outputs are uniformly and independently distributed. Due to the
unforgeability of the one-time signature, vk which is part of the inputs to H0

and H1 are usually different in each encryption and the corresponding outputs
w0,i−1||s0,i−1||kCA,i and w1,i||s1,i are uniformly and independently distributed.
Therefore, (a0, a1)s in Wβ can be considered as parts of the ciphertexts in the
simulated game. However, our scheme uses t UHCAs with the MD like iterated
structure. To compute a simulated target ciphertext, the first iteration of UHCA

is generated using (a∗0, a
∗
1, s

∗
1) and the remaining t−1 iterations can be generated

following the idea of a length-extension attack. More details of the proof are
omitted due to lack of space.

Claim 4. |Pr[Game 2 = 1] − 1/2| ≤ εSig + εDEM if the underlying DEM is
εDEM -IND-OPA secure and Sig is εSig-SU-CMA secure.

Proof. If there exists a PPT adversary, say A2, which can win Game 2 with
a non-negligible advantage, we show how to construct an algorithm MDEM to
break the IND-OPA security of the underlying DEM.
MDEM sets parameters and answers queries qEnc, qDec, qRec from A2 as in

Game 2, except that when A2 submits qDec = (vk∗, a′, c′, tag′) or qRec =
(vk∗, a′, c′, tag′), MDEM responds with “⊥”. However, MDEM ’s answers may
be wrong when such queries are valid. Denote such an event by Bad2. When
receiving (m0,m1) from A2, MDEM sends (m0,m1) to the challenger of IND-
OPA game and gets the answer c+DEM . MDEM sets the target ciphertext to
(vk∗, a+, (c∗KEM , c+DEM), tag+). Finally, A2 will terminates with output a bit,
which is also the output of MDEM . Notice that MDEM perfectly simulates
Game 2 for A2 if Bad2 does not happen. That is, Pr[Game 2 = 1 ∩ Bad2] =
Pr[MDEM wins∩Bad2]. Hence, we have |Pr[Game 2 = 1]− 1

2 | ≤ |Pr[Game 2 =
1] −Pr[MDEM wins]| + |Pr[MDEM wins] − 1

2 | ≤ Pr[Bad2] + εDEM , where the
last inequality follows from Lemma 1.

In fact, Pr[Bad2] is negligible, which relies on the unforgeability of one-time
signature. That is, Pr[Bad2] ≤ εSig. Therefore,

∣∣Pr[Game 2 = 1]− 1
2

∣∣ ≤ εSig +
εDEM , which completes the proof of Claim 4.

From Claims 2, 3 and 4, it follows that |Pr[Game 0 = 1]− 1
2 | ≤ |Pr[Game 0 =

1] − Pr[Game 1 = 1]| + |Pr[Game 1 = 1] − Pr[Game 2 = 1]| + |Pr[Game 2 =
1]− 1

2 |≤ 2tεKEM + εDEM + εSig +(1
2λ1−1 +

1
2λk−1)NRO +(1

2λ1−2 +
1

2λ3−1)NRec +
1

2λ1
+ 1

2λ3−1 , which completes the proof of Theorem 1.

4.4 Stateful MRES-SR

We find that (k1, c1), ..., (kt, ct) can be cached as part of the state information
for the scheme and reused later for improved efficiency. Specifically, the sender
can use the same (ki, ci) for each recipient Ui when running EncMR. As a result,
the main cost of computing cKEM , e.g. exponentiations in large cyclic groups, is

Multi-recipient Encryption in Heterogeneous Setting 477

minimized for subsequent applications of the encryption algorithm. As a specific
example, if we set λ1 = 256 and λ3 = λ4 = 128, the main cost of a subsequent
encryption for the same recipients is dominated by 2tmultiplications, t inversions
in GF (2256) and a symmetric encryption operation.

Notice that the verification key vk is usually different in each encryption if
the underlying one-time signature is unforgeable. Thanks to the randomness
of vk, a and kEnc are fresh each time when a new message is encrypted, even
with the fixed state. Additionally, even if the group of recipients is changed,
most part of the state could be still reused. As an example, if U1 leaves the
group of recipients, (k2, c2), ..., (kt, ct) can still be reused and U1 is denied the
ability of decrypting a new ciphertext due to the use of a fresh symmetric key.
On the other hand, if a new recipient Ut+1 joins the group, the sender can
generate a new pair (kt+1, ct+1) for the new recipient and then update the state
to (k1, c1), ..., (kt, ct), (kt+1, ct+1).

Security Analysis. The security model for MRES-SR is carried over to the
stateful version of our MRES-SR, where the encryption oracle computes the
ciphertexts using a fixed state. The method of security proof of the basic MRES-
SR, which is shown in section 4.3, still holds for the stateful MRES-SR.

The main difference between proofs of the stateful MRES-SR and the basic
MRES-SR is that the sender uses the fixed state (k∗1 , c

∗
1), ..., (k

∗
t , c

∗
t) to answer

the encryption queries from the beginning of Game 0, Game 1 and Game 2.
(Note that k∗1 , ..., k

∗
t in Game 1 and Game 2 are strings chosen at random.)

Only minor modifications need to be made in the proof of Claim 2. In Game
0(0) of the proof of Claim 2, ODec j returns ⊥ for decryption queries cMR =
(vk, a, (c1, ..., ct, cDEM), tag) satisfying that cj = c∗j . However, in the game of
stateful MRES-SR, it is possible for the adversary to make valid decryption
queries cMR such that cMR �= c∗MR and cj = c∗j . For instance, such cMR could be
returned byOEnc since the state c

∗
j is fixed. To reduce the possibility of returning

⊥ for a valid ciphertext, a list LEnc is used to record the encryption queries and
the corresponding answers from OEnc. The modified description of Game 0(0)

are as follows. During the game, ODec j returns ⊥ for decryption queries cMR =
(vk, a, (c1, ..., ct, cDEM), tag) satisfying that cMR is not in LEnc and cj = c∗j .

In addition, Game 0(i) is similar to Game 0(i−1), for i = 1, ..., t, except that a
random k∗∗i instead of k∗i is used to answer the encryption queries and compute
the target ciphertext. For the proof of |Pr[Game 0(i−1)] − Pr[Game 0(i)]| ≤
ε
(i)
KEM , the simulator can use LEnc to answer the decryption queries cMRs which
are returned by OEnc.

5 Anonymous Multi-recipient Encryption

In this section, we show how our MRES-SR can be easily converted to an anony-
mous MRES-SR, denoted by ANOMRES-SR. Let U = {U1, U2, ..., Ut} be the
universe of all legitimate recipients and pk = (pk1, pk2, ..., pkt) be an ordered
list of recipients’ public keys. Let S, a subset of U , be a group of recipients

478 P. Wei, Y. Zheng, and W. Wang

to whom a sender intends to send a message. Anonymity of recipients can be
accomplished by sending the message in an encrypted form to all legitimate
recipients in such a way that only intended recipients can decrypt the cipher-
text correctly. Specifically, the sender takes as input to the encryption algorithm
skrcv, pk and m together with S the set of all intended recipients. During the
encryption phase, if Ui is a legitimate recipient but not an intended one for this
particular message m, that is Ui ∈ U and Ui �∈ S, a randomly chosen ki in place
of the “real” ki generated by KEM.Enc(pki) is used to generate a ciphertext.
As a result, the unintended recipient Ui �∈ S is denied the ability to decrypt the
ciphertext. Decryption and recovery are the same as that of MRES-SR. More
details of the modified encryption algorithm follow.

– Encryption EncMR(skrcv,pk, S,m) by the sender
1. (vk, skSig)← GenSig(1

λ). Set kCA,0 = skrcv.
For i = 1, ..., t, do
(a) (ki, ci) ← KEM.Enc(pki). If Ui �∈ S, replace ki with a random el-

ement in the keyspace of KEM . Compute w0,i−1||s0,i−1||kCA,i ←
H0(kCA,i−1||vk) and w1,i||s1,i ← H1(ki||vk). If s1,i = s0,i−1, com-
pute (ki, ci) ← KEM.Enc(pki) and w1,i||s1,i ← H1(ki||vk) until
s1,i �= s0,i−1.

The remaining steps of encryption are the same as that of MRES-SR.
The IND-CCA2 security of ANOMRES-SR can be proven in a similar way to

that of MRES-SR and we only discuss the anonymity of ANOMRES-SR.

5.1 Analysis of Anonymity

Since the public/secret key pairs of MRES-SR are generated by recipients rather
than a key generation center as in broadcast encryption, the adversary may
choose public keys of his liking to compromise anonymity. In order to capture
such attacks, in our security model we allow recipients’ public keys to be gener-
ated by the adversary. What follows is our new model for anonymity described
in its entirety.

– The challenger generates the sender’s recovery key skrcv and a target re-
cipient Ui’s public/secret key pair (pki, ski), for 1 ≤ i ≤ t. Let St =
{U1, U2, ..., Ut} and Sc = {φ} denote the set of the target recipients and
the set of corrupted recipients, respectively. Let pk = (pk1, pk2, ..., pkt). pk
is sent to an adversary A who has access to four oracles described below.
• A private key extraction oracle OKey, which upon a key extraction query
qKey = pki returns ski, where pki ∈ pk. If pki is queried, add Ui to Sc.

• An encryption oracle OEnc, which upon an encryption query qEnc =
(pk′, S,m) returns a ciphertext cMR = EncMR(skrcv,pk

′, S,m). Public
keys in pk′ could be generated by the adversary.

Multi-recipient Encryption in Heterogeneous Setting 479

• A decryption oracle ODec i for recipient Ui ∈ St, which upon a decryp-
tion query qDec = cMR returns DecMR(ski, cMR).

• A recovery oracleORec, which upon a recovery query qRec = cMR returns
RecMR(skrcv, cMR).

– A chooses a messagem, pk∗ and two distinct sets S0 ⊆ U∗ and S1 ⊆ U∗ such
that (S0\S1)

⋃
(S1\S0) ⊆ St\Sc, where U∗ = {U∗

1 , U
∗
2 , ..., U

∗
t } is the set of

recipients corresponding to pk∗. The challenger returns a target ciphertext

c∗MR ← EncMR(skrcv,pk
∗, Sb,m), where b

R← {0, 1}.
– A can make queries as described above, except that, for Ui ∈ (S0\S1)

⋃
(S1\S0), A cannot query ODec i on qDec = c∗MR or query OKey on qKey =
pki. Finally, the adversary terminates by returning a guess b′.

MRES-SR is said to be εANO-anonymous if |Pr[Gameb=0
ANO = 1]−Pr[Gameb=1

ANO =
1]| ≤ εANO, where Gameb=0

ANO = 1 (Gameb=1
ANO = 1) denotes the event that b = b′

when b = 0 (b = 1).

Theorem 2. ANOMRES-SR is εANO-anonymous if recipient Ui’s KEM is

ε
(i)
KEM -IND-CCA2 secure, for 1 ≤ i ≤ t, and Sig is εSig-SU-CMA secure, where
εANO ≤ 2

2λ1
+ 3tεKEM + 2εsig.

Theorem 2 can be proven using similar methods in [12] and Claim 2. Descriptions
of the proof are omitted due to space limitations.

6 Concluding Remarks

We have proposed an efficient method of constructing a (single message) multi-
recipient encryption scheme in a heterogeneous setting, which offers an efficient
solution to secure data sharing in a cloud computing environment. The resulting
scheme can be used in a stateful manner, achieving significant savings in com-
putation when multiple messages are sent to the same group of recipients. In
addition, our scheme enjoys the sender recovery property and can be adapted to
offer anonymity of recipients. One of the main techniques we use is the function
which maps t strings to one string. A direction for future research is to identify
more efficient ways to map t strings to one string without random oracles.

Acknowledgements. This work has been supported by 973 program (No.
2013CB834205), National Natural Science Foundation of China (No. 61103237,
No. 61272035), Research Fund for the Doctoral Program of Higher Education of
China (No. 20100131120015), Outstanding Young Scientists Foundation Grant
of Shandong Province (No. BS2012DX018), Program for New Century Excel-
lent Talents in University of China (No. NCET-13-0350) and Interdisciplinary
Research Foundation of Shandong University (No.2012JC018).

480 P. Wei, Y. Zheng, and W. Wang

References

1. RFC 3851: Secure/multipurpose internet mail extensions (s/mime) version 3.1 mes-
sage specification, https://tools.ietf.org/html/rfc3851

2. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Heidelberg (2002)

3. Smart, N.P.: Efficient key encapsulation to multiple parties. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (2005)

4. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Se-
curity notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,
vol. 2567, pp. 85–99. Springer, Heidelberg (2002)

5. Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient encryption
schemes: How to save on bandwidth and computation without sacrificing security.
IEEE Transactions on Information Theory 53(11), 3927–3943 (2007)

6. Barbosa, M., Farshim, P.: Randomness reuse: Extensions and improvements. In:
Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 257–276.
Springer, Heidelberg (2007)

7. Hiwatari, H., Tanaka, K., Asano, T., Sakumoto, K.: Multi-recipient public-key
encryption from simulators in security proofs. In: Boyd, C., González Nieto, J.
(eds.) ACISP 2009. LNCS, vol. 5594, pp. 293–308. Springer, Heidelberg (2009)

8. Zheng, Y.: Digital signcryption or how to achieve cost (Signature & encryption)
<< cost(Signature) + cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

9. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

10. Wei, P., Zheng, Y., Wang, X.: Public key encryption for the forgetful. In: Nac-
cache, D. (ed.) Cryphtography and Security: From Theory to Applications. LNCS,
vol. 6805, pp. 185–206. Springer, Heidelberg (2012)

11. Wei, P., Zheng, Y.: Efficient public key encryption admitting decryption by sender.
In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS,
vol. 7868, pp. 37–52. Springer, Heidelberg (2013)

12. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: Adap-
tive security and efficient constructions in the standard model. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224.
Springer, Heidelberg (2012)

13. Zheng, Y., Hardjono, T., Pieprzyk, J.: The sibling intractable function family
(SIFF): Notion, construction and applications. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Science E76-A(1), 4–13 (1993)

14. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: how to en-
crypt with one 160-bit exponentiation. In: Proceedings of the 13th ACMConference
on Computer and Communications Security, CCS 2006, pp. 380–389. ACM, New
York (2006)

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

16. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 239–259. Springer, Heidelberg (2001)

https://tools.ietf.org/html/rfc3851

ACP-lrFEM: Functional Encryption Mechanism

with Automatic Control Policy
in the Presence of Key Leakage

Mingwu Zhang1,2,�

1 School of Computer Sciences, Hubei University of Technology
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences
csmwzhang@gmail.com

Abstract. We present a leakage-resilient functional encryption from fi-
nite automata control policy, in which the ciphertext is associated with
an input string w and the private key is connected to a finite automata
M. The decryption will succeed iff the automata accepts the string, i.e.,
Accept(M,w) = 1. In our scheme, we allow the leakage of sensitive key
by allowing the attacker to provide an efficiently computable function
(leakage function) adaptively, and to receive the output of the function
taking the private key as input. Our security model considers two sides:
key-leakage resilience and plaintext confidentiality. Not only can the at-
tacker request the reveal of all non-match keys of finite automata, but can
query the leakage for the match key. We also deploy an update algorithm
to support the continual leakage resilience. We give the construction in
bilinear groups of composite order and prove the security in dual system
framework. The analysis shows that the maximum leakage of the key can
be 33%.

Keywords: Deterministic Finite Automata, Leakage resilience, Match
key.

1 Introduction

Background Traditional provable security is implemented in an idealized en-
vironment, in which the sensitive information such as private keys and internal
states are perfectly hidden from the attacker. That is, the attacker must not see
any bit of the sensitive information in the cryptosystem, but is able to access
to the input/output of the cryptographic algorithms. Otherwise, the provable
security reduction will fail. However, in practice, the key may be leaked to the
possible attacker. For example, the attacker can obtain the partial sensitive key
by measuring the timing, power-consumption, temperature, radiation, acoustics
and so on [4,18,2,5,8,20]. A large body of work has investigated techniques to im-
prove the security of cryptographic implementations. Motivated by the challenge

� Supported by the National Natural Science Foundation of China (#61370224), the
Key Program of Natural Science Foundation of Hubei Province (#2013CFA046),
and the Open Fund Program for State Key Laboratory of Information Security.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 481–495, 2014.
c© Springer International Publishing Switzerland 2014

482 M. Zhang

in the key leakage setting, several works have also considered the possibility to
evaluate the effectiveness of countermeasures against side-channel attacks in a
more formal manner, and to design new primitives against such attacks. There
have two methods to countermeasure these attacks. One is to reduce or avoid the
leakage by reinforcing the hardware. The other method is to provide a leakage-
resilient scheme to survive the leakage. In this paper, we consider the latter
model, in which the attacker is allowed to observe leakage from the private key.
Leakage-resilient cryptosystems[7,9,12,19,25] are designed to keep secure even
though partial information about the key is leaked.

Functional encryption is a type of public-key encryption in which possessing
a private key allows one to learn a function of what the ciphertext is encrypting,
which was proposed by Sahai and Waters in 2005[22] and later formalized by
Boneh, Sahai and Waters[3]. Ideally, it is possible to derive secret keys DKF for
any function F . However, most instantiations of this type of encryption sup-
ported only limited function classes such as boolean formulae[22,14].

In order to provide a more general functional encryption system, Waters[23]
proposed a scheme for regular language policy. Recently, in [21], Ramanna con-
structed a deterministic finite automata encryption with adaptive security, how-
ever, the restriction of the scheme is that the keys associated with the automata
is only one unique final state and a single transition corresponding to each sym-
bol. Also, in their scheme the key leakage is not allowed. Goldwasser et al.[11]
considered how to perform the Turing machines on the encryption data, which
is considered as a generalized data protect and access control over the ciphertext
space. However, as the complex functionality of the Turing machine (evaluating
an algorithm over encrypted data is as slow as the worst-case running time of the
algorithm), the authors constructed several schemes in different control policies.

In this work, we focus on the leakage-resilient security model of functional
encryption from the finite automata policy, in which the ciphertext is associated
with an input string w and the key is associated with a deterministic finite
automata M. The decryption succeeds if and only if the automata accepts the
string, i.e., Accept(M,w) = 1. We take a methodical approach, by studying
resilience to key leakage within the framework of functional encryption, in which
the attacker allows to obtain any polynomial-time computable function of the
key in every time-period, as long as the information thus obtained is bounded.

Our technique We give the leakage-resilient semantic security model of
functional encryption for finite automatic policy. In this model, the attacker can
gain the sensitive key by providing an efficiently computable function (leakage
function) and gaining the output of the function taking the private key as input.
The attacker can select different leakage functions at different point of time based
on its view and prior leakage information.

One of the main challenge in leakage-resilient cryptography is to obtain
proofs of security, under realistic assumptions and for efficient constructions.
We divide the queried key (including extracted keys and leaked keys) into two
parts: non-match key and match key. We call the key DKM of finite automata
M to be matched if the key can decrypt the challenge ciphertext CTw, i.e.,

ACP-lrFEM: Functional Encryption Mechanism 483

Accept(M,w) = 1. Otherwise the key is non-matched if Accept(M,w) = 0. In
the traditional partition proof technique, the attacker cannot query the match
key. However, in our model, we allow the attacker to perform the leakage query
for the match key. We give the concrete construction in the dual system frame-
work, and implement the proofs by virtue of a series of dual system transforma-
tions. We organize two types of semi-functional key: type-1 semi-functional and
type-2 semi-functional. In type-1 semi-functional key, all components have vir-
tual G2 part and in type-2 semi-functional key only the components associated
with the master key have G2 part.

In order to show that, even the attacker obtains at most L bits key leakage
and has negligible advantage to decrypt the challenge ciphertext CTw. We extend
the type-2 semi-functional key into two types: truly type-2 semi-functional and
nominally type-2 semi-functional. A truly semi-functional key can not gain non-
negligible in decrypting the challenge semi-functional ciphertext, and a nominally
semi-functional key can decrypt the challenge ciphertext with some probability.
By the algebra lemma 1, we prove that an attacker has no advantage in trans-
forming a truly semi-functional key into a nominally semi-functional form even
the attacker can gain some leakage on the key.

We employ a key update algorithm to achieve the continual leakage resilience.
More interesting, unlike in updating the private key using additional secret infor-
mation that never leaks (named floppy model) by Agrawal et al.[1], we consider
that any user can update his secret key only taking his key and automata as
inputs.

2 Encryption with Automatic Control Policy in the
Presence of Key Leakage

We give the formal model and security definition of leakage-resilient functional
encryption from finite automatic policy (ACP-lrFEM), where the key is associated
with a deterministic finite automata and the ciphertext is associated with an
input string. Let P and C be the plaintext space and the ciphertext space,
respectively, and let F be the computable leakage function family.

Definition 1. (Deterministic finite automata (DFA))[13] A finite
automata is a finite state machine that accepts/rejects finite strings of symbols
and only produces a unique run of the automation for each input string. A DFA
M is formally defined as a 5-tuple (X,Σ, δ, q0, Y):

1. A finite set of states X;
2. A finite set of input symbols called the alphabet Σ;
3. A transition function δ: X ×Σ → X;
4. A start state q0 ∈ X;
5. A set of accept states Y ⊆ X.

Let w = w1w2 · · ·wn be a string over the alphabet Σ. The automation M
accepts the string w if a sequence of states, r0, r1, · · · , rn, exists in X with the
following conditions:

484 M. Zhang

1. r0 = q0, which denotes that the machineM starts from the start state q0;
2. ri+1 = δ(ri, wi+1), for i = 1, 2, · · · , n − 1, which means that given each

character of string w, the machine M will transition from a state ri to
another state ri+1 according to the transition function δ on the input wi+1;

3. rn ∈ Y , which means that the machine M accepts w if the last input of
string w causes the machine to halt in one of the accepting states in Y . We
write the machineM accepts(rejects) the string w by Accept(M,w) = 1(0).

The structure of the DFA is determined by its transition function δ, which maps
each state ri and a given input symbol wi+1 to a new state ri+1. the output
function of a DFA M for all input w1w2 · · ·wn is defined as

Accept(M,w) =

{
1, if δ(rn−1, wn) ∈ Y
0, if δ(rn−1, wn) /∈ Y

(1)

Definition 2. (ACP-lrFEM) A leakage-resilient functional encryption from
finite automatic policy (ACP-lrFEM) is comprised of the following five probabilis-
tic polynomial-time algorithms.

1. (PP, MK)←SysGen(1κ, Σ, L) The system setup algorithm takes a security pa-
rameter κ, a universe of alphabet Σ and an allowable private-key leakage
bound L as inputs, and outputs system public key PP and master key MK.
Note that the system public key can be seen by all participants in the system
and will be the input in all other algorithms. In the rest of this paper, all
algorithms will take implicitly the public key PP as their inputs.

2. DKM ←KeyExt(MK,M) The key generation algorithm takes the master key
MK, and a deterministic finite automata M as inputs, and outputs a private
key DKM.

3. DK′M ←KeyUpd(DKM,M) The key update algorithm takes a private key DKM
and its automata as inputs and outputs a re-randomized key DK′M.

4. CTw ←Enc(M,w) The encryption algorithm takes a plaintext M and a string
w = w1w2 · · ·wn as inputs, and outputs a ciphertext CTw.

5. M/⊥ ←Dec(CTw, DKM) The decryption algorithm takes a ciphertext CTw and
a key DKM as inputs, and outputs M if and only if the string w is accepted
by the automata M, i.e., Accept(M,w) = 1.

Definition 3. (Consistency) Assume κ to be a security parameter. For all
correctly generated PP and MK, and DKM is created from any deterministic finite
automata in ACP-lrFEM scheme. The amount leakage of DKM is prescribed a limit
L, i.e.,

∑
i fi(DKM) ≤ L. For the leakage function family F , the consistency of

ACP-lrFEM is guaranteed by the following probability in parameter κ:

Pr

⎡⎢⎢⎣
(PP, MK)← SysGen(1κ, Σ, L); ∀M,w, s.t. Accept(M,w) = 1;

DKM ← KeyExt(MK,M); ∀i, fi ∈ F ,
∑

i fi(DKM) ≤ L;
DK′M ← KeyUpd(DKM,M); ∀i, gi ∈ F ,

∑
i gi(DK

′
M) ≤ L;

CTw ← Enc(M,w); Dec(CTw, DK
′
M) �= M.

⎤⎥⎥⎦ = ε(κ)

(2)

ACP-lrFEM: Functional Encryption Mechanism 485

where the probability is taken over the coins of algorithms SysGen, KeyExt,
KeyUpd and Enc.

Our security model considers twofold: key-leakage resilience and message con-
fidentiality. We follow the natural key-leakage resilient security definition from
[2], which roughly states that an encryption is L-leakage-resilient if it remains
secure despite the fact that an attacker can learn up to L bits of arbitrary in-
formation on the private key of being attacked.

We also achieve the plaintext confidentiality for the encryption scheme. In-
distinguishability requires that no efficient attacker is able to distinguish a real
distribution from an idealized one (e.g. uniform randomness) with non-negligible
advantage. A functional encryption scheme is leakage-resilient semantically se-
cure (indistinguishability against adaptive chosen-plaintext attacks in the pres-
ence of leakage) when the attacker obtain partial information on the decryption
key. We model the key leakage by allowing the attacker to query the leakage
oracle that taking the private key as input and obtaining the (leakage) output
of the key. In order to record the queried and leaked keys, we set two initially
empty lists: L1 = 〈χ,w〉, L2 = 〈χ,w, DKM, l〉 to store the records, where all
records are associated with a handle χ.

Definition 4. (Key leakage fraction) The leakage fraction γ is defined as the
relative leakage of a key DK, i.e., γ = L

|DK| , where L is an allowable leakage bound

and |DK| is the size of a key DK.

Definition 5. (Leakage-resilient experiment) The leakage-resilient experi-
ment Λ0(1

κ, Σ, L) works between a challenger C and an attacker A as follows.

Step 1: Setup phase. In this stage, the challenger C runs the setup algorithm
to generate public key PP and master key MK, and starts the interaction with
A. In this stage, C also creates two empty lists L1 and L2 defined as afore-
mentioned.

Step 2: Lunch query phase. In this stage, attacker A can request the follow-
ing oracles for some information about the key knowledge adaptively:

i. Key extraction oracle (ΩE):

ii. Key leakage oracle (ΩL):

iii. Key update oracle (ΩU):

Step 3: Challenge phase. A outputs two challenged plaintexts (M (0),M (1))
and a string w s.t. ∀w ∈ L2 Accept(M,w) = 0, i.e., M rejects the string
w. C at random toss a coins η and then responds the challenge ciphertext as
CT(η) = Enc(M (η),w).

Step 4: Supper query. A continues to issues the queries like in Lunch query
with the restriction that A can not request for the leakage oracle ΩL in this
stage.

Step 5: Output. Finally, in this stage, A outputs a bit η′ ∈ {0, 1} as the guess
for the random coin η in the challenge phase. Adversary A’s advantage in
experiment Λ0(1

κ, Σ, L) is defined as AdvA(1
κ, Σ, L) = |2Pr[(η = η′)]− 1|.

486 M. Zhang

Definition 6. (Adaptively key-leakage resilient semantic security) Sup-
pose that the system security parameter is κ, the leakage bound is L and a
polynomial-time attacker has at most Q queries for keys. A leakage-resilient
functional encryption scheme is adaptively (Q,L, γ)-semantically secure if the
advantage of the attacker in winning Λ0(κ,Σ, L) is less than ε(κ) in security pa-
rameter κ and leakage bound L, where γ is defined as γ = L

|DK| . More concretely,

for any attacker in the experiment Λ0(κ,Σ, L), the attacker gains at most γ frac-
tion for each key, and the advantage AdvA(1

κ, Σ, L) is computationally negligible
parameterized by κ.

Definition 7. (Selectively key-leakage resilient semantic security)
A leakage-resilient functional encryption scheme is selectively (Q,L, γ)-
semantically secure, if in the experiment λ)(κ,Σ, L) the challenge finite automata
M had to provide ahead of Step 1 (in Step 0, the attacker provides the challenge
M before the public key and master key build), and the advantage AdvA(1

κ, Σ, L)
is computationally negligible parameterized by κ.

3 Construction of ACP-lrFEM

In this section, we give the concrete construction for our scheme.

ACP-lrFEM.SysGen(1κ, Σ, L) Taking as input a security parameter κ ∈ Z+, an
alphabet setΣ for the finite automata, and a leakage bound L, this algorithm
creates system public key PP and master key MK as follows:

S1. Run the bilinear group generator algorithm GCP(κ) to produce (p1, p2, p3,
G,H, e), where p1, p2 and p3 are distinct primes, i.e., e : G ×G → H, and
gcd(p1, p2, p3) = 1.1 Set subgroups G1 = 〈P1〉, G2 = 〈P2〉 and G3 = 〈P3〉
of orders p1, p2 and p3 respectively, and P1, P2 and P3 are the generators
of subgroups G1,G2 and G3 respectively; Define G = G1×G2×G3 and set
N = p1p2p3.

S2. Select τ ∈ R+ such that ε = p−τ
2 is small enough, and compute ω =

!1 + 2τ + L/|p2|".
S3. Select random elements Z,Hst, Hend ∈ G1.
S4. At random choose y ∈ ZN ; For each σ ∈ Σ, pick Hσ ∈ G1.
S5. Set the master key

MK = 〈(βiP1)i∈[ω], (y + 〈α,β〉)P1〉

S6. Publish the system public key

PP = 〈Θ,Z, P1, P3, Hst,Hend,∀σ ∈ Σ Hσ, (αiP1)i∈[ω], (Ti)i∈Σ , e(P1, P1)
y〉

Here Θ = (N,G,H, e). In the setting, the parameter ω, mainly decided by
L, can be varied to achieve desired key leakage and size of keys/ciphertexts.
Obviously, the larger L, the larger of keys and ciphertexts.

1 gcd(p1, p2) = gcd(p2, p3) = gcd(p1, p3) = 1.

ACP-lrFEM: Functional Encryption Mechanism 487

ACP-lrFEM.Enc(M,w = w1w2 · · ·wn) Taking as input a plaintext M and a
string w = w1w2 · · ·wn, this algorithm at random picks s0, s1, · · · , sn ∈ ZN ,
and calculates the ciphertext CTw as:

CTw =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w, Cm

Cst,1, Cst,2

C1,1, C1,2

...
...

Cn,1, Cn,2

Cend,1, Cend,2

Cfin

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w, M · e(P1, P1)
ysn

s0P1, s0Hst

s1P1, s1Hw1 + s0Z
...

...
snP1, snHwn + sn−1Z
snP1, snHend

(αsn
i P1)i∈[ω]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

ACP-lrFEM.KeyExt(MK,M = (X,Σ, q0, δ, Y)) Assume the automataM includ-
ing a set X of states q0, q1, · · · , q|X|−1, in which q0 is the start state. Taking
as input the master key MK and a finite automataM, this algorithm creates
the key DKM as follows:

K1. At random pick D0, D1, · · · , D|X|−1 ∈ G1, and associate each qi with Di.
K2. Choose rst, rend ∈ ZN and Rst,1, Rst,2, Rend,1, Rend,2 ∈ G3 randomly, and

for each transition t ∈ T (t is defined by a triple (qx, qy, δ) ∈ X×X×Σ)
select rt ∈ ZN .

K3. For t ∈ T , select Rt,1, Rt,2, Rt,3 ∈ G3 randomly.
K4. Calculate Kst,1 = D0 + rstHst +Rst,1, Kst,2 = rstP1 +Rst,2.
K5. For all t ∈ T with t = (qx, qy, δ), calculate Kt,1 = −Dx + rtZ + Rt,1,

Kt,2 = rtP1 +Rt,2 and Kt,3 = Dy + rtHσ + Rt,3.
K6. For each qy ∈ Y , at random select rendy ∈ ZN , Rendy,1, Rendy,2 ∈ G3,

and calculate Kendy,1 = (y+ 〈α,β〉)P1 +Dy + rendyHend +Rendy,1, and
Kendy,2 = rendyP1 +Rend,2.

K7. For i ∈ [ω] at random pick Rfin,i ∈ G3, and calculate Kfin,i = βiP1 +
Rfin,i.

K8. Finally, output

DKM = 〈(Kst,1,Kst,2), (Kt,1,Kt,2,Kt,3)t∈T , (Kendy ,1,Kendy ,2)qy∈Y , (Kfin,i)i∈[ω]〉
(4)

ACP-lrFEM.KeyUpd(DKM,M = (X,Σ, q0, δ, Y)) Let a secret key DKM = 〈Kst,1,
Kst,2, (Kt,1,Kt,2,Kt,3)t∈T , (Kendy,1,Kendy,2)qy∈Y , (Kfin,i)i∈[ω]〉. The algo-
rithm proceeds the following steps to refresh a key:

U1. At random pick r′st ∈ ZN and R′
st,1, R

′
st,2 ∈ G3, and update the start

part key: K ′
st,1 = Kst,1 + r′stHst +R′

st,1, K
′
st,2 = Kst,2 + r′stP1 +R′

st,2.
U2. For all t ∈ T with t = (qx, qy, δ), at random select r′t ∈ ZN ,R′

t,1, R
′
t,2, R

′
t,3

∈ G3, and update the transition key: ∀t ∈ T with t = (qx, qy, δ), set
K ′

t,1 = Kt,1 + r′tZ + R′
t,1, K

′
t,2 = Kt,2 + r′tP1 + R′

t,2 and K ′
t,3 = Kt,3 +

r′tHσ +R′
t,3.

488 M. Zhang

U3. For each qy ∈ Y , at random select r′endy
∈ ZN , R′

endy,1
, R′

endy,2
∈ G3,

and update the end part key: K ′
endy,1

= Kendy,1 + r′endy
Hend +R′

endy,1
,

and K ′
endy,2

= Kend,2 + r′endy
P1 +R′

end,2.

U4. At random select Rfin,i ∈ G3 for i ∈ [ω], and update key final part key:
K ′

fin,i = Kfin,i +R′
fin,i.

U5. Delete DKM and output the new key

DK
′
M = 〈(K′

st,1,K
′
st,2), (K

′
t,1,K

′
t,2,K

′
t,3)t∈T , (K

′
endy ,1,K

′
endy ,2)qy∈Y , (K′

fin,i)i∈[ω]〉

ACP-lrFEM.Dec(CTw, DKM) IfAccept(M,w) = 1, that is, the finite automataM
accepts stringw, then there exist a sequence of n+1 states u0, u1, · · · , un and
n transitions t1, t2, · · · , tn such that u0 = q0 and un ∈ Y . For i = 1, · · · , n,
we have ti = (ui−1, ui, wi) ∈ T . The decryption procedure is performed as
follows:
D1. At first calculate the initialization state:

B0 =
e(Cst,1,Kst,1)

e(Cst,2,Kst,2)
= e(D0, Cst,1) = e(D0, P1)

s0

D2. For i = 1 to n, calculate iteratively:

Bi=Bi−1 ·
e(Ci−1,1,Kti,1)e(Ci,1,Kti,3)

e(Ci,2,Kti,2)
=e(Dui , Ci,1) = e(Dui , P1)

si

D3. As the automata M accepts the string w, then the last state un must
halt in Y . That is, un = qy for some qy ∈ Y and Bn = e(Dy, P1)

sn .
Calculate:

Bend = Bn ·
e(Cend,2,Kendy,2)

e(Cend,1,Kendy,1)
= e(P1, P1)

−sn(y+〈α,β〉)

D4. Calculate Bfin = Bend · en(Cfin,Kfin) = e(P1, P1)
−ysn

D5. Extract the plaintext from Cm by M ← Cm · Bfin.

4 Analysis

4.1 Consistency

First, we show that any key component in G3 will cancel since subgroups G1 and
G3 are orthogonal but the ciphertext in G1 and the key in G1 × G3. We give the
correctness and consistency as below:

B0 =
e(Cst,1,Kst,1)

e(Cst,2,Kst,2)
=

e(s0P1, D0 + rstHst +Rst,1)

e(s0Hst, rstP1 +Rst,2)

=
e(s0P1, D0)e(s0P1, rstHst)

e(s0Hst, rstP1)
= e(D0, P1)

s0 (5)

ACP-lrFEM: Functional Encryption Mechanism 489

Bi = Bi−1 ·
e(Ci−1,1,Kti,1)e(Ci,1,Kti,3)

e(Ci,2,Kti,2)

=
e(Di−1, P1)

si−1e(si−1P1,−Dxi + rtiZ)e(siP1, Dyi + rtiHwi)

e(siHwi + si−1Z, rtiP1)

=
e(si−1P1, rtiZ)e(siP1, Dyi)e(siP1, rtiHwi)

e(siHwi , rtiP1)e(si−1Z, rtiP1)

= e(siP1, Dyi) = e(Dyi , P1)
si (6)

Bend = Bn ·
e(Cend,2,Kendy,2)

e(Cend,1,Kendy,1)

=
e(Dyi , P1)

sne(snHend, rendyP1 +Rend,2)

e(snP1, (y + 〈α,β〉)P1 +Dyi + rendyHend)

=
e(Dyi , P1)

sne(snHend, rendyP1)

e(snP1, (y + 〈α,β〉)P1 +Dyi + rendyHend)

=
e(Dyi , P1)

sne(snHend, rendyP1)

e(snP1, yP1)e(snP1, P1)〈α,β〉e(snP1, Dyi)e(snP1, rendyHend)

=
1

e(P1, P1)snye(P1, P1)sn〈α,β〉) =
1

e(P1, P1)sn(y+〈α,β〉) (7)

Bfin = Bend · en(Cfin,Kfin) =

∏
i∈[ω] e(snαiP1,βiP1)

e(P1, P1)sn(y+〈α,β〉)

=
e(P1, P1)

Σi∈[ω]snαiβi

e(P1, P1)sn(y+〈α,β〉) = e(P1, P1)
−ysn (8)

4.2 Subspaces for Leakage Resilience over Transformation

We provide the algebraic tool to apply in our scheme. More specifically, we give
an algebraic theorem and its claim that essentially say that the subspaces are
resilient to continual leakage.

Lemma 1. (Subspace for Leakage Map)[6] Let m, l, d ∈ Z+, 2d ≤ l ≤ m

and p be a prime. Let A1
R←− Zm×l

p and A2
R←− Zm×d

p , and T
R←− Rankd(Z l×d

p)

(i.e., the rank of matrix T is d). For any transformation f : Zm×d
p → {0, 1}L,

there exists Δ((A1, f(A1T)), (A1, f(A2))) ≤ ε(·), as long as L ≤ 4(1 − 1/p) ·
pl−2d+1 · ε(·)2.

We note that, if the leakage f(A1T) reveals bounded information A1, then
(A1, f(A1T)) and (A1, f(A2)) are statistically close. A2 is a random vector and
the leakage function f(A2) reveals nothing about the space A1. By setting d = 1
and l = m− 1, we have the following claim.

490 M. Zhang

Claim. Let W,S
R←− Zω

p and S′ be selected uniformly randomly from the set
of vector in Zω

p which are orthogonal to W under the inner product modulo

p2. For any transformation f : Zω
p2
→ {0, 1}L, where the function output is

bounded by the length L, then Δ((W, f(S)), (W, f(S′))) ≤ ε(·), as long as L ≤
4pω−3

2 (p2 − 1) · ε(·)2.

4.3 Leakage-resilient Semantic Security

The key-leakage resilience and plaintext-adaptive confidentiality will be proven
under the framework of dual system encryption[17,24] and Theorem 1. By means
of dual system encryption mechanism, we first give the semi-functional cipher-
text/key generation algorithms and convert the challenge ciphertext and queried
keys into semi-functional form. We also define two types of semi-functional key:
type-1 form and type-2 form. Let P2 be a random generator of subgroup G2. The
semi-functional key and ciphertext are constructed as follows:

KeyExtSF algorithm. Let DKM = 〈Kst,1,Kst,2, (Kt,1,Kt,2,Kt,3)t∈T , (Kendy,1,
Kendy,2)qy∈Y , (Kfin,i)i∈[ω]〉 be a normal key that is produced by KeyExt algo-
rithm, a semi-functional key is constructed as:

Type 1: In type-1 semi-functional key, all components are attached with G2
parts.

D̂KM =

⎛⎜⎜⎝
Kst,1, Kst,2

(Kti,1, Kti,2, Kti,3)ti∈T
(Kendyi

,1, Kendyi
,2)yi∈Y

(Kfin,i)i∈[ω]

⎞⎟⎟⎠
︸ ︷︷ ︸

Normal key

+

⎛⎜⎜⎝
z0 + μstπst, μst

(zx + μti , μti , zy + μti)ti∈T
(zfyi + τendyi

, μendyi
)yi∈Y

(ϑfin,i)i∈[ω]

⎞⎟⎟⎠P2

︸ ︷︷ ︸
Mixed G2 part

(9)

where z0, zx, zy, μst, μsti, μendyi
, ϑfin,i are randomly chosen from ZN .

Type 2: In this type of semi-functional key, only the components Kendyi
,1,

Kendyi
,2 and Kfin contain G2 part, which means that only the components in-

volved the master key y have G2 part. Also, in this form, the term zfyi is re-

moved from the components, that is, K̂endyi
,1 = Kendyi

,1 + τendyi
P2, K̂endyi

,2 =

Kendyi
,2 + μendyi

P2, K̂fin,i = Kfin,i + P2 and the other components are un-
changed.

EncSF algorithm. Let CTw = 〈w, Cm, Cst,1, Cst,2, (Ci,1, Ci,2)i∈[n], Cend,1,
Cend,2, Cfin〉 be a normal ciphertext generated by Enc algorithm, a
semi-functional ciphertext is converted as:

ACP-lrFEM: Functional Encryption Mechanism 491

ĈTw =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w, Cm

Cst,1, Cst,2

C1,1, C1,2

...
...

Cn,1, Cn,2

Cend,1, Cend,2

Cfin

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Normal ciphertext

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0
γ0, γ0πst

γ1, γ1πwi + γi−1

...
...

γn, γnπwn + γn−1

γn, πend

θfin

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P2

︸ ︷︷ ︸
Mixed G2 part

(10)

where γ0, γ1, · · · , γn, πst, πw1 , · · · , πwn , πend and θfin,1, · · · , θfin,ω are randomly
selected from ZN . Actually, all components except w and Cm are attached with
G2 part (w is the input string and Cm is in H).

In the intermediate games, we need at most one key to be type-1 form and the
rest keys to be type-2 form. Actually, for an acceptable automata for a string w,
i.e., Accept(M,w) = 1, if we use a type-2 semi-functional key to decrypt a semi-
functional ciphertext, we will obtain extra term e(P2, P2)

〈θ,ϑ〉−μendπend−γnτend .
If the exponent is zero, that is, 〈θ,ϑ〉 − μendπend − γnτend = 0, then during
the decryption the G2 part will cancel out and we call the key nominally semi-
functional, otherwise we call the key truly semi-functional.

The leakage-resilient semantic security proof has two steps: At first we use a
series of indistinguishable games to prove that the scheme is adaptively secure
in unacceptable string between the queried key and challenge ciphertext, which
is derived from the idea of dual system machanism[16,25]. We do so by proving
that, in the view of the attacker, the valid private keys are indistinguishable
from keys that are random in the subgroup in which the plaintext is embedded.
Secondly, we prove that, even the attacker has at most L bits leakage on each
key (especially for a match key), one has negligible advantage to decrypt the
ciphertext. We give the following theorem:

Theorem 1. If a dual system
∏

DDFA-lrFE = (SysGen, KeyExt, KeyUpd, Enc, Dec,
KeyExtSF, EncSF) has semi-functional ciphertext invariance, semi-functional key
invariance, and semi-functional security under the leakage bound L, then the
ACP-lrFEM scheme

∏
= (SysGen, KeyExt ,KeyUpd, Enc, Dec) is (Q,L, γ)-

semantically secure in the presence of key leakage, where Q is the number of
key that attacker queries, L is the allowable bound and γ = L

|DK| is the leakage

fraction.

Proof. Let Q be the number of key queries that the attacker makes in the leakage-
resilient experiment in definition 5, then our proof considers a sequence of 2Q+4
games between an attacker A and a challenger C as follow:

Λ0, Λ1, Λ2, (Λ3,1, Λ4,1, · · · , Λ3,k, Λ4,k, · · · , Λ3,Q, Λ4,Q), Λ5

In game Λ0, the key and the challenge ciphertext in this game described in
Section 3 are all normal (no G2 part). We use a series of computationally indistin-
guishable conversions to implement our proofs. In game Λ0, we replace the key

492 M. Zhang

Table 1. Games

Games Functionalities Remarks

Λ0 Real experiment defined in definition 5 The keys and challenge ciphertext are
all normal

Λ1 update oracle replace by extraction or-
acle

Λ2 Challenge ciphertext is converted to
semi-functional

Λ3,k First k−1 keys are type-2’s, kth is type-
1’s, and the rest keys are normal

ΩE for non-match key, 1 ≤ k ≤ Q

Λ4,k The kth is converted to nominal form ΩL: Under the leakage of match key, the
semi-functional key cannot convert into
a nominal one

Λ5 C0 is replaced by a random element
from H

All components in keys and ciphertexts
are semi-functional except Cm (Cm is
randomized)

update oracle with key extraction oracle since the update can be considered as a
particular key extraction. Thus in the next games, we do not consider the update
oracle. In Game Λ2, we transform the challenge ciphertext to be semi-functional,
and show that in the view of attacker this transformation is oblivious.

In the next games we transform the queried keys into semi-functional forms
one by one. In particular, for k = 1, 2, · · · , Q, we first transform the first k − 1
keys to be type-2 formed, the k-th key to be type-1 formed and the rest to be
normal. Then, we convert the k-th key into type-2 form. Obviously, all keys are
semi-functional when k = Q.

Next, we consider whether these keys are truly nominal or not when the keys
may partially leak. In Λ5,k, we indicate that any key cannot convert into a
nominal semi-functional form even though at most L-bit leakage occurs.

All components in CTw and DKM are paired by bilinear map except Cm. From
the transformations as above, these components are attached with G2 parts and
the decryption will fail by the dual system mechanism. In the last game, we
replace the plaintext component Cm in challenge ciphertext with a random ele-
ment of H, which means that the plaintext is information-theoretically hidden in
the ciphertext. We give the Claims to show that these games are computation-
ally indistinguishable and then conclude the proof, in which the Claims appear
in the full version. �

5 Performance and Discussion

5.1 Performance of Leakage Resilience

In the system, we set ω = !1 + 2τ + L
|p2|" ≈ 1 + L

|p2| , and thus L = (ω − 1)|p2|.
Obvisouly, if ω = 1, then L = 0 and τ = 0, which means that the scheme is
non-leakage resilient. The larger ω, the better leakage-resilience. We also require

ACP-lrFEM: Functional Encryption Mechanism 493

that p1, p2 and p3 are distinct primes with same length, i.e., |p1| = |p2| = |p3|
and |N | = 3|p2|. Let G,H be the bilienar groups of elliptic curve and e be the η
pairing. The ciphertext size is |H| + (2n + 4 + ω)|G| = (6n + 18 + 3ω)|p2| and
the key size is 3(2 + |T |+Q+ ω)|p2|. The leakage fraction

γ =
L

|DK| =
ω − 1

3(2 + |T |+Q+ ω)
≈ 1

3(1 + |T |+Q
ω)

where |T | is the number of transitions in finite automataM, and Q is the number
of end states in set Y . We can set ω large enough to tolerate the maximum leakage
to be 1

3 |DK| − o(1).

Table 2. Comparison of encryption with automata control policy

scheme [23] [21] ours

order prime composite composite
accept states ≥ 1 1 ≥ 1
group elements of CT 6 + 2n 6 + 2n 6 + 2n+ ω
group elements of DK 2 + 3|T |+ 2|Y | 4 + 3|T | 2 + ω + 3|T |+ 2|Y |
leakage fraction ∅ ∅ 33%

The size of an element of H is twice of G. ω = �1 + 2τ + L/|p2|� is the leakage
parameter and L is the leakage bound. n is the length of input string of automata.

|T | is the size of transition function of automata. |Y | is the number of accept states.

5.2 Discussion

The implementation of dual system can derived from the finite groups of prime
order[23] or composite order[17,25]. Freeman[10] and Lewko[15] respectively pro-
posed the methods in converting the construction of composite-order group into
prime-order model. Also, they gave the negative result that some schemes and
models cannot be converted. In our scheme, the subgroup G2 has two function-
alities: the hidden intractable order p2 from group G for adaptive security proof
and the subspace orthogonality for leakage tolerance in Lemma 1. We leave it as
open problem whether we can use the technique and tool in [10,15] to transform
our composite-order construction to prime-order one.

Waters[23] and Ramanna[21] also provided the encryption schemes that em-
ploys the deterministic finite automata as the encryption policy. However, [23]
is only selective secure without the leakage resilience. [21] is adaptively secure
but the automata is only one unique final state and a single transition corre-
sponding to each symbol. Also, the key leakage is forbidden in [23] and [21]. The
comparison is listed in Table 2.

5.3 Application Scenario

A finite automata can model the execution of software that decides whether
online user-input such as email addresses are valid or not, and then network
firewalls perform the filtering rules. In practice, deterministic finite automates

494 M. Zhang

are one of the most practical models of computation, since there is a trivial lin-
ear time, constant-space, online algorithm to simulate the model on a stream of
input. Furthermore, compared Turing machine, there are efficient algorithms to
find a deterministic finite automata recognizing. For example, in email firewall,
an efficient way of filtering and matching is building and execution of a deter-
ministic finite automaton. Traditionally, the rule is stored in the firewall server
and the server performs the filter check by running the automata that taking
the email as the input. However, in practice, there have some flaws in twofold:
(1)the server will fail if the email is encrypted; (2)the attacker can attack the
server and gains the clear filter rule so as to bypass the rule. We can deploy our
encryption module to perform the filter: transform the finite automata into the
key form and store it in the server; the email is encrypted as a string; instead of
the filter match in cleartext, the server check the match in ciphertext/key space.
Even the key is partially leaked to the other attacker, the attacker cannot gain
any useful information from the encrypted email.

6 Conclusions

We have provided the model and presented a concrete construction of functional
encryption from finite automata control policy in the presence of key leakage.
In the scheme, the automata control policy has much attention for general func-
tion description that the length of input is arbitrary. The automata can run in
ciphertext/key spaces such that a ciphertext is associated with a string and a
secret key is associated with a finite automata, whereas the possible 33% leak-
age on the key is allowed. We leave it is an interesting open problem of the
scheme against full leakage construction (e.g., key leakage, randomness leakage
and internal state leakage, simultaneously).

References

1. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of dis-
crete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

3. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

4. Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against
adaptive auxiliary information. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 316–334. Springer, Heidelberg (2013)

5. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

6. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Publickey cryptography resilient to continual memory leakage. In:
FOCS 2010, pp. 501–510 (2010)

ACP-lrFEM: Functional Encryption Mechanism 495

7. Chow, S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-
based encryption from simple assumptions. In: ACM-CCS 2010, pp. 152–161 (2010)

8. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

9. Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS 2011, pp. 688–697 (2011)

10. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

11. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

12. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013)

13. Hopcroft, J.E., Motwani, R., Ullman, J.: Introduction to automata theory, lan-
guages and computation, 2nd edn. Addison Wesley (2000)

14. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

15. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

16. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

17. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

18. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505.
Springer, Heidelberg (2013)

19. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

20. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013)

21. Ramanna, S.C.: DFA-based functional encryption: adaptive security from dual sys-
tem encryption. IACR Cryptology ePrint Archive 2013, 638 (2013)

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

23. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

24. Zhang, M., Shi, W., Wang, C., Chen, Z., Mu, Y.: Leakage-resilient attribute-based
encryption with fast decryption: Models, analysis and constructions. In: Deng, R.H.,
Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 75–90. Springer, Heidelberg (2013)

25. Zhang, M., Yang, B., Takagi, T.: Bounded leakage-resilient funtional encryption
with hidden vector predicate. The Computer Journal, Oxford 56(4), 464–477 (2013)

Provably Secure Certificateless Authenticated

Asymmetric Group Key Agreement

Lei Zhang1, Qianhong Wu2, Bo Qin3, Hua Deng4,
Jianwei Liu2, and WenChang Shi3

1 Shanghai Key Laboratory of Trustworthy Computing,
Software Engineering Institute, East China Normal University, Shanghai, China

leizhang@sei.ecnu.edu.cn
2 School of Electronic and Information Engineering, Beihang University, China

{qianhong.wu,liujianwei}@buaa.edu.cn
3 School of Information, Renmin University of China, Beijing, China

{bo.qin,wenchang}@ruc.edu.cn
4 School of Computer, Wuhan University, Wuhan, China

denghuar0804@163.com

Abstract. Asymmetric group key agreement allows a group of mem-
bers to establish a public group encryption key while each member has
a different secret decryption key. Knowing the group encryption key, a
sender can encrypt to the group members so that only the members can
decrypt. This paper studies authenticated asymmetric group key agree-
ment in certificateless public key cryptography. We formalize the security
model of certificateless authenticated asymmetric group key agreement
and capture typical attacks in the real world. We next present a strongly
unforgeable stateful certificateless batch multi-signature scheme as build-
ing block and realize a one-round certificatless authenticated asymmet-
ric group key agreement protocol to resist active attacks. Both the new
multi-signature scheme and the resulting group key agreement protocol
are shown to be secure under the well-established computational Diffie-
Hellman and the k-Bilinear Diffie-Hellman exponent assumptions in the
random oracle model, respectively.

Keywords: Certificateless public key cryptography, group key agree-
ment, asymmetric group key agreement.

1 Introduction

The proliferation of applications, e.g., IP telephony, video conference, collab-
orative workspace, interactive chats and multi-user games that rely on group
communicationa prompt the need for secure broadcast channels. A widely used
mechanism for secure broadcast channels is the use of Group Key Agreement
(GKA) protocols which allow a group of users to share keys over a distributed
network. However, conventional GKA protocols have several limitations. Firstly,
in a conventional GKA protocol, the key established is a common secret key.
Only the group users who learn the common secret key can securely broadcast

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 496–510, 2014.
c© Springer International Publishing Switzerland 2014

Provably Secure Certificateless Authenticated Asymmetric GKA 497

to others. Secondly, to establish a secret key, existing conventional GKA pro-
tocols [4,6,7,8,9,11] require two or more rounds without using multilinear maps
[3,13]. Further, an additional round is required for each member to confirm the
established secret key. Though plausible multilinear maps [13] are constructed
recently and can be used to realize one round GKA, an additional round is still
required for key confirmation.

Recently, a notion called Asymmetric Group Key Agreement (AGKA) is in-
troduced [19]. In an AGKA protocol, instead of a common secret key, the keys
established are a common encryption key and respective secret decryption key
of each group user. To confirm the established keys, a group user just needs to
encrypt a message m using the encryption key then decrypt the corresponding
ciphertext using her secret decryption key. If the decrypted message is equal to
m, then the user may confirm that she obtains the correct keys. Therefore, the
key confirmation step can be done locally and the round for key confirmation
is eliminated. Once the encryption and decryption keys are established, the en-
cryption key can be published and anyone who knows the encryption key can
securely send messages to the users in group. In [19], a concrete AGKA protocol
is proposed. To establish the encryption and decryption keys, it only requires
one round which implies that the protocol participants needs not to be online
at the same time. This property makes that the one round protocols have more
advantages than two or more rounds protocols. For instance, a group of friends
wishing to share their private files via the insecure internet; doing so with a two
or more rounds key agreement protocol would require all of them to be online
at the same time. However, if they live in different time zones, it is difficult for
them to be online concurrently.

The basic AGKA protocol in [19] and its plain extensions [20,21] does not au-
thenticate the protocol participants. Therefore, it cannot be used in open networks
where active adversaries may control the message flows during the execution of
the protocol. Authenticated AGKA (AAGKA) aims to assurance that no party
other than the group users can possibly compute the established group decryption
key(s). Recently, AAGKA protocols are studied in traditional PKI based public
key cryptosystem [23] and identity-based public key cryptosystem [17,22] in which
a third party called private key generator (PKG) is employed to issue private keys
for the system members. However, the former system has the certificate manage-
ment problemwhile the latter one suffers from the key escrowproblem. Certificate-
less public key cryptosystem (CL-PKC) [1] may successfully solve those drawbacks
in traditional and identity-based public key cryptosystems. In CL-PKC, no certifi-
cate is required to bind a user with her public key. Further, though a third party
called KGC is used to help a user to generate her private key, it only has access to
the partial private key of the user. A user’s full private key is composed of the par-
tial private key comes from the KGC and a secret information chosen by herself.
Since the KGCdoes not hold the full private key of the user in the system, it cannot
represent any user to do cryptographical operations without being detected. The
key escrow problem is accordingly eliminated.

498 L. Zhang et al.

The first provably secure AAGKA is proposed in [22]. It is built on a new
notion referred to as identity-based batch multi-signature (IB-B-MS), which al-
lows multiple signers to sign t messages in an efficient way and captures the
typical security requirements of GKA protocols, i.e., secrecy, known-key security
and partial forward secrecy [5,22] (See Section 3). We note that partial forward
secrecy cannot guarantee the secrecy of the messages if an attacker learns all the
private keys of the group users. In ID-PKC, since the PKG has the knowledge
of all the private keys of the users in the system, it can always decrypt the mes-
sages encrypted under the negotiated public key, which is not desirable in most
application environments. Further, even an AAGKA in identity-based public key
cryptosystem achieves perfect forward secrecy and session key escrow freeness
(i.e., the secrecy of previous messages is not violated even if the PKG is cor-
rupted), the PKG may still impersonate a user or launch a man-in-the-middle
attack to obtain the secret session key without being caught due to the key
escrow problem. Recently, AAGKA protocols are studied in CL-PKC [16,18].
However, the formal security analysis of the protocol in [18] is not provided.
Although, the protocol in [16] is presented with a formal security analysis, an
attacker cannot get any decryption key related to the target user.

1.1 Our Contribution

In this paper, we study AAGKA in CL-PKC. Firstly, we define a security model
for CertificateLess AAGKA (CL-AAGKA) protocols which captures the typical
security requirements of GKA protocols (i.e., secrecy, known-key security and
partial forward secrecy) as well as the abilities of two types of adversaries (See
Section 3.2). Different from the model in [16], in our model, an attacker can
obtain any decryption key of any user, except the decryption keys generated
in the target session. Secondly, we propose a one-round CL-AAGKA protocol.
Our proposal enjoys a modular design by exploiting a new batch multi-signature
scheme as building block. In our batch multi-signature scheme, even an attacker
obtains a batch multi-signature on t messages under a state information, he
cannot generate a new batch multi-signature on the same messages under the
same state information. The security of our protocol is reduced to the hardness
of the k-Bilinear Diffie-Hellman Exponent problem and the strong unforgeability
of our batch multi-signature. Since the KGC does not have the knowledge of the
private keys of the group users, it does not suffer from the key escrow problem.
In fact, without the full private key of even one group user, an attacker cannot
know any useful information about the confidential communications protected
by the proposed protocol. Hence, our protocol is suitable for most applications.

1.2 Outline

The rest of the paper is organized as follows. Section 2 reviews bilinear maps and
complexity assumptions. We define the security model for CL-AAGKA protocols
in Section 3. Section 4 proposes a strongly unforgeable stateful CL-B-MS signa-
ture scheme. The CL-AAGKA protocol is proposed in Section 5. We conclude
our paper in Section 6.

Provably Secure Certificateless Authenticated Asymmetric GKA 499

2 Bilinear Maps and Complexity Assumption

Our scheme is realized in groups which allowing efficient bilinear maps. Let G1

be an additive group of prime order q and G2 be a multiplicative group of the
same order. A map ê : G1 ×G1 −→ G2 is called a bilinear map if it satisfies the
following properties:

1. Bilinearity: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1, a, b ∈ Z∗
q .

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) �= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q) for

any P,Q ∈ G1.

The security of our protocol is based on the hardness of the Computational
Diffie-Hellman (CDH) problem and the k-Bilinear Diffie-Hellman Exponent
(BDHE) problem [2,19], which are briefly reviewed next.

CDH Problem: Given P, aP, bP for unknown a, b ∈ Zq, compute abP .

CDH Assumption: Let B be an algorithm which has advantage

Adv(B) = Pr [B(P, aP, bP) = abP]

in solving the CDH problem. The CDH assumption states that Adv(B) is negli-
gible for any polynomial-time algorithm B.
k-BDHE Problem: Given P,H , and Yi = αiP in G1 for i = 1, 2, ..., k, k +

2, ..., 2k as input, compute ê(P,H)α
k+1

. Since the input vector lacks the term

αk+1P , the bilinear map does not seem helpful to compute ê(P,H)α
k+1

.

k-BDHE Assumption: Let B be an algorithm which has advantage

Adv(B) = Pr
[
B(P,H, Y1, ..., Yk, Yk+2, ..., Y2k) = ê(P,H)α

k+1
]

in solving k-BDHE problem. The k-BDHE assumption states that Adv(B) is
negligible for any polynomial-time algorithm B.

3 Security Model

The security model for AGKA protocols was first studied in [19], in which pas-
sive attackers are considered. In [22], security model for AAGKA protocols was
defined for the first time. This model is for AAGKA protocols in identity-based
public key cryptosystem and captures the identity-based variation of the typical
security requirements: secrecy, known-key security and partial forward secrecy.
Secrecy guarantees that, except the group members, no entity can learn the mes-
sages encrypted under the negotiated public key. Known-key security means that,
if an adversary learns the group encryption/decryption keys of other sessions,
he cannot compute subsequent group decryption keys. Partial forward secrecy
ensures that the disclosure of one or more long-term private keys of group mem-
bers must not compromise the secrecy of the messages in the earlier runs of the

500 L. Zhang et al.

protocol. A stronger notion is perfect forward secrecy which requires that the
secrecy of previous messages is not violated even if all the long-term private keys
of the group members are disclosed. In the following, we propose the security
model for CL-AAGKA protocols which aims to capture the certificateless varia-
tion of the typical security requirements: secrecy, known-key security and partial
forward secrecy.

3.1 Participants and Notations

Suppose a set of users {U1, ...,Un} decide to launch a CL-AAGKA protocol run.
We define following variables for a participant Ui.

– Ππ
Ui

denotes instance π of participant Ui involved with other partner partic-
ipants {U1, ...,Ui−1,Ui+1, ...,Un} in a session.

– pidπ
Ui

denotes the partner ID of instance Ππ
Ui
. It contains the identity of Ui

and the identities of all the partner participants of Ui. The identities in pidπ
Ui

are assumed to be ordered lexicographically.
– sidπ

Ui
denotes the session ID of instance Ππ

Ui
. Similar to [15], we assume

that when the protocol is initiated, a unique session ID is provided by some
higher-level protocol. Therefore, all members taking part in a given execution
of a protocol will have the same session ID.

– msπUi
is the messages sent and received byΠπ

Ui
during its execution. The mes-

sages in msπUi
are ordered by round, and within each round lexicographically

by the identities of the purported senders.
– ekπUi

is the encryption key held by Ππ
Ui
.

– dkπUi
is the decryption key held by Ππ

Ui
.

– stateπUi
represents the current (internal) state of instance Ππ

Ui
. We say Ππ

Ui

has terminated, if it finishes sending and receiving messages. If a CL-AAGKA
protocol has been accepted in the instance Ππ

Ui
, then it possesses ekπUi

(�=
null), dkπUi

(�= null), pidπ
Ui

and sidπ
Ui
.

Definition 1 (Partnering). We say instances Ππ
Ui

and Ππ′
Uj

(with i �= j) are

partnered iff (1) they are accepted; (2) pidπ
Ui

= pidπ′
Uj
; and (3) sidπ

Ui
= sidπ′

Uj
.

3.2 The Model

As defined in [1], a protocol in CL-PKC has to resist the attacks from type I and
type II adversaries. The former may replace the public key of any user, while
the latter has the knowledge of the master-key but cannot perform public key
replacement. The ability of type II adversary is later enhanced by allowing he
to replace the public key of any user except the target one(s) [10,14,24]. In our
security model, we treat the type II adversary as the enhanced one.

The security model of CL-AAGKA protocols is defined by the following game
which is played between a challenger C and an adversary A. A is either a type I
or II adversary and controls all the message flows. The game has following three
stages.

Provably Secure Certificateless Authenticated Asymmetric GKA 501

Initial: At this stage, C generates the system parameters params and the master-
key of the KGC. If A is of type I, params is passed to A; otherwise, master-key
is given to A as well.

Attacking: At this stage, A may access the following oracles which are con-
trolled by C.
– Send(Ππ

Ui
, Λ): Send a message Λ to instance Ππ

Ui
, and output the reply gen-

erated by this instance. If Λ is incorrect, the query returns null. When
Λ = (sid, pid), it prompts Ui to initiate the protocol using session ID sid and
partner ID pid. The identity of Ui should be in pid.

– Corrupt.PPK(Ui): Output the partial private key of participant Ui.
– Corrupt.SK(Ui): Output the secret key of participant Ui.
– Corrupt(Ui): Output the full private key of participant Ui. The oracle can

be simulated via calls both Corrupt.PPK(Ui) and Corrupt.SK(Ui). Hence, this
oracle is not considered in this paper.

– PK(Ui): Output the public key of participant Ui.
– Replace(Ui, P

′
i): Replace the public key of participant Ui to be P ′

i .
– Ek.Reveal(Ππ

Ui
): Output the encryption key ekπUi

.
– Dk.Reveal(Ππ

Ui
): Output the decryption key dkπUi

. We will use it to model
known-key security.

– Test(Ππ
Ui
): At some point, A returns two messages (m0,m1) (|m0| = |m1|)

and a fresh instance Ππ
Ui

(see Definition 2). The challenger C chooses b ∈
{0, 1} at random, generates a ciphertext c by encrypting mb under ek

π
Ui
, and

returns c to A. This query is used to model secrecy and can be submitted
only once.

Response: A returns a bit b′. We say that A wins if b′ = b. A’s advantage is
defined to be Adv(A) = |2Pr[b = b′]− 1|.
Definition 2 (Freshness). An instance Ππ

Ui
is fresh if none of the following

happens:

1. At some point, A queried Dk.Reveal(Ππ
Ui
) or Dk.Reveal(Ππ′

Uj
), where Ππ′

Uj
is

partnered with Ππ
Ui
.

2. A corrupted the partial private key of a participant in pidπ
Ui

before Ππ
Ui

ter-
minated if A is of type I, or, A corrupted the secret key or replaced the public
key of a participant in pidπUi

before Ππ
Ui

terminated if A is of type II.
3. All the partial private keys of the participants associated with sidπ

Ui
are cor-

rupted if A is of type I, or, all the secret keys of the participants with sidπ
Ui

are corrupted if A is of type II.

In the above definition of freshness, since we do not allow A to corrupt the
partial private keys or secret keys of all the participants in the same session, our
game captures partial forward secrecy.

Definition 3. A CL-AAGKA protocol is said to be secure against semantically
indistinguishable under chosen plaintext attacks (Ind-CPA), if the advantage

Adv(A) = |2Pr[b = b′]− 1|
for polynomial-time bounded adversary A to win in the above game is negligible.

502 L. Zhang et al.

In the above model, if A may additionally submit ciphertexts to C to obtain
the corresponding plaintexts during the Attacking stage and the challenging
ciphertext has never been queried for the plaintext in the Test query, then the
model captures a stronger attack against CL-AAGKA protocols called indistin-
guishable chosen ciphertext attack (Ind-CCA). Generic constructions of AAGKA
protocols secure against Ind-CCA can be found in [12,19,22]. Therefore, we will
focus on CL-AAGKA protocol secure against Ind-CPA.

4 Strongly Unforgeable Stateful CL-B-MS Scheme

Our CL-AAGKA protocol is built on a strongly unforgeable stateful CL-B-MS
scheme. A stateful CL-B-MS scheme allows a signer to generate a certificateless
batch signature on t messages under a state information using the same random
input. Later, the certificateless batch signatures on the same messages under
the same state information may be aggregated into a CL-B-MS which can be
separated into t individual certificateless multi-signatures. Informally, a stateful
CL-B-MS is strongly unforgeable, if an attacker cannot forge a new CL-B-MS
on t messages under a state information even the attacker has already obtained
a CL-B-MS on the same t messages under the same state information. Precise
definition will be given in Section 4.2. In the precise definition, we will show that
if a stateful CL-B-MS is strongly unforgeable, an attacker cannot even forge a
new certificateless multi-signature.

4.1 Definition

A CL-B-MS scheme consists of the following seven algorithms.

– Setup: On input a security parameter, it generates a master key master-key
of the KGC and a list of system parameters params.

– Extract.PPK: On input params, master-key and a user’s identity, it outputs
the user’s partial private key.

– SK.Gen: On input params and a user’s identity, it outputs the user’s secret
key.

– PK.Gen: On input params and a user’s identity and secret key, it outputs the
user’s public key.

– Sign: On input params, a one-time-use state information ψ, t messages, a
signer’s identity, public key, partial private key and secret key, this algorithm
outputs a certificateless batch signature.

– Aggregate: On input params, the identities and public keys of x signers, a
collection of x certificateless batch signatures on t messages under the same
state information ψ from the x signers, this algorithm outputs a CL-B-MS.

– Verify: This algorithm is used to check the validity of a CL-B-MS. It outputs
1 if the CL-B-MS is valid; otherwise, it outputs 0.

Provably Secure Certificateless Authenticated Asymmetric GKA 503

4.2 The Model

Similarly, we also need to consider two types of adversaries as that in the security
model of CL-AAGKA protocols. The model is defined via the following game
between a challenger C and an adversary A of type I or II.

Initial: C first runs Setup to obtain a master-key and the system parameter list
params, then sends params to A if A is a type I adversary; otherwise master-key
is also passed to A.

Attacking: A can perform a polynomially bounded number of the following
types of queries in an adaptive manner.

– Corrupt.PPK(IDi): Output the partial private key of the user with identity
IDi.

– Corrupt.SK(IDi): Output the secret key of the user with identity IDi.
– PK(IDi): Output the public key of the user with identity IDi.
– Replace(IDi, P

′
i): Replace the public key of the user with identity IDi to be

P ′
i .

– Sign(IDi, Pi, ψ,m1, ...,mt): Output a certificateless batch signature on state
information ψ and messages (m1, ...,mt). It requires that the batch signature
is valid under (IDi, Pi) and ψ.

Forgery: A outputs x identities {ID∗
1, ..., ID

∗
x} and corresponding public keys

{P ∗
1 , ..., P

∗
x}, a message m∗, a state information ψ∗ and a certificateless multi-

signature σ∗. We say that A wins the above game if the following conditions are
satisfied:

1. σ∗ is a valid multi-signature on message m∗ under {ID∗
1 , ..., ID

∗
x},

{P ∗
1 , ..., P

∗
x} and ψ∗.

2. If A is a type I adversary, it requires that none of the identities in {ID∗
1 , ...,

ID∗
x} has been submitted during the Corrupt.PPK queries; else, it requires

that none of the identities in {ID∗
1 , ..., ID

∗
x} has been submitted during the

Corrupt.SK and Replace queries.
3. The certificateless multi-signature is not generated by using the certificate-

less batch signatures output by calling the Sign queries with (ID∗
i , P

∗
i , ψ

∗,
m1i , ...,m

∗, ...,mti) as input, for i ∈ {1, ..., x}.

Similarly to the security model in [22], A is only required to output a single
multi-signature in the above model. This is due to fact that a CL-B-MS can be
separated into t individual certificateless multi-signatures.

Definition 4. A CL-B-MS scheme is strongly existentially unforgeable under
adaptive chosen-message attacks if and only if the success probability of any
polynomial-time bounded adversary in the above game is negligible.

504 L. Zhang et al.

4.3 Our CL-B-MS Scheme

The specification of the scheme is as follows:

– Setup: Given a security parameter �, the KGC chooses a cyclic additive group
G1 which is generated by P with prime order q, chooses a cyclic multiplicative
group G2 of the same order and a bilinear map ê : G1×G1 −→ G2. The KGC
also chooses a random λ ∈ Z∗

q as the master-key and sets PT = λP , chooses
cryptographic hash functions H1 ∼ H3 : {0, 1}∗ −→ G1, H4 : {0, 1}∗ −→ Z∗

q .
The system parameter list is

params = (q,G1, G2, ê, P, PT , H1 ∼ H4).

– Extract.PPK: This algorithm accepts params, master-key λ and a user’s iden-
tity IDi ∈ {0, 1}∗, and generates the partial private key for the user as
follows:

1. Compute Qi,0 = H1(IDi, 0), Qi,1 = H1(IDi, 1).

2. Output the partial private key

(Di,0, Di,1) = (λQi,0, λQi,1).

– SK.Gen: This algorithm takes as input params, a user’s identity IDi, selects
xi, yi ∈ Z∗

q and sets (xi, yi) as her secret key.

– PK.Gen: This algorithm takes as input params, a user’s identity IDi, secret
key (xi, yi) and sets her public key as

Pi = (Pi,0, Pi,1) = (xiP, yiP).

– Sign: To sign t messages (m1, ...,mt) using the signing key (xi, yi, Di,0, Di,1),
the signer, whose identity is IDi and public key is

Pi = (Pi,0, Pi,1) = (xiP, yiP),

first chooses a state information ψ then performs the following steps:

1. Choose a random ri ∈ Z∗
q , compute Ri = riP .

2. Compute

hi = H4(Ri, ψ, IDi, Pi,0, Pi,1), V = H3(ψ).

3. For 1 ≤ j ≤ t, compute

Tj = H2(ψ,mj), Si,j = Di,0 + hiDi,1 + (xi + hiyi)V + riTj .

4. Output

σi = (Ri, Si,1, ..., Si,t)

as the batch signature.

Provably Secure Certificateless Authenticated Asymmetric GKA 505

– Aggregation: For an aggregating set (which has the same state information
ψ) of x users with identities {ID1, · · · , IDx} and the corresponding public
keys {P1, · · · , Px}, and t signatures

(σ1 = (R1, S1,1, ..., S1,t), · · · , σt = (Rx, Sx,1, ..., Sx,t))

on (m1, ...,mt) from the x users respectively, anyone can compute

Sj =

n∑
i=1

Si,j

and output the batch multi-signature

σ = (R1, ..., Rx, S1, ..., St).

– Verify: To verify the above batch multi-signature, a verifier performs the
following steps:
1. Compute V = H3(ψ), R =

∑x
i=1 Ri.

2. For 1 ≤ i ≤ x, compute

hi = H4(Ri, ψ, IDi, Pi,0, Pi,1), Qi,0 = H1(IDi, 0), Qi,1 = H1(IDi, 1).

3. For 1 ≤ j ≤ t, compute Tj = H2(ψ,mj), verify

ê(Sj , P)
?
= ê(PT ,

x∑
i=1

Qi,0 +
x∑

i=1

hiQi,1)ê(V,
x∑

i=1

Pi,0 +
x∑

i=1

hiPi,1)ê(Tj , R).

If all equation hold, output true. Otherwise, output ⊥.

4.4 Security Analysis

The following theorems shows that our stateful CL-B-MS scheme is strongly
unforgeable.

Theorem 1. Suppose a type I adversary A who asks at most qHi queries to
Hi for 1 ≤ i ≤ 4, qcp queries to Corrupt.PPK, qp queries to PK, qcs queries to
Corrupt.SK, qs queries to Sign, and wins the game with advantage ε in time τ .
Then there exists an algorithm to solve the CDH problem with advantage

qH2

ex+2
(

x+ 2

qH2 + qcp + x+ 1
)x+2ε

in time τ +O(2qH1 + qH2 + qH3 + 4qp + 2qcs + 6Nqs)τG1 , where τG1 is the time
to compute a scalar multiplication in G1, x is the scale of the identity set related
to the forged signature, N is the largest message scale in the Sign queries.

Due to page limitation, the proof will be presented in the full version of this
paper.

506 L. Zhang et al.

Theorem 2. Suppose a type II adversary A who asks at most qHi queries to Hi

for 2 ≤ i ≤ 4, qp queries to PK, qcs queries to Corrupt.SK, qs queries to Sign,
and wins the game with advantage ε in time τ . Then there exists an algorithm
to solve the CDH problem with advantage

qH2

ex+2
(

x+ 2

qH2 + qcs + x+ 1
)x+2ε

in time τ +O(qH2 + qH3 + 4qp + 4qcs + 7Nqs)τG1 .

Due to page limitation, the proof will be presented in the full version of this
paper.

5 The CL-AAGKA Protocol

5.1 The Proposal

Our CL-AAGKA protocol is based on the above CL-B-MS scheme. The concrete
protocol comes as follows:

– Setup: The same as that of our CL-B-MS scheme, except an additional hash
function H5 : {0, 1}∗ −→ {0, 1}ς is chosen, where ς defines the bit-length of
plaintexts. The system parameter list is

params = (q,G1, G2, ê, P, PT , H1 ∼ H5, ς).

– Extract.PPK: The same as that of our CL-B-MS scheme.

– SK.Gen: The same as that of our CL-B-MS scheme.

– PK.Gen: The same as that of our CL-B-MS scheme.

– Agreement: Assume the group scale is n and the session ID is sidλ. A protocol
participant, whose identity is IDi, public key is (Pi,0, Pi,1), secret key is
(xi, yi) and partial private key is (Di,0, Di,1), performs the following steps:

1. Choose ri ∈ Z
∗
q and compute Ri = riP .

2. For 1 ≤ j ≤ n, compute Tj = H2(sidλ, j).

3. Compute

V = H3(sidλ), hi = H4(Ri, sidλ, IDi, Pi,0, Pi,1).

4. For 1 ≤ j ≤ n, compute

Zi,j = Di,0 + hiDi,1 + (xi + hiyi)V + riTj .

5. Publish

σi = (IDi, Pi,0, Pi,1, Ri, {Zi,j}j∈{1,...,n},j =i).

Provably Secure Certificateless Authenticated Asymmetric GKA 507

– Enc.Key.Gen: To get the group encryption key, a user computes V = H3(sidλ);
and for 1 ≤ i ≤ n computes

Qi,0 = H1(IDi, 0), Qi,1 = H1(IDi, 1), hi = H4(Ri, sidλ, IDi, Pi,0, Pi,1).

Define Δ = 1, if Equations (1) and (2) hold, and Δ = 0 in other cases.

ê(Z1,2, P)
?
= ê(PT , Q1,0 + h1Q1,1)ê(V, P1,0 + h1P1,1)ê(T2, R1) (1)

ê(

n∏
i=2

Zi,1, P)

?
=ê(PT ,

n∑
i=2

Qi,0 +

n∑
i=2

hiQi,1)ê(V,

n∑
i=2

Pi,0 +

n∑
i=2

hiPi,1)ê(T1,

n∑
i=2

Ri)

(2)

The Δ is used to check whether Ri is well formatted, where Tj = H2(sidλ, j),
j ∈ {1, 2}. If Δ = 1, the user outputs (R,Ω) as the group encryption key,
where

R =
n∑

i=1

Ri, Ω = ê(PT ,
n∑

i=1

Qi,0 +
n∑

i=1

hiQi,1)ê(V,
n∑

i=1

Pi,0 +
n∑

i=1

hiPi,1);

otherwise it aborts. We note that a protocol participant does not need to test
the value of Δ, since it will do a similar check in the following Dec.Key.Gen
stage.

– Dec.Key.Gen: Each participant Ui computes

Ti = H2(sidλ, i), V = H3(sidλ),

Qi,0 = H1(IDi, 0), Qi,1 = H1(IDi, 1), hi = H4(Ri, sidλ, IDi, Pi,0, Pi,1),

computes

R =
n∑

l=1

Rl, Γi = ê(Ti, R), Si =
n∑

l=1

Zl,i,

Ω = ê(PT ,

n∑
l=1

Ql,0 +

n∑
l=1

hlQl,1)ê(V,

n∑
l=1

Pl,0 +

n∑
l=1

hlPl,1)

and tests
ê(Si, P)

?
= Ω · Γi.

If the equation holds, Ui accepts Si as the group decryption key; otherwise,
it aborts. The above test is also used by Ui to determine whether the group
encryption key is valid.

– Enc: To encrypt a plaintext m, a user does the following steps:
1. Select s ∈ Z∗

q and compute

C1 = sP,C2 = sR,C3 = m⊕H5(Ω
s).

508 L. Zhang et al.

2. Output the ciphertext C = (C1, C2, C3).
– Dec: To decrypt the ciphertext C = (C1, C2, C3), Ui, whose group decryption

key is Si, computes

m = C3 ⊕H5(ê(Si, C1)ê(T
−1
i , C2)).

5.2 Security Analysis

In this section, we show that the security of our CL-AAGKA protocol can be
reduced to the difficulty of solving the k-BDHE problem and the strong unforge-
ability of our CL-B-MS scheme.

Theorem 3. Suppose a type I adversary A who asks at most qHi queries to
Hi for 1 ≤ i ≤ 5, qcp queries to Corrupt.PPK, qs queries to Send, qer queries
to Ek.Reveal and qdr queries to Dk.Reveal, and wins the game with advantage
ε in time τ . Then there exists an algorithm to solve the k-BDHE problem with
advantage

4n(1− 2ε)

qH5(qcp + qdr + n+ 1)2e2
ε

in time τ +O(10qer)τê+O(2qH1 + qH2 + qH3 +4qp+2qcs+7qs+6qer)τG1 , where
ε is the advantage for A to forge a valid CL-B-MS in time τ , τê is the time to
compute a pairing and τG1 is the time to compute a scalar multiplication in G1.

Due to page limitation, the proof will be presented in the full version of this
paper.

Theorem 4. Suppose a type II adversary A who asks at most qHi queries to
Hi for 2 ≤ i ≤ 5, qcs queries to Corrupt.SK, qs queries to Send, qer queries
to Ek.Reveal and qdr queries to Dk.Reveal, and wins the game with advantage
ε in time τ . Then there exists an algorithm to solve the k-BDHE problem with
advantage

4n(1− 2ε)

qH5(qcs + qdr + n+ 1)2e2
ε

in time τ+O(10qer)τê+O(qH2 +qH3 +2qp+2qcs+7qs+6qer)τG1 , where ε is the
advantage for A to forge a valid CL-B-MS in time τ , τê is the time to compute
a pairing and τG1 is the time to compute a scalar multiplication in G1.

Due to page limitation, the proof will be presented in the full version of this
paper.

6 Conclusion

We have defined the security model for CL-AAGKA protocols, which captures
the typical security requirements of GKA protocols. A one-round CL-AAGKA
protocol is proposed and proven secure in our model. Unlike the existing AAGKA
protocol in identity-based cryptosystem, our CL-AAGKA protocol does not suf-
fer from the key escrow problem.

Provably Secure Certificateless Authenticated Asymmetric GKA 509

Acknowledgments. This paper is supported by the Natural Science Foun-
dation of China through projects 61202465, 61021004, 61103222, 61370190,
61173154, 61003214, 61272501 and 61070192, the Shanghai NSF under grant
12ZR1443500, 11ZR1411200, the Shanghai Chen Guang Program (12CG24),
the Science and Technology Commission of Shanghai Municipality under grant
13JC1403500, the National Key Basic Research Program (973 program) through
project 2012CB315905, the Beijing Natural Science Foundation through project
4132056 and 4122041, the Research Fund for the Doctoral Program of Higher
Education of China under Grant No. 20110076120016, the Fundamental Re-
search Funds for the Central Universities through the Research Funds of East
China Normal University, the project 2012211020212 of Wuhan University and
the Research Funds of Renmin University of China through project 14XNLF02,
the Open Research Fund of The Academy of Satellite Application and the Open
Research Fund of Beijing Key Laboratory of Trusted Computing, and by the
European Commission under FP7 projects DwB and Inter-Trust, the Spanish
Government 777 through projects IPT-2012-0603-430000, TIN2012-32757 and
TIN2011-27076-C03-01.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

3. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temporary Mathematics 324, 71–90 (2003)

4. Boyd, C., González-Nieto, J.: Round-optimal contributory conference key agree-
ment. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer,
Heidelberg (2002)

5. Boyd, C., Mathuria, A.: Protocols for authentication and key establishment,
pp. 9–10. Springer (2003) ISBN:3-540-43107-1

6. Bresson, E., Catalano, D.: Constant round authenticated group key agreement via
distributed computation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 115–129. Springer, Heidelberg (2004)

7. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.: Provably authenticated
group Diffie-Hellman key exchange. In: ACM CCS 2001, pp. 255–264 (2001)

8. Burmester, M., Desmedt, Y.G.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

9. Choi, K.Y., Hwang, J.Y., Lee, D.H.: Efficient ID-based group key agreement with
bilinear maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 130–144. Springer, Heidelberg (2004)

10. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless encryption schemes strongly
secure in the standard model. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939,
pp. 344–359. Springer, Heidelberg (2008)

11. Dutta, R., Barua, R.: Provably secure constant round contributory group key agree-
ment in dynamic setting. IEEE Trans. Inf. Theory 54(5), 2007–2025 (2008)

510 L. Zhang et al.

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

13. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

14. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signature
revisited. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 308–322. Springer, Heidelberg (2007)

15. Katz, J., Shin, J.: Modeling insider attacks on group key-exchange protocols. In:
ACM CCS 2005, pp. 180–189 (2005)

16. Lv, X., Li, H., Wang, B.: Authenticated asymmetric group key agreement based
on certificateless cryptosystem. International Journal of Computer Mathematics
(2013), http://dx.doi.org/10.1080/00207160.2013.806653

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

18. Wei, G., Yang, X., Shao, J.: Efficient certificateless authenticated asymmetric
group key agreement protocol. KSII Transactions on Internet and Information
Systems 6(12) (2012)

19. Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric group key
agreement. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 153–170.
Springer, Heidelberg (2009)

20. Wu, Q., Qin, B., Zhang, L., Domingo-Ferrer, J., Farràs, O.: Bridging Broad-
cast Encryption and Group Key Agreement. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 143–160. Springer, Heidelberg (2011)

21. Wu, Q., Qin, B., Zhang, L., Domingo-Ferrer, J., Manjón, J.A.: Fast Transmission
to Remote Cooperative Groups: A New Key Management Paradigm. IEEE/ACM
Trans. Netw. 21(2), 621–633 (2013)

22. Zhang, L., Wu, Q., Qin, B., Domingo-Ferrer, J.: Identity-based authenticated asym-
metric group key agreement protocol. In:Thai,M.T., Sahni, S. (eds.)COCOON2010.
LNCS, vol. 6196, pp. 510–519. Springer, Heidelberg (2010)

23. Zhang, L., Wu, Q., Qin, B., Domingo-Ferrer, J.: Asymmetric group key agreement
protocol for open networks and its application to broadcast encryption. Computer
Networks 55(15), 3246–3255 (2011)

24. Zhang, L., Zhang, F., Wu, Q., Domingo-Ferrer, J.: Simulatable certificateless
two-party authenticated key agreement protocol. Information Sciences 180(6),
1020–1030 (2010)

http://dx.doi.org/10.1080/00207160.2013.806653

New Variants of Lattice Problems

and Their NP-Hardness

Wulu Li

School of Mathematical Science
Peking University
Beijing, China

liwulu@pku.edu.cn

Abstract. We introduce some new variants of lattice problems:
Quadrant-SVP, Quadrant-CVP and Quadrant-GapCVP’. All of them
are NP-hard under deterministic reductions from subset sum problem.
These new type of lattice problems have potential in construction of
cryptosystems. Moreover, these new variant problems have reductions
with standard SVP (shortest vector problem) and CVP (closest vector
problem), this feature gives new way to study the complexity of SVP and
CVP, especially for the proof of NP-hardness of SVP under deterministic
reductions, which is an open problem up to now.

Keywords: lattice, complexity, NP-hard, deterministic reduction.

1 Introduction

Lattice has been widely studied in cryptography in these years, for its problems
enjoy very strong security proofs based on worst-case hardness, and they have
potential against quantum attack.

A lattice L is a discrete subgroup of the Euclidean space Rm, and it is gener-
ated by linearly independent vectors b1,b2, · · · ,bn, namely:

L = {
n∑

i=1

xibi|xi ∈ Z,bi ∈ R
m}.

Denoted by L = L(b1,b2, · · · ,bn), m, n are called the dimension and the rank
of it. Usually, we consider lattices with rational generating vectors, and it is
called the rational lattices.

Lattice was first studied as a part of geometry of numbers, and was developed
Gauss, Hermite, Zolotarev, Dirichlet, Minkowski [18] and Voronoi [22]. There
are mainly two classical problems over lattices: SVP and CVP.

SVP (shortest vector problem): given lattice and norm (such as �2 norm, etc),
find the shortest nonzero vector in it;

CVP (closest vector problem): given lattice, norm and a target vector t ∈ Rm,
find the closest lattice vector from t.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 511–523, 2014.
c© Springer International Publishing Switzerland 2014

512 W. Li

Since the historic work introduced by Lenstra et.al [13]: the LLL algorithm,
which is the first algorithm for approximate SVP with factor φ = O((2/

√
3)n).

In 1986, algorithm for approximate CVP was introduced by Babai [4], using
the LLL method; Schnorr [20] improved the LLL algorithm and decreased the
approximate factor to (1+ε)n; in 2001, Ajtai, Kumar and Sivakumar [3] proposed
a new sieve method for solving SVP; Blömer [5] improved the AKS algorithm
for solving GSVP and CVP; recently a new algorithm for SVP based on voronoi
cell was introduced by Micciancio [17], with single exponential running time.

There are a variety of cryptosystems building on lattice assumptions. In 1996,
the Ajtai-Dwork [2] public-key cryptosystem was proposed, the security is based
on the worst-case hardness of unique-SVP, it was the first lattice based public-
key cryptosystem with provable security; GGH [10] was proposed by Goldreich,
Goldwasser and Halevi in 1996; in 1997, Hoffstein, Pipher and Silverman in-
troduced NTRU [11], it is the most efficient lattice based cryptosystem; Oded
Regev [19] proposed LWE and cryptosystem built from it, its security was based
on the hardness of worst-case hardness of CVP; in 2009, Gentry [8] proposed the
first fully-homomorphic encryption scheme based on lattice.

1.1 NP-Hardness Result of SVP and CVP

The complexity of lattice problems has been studied since 1980s. In 1981, van
Emde Boas [21] proved the NP-hardness of CVP in �p norm and NP-hardness
of SVP in �∞ norm, also he conjectured the NP-hardness of SVP in �p norm;
in 1996, Ajtai [1] proved that SVP in �2 norm is NP-hard, under randomized
reduction; Cai [6] improved Ajtai’s work, showed approximating SVP in �p norm
within factor O(1+1/nε) is NP-hard, his result also based on randomized reduc-
tion; Micciancio [14]proved approximating SVP in �p norm within factor p

√
2 is

NP-hard under randomized reduction; Knot [12] proved that under assumption

“NP �=RTIME”, approximate SVP within factor γ(n) = 2log
1/2−ε(n) is NP-hard;

a recent work by Micciancio [15] improved Knot’s result, showed NP-harness of
approximating SVP within constant factor under RUR-reduction. But there are
no deterministic reductions to prove the NP-hardness of SVP up to now.

On the other side, Goldreich and Goldwasser [9] showed that under ap-
proximate factor γ =

√
n/O(logn), if approximating SVP is NP-hard, then

coNP⊆AM, which is thought to be impossible in complexity theory, so proving
the hardness of SVP from constant factor c to

√
n/O(log n) is still an open

problem.
Actually, the NP-hardness under randomized reductions is not a standard

complexity result, how to find a deterministic reduction to prove the NP-hardness
of lattice problem is also an open problem. In this paper, we focus on variants
of lattice problems and prove their NP-hardness under deterministic reductions.

1.2 Our Results and Open Problems

We introduce 3 new variants of lattice problem: Quadrant-SVP, Quadrant-CVP
and Quadrant-CVP’, all these problems have NP-hardness under deterministic

New Variants of Lattice Problems and Their NP-Hardness 513

reductions. The Quadrant-SVP, defined similar to SVP, is to find the shortest
nonzero lattice vector in given subset ofRn, usually we call the subset “quadrant”
of Euclid space, in this paper, we use quadrant Q1 = {x = (x1, · · · , xm)|∀i ∈
[m], xi ≥ 0}.

(Quadrant-SVP) Given lattice L in Rm, �p norm and Q1, find the shortest
nonzero vector in L ∩Q1.

(Quadrant-CVP) Given lattice L in Rm, �p norm and a target vector t ∈ Rm,
find a lattice vector v such that ||v − t|| = min{||x− t|||x ∈ L,x− t ∈ Q1}.

The main result of this paper is contained in the following theorem:

Theorem 1. For any given lattice L and �p norm, there exist no polynomial
time algorithms to solve Quadrant-SVP, Quadrant-CVP and Quadrant-CVP’,
unless P=NP.

We give the first construction of Quadrant lattice problems and prove their
NP-hardness, which is the main contribution of this paper. Besides, we give a
deterministic reduction from Quadrant-CVP’ to CVP, the result can be seen
as a new proof of NP-hardness of CVP, this Quadrant method can be used in
studying the complexity of SVP and CVP.

By proving the NP-hardness of Quadrant-SVP, we get closer to prove the NP-
hardness of SVP under deterministic reduction, which is still an open problem;
on the other hand, how to prove the NP-hardness of Quadrant lattice problems
with larger approximate factor is also an open problem.

1.3 Organization

In section 2 we give readers some preliminaries; in section 3 we give the definition
of Quadrant lattice problems and prove their NP-hardness; in section 4 we discuss
the approximate variants of Quadrant lattice problems and prove their NP-
hardness; in section 5 we give the conclusion.

2 Preliminaries

2.1 Lattice

Lattice is a subgroup of Euclidian space R
m, it is generated by n independent

vectors, namely:

L(b1, . . . ,bn) = {
n∑

i=1

xibi|x = (x1, · · · , xm) ∈ Z
m}

Where m is the dimension of L, n is its rank, the vectors b1, · · · ,bn is the basis
of L.

The Gram-Schmidt orthogonalization of a basis B is the sequence of or-

thogonal vectors b̃1, . . . , b̃n, where b̃i is the component of bi orthogonal to

514 W. Li

span(b1, · · · ,bi−1), clearly, ||b̃i|| ≤ ||bi||, where || · || denotes the Euclidian
norm in Rm, namely, the �p norm.

The ith successive minimum λi is defined as the smallest r that br contains
at least i independent vectors in Rm (λi can be defined in different norms, such
as �p), λ1 is the length of the shortest vector in L. For a linearly independent
vector set S ⊂ L, where S = {s1 . . . sr}, we denote r as the rank of S and denote
||S|| as the longest norm of s1 . . . sr, namely:

||S|| = max
i
{||s1|| . . . ||sr||}.

If the S has rank n, we call S a full rank independent vector set. So λn is the
norm of shortest full rank independent vector set.

2.2 SVP and CVP

Lattice is attractive in cryptography for its problems including SVP (GapSVP),
CVP (GapCVP), all of these problems achieve NP-hardness under deterministic
or randomized reductions, we define these problems in the following:

Definition 2. (SVP) For any given lattice L and the �p norm, the goal is to
find the shortest nonzero vector v ∈ L. In other words, the goal of SVP is to
find v ∈ L such that ||v|| = λ1.

Definition 3. (CVP) For any given lattice L, �p norm and a target vector t ∈
Rm, the goal is to find v ∈ L such that ||v − t|| = minx∈L||x− t||.

There are decision versions of SVP and CVP, we omit the definition for sim-
plicity. There are also promise version of SVP and CVP, which is often used in
building of cryptosystems.

Definition 4. (GapSV Pγ) For input a lattice basis B and a real d, it is a Yes
instance if λ1 ≤ d, and is a No instance if λ1 > γd, if d < λ1 ≤ γd, then both
Yes and No would be correct.

Definition 5. (GapCV Pγ) For input a lattice basis B, a vector t ∈ Rm and a
real d, it is a Yes instance if dist(L, t) ≤ d, and is a No instance if dist(L, t) >
γd, where “dist” is defined by arbitrary norm (�p norm in this paper) in Rm,
d < dist(L, t) ≤ γd, then both Yes and No would be correct.

It is obvious that when γ = 1,GapSV Pγ andGapCV Pγ is the decision version
of SVP and CVP.

2.3 NP-Hardness of Lattice Problems

In this subsection we review the NP-hardness results of several lattice problems,
both SVP (GapSVP), CVP (GapCVP) are proved to be NP-hard, we introduce
some of them in the following lemmas:

New Variants of Lattice Problems and Their NP-Hardness 515

Lemma 6. ([21]) CVP is NP-hard in �p norm under deterministic reduction;
SVP is NP-hard in �∞ under deterministic reduction.

Lemma 7. ([1]) SVP in �2 norm is NP-hard under randomized reduction.

Lemma 8. ([16]) GapCV Pγ is NP-hard in �p norm under deterministic reduc-

tion, where γ = 2log
1−ε(n).

Lemma 9. ([12]) GapSV Pγ is NP-hard in �p norm under randomized reduc-

tion, where γ = 2log
1/2−ε(n).

Since there are no NP-hardness results for SVP (GapSVP) under deterministic
reductions except for �p norm, the NP-hardness of Quadrant-SVP is the first
deterministic NP-hardness result for SVP type problems.

2.4 Subset Sum Problem

In this paper, we use subset sum (SS) in the construction of reduction, the SS
problem is widely studied in cryptography and complexity theory.

Definition 10. (SS) The input is an integer s and a set of integer A =
{a1, · · · , an}, the goal is to determine whether there exists x ∈ {0, 1}n, such
that

∑n
i=1 xiai = s.

SS is a classic NP-complete problem [7], we will use SS in all reduction of this
paper.

Theorem 11. ([7]) Subset sum problem is NP-complete.

Proof. Omitted for brevity. �

3 NP-Hardness of Quadrant-SVP (CVP)

3.1 Definition

In this subsection we give the definition of Quadrant-SVP, Quadrant-CVP, first
of all, we define the “Quadrant” we use throughout the paper:

Definition 12. (Quadrant) A quadrant Q is a subset of Rm, with property that
∀x = (x1, · · · , xm) ∈ Q, xi ≥ 0(or ≤ 0) for i = 1, · · · ,m.

Obviously there are 2m Quadrants in Rm, Q1 denotes {x = (x1, · · · , xm)|xi ≥
0}, and Q2m denotes {x = (x1, · · · , xm)|xi ≤ 0}.

The Quadrant-SVP, defined as solving SVP in Qi other than Rm.

Definition 13. (Quadrant-SVP) For any given lattice L of rank n and the �p
norm, the goal is to find the shortest nonzero vector v ∈ L ∩ Qi, if there exist
no nonzero vectors in Qi, output ∅.

516 W. Li

In the rest of this paper, we will use Q1 without loss of generosity, if fact, the
hardness results of Quadrant lattice problems for any Quadrant Qi is equivalent
to problems for Q1.

The Quadrant-CVP is defined as the same way:

Definition 14. (Quadrant-CVP) Given lattice L in Rm of rank n, �p norm and
a target vector t ∈ Rm, find a lattice vector v such that ||v − t|| = min{‖|x−
t|||x ∈ L,x− t ∈ Q1}, if there exists no vectors satisfy x− t ∈ Q1}, output ∅.

3.2 Proof of NP-Hardness

In this subsection we prove the NP-hardness of Quadrant-SVP and Quadrant-
CVP, using reductions from subset sum problem, our reduction is deterministic.

Theorem 15. Subset sum problem can be reduced to Quadrant-SVP in polyno-
mial time, under �p norm (1 ≤ p ≤ ∞).

Proof. For SS problem instance (a1, · · · , an; s), choose an integer M > 2n, we
have the following lattice basis matrix:

H =

⎡⎣Ma1, · · · ,Man −Ms
−In 1n

In+1

⎤⎦ .
Notice that In stands for the unit matrix of dimension n, and L(H) is an integer
lattice with dimension 2n+ 2. Any vector in L(H) can be written as:

Hx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(
∑n

i=1 xiai − xn+1s)
xn+1 − x1

...
xn+1 − xn

x1
...

xn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Where x = (x1, · · · , xn+1). We will prove that, if we can solve Quadrant-SVP
in the above lattice, we will get the solution of the SS problem. Actually, if the
SS problem has a solution, then the Quadrant-SVP has a solution v such that
||v||�p ≤ p

√
2n+ 1; if the SS problem has no solutions at all, then the Quadrant-

SVP also has no solutions or has solution v such that ||v||�p > p
√
2n+ 1.

We will divide the proof into two parts, one for 1 ≤ p <∞ and the other for
p =∞.
(1 ≤ p <∞):

1. If SS problem has a solution (x1, · · · , xn) ∈ {0, 1}n such that
∑n

i=1 xiai = s,
then there exists lattice vector

v = H(x1, · · · , xn, 1)
T = (0, 1− x1, · · · , 1− xn, x1, · · · , xn, 1)

T .

New Variants of Lattice Problems and Their NP-Hardness 517

Since xi = 0, 1, we get v ∈ Q1 and ||v||�p ≤ p
√
n+ 1, so there exists solution

of Quadrant-SVP in L(H) with norm less than p
√
n+ 1.

2. If SS problem has no solutions, we prove that the Quadrant-SVP has no
solutions or has solution v with ||v||�p > p

√
2n+ 1. We assume that there

exists a solution of Quadrant-SVP, v ∈ Q1, that ||v|| ≤ p
√
2n+ 1.

· If xn+1 ≥ 2, since xi ≥ 0 and xn+1 − xi ≥ 0. Among x1, · · · , xn, we
assume there are k0 elements equal 0, k1 elements equal 1, k2 elements
equal or bigger than 2, then n = k1 + k2 + k3, and

||v||p�p ≥ 2k1 + 2p + k02
p + k22

p

= 2(n+ 2p−1) + (2p − 2)(n− k1) ≥ 2n+ 2.

· If xn+1 = 1, we know that for all 1 ≤ i ≤ n, xi = 0, 1, since the SS
problem has no solutions, we get

∑n
i=1 xiai �= s, then ||v||p�p ≥ Mp ≥

2pnp > 2n+ 1.
· If xn+1 = 0, then for all 1 ≤ i ≤ n, xi = 0, we get v = 0, it can not be
a solution for the Quadrant-SVP problem.

In all of the 3 situations, we get contradiction against the fact we are assum-
ing, then we know that the Quadrant-SVP has no solutions or has solution
v such that ||v||�p > p

√
2n+ 1.

The correctness of the theorem easily followed by the above argument, when
1 ≤ p <∞.
(p =∞):

1. If SS problem has a solution, use similar method, we easily get there exists
solution of Quadrant-SVP in L(H) with �∞ norm less than 1.

2. If SS problem has no solutions, we get that the Quadrant-SVP has no solu-
tions or has solution v with ||v||�∞ ≥ 2.

By above argument, we can solve the SS problem by determine whether the
Quadrant-SVP has a solution with norm equal or less than p

√
n+ 1 (or 1) when

1 ≤ p <∞ (or p =∞). �

We can easily get the NP-hardness of Quadrant-SVP under deterministic
reduction:

Corollary 16. Quadrant-SVP is NP-hard under deterministic reductions, in
other words, there exist no polynomial time algorithms to solve Quadrant-SVP,
unless P=NP.

As for Quadrant-CVP, we use similar method to construct the reduction from
SS problem.

518 W. Li

Theorem 17. Subset sum problem can be reduced to Quadrant-CVP in polyno-
mial time, under �p(1 ≤ p ≤ ∞).

Proof. For SS problem instance (a1, · · · , an; s), choose an integer M > 2n, we
have the following lattice basis matrix and target vector:

T =

⎡⎣Ma1, · · · ,Man
−In
In

⎤⎦ , t = (Ms,−1n,0n)
T .

Notice that In stands for the unit matrix of dimension n, and L(T) is an integer
lattice with dimension n+ 1. For any x = (x1, · · · , xn)

T ,

Tx− t = (M(

n∑
i=1

xiai − s), 1− x1, · · · , 1− xn, x1, · · · , xn)
T .

We will also divide the proof into two parts, one for 1 ≤ p < ∞ and the other
for p =∞.
(1 ≤ p <∞):

1. If the SS problem has a solution, say x = (x1, · · · , xn)
T , such that∑n

i=1 xiai = s, then there exists a lattice vector v = Tx such that v − t =
(0, 1−x1, · · · , 1−xn, x1, · · · , xn)

T ∈ Q1, thus xi = 0, 1, we have ||v−t||�p =
p
√
n, then the solution of Quadrant-CVP is within distance p

√
n from t.

2. If the SS problem has no solutions, we assume that there exists a solution of
Quadrant-CVP, say v = Tx such that v− t ∈ Q1 and ||v− t||�p ≤ p

√
n, then

we have xi = 0, 1, and s �=
∑n

i=1 xiai, we have ||v− t||p�p ≥Mp ≥ (n+1)p ≥
n+ 1, which contradicts to the fact that ||v − t||�p ≤ p

√
n.

The correctness of the theorem followed by the above argument, when 1 ≤ p <
∞.
(p =∞):

1. If SS problem has a solution, use similar method, we easily get there exists
solution v of Quadrant-CVP in L(T) with ||v − t||�∞ ≤ 1.

2. If SS problem has no solutions, we get that the Quadrant-CVP has no solu-
tions or has solution v with ||v − t||�∞ ≥M .

From the above discussion, we can solve the SS problem by determine whether
there exists lattice vector v within �p (or �∞) distance p

√
n (or 1) from t, satis-

fying v − t ∈ Q1. �

Notice the above reduction is deterministic, we get similar corollary:

Corollary 18. Quadrant-CVP is NP-hard under deterministic reductions, in
other words, there exist no polynomial time algorithms to solve Quadrant-CVP,
unless P=NP.

New Variants of Lattice Problems and Their NP-Hardness 519

4 NP-Hardness of Promise Variants of Quadrant Lattice
Problems

4.1 Definitions

There are also promise version of Quadrant lattice problem, defined similar to
GapSVP and GapCVP in section 2.2, we define another 3 promise versions of
Quadrant lattice problems, they are Quadrant-GapSVP, Quadrant-GapCVP,

Quadrant-GapCVP’. In the rest of this paper, we use symbol λ
(1)
1 denotes

min0 =x∈L(B)∩Q1
{||x||�p}.

Definition 19. (Quadrant-GapSV Pγ) For input a lattice basis B and a real d,

it is a Yes instance if λ
(1)
1 ≤ d, and is a No instance if λ

(1)
1 > γd or there are

no nonzero lattice vectors in Q1, if d < λ
(1)
1 ≤ γd, then both Yes and No would

be correct.

We also use symbol dist(1)(t,L) denotes minv∈L,v−t∈Q1{||v−t||�p in the rest
of this paper.

Definition 20. (Quadrant-GapCV Pγ) For input a lattice basis B, a target vec-
tor t and a real d, it is a Yes instance if dist(1)(t,L) ≤ d}, and a No in-
stance if dist(1)(t,L) > γd}, or there are no vectors satisfying v − t ∈ Q1, if
d < dist(1)(t,L) ≤ γd, then both Yes and No would be correct.

4.2 NP-Hardness Proofs

Theorem 21. The SS problem (a1, · · · , an; s) can be reduced to Quadrant-
GapSV Pγ where γ = p

√
2 − ε for p < ∞ and γ = 2 − ε for p = ∞, where

ε > 0 is a negligible constant.

Proof. As proved in Theorem 15, we divide the proof into two parts, one for
1 ≤ p <∞ and the other for p =∞.
(1 ≤ p <∞): We set L(H), d = p

√
n+ 1, γ = p

√
2− ε as the input of Quadrant-

GapSV Pγ , where ε is positive small enough.

1. If the SS problem has a solution, we know from Theorem 15 that λ
(1)
1 ≤

p
√
n+ 1 = d, which is not a No instance of Quadrant-GapSV Pγ ;

2. If the SS problem has no solutions, we know that λ
(1)
1 ≥ p

√
2n+ 2 = p

√
2d >

γd or L ∩Q1 = {0}, which is not a Yes instance of Quadrant-GapSV Pγ .

By the answer of Quadrant-GapSV Pγ , we can determine whether the SS problem
has a solution, namely, if the output of Quadrant-GapSV Pγ is Yes, then SS has
a solution; if the output of Quadrant-GapSV Pγ is No, then SS has no solutions.
(p = ∞): We set L(H), d = 1, γ = p

√
2 − ε as the input of Quadrant-GapSV Pγ

as above.

1. If the SS problem has a solution, we know from Theorem 15 that λ
(1)
1 ≤ 1 =

d, which is not a No instance of Quadrant-GapSV Pγ ;

520 W. Li

2. If the SS problem has no solutions, we know that λ
(1)
1 ≥ 2 = 2d > γd or

L ∩Q1 = {0}, which is not a Yes instance of Quadrant-GapSV Pγ .

Similarly, if the output of Quadrant-GapSV Pγ is Yes, then SS has a solution;
if the output of Quadrant-GapSV Pγ is No, then SS has no solutions. �

Notice the above reduction is deterministic in polynomial time, then we easily
get the NP-hardness of Quadrant-GapSV Pγ :

Corollary 22. Quadrant-GapSV Pγ is NP-hard under deterministic reductions,
where γ = p

√
2− ε in �p<∞ norm and γ = 2− ε in �∞ norm.

The result for Quadrant-GapCV Pγ is similar, according to Theorem 17 and
Theorem 21.

Theorem 23. The SS problem (a1, · · · , an; s) can be reduced to Quadrant-
GapCV Pγ where γ = poly(n), where poly(n) denotes for any polynomial with
input n.

Proof. (1 ≤ p < ∞): For SS instance (a1, · · · , an; s), choose M = γ p
√
n + 1,

which is still polynomial of n, build a lattice L(T) as in Theorem 17, we set
L(T), γ, t, d = p

√
n as the input for Quadrant-GapCV Pγ :

1. If the SS problem has a solution, we know that dist(1)(t,L) ≤ p
√
n, which is

not a No instance of Quadrant-GapCV Pγ ;
2. If the SS problem has no solutions, we know that dist(1)(t,L) ≥ M =

γ p
√
n + 1 > γd or L ∩ Q1 = {0}, which is not a Yes instance of Quadrant-

GapCV Pγ .

We can solve the SS by solving the Quadrant-GapCV Pγ , if the output of
Quadrant-GapCV Pγ is Yes, then SS has a solution; if the output of Quadrant-
GapCV Pγ is No, then SS has no solutions.
(1 ≤ p <∞): Omitted for brevity. �

Corollary 24. Quadrant-GapCV Pγ=poly(n) is NP-hard under deterministic re-
ductions.

4.3 Mixed Problem and Relationship with GapCVP

In this subsection we mix the original GapCVP with the Quadrant-GapCVP,
propose a new type of promise problem and prove its NP-hardness under deter-
ministic reduction, we also give reduction between the new type problem and
standard GapCVP.

Definition 25. (Quadrant-GapCVP’) For input a lattice basis B, a target vec-
tor t and a real d, it is a Yes instance if dist(1)(t,L) ≤ d, and a No instance if
dist(t,L) > d, or there are no vectors satisfying v − t ∈ Q1, if d < dist(1)(t,L)
and dist(t,L) ≤ d, then both Yes and No would be correct.

New Variants of Lattice Problems and Their NP-Hardness 521

Theorem 26. The SS problem (a1, · · · , an; s) can be reduced to Quadrant-
GapCVP’.

Proof. (1 ≤ p <∞): For SS instance (a1, · · · , an; s), choose M = p
√
n+1, which

is still polynomial of n, build a lattice L(T) as in Theorem 17, we set L(T), γ,
t, d = p

√
n as the input for Quadrant-GapCVP’:

1. If the SS problem has a solution, we know that dist(1)(t,L) ≤ p
√
n, which is

not a No instance of Quadrant-GapCVP’;
2. If the SS problem has no solutions, we assume that dist(t,L) ≤ p

√
n, then

there exists lattice vector v = Tx such that v− t = (M(
∑n

i=1 xiai− s), 1−
x1, · · · , 1 − xn, x1, · · · , xn)

T and ||v − t|| ≤ p
√
n. Since M = p

√
n + 1, we

know that
∑n

i=1 xiai− s = 0, then ∃i such that xi �= 0, 1, we have max{|1−
xi|, |xi|} ≥ 2, then ||v − t|| ≥ p

√
n+ 2p > p

√
n, which contradicts to the fact

we are assuming, so it is not a Yes instance of Quadrant-GapCVP’.

So we can solve the SS by solving the Quadrant-GapCVP’, if the output of
Quadrant-GapCVP’ is Yes, then SS has a solution; if the output of Quadrant-
GapCVP’ is No, then SS has no solutions.
(1 ≤ p <∞): Omitted for brevity. �

Corollary 27. Quadrant-GapCVP’ is NP-hard under deterministic reductions.

We get the NP-hardness of Quadrant-GapCVP’ by reduction from SS prob-
lem, since we know the fact that GapCVP is also NP-hard under deterministic
reduction, a natural question may be asked, what is the relationship between
GapCVP and Quadrant-GapCVP’? Is one question harder than another? Actu-
ally, we have the following result:

Theorem 28. There exists deterministic reduction from Quadrant-GapCVP’ to
GapCV Pγ=1.

Proof. Given Quadrant-GapCVP’ instance (L, d, t), we solve GapCVP with the
same input.

1. If the (L, d, t) is not a Yes instance for Quadrant-GapCVP’, which means
dist(t,L) > d. For GapCVP, it is also not a Yes instance for Quadrant-
GapCVP’;

2. If the (L, d, t) is not a No instance for Quadrant-GapCVP’, which means
dist(1)(t,L) ≤ d, since dist(t,L) ≤ dist(1)(t,L), we get dist(t,L) ≤ d, which
is not a No instance for GapCVP.

The reduction easily followed by the above argument, and the reduction is de-
terministic. �

Form Theorem 28 we know that Quadrant-GapCVP’ is easier than GapCVP,
but still achieves NP-hardness. It has potential in construction of cryptosystem
as GapCVP.

522 W. Li

5 Conclusion

In this paper we study a variety of new lattice problems, they are Quadrant-
SVP(CVP), Quadrant-GapSVP(CVP), Quadrant-GapCVP’. All the five prob-
lems are NP-hard under deterministic reduction, and they have reduction with
the standard lattice problem. These new lattice problems are attractive for their
hardness and potential in cryptography.

Although, from our point of view, there are still many open questions about
the Quadrant lattice problems, such as the worst-case to average-case reduction;
hardness under larger approximate factor; specific relationship with standard
lattice problems.

References

1. Ajtai, M.: The shortest vector problem in l 2 is np-hard for randomized reduc-
tions. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, pp. 10–19. ACM (1998)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, pp. 284–293. ACM (1997)

3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the Thirty-third Annual ACM Symposium on
Theory of Computing, pp. 601–610. ACM (2001)

4. Babai On, L.: lovászlattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986)

5. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and
successive minima. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
ICALP 2007. LNCS, vol. 4596, pp. 65–77. Springer, Heidelberg (2007)

6. Cai, J.-Y., Nerurkar, A.: Approximating the svp to within a factor (1+ 1/dim e)
is np-hard under randomized reductions. Journal of Computer and System Sci-
ences 59(2), 221–239 (1999)

7. Gary, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of np-completeness (1979)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices (2009)
9. Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lattice prob-

lems. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, pp. 1–9. ACM (1998)

10. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

12. Khot, S.: Hardness of approximating the shortest vector problem in lattices. Jour-
nal of the ACM (JACM) 52(5), 789–808 (2005)

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261(4), 515–534 (1982)

14. Micciancio, D.: The shortest vector in a lattice is hard to approximate to within
some constant. SIAM Journal on Computing 30(6), 2008–2035 (2001)

New Variants of Lattice Problems and Their NP-Hardness 523

15. Micciancio, D.: Inapproximability of the shortest vector problem: Toward a deter-
ministic reduction. Theory of Computing 8(1), 487–512 (2012)

16. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic
perspective, vol. 671. Springer (2002)

17. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on voronoi cell computations. In: Proceedings of the
42nd ACM Symposium on Theory of Computing, pp. 351–358. ACM (2010)

18. Minkowski, H.: Geometrie der zahlen. BG Teubner (1910)
19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.

J. ACM 56(6), 34:1–34:40 (2009)
20. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.

Theoretical Computer Science 53(2), 201–224 (1987)
21. van Emde-Boas, P.: Another NP-complete partition problem and the complexity

of computing short vectors in a lattice, Department, Univ. (1981)
22. Voronöı, G.: Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Jour-
nal für die reine und angewandte Mathematik 134, 198–287 (1908)

Improved Preimage Attacks

against Reduced HAS-160�

Ronglin Hao1,2, Bao Li2, Bingke Ma2, and Xiaoqian Li2

1 Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, 230027, China

haorl@mail.ustc.edu.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, 100093, China
{lb,bkma,xqli}@is.ac.cn

Abstract. HAS-160 is a Korean industry standard for hash functions.
It has a similar structure to SHA-1 and produces a 160-bit hash value. In
this paper, we propose improved preimage attacks against step-reduced
HAS-160 using the differential meet-in-the-middle technique and initial
structure. Our work finds a pseudo-preimage of 70 steps of HAS-160 with
a complexity of 2155.71 and this pseudo-preimage attack can be converted
to a preimage attack with a complexity of 2158.86 . Moreover, we reduce
the complexity of previous pseudo-preimage attack on 65-step HAS-160
from 2143.4 to 2139.09 . To the best of our knowledge, our result on 70
steps is the best preimage attack on HAS-160 in terms of attacked steps.

Keywords: HAS-160, hash function, preimage attack, differential meet-
in-the-middle.

1 Introduction

Cryptographic hash function is one of the most crucial parts of modern cryp-
tography. A hash function takes a message of arbitrary length and produces a
bit string of fixed length. Secure hash functions need to fulfill three main prop-
erties: preimage resistance, second-preimage resistance, and collision resistance.
Suppose that the length of the hash value is n bits. A generic attack needs at least
2n computations of the hash function to find a preimage or a second-preimage.

HAS-160 is a Korean industry standard (TTAS.KO-12.0011/R1) [2] for hash
functions which is widely used in Korea. The structure of HAS-160 is similar
to SHA-1 [4]. However, there are two key differences between them. Firstly, as
Norbert et al. pointed out in [1] that HAS-160 uses multiple sets of rotation

� This work was supported by the National Basic Research Program of China (973
Project, No.2013CB338002), the National High Technology Research and Devel-
opment Program of China (863 Program, No.2013AA014002), the National Natu-
ral Science Foundation of China (No.61379137), the IIE’s Cryptography Research
Project (No.Y3Z0027103), and the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant XDA06010702.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 524–536, 2014.
c© Springer International Publishing Switzerland 2014

Improved Preimage Attacks against Reduced HAS-160 525

constants within the compression function, while SHA-1 uses the single set of
rotation constants. Secondly, the message schedule of HAS-160 is non-recursive
and can be regarded as a mixture of designs of MD5 [5] and SHA-0 [6].

Many cryptanalysis results on HAS-160 have been proposed. Collision attacks
on step-reduced HAS-160 are analyzed in [17–20]. The best result with practical
complexity in terms of attacked steps is the semi-free-start collision for 65 steps
[20] exhibited at ICISC 2011. The second-order collisions for the full HAS-160
compression function are discussed in [21, 22]. In particular, a practical distin-
guisher has been generated in [22] recently. At ICISC 2008, preimage attacks on
48 and 52 steps of HAS-160 were presented in [13], which used the splice-and-
cut, partial-matching and partial-fixing techniques [3]. After that, several new
techniques for (pseudo) preimage attacks against MD4-like hash functions were
developed, such as the initial structure and improved partial-fixing technique
for unknown carry behavior [14], and the kernel computing approach for chunk
separation [11]. Combining these techniques, Deukjo et al. showed an improved
preimage attack against 68-step HAS-160 [12] at ICISC 2009. As far as we know,
no progress on preimage attack has been made since 2009.

Our Contributions. In this paper, we investigate the preimage resistance
of HAS-160. Using the differential meet-in-the-middle technique [7] and initial
structure, we are able to attack the middle 70 steps (Steps 6-75)1 out of 80 steps
of HAS-160. According to the experiment result, a pseudo-preimage can be found
with an expected time complexity of 2155.71 and a memory of 27 words. Then, the
pseudo-preimages are converted to a preimage with a complexity of 2158.86. Based
on the same chunk separation, the complexity of the original pseudo-preimage
attack on 65 steps [12] is reduced from 2143.4 to 2139.09. Slight improvements are
also obtained for attacks on 67 and 68 steps of HAS-160. Finally, we provide a
security margin for preimage attack on full HAS-160 applying the brute-force
attack. The previous results and our results are listed in Table 1.

Organization. Section 2 gives a brief description of HAS-160. Section 3 intro-
duces the techniques used in the meet-in-the-middle preimage attack. Section 4
presents pseudo-preimage and preimage attacks on step-reduced HAS-160. Sec-
tion 5 briefly provides a security benchmark for actual attacks on full HAS-160.
Section 6 concludes the paper.

2 Specification of HAS-160

HAS-160 [2] is a hash function based on the Merkle-Damg̊ard structure that
produces 160-bit hash values. The original message M is padded to be a mul-
tiple of 512 bits. A single bit 1, a variable number of 0s, and the 64-bit binary

1 We attack the middle 70 steps rather than the first 70 steps in this paper. Since the
best previous preimage attacks on HAS-160 work on the middle steps as well, we
think our attack is meaningful.

526 R. Hao et al.

Table 1. Preimage attacks against HAS-160

Steps Step Number Pseudo-preimage Preimage Memory (words) Reference

48 1-48 2128 2145 232 × 6 [13]

52 12-63 2144 2153 248 × 9 [13]

52 12-63 2144 2153 216 × 9 [12]

65 0-64 2143.4 2152.7 216 × 6 [12]

67 0-66 2154 2158 210 × 7 [12]

68 12-79 2150.7 2156.3 212 × 7 [12]

65 0-64 2139.09 2150.55 224 × 5 Sec. 4.3

67 0-66 2152.2 2157.1 210 × 3 App. A

68 12-79 2149.32 2155.66 213 × 2 App. A

70 6-75 2155.71 2158.86 27 Sec. 4.2

80 0-79 - 2159.04 231 × 5 Sec. 5

representation of the length of M are appended at the end. Then the padded
message is split into L 512-bit message blocks M0,M1, . . . ,ML−1. The hash
value is computed as follows:

H0 = IV, Hj+1 = E(M j , Hj) +Hj, 0 ≤ j < L,

where E is the internal block cipher of HAS-160, Hj is a 160-bit chaining value
which consists of five 32-bit words, and IV represents the initial value specified
by the designers. The last chaining value HL is the output of the hash function.

The internal cipher E is divided into 4 rounds, 20 steps per round. The oper-
ation of E(M j, Hj) consists of two parts: the message expansion and the state
update transformation.

Message Expansion. The message schedule of HAS-160 splits M j into sixteen
32-bit message wordsm0, . . . ,m15 at first. Then based on the original 16 message
words, HAS-160 produces 4 additional message words m16, . . . ,m19 for each
round. The expanded message word wi used in each step i (i = 0, 1, . . . , 79) is
shown in Table 2.

State Update Transformation. The chaining value pi right before step i is
denoted by (ai, bi, ci, di, ei), i.e., p0 = Hj . Fig. 1 shows the transformation of
step i (i = 0, . . . , 79). Note that fi, ki, and≪ s denote bitwise Boolean function,
constant number and s-bit left rotation depending on each step, respectively. The
corresponding definitions are shown in Table 3.

3 Related Works: Techniques for Meet-in-the-Middle
Preimage Attacks

3.1 Converting Pseudo-preimages to a Preimage

Given a hash value Hn, a pseudo-preimage is a pair (Hn−1,M) such that
CF (Hn−1,M) = Hn, where Hn−1 �= IV and CF is the compression function.

Improved Preimage Attacks against Reduced HAS-160 527

Table 2. Message expansion of HAS-160

Round 1
w0, w1, . . . , w9 m18 m0 m1 m2 m3 m19 m4 m5 m6 m7

w10, w11, . . . , w19 m16 m8 m9 m10 m11 m17 m12 m13 m14 m15

Round 2
w20, w21, . . . , w29 m18 m3 m6 m9 m12 m19 m15 m2 m5 m8

w30, w31, . . . , w39 m16 m11 m14 m1 m4 m17 m7 m10 m13 m0

Round 3
w40, w41, . . . , w49 m18 m12 m5 m14 m7 m19 m0 m9 m2 m11

w50, w51, . . . , w59 m16 m4 m13 m6 m15 m17 m8 m1 m10 m3

Round 4
w60, w61, . . . , w69 m18 m7 m2 m13 m8 m19 m3 m14 m9 m4

w70, w71, . . . , w79 m16 m15 m10 m5 m0 m17 m11 m6 m1 m12

Round 1 Round 2 Round 3 Round 4

m18
m8 ⊕m9

⊕m10 ⊕m11

m11 ⊕m14

⊕m1 ⊕m4

m4 ⊕m13

⊕m6 ⊕m15

m15 ⊕m10

⊕m5 ⊕m0

m19
m12 ⊕m13

⊕m14 ⊕m15

m7 ⊕m10

⊕m13 ⊕m0

m8 ⊕m1

⊕m10 ⊕m3

m11 ⊕m6

⊕m1 ⊕m12

m16
m0 ⊕m1

⊕m2 ⊕m3

m3 ⊕m6

⊕m9 ⊕m12

m12 ⊕m5

⊕m14 ⊕m7

m7 ⊕m2

⊕m13 ⊕m8

m17
m4 ⊕m5

⊕m6 ⊕m7

m15 ⊕m2

⊕m5 ⊕m8

m0 ⊕m9

⊕m2 ⊕m11

m3 ⊕m14

⊕m9 ⊕m4

ai

<<<s1i

<<<s2i

eidicibi

di+1

ki

wi

fi

ei+1ci+1bi+1ai+1

Fig. 1. Step transformation of HAS-160

Table 3. Boolean function f , constant k, and rotations s1 and s2 of HAS-160

Round Step i fi(X,Y, Z) ki s2i
1 0− 19 (X ∧ Y) ∨ (¬X ∧ Z) 0x00000000 10

2 20− 39 X ⊕ Y ⊕ Z 0x5a827999 17

3 40− 59 Y ⊕ (X ∨ ¬Z) 0x6ed9eba1 25

4 60− 79 X ⊕ Y ⊕ Z 0x8f1bbcdc 30

i mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s1i 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

528 R. Hao et al.

For the narrow-pipe Merkle-Damg̊ard based hash functions with an n-bit out-
put, there is a generic algorithm from [15, Fact 9.99] which can convert pseudo-
preimages to a preimage with a total complexity of 2(n+c)/2+1, where the com-
plexity of a pseudo-preimage attack is 2c (c < n− 2).

3.2 Splice-and-Cut and Initial Structure

In the splice-and-cut framework developed by Aoki and Sasaki [3], the first and
last steps of the compression function can be considered as consecutive steps via
the feed-forward. Thus, we can start the meet-in-the-middle (MitM) attack from
any step and find more appropriate chunk separations with independent neutral
message words. Since the initial chaining value is determined by the effective
matching and may not be equal to IV , only a pseudo-preimage rather than a
preimage can be obtained.

Instead of starting the computations from a single state, the initial structure
(IS) technique [14] can be applied to set several consecutive steps as the splitting
point, which can increase the total number of attacked steps. Given the neutral
words NWfor and NWback involved by IS, IS needs to be constructed properly
so that the backward computation is independent from NWfor and the forward
computation is independent from NWback. Assume that PIS and QIS are the
input values and output values of IS, respectively. The generated IS can be
regarded as a function IS(PIS , QIS , NWfor, NWback). Hence, the attacker should
make sure that IS is consistent with the MitM attack.

3.3 The Differential Meet-in-the-Middle Technique

This section describes the differential MitM pseudo-preimage attack proposed by
Knellwolf et al. at CRYPTO 2012. The difference is that we use initial structure
as the starting point of the MitM attack instead of biclique [9]. For details, we
refer to [7].

E3 E2 E4 E1

0 n3 n4 n1-1 n1 n2 n2+1 N

Fig. 2. Separation of E for pseudo-preimage attacks

Suppose the internal block cipher E used in HAS-160 has an n-bit block size
and a k-bit key size (k > n). The equation A =T B means A∧T = B∧T , where
T ∈ {0, 1}n denotes a truncation mask. First, E is separated into four subparts,
E = E1 ◦ E4 ◦ E2 ◦ E3 as shown in Fig. 2. The initial structure is constructed
for E4. E1 and E3 via the feed-forward denote the forward chunk, and E2 is
the backward chunk. Assume that h is the target hash value and S denotes the
randomly fixed chaining values in the initial structure. Then, the attacker tries

Improved Preimage Attacks against Reduced HAS-160 529

to find two linear spaces D1, D2 ⊂ {0, 1}k, which consist of the same number of
message differences as follows:

– D1 ∩D2 = {0}.
– For each δ1 ∈ D1 and uniformly chosen M and S, E1 ◦ E4(M,S) = E1 ◦
E4(M ⊕ δ1, S), and also there exists a difference Δ1 ∈ {0, 1}n such that
Δ1 =T E3(M,S)⊕ E3(M ⊕ δ1, S) holds with probability p1 (0 < p1 ≤ 1).

– For each δ2 ∈ D2 and uniformly chosen M and S, there exists a difference
Δ2 ∈ {0, 1}n such that Δ2 =T E2

−1 ◦E4
−1(M,S)⊕E2

−1 ◦E4
−1(M ⊕ δ2, S)

holds with probability p2 (0 < p2 ≤ 1).

Algorithm 1. Testing M ⊕D1 ⊕D2 for a candidate pseudo-preimage

Input: D1, D2 ⊂ {0, 1}k, {Δ1}, {Δ2} ⊂ {0, 1}n, T, S ∈ {0, 1}n, M ∈ {0, 1}k
Output: A candidate pseudo-preimage if one is contained in M ⊕D1 ⊕D2.

for all δ2 ∈ D2 do
L1[δ2] = E3(M ⊕ δ2, h−E1 ◦E4(M ⊕ δ2, S))⊕Δ2.

end for
for all δ1 ∈ D1 do

L2[δ1] = E2
−1 ◦ E4

−1(M ⊕ δ1, S)⊕Δ1.
end for
for all (δ1, δ2) ∈ D1 ×D2 do

if L1[δ2] =T L2[δ1] then
return M ⊕ δ1 ⊕ δ2

end if
end for
return No candidate pseudo-preimage in M ⊕D1 ⊕D2

The active bits corresponding to D1 (resp. D2) can be regarded as neutral
words for the backward (resp. forward) chunk. If the dimension of the two linear
spaces D1 and D2 is d, 22d = 2d × 2d different messages are included in the
set M ⊕ D1 ⊕ D2 for a random message M . According to the hypothesis test,
a candidate pseudo-preimage M ⊕ δ1 ⊕ δ2 is falsely rejected by Algorithm 1
with probability α = 1 − p1 · p2 (type I error probability defined in [7]). For
all (δ1, δ2) ∈ D1 ×D2, the average type I error probability α can be estimated
by experiment. Thus, in order to obtain a pseudo-preimage, we have to test
2n/(1−α) messages with an expected complexity of (2n−dΓ +2n−rΓre)/(1−α),
where Γ denotes the cost of one computation of E, Γre is the cost of rechecking
a candidate pseudo-preimage and r is the Hamming weight of T . Note that the
probabilities p1 and p2 should be high enough to make the attack valid.

4 Preimage Attack on 70-Step HAS-160

In [12], Deukjo et al. proposed a preimage attack on the last 68 steps of HAS-
160, but the variant with 70 steps was not attacked due to the limitation of attack

530 R. Hao et al.

E3 E2

6

E4 E1

13 14 n3 n4 29 30 52 53 (IS) 55 56 75

Fig. 3. Selected chunks for the 70 steps

techniques used. In this section, we show how to generate a preimage for 70-step
HAS-160 faster than exhaustive search.

The attack target is from Step 6 to Step 75 and the corresponding chunks
are shown in Fig. 3. The initial structures are constructed from Step 53 to Step
55. For the backward chunk from Step 52 to Step 30, m11 and m12 are neutral
words satisfying Δm11 = Δm12. That is, m11 ⊕ m12 = const and const is
not necessarily zero. Similarly, for the forward chunk from Step 56 to Step 75
and Step 6 to Step 13, the neutral words m3, m6, m8 and m15 need to fulfill
Δm3 = Δm6 = Δm8 = Δm15. The partial-matching part involving neutral
words for two chunks starts from Step 14 to Step 29.

4.1 Initial Structure

The 3-step initial structure is shown in Fig. 4, which is similar to the one in [12].
Note that the expanded word used in Step 55 is m11 ⊕ constb, where constb =
m0⊕ m9 ⊕ m2. To generate the initial structure, we first fix a53, b53, t53, t54
and t55 to randomly chosen values. Then, in the forward direction, a54, a55,
a56 are computed independently from the backward chunk and in the backward
direction, e55, e54, e53 are computed independently from the forward chunk.

4.2 Finding Appropriate Attack Parameters

In order to apply Algorithm 1 with the above chunk separation, we need to find
the remaining attack parameters: the linear spaces D1, D2 ⊂ {0, 1}k of the same
dimension d, the corresponding output difference Δ1 (resp. Δ2) for each message
difference δ1 ∈ D1 (resp. δ2 ∈ D2), and a truncation mask T ∈ {0, 1}n. From
a differential view, m11 and m12 are active in D1 and the other message words
have zero difference. Similarly, m3, m6, m8 and m15 are the only active message
words in D2.

Given the chunk separation, D1 and D2, we can calculate the output differ-

ences by linearization: Δ1 = E3 ◦ E1 ◦ E4(δ1, 0) and Δ2 = E2
−1 ◦ E4

−1
(δ2, 0).

The linearization of HAS-160 is similar to SHA-1 [7], except that the non-linear
boolean functions fi(B,C,D) in round 1 and 3 are replaced with 0 and C re-
spectively. The same substitution has been used to find a semi-free-start collision
for 65 steps of HAS-160 [20]. And this better choice has been partially verified
by counting the sum of hamming weights of the forward and backward linear
characteristics when all combinations of the 4-bit message difference for D1 and
D2 are enumerated in the partial-matching part. Due to the choice of neutral

Improved Preimage Attacks against Reduced HAS-160 531

a53 b53 e53d53c53

e54d54c54b54a54

<<<15

<<<25

k53

m6

t53
f53

k54

m15

f54 t54

m11⊕constb

f55

k55

e55d55c55b55a55

t55

e56d56c56b56a56

<<<6

<<<12

<<<25

<<<25

Fig. 4. Initial structure skipping 3 steps

Algorithm 2. Find a truncation mask T for matching

Input: D1, D2 ⊂ {0, 1}k, r (0 < r ≤ n)
Output: A truncation mask T ∈ {0, 1}n of Hamming weight r.

c = an array of n counters set to 0
for q = 1 to Q do

Choose M ∈ {0, 1}k at random
Choose S ∈ {0, 1}n at random
P = E3

−1 ◦E2
−1 ◦E4

−1(M,S)
Choose (δ1, δ2) ∈ D1 ×D2 at random
Δ = E3(M ⊕ δ1, P)⊕Δ1 ⊕ E2

−1 ◦E4
−1(M ⊕ δ2, S)⊕Δ2

for i = 0 to n− 1 do
if the i-th bit of Δ is 1 then

c[i] ← c[i] + 1
end if

end for
end for
Set those r bits of T to 1 which have the lowest counters.

532 R. Hao et al.

words for backward computation, E1 ◦E4(δ1, 0) = 0 so that Δ1 = E3(δ1, 0). Let
P denote the plaintext of E. Then, the truncation mask T is determined using
Algorithm 2, and Algorithm 3 is applied to evaluate the corresponding type I
error probability α, where Algorithm 2 and 3 are similar to the case of one-block
preimages in [7].

Algorithm 3. Evaluate type I error probability α = 1− p1 · p2
Input: D1, D2 ⊂ {0, 1}k, T ∈ {0, 1}n
Output: Average probability α.

c = a counter set to 0
for q = 1 to Q do

Choose M ∈ {0, 1}k at random
Choose S ∈ {0, 1}n at random
P = E3

−1 ◦E2
−1 ◦E4

−1(M,S)
Choose (δ1, δ2) ∈ D1 ×D2 at random
Δ = E3(M ⊕ δ1, P)⊕Δ1 ⊕ E2

−1 ◦E4
−1(M ⊕ δ2, S)⊕Δ2

if Δ �=T 0n then
c ← c+ 1

end if
end for
return c/Q

There are two issues we will address. Firstly, Algorithm 2 and 3 are used
to determine the attack parameters under the condition that M is a pseudo-
preimage for h = P+C, where C = E1◦E4(M,S), P = E3

−1◦E2
−1◦E4

−1(M,S).
Since E1 ◦ E4(M ⊕ δ1, S) = E1 ◦ E4(M,S) = C, we have E3(M ⊕ δ1, h− (E1 ◦
E4(M ⊕ δ1, S))) = E3(M ⊕ δ1, P). That is, type I probability is a conditional
probability where the condition is that M is already a pseudo-preimage, so M
just needs to be consistent with h = P+C instead of a fixed hash value. Secondly,
we have tried several values for Q, such as 2l, l ∈ {16, 17, . . . , 24}. The results
obtained are almost identical for these choices. In order to reduce the time for
determining the attack parameters, we set Q = 216 in both algorithms without
loss of correctness of results.

Attack Parameters for N=70. The best result obtained by extensive exper-
iments is as follows: d = 7, r = 5, n3 = 22, n4 = 23. Given a single element
x0 ‖ · · · ‖ x15 of the basis of D1 (resp. D2), the basis of D1 (resp. D2) can be gen-
erated by word-wise rotation as (x0 ≪ i) ‖ · · · ‖ (x15 ≪ i) for i = 0, . . . , d− 1.

D1 : 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x08000000

0x08000000 0x00000000 0x00000000 0x00000000

D2 : 0x00000000 0x00000000 0x00000000 0x80000000 0x00000000 0x00000000

0x80000000 0x00000000 0x80000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x80000000

T : 0x00000000 0x00000000 0x00000000 0x00000000 0x00007c00

Improved Preimage Attacks against Reduced HAS-160 533

The estimated type I error probability α = 0.752. Since all non-zero bits lie in
the rightmost word of T , 4 steps can be skipped in the partial-matching part.
Hence, we make a slight change in Algorithm 1 by setting n3 = 18, n4 = 23,
because L1[δ2] corresponds to p19 and L2[δ1] corresponds to p23, we only need to
check if (a19 ≪ s220) =Te e23 in the last loop, where Te denotes the rightmost
word of T . This results in a pseudo-preimage attack with an expected complexity
of 2n−d((N − 4)/N + 2d−r(16 − 4)/N)/(1 − α) = 2155.71 and a memory of 27

words.
According to the padding and length encoding rules, message words m14 and

m15 are used to encode the length. Because m15 is chosen as a neutral word
for forward computation, the value of m15 will be determined by the attack
procedure. We need to convert the pseudo-preimages to a preimage, but the
exact value ofm15 may lead to a message with a random length. Luckily by using
the expandable messages [16] to satisfy the message length restraint, pseudo-
preimages can still be converted to a preimage with 2158.86 computations of the
compression function.

4.3 Improved Preimage Attack on 65-Step HAS-160

The original preimage attack on the first 65 steps of HAS-160 [12] didn’t use
the initial structure and only 7 steps were skipped in the partial-matching part.
Instead of using the partial-fixing technique for unknown carry behavior to match
in the middle, we exploit Algorithm 2 and 3 to determine the proper attack
parameters for partial-matching. The same chunk separation and neutral words
for 65 steps will be used in the attack.

Attack Parameters for N=65. The best result obtained is as follows: d = 24,
r = 21, n3 = 39, n4 = 40.

D1 : 0x00004000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00004000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

D2 : 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x80000000 0x00000000 0x80000000 0x00000000

T : 0x00000001 0x00000000 0xff000000 0xff000001 0xc0000001

The average type I error probability α = 0.782, and a pseudo-preimage can be
found with an expected complexity of 2139.09 and a memory of 224 × 5 words.
Hence, a preimage is generated from pseudo-preimages with 2150.55 computations
of the compression function. We also slightly improve the preimage attacks on
67 and 68 steps of HAS-160 [12]. Due to the space limitation, these results are
given in Appendix A.

534 R. Hao et al.

Remark. We have also studied the preimage resistance of HAS-160 reduced to
71 steps (Steps 2-72) with 5-step initial structure and 17-step partial-matching.
After the initial structure is constructed from Step 5 to Step 9, we run ex-
periments according to the methods described in this paper. The experiments
result to a pseudo-preimage attack with a very large complexity, and the pseudo-
preimage attack can no longer be converted to a preimage attack faster than
brute-force attack. Comparing to the results of SHA-1 in [7] where more than
25 steps can be skipped in the probabilistic matching part, no more than 17
steps can be skipped in the probabilistic matching part of HAS-160, since the
multiple sets of rotation constants and the message schedule of HAS-160 makes
the difference propagation faster than SHA-1.

5 Accelerated Brute-Force Search for Full HAS-160

The main idea of the accelerated brute-force search [7, 8] is to not recompute
parts of E which share the same expanded message words. It can be applied to
any number of rounds. For the variant with N steps, the speed-up factor is about
N/(N − n′) , where n′ denotes the number of steps which are not recomputed
during the brute-force attack.

Message words m12 and m13 are set as neutral words for the backward chunk,
and m2 and m7 are set as neutral words for the forward chunk. Note that these
message words should satisfy Δm12 = Δm13 and Δm2 = Δm7. In order to
fulfill the padding rule, the certain bit of m13 must be 1. Hence, only 31 bits of
m13 are active in D1. If the truncation mask T = (0xffffffff, 0x00000000,
0x00000000, 0x00000000, 0x00000000), additional 4 steps will be skipped. Fur-
ther, we can move the addition of m12 downwards to Step 17 and move m2

upwards to Step 61 with no constraint by using the technique in the initial
structure [10]. That is, n′ can be increased to 16 + 17 + 4 + 1 + 1 = 39. When
N = 80, a one-block preimage with correct padding for full HAS-160 can be
found with a complexity of 2160 · (80− 39)/80 = 2159.04 and a memory of 231× 5
words.

6 Conclusion

In this paper, we propose a preimage attack on 70-step HAS-160 and further
reduce the complexities of previous preimage attacks. The improvements essen-
tially come from the use of a more effective probabilistic matching in the differen-
tial meet-in-the-middle framework, as compared to the partial-fixing technique
for unknown carry behavior in previous attacks. For 70 steps of HAS-160, we
find a pseudo-preimage with a complexity of 2155.71 and a preimage with a com-
plexity of 2158.86. We also improve the complexities of previous attacks on 65,
67 and 68 steps. Finally, we accelerate the brute-force preimage search to 2159.04

compression function calls. As far as we know, our result on 70-step HAS-160 is
the best preimage attack in terms of attacked steps.

Improved Preimage Attacks against Reduced HAS-160 535

Acknowledgements. We would like to thank the anonymous reviewers for
their valuable comments and suggestions.

References

1. Pramstaller, N., Rechberger, C., Rijmen, V.: Impact of Rotations in SHA-1 and Re-
lated Hash Functions. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 261–275. Springer, Heidelberg (2006)

2. Telecommunications Technology Association. Hash Function Standard Part 2:
Hash Function Algorithm Standard (HAS-160), TTAS.KO-12.0011/R1 (2000)

3. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

4. U.S. Department of Commerce, National Institute of Standards and Technology.
Announcing the SECURE HASH STANDARD (Federal Information Processing
Standards Publication 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

5. Rivest, R.L.: Request for Comments 1321: The MD5 Message Digest Algorithm.
The Internet Engineering Task Force (1992),
http://www.ietf.org/rfc/rfc1321.txt

6. U.S. Department of Commerce, National Institute of Standards and Technology.
Secure Hash Standard. Federal Information Processing Standard Publication #
180-1 (1995)

7. Knellwolf, S., Khovratovich, D.: New Preimage Attacks against Reduced SHA-
1. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 367–383. Springer, Heidelberg (2012)

8. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the
full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 344–371. Springer, Heidelberg (2011)

9. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 244–263. Springer, Heidelberg (2012)

10. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

11. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

12. Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 68-Step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

13. Sasaki, Y., Aoki, K.: A preimage attack for 52-step HAS-160. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 302–317. Springer, Heidelberg (2009)

14. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

15. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://www.ietf.org/rfc/rfc1321.txt

536 R. Hao et al.

16. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much
less than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474–490. Springer, Heidelberg (2005)

17. Yun, A., Sung, S.H., Park, S., Chang, D., Hong, S.H., Cho, H.-S.: Finding collision
on 45-step HAS-160. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 146–155. Springer, Heidelberg (2006)

18. Cho, H.-S., Park, S., Sung, S.H., Yun, A.: Collision search attack for 53-step HAS-
160. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 286–295.
Springer, Heidelberg (2006)

19. Mendel, F., Rijmen, V.: Colliding message pair for 53-step HAS-160. In: Nam, K.-
H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 324–334. Springer, Heidelberg
(2007)

20. Mendel, F., Nad, T., Schläffer, M.: Cryptanalysis of Round-Reduced HAS-160. In:
Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 33–47. Springer, Heidelberg (2012)

21. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang distin-
guishers for full HAS-160 compression function. In: Hanaoka, G., Yamauchi, T.
(eds.) IWSEC 2012. LNCS, vol. 7631, pp. 156–169. Springer, Heidelberg (2012)

22. Kircanski, A., AlTawy, R., Youssef, A.M.: A heuristic for finding compatible dif-
ferential paths with application to HAS-160. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part II. LNCS, vol. 8270, pp. 464–483. Springer, Heidelberg (2013)

A Improved Attacks on 67 and 68 Steps

Attack Parameters for N=67. The best result obtained is as follows: d = 10,
r = 9, n3 = 41, n4 = 44.

D1 : 0x00400000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00400000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

D2 : 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x80000000 0x00000000 0x80000000

0x80000000 0x00000000 0x80000000 0x00000000

T : 0x00000038 0x06000000 0xe0000001 0x00000000 0x00000000

The average type I error probability α = 0.717, and a pseudo-preimage can be
found with an expected complexity of 2152.20 and a memory of 210 × 3 words.

Attack Parameters for N=68. The best result obtained is as follows: d = 13,
r = 11, n3 = 54, n4 = 58.

D1 : 0x00000000 0x00000000 0x00000000 0x00000001 0x00000000 0x00000000

0x00000001 0x00000000 0x00000001 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000001

D2 : 0x00000000 0x00000000 0x00080000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00080000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

T : 0x07c00000 0x0fc00000 0x00000000 0x00000000 0x00000000

The average type I error probability α = 0.702, and a pseudo-preimage can be
found with an expected complexity of 2149.32 and a memory of 213 × 2 words.

Modular Inversion Hidden Number Problem

Revisited

Jun Xu1,2,3, Lei Hu1, Zhangjie Huang1, and Liqiang Peng1

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2 Data Assurance and Communications Security Research Center, Chinese Academy
of Sciences, Beijing 100093, China

3 School of Mathematical Science, Anhui University, Hefei 230601, Anhui, China
{jxu,hu,zhjhuang,lqpeng}@is.ac.cn

Abstract. In this paper we revisit the modular inversion hidden num-
ber problem, which is to find a hidden number given several integers and
partial bits of the corresponding modular inverse integers (in the sense
of modulo a prime number) of the sums of the known integers and that
unknown integer. Along with another direction different to the previ-
ous study, we present a better polynomial time algorithm to solve the
problem by utilizing a technique of priority queue computation and by
constructing related lattices from algebraically dependent polynomials.
Let n be the number of known integers, our algorithm assumes to know

about
(

1
2
+ 1

(n+1)!

)
of the bits of the modular inverses, which means

about 2
3
of bits are required to be known in our algorithm when n = 2,

while in the case that only 2
3
of bits of the modular inverses are required

to be known, the result of Boneh et al. and the latest algorithm of Ling et
al. in Journal of Symbolic Computation need more samples (i.e., known
integers and the corresponding partial bits). Our algorithm is also better
for other n.

Keywords: Hidden number problem, modular inversion hidden number
problem, lattice, LLL algorithm, Coppersmith’s algorithm.

1 Introduction

The hidden number problem (HNP) was introduced by Boneh and Venkatesan
[3, 4] as an object with wide applications in cryptography. The modular inver-
sion hidden number problem (ModInv-HNP) is a class of HNP, which, roughly
speaking, is a problem of finding a hidden number α ∈ Zp, given a prime number
p, several, say n, independent and uniformly distributed elements ti ∈ Zp \{−α}
and the l most significant bits of the corresponding integers (α+ ti)

−1 (mod p),
where an element of Zp is regarded as an integer from {0, 1, . . . , p − 1}. The
elements ti and the partial bits are called the samples. The modular inversion
hidden number problem was proposed by Boneh et al. in 2001 [2] and has been
used for constructing cryptography algorithms such as pseudorandom number

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 537–551, 2014.
c© Springer International Publishing Switzerland 2014

538 J. Xu et al.

generator and message authentication code. More results and applications on
HNP are presented in the survey [18].

The ways of finding small roots to modular univariate polynomial equations
and bivariate integer polynomial equations were first proposed by Coppersmith
in 1996 and 1997 [6–8], and a heuristic strategy for the multivariate polynomial
equation case was presented by May et al. in 2006 [13]. Variants of these methods
have been widely used in the field of cryptanalysis such as attacking the RSA
variants [17] and pseudorandom number generators [11].

Boneh et al. first analyzed ModInv-HNP [2] and described two heuristic al-
gorithms for this problem respectively for the two cases that the number l of
known partial bits satisfies l ≈ 2

3 log2 p and l ≈ 1
3 log2 p in an asymptotic sense

that n is sufficiently large, however these two algorithms need many samples or
a large n and they did not give an estimate on how large concretely the n should
be. Moreover, for their second algorithm that requires about 1

3 log2 p bits to be
known, they did not explicitly give a concrete construction of the corresponding
lattice and the algorithm needs to assume a very large number of samples.

Recently, to consider more precisely the ModInv-HNP problem for concrete
number of samples n and achieve an explicit relation between n and the number
of partial bits l, Ling et al. presented an algorithm for ModInv-HNP, which
requires l is at least (23 + ε) of the bit-length of p, where ε is a small number
depending on n and satisfies n = ! 2

9ε"+ 1, and they analysed the probability of
success for their algorithm [16]. For small numbers of samples, and the number
of presumptively known partial bits in Ling et al.’s algorithm is l > 8

9 log2 p
when n = 2 and l > 7

9 log2 p when n = 3, and hence, this algorithm is not ideal
in terms of the number of partial bits when n is a small integer. If n is very
large, the ratio l/ log2 p tends to 2/3, which goes to a similar result on the ratio
l/ log2 p in the first algorithm of Boneh et al.

In this paper, to obtain a better ratio l/ log2 p for small n, we propose an
algorithm which requires l is about (12 + 1

(n+1)!) log2 p. Such an l is l ≈ 2
3 log2 p

if n = 2 and l ≈ 13
24 log2 p if n = 3. We first give an algorithm by a technique of

priority queue to construct some polynomials, and then construct a lattice us-
ing these polynomials. Although these polynomials are algebraically dependent,
they are useful for decreasing the bound on l/ log2 p. To the best of our knowl-
edge, it is the first time that algebraically dependent polynomials are used in
the construction of lattices. Finally, we get small roots of modular multivariate
polynomials by the Coppersmith method and recover the hidden number α.

The rest of this paper is organized as follows. In Section 2, we recall some
terminology and preliminary knowledge. In Section 3, we present our algorithm
for solving ModInv-HNP, and give a proof of the algorithm in Section 4. In
Section 5, we list our experimental results to confirm the correctness of our
algorithm. Section 6 is the conclusion.

Modular Inversion Hidden Number Problem Revisited 539

2 Preliminaries

2.1 Lattice

A lattice L is a set of all integer linear combination of {b1, . . . , bm}, where
{b1, . . . , bm} are linearly independent row vectors in Rn and m ≤ n. The vector
set {b1, . . . , bm} is known as a basis of the lattice, and the determinant of L
is det(L) =

√
det(BBT), where B = [bT

1 , . . . , b
T
m]T is the matrix represented

by this basis. The dimension of L is dim(L) = m. Finding the shortest vector
is a very hard problem in the lattice with a large dimension [1], however, by
applying the LLL basis reduction algorithm, we can obtain an approximately
shortest vector in polynomial time.

Lemma 1 (LLL, [15]). Let L be a lattice. In polynomial time, the LLL algo-
rithm outputs reduced basis vectors v1, . . . ,vm that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i , 1 ≤ i ≤ m.

In order to find small integer roots of a modular equation, we need to com-
bine the following lemma due to Howgrave-Graham with the LLL reduction. In
Lemma 2, the norm of a polynomial f(x1, . . . , xn) =

∑
ai1,...,inx

i1
1 . . . xin

n is the

Euclidean norm of its coefficient vector, i.e., ‖f(x1, . . . , xn)‖ =
√∑

|ai1,...,in |
2
.

Lemma 2 (Howgrave-Graham, [12]). Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be
an integer polynomial that consists of at most ω monomials. Suppose that

1. g(x
(0)
1 , . . . , x

(0)
n) = 0 (mod N) for |x(0)1 | ≤ X1, . . . , |x(0)n | ≤ Xn; and

2. ‖g(X1x1, . . . , Xnxn)‖ < N√
ω
,

then g(x
(0)
1 , . . . , x

(0)
n) = 0 holds over integers.

To apply Lemma 1 and Lemma 2 to find n polynomials gi(x1, . . . , xn) with

gi(x
(0)
1 , . . . , x

(0)
n) = 0 for 1 ≤ i ≤ n, we need

2
m(m−1)

4(m+1−n) det(L)
1

m+1−n <
N√
m
. (1)

We expect that these polynomials are algebraically independent, then we can
compute their common roots using the resultant [10] or Gröbner basis [9] meth-
ods. In theory, these polynomials corresponding to the lattice vectors are linearly
independent. In practice, we find that they are also algebraically independent in
most cases. Hence we give the following heuristic assumption.

Assumption 1. The polynomials corresponding to the first n LLL-reduced vec-
tors are algebraically independent.

By neglecting the terms that do not depend on N in (1) and letting them
contribute to an error term ε, we simply use the condition

det(L) < Nm. (2)

540 J. Xu et al.

2.2 Priority Queue

A priority queue is a data structure for maintaining a set of elements, each
with an associated priority. A priority queue supports at least the following two
operations:

1. EXTRACT-MAX: extracts the highest priority element, i.e., removes and
returns the element with the highest priority.

2. INSERT: inserts with priority, i.e., adds an element to the queue with an
associated priority.

For more details on priority queue, please refer to the book [14].

3 ModInv-HNP and Main Result

In this section, we give a description about modular inverse hidden number
problem (ModInv-HNP), and then present our main result.

3.1 ModInv-HNP

Problem. Let p be a k-bit prime and α be a random element of Zp. Given n
independent and uniformly distributed elements ti in Zp \ {−α} and integers ui

such that
|(α+ ti)

−1 mod p− ui| ≤ p/2l, 1 ≤ i ≤ n,

where the ui are denoted by MSBl,p((α+ti)
−1 mod p) in general, n is the number

of samples and l is the number of known bits of the modular inverses, our goal
is to recover this hidden element α.

Let x̃i = (α+ ti)
−1 mod p− ui with |x̃i| ≤ p/2l. Clearly,

(ui + x̃i)(α+ ti) = 1 (mod p), 1 ≤ i ≤ n. (3)

For any two equations in (3), we eliminate α and get

1

ui + x̃i
− ti =

1

uj + x̃j
− tj (mod p), (4)

where i < j. Rearranging (4), we have

x̃ix̃j + ai,j x̃i + bi,j x̃j + ci,j = 0 (mod p),

where
ai,j = uj + (ti − tj)

−1 mod p,

bi,j = ui − (ti − tj)
−1 mod p,

ci,j = uiuj + (ui − uj)(ti − tj)
−1 mod p.

Then (x̃i, x̃j) is a root of fi,j(xi, xj) = 0 mod p, where fi,j(xi, xj) = xixj +
ai,jxi + bi,jxj + ci,j . For convenience, we let fj,i = fi,j for 1 ≤ i < j ≤ n.

Modular Inversion Hidden Number Problem Revisited 541

Remark 1. For any 1 ≤ i < j < k ≤ n, fi,j , fi,k, fj,k are algebraically dependent,
i.e., we can derive any one of them from the remaining two polynomials.

Clearly, recovering the hidden number α is equivalent to finding a root (x̃i, x̃j)
of the bivariate modular polynomial equation fi,j = 0 mod p. When n=2, the
root (x̃i, x̃j) is heuristic solved if l > 2

3k by using a variant of Coppersmith’s
algorithm [13]. This bound on l is the same as our bound when n = 2. In this
paper, for n ≥ 3, we use algebraically dependent polynomials fi,j for the first
time to construct lattices, and get a better bound when n ≥ 3 in the following
Theorem 1.

3.2 Main Result

Theorem 1. Assume the k-bit prime number p is public, given n samples(
ti,MSBl,p

(
(α+ ti)

−1 mod p
))
, 1 ≤ i ≤ n,

with ti ∈ Zp \ {−α} chosen randomly and uniformly. Then, under Assumption
1, we can recover α in polynomial time when

l ≥
(
1

2
+

1

(n+ 1)!
+ ε

)
k,

where ε is a small number depending on n which can be arbitrarily small theo-
retically.

Remark 2. For example, when n = 2, the hidden number α is recovered if l ≥
(23 + ε)k using our heuristic algorithm. However, the deterministic algorithm in
[16] needs that l ≥ 8

9k. And when n = 3, we can recover α when l ≥ (1324 + ε)k,
but they need l ≥ 7

9k in [16].

4 The Strategy and Proof of Main Result

In this section we give a strategy to find the roots x̃1, x̃2, . . . , x̃n of polynomials
fi,j , 1 ≤ i < j ≤ n. Then we prove our main result.

4.1 The Strategy

Step 1. Fix a positive integer d, for any integers ij satisfying 0 ≤ ij ≤ d,
1 ≤ j ≤ n, construct a polynomial

ri1,i2,...,in =
(∏

k

xtk
k

)
·
(∏

i,j

f
ti,j
i,j

)
,

where tj , ti,j ∈ N, such that the leading monomial in ri1,i2,...,in is xi1
1 x

i2
2 . . . xin

n

according to the graded lexicographic order on n-variable monomials. Denote

542 J. Xu et al.

by R(i1, i2, . . . , in) the total sum of the multiplicities of fi,j appearing in the
expression of ri1,i2,...,in , i.e., R(i1, i2, . . . , in) =

∑
i,j ti,j . We have

ri1,i2,...,in(x̃1, x̃2, . . . , x̃n) = 0 (mod pR(i1,i2,...,in)).

We take a positive integer W = max
0≤i1,i2,...,in≤d

R(i1, i2, . . . , in). Then

pW−R(i1,i2,...,in)ri1,i2,...,in(x̃1, x̃2, . . . , x̃n) = 0 (mod pW).

Step 2. Let |x̃i| < Xi, 1 ≤ i ≤ n, construct a lattice L generated by the
coefficient vectors of polynomials in{

pW−R(i1,i2,...,in)ri1,i2,...,in(X1x1, X2x2, . . . , Xnxn)
}
,

where (i1, i2, . . . , in) is ordered by the graded lexicographic order. The matrix of
the coefficient vectors is lower triangular and its diagonal elements are

pW−R(i1,i2,...,in)X i1
1 X

i2
2 . . . X in

n .

Step 3. Apply the LLL algorithm to the lattice L and obtain n polynomials
ri(x1, x2, . . . , xn) satisfying Lemma 2.
Step 4. Under Assumption 1, we obtain a univariate polynomial r(xi) by using
the resultant or Gröbner basis method for ri(x1, x2, . . . , xn). Finally, we solve
the equation r(xi) = 0 over integers to find the xi.

4.2 Proof of Main Result

We know that the dimension of the lattice L is equal to the number of polyno-
mials ri1,i2,...,in , where 0 ≤ i1, i2, . . . , in ≤ d, thus,

dim(L) = (d+ 1)n.

Note that the basis matrix of L is lower triangular and its diagonal entries are
pW−R(i1,i2,...,in)X i1

1 X
i2
2 . . . X in

n , then the determinant of the lattice L is given by

det(L) = X
nd(d+1)n

2 · p(d+1)nW−
∑

0≤i1,i2,...,in≤d R(i1,i2,...,in),

where Xi = p/2l =: X . Substituting the expressions of det(L) and dim(L) into
(2), we have

X
nd(d+1)n

2 · p(d+1)nW−
∑

0≤i1,i2,...,in≤d R(i1,i2,...,in) < p(d+1)nW .

Rearranging the above relation, we get

X
nd(d+1)n

2 < p
∑

0≤i1,i2,...,in≤d R(i1,i2,...,in). (5)

Modular Inversion Hidden Number Problem Revisited 543

Algorithm 1. Construct polynomial gi1,i2,...,in(x1, x2, . . . , xn)

Input: Monomial xi1
1 xi2

2 . . . xin
n

Output: A polynomial gi1,i2,...,in(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] corresponding to
monomial xi1

1 xi2
2 . . . xin

n in constructing the lattice
1: Make a list of tuples in form 〈ik, xk〉 from monomial xi1

1 xi2
2 . . . xin

n , where xk is a
variable appears in xi1

1 xi2
2 . . . xin

n and ik its degree
2: Maintenance a priority queue Q whose elements are tuples 〈ik, xk〉 and associate

each queue element with priority defined as: an element is with higher priority if
and only if its first component is larger

3: gi1,i2,...,in(x1, x2, . . . , xn) ← 1
4: while length(Q) ≥ 2 do
5: 〈ij1 , xj1〉 ← EXTRACT-MAX(Q)
6: 〈ij2 , xj2〉 ← EXTRACT-MAX(Q)
7: gi1,i2,...,in(x1, x2, . . . , xn) ← gi1,i2,...,in(x1, x2, . . . , xn) · fj1,j2
8: INSERT(Q, 〈ij1 − 1, xj1〉) if ij1 − 1 > 0
9: INSERT(Q, 〈ij2 − 1, xj2〉) if ij2 − 1 > 0
10: end while
11: if length(Q) = 1 then
12: 〈ij3 , xj3〉 ← EXTRACT-MAX(Q)

13: gi1,i2,...,in(x1, x2, . . . , xn) ← gi1,i2,...,in(x1, x2, . . . , xn) · x
ij3
j3

14: end if
15: return gi1,i2,...,in(x1, x2, . . . , xn)

Denote

Pi1,i2,...,in =

⎧⎨⎩(∏
k

xtk
k

)
·
(∏

i,j

f
ti,j
i,j

) ∣∣∣∣ tk +
∑
j =k

tk,j = ik, 1 ≤ k ≤ n

⎫⎬⎭ ,

then ri1,i2,...,in ∈ Pi1,i2,...,in . Clearly, any polynomial in the set Pi1,i2,...,in can
be chosen as ri1,i2,...,in in Step 1. Our aim is to make the bound X as large as
possible, according to (5), for any tuple (i1, i2, . . . , in), we expect to use those
polynomials ri1,i2,...,in that maximizes R(i1, i2, . . . , in).

Our approach is for any tuple (i1, i2, . . . , in), to use the priority queue
technique in Section 2.2 to generate a polynomial ri1,i2,...,in which we de-
note as gi1,i2,...,in(x1, x2, . . . , xn), see Algorithm 1. Let G(i1, i2, . . . , in) de-
note the sum of multiplicities of the fi,j which appear in the expression
of gi1,i2,...,in(x1, x2, . . . , xn). The following Lemma 3 computes the value of
G(i1, i2, . . . , in), then in Theorem 2 we will prove that Algorithm 1 indeed out-
puts a polynomial ri1,i2,...,in which maximizes R(i1, i2, . . . , in), namely,

G(i1, i2, . . . , in) = max {R(i1, i2, . . . , in) : ri1,i2,...,in ∈ Pi1,i2,...,in} .

544 J. Xu et al.

Lemma 3. Denote M = max{i1, i2, . . . , in}. Then

G(i1, i2, . . . , in) =

⎧⎪⎪⎨⎪⎪⎩
n∑

k=1

ik −M, if M > (
∑n

k=1 ik)/2,⌊(n∑
k=1

ik

)/
2

⌋
, otherwise.

Proof. For the case of M > (
∑n

k=1 ik)/2, i.e., M >
∑n

k=1 ik −M , according to
Algorithm 1 we have

G(i1, i2, . . . , in) =
n∑

k=1

ik −M.

Otherwise, M ≤ (
∑n

k=1 ik)/2. Suppose there exist m elements which are equal
to M , without loss of generality, let i1 = · · · = im = M , where 1 ≤ m ≤ n.
If M = 0, then gi1,i2,...,in = 1, and G(i1, i2, . . . , in) = 0. If M = 1, we have
G(i1, i2, . . . , in) = �m/2� = �(

∑n
k=1 ik)/2�. If M ≥ 2, when m is even, we know

G(i1, . . . , im, im+1, . . . , in) = G(i1 − 1, . . . , im − 1, im+1, . . . , in) +
m

2
.

We now consider the maximum of {i1−1, . . . , im−1, im+1, . . . , in}. Obviously,

i1 − 1 = max{i1 − 1, . . . , im − 1, im+1, . . . , in}.

Note that i1 − 1 = · · · = im − 1, we have

i1 − 1 ≤ (i1 − 1) + · · ·+ (im − 1) + im+1 + · · ·+ in
2

,

According to the mathematical induction, we know

G(i1 − 1, . . . , im − 1, im+1, . . . , in) =

⌊
(i1 − 1) + · · ·+ (im − 1) + im+1 + · · ·+ in

2

⌋
,

thus,

G(i1, . . . , in) =

⌊
i1 + · · ·+ in

2

⌋
.

Similarly, G(i1, . . . , in) can be computed as
⌊
i1+···+in

2

⌋
when m is odd.

Remark 3. For any integer ij satisfying 0 ≤ ij ≤ d, 1 ≤ j ≤ n, we have
G(i1, . . . , in) ≤

⌊
nd
2

⌋
, and G(d, . . . , d) =

⌊
nd
2

⌋
.

Now we show that the polynomial gi1,i2,...,in output from Algorithm 1 is optimal in
the sense that the corresponding G(i1, i2, . . . , in) maximizes R(i1, i2, . . . , in) for a fixed
tuple (i1, i2, . . . , in).

Theorem 2. Let the set Pi1,i2,...,in be defined as above, then the polynomial
gi1,i2,...,in Algorithm 1 outputs satisfies

G(i1, i2, . . . , in) = max {R(i1, i2, . . . , in) : ri1,i2,...,in ∈ Pi1,i2,...,in} .

Modular Inversion Hidden Number Problem Revisited 545

Proof. There exists some variable xk such that the polynomial

gi1,i2,...,in = xtk
k

∏
1≤i<j≤n

f
ti,j
i,j ,

where tk is a non-negative integer, and its leading monomial under the graded
lexicographic order is xi1

1 x
i2
2 . . . xin

n , hence, gi1,i2,...,in ∈ Pi1,i2,...,in . Note that the
leading monomial of any polynomial ri1,i2,...,in ∈ Pi1,i2,...,in is always
xi1
1 x

i2
2 . . . xin

n , therefore the total sum of the multiplicities of fi,j appearing in
the expression of ri1,i2,...,in is no more than

⌊
i1+···+in

2

⌋
since fi,j is quadratic.

However, from Lemma 3, we know when M ≤ (
∑n

k=1 ik)/2,

G(i1, i2, . . . , in) =

⌊
i1 + · · ·+ in

2

⌋
,

which means that gi1,i2,...,in is optimal.
For the case of M > (

∑n
k=1 ik)/2, without loss of generality, assume M =

i1 > i2 + · · ·+ in. Then i1 > 0 and any polynomial ri1,i2,...,in in Pi1,i2,...,in must
be of the form (∏

k

xtk
k

)(∏
1≤i<j≤n

f
ti,j
i,j

)
, tk, ti,j ∈ N,

where t1 > 0. Otherwise, if t1 = 0, note that t1 +
n∑

j=2

t1,j = i1, it leads to

i1 =
n∑

j=2

t1,j . This is contradictory with that i1 >
n∑

j=2

ij ≥
n∑

j=2

t1,j .

Furthermore, we expect that R(i1, i2, . . . , in) is as large as possible, therefore,
the corresponding polynomial ri1,i2,...,in in Pi1,i2,...,in must be of the form

xt1
1

∏
1≤i<j≤n

f
ti,j
i,j , ti,j ∈ N, t1 > 0. (6)

Otherwise, there exists positive integers l > · · · > k ≥ 2 with positive tl, . . . , tk,
such that

ri1,i2,...,in =
(
xt1
1 x

tk
k . . . xtl

l

)(∏
1≤i<j≤n

f
ti,j
i,j

)
, ti,j ∈ N, t1 > 0.

We can construct another polynomial

r̃i1,i2,...,in =
(
f1,kx

t1−1
1 xtk−1

k . . . xtl
l

)(∏
1≤i<j≤n

f
ti,j
i,j

)
, ti,j ∈ N, t1 > 0,

and obviously, r̃i1,i2,...,in ∈ Pi1,i2,...,in , and the total sum of the multiplicities of
fi,j appearing in the expression of r̃i1,i2,...,in is more than ri1,i2,...,in .

Finally, due to (6) and the fi,j are quadratic, we have the following relations⎧⎪⎪⎨⎪⎪⎩
R(i1, i2, . . . , in) =

n∑
j=2

t1,j +
∑

2≤i<j≤n

tij ,

n∑
j=2

ij =
n∑

j=2

t1,j + 2
∑

2≤i<j≤n

tij ,

546 J. Xu et al.

and then,

R(i1, i2, . . . , in) =

n∑
j=2

ij −
∑

2≤i<j≤n

tij .

For fixed integers i1, i2, . . . , in, we know that

R(i1, i2, . . . , in) =

n∑
j=2

ij

is maximal when ti,j = 0 for 2 ≤ i < j ≤ n. Clearly, this corresponding polyno-
mial is

xt1
1

∏
1<j≤n

f
t1,j
1,j , t1,j ∈ N, t1 > 0. (7)

In fact, this polynomial is exactly the polynomial gi1,i2,...,in that Algorithm 1
outputs.

To obtain the largest upper bound X , according to Theorem 2, we use the
polynomials gi1,i2,...,in instead of the polynomials ri1,i2,...,in in the lattice L and
take W = �nd

2 � in Step 1 of the strategy.
From (5), we have

X < p
2F (n,d)

nd(d+1)n .

where
F (n, d) =

∑
0≤i1,i2,...,in≤d

G(i1, i2, . . . , in).

We give an explicit formula for F (n, d) in the following lemma and leave its
proof in Appendix A.

Lemma 4. Given positive integers n and d, we have

F (n, d)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4

(
(d+ 1)n(nd− 1)− d(d+1)(n+2d−1)

n2−1

(
n+d−1
n−2

)
+ n

(d−1)/2∑
i=0

(
n+2i−2

n−2

))
, if d is odd,

1
4

(
(d+ 1)n(nd− 1) + 1− d(d+1)(n+2d−1)

n2−1

(
n+d−1
n−2

)
+ n

d/2∑
i=1

(
n+2i−3
n−2

))
, if d is even.

Note that X = p/2l, we have

l >

(
1− 2F (n, d)

nd(d+ 1)n

)
k.

For fixed n, we know that

lim
d→∞

((
n+ d− 1

n− 2

)/
dn−2

(n− 2)!

)
= 1,

Modular Inversion Hidden Number Problem Revisited 547

and when d→∞,

d/2∑
i=1

(
n+ 2i− 3

n− 2

)
= o

((
n+ d− 1

n− 2

))
,

(d−1)/2∑
i=1

(
n+ 2i− 2

n− 2

)
= o

((
n+ d− 1

n− 2

))
.

Then when d→∞,

F (n, d) ≈ 1

4

(
ndn+1 − 2d3

n2 − 1

dn−2

(n− 2)!

)
=

1

4

(
1− 2

(n+ 1)!

)
ndn+1.

Furthermore,

lim
d→∞

2F (n, d)

nd(d+ 1)n
=

1

2
− 1

(n+ 1)!
.

Thus,

l >

(
1

2
+

1

(n+ 1)!
+ ε

)
k,

where ε is a real number with very small absolute value depending on n and d.

5 Experiment Results

We implemented our algorithm on a desktop with a 2.83GHz quad-core Intel
Core2 CPU and 4GB RAM. We show a selection of our experimental results for
various parameter settings in Table 1. In order to find the roots from the system
of equations corresponding to the first n LLL-reduced basis vectors, we can use
the resultant or Gröbner basis technique. In our experiments, we found that for
n ≤ 3, both methods worked well. But for n ≥ 4, the first n equations will
vanish to 0 after resultants computation. We also found that the LLL algorithm
outputs more than n integer equations by choosing proper parameters namely
when larger p or smaller l is needed. Actually, all vectors in the LLL-reduced
basis correspond to an integer equation except the last vector in our experiments.
This can benefit us in computing Gröbner basis.

Instead of using (1) to estimate the appropriate bounds for l in our experi-
ments, we used (2) to calculate the theoretical values of l for specifically chosen
n and d. In our experiments, we found that the length of the n-th vector in the
LLL-reduced basis was approximately

‖vn‖ ≈ 1.02dim(L)(det(L))1/ dim(L),

when n was not too large. As in [5] we used 1.02 as the value for the so-called
“LLL factor”. The justification of the factor was confirmed by a number of
experiments in our implementation. In our experiments, the factor never exceed
1.02. As we can see in Table 1, the fifth column (experimental results) and
the sixth column (theoretical bounds) are perfectly matched, which means that
we can solve ModInv-HNP with about half of the most significant bits of the
inversions modulo p.

548 J. Xu et al.

Table 1. Experimental results with different parameter settings. For comparison we
include the parameter settings which cannot be checked by experiments due to much
more computation or out of memory.

k n d dim(L) l/k l/k LLL Gröbner
(log2 p) (experiment) (theory) (seconds) (seconds)

1000 2 2 9 0.723 0.722 0.203 0.296
1000 2 3 16 0.709 0.708 1.217 0.172
1000 2 4 25 0.701 0.700 9.516 1.248
1000 2 8 81 0.686 0.685 5272.974 428.925
1000 2 10 121 0.683 0.682 47043.443 3912.723

1000 3 1 8 0.668 0.667 0.031 0.000
1000 3 2 27 0.618 0.617 9.688 0.624
1000 3 3 64 0.598 0.597 859.378 33.150
1000 3 4 125 0.586 0.585 27049.622 1214.936

1000 4 1 16 0.626 0.625 0.359 0.031
1000 4 2 81 0.575 0.574 1301.532 55.677
- 4 4 625 - 0.544 - -
- 4 8 6561 - 0.527 - -

1000 5 1 32 0.601 0.600 6.131 2.246
- 5 2 243 - 0.554 - -
- 5 3 1024 - 0.537 - -
- 5 5 7776 - 0.529 - -

1000 6 1 64 0.584 0.583 191.491 2.262
- 6 2 729 - 0.543 - -
- 6 3 4096 - 0.529 - -

1000 7 1 128 0.573 0.571 3536.917 24.414
- 7 2 2187 - 0.536 - -

6 Conclusion

The modular inversion hidden number problem is revisited and a new polynomial
time algorithm for solving the problem is presented. In our algorithm, to recover
the hidden number when n samples are given, we need to know about (12+

1
(n+1)!)

of the bits of the inversions modulo p. Compared with previous algorithms,
assume the same number of partial bits of the modular inversions are known,
our algorithm requires fewer samples.

Acknowledgements. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported
by the National Key Basic Research Program of China (2013CB834203), the Na-
tional Natural Science Foundation of China (Grant 61070172), and the Strate-
gic Priority Research Program of Chinese Academy of Sciences under Grant
XDA06010702.

Modular Inversion Hidden Number Problem Revisited 549

References

1. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized reduc-
tions. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, pp. 10–19. ACM (1998)

2. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (2001)

3. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret
keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

4. Boneh, D., Venkatesan, R.: Rounding in lattices and its cryptographic applica-
tions. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, pp. 675–682 (1997)

5. Cohn, H., Heninger, N.: Approximate common divisors via lattices. Cryptology
ePrint Archive, Report 2011/437 (2011), http://eprint.iacr.org/

6. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996)

7. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

9. Cox, D.A.: Ideals, varieties, and algorithms: an introduction to computational al-
gebraic geometry and commutative algebra. Springer (2007)

10. Gelfand, I., Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resul-
tants, and Multidimensional Determinants. Mathematics (Birkhäuser). Birkhäuser
Boston (2008)

11. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
When do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

12. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

13. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

14. Leiserson, C.E., Rivest, R.L., Stein, C., Cormen, T.H.: Introduction to algorithms.
The MIT press (2001)

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

16. Ling, S., Shparlinski, I.E., Steinfeld, R., Wang, H.: On the modular inversion hidden
number problem. Journal of Symbolic Computation 47(4), 358–367 (2012)

17. May, A.: Using LLL-reduction for solving rsa and factorization problems. In: The
LLL algorithm, pp. 315–348. Springer (2010)

18. Shparlinski, I.E.: Playing hide-and-seek with numbers: the hidden number problem,
lattices, and exponential sums. In: Proceeding of Symposia in Applied Mathemat-
ics, vol. 62, pp. 153–177 (2005)

http://eprint.iacr.org/

550 J. Xu et al.

A Proof of Lemma 4

Before computing F (n, d), we define S0(n, d) and S1(n, d):

S0(n, d) =
∑

0≤i1,i2,...,in≤d

⌊
i1 + i2 + · · ·+ in

2

⌋
,

S1(n, d) =
∑

0≤i1,i2,...,in≤d

⌊
1 + i1 + i2 + · · ·+ in

2

⌋
,

for positive integers n and d. We have the following lemma:

Lemma 5. Given the above definition of S0(n, d) and S1(n, d), we have

S0(n, d) =

⎧⎨⎩1
4 (nd− 1)(d+ 1)n, if d is odd,

1
4 (nd− 1)(d+ 1)n + 1

4 , if d is even.

S1(n, d) =

⎧⎨⎩1
4 (nd+ 1)(d+ 1)n, if d is odd,

1
4 (nd+ 1)(d+ 1)n − 1

4 , if d is even.

Proof. We first consider the case when d is even. In this case, we rewrite S0(n, d)
as

S0(n, d) =
∑

0≤i1≤d

∑
0≤i2,...,in≤d

⌊
i1 + i2 + · · ·+ in

2

⌋

= S0(n− 1, d)

(
d

2
+ 1

)
+ S1(n− 1, d)

d

2
+

1

4
d2(d+ 1)n−1.

(8)

Analogously, we rewrite S1(n, d) as

S1(n, d) = S0(n− 1, d)
d

2
+ S1(n− 1, d)

(
d

2
+ 1

)
+

1

4
d(d+ 2)(d+ 1)n−1. (9)

It is easy to know that when n = 1, S0(1, d) = d2/4 and S1(1, d) = d(d +
2)/4. Solve the recurrence equations (8) and (9) with initial values S0(1, d) and
S1(1, d), we get

S0(n, d) =
1

4
(nd− 1)(d+ 1)n +

1

4
,

S1(n, d) =
1

4
(nd+ 1)(d+ 1)n − 1

4
.

The proof to the case of d being odd is similar, we omit the details here.

Proof of Lemma 4.

Modular Inversion Hidden Number Problem Revisited 551

1. When d is even, we have

S0(n, d)

=F (n, d) +
∑

M>(i1+i2+···+in)/2

(⌊
i1 + i2 + · · ·+ in

2

⌋
− (i1 + i2 + · · ·+ in −M)

)

=F (n, d) + n
d∑

i1=1

∑
i2+···+in<i1

(⌊
i1 + i2 + · · ·+ in

2

⌋
− (i2 + · · ·+ in)

)

=F (n, d) + n
d∑

i1=1

i1−1∑
j=0

(⌊
i1 + j

2

⌋
− j

)(
n+ j − 2

n− 2

)

=F (n, d) + n
d∑

i1=1

i1−1∑
j=0

(
2i1 − 2j − 1

4

)(
n+ j − 2

n− 2

)
− n

4

d/2∑
i=1

(
n+ 2i− 3

n− 2

)

=F (n, d) +
1

4

d(d+ 1)(n+ 2d− 1)

n2 − 1

(
n+ d− 1

n− 2

)
− n

4

d/2∑
i=1

(
n+ 2i− 3

n− 2

)
.

Thus,

F (n, d)

=
1

4

⎛⎝(d+ 1)n(nd− 1) + 1− d(d+ 1)(n+ 2d− 1)

n2 − 1

(
n+ d− 1

n− 2

)
+ n

d/2∑
i=1

(
n+ 2i− 3

n− 2

)⎞⎠ .

2. When d is odd, we have

S0(n, d)

=F (n, d) + n

d∑
i1=1

i1−1∑
j=0

(
2s1 + 2j − 1

4

)(
n+ j − 2

n− 2

)
− n

4

(d−1)/2∑
i=0

(
n+ 2i− 2

n− 2

)
,

then,

F (n, d)

=
1

4

⎛⎝(d+ 1)n(nd− 1)− d(d+ 1)(n+ 2d− 1)

n2 − 1

(
n+ d− 1

n− 2

)
+ n

(d−1)/2∑
i=0

(
n+ 2i− 2

n− 2

)⎞⎠ .

On the Recursive Construction of MDS Matrices

for Lightweight Cryptography�

Hong Xu1,2, Lin Tan2, and Xuejia Lai1

1 Shanghai Jiao Tong University, Shanghai, China
2 Zhengzhou Information Science and Technology Institute, Zhengzhou, China

Abstract. Maximum distance separable (MDS) matrices are widely
used in the diffusion layers of block ciphers and hash functions. Recently,
Guo, Sajadieh and Wu et al. proposed to use recursive methods to con-
struct MDS matrices from linear feedback shift registers, and Wu et al.
presented some very compact MDS matrices constructed from cascade
of several linear feedback shift registers. However, some of the MDS ma-
trices constructed by them do not have simple inverses. In this paper, we
further present some compact MDS matrices which have simple inverses.
The cost is almost the same as Wu et al.’s, and the inverses are also MDS
matrices and can be efficiently implemented as themselves.

Keywords: Diffusion Layers, Branch number, MDS matrices, Linear
Feedback Shift Register (LFSR).

1 Introduction

Confusion and diffusion are two important standards considered in the design
of block ciphers and hash functions [1]. Modern block ciphers and hash func-
tions are usually cascades of several rounds and each round consists of confusion
and diffusion layers [2]. The confusion component is usually a non-linear sub-
stitution boxes (S-boxes) on a small subblock and the diffusion component is a
linear mixing of the subblocks in order to diffuse the statistics of the system.
The diffusion layer plays an important role in providing resistance against the
most well-known attacks such as differential cryptanalysis (DC) [3] and linear
cryptanalysis (LC) [4].

In 1994, Vaudenay [5] [6] suggested using MDS matrices in cryptographic
primitives to achieve perfect diffusion (multipermutations). He showed how to
exploit imperfect diffusion to cryptanalyze functions that are not multipermuta-
tions. This notion was later used by Daemen [7] named as the branch number,
and the most attractive diffusion layers are those with maximum branch num-
bers, which are also called perfect or MDS diffusion layers. Many block ciphers
such as AES [8], use MDS matrices in the diffusion layers. How to construct
MDS matrices efficiently is still a challenge for the designers.

� This work was supported by the NSF of China under Grant Numbers 61100200,
61272042, 61309017, and China Postdoctoral Science Foundation under Grant Num-
ber 2013M531174.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 552–563, 2014.
c© Springer International Publishing Switzerland 2014

On the Recursive Construction of MDS Matrices 553

In the design of lightweight algorithms PHOTON [9] and LED [10], to further
improve the efficiency, Guo et al. presented a strategy to construct s × s MDS
matrices from an s-stage linear feedback shift register (LFSR) over F2n (See
Figure 1). Later, Sajadieh et al. [2] and Wu et al. [11] further generalized their
construction by replacing the finite field multiplication operations presented in
PHOTON with simpler F2-linear operations, and provided some perfect MDS
matrices for 2 ≤ s ≤ 8. In their constructions, Sajadieh et al. focused on con-
structing MDS matrices with fewer basic linear functions, whereas Wu et al.
focused on constructing MDS matrices with fewer XOR operations. To further
reduce the hardware costs, Wuet al. also considered to construct MDS matrices
from cascade of several LFSRs and provided some examples for s = 4, 6, 8. The
MDS matrices constructed by Sajadieh et al. have simple inverses. However,
some of the 4 × 4 and 6 × 6 MDS matrices proposed by Wu et al. do not have
simple inverses.

As is known, Feistel and SPN (substitution permutation network) structures
are two fundamental structures of block ciphers. The Feistel structure possesses
similarity of encryption and decryption, whereas the decryption process of SPN
structures need to use inverse transformations. If the inverse transformations
are not perfect, then the security of the decryption algorithm may be lower
than that of the encryption algorithm. Thus in the design of diffusion layers,
MDS matrices with simple inverses whose inverses are also MDS are preferred
to ensure the security and efficiency of the algorithm.

In this paper, inspired by Wu et al.’s construction, we further present some
examples of MDS matrices with simple inverses, and the inverses are also MDS
matrices. Such MDS matrices can provide much flexibility in the design of perfect
diffusion layers. The hardware cost of the MDS matrices constructed by us is
almost the same as that of Wu et al.’s.

The rest of this paper is organized as follows. First, some definitions, prop-
erties and known results on the recursive constructions of MDS matrices are
reviewed in Section 2. Then a systematic analysis on 4×4 and 6×6 MDS matri-
ces constructed from cascade of several LFSRs are presented in Sections 3. All
the MDS matrices constructed by us have simple inverses, and their inverses are
usually also MDS matrices and can be efficiently implemented with the same
computational complexity. Finally, a short conclusion is given in Section 4.

2 Preliminaries

In this section, we will review some basic definitions and properties of MDS
matrices, and provide some known results on the recursive constructions of MDS
matrices from LFSRs.

Definition 1. [12] [13] Let F be a finite field, and p and q be two integers.
Let x → M × x be a mapping from F p to F q defined by the q × p matrix M .

554 H. Xu, L. Tan, and X. Lai

We say that it is an MDS matrix if the set of all pairs (x,M × x) is an MDS
code, i.e. a linear code of dimension p, length p+ q and minimal distance q+1.

In coding theory, MDS codes are usually constructed from RS codes [12],
Cauchy matrices [14] and Vandermonde matrices [15]. The diffusion layer con-
structed by MDS matrices can reach maximal linear and differential branch
number. The most widely used property for constructing MDS matrices is

Proposition 1. [12] An [m, s, d] code C with generator matrix G = [I|A], where
A is an s×(m−s) matrix, is MDS if and only if every square submatrix (formed
from any i rows and any i columns, for any i = 1, 2, ...,min{s,m − s}) of A is
nonsingular.

When considering a linear diffusion layer, A is always a square matrix, that
is, m = 2s. A square matrix A over a field is nonsingular if and only if its de-
terminant is nonzero. Since the entries of A−1 contains determinants of all the
(s−1)×(s−1) submatrices of A, then from Proposition 1 we know that if A is an
s× s MDS matrix over F2n , then all entries of A and A−1 are nonzero. Further-
more, Gupta et al. also presented the following useful result for the judgement
of 4× 4 MDS matrices.

Proposition 2. [16] Any 4× 4 matrix over F2n with all entries non zero is an
MDS matrix if and only if it is a full rank matrix with the inverse matrix having
all entries non zero and all of its 2× 2 submatrices are full rank.

MDS matrices are widely used in the diffusion layers of block ciphers and hash
functions. In the design of lightweight primitives PHOTON [9] and LED [10], to
further improve the efficiency and provide more compact serial implementation
in lightweight cryptographic primitives, Guo et al. presented a strategy to con-
struct s× s MDS matrices from an s-stage linear feedback shift register (LFSR)
over F2n (See Figure 1). In each step, only the last register is updated by a linear

x1 x2 x3 … xs

c1 c2 c3 cs
…

Fig. 1. An s-stage linear feedback shift register over F2n

On the Recursive Construction of MDS Matrices 555

combination of all of the registers while other registers are obtained by shifting
the state vector by one position to the left. That is, the state transition matrix
of the LFSR can be given as

A =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...
. . .

...
0 0 0 · · · 1
c1 c2 c3 · · · cs

⎞⎟⎟⎟⎟⎟⎠ ,

where ci ∈ F2n . For simplicity, we only extract the final row of A, that is,
A = [c1, c2, ..., cs]lfsr. Guo et al. tested all the possible values c1, c2, ..., cs ∈ F2n ,
and picked the most compact candidate such that As is an MDS matrix. One

example of the 4×4 MDS matrix presented by Guo et al. was
(
[1, α, 1, α2]lfsr

)4
,

which can be implemented by iterating the LFSR four times. Here α is the root
of the defining polynomial of F2n .

Since the mapping x→ ci · x can also be seen as a linear transformation over
F2n (or Fn

2 equivalently), Sajadieh et al. [2] and Wu et al.[11] further generalized
Guo et al.’s construction by replacing the finite field multiplication operations
with simpler F2-linear operations L over Fn

2 , and provided some perfect MDS
matrices for 2 ≤ s ≤ 8. In their constructions, Sajadieh et al. focused on con-
structing MDS matrices with fewer basic linear functions, whereas Wu et al.
focused on constructing MDS matrices with fewer XOR operations.

…

…

x1 x2

c1

c2

x3 x4

c3

c4

xs 1 xs

c
s 1

cs

x1 x2

c1 c2

…

…

x3 x4

c3 c4

x s 1 xs

cs 1 cs

Fig. 2. Cascade of several 2-stage LFSRs

556 H. Xu, L. Tan, and X. Lai

To further reduce the hardware costs, Wu et al. also considered to construct
MDS matrices from cascade of several 2-stage LFSRs (see Figure 2), which can
also be seen as a Generalized Feistel Structure in block ciphers. The correspond-
ing state transition matrix can be given as

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0 0 0
0 0 c3 c4 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 cs−1 cs
0 0 0 0 · · · 0 0 0 1
c1 c2 0 0 · · · 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

For simplicity, we denote by A = [c1, c2, ..., cs]gfs. It is clear that if c2i−1 = 1 for
all 1 ≤ i ≤ s/2, then

A−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0
0 1 c4 0 · · · 0 0
0 0 1 0 · · · 0 0
...
...
...
...
. . .

...
...

0 0 0 0 · · · cs 0
0 0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which can be easily implemented with the same computational complexity as
A. The best 4 × 4, 6 × 6 and 8 × 8 MDS matrices presented by Wu et al. were

([L, 1, 1, L]gfs)
4
,
(
[L, 1, 1, L2, L, L2]gfs

)6
, and

(
[1, L4, 1, L−1, 1, L, 1, L2]gfs

)8
, re-

spectively, where L is a linear operation over Fn
2 with only one or two XOR

gates.
From above we can see that some 4× 4 and 6× 6 MDS matrices constructed

by Wu et al. do not have simple inverses, which limits their applications in SPN
networks. In this paper, we will make a systematic analysis on the MDS matrices
constructed by LFSRs and present some examples of 4×4 and 6×6 MDS matrices
with simple inverses. Moreover, the inverses are usually also MDS matrices and
can be efficiently implemented with the same computational complexity.

3 Construction of MDS Matrices from LFSRs

Let A = [c1, c2, ..., cs]gfs be the state transformation matrix of cascades of s
2

2-stage LFSRs as shown in Figure 2. We want to determine the parameters
ci’s such that As is an MDS matrix over F2n . To ensure the MDS matrices
constructed have simple inverses, we always set c2i−1 = 1 for all 1 ≤ i ≤ s

2 .
For any s × s square matrix M , denote by Mi,j the entry appearing in the

i-th row and j-th column of M , where 1 ≤ i, j ≤ s.

On the Recursive Construction of MDS Matrices 557

From propositions 1 and 2 we know that if As is MDS over F2n , then all entries
of As and A−s are nonzero. Thus we can first obtain the following necessary
conditions respect to ci’s.

Proposition 3. Let A = [1, c2, 1, c4]gfs be the state transformation matrix of
cascades of two 2-stage LFSRs. If A4 is an MDS matrix over F2n , then c2 �= c4,
c2 �= 1 and c4 �= 1.

Proof. The result follows from (A4)1,2 = c2 + c4 �= 0, (A−4)1,1 = 1+ c42 �= 0, and
(A−4)3,4 = 1 + c44 �= 0.

Proposition 4. Let A = [1, c2, 1, c4, 1, c6]gfs be the state transformation matrix
of cascades of three 2-stage LFSRs. If A6 is an MDS matrix over F2n , then
c2 �= 1, c4 �= 1, c6 �= 1, c2 �= c4, c2 �= c6, c4 �= c6 and c2 + c4 + c6 �= 0.

Proof. The result follows from (A−6)1,1 = 1 + c62 �= 0, (A−6)3,6 = 1 + c64 �= 0,
(A−6)5,6 = 1 + c66 �= 0, (A−6)3,4 = (c2 + c4)

3 �= 0, (A−6)1,4 = (c2 + c6)
3 �= 0,

(A−6)6,3 = (c4 + c6)
3 �= 0, and (A6)1,2 = c2 + c4 + c6 �= 0.

3.1 Construction of 4 × 4 MDS Matrices

Let A = [1, c2, 1, c4]gfs be the state transformation matrix of cascades of two 2-
stage LFSRs as shown in Figure 2. We need to determine the parameters c2’s and
c4’s, such that A4 is an MDS matrix over F2n . From Proposition 3 we know that
if A4 is an MDS matrix, then c2 �= c4, c2 �= 1 and c4 �= 1. To ensure efficiency,
we restrict the values of c2 and c4 in the set {α, α2, α + 1}, where α is a root
of the defining polynomial f(x) of F2n . Thus the only candidates remained for
(c2, c4) are belonging to the set {(α, α2), (α2, α), (α, α + 1), (α+ 1, α)}.

For the above two cases we can show the following two results hold.

Theorem 1. Let A = [1, c2, 1, c4]gfs with (c2, c4) ∈ {(α, α2), (α2, α)}. Then A4

is an MDS matrix over F2n if and only if deg f(x) ≥ 4 and f(x) �= x4 + x3 + 1,
x4 + x3 + x2 + x+ 1, x5 + x4 + x2 + x+ 1, x6 + x+ 1, x6 + x3 + 1, x7 + x+ 1.
Moreover, if such conditions are satisfied, then A4 and A−4 will be MDS matrices
simultaneously.

Proof. We first show the result holds for A = [1, α, 1, α2]gfs. From Proposition
2 we know that A4 is an MDS matrix if and only if all entries of A4, A−4, and
all the determinants of 2 × 2 submatrices of A4 are nonzero. We can calculate
such values and obtain the corresponding canonical factorization of them over
F2 as follows:

A4 =

⎛⎜⎜⎝
1 α(α + 1) α3 α5

α5 (α+ 1)2(α2 + α+ 1)2 α(α + 1) α4

α3 α4 1 α(α+ 1)
α(α+ 1) α2 α4 (α+ 1)2(α2 + α+ 1)2

⎞⎟⎟⎠ ,

558 H. Xu, L. Tan, and X. Lai

A−4 =

⎛⎜⎜⎝
(α+ 1)4 α(α + 1) α2(α2 + α+ 1) α3

α3 1 α(α+ 1) α2

α2(α2 + α+ 1) α6 (α+ 1)8 α(α + 1)
α(α + 1) α4 α6 1

⎞⎟⎟⎠ ,

and all the 36 determinants of 2×2 submatrices of A4 are (α+1)(α3+α+1)(α3+
α2+1), α(α7 +α+1) , α4(α+1)2(α2+α+1)2, α2(α+1)3(α4+α3+1), α6(α+
1)(α4+α3+α2+α+1), α6, α5, (α+1)2(α2+α+1)2, α(α7+α+1), α(α6+α+1),
α2(α2+α+1)(α5+α4+α2+α+1), α4, α4, α5, (α+1)(α3+α+1)(α3+α2+1),
α6, α(α7+α+1), α3, α3, α4, α6, (α+1)(α4+α3+α2+α+1), α(α6+α+1), α2,
α(α7+α+1), α2(α2+α+1)(α5+α4+α2+α+1), α6(α+1)(α4+α3+α2+α+1),
α3(α+1)(α3+α+1)(α3+α2+1), (α6+α3+1)2, α(α6+α+1), α6, α(α6+α+1),
α2(α+1)3(α4+α3+1), α2(α+1)(α2+α+1)2, α3(α+1)(α3+α+1)(α3+α2+1),
(α+ 1)(α4 + α3 + α2 + α+ 1), respectively.

From above we can see that exactly all irreducible polynomials of degree less
than 3 appear in some entries of A4 and A−4, and the following eight new
irreducible polynomials α3+α+1, α3+α2+1, α4+α3+1, α4+α3+α2+α+1,
α5+α4+α2+α+1, α6+α+1, α6+α3+1, α7+α+1 appear in the determinants
of 2 × 2 submatrices of A4. Thus A4 is an MDS matrix if and only if all these
irreducible polynomials respect to α are nonzero, that is,

α �= 0,

α+ 1 �= 0,

α2 + α+ 1 �= 0,

α3 + α+ 1 �= 0,

α3 + α2 + 1 �= 0,

α4 + α3 + 1 �= 0, (1)

α4 + α3 + α2 + α+ 1 �= 0,

α5 + α4 + α2 + α+ 1 �= 0,

α6 + α+ 1 �= 0,

α6 + α3 + 1 �= 0,

α7 + α+ 1 �= 0.

Therefore α can not be the root of any irreducible polynomials of degree less
than 4, and α can not be the root of the following six irreducible polynomials
x4+x3+1, x4+x3+x2+x+1, x5+x4+x2+x+1, x6+x+1, x6+x3+1, x7+x+1.
Hence we can deduce that A4 is an MDS matrix if and only if deg f(x) ≥ 4 and
f(x) �= x4 + x3 + 1, x4 + x3 + x2 + x+ 1, x5 + x4 + x2 + x+ 1, x6 + x+ 1, x6 +
x3 + 1, x7 + x+ 1.

To judge whether A−4 is an MDS matrix, we need to further calculate all
the determinants of 2 × 2 submatrices of A−4. By careful calculation, we find
that the same eight new irreducible polynomials also appear in the determinants
of 2 × 2 submatrices of A−4. Thus from Proposition 2 we can deduce that A4

and A−4 will be MDS matrices or non MDS matrices simultaneously, and they

On the Recursive Construction of MDS Matrices 559

will be MDS matrices if and only if deg f(x) ≥ 4 and f(x) �= x4 + x3 + 1,
x4 + x3 + x2 + x+ 1, x5 + x4 + x2 + x+ 1, x6 + x+ 1, x6 + x3 + 1, x7 + x+ 1.
So the result holds for A = [1, α, 1, α2]gfs.

Similarly we can show the result also holds for A = [1, α2, 1, α]gfs.

Similar as above, we can also show the following result holds. The proof is
given in appendix for completeness.

Theorem 2. Let A = [1, c2, 1, c4]gfs with (c2, c4) ∈ {(α, α+1), (α+1, α)}. Then
A4 is an MDS matrix over F2n if and only if deg f(x) ≥ 5 and f(x) �= x5+x3+1,
x5 + x4 + x3 + x2 + 1. Moreover, if such conditions are satisfied, then A4 and
A−4 will be MDS matrices simultaneously.

Remark 1. The parameter α in Theorem 1 and Theorem 2 can also be replaced
by any other linear transformation L over F2n (or Fn

2 equivalently). The matrix
A4 will be an MDS matrix if and only if the linear transformation L satisfies
similar nonzero conditions as (1) and (2) given on α in the proofs of the theorems.
In fact, there exist many linear transformations L with only one or two XOR
gates that satisfy the conditions. Some of them are listed in the following table.

Table 1. Lightweight linear transformation L for A = [1, c2, 1, c4]gfs

Length of the input Example of L

n = 5 [[2, 4], 3, 4, 5, 1]

n = 6 [[1, 2], 3, 4, 5, 6, 1]

n = 7 [[2, 5], 3, 4, 5, 6, 7, 1]

n = 8 [[2, 3], 3, [4, 7], 5, 6, 7, 8, 1]

n = 12 [[2, 5], 3, 4, ..., 12, 1]]

n = 16 [[2, 3], 3, 4, ..., 16, 1]]

n = 32 [[2, 4], 3, 4, ..., 32, 1]]

n = 64 [[2, 6], 3, 4, ..., 64, 1]]

Here only the nonzero positions in each row of the matrix L is listed for
simplicity, that is, [[2, 4], 3, 4, 5, 1] is the representation of the matrix⎛⎜⎜⎜⎜⎝

0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞⎟⎟⎟⎟⎠.

The matrices L in Table 1 are selected such that their minimal polynomials do
not contain the irreducible factors listed in conditions (1) and (2).

Note that the last two rows of the table is the same as Table 1 of [11]. Par-
ticularly if A = [1, L, 1, L2]gfs, or [1, L

2, 1, L]gfs as shown in Theorem 1, then L
can be chosen as any linear transformation listed in Table 1 of [11]. For example,
L can also be chosen as [[2, 3], 3, 4, 1] for n = 4, and [[5, 6], 7, 5, 8, 4, 3, 1, 2] for
n = 8, which costs only one XOR gate as presented in [11].

560 H. Xu, L. Tan, and X. Lai

On the other hand, if the defining polynomial of the finite field F2n is a
trinomial, then the linear transformation x→ α·x over F2n also contains only one
XOR gate. For example, the matrices A4 with A = [1, α, 1, α2]gfs, [1, α

2, 1, α]gfs,
[1, α, 1, α+1]gfs, and [1, α+1, 1, α]gfs are all MDS matrices over F25 with defining
polynomial f(x) = x5+x3+1. Simultaneously, A−4 is also an MDS matrix over
F25 with defining polynomial f(x) = x5 + x3 + 1. Except for the case when 8|n,
there exists many such trinomials.

3.2 Construction of 6 × 6 MDS Matrices

Let A = [1, c2, 1, c4, 1, c6]gfs be the state transformation matrix of cascades of
three 2-stage LFSRs as shown in Figure 2. From Proposition 4 we know that if A6

is an MDS matrix over F2n , then c2 �= 1, c4 �= 1, c6 �= 1, c2 �= c4, c2 �= c6, c4 �= c6
and c2 + c4 + c6 �= 0. Since c2, c4 and c6 are pairwise distinct, by searching the
parameters ci’s over the set {1, α, α2, α3, α−1, α+1, α2 +1, α−1 +1, α3 +1}, we
also find some 6× 6 MDS matrices over F2n(n ≥ 8) which have simple inverses.

By Proposition 1, to judge whether A6 is an MDS matrix we should calculate
the canonical factorization of all the entries of A6, A−6, and determinants of all
the 850 submatrices of A6. Since there are so many irreducible factors, we only
list some examples of the defining polynomial f(x) of F2n such that A6 is an
MDS matrix. We have verified that A−6 is also an MDS matrix in these cases.

Table 2. Example of defining polynomials for A = [1, c2, 1, c4, 1, c6]gfs

Agfs n = 8 8 < n < 16 n = 16 n > 16

[1, α, 1, α2, 1, α−1] 84310 12, 5, 0 16,5,3,2,0 all

[1, α, 1, α2, 1, α2 + 1] 84310 12, 5, 0 16,5,3,2,0 all

[1, α, 1, α+ 1, 1, α3] 86540 12, 5, 0 16,5,3,2,0 all for n > 28

Here ”84310” refers to the polynomial x8 + x4 + x3 + x + 1 over F2. For the
first two cases, any irreducible polynomials with degree n > 16 can be chosen
as the defining polynomial, and for the third case, any irreducible polynomials
with degree n > 28 can be chosen as the defining polynomial. When 8 < n < 16,
there exist lots of irreducible trinomials f(x) such that A6 and A−6 are MDS
matrices.

Remark 2. The parameter α in Table 2 can also be replaced by some lin-
ear transformations L over F2n (or Fn

2 equivalently). For example, when

Table 3. Lightweight linear transformation L for A = [1, L, 1, L2, 1, L−1]gfs

Length of the input Example of L

n = 8 [[2, 3], 3, [4, 7], 5, 6, 7, 8, 1]

n = 16 [[2, 4], 3, 4, [5, 11], 6, ..., 16, 1]]

n = 32 [[2, 3], 3, [1, 4], 5, ..., 32, 1]]

n = 64 [[2, 8], 3, 4, 5, 6, 7, [6, 8], 9, ..., 64, 1]]

On the Recursive Construction of MDS Matrices 561

A = [1, L, 1, L2, 1, L−1]gfs and n = 8, 16, 32, 64, there exists many lightweight
linear transformations L with only two XOR gates such that A6 and A−6 are
MDS matrices. Some of them are listed in the following table.

3.3 Comparison with Known Results

The following table presents a comparison of MDS matrices As
gfs constructed

from LFSRs by us and Wu et al. The hardware cost to implement one iteration
of LFSRs (Agfs) is listed in the third column. The parameter L refer to the
linear transformation x→ α · x or other kind of linear transformations as listed
in Table 1 and Table 3. All the MDS matrices constructed by us have simple
inverses, and the inverses are usually also MDS matrices, whereas the MDS
matrices constructed by Wu et al. do not have simple inverses.

Table 4. Comparison of MDS matrices constructed from LFSRs

s Agfs Cost (XOR gates) with simple inverse Note

[L, 1, 1, L] 2n+ 2#L N [11]
4 [1, L, 1, L2] 2n+#L+#L2 Y Ours

[1, L, 1, L+ 1] 3n+ 2#L Y Ours

[L, 1, 1, L2, L, L2] 3n+ 2#L+ 2#L2 N [11]
6 [1, L, 1, L2, 1, L−1] 3n+#L+#L−1 +#L2 Y Ours
[1, L, 1, L2, 1, L2 + 1] 4n+#L+ 2#L2 Y Ours
[1, L, 1, L+ 1, 1, L3] 4n+ 2#L+#L3 Y Ours

From the table we can see that if a linear transformation L with only one
XOR gate was used, then the matrix [1, L, 1, L2]gfs constructed by us would
cost only one XOR gate more than that of Wu et al.’s, whereas the matrix
[1, L, 1, L2, 1, L−1]gfs constructed by us would cost two XOR gates less than
that of Wu et al.’s. For example, when n is not a multiple of 8, there exists lots
of irreducible trinomials of degree n. If the defining polynomial f(x) was chosen
as a trinomial satisfying the conditions of Theorem 1, Theorem 2 and Table 2,
then the linear transformation L : x→ α · x would cost only one XOR gate. On
the other hand, when n = 8, 16, 32, 64, there does not exist irreducible trinomials
of degree n, the linear transformation L : x → α · x would cost at least three
XOR gates. However, in this case, we can find some linear transformations L with
only two gates as shown in Table 1 and Table 3. Then the matrix [1, L, 1, L2]gfs

constructed by us would cost only two XOR gates more than that of Wu et al.’s,
whereas the matrix [1, L, 1, L2, 1, L−1]gfs constructed by us would cost four XOR
gates less than that of Wu et al.’s.

4 Conclusions

Maximum distance separable (MDS) matrices are widely used in the diffusion
layers of block ciphers and hash functions. Inspired by Wu et al.’s recursive con-
struction of MDS matrices from LFSRs, we further present some compact MDS

562 H. Xu, L. Tan, and X. Lai

matrices which have simple inverses. Compared with known constructions, the
MDS matrices constructed by us have simple inverses which can be implemented
with the same computational complexity, and the inverses are usually also MDS
matrices. This property can provide much flexibility in the design of perfect
diffusion layers.

References

1. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell Syst. Technical
J. 28, 656–715 (1949)

2. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive Diffusion Layers
for Block Ciphers and Hash Functions. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 385–401. Springer, Heidelberg (2012)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

4. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

5. Schnorr, C.-P., Vaudenay, S.: Black Box Cryptanalysis of Hash Networks Based on
Multipermutations. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 47–57. Springer, Heidelberg (1995)

6. Vaudenay, S.: On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer,
Heidelberg (1995)

7. Daemen, J.: Cipher and Hash Function Design Strategies Based on Linear and Dif-
ferential Cryptanalysis. PhD thesis, Elektrotechniek Katholieke Universiteit Leu-
ven, Belgium (1995)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

9. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

10. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

11. Wu, S., Wang, M., Wu, W.: Recursive diffusion layers for (Lightweight) block
ciphers and hash functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 355–371. Springer, Heidelberg (2013)

12. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Publishing Company (1978)

13. Chand Gupta, K., Ghosh Ray, I.: On Constructions of Involutory MDS Matrices.
In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS,
vol. 7918, pp. 43–60. Springer, Heidelberg (2013)

14. Roth, R.M., Lempel, A.: On MDS codes via Cauchy matrices. IEEE Trans. Inform.
Theory 35(6), 1314–1319 (1989)

15. Lacan, J., Fimes, J.: Systematic MDS erasure codes based on vandermonde matri-
ces. IEEE Trans. Commun. Lett. 8(9), 570–572 (2004)

16. Gupta, K.C., Ray, I.G.: On Constructions of MDS Matrices from Companion Ma-
trices for Lightweight Cryptography. In: Cuzzocrea, A., Kittl, C., Simos, D.E.,
Weippl, E., Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 29–43.
Springer, Heidelberg (2013)

On the Recursive Construction of MDS Matrices 563

Appendix

Proof (Proof of Theorem 2). We first show the result holds for A = [1, α, 1, α+
1]gfs. In this case, we have

A4 =

⎛⎜⎜⎝
1 1 α(α+ 1) α(α + 1)2

α(α+ 1)2 (α2 + α+ 1)2 1 (α+ 1)2

α(α + 1) α2(α+ 1) 1 1
1 α2 α2(α+ 1) (α2 + α+ 1)2

⎞⎟⎟⎠ ,

and

A−4 =

⎛⎜⎜⎝
(α+ 1)4 1 α2 + α+ 1 α3

α3 1 1 α2

α2 + α+ 1 (α+ 1)3 α4 1
1 (α+ 1)2 (α+ 1)3 1

⎞⎟⎟⎠ ,

where exactly all irreducible polynomials of degree less than 3 appear in entries
of A4 and A−4. On the other hand, by calculation we find that exactly the
following seven new irreducible polynomials α3 +α+1, α3 +α2 +1, α4 +α+1,
α4 + α3 + 1, α4 + α3 + α2 + α+ 1, α5 + α3 + 1, α5 + α4 + α3 + α2 + 1 appear
in the determinants of 2 × 2 submatrices of A4 and A−4 simultaneously. Thus
from Proposition 2 we can deduce that A4 and A−4 will be MDS matrices or
non MDS matrices simultaneously, and they will be MDS matrices if and only
if all the following ten irreducible polynomials respect to α are nonzero, that is,

α �= 0,

α+ 1 �= 0,

α2 + α+ 1 �= 0,

α3 + α+ 1 �= 0,

α3 + α2 + 1 �= 0, (2)

α4 + α+ 1 �= 0,

α4 + α3 + 1 �= 0,

α4 + α3 + α2 + α+ 1 �= 0,

α5 + α3 + 1 �= 0.

α5 + α4 + α3 + α2 + 1 �= 0,

Hence we can deduce that A4 and A−4 will be MDS matrices if and only if
deg f(x) ≥ 5 and f(x) �= x5 + x3 + 1, x5 + x4 + x3 + x2 + 1. So the result holds
for A = [1, α, 1, α+ 1]gfs.

Similarly we can show the result also holds for A = [1, α+ 1, 1, α]gfs.

On Constructions of Circulant MDS Matrices

for Lightweight Cryptography

Kishan Chand Gupta and Indranil Ghosh Ray

Applied Statistics Unit, Indian Statistical Institute
203, B.T. Road, Kolkata 700108, India
{kishan,indranil r}@isical.ac.in

Abstract. Maximum distance separable (MDS) matrices have applica-
tions not only in coding theory but are also of great importance in the
design of block ciphers and hash functions. It is highly nontrivial to find
MDS matrices which could be used in lightweight cryptography. In this
paper we study and construct efficient d×d circulant MDS matrices for d
up to 8 and consider their inverses, which are essential for SPN networks.
We explore some interesting and useful properties of circulant matrices
which are prevalent in many parts of mathematics and computer sci-
ence. We prove that circulant MDS matrix can not be involutory. We
also prove that 2d × 2d circulant matrix can not be both orthogonal and
MDS.

Keywords: Diffusion, InvMixColumn operation, Involutory matrix,
MDS matrix, MixColumn operation, Orthogonal matrix.

1 Introduction

Claude Shannon, in his paper “Communication Theory of Secrecy Systems” [27],
defined confusion and diffusion as two properties, required in the design of block
ciphers. Nearly all the ciphers [1, 6, 7, 13, 21, 24, 25, 29, 31] use predefined MDS
matrices for incorporating the diffusion property. Hash functions like Maelstrom
[8], Grφstl [9] and PHOTON family of light weight hash functions [10] use MDS
matrices as main part of their diffusion layers. In this context we would like
to mention that in papers [10–12,14, 17, 22, 23, 32, 34], different constructions of
MDS matrices are provided. In Whirlpool hash function [3], the diffusion layer
of underlying block cipher uses 8× 8 circulant matrix.

In [33], authors proposed a special class of substitution permutation networks
(SPNs) that uses same network for both the encryption and decryption opera-
tions. The idea was to use involutory MDS matrix for incorporating diffusion. It
may be noted that for ciphers like FOX [15] and WIDEA-n [16] that follow the
Lai-Massey scheme, there is no need of involutory matrices. In SPN networks,
two modules are used for encryption and decryption. In SAC 2004 [14] paper,
authors constructed efficient MDS matrices for encryption but the inverse of
such matrices were not guaranteed to be efficient, which they left for the future
work.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 564–576, 2014.
c© Springer International Publishing Switzerland 2014

On Constructions of Circulant MDS Matrices for Lightweight Cryptography 565

Our Contribution: In the AES MixColumn operation, the MDS matrix is a
circulant matrix having elements of low hamming weights, but no general con-
struction and study of d×d circulant MDS matrices for arbitrary d is available in
the literature. We prove that circulant MDS matrices can not be involutory. We
also prove that 2d × 2d circulant MDS matrices are not orthogonal. We study
some interesting properties of circulant matrices which are useful for efficient
implementations of their inverses whenever the dimension is even. We also con-
struct efficient d × d circulant MDS matrices over F2n for d up to 8 which are
suitable for SPN networks and hash functions.

In Section 2 we provide definitions and preliminaries. In Section 3, we study
some interesting and relevant properties of circulant matrices. In Section 4 we
propose new efficient d× d circulant MDS matrices for d = 3, 4, 5, 6, 7 and 8.

2 Definition and Preliminaries

Let F2 = {0, 1} be the finite field of two elements and F2n be the finite field of 2n

elements. Elements of F2n can be represented as polynomials of degree less than
n over F2. For example, let β ∈ F2n , then β can be represented as

∑n−1
i=0 biα

i,
where bi ∈ F2 and α is the root of generating polynomial of F2n . Another compact
representation uses hexadecimal digits. Here the hexadecimal digits are used to
express the coefficients of corresponding polynomial representation. For example
α7+α4+α2+1 = 1.α7+0.α6+0.α5+1.α4+0.α3+1.α2+0.α+1 = (10010101)2 =
95x ∈ F28 .

An MDS matrix provides diffusion properties that have useful applications in
cryptography. The idea comes from coding theory, in particular from maximum
distance separable code (MDS). In this context we state one important theorem
from coding theory.

Theorem 1. [19, page 33] If C is an [n, k, d] code, then n− k ≥ d− 1.

Codes with n− k = d− 1 are called maximum distance separable code, or MDS
code for short.

The following fact is another way to characterize an MDS matrix.

Fact 1. A square matrix A is an MDS matrix if and only if every square sub-
matrices of A are nonsingular.

Fact 2. If A is an MDS matrix over F2n, then A′, obtained by multiplying a
row (or column) of A by any c ∈ F∗

2n or by permutations of rows (or columns) is
MDS. Also if A is MDS, so is AT . Also if A is an MDS matrix over F2n , then
c.A is MDS for any c ∈ F

∗
2n.

Recall that many modern block ciphers use MDS matrices as a vital con-
stituent to incorporate diffusion property. In general two different modules are
needed for encryption and decryption operations. In [33], authors proposed a
special class of SPNs that uses same network for both the encryption and de-
cryption operation. The idea was to use involutory MDS matrices for incorpo-
rating diffusion. In this paper we will prove that a circulant matrix can not be
both involutory and MDS.

566 K. Chand Gupta and I. Ghosh Ray

Definition 1. [20, page 290] The d× d matrix of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 . . . ad−1
ad−1 a0 a1 . . . ad−2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
a1 a2 a3 . . . a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is called a circulant matrix and will be denoted by Circ(a0, . . . , ad−1).

Circulant matrix can also be written as a polynomial in some suitable permuta-
tion matrix. So we have the following fact.

Fact 3. [20, page 290] A d × d circulant matrix A = Circ(a0, . . . , ad−1) can
be written in the form A = a0I + a1P + a2P

2 + . . . + ad−1P
d−1, where P =

Circ(0, 1, 0, . . . , 0).

Definition 2. A square matrix A is called involutory matrix if it satisfies the
condition A2 = I, i.e. A = A−1.

For lightweight cryptographic application, it is desirable to have matrices
whose elements are of low hamming weight with as many zeros as possible in the
higher order bits. If such a matrix is orthogonal, then encryption and decryption
can be implemented with almost same circuitry with same computational cost.
We will prove that a 2d × 2d circulant matrix can not be both orthogonal and
MDS.

Definition 3. A square matrix A is called orthogonal matrix if AAT = I.

For efficient implementation of perfect diffusion layer, it is desirable to have
maximum number of 1’s and minimum number of different entries in the MDS
matrix. In [14], authors studied these two properties and proposed some bounds.
Here we restate their definitions and few results, which we will use in our con-
structions.

Definition 4. [14] Let M = ((mi,j)) be a q × p MDS matrix over F2n.

– Let v1(M) denotes the number of (i, j) pairs such that mi,j is equal to one.
We call it the number of occurrences of one. Also let vp,q1 be the maximal
value of v1(M).

– Let c(M) be the cardinality of {mi,j|i = 1, . . . , q; j = 1, . . . , p}. This is called
the number of entries. Also let cp,q be the minimal value of c(M).

– If v1(M) > 0, then c1(M) = c(M) − 1. Otherwise c1(M) = c(M). This is
called the number of nontrivial entries.

Fact 4. [14] v4,41 = 9, v5,51 = 12,v6,61 = 16, v7,71 = 21, v8,81 = 24.

Remark 1. High value of v1 and low value of c and c1 with low hamming weight
elements are desirable for constructing efficient MDS matrices.

On Constructions of Circulant MDS Matrices for Lightweight Cryptography 567

3 Some Useful Results on Circulant Matrices

In this section we study some important properties of circulant matrices. Recall
that to design diffusion layers for lightweight application, efficient involutory
MDS matrices are desirable as the same circuitry can be used for both encryption
and decryption. Efficient orthogonal MDS matrices are also of similar interest
as almost same circuitry can be used for both encryption and decryption. But
we will see in this section that circulant MDS matrices can not be involutory
or orthogonal. Also inverse of an efficient circulant MDS matrix may not be
efficient. In [14], authors designed efficient MDS matrices but the inverse was not
guaranteed to be efficient. In this context we study some interesting properties
of circulant matrices which are useful for efficient implementation of inverse of
efficient circulant MDS matrices.

MDS matrices of dimension 2d×2d are of special cryptographic interest. Note
that in AES [7], a 4 × 4 MDS matrix is used. In MDS-AES [13], the proposed
matrix is of dimension 16 × 16. In Lemma 1 and Corollary 1 we study two
important properties of 2d × 2d circulant matrices and using these results we
show in Lemma 2 that 2d × 2d circulant orthogonal matrices can not be MDS.

Lemma 1. Circ(a0, a1, . . . , a2d−1)
2d = (

∑2d−1
i=0 a2

d

i)I, where
a0, . . . , a2d−1 ∈ F2n .

Proof. From Fact 3, Circ(a0, a1, . . . , a2d−1) = a0I + a1P + . . . + a2d−1P
2d−1,

where 2d × 2d matrix P = Circ(0, 1, 0, . . . , 0). So, Circ(a0, a1, . . . , a2d−1)
2d

= (a0I + a1P + a2P
2 + . . . + a2d−1P

2d−1)2
d

= a2
d

0 I2
d

+ a2
d

1 P 2d + a2
d

2 (P 2d)2 +

. . .+ a2
d

2d−1(P
2d)2

d−1 = (a2
d

0 + a2
d

1 + a2
d

2 + . . .+ a2
d

2d−1)I. �

Remark 2. If
∑2d−1

i=0 ai = 1, then Circ(a0, a1, . . . , a2d−1)
2d = I.

Corollary 1. det(Circ(a0, a1, . . . , a2d−1)) =
∑2d−1

i=0 a2
d

i , where
a0, . . . , a2d−1 ∈ F2n .

Proof. Let A = Circ(a0, . . . , a2d−1) and det(A) =�. So, �2d= (det(A))2
d

= det(A2d). From Lemma 1, A2d = (
∑2d−1

i=0 a2
d

i)I. So, �2d=

det((
∑2d−1

i=0 a2
d

i)I) = (
∑2d−1

i=0 a2
d

i)2
d

. Therefore, �=
∑2d−1

i=0 a2
d

i . �
Lemma 2. Any 2d × 2d circulant orthogonal matrix over F2n is non MDS.

Proof. Let A = Circ(a0, a1, . . . , a2d−1) be an orthogonal matrix, where
a0, . . . , a2d−1 ∈ F2n . Let the row vectors of A are R0, R1, . . . , R2d−1, where
R0 = (a0, a1, . . . , a2d−1) and Ri can be obtained by rotating Ri−1 one element
to the right. Since A is orthogonal, Ri.Rj = 0 whenever i �= j. Let us consider
the cases R0.Rj = 0 for j = {2k + 1 : k = 0, . . . , 2d−2 − 1}, which give following
2d−2 equations:

2d−1∑
i=0

aiai+1 = 0,

2d−1∑
i=0

aiai+3 = 0,

2d−1∑
i=0

aiai+5 = 0, . . . ,

2d−1∑
i=0

aiai+2d−1−1 = 0,

568 K. Chand Gupta and I. Ghosh Ray

where suffixes are computed modulo 2d. Adding these equations, we get∑
i,j a2ia2j+1 = (a0 + a2 + a4 + . . .+ a2d−2)(a1 + a3 + a5 + . . .+ a2d−1) = 0.

Note that A has a (2d−1 × 2d−1) submatrix Circ(a0, a2, a4, . . . , a2d−2) which
is formed by 0th, 2nd, 4th, . . . , (2d−2)th rows and 0th, 2nd, 4th, . . . , (2d−2)th
columns. From Corollary 1, det(Circ(a0, a2, a4, . . . , a2d−2))

= a2
d−1

0 + a2
d−1

2 + a2
d−1

4 + . . .+ a2
d−1

2d−2 = (a0 + a2 + a4 + . . .+ a2d−2)
2d−1

.

Similarly it can be observed that A has (2d−1 × 2d−1) submatrix
Circ(a1, a3, a5, . . . , a2d−1) which is formed by 0th, 2nd, 4th, . . . , (2d− 2)th rows
and 1st, 3rd, 5th, . . . , (2d − 1)th columns and det(Circ(a1, a3, a5, . . . ,

a2d−1)) = a2
d−1

1 + a2
d−1

3 + a2
d−1

5 + . . .+ a2
d−1

2d−1 = (a1 + a3 + a5 + . . .+ a2d−1)
2d−1

.
Now,

∑
i,j a2ia2j+1 = (a0+a2+a4+. . .+a2d−2)(a1+a3+a5+. . .+a2d−1) = 0,

which implies that at least one of these submatrices is singular. So A is non
MDS. �

Remark 3. Although 2d × 2d circulant MDS matrices are not orthogonal, but
circulant MDS matrices of other dimensions may be orthogonal. For example, let
the irreducible polynomial x8+x4+x3+x+1 be the constructing polynomial of
F28 , then the 3×3 matrix Circ(α, 1+α2+α3+α4+α6, α+α2+α3+α4+α6) and
the 6×6 matrix Circ(1, 1, α, 1+α2+α3+α5+α6+α7, α+α5, α2+α3+α6+α7)
are orthogonal.

We next examine the possibility of constructing involutory MDS matrix from
circulant matrices. Towards this we show that such involutory circulant matrices
are non MDS in Lemma 5, but before that we study two useful properties in
Lemma 3 and Lemma 4. When diffusion layer in SPN network is implemented
using a 2d × 2d circulant MDS matrix, Lemma 3 may be used for efficient im-
plementation of its inverse (see Remark 4 and Remark 9).

Lemma 3. Let (2d)× (2d) circulant matrix A = Circ(a0, a1, . . . , a2d−1), where
a0, . . . , a2d−1 ∈ F2n. Then A2 = Circ(a20 + a2d, 0, a

2
1 + a2d+1, 0, . . . ,

a2d−1 + a22d−1, 0).

Proof. From Fact 3, A = a0I + a1P + a2P
2 + . . . + a2d−1P

2d−1, where (2d) ×
(2d) matrix P = Circ(0, 1, 0, . . . , 0). So A2 = a20I + a21P

2 + a22P
4 + . . . +

a22d−1P
2(2d−1) = (a20I + a2dP

2d) + (a21P
2 + a2d+1P

2d+2) + . . . + (a2d−1P
2(d−1) +

a22d−1P
2(2d−1)) = (a20 + a2d)I + (a21 + a2d+1)P

2 + . . . + (a2d−1 + a22d−1)P
(2d−2) =

Circ(a20 + a2d, 0, a
2
1 + a2d+1, 0, . . . , a

2
d−1 + a22d−1, 0). �

Remark 4. For any A = Circ(a0, . . . , a2d−1) with
∑2d−1

i=0 ai = 1, from Remark 2,

A2d = I. So A−1 = A2d−1 =
∏d−1

k=0 A
2k . Also note that matrices of the form A2k

for k > 0 are efficient as most of the elements are zero. So the InvMixColumn
operation can be implemented as a simple preprocessing step of multiplication

by A2 × A4 × . . .×A2d−1

followed by the MixColumn step. For example, when
d = 2, A−1 = A×A2.

On Constructions of Circulant MDS Matrices for Lightweight Cryptography 569

Remark 5. In AES [7], the MDS matrix used in MixColumn operation is M =
Circ(α, 1 + α, 1, 1), where α is the root of x8 + x4 + x3 + x + 1. P. Barreto
observed that in the InvMixColumn operation [7] of decryption, instead ofM−1,
M ×M−2 = Circ(α, 1 + α, 1, 1) × Circ(1 + α2, 0, α2, 0) can be used for more
efficient implementation. This is a consequence of Lemma 1, Remark 2 and
Remark 4.

Remark 6. In lightweight applications, major constraints are on processors and
memory. If constraints on processor is more than that on memory, some prepro-
cessing step as mentioned in Remark 4 may not be affordable. For such situations,
at the cost of some additional memory, table lookup may be incorporated. The
total number of operations and temporary variables may be reduced at the cost
of such supplementary multiplication tables. But in a memory constraint system
where scarcity of memory prevails over processor, if a little drop of performance
due to this preprocessing step as mentioned in Remark 4 is acceptable, then no
additional memory for multiplication table will be needed.

Lemma 4. Let (2d+1)×(2d+1) circulant matrix A = Circ(a0, . . . , a2d), where
a0, . . . , a2d ∈ F2n. Then A2 = Circ(a20, a

2
d+1, a

2
1, a

2
d+2, . . . , a

2
d−1, a

2
2d,

a2d).

Proof. From Fact 3, A = a0I+a1P+a2P
2+. . .+a2dP

2d, where (2d+1)×(2d+1)
matrix P = Circ(0, 1, 0, . . . , 0). So A2 = a20I + a21P

2 + a22P
4 + . . .+ a22dP

2(2d) =
a20I + a2d+1P

(2d+1+1) + a21P
2 + a2d+2P

(2d+1+3) + a22P
4 + . . . + a2d−1P

2d−2 +

a22dP
(2d+1+2d−1)+ a2dP

2d = a20I + a2d+1P + a21P
2+ a2d+2P

3+ . . .+ a2d−1P
(2d−2)+

a22dP
(2d−1) + a2dP

2d = Circ(a20, a
2
d+1, a

2
1, a

2
d+2, . . . , a

2
d−1, a

2
2d,

a2d). �

Lemma 5. Circulant involutory matrices are non MDS.

Proof. Let A = Circ(a0, a1, . . . , a2d−1) be a (2d) × (2d) involutory circu-
lant matrix. Then A2 = I. But from Lemma 3, A2 = Circ(a20 + a2d, 0, a

2
1 +

a2d+1, 0, . . . , a
2
d−1+ a22d−1, 0). So clearly a21+ a2d+1 = 0. But A has a 2× 2 subma-

trix Circ(a1, ad+1) which can be obtained from 0th and dth rows and 1st and
(d + 1)th columns of A, and det(Circ(a1, ad+1)) = a21 + a2d+1 = 0. So A is not
MDS.

Again for (2d+ 1)× (2d+ 1) involutory circulant matrix A = Circ(a0,
. . . , a2d), from Lemma 4, A2 = Circ(a20, a

2
d+1, a

2
1, a

2
d+2, . . . , a

2
2d, a

2
d). But since

A is involutory, A2 = I. So clearly ai = 0 for all i ∈ {1, . . . , 2d}. So A is not
MDS. �

4 Efficient Circulant MDS Matrices

In this section we construct efficient circulant MDS matrices over finite field.
By efficient MDS matrix we mean an MDS matrix with maximum number of
1’s and minimum number of distinct elements with low hamming weights (see

570 K. Chand Gupta and I. Ghosh Ray

Remark 1). MDS matrices with elements having low hamming weights are desir-
able for efficient implementations. It may be observed that in most of the cases,
the inverse of an efficient circulant MDS matrix is not efficient. For lightweight
application, d× d circulant MDS matrices, for d even, may be designed in such
a way so that the inverse may also be implemented efficiently by using Lemma
3.

4.1 Efficient 4 × 4 Circulant MDS Matrices

In this subsection, we construct efficient 4 × 4 circulant MDS matrices
Circ(a0, a1, a2, a3) where ai ∈ F2n for i = {0, 1, 2, 3}. Our target is to construct
MDS matrices with high v1 and low c1 (see Remark 1). For efficient implemen-
tation, we aim to restrict ai’s to the form
c0 + c1α+ c2α

−1 + c3α
2 + c4α

−2 where ci ∈ {0, 1}.

Proposition 1. A = Circ(α, 1 + α, 1, 1) is MDS matrix for any α ∈ F2n such
that minimal polynomial of α is of degree ≥ 4.

Proof. From Corollary 1, det(A) = α4+(α+1)4+1+1 = 1. It can be checked that
determinants of all 3×3 submatrices are 1+α2+α3, 1+α3, α+α2+α3 and 1+
α+α3. Also determinants of all 2× 2 submatrices are 1, α, 1+α, α2, 1+α2, α+
α2 and 1 + α+ α2. Since the minimal polynomial of α is of degree ≥ 4, none of
these determinants are zero. So A is MDS matrix. �

Remark 7. Note that v1(Circ(α, 1 + α, 1, 1)) = 8 < v4,41 (See Fact 4). It is easy
to check that in a 4 × 4 circulant matrix Circ(a0, a1, a2, a3), if 1 is substituted
in any three positions, then the matrix will be non MDS. So for 4× 4 circulant
MDS matrices, highest value of v1 is 8.

Remark 8. When the underlying field is F28 with generating polynomial x8+x4+
x3 + x+ 1 and α is the root of the generating polynomial, then the Proposition
1 gives the MDS matrix used in AES.

When minimal polynomial of α is the generating polynomial of underlying
field, multiplication by A can be implemented using 15 XORs, 4 xtime (or 4
table lookups) and 3 temporary variables [7]. The multiplication by A−1 can be
done by a small preprocessing followed by the multiplication by A (see Remark
4). If small drop of performance due to this preprocessing step is acceptable then
no additional memory for multiplication table will be needed (see Remark 6).
The preprocessing step can be implemented as follows using 6 XORs, 4 xtimes
(or table lookups) and 2 temporary variables [7].

In Table 1, we provide an exhaustive list of efficient 4 × 4 circulant MDS
matrices of the form Circ(a0, a1, a2, a3) over F28 with generating polynomial
x8 + x4 + x3 + x+1, up to the ordering of the elements of (a0, a1, a2, a3), where
ai’s are restricted in {01x, 02x, . . . , 07x} and a0 + a1 + a2 + a3 = 1 (so that the
inverses can be implemented efficiently, see Remark 4).

On Constructions of Circulant MDS Matrices for Lightweight Cryptography 571

Table 1. 4× 4 circulant MDS matrices over F28 with generating polynomial x8+x4+
x3 + x+ 1 where elements of these matrices are polynomials in α of degree at most 2
and α is the root of the generating polynomial

MDS Matrix Inverse Matrix

A A−1 = A × A2

Circ(02x, 03x, 01x, 01x) Circ(0Ex, 0Bx, 0Dx, 09x) = Circ(02x, 03x, 01x, 01x) × Circ(05x, 00x, 04x, 00x)

Circ(01x, 04x, 02x, 06x) Circ(0Dx, 0Cx, 0Ex, 0Ex) = Circ(01x, 04x, 02x, 06x) × Circ(05x, 00x, 04x, 00x)

Circ(01x, 04x, 03x, 07x) Circ(0Bx, 0Bx, 09x, 08x) = Circ(01x, 04x, 03x, 07x) × Circ(04x, 00x, 05x, 00x)

Circ(01x, 05x, 03x, 06x) Circ(0Bx, 0Ax, 09x, 09x) = Circ(01x, 05x, 03x, 06x) × Circ(04x, 00x, 05x, 00x)

All matrices in Table 1 except Circ(02x, 03x, 01x, 01x) have four 1’s
(i.e v1(A) = 4) which could be maximized to eight (see Remark 7) with the
proper choices of other elements. In Table 2, we provide some 4×4 circulant MDS
matrices A = Circ(a0, a1, a2, a3) with v1(A) = 8 and generating polynomial
x8+x4+x3+x+1 (up to the ordering of the elements (a0, a1, a2, a3)), where a0+
a1 + a2 + a3 = 1. We restrict ai’s to the form c0 + c1α+ c2α

−1 + c3α
2 + c4α

−2

where ci ∈ {0, 1}.

Table 2. 4 × 4 circulant MDS matrices over F28 with generating polyno-
mial x8 + x4 + x3 + x + 1 where elements of these matrices are of the form
c0 + c1α+ c2α

−1 + c3α
2 + c4α

−2, ci ∈ {0, 1}

MDS Matrix Inverse Matrix

A A−1 = A × A2

Circ
(
α + α−1, 1 + α + α−1, 1, 1

) Circ
(
α + α2 + α3 + α5 + α7, α2 + α5 + α6, α + α5,

1 + α3 + α5 + α6 + α7
)

= Circ
(
α + α−1, 1 + α + α−1, 1, 1

)
×Circ

(
1 + α2 + α−2, 0, α2 + α−2, 0

)

Circ
(
1, 1, α2 + α−2, 1 + α2 + α−2

) Circ
(
α3 + α5 + α6, α3 + α4 + α5,

α + α5 + α7, 1 + α + α2 + α4 + α6 + α7
)

= Circ
(
1, 1, α2 + α−2,

1 + α2 + α−2
)

× Circ
(
1 + α4 + α−4, 0, α4 + α−4

)

Circ
(
1, 1, α + α−1 + α2 + α−2,

1 + α + α−1 + α2 + α−2
)

Circ
(
1 + α2, α + α3 + α4 + α5 + α7,

α + α6, α2 + α3 + α4 + α5 + α6 + α7
)

= Circ
(
1, 1, α + α−1 + α2 + α−2, 1 + α + α−1 + α2 + α−2

)
×

Circ
(
1 + α2 + α−2 + α4 + α−4, 0, α2 + α−2 + α4 + α−4, 0

)

4.2 Efficient 8 × 8 Circulant MDS Matrices

Similar to the Subsection 4.1, we propose some efficient 8 × 8 circulant MDS
matrices Circ(a0, a1, a2, a3, a4, a5, a6, a7) where ai = c0 + c1α+ c2α

−1 + c3α
2 +

c4α
−2, ci ∈ {0, 1} and

∑7
i=0 ai = 1. It may be checked that if 1 is substituted in

any of the four places, then Circ (a0, a1, a2, a3, a4, a5, a6, a7) is not MDS. We
record this in the following lemma without proof.

Lemma 6. Circ(a0, a1, a2, a3, a4, a5, a6, a7) is never an MDS matrix
when any four or more elements from the set {a0, a1, a2, a3, a4, a5, a6, a7} are 1.

We next try to construct 8× 8 circulant MDS matrices A = Circ(a0, a1,
a2, a3, a4, a5, a6, a7) where any three elements of {a0, . . . , a7} are 1. For that

572 K. Chand Gupta and I. Ghosh Ray

we fix a0 = a1 = a3 = 1 and thus the matrix will be of the form A′ =
Circ(1, 1, a2, 1, a4, a5, a6, a7). So v1(A

′) = 24 = v8,81 . For efficiency, the elements
a2, a4, a5, a6 and a7 are restricted to the form c0 + c1α+ c2α

−1 + c3α
2 + c4α

−2

where ci ∈ {0, 1}. There are 8 × 8 circulant MDS matrices with three ele-
ments as 1 in some other positions, but they will be equivalent to some ma-
trices of the form A′ up to the rotation and reverse ordering of the elements
(1, 1, a2, 1, a4, a5, a6, a7) (see also the second paragraph of Section 4).

Proposition 2. A = Circ(1, 1, α−1, 1, α−2, α−1+α−2, 1+α−1, 1+α−1) is MDS
matrix for any α ∈ F2n such that minimal polynomial of α is x8+x4+x3+x2+1.

Remark 9. The sum of the elements of the matrix A of Proposition 2 is 1 and
A8 = I (see Remark 2), so A−1 = A×A2 ×A4. From Lemma 3, A2 = Circ(1 +
α−4, 0, 1+α−2 +α−4, 0, 1, 0, α−2, 0) and A4 = Circ(α−8, 0, 0, 0, 1+α−8, 0, 0, 0).
So for efficient implementation, the multiplication by A−1 can be replaced by
A×A2 ×A4 (see Remark 4).

Remark 10. Whirlpool [3] is a hash function which is based on an underlying
dedicated block cipher with the block length of 512 bits. The diffusion layer of
this block cipher uses 8×8 circulant matrix C = Circ(1x, 1x, 3x, 1x, 5x, 8x, 9x, 5x)
over F28 with the generating polynomial x8 + x4 + x3 + x2 + 1. In [28] authors
proved that this matrix C is not MDS and proposed a new MDS matrix M =
Circ(1x, 1x, 2x, 1x, 5x, 8x, 9x, 4x) with v1(M) = 24 = v8,81 and c1(M) = 5. Note
that some elements ofM are more expensive compared to the elements of the set
{01x, . . . , 07x}, but elements of matrix A of Proposition 2 are as efficient as the
elements {1x, . . . , 7x} (see the first paragraph of Section 4). Also c1(A) = 4 <
5 = c1(M) which is a better criteria for designing efficient matrix (see Remark
1).

The implementation of multiplication by the matrix A of Proposition 2 over
F28 with generating polynomial x8 + x4 + x3 + x2 + 1 is given in the Ap-
pendix A. This implementation requires 71 XORs, 10 temporary variables and
24 xtime inv operations (or 24 table lookup), which is the multiplication by
α−1. Also the implementation of multiplication by the matrix M of [28] is given
in the Appendix B. This implementation requires 71 XORs, 12 temporary vari-
ables and 48 xtime (or 48 table lookup) operations. Both the implementations
require same number of XORs, but implementation of matrix A needs 24 xtime
operations which is half the number of xtime operations needed for the imple-
mentation of matrix M . Also the matrix A needs lesser number of temporary
variables than M . So the matrix A of Proposition 2, defined over F28 with gen-
erating polynomial x8 + x4 + x3 + x2 + 1, is more efficient compared the matrix
M . Note that unlike our proposed matrix A in Proposition 2, M8 = (1 + α8)I
and thus M−1 can not be implemented in the same way (see Remark 4). Also
note that M−1 = Circ(b5x, 98x, 23x, fax, 23x, a5x, b6x, 30x) where all elements
are of high hamming weights and not efficient, thus multiplication by M−1 is
also costly.

On Constructions of Circulant MDS Matrices for Lightweight Cryptography 573

We search for efficient 8× 8 circulant MDS matrices A = Circ(1, 1, a2,
1, a4, a5, a6, a7) having v1(A) = 24 = v8,81 over F28 with generating polynomial
x8 + x4 + x3 + x2 + 1, up to the ordering of the elements (a0, a1, a2, a3, a4,
a5, a6, a7) with a2 + a4 + a5 + a6 + a7 = 0, so that inverse matrices can also
be implemented efficiently (see Remark 4). Here we restrict ai’s in the set of all
polynomials in α−1 of degree at most 2. We get four such matrices which are
given in Table 3.

Table 3. 8× 8 circulant MDS matrices over F28 with generating polynomial x8+x4+
x3 + x2 +1 where elements of these matrices are polynomials in α−1 of degree at most
2 and α is the root of the generating polynomial

MDS Matrix Inverse Matrix

A A × A2 × A4

Circ
(
1, 1, α−1, 1,

α−2, α−1 + α−2, 1 + α−1, 1 + α−1
) Circ

(
1, 1, α−1, 1, α−2, α−1 + α−2, 1 + α−1, 1 + α−1

)
×Circ

(
1 + α−4, 0, 1 + α−2 + α−4, 0, 1, 0, α−2, 0

)
×Circ

(
α−8, 0, 0, 0, 1 + α−8, 0, 0, 0

)
Circ

(
1, 1, α−1, 1,

1 + α−2, α−1, 1 + α−1, α−1 + α−2
) Circ

(
1, 1, α−1, 1, 1 + α−2, α−1, 1 + α−1, α−1 + α−2

)
×Circ

(
α−4, 0, 1 + α−2, 0, 1, 0, 1 + α−2 + α−4, 0

)
×Circ

(
1 + α−8, 0, 0, 0, α−8, 0, 0, 0

)
Circ

(
1, 1, 1 + α−2, 1,

α−2, 1 + α−1, α−1 + α−2, α−2
) Circ

(
1, 1, 1 + α−2, 1, α−2, 1 + α−1, α−1 + α−2, α−2

)
×Circ

(
1 + α−4, 0, α−2, 0, 1 + α−2, 0, 1 + α−4, 0

)
×Circ

(
α−4 + α−8, 0, 0, 0, 1 + α−4 + α−8, 0, 0, 0

)
Circ

(
1, 1, α−1 + α−2, 1,

1 + α−2, 1 + α−1, α−1 + α−2, α−1 + α−2
) Circ

(
1, 1, α−1 + α−2, 1, 1 + α−2, 1 + α−1, α−1 + α−2,

α−1 + α−2
)

× Circ
(
α−4, 0, α−2, 0, 0, 0,

1 + α−2 + α−4, 0
)

× Circ
(
α−8, 0, 0, 0, 1 + α−8, 0, 0, 0

)

Remark 11. All MDS matrices in Table 3 are efficient and also their inverses can
be implemented efficiently. So these matrices are suitable for SPN networks and
can also be used in hash functions.

4.3 Efficient d × d MDS Matrices for d = 3, 5, 6 and 7

In Table 4 we present some d×d circulant MDS matrices over F28 for d = 3, 5, 6
and 7 with generating polynomial x8 + x4 + x3 + x2 + 1 where elements are
restricted in {01x, 02x, . . . , 07x}. From Fact 4, v5,51 = 12. In case of 5×5 circulant
MDS matrices, out of five positions, 1 can be substituted in maximum two
positions, so highest value of v1 in this case is 10. Similarly, v6,61 = 16 but
maximum value of v1 for 6 × 6 circulant MDS matrices is 12. In case of 7 × 7
circulant MDS matrices, v1 can attain the highest value v7,71 i.e 21. In Table 4,
the 5 × 5, 6 × 6 and 7 × 7 circulant MDS matrices are having highest value of
their respective v1’s.

Table 4. d×d circulant MDS matrices over F28 with generating polynomial x8+x4+
x3 + x2 + 1 for d = 3, 5, 6 and 7

Dimension MDS Matrix
d A

3 Circ(02x, 01x, 01x)

5 Circ(01x, 01x, 02x, 03x, 02x)

5 Circ(01x, 01x, 02x, 03x, 05x)

6 Circ(01x, 01x, 02x, 03x, 05x, 07x)

6 Circ(01x, 01x, 02x, 03x, 07x, 03x)

7 Circ(01x, 01x, 02x, 01x, 05x, 04x, 06x)

7 Circ(01x, 01x, 02x, 01x, 06x, 07x, 04x)

574 K. Chand Gupta and I. Ghosh Ray

5 Conclusion

In this paper we studied the properties and constructions of d×d circulant MDS
matrices for d up to 8, which are suitable for lightweight applications. We proved
that circulant MDS matrices can not be involutory. We also proved that 2d× 2d

circulant MDS matrices are not orthogonal. We constructed efficient circulant
MDS matrices with maximum number of 1’s for which the inverse matrices can
also be implemented efficiently.

Acknowledgements. We are thankful to the anonymous reviewers for their
valuable comments. We also wish to thank Subhabrata Samajder for providing
several useful and valuable suggestions.

References

1. Barreto, P., Rijmen, V.: The Khazad Legacy-Level Block Cipher, Submission to
the NESSIE Project (2000), http://cryptonessie.org

2. Barreto, P.S., Rijmen, V.: The Anubis block cipher, NESSIE Algorithm Submission
(2000), http://cryptonessie.org

3. Barreto, P.S.L.M., Rijmen, V.: Whirlpool, Encyclopedia of Cryptography and Se-
curity, 2nd edn., pp. 1384–1385 (2011)

4. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System I: The User
Language. J. Symbolic Comput. 24(3-4), 235–265 (1997); Computational algebra
and number theory, London (1993)

5. Choy, J., Yap, H., Khoo, K., Guo, J., Peyrin, T., Poschmann, A., Tan, C.H.: SPN-
Hash: Improving the Provable Resistance against Differential Collision Attacks.
In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374,
pp. 270–286. Springer, Heidelberg (2012)

6. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

8. Filho, G.D., Barreto, P., Rijmen, V.: The Maelstrom-0 Hash Function. In: Pro-
ceedings of the 6th Brazilian Symposium on Information and Computer Systems
Security (2006)

9. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schlaffer, M., Thomsen, S.: Grφstl a SHA-3 Candidate, Submission to NIST (2008),
http://www.groestl.info

10. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

11. Chand Gupta, K., Ghosh Ray, I.: On Constructions of Involutory MDS Matrices.
In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS,
vol. 7918, pp. 43–60. Springer, Heidelberg (2013)

12. Gupta, K.C., Ray, I.G.: On Constructions of MDS Matrices from Companion Ma-
trices for Lightweight Cryptography. In: Cuzzocrea, A., Kittl, C., Simos, D.E.,
Weippl, E., Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 29–43.
Springer, Heidelberg (2013)

13. Nakahara Jr. J., Abrahao, E.: A New Involutory MDS Matrix for the AES. Inter-
national Journal of Network Security 9(2), 109–116 (2009)

http://cryptonessie.org
http://cryptonessie.org
http://www.groestl.info

On Constructions of Circulant MDS Matrices for Lightweight Cryptography 575

14. Junod, P., Vaudenay, S.: Perfect Diffusion Primitives for Block Ciphers Building
Efficient MDS Matrices. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 84–99. Springer, Heidelberg (2004)

15. Junod, P., Vaudenay, S.: FOX: A new family of block ciphers. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg
(2004)

16. Junod, P., Macchetti, M.: Revisiting the IDEA philosophy. In: Dunkelman, O. (ed.)
FSE 2009. LNCS, vol. 5665, pp. 277–295. Springer, Heidelberg (2009)

17. Lacan, J., Fimes, J.: Systematic MDS erasure codes based on vandermonde matri-
ces. IEEE Trans. Commun. Lett. 8(9), 570–572 (2004) (CrossRef)

18. Lo, J.W., Hwang, M.S., Liu, C.H.: An efficient key assignment scheme for access
control in a large leaf class hierarchy. Journal of Information Sciences: An Interna-
tional Journal Archive 181(4), 917–925 (2011)

19. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North
Holland (1986)

20. Rao, A.R., Bhimasankaram, P.: Linear Algebra, 2nd edn. Hindustan Book Agency

21. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–112. Springer,
Heidelberg (1996)

22. Sajadieh, M., Dakhilalian, M., Mala, H., Omoomi, B.: On construction of invo-
lutory MDS matrices from Vandermonde Matrices in GF (2q). In: Design, Codes
Cryptography 2012, pp. 1–22 (2012)

23. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive Diffusion Layers
for Block Ciphers and Hash Functions. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 385–401. Springer, Heidelberg (2012)

24. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish:
A 128-bit block cipher. In: The First AES Candidate Conference. National Institute
for Standards and Technology (1998)

25. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The
Twofish encryption algorithm. Wiley (1999)

26. Schnorr, C.-P., Vaudenay, S.: Black Box Cryptanalysis of Hash Networks Based on
Multipermutations. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 47–57. Springer, Heidelberg (1995)

27. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell Syst. Technical
J. 28, 656–715 (1949)

28. Shiraj, T., Shibutani, K.: On the Diffusion Matrix Employed in the Whirlpool
Hashing Function. NESSIE public report (2003)

29. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Block
cipher CLEFIA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195.
Springer, Heidelberg (2007)

30. Vaudenay, S.: On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer,
Heidelberg (1995)

31. Watanabe, D., Furuya, S., Yoshida, H., Takaragi, K., Preneel, B.: A new keystream
generator MUGI. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365,
pp. 179–194. Springer, Heidelberg (2002)

32. Wu, S., Wang, M., Wu, W.: Recursive Diffusion Layers for (Lightweight) Block
Ciphers and Hash Functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 355–371. Springer, Heidelberg (2013)

576 K. Chand Gupta and I. Ghosh Ray

33. Youssef, A.M., Tavares, S.E., Heys, H.M.: A New Class of Substitution Permutation
Networks. In: Workshop on Selected Areas in Cryptography, SAC 1996, Workshop
Record, pp. 132–147 (1996)

34. Youssef, A.M., Mister, S., Tavares, S.E.: On the Design of Linear Transformations
for Substitution Permutation Encryption Networks. In: Workshop On Selected Ar-
eas in Cryptography, SAC 1997, pp. 40–48 (1997)

Appendix A

The matrix A = Circ(1, 1, α−1, 1, α−2, α−1+α−2, 1+α−1, 1+α−1) of Proposition
2 over F28 with generating polynomial x8+x4+x3+x2+1 can be implemented
in the following way.
t = a[0]⊕a[1]⊕a[2]⊕a[3]⊕a[4]⊕a[5]⊕a[6]⊕a[7]; u0 = a[0];u1 = a[1]; u2 = a[2]; u3 =

a[3]; u4 = a[4]; u5 = a[5]; /* a is the input vector */z = a[4] ⊕ a[5]; v = a[2] ⊕ z;w =

a[2]⊕a[5]⊕a[6]⊕a[7]; w = xtime inv[w]; z = xtime inv[xtime inv[[z]]; a[0] = v⊕w⊕
z ⊕ t; z = a[5] ⊕ a[6]; v = a[3] ⊕ z;w = a[3] ⊕ a[6] ⊕ a[7] ⊕ u0;w = xtime inv[w]; z =

xtime inv[xtime inv[[z]]; a[1] = v ⊕ w ⊕ z ⊕ t; z = a[6] ⊕ a[7]; v = a[4] ⊕ z;w =

a[4] ⊕ a[7] ⊕ u0 ⊕ u1;w = xtime inv[w]; z = xtime inv[xtime inv[[z]]; a[2] = v ⊕ w ⊕
z ⊕ t; z = a[7] ⊕ u0; v = a[5] ⊕ z;w = a[5] ⊕ u0 ⊕ u1 ⊕ u2;w = xtime inv[w]; z =

xtime inv[xtime inv[[z]]; a[3] = v⊕w⊕ z⊕ t; z = u0⊕u1; v = a[6]⊕ z;w = a[6]⊕u1⊕
u2⊕u3;w = xtime inv[w]; z = xtime inv[xtime inv[[z]]; a[4] = v⊕w⊕ z⊕ t; z = u1⊕
u2; v = a[7]⊕z;w = a[7]⊕u2⊕u3⊕u4;w = xtime inv[w]; z = xtime inv[xtime inv[[z]];

a[5] = v ⊕ w ⊕ z ⊕ t; z = u2 ⊕ u3; v = u0 ⊕ z;w = u0 ⊕ u3 ⊕ u4 ⊕ u5;w =

xtime inv[w]; z = xtime inv[xtime inv[[z]]; a[6] = v ⊕ w ⊕ z ⊕ t; z = u3 ⊕ u4; v =

u1⊕ z;w = u1⊕ u4⊕ u5⊕ u6;w = xtime inv[w]; z = xtime inv[xtime inv[[z]];

a[7] = v ⊕ w ⊕ z ⊕ t;

Appendix B

The matrix M = Circ(1x, 1x, 2x, 1x, 5x, 8x, 9x, 4x) proposed in [28] can be im-
plemented in the following way.
t = a[0] ⊕ a[1] ⊕ a[2] ⊕ a[3] ⊕ a[4] ⊕ a[5] ⊕ a[6] ⊕ a[7]; u0 = a[0]; u1 = a[1]; u2 =

a[2]; u3 = a[3]; u4 = a[4]; u5 = a[5];u6 = a[6]; /* a is the input vector */v = a[4] ⊕
a[7];w = a[5] ⊕ a[6]; y = xtime[a[2]]; z = a[2] ⊕ a[5] ⊕ a[7]; v = xtime[xtime[v]];w =

xtime[xtime[xtime[z]]];a[0] = t ⊕ v ⊕ w ⊕ y ⊕ z; v = a[5] ⊕ u0;w = a[6] ⊕ a[7]; y =

xtime[a[3]]; z = a[3]⊕a[6]⊕u0; v = xtime[xtime[v]];w = xtime[xtime[xtime[z]]];a[1] =

t ⊕ v ⊕ w ⊕ y ⊕ z; v = a[6] ⊕ u1;w = a[7] ⊕ u0; y = xtime[a[4]]; z = a[4] ⊕ a[7] ⊕
u1; v = xtime[xtime[v]];w = xtime[xtime[xtime[z]]];a[2] = t ⊕ v ⊕ w ⊕ y ⊕ z; v =

a[7] ⊕ u2;w = u0 ⊕ u1; y = xtime[a[5]]; z = a[5] ⊕ u0 ⊕ u2; v = xtime[xtime[v]];w =

xtime[xtime[xtime[z]]];a[3] = t ⊕ v ⊕ w ⊕ y ⊕ z; v = u0 ⊕ u3;w = u1 ⊕ u2; y =

xtime[a[6]]; z = a[6]⊕u1⊕u3; v = xtime[xtime[v]];w = xtime[xtime[xtime[z]]];a[4] =

t ⊕ v ⊕ w ⊕ y ⊕ z; v = u1 ⊕ u4;w = u2 ⊕ u3; y = xtime[a[7]]; z = a[7] ⊕ u2 ⊕
u4; v = xtime[xtime[v]];w = xtime[xtime[xtime[z]]];a[5] = t ⊕ v ⊕ w ⊕ y ⊕ z; v =

u2 ⊕ u5;w = u3 ⊕ u4; y = xtime[u0]; z = u0 ⊕ u3 ⊕ u5; v = xtime[xtime[v]];w =

xtime[xtime[xtime[z]]];a[6] = t ⊕ v ⊕ w ⊕ y ⊕ z; v = u3 ⊕ u6;w = u4 ⊕ u5; y =

xtime[u1]; z = u1 ⊕ u4 ⊕ u6; v = xtime[xtime[v]];w = xtime[xtime[xtime[z]]];a[7] =

t⊕ v ⊕w ⊕ y ⊕ z;

Author Index

Abdalla, Michel 8
Au, Man Ho 403, 448

Bian, Shan 262

Chabanne, Hervé 8
Chand Gupta, Kishan 564
Chen, Chien-Ming 119
Chen, Guomin 187
Chen, Jiageng 373
Chen, Kefei 330
Chen, Lanxiang 359
Chen, Xiaofeng 346
Chow, Yang-Wai 60
Cuellar, Jorge 15
Cui, Shujie 202

de la Torre, Eduardo 217
Deng, Hua 496
Domingo-Ferrer, Josep 388
Dutta, Ratna 271

Feng, Dengguo 144
Feng, Wenya 159
Ferradi, Houda 8
Fu, Fang-Wei 287

Gao, Neng 217
Ghosh Ray, Indranil 564
Gollmann, Dieter 1
Großschädl, Johann 202
Gu, Dawu 330
Guan, Le 247
Guleria, Vandana 271
Guo, Dong 75
Guo, Fuchun 433

Han, Shuai 330
Hanzlik, Lucjan 42
Hao, Ronglin 524
He, Bing-Zhe 119
He, Wei 217
He, Yukun 75
Hou, Yonggan 159
Hsing, Chieh 119

Hu, Lei 537
Huang, Zhangjie 537

Jainski, Julien 8
Ji, Yuede 75
Jiang, Tao 346

Kluczniak, Kamil 42
Krzywiecki, �Lukasz 42
Kubiak, Przemys�law 42
Kuty�lowski, Miros�law 42

Lai, Xuejia 552
Li, Bao 524
Li, Hongda 418
Li, Jin 346
Li, Pei 105
Li, Qiang 75
Li, Songtao 262
Li, Wulu 511
Li, Xiaoqian 524
Li, Xinran 287
Liang, Bei 418
Liang, Bin 172
Liang, Kaitai 448
Lin, Piaoping 90
Liu, Hongmei 262
Liu, Jianwei 496
Liu, Joseph 346
Liu, Limin 217, 247
Liu, Shengli 330
Liu, Zeyi 217
Liu, Zhe 202
Lopez, Javier 15
Luo, Zhaokai 90
Lv, Bo 187

Ma, Bingke 524
Ma, Jianfeng 346
Mao, Jian 105
Markantonakis, Konstantinos 129
Mayes, Keith 129
Miyaji, Atsuko 373
Msgna, Mehari 129
Mu, Yi 433

578 Author Index

Naccache, David 8
Nguyen, Vu Duc 60
Ni, Jianbing 359
Niu, Qihua 418
Nojoumian, Mehrdad 302

Peng, Liqiang 537
Peng, Zhiniang 187

Qin, Bo 388, 496
Qin, Yu 144

Ren, Jian 359
Rios, Ruben 15

Samarati, Pierangela 28
Shi, WenChang 172, 496
Stinson, Douglas R. 302
Su, Chunhua 373
Sun, Hung-Min 119
Susilo, Willy 60, 403, 433, 448

Tan, Lin 552
Tang, Fei 418
Tang, Shaohua 187
Tang, Yi 90
Tu, Chenyang 217

Wang, An 232
Wang, Danhui 232
Wang, Huaqun 388
Wang, Jing 247
Wang, Kefeng 433
Wang, Ruilong 105

Wang, Wei 462
Wang, Weijin 144
Wei, Puwen 462
Wei, Tao 105
Wong, Duncan S. 346, 448
Wu, Mu-En 119
Wu, Qianhong 388, 496
Wu, Wei 359
Wu, Xin 172

Xia, Qi 359
Xin, Dan 159
Xu, Hong 552
Xu, Jun 537
Xu, Qiuliang 202

Yang, Guomin 448
Yu, Yong 359, 448
Yuan, JinHui 172

Zha, Daren 247
Zhang, Futai 318, 388
Zhang, Jie 318
Zhang, Jun 287
Zhang, Lei 496
Zhang, Lihua 105
Zhang, Mingwu 481
Zheng, Xinying 119
Zheng, Xuexin 232
Zheng, Yuliang 462
Zhou, HongWei 172
Zhu, Dewei 75
Zhuge, J.W. 159

	Preface
	ISPEC 2014
	Table of Contents
	Invited Papers from Keynote Speakers
	Access Control in and Around the Browser
	1 Introduction
	2 Access Control
	2.1 Cross-Windows Attacks

	3 Mashups
	3.1 Cross-Origin Resource Sharing

	4 Cross-site Scripting
	4.1 Content Security Policy

	5 Conclusions
	References

	Improving Thomlinson-Walker’s SoftwarePatching Scheme Using Standard Cryptographicand Statistical Tools
	1 Introduction
	2 Single Editor, Constant Memory, Linear Time
	3 Single Editor, Polylogarithmic Memory, Polylogarithmic Time
	4 Multiple Editors, Linear Memory, Constant Time
	5 Multiple Editors, Polylogarithmic Memory, Polylogarithmic Time
	6 How Long Should We Wait?
	References

	Preserving Receiver-Location Privacyin Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Network Model
	3.2 Attacker Model

	4 Base Station Cloaking Scheme
	4.1 Overview
	4.2 Traffic Normalisation
	4.3 Routing Tables Perturbation

	5 Discussion
	6 Conclusions
	References

	Data Security and Privacy in the Cloud
	1 Introduction
	2 Confidentiality of Data and Access Control
	2.1 Encryption and Fragmentation
	2.2 Access Control Enforcement
	2.3 Private Access

	3 Data and Computation Integrity
	4 Conclusions
	References

	Forbidden City Model – Towards a Practice Relevant Framework for Designing Cryptographic Protocols
	1 Introduction
	2 Traditional Methodology
	2.1 Demonstration of the Attacks

	3 Forbidden City Model
	3.1 Model Components
	3.2 AdversaryModel
	4 Examples
	4.1 Secure Signature Creation Device
	4.2 Authentication of Identity Documents

	References

	Network Security
	A CAPTCHA Scheme Basedon the Identification of Character Locations
	1 Introduction
	2 Background
	2.1 Usability versus Security
	2.2 Segmentation Resistance
	2.3 CAPTCHA Segmentation Techniques

	3 Design of the Proposed CAPTCHA Scheme
	4 Results and Discussion
	4.1 User Study
	4.2 Security

	5 Conclusion
	References

	A Mulitiprocess Mechanism of EvadingBehavior-Based Bot Detection Approaches
	1 Introduction
	2 Evasion Mechanism of Multiprocess Bot
	2.1 Specific Features of Multiprocess Bot
	2.2 Evading Behavior-Based Bot Detection Approaches

	3 Critical Challenges of Multiprocess Bot
	4 Experiments
	4.1 Prototype Architecture
	4.2 Signature Analysis
	4.3 Behavior Analysis

	5 Extended Architectures of Multiprocess Bot
	6 Related Work
	7 Limitations and Future Work
	8 Conclusion
	References

	Obfuscating Encrypted Web Trafficwith Combined Objects
	1 Introduction
	2 Traffic Analysis in Encrypted Web Flows
	2.1 HTTP Traffic
	2.2 Traffic Analysis
	2.3 The Padding-Based Countermeasures

	3 The Combined Object
	4 Constructing the Combined Objects
	4.1 The CO-enabled HTML Document
	4.2 The Communications for Combined Objects

	5 Experiments and Discussions
	5.1 The Experiment Setup
	5.2 Visiting Web Pages with CoOBJ Method via HTTPS and SSH
	5.3 The CoOBJ Method against Different Classifiers
	5.4 Time Cost for the CoOBJ Method
	5.5 Discussions
	5.6 Related Work

	6 Conclusion
	References

	A Website Credibility Assessment Scheme Basedon Page Association
	1 Introduction
	2 Related Work
	3 Page Association Based Website Credibility Assessment
	3.1 Assessment Features Extraction and Aggregation Analysis
	3.2 Credibility Assessment Based Malicious Page Detection

	4 Implementation as Browser Extension
	4.1 Page Script
	4.2 Global HTML Page
	4.3 Menu

	5 Performance Analysis
	6 Conclusion
	References

	System Security
	A Methodology for Hook-Based Kernel LevelRootkits
	1 Introduction
	2 System Overview
	2.1 Design Goals and Assumption
	2.2 Advantages

	3 Our Scheme
	4 Evaluation
	4.1 Cross View Detection Ability
	4.2 Runtime Detour for Comparison
	4.3 Current Antivirus Software Measurement

	5 Related Work
	6 Conclusions
	References

	Precise Instruction-Level Side Channel Profilingof Embedded Processors
	1 Introduction
	2 TemplateConstruction
	3 Dimensionality Reduction
	3.1 Sum of Difference of Means
	3.2 Means-Variance
	3.3 Principal Components Analysis (PCA)
	3.4 Means-PCA
	3.5 Fisher’s Linear Discriminant Analysis (F-LDA)

	4 Instruction Classification
	4.1 Multivariate Gaussian Probability Density Function
	4.2 k-Nearest Neighbors Algorithm (kNN)

	5 Experimental Results
	5.1 Template Construction
	5.2 Dimensionality Reduction
	5.3 Instruction Classification

	6 Related Work
	7 Application and Significance
	8 Conclusion
	References

	Automated Proof for Authorization Protocolsof TPM 2.0 in Computational Model
	1 Introduction
	2 An Overview of the TPM Authorization
	2.1 Session
	2.2 Authorization Protocols

	3 Authorization Model and Security Properties
	3.1 Modelling the Authorization Protocols
	3.2 Security Properties

	4 Authentication Results with CryptoVerif
	4.1 CryptoVerif
	4.2 Assumptions
	4.3 Experiment Results

	5 Conclusions
	References

	SBE − A Precise Shellcode Detection EngineBased on Emulation and Support VectorMachine
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Overview of the Proposed Method
	3.2 Data Extraction
	3.3 Features Extraction
	3.4 Feature Selection
	3.5 Performance Optimization

	4 Experiment Evaluation
	4.1 Data Set
	4.2 Detection Rate vs Libemu
	4.3 Processing Cost

	5 Conclusion
	References

	HDROP: Detecting ROP AttacksUsing Performance Monitoring Counters
	1 Introduction
	2 Design
	2.1 Interesting Performance Event
	2.2 Collecting Data
	2.3 Detecting Algorithm

	3 Implementation
	4 Evaluation
	4.1 Effectiveness
	4.2 Performance

	5 Discussion
	6 Related Work
	6.1 Gadget-Less Solution
	6.2 Abnormity-Detecting Solution

	7 Conclusion
	References

	Security Practice
	Efficient Hardware Implementation of MQAsymmetric Cipher PMI+ on FPGAs
	1 Introduction
	2 Preliminaries
	2.1 Notations for PMI+
	2.2 PMI+ Encryption
	2.3 PMI+ Decryption
	2.4 Security and Parameter Selection of PMI+

	3 Design and Implementation of PMI+ Hardware
	3.1 Hardware Structure Design and Algorithm Process
	3.2 Basic Arithmetic Unit
	3.3 Implementation of Hardware Core Modules

	4 Experiment Results and Analyses
	4.1 PMI+ Basic Arithmetic Unit
	4.2 Large Power Operation in PMI+
	4.3 PMI+ Encryption and Decryption
	4.4 Performance Comparison

	5 Conclusion
	References

	High-Speed Elliptic Curve Cryptographyon the NVIDIA GT200 Graphics Processing Unit
	1 Introduction
	2 Preliminaries
	2.1 Graphics Processing Units (GPUs)
	2.2 Elliptic Curve Cryptography (ECC)

	3 Implementation
	3.1 Integer Representation
	3.2 Field Operations
	3.3 Group Operations and Scalar Multiplication

	4 Experimental Results
	4.1 Throughput and Latency
	4.2 Comparison with Related Work

	5 Conclusions
	References

	A Progressive Dual-Rail Routing RepairApproach for FPGA Implementation of CryptoAlgorithm
	1 Introduction
	2 Related Work
	3 DPL Implementation Difficulties for Sizable Algorithm
	3.1 Serious Routing Congestion with Large Numbers of Components
	3.2 Unacceptable Time-Consuming Path Selection

	4 Progressive Repair Mechanism
	4.1 The Overview of Progressive Repair Mechanism
	4.2 FPGA Block Division Relevant to Algorithm Structure
	4.3 Different DPL Realization for a Single Block
	4.4 Global Process about the Nets between Blocks

	5 Validation on AES-128
	5.1 Estimation of Conflict Rate and Repair Success Rate
	5.2 Attack Results
	5.3 The Expense of Extra Performance Overhead

	6 Conclusion and Future Work
	References

	Fault-Tolerant Linear Collision Attack:A Combination with Correlation Power Analysis
	1 Introduction
	2 Preliminary
	2.1 Notations
	2.2 Bogdanov’s Combined Side-Channel Collision Attack
	2.3 Correlation-Enhanced Collision Attack

	3 Fault-Tolerant Linear Collision Attack
	3.1 Fault-Tolerant Chain
	3.2 Framework of Fault-Tolerant Linear Collision Attack
	3.3 Experiments and Efficiency

	4 Fault-Identification Mechanism
	4.1 Procedure and Effectiveness
	4.2 Choice of Threshold in CPA

	5 Conclusion
	References

	Implementing a Covert Timing ChannelBased on Mimic Function
	1 Introduction
	2 Related Work
	3 Our Scheme
	3.1 Mimic Functions
	3.2 The Mimicry Framework
	3.3 Design Details

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Detection Resistance
	4.3 Capacity

	5 Conclusion
	References

	Detecting Frame Deletion in H.264 Video
	1 Introduction
	2 Statistical Features of Frame Deletion in H.264 Video
	3 Proposed Method
	4 Experiments
	5 Conclusion and Future Works
	References

	Security Protocols
	Efficient Adaptive Oblivious Transferin UC Framework
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Pairing and Complexity Assumptions
	2.2 Groth-Sahai Proofs [16]
	2.3 Security Model

	3 Protocol
	4 Security Analysis
	References

	Multi-receiver Authentication Scheme for MultipleMessages Based on Linear Codes
	1 Introduction
	2 Our Construction and Main Results
	3 Security Analysis of Our Authentication Scheme
	4 Code-Based Authentication Scheme and Minimal Codewords
	5 The Authentication Scheme Based on Algebraic GeometryCodes
	6 Conclusion
	References

	Efficient Sealed-Bid Auction ProtocolsUsing Verifiable Secret Sharing
	1 Introduction
	1.1 Literature Review
	1.2 Motivation and Contributions

	2 Preliminaries
	2.1 Auction Protocols
	2.2 Secret Sharing

	3 Our Constructions
	3.1 Sealed-Bid Second-Price Auction Protocol Using +
	3.2 Sealed-Bid Second-Price Auction Protocol Using × and +
	3.3 Sealed-Bid Combinatorial Auction Protocol by Dynamic Programming
	3.4 Sealed-Bid Combinatorial Auction Protocol by Multiple-TSP

	4 Complexity and Properties
	5 Concluding Remarks
	References

	Information-Theoretical Secure Verifiable SecretSharing with Vector Space Access Structuresover Bilinear Groups
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Bilinear Pairings
	2.2 Access Structure
	2.3 Notations for Two Mathematical Operations

	3 Verifiable Secret Sharing on Vector Space Access Structures over Bilinear Groups
	3.1 Secret Sharing on Vector Space Access Structures over Bilinear Groups
	3.2 Verifiable Secret Sharing on Vector Space Access Structuresover Bilinear Groups
	3.3 Correctness
	3.4 Security Analysis
	3.5 Computational Cost

	4 A Modified Scheme with Improved Efficiency
	4.1 Description of the Scheme
	4.2 Computational Cost

	5 Conclusion
	References

	Cloud Security
	Proofs of Retrievability Based on MRD Codes
	1 Introduction
	2 PoR Scheme: Definition and Security Model
	2.1 Notations and Assumptions
	2.2 PoR Scheme
	2.3 Soundness of PoR Scheme

	3 Maximum Rank Distance Codes and Gabidulin Codes
	3.1 Rank Distance Codes
	3.2 Maximum Rank Distance Codes and Gabidulin Code

	4 PoR Scheme from MRD Codes
	5 Performance Analysis
	6 The Security of the Proposed PoR Scheme
	6.1 ϵ-Soundness of the PoR Scheme

	7 Conclusion
	References

	TIMER: Secure and Reliable Cloud Storageagainst Data Re-outsourcing
	1 Introduction
	2 Related Works
	3 Problem Statement and Design Goals
	3.1 System and Threat Model
	3.2 Design Goals

	4 Proposed Scheme
	4.1 Construction Overview
	4.2 TIMER Scheme

	5 Security and Performance Analysis
	5.1 Security Proof of TIMER Scheme
	5.2 Probabilistic Analysis of Data Re-outsourcing

	6 Conclusion
	References

	Improvement of a Remote Data PossessionChecking Protocol from Algebraic Signatures
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Components of a RDPC Protocol
	2.3 Security Requirements

	3 On the Security of the RDPC Protocols
	3.1 A Brief Review of the RDPC Protocols
	3.2 Replay Attacks on the Protocols
	3.3 Deletion Attack on the Improved Protocol

	4 Our RDPC Protocol
	5 SecurityProofs
	6 Conclusion
	References

	Distributed Pseudo-Random NumberGeneration and Its Applicationto Cloud Database
	1 Introduction
	1.1 Related Works
	1.2 Problem Definition and Our Contributions

	2 Preliminaries
	2.1 Building Blocks
	2.2 Security Definitions and Model

	3 Our Proposal on Distributed PRNG
	3.1 Distributed Pseudo-Random Number Generator
	3.2 The Details of Our Protocol

	4 Application to Distributed Data Random Perturbation
	5 Security Proofs and Experimental Analysis
	5.1 Security Proof of the Distributed PRNG
	5.2 Security Analysis of Application of PRNG in Random DataPerturbation
	5.3 Experimental Analysis

	6 Conclusion and Future Works
	References

	Digital Signatures
	A Provably Secure Ring Signature Schemewith Bounded Leakage Resilience
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Plan of This Paper

	2 Preliminaries
	2.1 Information Theory Lemmas
	2.2 Computational Assumptions

	3 Modeling Ring Signature with Bounded Leakage Resilience
	4 Our Ring Signature Scheme with Bounded Leakage Resilience
	5 Security Analysis
	6 Conclusions and Future Work
	References

	Two-Party (Blind) Ring Signaturesand Their Applications
	1 Introduction
	1.1 Our Contribution
	2 Preliminary
	2.1 Bilinear Pairing
	2.2 Groth-Sahai Non-interactiveWitness-Indistinguishable Proof System
	2.3 Syntax of Two-Party Ring Signatures
	2.4 Syntax of Two-Party Blind Ring Signatures
	3 Non-interative Zero-Knowledge Proof-of-Knowledge
	3.1 ProofPDL
	3.2 ProofPWH
	4 Constructions
	4.1 A Two-Party Ring Signature Scheme
	4.2 A Blind Signature Generation Protocol for Our Two-Party Ring SignatureScheme
	5 Applications
	6 Conclusion
	References

	Efficient Leakage-Resilient Signature Schemesin the Generic Bilinear Group Model
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Generic Bilinear Group Model
	2.3 Entropy
	2.4 Schwartz-Zippel Lemma

	3 Definitions
	3.1 Signature Scheme
	3.2 Security
	3.3 Security in the Presence of Leakage

	4 Boneh-Lynn-Shacham Signature Scheme
	4.1 Probabilistic BLS Signature Scheme
	4.2 Leakage-Resilient Probabilistic BLS Signature Scheme

	5 Waters Signature Scheme
	5.1 Leakage-Resilient Waters Signature Scheme

	6 Comparison
	References

	Attribute-Based Signaturewith Message Recovery
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Lagrange Interpolation
	3.2 Bilinear Pairing
	3.3 CDH Problem

	4 Attribute-Based Signature with Message Recovery
	4.1 Definitions
	4.2 Our Scheme
	4.3 Security Model
	4.4 Security Analysis

	5 Extended Scheme
	6 Conclusion
	References

	Encryption and Key Agreement
	An Adaptively CCA-Secure Ciphertext-Policy Attribute-Based Proxy Re-Encryption for Cloud Data Sharing
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Definitions and Security Models
	2.1 Definition of CP-ABPRE
	2.2 Security Models

	3 An Adaptively CCA-Secure CP-ABPRE
	3.1 Construction
	3.2 Security Analysis

	4 Conclusions
	References

	Multi-recipient Encryptionin Heterogeneous Setting
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Main Techniques

	2 Basic Definitions
	3 Security Model
	4 Constructions
	4.1 Map t Strings to One String
	4.2 Basic Multi-recipient Encryption with Sender Recovery
	4.3 Security Analysis
	4.4 Stateful MRES-SR

	5 Anonymous Multi-recipient Encryption
	5.1 Analysis of Anonymity

	6 Concluding Remarks
	References

	ACP-lrFEM: Functional Encryption Mechanismwith Automatic Control Policyin the Presence of Key Leakage
	1 Introduction
	2 Encryption with Automatic Control Policy in the Presence of Key Leakage
	3 Construction of ACP-lrFEM
	4 Analysis
	4.1 Consistency
	4.2 Subspaces for Leakage Resilience over Transformation
	4.3 Leakage-resilient Semantic Security

	5 Performance and Discussion
	5.1 Performance of Leakage Resilience
	5.2 Discussion
	5.3 Application Scenario

	6 Conclusions
	References

	Provably Secure Certificateless AuthenticatedAsymmetric Group Key Agreement
	1 Introduction
	1.1 Our Contribution
	1.2 Outline

	2 Bilinear Maps and Complexity Assumption
	3 Security Model
	3.1 Participants and Notations
	3.2 The Model

	4 Strongly Unforgeable Stateful CL-B-MS Scheme
	4.1 Definition
	4.2 The Model
	4.3 Our CL-B-MS Scheme
	4.4 Security Analysis

	5 The CL-AAGKA Protocol
	5.1 The Proposal
	5.2 Security Analysis

	6 Conclusion
	References

	Theory
	New Variants of Lattice Problemsand Their NP-Hardness
	1 Introduction
	1.1 NP-Hardness Result of SVP and CVP
	1.2 Our Results and Open Problems
	1.3 Organization

	2 Preliminaries
	2.1 Lattice
	2.2 SVP and CVP
	2.3 NP-Hardness of Lattice Problems
	2.4 Subset Sum Problem

	3 NP-Hardness of Quadrant-SVP (CVP)
	3.1 Definition
	3.2 Proof of NP-Hardness

	4 NP-Hardness of Promise Variants of Quadrant Lattice Problems
	4.1 Definitions
	4.2 NP-Hardness Proofs
	4.3 Mixed Problem and Relationship with GapCVP

	5 Conclusion
	References

	Improved Preimage Attacksagainst Reduced HAS-160
	1 Introduction
	2 Specification of HAS-160
	3 Related Works: Techniques for Meet-in-the-Middle Preimage Attacks
	3.1 Converting Pseudo-preimages to a Preimage
	3.2 Splice-and-Cut and Initial Structure
	3.3 The Differential Meet-in-the-Middle Technique

	4 Preimage Attack on 70-Step HAS-160
	4.1 Initial Structure
	4.2 Finding Appropriate Attack Parameters
	4.3 Improved Preimage Attack on 65-Step HAS-160

	5 Accelerated Brute-Force Search for Full HAS-160
	6 Conclusion
	References

	Modular Inversion Hidden Number ProblemRevisited
	1 Introduction
	2 Preliminaries
	2.1 Lattice
	2.2 Priority Queue

	3 ModInv-HNP and Main Result
	3.1 ModInv-HNP
	3.2 Main Result

	4 The Strategy and Proof of Main Result
	4.1 The Strategy
	4.2 Proof of Main Result

	5 Experiment Results
	6 Conclusion
	References

	On the Recursive Construction of MDS Matricesfor Lightweight Cryptography
	1 Introduction
	2 Preliminaries
	3 Construction of MDS Matrices from LFSRs
	3.1 Construction of 4 × 4 MDS Matrices
	3.2 Construction of 6 × 6 MDS Matrices
	3.3 Comparison with Known Results

	4 Conclusions
	References
	Appendix

	On Constructions of Circulant MDS Matricesfor Lightweight Cryptography
	1 Introduction
	2 Definition and Preliminaries
	3 Some Useful Results on Circulant Matrices
	4 Efficient Circulant MDS Matrices
	4.1 Efficient 4 × 4 Circulant MDS Matrices
	4.2 Efficient 8 × 8 Circulant MDS Matrices
	4.3 Efficient d × d MDS Matrices for d = 3, 5,6 and 7

	5 Conclusion
	References

	Author Index

