
Chapter 10
Bridging Algorithm and ESL Design:
MATLAB/Simulink Model Transformation
and Validation

Liyuan Zhang, Michael Glaß, Nils Ballmann and Jürgen Teich

Abstract MATLAB/Simulink is today’s de-facto standard for model-based design
in domains such as control engineering and signal processing. Particular strengths of
Simulink are rapid design and algorithm exploration. Moreover, commercial tools
are available to generate embedded C or HDL code directly from a Simulink model.
On the other hand, Simulink models are purely functional models and, hence,
designers cannot seamlessly consider the architecture that a Simulink model is later
implemented on. In particular, it is not possible to explore the different architectural
alternatives and investigate the arising interactions and side-effects directly within
Simulink. To benefit from MATLAB/Simulink’s algorithm exploration capabilities
and overcome the outlined drawbacks, this work introduces a model transformation
framework that converts a Simulink model to an executable specification, written
in an actor-oriented modeling language. This specification then serves as the input
of a well-established Electronic System Level (ESL) design flow, enabling Design
Space Exploration (DSE) and automatic code generation for both hardware and
software. We also present a validation technique that considers the functional cor-
rectness by comparing the original Simulink model with the generated specification
in a co-simulation environment. The co-simulation can also be used to evaluate dif-
ferent quality numbers of implementation candidates during DSE. As a case study,
we present and investigate a torque vectoring application from an electric automotive
vehicle.
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10.1 Introduction

Driven by the rapid development of microelectronics technology, the functionality
and, thus, the design complexity of modern distributed embedded systems are contin-
uously increasing. To cope with these challenges, Electronic System Level (ESL) [21]
design methodologies introduce higher abstraction and model the complete embed-
ded system as an executable specification at system level. At this level, the decisions
such as the partition of functional units to software or hardware are yet to be made.
Therefore, Design Space Exploration (DSE) [20] allows for an early evaluation of
design decisions and searches for optimized implementation alternatives. After DSE,
various tools, cf. to Gerstlauer et al. [11], are available to (semi-)automatically syn-
thesize the implementation into software and hardware. Overall, ESL design helps
the designer to deliver optimized systems and to shorten the design cycle.

In domains such as control engineering and signal processing, the development
of an embedded system typically starts with the application engineer using domain-
specific modeling tools such as MATLAB/Simulink [25] to build a functional model,
e.g., a controller in a feedback control system. The application engineer often also
uses Simulink to model the physical environment and to create the test bench for
design validation. Simulink allows rapid design and is therefore often used to carry
out algorithm optimization in early design stages. By using Simulink Coder [24],
a Simulink model can be automatically translated into embedded C code for soft-
ware implementation or HDL code for hardware implementation. However, there is
no information about the architecture that a Simulink model is later implemented
on. Therefore, considering different implementation alternatives and investigating
architectural interferences and side-effects directly within Simulink is not possible.

In this work, we aim at closing the gap between classic ESL design flows and
Simulink models by applying 1. model transformation and 2. a system-level vali-
dation technique (see Fig. 10.1). We employ an actor-oriented modeling language
(SysteMoC [10]), which is based on SystemC [12], the de-facto standard for system-
level modeling, to serve as the intermediate representation of the Simulink models
and the input of an ESL design flow. Representing a Simulink model in an actor-
oriented fashion is very suitable due to the nature of Simulink modeling, cf. to
Lee and Neuendorffer [19]. Here, we introduce a model transformation framework
(Sect. 10.4) that automatically generates an executable specification in SysteMoC
from a given Simulink model. This executable specification is transformed with a
component library to an exploration model. The exploration model is used within a
Design Space Exploration (DSE) to consider different implementation candidates,
which are evaluated by the DSE framework with respect to multiple design objectives
and constraints. DSE delivers a set of high quality implementation candidates, from
which the designer may subsequently choose the best trade-off as the system-level
implementation for subsequent design phases. Moreover, we propose to validate
the correctness of the automatic generated SysteMoC model using a co-simulation
approach. We consider a control application from an electronic automotive vehicle
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Fig. 10.1 Proposed
design flow from
MATLAB/Simulink to
prototype via automatic
model transformation and
validation via co-simulation
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to give evidence of the effectiveness of the proposed approach in Sect. 10.5 before
we conclude the chapter in Sect. 10.6.

10.2 Related Work

Several contributions relevant to this work have been made in recent years by var-
ious research groups. Caspi et al. [5] focus their work on designing embedded
software by translating Simulink models to SCADE/Lustre [8]. This intermediate
representation is then implemented on the Time Triggered Architecture (TTA) intro-
duced by Kopetz [17], which is a platform for running safety critical applications.
Czerner and Zellmann [6] try to combine SystemC and MATLAB/Simulink for cycle-
accurate hardware modeling and system verification by integrating SystemC modules
into Simulink via S-Functions [22]. A co-simulation framework between SystemC
and MATLAB/Simulink is built by Boland et al. [4] with the purpose of hardware
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verification of DSP-based designs. There, Simulink is used to model the environ-
ment and to generate real-world stimuli to drive the design under verification that is
implemented in SystemC. MathWorks also has a commercial tool (HDL Verifier [23])
to verify hardware designs using HDL simulators and FPGA hardware-in-the-loop
test-benches. Above works only focus either on software design or on hardware
design.

Kai et al. [14] present a Simulink-based MPSoC design flow by composing the
Simulink model into a Combined Algorithm and Architecture Model (CAAM). The
CAAM model can be then implemented at different abstraction levels using a multi-
threaded code generator. Atat and Zergainoh [1] propose to refine a Simulink model
at three different abstraction levels: transactional model, macroarchitecture model,
and microarchitecture model. The system verification is carried out at all abstrac-
tion levels. These works try to enable system-level design with Simulink models.
However, the partitioning of functional blocks into software or hardware must be
performed manually by the designer.

Jersak et al. [13] introduce an approach to transform time-driven Simulink models
into System Property Intervals (SPIs) to enable system-level timing analysis. They
propose to transform time-driven models to data-driven models by combining regis-
ter and virtual FIFO queues to guard the data exchange in multi-rate systems. Baleani
et al. [2] use the Synchronous Reactive (SR) model as intermediate layer to enable the
model transformation between MATLAB/Simulink, SR, and the model-based devel-
opment tool set ASCET [9], which enables automatic code generation for automotive
applications. In contrast to these works, we also consider domain- and application-
specific knowledge during model transformation, where either a data-driven or a
time-driven Model of Computation (MoC) can be chosen.

Another option to transform MATLAB/Simulink models is offered by employ-
ing SystemC Analog/Mixed-Signal (AMS) extensions [3], enabling the modeling of
continuous systems within a SystemC-based design. In particular, it enables the trans-
formation of hybrid systems (i.e., systems containing continuous and discrete state)
from Simulink to SystemC. Since Simulink is no longer required to simulate the
continuous part of the system, the simulation speed compared to the co-simulation
technique increases. However, it may often not be desired or even possible to trans-
form the huge and possibly closed-source continuous environmental models from
Simulink to SystemC. Moreover, the result of such transformation does not come
with the same benefits with respect to DSE.

In this work, we propose 1. a model transformation framework to automatically
generate an executable specification from a Simulink model and 2. a system-level
validation technique. Since our executable specification serves as the input for a well-
established ESL tool flow introduced by Keinert et al. [15] that enables DSE, highly-
optimized system implementations that satisfy given constraints can be achieved
automatically. The advantage of our validation technique lies in re-using the test
bench (including the environment model) created in Simulink.
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10.3 Design Fundamentals

This section introduces the basics of Simulink and the actor-oriented model used to
represent a Simulink model as an executable specification.

10.3.1 Simulink

Simulink is a commercial software from MathWorks [25] for modeling, simulation,
and analysis of dynamic systems. Simulink is widely used to solve problems in
automotive applications, communications, electronics, and signal processing. The
basic elements in Simulink are blocks and lines. Basic blocks are mandatory units
to perform computation or display functions, such as Add, Memory, Scope, etc. The
designer builds hierarchical systems by encapsulating basic blocks into subsystems.
Lines (also called edges or channels) are used to connect blocks and have regis-
ter semantics (non-destructive read, destructive write). Besides these basic building
elements, Simulink also has rich libraries that offer a broad variety of predefined
blocks and can be used together with user-defined functions. Simulink provides sev-
eral solvers to compute models that contains continuous and/or discrete states. It is
very efficient to use Simulink during early design stages for algorithm exploration.
By using Simulink Coder, a Simulink model can be automatically translated into
highly-optimized C code for software implementation or HDL code for hardware
implementation.

10.3.2 Executable Specification

In [10], a library for modeling and simulation of actor-oriented behavioral mod-
els termed SysteMoC is introduced. SysteMoC is based on SystemC, the de-facto
standard for system-level modeling, adding actor-oriented MoCs to form executable
specifications. In actor-oriented models, actors, which encapsulate the system func-
tionality, are potentially executed concurrently and communicate over dedicated
abstract channels. Thereby, actors produce and consume data (so-called tokens),
which are transmitted by those channels.

• An actor (see the example in Fig. 10.2) is a tuple a = (I, O, F, R), containing a
set of actor ports partitioned into a set of actor input ports I (e.g., i1) and a set of
actor output ports O (e.g., o1, o2), a set of functions F (e.g., fpositive, fnegative),
and a Finite State Machine (FSM) R. Actors can be grouped together to form
graphs. A graph may also contain other graphs to build a hierarchical system.
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Fig. 10.2 A graphical representation of a SysteMoC actor, which sorts a sequence of input data
depending on its algebraic sign

• The functions F encapsulated in an actor are partitioned into so-called actions
faction and guards k and are executed during a transition of the FSM R that also
represents the communication behavior of the actor (i.e., the number of tokens
consumed and produced for each transition).

• A transition is a tuple t = (qsrc, k, faction, qdst) containing the source state qsrc
before the execution of the transition, and the destination state qdst after the exe-
cution of the transition. An action faction (e.g., fpositive) performs a computation
task for the actor and may consume or produce tokens on the channel. A guard k
(e.g., check) checks the availability of a transition by returning a Boolean value
and the assignment of one or several guards to the FSM implements the required
control flow. The firing of an actor corresponds to the execution of exactly one
transition of the actor. If multiple actors have transitions that can be fired, they are
chosen non-deterministically by the SysteMoC runtime system.

• A channel is a tuple c = (I, O, n, d), containing a set of channel ports parti-
tioned into a set of channel input ports I and a set of channel output ports O , its
buffer size n ∈ N∞ = {1, . . . ,∞}, and a possibly empty sequence d ∈ D∗ of
initial tokens, where D∗ denotes the set of all possible finite sequences of tokens.
In SysteMoC, actors are only permitted to communicate with each other via chan-
nels, to which the actors are connected by ports. Hence, in a SysteMoC actor, the
communication behavior is completely separated from its functionality.

Figure 10.2 gives a graphical representation of an actor, which sorts a sequence
of input data arriving on input port i1 to either output port o1 or o2 depending on
its algebraic sign. The actor reads its input data from a register r and writes its
output data into two FIFOs. The actor has only a start state. Transitions of the
finite state machine R are depicted as directed edges in the actor. Each transition
is annotated with an activation pattern, a Boolean expression which decides if the



10 Bridging Algorithm and ESL Design … 195

transition can be taken, and an action which is executed once the corresponding
transition is taken. Using parameters period and offset indicates that this actor is
time-triggered.

SysteMoC exploits the event-driven scheduler from SystemC to manage the firing
sequence of the actors according to their FSMs. The basic SysteMoC implementa-
tion uses channels with FIFO semantics to provide a unidirectional point-to-point
connection between an actor output port and an actor input port. Using FIFOs as com-
munication channels makes SysteMoC suitable to model data-driven systems (e.g.,
signal processing applications). In other areas such as automotive systems, tasks are
often executed periodically, i. e. they are time-triggered. In order to improve this kind
of systems, SysteMoC supports periodic actors and register channels (see Fig. 10.2).
A periodic actor has two additional parameters: period and offset, which describe the
time that the SysteMoC scheduler evaluates the FSM of the actor. A register channel
has non-destructive read, destructive write semantics. This extension enables a time-
triggered MoC, hence, the modeling ability is greatly enhanced. For example, in a
typical embedded control system, the sensors can be modeled using periodic actors
and the rest of computation blocks can be data-driven.

We use actor-based design to construct the executable models (Fig. 10.3). The key
advantage of actor-based design is that the interaction between actors follows some
kind of communication pattern, called Model of Computation (MoC) [18]. A certain
model of computation is given by a predefined type of communication behavior and
a scheduling strategy for the actors. Separating actor computation and actor com-
munication gives the designer the ability to refine the communication at different
abstraction levels. Thus, the model is ideal for ESL design, since at the system level,
the decision about the hardware software partitioning has yet to be made. Design
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Fig. 10.3 To apply design space exploration for the controller (a), a graph-based exploration model
(c) is automatically generated from the executable specification (b), a given architecture, as well as
mapping constraints between them
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Space Exploration (DSE) follows the commonly accepted Y-chart approach [16].
For each implementation, multi-objective optimization is used to evaluate the imple-
mentation quality. In the end, we obtain a set of high quality candidates as optimized
implementation solutions.

10.4 Model Transformation

After the initial modeling in Simulink is finished, a block diagram of the system
(e.g., containing controller and plant) is at hand. The Simulink model is verified via
simulation. If the simulation results meet the design goals, the model transformation
can be started.

10.4.1 Model Transformation Preparation

The first step of model transformation is transformation preparation, which changes
the interface of a model that is going to be transformed (see Fig. 10.4). The part that
is going to be transformed to SysteMoC (e.g., the controller) is connected with the
environment model (e.g., the plant). Before model transformation, the designer must
disconnect the chosen part from the environment (e.g., disconnect the controller from
the plant) and then re-connect every input at the top level of the chosen part with an
Inport block and every output at the top level with an Outport block. These I/O blocks
form the interface of the chosen part. After model transformation, these I/O blocks
are mapped to special actors that enable the data exchange between Simulink and
SysteMoC.
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| u |

controller 
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| u |

inport 1 

outport
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Fig. 10.4 The automatic model transformation requires a preparation step, in which those parts
that shall be transformed (e.g., the controller) are disconnected from the other parts (e.g., the plant)
and re-connected via I/O blocks



10 Bridging Algorithm and ESL Design … 197

SystemC

controller : 
smoc_graph actors library

Code 
Generator 

Matlab/Simulink

controller 

1/z

+ 

sub

<=0

| u |

inport 1 

outport

inport 2 
scanner

parser

translator

class UnitDelay
: smoc_actor { 

class Sum :

class Abs :

class Sqrt : 
smoc_actor { 

class Inport : 
smoc_periodic_actor  

{ 
…

} 

sub :
smoc_graph

In 1 In 2

delay sqrt

sum comp

abs

out

Fig. 10.5 The model transformation framework consists of an actor library and a Code Generator
that maps Simulink basic blocks and lines to SysteMoC actors and FIFO channels

10.4.2 Model Transformation Framework

The core of the model transformation framework is a Code Generator that takes
Simulink as input language and produces SysteMoC as output language. The structure
of the Code Generator is shown in Fig. 10.5. The Code Generator has the most com-
mon operations in compiler design, such as lexical analysis, parsing, and code gen-
eration. There are three building parts:

• The Scanner reads the Simulink block diagram and filters the basic information
elements.

• The Parser analyzes and identifies the semantics of the elements (e.g., basic blocks,
lines). All the necessary information needed for model transformation is deter-
mined here (see Sect. 10.4.3), which includes the hierarchy and topology of the
Simulink block diagram.

• The Translator determines the targeted MoC for the current Simulink block dia-
gram (see Sect. 10.4.4). Additionally, the translator is responsible for the SysteMoC
code generation.

10.4.3 Evaluating Simulink Block Diagrams

The Code Generator reads the source code of a Simulink block diagram in the form of
an mdl-file and abstracts all the necessary information by using the scanner and the
parser. The elements in an mdl-file currently supported by the Code Generator are
atomic blocks, subsystems, reference, user-defined blocks, lines, and branches. We do
not consider Simulink models with algebraic loops. An atomic block (i.e., Simulink
basic block) represents a basic computation or display function. A subsystem contains
multiple Simulink atomic blocks as well as subsystems. A reference is used to link an
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atomic block or a subsystem. It contains, therefore, only a path to the implementation,
which is normally stored in a library file (e.g., simulink.mdl). The Code Generator
supports user-defined blocks, e.g., S-Function written in C/C++, by generating a
wrapper in the SysteMoC model (as a placeholder). However, the designer has to
integrate the implementation of the S-function into the wrapper.

A Simulink line represents a communication channel and has register seman-
tics. Each line can have branches, which represent the multiple destinations. The
multi-driver for a connection (i.e., one line, multiple source blocks) is forbidden in
Simulink, but multicast of signals is allowed (i.e., one line, multiple target blocks).

All the necessary information described above are parsed by the Code Generator.
The Code Generator also determines the I/O data types of each Simulink block. All
signals by default have double types except 1. the types of the signals are implied
from the block type or 2. the types are specified by the designer.

10.4.4 Model Transformation

The main task of the translator is to transform the Simulink model to SysteMoC with
the targeted MoC. If the Simulink model is a single-rate system, all blocks share the
same sampling rate. For this kind of models, it is straightforward to represent them
as data-driven SysteMoC models. The Code Generator maps each Simulink block to
a SysteMoC actor, whose function code is stored in the actors library (see Fig. 10.5).
Each Simulink subsystem is mapped into a SysteMoC graph. Each Simulink line
that has a point-to-point connection is mapped to a SysteMoC FIFO, which is a uni-
directional point-to-point connection. For each Simulink line that enables multicast,
a multicast actor is added between the source actor and the destination actors. This
additional actor only serves as a relay for transmitting the data to all destination
actors.

If the Simulink model is a multi-rate system, the blocks are sampled at different
rates. For example in Fig. 10.6a, two Simulink blocks b1 and b2 are connected through
a line l. Block b1 has the sampling rate λ and block b2 has the sampling rate λ/n.
Block b1 and block b2 are transformed to actor a1 and actor a2, respectively. There
are several options to represent this Simulink model in the SysteMoC environment:

10.4.4.1 Rate Transition Actors

Adding a rate transition actor c allows to explicitly coordinate the data exchange
between a1 and a2 (see Fig. 10.6b). Two FIFOs are used to connect a1 and a2 with c.
Per activation, a1 produces one token on the left FIFO, c reads one token from the
left FIFO and produces n tokens on the right FIFO, a2 reads one token from the
right FIFO. This solution is easy to implement but consumes additional memory
space and causes extra delay.
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Fig. 10.6 A Simulink multi-rate model, as shown in (a), can be represented in SysteMoC by: adding
a rate converter actor (b); transforming time-driven models to data-driven models (c); or creating
time-driven SysteMoC models (d)

10.4.4.2 Data-Driven Transformation

Applying the technique introduced in [13] indicates adding a register channel r and
two virtual FIFOs to govern the activation of a1 and a2 (see Fig. 10.6c). Activation
of a1 and a2 is enabled by the availability of tokens on the two virtual FIFOs.
This solution replaces the absolute periodic timing in Simulink models with relative
execution rates. Thus, the time-driven Simulink MoC is transformed into a data-
driven model. However, adding two virtual FIFOs per connection may increase the
complexity of the design.

10.4.5 Time-Driven Transformation

Here, we propose to transform Simulink multi-rate models to time-driven SysteMoC
models in order to preserve the simulation semantics of Simulink models. Blocks b1
and b2 are mapped to periodic actors a1

′
and a2

′
. Line l is mapped to a SysteMoC
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register channel r (see Fig. 10.6d). The sample rate of the Simulink block corresponds
to the period of the periodic actor. Here, the activation of a1 and a2 is no longer gov-
erned by the availability of data on the communication channel. Because SysteMoC is
originally designed to mainly model data-driven applications, the data dependencies
(or topology dependencies in Simulink) are automatically preserved by the FSMs
and FIFOs. But, this is no longer given when time-driven semantics are applied: If
the two periodic actors have the same period, the SysteMoC runtime scheduler will
not consider the partial order dependencies, hence, either actor that can be first sim-
ulated. Thus, the simulation behavior of SysteMoC may differ from Simulink. As
a remedy, we propose to introduce artificial offsets for the periodic actors to reflect
partial-order dependencies in time-driven SysteMoC. The Code Generator assigns
a proper offset automatically for each periodic actor by running an analysis of the
topology dependencies. In summary, the proposed model transformation technique
can be divided into three parts:

1. using periodic actors to enable time-driven simulation,
2. using register channels to preserve the Simulink communication semantics,
3. using artificial timing offsets to include partial-order dependencies into SysteMoC

models.

No matter which MoC is applied, each Inport block added during transformation
preparation (Sect. 10.4.1) is mapped to a periodic actor. These periodic actors can be
seen as hardware sensors (fetching the states of the environment model in Simulink).
The sample rate ta in a sensor actor is specified by the designer. Each Outport block
added during transformation preparation is mapped to an actor, which is a repre-
sentation of an actuator (sending the computation results back to Simulink). These
sensor and actuator actors are typically grouped together to form a co-simulation
interface for the auto-generated SysteMoC model.

10.5 Case Study: Torque Vectoring

In this section, an automotive application is used to evaluate the accuracy and effi-
ciency of the proposed model transformation framework. Torque Vectoring (TV) is a
new driver assistance system that distributes torque sent to each wheel to suit driving
conditions and road surface in order to get more traction in curves. In this work, the
Automotive Simulation Models (ASMs) of dSPACE [7] are used for modeling an
electric rear-wheel drive vehicle and the environment in Simulink. A torque vectoring
differential is realized by modifying the ASM to contain two basic engines (Fig. 10.7),
so the left-side engine controls the torque sent to the left rear wheel, and the right-side
engine for the right rear wheel, respectively. These two engines are controlled by a
torque vectoring controller, which is implemented by an application engineer. A sim-
ple testing maneuver and the driving conditions are configured in ASM. The driving
scenario is as follows: 1. the vehicle first remains motionless at position [0, 0] for
2 s; 2. the vehicle starts to accelerate and keeps a straight cruise without any steering;
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Fig. 10.7 Overview of the co-simulation between torque vectoring controller in SysteMoC and
environment in MATLAB/Simulink for validation

3. the acceleration lasts for 20 s and the speed of the vehicle reaches 90 km/h at the
new position [400, 0]; 4. the driver performs a step steering. This action lasts for 1s
and causes the steering wheel to turn left for 100◦; 5. the steering wheel keeps its
position for the rest of the scenario.

Simulating this maneuver in Simulink (with a continuous solver) first with
TV enabled and then with TV disabled, the changes of the vehicle’s position
(Fig. 10.8) show that using TV controller shortens the radius while turning.

After the initial modeling and validation in Simulink, the TV controller is trans-
formed to SysteMoC by the model transformation framework. Since TV is a single-
rate system, the data-driven SysteMoC is used. The auto-generated torque vectoring
controller contains 10 graphs, 98 actors, 110 FIFOs, and 770 lines of code (excluding
library code).

After converting the Simulink model to an executable specification, a
validation function unit is created in Simulink. Next, the co-simulation server
and co-simulation interface are configured. The co-simulation checks whether the
auto-generated TV controller will perform as intended in its operational environment.
The testing maneuver configured in ASM is reused to evaluate the generated TV
controller. The result of the co-simulation is given in Fig. 10.9: While the vehicle
turns, in order to get more traction to shorten the curve, each engine is applied
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Fig. 10.9 Validation via co-simulation of Simulink and SysteMoC using the virtual pedal posi-
tion seen by the engine: the proposed co-simulation shown in (b) delivers almost identical results
compared to the plain Simulink simulation depicted in (a)

with an individual pedal signal calculated by the TV controller based on the current
physical pedal position. These pedal signals are interpreted by the engines as virtual
pedal positions, with a positive position for acceleration and a negative position for
deceleration. Figure 10.9a shows how these two pedal signals change while using
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the Simulink TV controller. When the vehicle is turning, the engine that generates
torque for the inner wheel (in this case the left-side engine) actually receives a sig-
nal from the TV controller indicating a negative pedal position, this causes the inner
wheel to brake while the outer wheel is still experiencing acceleration. As depicted in
Fig. 10.9b, the SysteMoC TV controller delivers almost identical simulation results.
The co-simulation shows a minor simulation deviation, which is observed by the val-
idation function unit through comparing the pedal signals (see Fig. 10.9) calculated
by the original TV controller and the generated TV controller. The small deviation
shown in Fig. 10.10, which is always below 0.09 %, indicates a high accuracy of the
proposed model transformation.

The development time for the presented case study is shown in Fig. 10.11: The
development time consists of (I) implementing the initial model in MATLAB/
Simulink (mandatory); (II) validating the initial model within the Simulink envi-
ronment (mandatory); (III) automatic model transformation (proposed); and (IV)
validation of the auto-generated model via co-simulation (proposed). The first two
mandatory phases of modeling and validation in Simulink consume almost 70 %
of the complete development time. The proposed automatic model transforma-
tion that converts the Simulink TV controller into SysteMoC requires 20 % of the
overall development time—a high value at first glance. The reason is that the actors
library did not yet include all the atomic blocks used in the Simulink TV model.
Thus, the designer had to implement those Simulink atomic blocks and add them to
the actors library. Note that this effort has to be invested only once for an atomic
block. It is expected that the time consumption of this phase reduces dramatically
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Fig. 10.10 The relative simulation error for the virtual pedal position remains below 0.09 %
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(II) Simulink
validation
35,93%

(I) Simulink
modeling
33,53%

(III) code
generation

19,76%

(IV)
validation
10,78%

proposed
bridging
30,54%

development time

Fig. 10.11 The proposed methodology reduces the time from the Simulink model to the ESL model
to only ≈30 % of the overall development time

for future applications (ideally to 0 %), given the constant extension of the actors
library. But, this phase may include the integration of user-defined S-functions in the
ESL model such that an application-dependent amount of development time remains
to be taken into account. The last phase of system-level validation consumes about
10 % of the overall development time, resulting from the creation of the validation
function unit and the configuration of the co-simulation framework. For the pre-
sented case study, it can be concluded that bridging algorithm design to automatic
ESL design flows requires less than 50 % of extra development time compared to the
mandatory MATLAB/Simulink part. Note that a huge amount of the extra develop-
ment time arose from implementing basic blocks and configuring the co-simulation.
Both aspects do not scale with the complexity of the modeled application, such
that for future large and complex Simulink models, the extra effort for bridging to
ESL design flows will become almost negligible.

10.6 Conclusion

In this chapter, we presented a framework that enables an automatic model transfor-
mation from MATLAB/Simulink to an actor-oriented design language (SysteMoC),
which enables Design Space Exploration (DSE). This framework is integrated into
an ESL design flow to further reduce development efforts. The automatic genera-
tion of an executable specification from Simulink has freed system designers from
converting Simulink functional models into implementation models manually. On
the other hand, by applying the proposed system validation technique, which is
based on the co-simulation of the original Simulink model and SysteMoC model,
the designer can easily validate the correctness of the executable specification.
Furthermore, combining this work with DSE allows the designer to automatically get
a first-hand evaluation on the performance of different implementation alternatives.
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