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Preface

This book in the Lecture Notes in Electrical Engineering (LNEE) series presents
the most innovative contributions to the Forum on specification and Design Lan-
guages (FDL) 2013, which took place in September 2013 at the Université Pierre et
Marie Curie (UPMC), Paris, France. These contributions were selected by leading
experts from research and industry. Their authors improved the originally presented
work based on the feedback received during the conference and recent results.

The increasing integration and complexity of electronic system design requires
a constant evolution of the used languages and associated design methods and
tools. The FDL is a well-established international forum devoted to the dissemi-
nation of research results, practical experiences, and new ideas in this domain.
Addressed are in particular the application of specification, design, and verification
languages to the modeling, design, and verification of integrated circuits, complex
hardware/software embedded systems, and mixed-technology systems. The thus
made possible new modeling and specification concepts push the development of
new design and verification methodologies to the system level thus providing
means for model-driven design of complex information processing systems in a
variety of application domains.

This book presents the newest results in five thematic areas:

Part I ‘‘Applications of Formal Methods for Specification and Verification’’:
The efficient design space exploration and system verification calls for the use
of formal methods to raise the confidence in the taken design decisions and thus
accelerate the time to market. Chapter 1 tackles energy component selection
and proposes a heuristic algorithm to solve this NP-hard problem. Chapter 2
presents a refinement-based design approach for Systems-on-Chip, supported
by model checking technology.

Part II ‘‘Embedded Analog and Mixed-Signal System Verification’’: Tackling this
task with classic approaches based on SPICE simulation and visual waveform
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inspection has reached its limits with today’s more and more complex AMS
systems. While waiting for a much anticipated revolution in this field, assertion-
based approaches are very promising. Two are presented in Chaps. 3 and 4.

Part III ‘‘Embedded Analog and Mixed-Signal System Design’’: Efficient modeling
and simulation approaches for analog and mixed-signal systems are at the heart
of the design process. Chapter 5 proposes a model to describe the nonlinear
behavior of memresistors and presents its implementation in VHDL-AMS.
Chapter 6 presents a way to generate homogeneous (SystemC AMS or C++)
code for heterogeneous systems by using a formal intermediate representation.

Part IV ‘‘Digital Hardware/Software Embedded System Design’’: SystemC needs
to continuously evolve through core library extensions and new methodology-
specific libraries to offer modeling capabilities and simulation performance that
keep up with the user needs. Chapter 7 proposes the concept of combining
SystemC events with TLM transactions so as to simplify and systematize syn-
chronization in TLM models. Chapter 8 shows how predictable platforms can be
characterized to form a basis for virtual prototyping of real-time systems.
Efficient simulation, static analysis, and model transformation are key tech-
niques to enable design validation and design space exploration. Chapter 9
combines simulation with analytical techniques to provide estimates that guide
the design space exploration of real-time systems. Chapter 10 introduces model
transformations and validation methods that open an automated path from
algorithm design to ESL design. Chapter 11 supports software allocation in
networked automotive system platforms. Chapter 12 shows a method for
switching between models of different abstraction levels and its application to
trade-off speed and accuracy in network-on-chip simulation.

Part V ‘‘Model-Driven Engineering for Embedded Systems Design’’: The increasing
complexity of embedded software requires the application of modern software
engineering approaches like model-based software development enabled by
standard modeling languages and associated tools. Chapter 13 presents the use of
MARTE and its real-time modes specification for the development of cross-layer
self-adaptive real-time embedded systems. Chapter 14 investigates the difficult
task of design space exploration for the allocation of UML composite structures
in the modeling of distributed systems. Chapter 15 explores the use of MARTE
on an autonomous robot use case for the application of MAST schedulability
analysis tools for model-based performance analysis.

The 2013 edition of FDL was organized by ECSI in technical cooperation with
the IEEE Council on Electronic Design Automation (CEDA), the French chapters
of the IEEE Computer Society (CS) and IEEE Circuit and System Society (CAS)
as well as the International Federation for Information Processing (IFIP). We
would like to thank the large number of contributors to FDL 2013: the authors of
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the submitted papers as well as the 62 members of the technical program com-
mittee. We would like to acknowledge the organizational support provided by our
colleagues from the Laboratoire d’Informatique de Paris 6 (LIP6), the Université
Pierre et Marie Curie (UPMC), and the Centre National de la Recherche Scien-
tifique (CNRS), in particular Roselyne Chotin-Avot. We would like to thank Adam
Morawiec and Jinnie Hinderscheit from ECSI for their administrative support.

Paris, May 2014 Marie-Minerve Louërat
Torsten Maehne
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Chapter 1
Optimal Component Selection
for Energy-Efficient Systems

Matthias Sauppe, Thomas Horn, Erik Markert, Ulrich Heinkel,
Hans-Werner Sahm and Klaus-Holger Otto

Abstract Microelectronics have developed very fast in the past. The design process
of those systems is getting more and more complex and new design methods have
to be applied continuously. One main observation is the increasing design level over
time, hence, the re-use of components is getting more important. A key challenge of
IC design is the selection of a system architecture which fulfills all requirements in
terms of data throughput, area, timing, power and cost. We present a problem class
for the optimal component selection in order to assist in selecting the best available
alternatives. We will show how to express top-level constraints and optimisation
targets including dependencies between components. In addition, heuristic solving
algorithms will be presented. The evaluation section shows that the presented algo-
rithms perform well on typical problem sets. Using a framework for evolutionary
algorithms results in additional speedup.
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1.1 Introduction

In the last decades, microelectronics have been evolving rapidly fast. The structure
sizes of microsystem technologies shrank and their performance increased. Moore’s
law still holds—the integration density still grows exponentially. The same situation
can be observed when considering the worldwide internet bandwidths: The average
link capacity grows exponentially as well [9] and network routers have to be able to
handle a constantly increasing data throughput.

From a designer’s perspective, the growing performance and integration density
of microelectronics forces the application of new design methods. This is often called
the productivity gap, which mainly states that available technologies evolve faster
than appropriate design methods. Therefore, the challenge is not only to develop
faster and smaller hardware, but also to develop adequate IC design methods which
allow for the best possible hardware usage.

Due to this situation, the abstraction level on which microsystems are designed
constantly rose during the last decades. Nowadays, microsystems are often imple-
mented on a very high structural level or even on system level. On these abstraction
levels it is easier to design a complex system. However, various problems arise.

On high abstraction levels, multiple implementation alternatives are often avail-
able. For example, if a microcontroller core is needed in an integrated system, several
Intellectual Property (IP) cores will be suitable for the architectural requirements.
This might also be the case for other (IP) cores like RAMs or network interfaces.
Typically, several constraints will apply as well: The die size of a System on a Chip
(SoC) will be limited and the energy consumption should be as low as possible.
Additionally, there will be several inter-component requirements, which have to be
resolved, too.

When designing a complex microelectronical system, all of these constraints have
to be fulfilled while optimising a target function at the same time. The task is now to
choose a set of components from a given component database in such a way that all
top-level constraints and inter-component dependencies are met. If several solutions
exist, the solution which optimises a target function should be chosen.

Now, we formalise the problem description of the component selection problem.
Moreover, we prove its NP-hardness and we adapt several well-known heuristic
algorithms for this problem class.

Formulating a component selection problem can help to design a complex micro-
electronical system, because critical design decisions can be made on an objective
basis. For example, it is possible to choose system components in such a way that
the maximum chip area will not be exceeded. This is a hard constraint. The over-
all energy consumption could be an auxiliary condition which is optimised while
ensuring that the hard constraints will be met. To define a component selection prob-
lem, the designer now has to provide a component database including all necessary
data and interdependencies. Then, the designer can create top requirements which
will describe the target system and its constraints. The algorithm will then return a
solution (if it exists) and optimise it, if an optimisation target has been specified.
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In Sect. 1.2, previous work on similar problems will be evaluated. Section 1.3
will define the component selection problem formally, a simple example will be
provided and the NP-hardness will be proven. In Sect. 1.4, we present an adaptation
of common heuristic algorithms which perform well on typical problem input sets.
The integration into the specification tool SpecScribe is shown in Sect. 1.5. Finally,
we will evaluate the algorithms on larger input sets in Sect. 1.6.

1.2 Related Work

In the past, several types of combinatorial optimisation problems have been discussed
and investigated and efficient heuristic algorithms have been provided.

The basic problem class of the component selection problem is the so-called
Constraint Satisfaction Problem (CSP) class. One of the first works on Constraint
Satisfaction Problems (CSPs) was published in 1985 by Mackworth [6]. There, the
basic CSP class was introduced: A CSP contains a set of variables and a set of
constraints which define the variable value ranges and dependencies or relations
between variables. To solve a CSP, at least one variable assignment has to be found
for a given set of variables and relations while all constraints are met. The author
uses well-known algorithms to solve these CSPs. However, the basic CSP approach
is not applicable for the component selection problem since variables cannot be
dynamically instantiated.

In the past years, the CSP problem class has been extended in different ways. The
dynamic CSP class was introduced in 1985 by Mittal [7]. The basic extension is to
allow that the set which is relevant for a solution may change during the search, e.g.,
when certain criteria are met. Nevertheless, this CSP extension is not sufficient to
model dynamically instantiable components properly.

An approach where each variable of a CSP may be existentially or universally
quantified (quantified CSP) was presented by Benhamou [1]. This allows for a
broader problem class whose constraints can take advantage of the expressiveness
of predicate logic. Since the component selection problem requires dynamic instan-
tiations of variables, the quantified CSP cannot be used to solve this problem class.

The mixed CSP class was presented by Gelle and Faltings [5]. The authors intro-
duce a distinction between controllable and uncontrollable variables. Uncontrollable
variables are variables whose value is neither known nor controllable by the solving
algorithm. Therefore, this problem class deals with uncertainty. It is also not applica-
ble to the component selection problem because the maximum solution size has to
be defined as part of the problem.

An approach to solve conditional and composite CSPs was presented by Mouhoub
and Sukpan [8]. In this problem class, conditions for every variable are defined,
i.e., a variable may only be used in a solution if its according conditions are met.
A composite variable allows for the disjunction with another variable, so that at
most one of them may be used in a solution. Like in the previous approaches, all
variables have to be defined during problem definition. For the component selection
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problem, this approach cannot be used because the number of needed variables is
not predictable due to the dynamic structure of the component selection problem.

An approach to formalise and solve the component selection problem class was in-
troduced by Pande et al. [10]. This work focuses on component selection for software
components, however, the basic approach is also applicable to hardware systems. The
authors define a top-level set of requirements and a set of components. To solve the
problem, a subset of components has to be chosen in such a way that all requirements
are met. A model which allows for the optimisation of auxiliary conditions is also
provided. Nevertheless, it is not possible to represent requirements of component
instantiations, only global requirements can be formulated. Additionally, compo-
nents can only be instantiated once and there is no possibility to express the need
of multiple components of the same type. In our work, we introduce hierarchical
requirements modeling which allows for arbitrary system complexities.

Another approach facing the component selection problem was shown by Proß
et al. [12], where interdependencies between components are modeled. The maxi-
mum number of component instantiations is not restricted. Therefore, this approach
handles the dynamic problem structure adequately. Moreover, a mechanism is pro-
vided to combine requirements of several components. However, this approach was
focused on modeling the relationships between components, but the problem class
was not defined formally, which complicates implementation work. Additionally,
no efficient algorithm for solving this problem class was provided. Our contribution
tries to fill this gap.

1.3 Problem Definition

We define the component selection problem � as a quadruple:

� = (C, F, T, t) ,

where

C = {(name, provides, requires)}
| provides, requires are cost relations,

F = {(name, combOp)} , combOp ∈ Op,

T = {r} | r is a cost relation,

t = ( f, op) , f ∈ F, op ∈ {min, max} , t is optional.

Moreover, we define the following (static) sets:

R = {=, �=,<,>,≤,≥, Range}
Op = {add, mult, min, max} .
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Each name can be an arbitrary literal string, which must be unique. It is used for the
identification of components and cost factors. An expression may be any mathemat-
ical expression which can instantly be evaluated. A trivial form of an expression is
a number.

A cost relation r is defined as:

r = (costfactor, relOp, expression)

| costfactor ∈ F, relOp ∈ R

Then, the following functions are defined:

provides ((name, provides, requires)) := provides

requires ((name, provides, requires)) := requires

combOp ((name, combOp)) := combOp

provides and requires return the provides and requires properties of a component.
combOp returns the combination operation of a cost factor.

Moreover, the evaluation of a cost factor f regarding a set of given properties S
is defined:

val ( f, S) = combOp ( f ) ({S})

This will combine all elements in S using the associated combination operation
of the cost factor f . The result is a number.

A solution � of a problem � is defined as:

� = {(c, n)} , c ∈ C, n ∈ N

� is a set of components, where a number is associated to each component. The
number will state how often this particular component has to be instantiated.

Informally, C is a set of components a target system may be composed of. A
component c ∈ C may be instantiated several times in a solution if necessary.

Each component c ∈ C may have several provides and/or requires properties. Each
requires property states that if this component is going to be used in the solution, the
property has to be covered by provides properties, which may be defined for other
components.

F is a set of so-called cost factors. Each cost factor f ∈ F has a unique name
and an associated combination operation combOp ∈ Op, which defines how to
accumulate this cost factor.

Each property p ∈ P defines a relation on one cost factor. To determine whether
the property holds, the term “val (costfactor, P) relOp expression” must be evalu-
ated.

T are the top requirement properties, which have to hold if the solution � shall be
valid. To test for validity, each cost factor has to be evaluated using its combination
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operation regarding both the solution components’ provides and requires properties.
Since the combination operation, applied to several properties, returns a number, the
test is a simple arithmetic comparison for each cost factor. The provides property eval-
uation must result in a number which correlates to the requires property evaluation,
according to the relation operator that was defined for each particular requires prop-
erty.

t is an optional optimisation target. It is a cost factor, which has either to be
minimised or to be maximised.

1.3.1 Example

Consider the following problem: A computer system has to be set up and there
are a couple of requirements, but the budget is limited. The system shall provide
at least 1 CPU, 8 GB of RAM and an ethernet port. The budget is limited to 600
USD. These are the top requirements T of our problem �. The task is to instantiate
components from C so that 1. each top requirement is fulfilled and 2. the require-
ments of each selected component is fulfilled. This problem is now defined formally
as �(C, F, T, t).

For simplicity, we only define the following cost factors:

F = { (price, add) ,

(energy, add) ,

(cpus, add) ,

(ramGb, add) ,

(cpuSockets, add) ,

(ramSockets, add) ,

(ethPorts, add)}

Using these cost factors, the top requirement can be defined as follows:

T = { (price,≤, 600) ,

(cpus,≥, 1) ,

(ramGB,≥, 8) ,

(ethernetPorts,≥, 1)}

Next, the component database C has to be defined. It contains every component
which may be selected to create a target system. In this example, we define C as
follows:
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C = {(cpu1, {(price,=, 100) , (energy,=, 800) , (cpus,=, 1)}, {(cpuSockets,=, 1)}),
(mainboard1, {(price,=, 149) , (energy,=, 250) ,

(cpuSockets,=, 1) , (ramSockets,=, 4)}, {}),
(mainboard2, {(price,=, 199) , (energy,=, 300) , (ethPorts,=, 1) ,

(cpuSockets,=, 1) , (ramSockets,=, 2)}, {}),
(ethCard, {(price,=, 39) , (energy,=, 130) , (ethPorts,=, 1)}, {}),
(ramModule1, {(price,=, 129) , (energy,=, 80) ,

(ramGb,=, 4)}, {(ramSockets,=, 1)}),
(ramModule2, {(price,=, 49) , (energy,=, 60),

(ramGb,=, 2)}, {(ramSockets,=, 1)})}

Note that the mainboard1 provides 4 RAM sockets, while mainboard2 provides
only 2 RAM sockets, but also an ethernet port. The price of mainboard2 is higher than
the price of mainboard1. Up to now, we haven’t defined a global optimisation target t
for this sample problem.

There are several solutions of this problem. Two sample solutions are:

�1 = { (cpu1, 1) ,

(mainboard1, 1) ,

(ethCard, 1) ,

(ramModule2, 4)}

and

�2 = { (cpu1, 1) ,

(mainboard2, 1) ,

(ramModule1, 2)}

Both solutions are valid, i.e., the top requirements and all implicit requirements
are fulfilled. We now evaluate the cost factor energy for each solution and result in
energy1 = 1,420 and energy2 = 1,260.

To select the most energy-efficient solution only, our problem definition has to be
enhanced by an optimisation target:

t = (energy, min) .

After applying this restriction, the only possible solution will be �2.
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1.3.2 NP-Hardness

Up to now, no efficient exact algorithms are known for NP-hard problems (though
this is not proven). In general, solving an NP-hard problem takes at least exponential
time, compared to the input size. Therefore, non-exact heuristic and optimisation
algorithms, which are faster, are often preferred for this problem class.

In the following paragraphs, the NP-hardness of the component selection problem
will be proven.

We show that the component selection problem is NP-hard by transforming the
well-known SATISFIABILITY (SAT) problem into a component selection problem
in polynomial time and space. The SAT problem is known to be NP-hard [4] and it
will be shown that the component selection problem is at least as hard as the SAT
problem by representing an arbitrary SAT instance using the component selection
problem.

C , F and T of the problem � will be introduced implicitly in the following, the
optional parameter t will be left empty.

Let P = (a11 ∨ · · · ∨ a1m)∧· · ·∧ (an1 ∨ · · · ∨ anm) be an arbitrary SAT formula
in Conjunctive Normal Form (CNF) with n clauses and m literals l1 . . . lm , where
ai j ∈ {l j , l j , 0}. ai j = 0 means that clause i contains neither l j nor l j . For each
clause, we introduce a component c1 . . . cn ∈ C .

Each clause must be fulfilled. Therefore, our top requirement must ensure
that each clause is instantiated exactly once. We do this by creating a cost fac-
tor (clauseCount, add) ∈ F and we define ∀i ∈ {1, . . . , n} : (clauseCount,=, 1) ∈
provides (ci ) and (clauseCount,=, n) ∈ T .

Next, each literal in the CNF must be either instantiated as negated or non-negated
variable. For each literal li , we create two components cli and cli

∈ C , representing
a non-negated and a negated literal. Each literal must be instantiated exactly once.
Therefore, we create a cost factor fi for each literal: fi = (literalInsti , add) ∈ F , de-
fine ∀i ∈ {1, . . . , m} : (literalInsti ,=, 1) ∈ T , (literalInsti ,=, 1) ∈ provides(cli ),
and (literalInsti ,=, 1) ∈ provides(cli

).
Finally, each clause must evaluate to true. We do this by creating appropri-

ate requires properties for each clause: ∀i ∈ {1, . . . , n} : (literalTruei ,≥, 1) ∈
requires(ci ). Moreover, we consider every literal component cl j and cl j

: For every
clause i , we check whether it contains the non-negated literal l j . If yes, we add
(literalTruei ,=, 1) ∈ provides(cl j ). If the clause i contains the negated literal l j , we
add (literalTruei ,=, 1) ∈ provides(cl j

). If the clause i doesn’t contain l j or l j , we
don’t extend any provides set.

If P is satisfiable, the resulting solution will contain either cli or cli
for each

literal, which represents the variable assignment. If P is not satisfiable, there will be
no solution.

Because the component selection problem could be used to represent an arbitrary
SAT problem in CNF, the component selection problem is NP-hard. Knowing this,
we also know that there is no efficient exact solution algorithm. Therefore, we will
focus on non-exact heuristic algorithms in the following section.
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Algorithm 1.1: Random solution generation

1 � = ∅;
2 j := 0;
3 repeat
4 add a random component to � or increase the component count of a random component

which is already ∈ �;
5 j := number of unfulfilled cost factors in �;
6 until j has not decreased for q loop iterations;

1.4 Algorithms

As the component selection problem is NP-hard, there is no exact efficient algorithm
for it, i.e., there is no algorithm which guarantees to finish in polynomial time depend-
ing on the input size. Therefore, an algorithm which guarantees to provide the best
solution can only be realised using exhausting search techniques like backtracking.

However, the structure of most component selection problems is similar to the
example presented in the previous section. In particular, for most component selection
problems, only few cost factors are restricted (only price is restricted in the example
above) compared to the number of components which have to be included in the
system. This leads to the situation that it is easy to generate a huge amount of
solutions which are almost valid, only the restricted cost factors are not fulfilled.

In the next paragraphs, several common heuristic approaches are adapted to face
this problem.

1.4.1 Random Solution Generation

Random solution generation is a commonly used technique to generate an initial
set of potential solutions, which is altered during the solution search process after-
wards. In terms of evolutionary optimisation algorithms, this set is often called initial
population.

For the component selection problem, we start with an empty solution and add
components iteratively until the number of cost factors which are not fulfilled doesn’t
decrease for a given number of iterations (Algorithm 1.1). q should be set to the
expected solution size, multiplied by 1.2 to 2.

As long as j is not zero, we call � a partial solution. A set of several partial solu-
tions may form an initial solution set for the local search and evolutionary approach,
which are described below.
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Algorithm 1.2: Local search
1 Generate a set � = {�1, . . . , �n} of partial solutions using random solution generation;
2 foreach � ∈ � do
3 while one of the following steps is possible do
4 Remove one component of � so that dist(�) does not increase;
5 Add one component c ∈ C to � so that dist(�) decreases;

6 return �;

1.4.2 Local Search

In optimisation algorithms, a common approach for locally improving the solution
quality is local search [2]. If a near local optimum of the solution quality has not
yet been reached, the solution will be altered in small steps with the goal that the
solution quality will increase. This is done until the quality cannot be improved
anymore. Then, a local optimum has been reached.

To use this approach for the component selection problem, we define a distance
function dist(�) which indicates the quality of a partial solution. A good partial
solution will be assigned a low distance value, whereas a bad partial solution will be
assigned a high distance value. The distance function may be as simple as:

dist(�) :=
∑

i

[
if fi fulfilled: 0, else: diff( fi )

]
,

where diff( fi ) is the difference between the accumulated requires and provides values
of the cost factor fi .

The local search algorithm, adapted to the component selection problem, works as
shown in Algorithm 1.2. If the algorithm terminates and there is at least one � ∈ �

with dist(�) = 0, a valid problem solution was found using local search.
The main advantage of local search is that it will optimise an existing solution by

removing unnecessary components and adding new components if they improve the
solution quality directly.

Local search cannot provide global optimisation at all. For example, there might
be a partial solution where adding or removing one single component won’t increase
the solution quality. The local search algorithm would stop then. The solution quality
would only improve if multiple operations would be performed. For this reason, the
evolutionary approach might be considered.
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Algorithm 1.3: Basic evolutionary algorithm

1 Generate a set � = {�1, . . . , �n} of partial solutions using random solution generation;
2 for generationCount times do
3 �∗ := �;
4 crossover(�∗);
5 mutate(�∗);
6 � := select(�,�∗, n);

7 return �;

1.4.3 Evolutionary Approach

In contrast to the local search approach, the evolutionary approach does not only
optimise locally by adding or removing one single component. Instead, a population
(representing a set of potential solutions) is modeled and simulated using evolutionary
methods like crossover, mutation, and selection [2]. These methods ensure that the
algorithm will not get stuck at one local optimum.

Algorithm 1.3 shows a basic evolutionary algorithm. In the next paragraphs, our
adaptations of the functions crossover(), mutate(), and select() will be presented.

crossover(�) will randomly take two elements �1 and �2 ∈ � and cross them.
This is done for several times. For the component selection algorithm, the cross-
ing process is done as follows: First, �1 and �2 are randomly selected from �.
Then, both, �1 and �2, are each randomly split into two component subsets so that
�1 = c11 ∪ c12 and �2 = c21 ∪ c22. Now, two new partial solutions are created:
�3 := c11 ∪ c22 and �4 := c21 ∪ c12. Then we remove �1 and �2 from � and
add �3 and �4 instead. This crossover function should emulate the natural process
that an individual, which lives in a certain generation i and which is derived from
the generation i − 1, has properties of both of its parents.

mutate(�) is a function which randomly modifies some elements of �. This is
done by first selecting a subset of �. In each selected element, several components
are removed and several components are added from the components database (C)
randomly. Mutation is done in order to leave local optima. This mutation process
should implement the natural phenomenon that DNA is often not reproduced exactly.
Instead, it is randomly mutated at several positions.

select(�,�∗, n) is a function which returns a set of n elements from � ∪ �∗. The
selection process should work randomly, but good elements should be chosen with
a higher probability than bad elements. To determine the quality of one element, the
previously-defined function dist(�) is used. This selection function should imitate
the evolutionary process that the fittest individuals have the highest chance to survive.

In the last paragraphs, the behaviour of the functions crossover(), mutate(), and
select() was presented for the component selection problem. However, important
probability constants have not been defined yet. Experiments have shown that for
best results the crossover rate should be set to 30 to 35 % and the mutation rate should
be around 25 %. When mutating a partial solution, at least 50 % of the solution’s
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components should be replaced by new, randomly chosen components. When using
a lower value than 50 %, the probability that local optima are left will decrease rapidly.

The partial solution set size |�| should be, depending on the expected solution size,
very large in order to allow for proper algorithm operation. For best results, we set
|�| to at least 10 · |�|.

Both methods, local search and the evolutionary approach, should be used in
conjunction and called alternately on a large solution space. generationCount should
be set to 2 to 3 for best results.

1.5 Integration into a Specification Tool

A basic backtracking algorithm and the heuristics presented in the previous section
have been implemented in the tool SpecScribe.

SpecScribe [11] is a tool for system specification and requirements management
purposes, which has been developed at our chair. SpecScribe allows for formal sys-
tem specification on a high abstraction level. A system may be modeled in different
ways, including a hierarchical system description and behaviour modeling. Spec-
Scribe offers interfaces to several simulation, verification, synthesis and test tools. If
completely covered by the system specification, the design can be exported to several
description languages.

In SpecScribe, it is possible to model requirements on the one hand and compo-
nents and their instantiations on the other hand. These can be linked. In particular, it
is possible to formally define an abstract requirement that can be fulfilled by differ-
ent components, which may also define dependencies in turn. For the integration of
the component selection algorithms, the user can add components to the component
database and create appropriate provides and requires properties. The components
can be instantiated by the algorithm then. Figure 1.1 shows SpecScribe after the
calculation of the above example has finished.

1.6 Evaluation

For evaluation purposes, test sets targeting several problem input domains were
created. These are described in the following.

The first and most important problem domain is the problem size, which is di-
rectly influenced by the available components C and the top-level requirement set T .
Test cases with an expected solution size |�| of 5, 8, 14, 24, 41, 70 and 120 were
created.

Next, the density of the inherent dependency graph determines the problem com-
plexity. The density grows as the number of inter-component requirements increases.
When creating the dependencies between components, it had to be ensured that
the resulting dependency graph is acyclic, as a dependency cycle would lead to an
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Fig. 1.1 SpecScribe user interface of the component selection algorithm

empty solution. Three graph density domains have been defined: Sparse (at least
1
5 · |�| unconnected subgraphs exist), normal (the total number of requirements is 1
to 2 times |�|), and dense (number of requirements is 3 to 4 times |�|).

The last problem domain under consideration is the number of non-functional
constraints, which are defined as top requirements, e.g., a limited chip area. The
problem complexity increases when adding such constraints. In typical problem
sets, the number of non-functional constraints which are part of the optimization
goal is low. Therefore, we defined three cases: 1, 2, or 3 constraints.

For all test cases, minimisation of the energy consumption was defined as optimi-
sation target (a random energy consumption value was assigned to each component).

These problem domains were combined, resulting in 63 test cases in total. Every
test case was processed by the heuristic algorithms presented in Sect. 1.4.

1.6.1 Results

All test cases and algorithms were implemented in the Python programming lan-
guage. The heuristic algorithms were able to solve every test case when algorithm
parameters have been defined appropriately.

Due to the non-exact approach of the local search and evolutionary algorithms, the
algorithm runtime correlates almost linearly to the expected solution size. For finding
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Fig. 1.2 Test case setup time and run time of the presented heuristic component selection algo-
rithms. Both, the algorithm setup time and runtime, increase linearly in relation to the solution size.
The algorithm setup time, however, dominates the total runtime for larger problem sets. Measure-
ments were taken on a dual-core 2.53 GHz CPU and 8 GB of RAM

a set of valid solutions, at most four iterations of the local search and evolutionary
algorithms were needed.

An important aspect of the overall runtime is the algorithm setup time. When
setting |�| to at least 10 times of the expected solution size (as suggested in sect. 1.4),
large internal data structures have to be created. For larger problem sets, the setup
time dominates the total execution time. This leads to the situation that the total
execution time, divided by the solution size, even decreases while the problem size
increases. In future algorithm implementations, the long setup time might be avoided.
Algorithm runtimes are shown in Fig. 1.2.

Test cases with expected solution sizes greater than 120 have not been considered
since total runtime increased too fast.

No significant differences in algorithm runtime could be pointed out regarding the
dependency graph densities. This is probably due to the problem creation method.
As the test cases were created by targeting a specific expected solution size, the
corresponding problems are larger for sparse graphs and smaller for dense graphs,
respectively. However, the heuristic algorithm runtime is mainly determined by the
solution size |�| and not by the problem size itself.

For the same reason, the number of non-functional top requirement constraints
also hardly influences the algorithm runtime.

1.6.2 Using DEAP for Performance Improvements

In the previous paragraphs, we evaluated algorithm performance with a self-written
algorithm framework only. To handle problems of larger input sizes, we investigated
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the usage of existing frameworks that provide functionality of evolutionary algo-
rithms. Since our own framework and test cases have been written in Python, we
focused on Distributed Evolutionary Algorithms in Python (DEAP) [3], which is a
framework that provides highly configurable algorithm components that can be used
for most applications of evolutionary algorithms.

We configured DEAP in such a way that it used a similar configuration compared
to our own framework. In particular, we used the same population sizes and the same
conditions for crossover, mutation and fitness. In contrast to our own model, we could
model termination conditions dynamically. Therefore, it was not necessary to use a
fixed generation count, leading to improved overall performance.

In addition, evolution strategies were tested. Compared to basic evolutionary op-
timisation, evolution strategies are more sophisticated methods which do not only
focus on the optimisation target, but also on the algorithm parameters like mutation
rate. Using these methods, parameters are altered by a given probability distribution
during runtime.

Using evolutionary strategies lead to a significant speedup while solving the test
cases described in the previous section. The distinction between algorithm setup
time and runtime still had to be made since data is initialised outside the DEAP
framework. Therefore, only the runtime could be sped up by DEAP.

In Fig. 1.3, performance measurements of the sample test cases are shown. When
evolution strategies are used, a speedup of up to 2.43 in runtime could be reached.
Achieved speedup increased with rising expected solution sizes, however, no signifi-
cant speedup was noticable for small test cases. Note that the achieved speedup does
not affect setup time, which is the vast amount of total time for large problems.

1.6.3 Application on an FPGA Framer Component

The presented algorithms have also been applied to a framer component of an optical
network node by Alcatel-Lucent. The component is an FPGA design, which is syn-
thesised to an Altera Stratix IV device. Its task is basically to interface with several
high-speed optical converters bidirectionally and to process data on a low level.

For this device, 1,110 different subcomponents are defined on Register Transfer
Level altogether. The subcomponents are tightly linked and form a hierarchical de-
pendency tree. Several components are instantiated many times (e. g., bus systems)
and others only once (e. g., the top-level component).

There are several device configuration options for this design, each leading to
a specific design structure and subcomponent tree. A typical device configuration
leads to 1,376 component instantiations. The global dependency tree, including all
configuration options, has been modeled as described in Sect. 1.3. Furthermore, each
component was assigned its corresponding chip area on the FPGA device. Due to the
data-path-driven design, the chip area is approximately proportional to the energy
consumption. For the chip area cost factor, the “add” cost operation was used. How-
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Fig. 1.3 Test case setup time and run time using DEAP

ever, this cost factor only provides a basic estimation, because placement, routing,
and optimisation are not considered in this model.

The proposed component selection algorithm can be applied in several ways: If
the complete device configuration is given as a set of top level requirements, the
solution will contain all necessary component instantiations, and the area cost factor
is calculated for this configuration. If the device configuration is not given completely,
the component selection algorithm will be able to choose components in such a way
that the partial device configuration and all of the hierarchical requirements are met.
In this case, several solutions are possible and an optimal configuration regarding
chip area can be chosen.

One configuration option targets the so-called timestamp mode of the device.
There are two modes: The original timestamp mode, where data frames are processed
in parallel, and the Time Division Multiplex (TDM) timestamp mode, where data
frames are processed sequentially. The original timestamp mode requires 1,376 com-
ponent instantiations in total, whereas the TDM timestamp mode requires only 1,330
component instantiations and results in a 2 % lower chip area.

We created a component selection problem for this evaluation example, incor-
porating an incomplete device configuration regarding the timestamp mode. The
problem was extended by the definition of an optimisation target function for the
chip area cost factor. The problem size of this example is much larger than the pre-
vious examples, which only contained up to 120 components. However, due to the
tight component relations, this problem is easier to solve. The proposed component
selection algorithm was applied to this problem and was able to find the optimal
solution in both cases.

We set |�| to 10 times of the expected solution size (we used a value of 13,000),
the generation count was set to two and the other algorithm options were set as
proposed above. Like in the previous example, the algorithm setup was most time-
consuming. When running this algorithm configuration, the setup needed 550 s. On
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the contrary, the algorithm execution time was significantly faster and only needed
19 s to complete. When removing either the local search or the evolutionary approach
from the global algorithm, the expected solution could not be found in feasible time
(we cancelled the algorithm after 1,800 s). Therefore, the local search and evolution-
ary approach benefit from each other in this example. Nevertheless, the algorithm
setup time is still a major concern regarding both our own implementation and the
usage of the DEAP framework. This has to be improved in the future.

1.7 Conclusion

We formally introduced the component selection problem class, which a designer
can use to generate design decisions in an objective way. The problem class provides
the possibility to define top-level requirements, an optimisation target and interde-
pendencies of components. If modeled adequately, the problem solution will return
a set of component instantiations which will meet all constraints and therefore can
be used to build a target system.

The NP-hardness of the problem class was shown. Therefore, no exact algorithm
exists which operates efficiently on all problem cases. We presented heuristic algo-
rithms which guarantee to work efficiently but might only return an approximate
solution. The integration of these algorithms into the specification tool SpecScribe
was presented.

Finally, we evaluated the heuristic algorithms using test cases of different sizes
and structures. It has been shown that a solution could be found for problem solution
sizes of up to 120 components, even for hard problems. The algorithm has been
applied to an industrial FPGA design and was able to select components in such
a way that the chip area was minimised. Algorithm runtime could be improved by
using an existing framework for evolutionary algorithms.

For future work, the heuristic algorithms should be investigated in greater depth.
Up to now, most algorithm parameters have been defined statically, but the result
quality could be improved by deriving optimal parameter values dynamically, since
the algorithm performance highly depends on the problem size and problem structure.
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Chapter 2
Assisting Refinement in System-on-Chip
Design

Hocine Mokrani, Rabéa Ameur-Boulifa
and Emmanuelle Encrenaz-Tiphene

Abstract With the increasing complexity of systems on chip, designers have
adopted layered design methodologies, where the description of systems is made
by steps. Currently, those methods do not ensure the preservation of properties in the
process of system development. In this paper, we present a system on chip design
method, based on model transformations—or refinements—in order to guarantee the
preservation of functional correctness along the design flow. We also provide exper-
imental results showing the benefits of the approach when property verification is
concerned.

Keywords System on a Chip (SoC) · Architecture exploration · Platform-Based
Design (PBD) · System modeling · Formal verification · Communication refine-
ment · Property-preservation checking

2.1 Introduction

The System on a Chip (SoC) design faces a trade-off between the manufacturing
capabilities and time to market pressures. With the increasing complexity of archi-
tectures and the growing number of parameters, the difficulty to explore a huge design
space becomes harder to address. An approach to overcome this issue is to use abstract
models and to split the design flow into multiple-levels, in order to guide the designer
in the design process, from the most abstract model down to a synthesizable model.
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The use of abstraction levels in the SoC design gives another perspective to cope
with design complexity. Indeed, the design starts from a functional description of the
system, where only the major function blocks are defined and timing information is
not captured yet. During the SoC design process, the system description is refined
step by step and details are gradually added. At the end, this process leads to a cycle
accurate fully functional system description at Register Transfer Level (RTL).

Furthermore, the verification of complex SoCs requires new methodologies and
tools, which include the application of formal analysis technologies throughout the
design flow. Indeed, in contrast to simulation technique, formal verification can
offer strong guarantees because it explores all possible execution paths of a system
(generally in a symbolic way); in the case of model checking, the verification can be
automated but has to face the state explosion problem. This approach is applicable for
the first steps of the design process or on elementary blocks of the refined components;
it can also help in proving the refinement between two successive steps of the design
process. This paper proposes a method for assisting the process of refinement along
the design flow. The approach is based on a set of transformation rules, representing
a concretisation step; the transformation rules are coupled with formal verification
techniques to guarantee the preservation of stuttering linear-time properties, hence
alleviating the verification process on the last steps of the design and paving the way
to a better design space exploration.

This chapter is structured as follows. Section 2.2 summarizes the related tech-
niques in the literature. Section 2.3 describes the major steps of our method for
architectural exploration. Section 2.4 details the transformation rules associated with
each refinement step. Section 2.5 presents a case-study illustrating the use and bene-
fits one can expect from our approach, concerning behavioral property verification.
Section 2.6 concludes and sketches some perspectives.

2.2 Related Works

Nowadays many design methodologies involve formal verification methods to assist
the design; generally, verification tools are plugged into the standard (SystemC or
SystemVerilog) design flow. These tools are appropriate to perform formal verifi-
cation at a high level of abstraction, or to derive test-benches generally used for
assertions checking on lower design levels. However, there is a lack of design
methodologies to assist a designer in the refinement tasks and that offer guarantees
about functional properties preservation along the design process. Several frame-
works offering design-space exploration facilities have been proposed [3, 9, 15, 18].
However, these frameworks are mostly simulation-oriented and do not formally char-
acterize the relationships between successive abstraction levels. Moreover, formal
verification of global functional properties is hard to accomplish when components
are described at a low level of abstraction, where many implementation details are
provided.
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Among design methodologies oriented towards refinement, the B method [2] is
one of the most famous, due to its rigorous definition, its (partial) mechanization in
Atelier-B, and several success stories for transportation devices. This approach is
general and could be applied in the context of SoC design [6]. Although large part
of proof obligations can be automatically discharged, the refinement steps are left to
the user. Abdi and Gajski [1] defines a model algebra that represents SoC designs
at system level. The authors define the refinement as a sequence of model transfor-
mations, that allow to syntactically transform a Model Algebra expression into a
functionally equivalent expression. The refinement correctness proof is based on the
transformation laws of model algebra. Functional equivalence verification is used
to compare the values of input and output variables within the models at different
levels. Marculescu et al. [11] presents a framework for computation and commu-
nication refinement for multiprocessor SoC designs. Stochastic automata networks
are used to specify application behavior which allows performance analysis and fast
simulations. Our approach is complementary to these last works since we provide
transformation rules, representing the introduction of architectural constraints in the
design in order to describe more precisely its behavior. Our rules are tuned to be
understandable by the designer, who can select which combination of rules to apply
in order to perform its refinement; at each step, the refinement can be proven by
applying automated verification tools, hence guaranteeing the preservation of a large
class of functional properties from abstract levels to more concrete ones.

2.3 Our Method

Our approach for design space exploration of SoCs is based on the Y-chart design
scheme [14] as shown in Fig. 2.1. We focus on dataflow applications, modelled as a
set of abstract concurrent tasks. Application tasks and architectural elements making
up the underlying execution support (e.g., major features of CPU, memory, bus) are
first described independently and are related in a subsequent mapping stage in which
tasks are bound to architectural elements.

The application is mapped onto the architecture that will carry out its execution:
a first platform is available (see Fig. 2.1). The models derived for both applications
and architectures may come with some low-level information from designers.

They are analyzed to determine whether the combination of application and archi-
tecture satisfies the required design constraints introduced at the initial stage. If the
design constraints are not met, then the mapping process is reiterated with a differ-
ent set of parameters until achieving a satisfactory design quality. Once the desired
platform is obtained, it is possible to perform communication refinement for opti-
mizing the communication infrastructure. This makes effective the communication
mechanism, and takes into account constraints imposed by the available resources.
Referring to Fig. 2.1, this process leads to Platform2. This process is well established
in the simulation-based design exploration tools. The boundedness of the execution
support and the synchronizations, which it induces, imposes structural constraints.
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Fig. 2.1 Refinement steps in the design flow

For this reason, the initial set of execution traces of the application is modified along
the mapping and refinement process. This means that functional properties that were
fulfilled by the initial description of the application may no longer hold once the appli-
cation has been mapped. For example, deadlocks or livelocks may have appeared,
or some good ordering of events may not be respected anymore. These changes are
difficult to capture with simulation-only engines, hence formal analysis is required.
In order to ensure the preservation of the functional behavior of the application being
analysed along the mapping and refinement process, our approach consists of splitting
the whole process in defined steps with clearly defined abstraction level (see the left
side of Fig. 2.1): Level-0 (application without constraint), Level-1 (application with
a defined granularity of the stored data and the transferred data), Level-2 (applica-
tion with synchronization mechanisms for communication) and Level-3 (application
with synchronization mechanisms for communication transiting through a shared
bus). Moreover, we provide formal transformation rules as guidelines for the deriva-
tion of a concrete model from an abstract one. Then we can prove the preservation of
stuttering linear-time functional properties from two successive representation levels
by comparing the set of traces of the two descriptions with a formal verification tool.

The remainder of this section gives some precision on the initial application and
architecture modeling.
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2.3.1 Application

The functional behavior of the application is written in Task Modelling Language
(TML) [3]. The model of computation of TML is close to the Kahn networks
model [8], however TML supports non-determinism and offers different commu-
nication styles. A TML model is a set of asynchronous tasks, representing the com-
putations of the application, and communicating through channels, events or requests.
In TML, each task executes forever, i.e., the first instruction is re-executed as soon
as the last one finishes.

The main feature of TML models is data abstraction. TML models are built to
perform design space exploration from a very abstract level; they capture the major
features of the application to be mapped, without describing precisely the compu-
tation of the application and data value being involved on it. Within tasks, precise
computation is abstracted by an action exec whose optional parameter represents
the amount of time the computation should take. Channels do not carry data values,
but only the amount of data exchanged between tasks. Data are expressed in terms of
samples. A sample has a type which defines its size. Communications are expressed
by actions read or write whose parameters are the channel being accessed and
the amount of (typed) samples to be read or written. Other constructs are provided
to perform conditional loops, or alternatives (the guarding condition may be non-
deterministic, abstracting a particular computation value).

Channels are used for point-to-point unidirectional buffered communication of
abstract data, while events are used for control purpose and may contain values.
Requests in their turn can be seen as one-to-many events. A channel may have a max-
imal capacity or may be unbounded, and is accessed through read or write actions
performed by the emitter and receiver tasks. Channel’s type describes its access policy
and the type of samples it stores. A channel can be either “Blocking-Read/Blocking-
Write” (BR-BW), mimicking a bounded queue (its maximal capacity is defined in
its declaration). “Non-Blocking-Read/Non-Blocking-Write” (NBR-NBW) to rep-
resent a memory element or “Blocking-Read/Non-Blocking-Write” (BR-NBW) to
represent an unbounded queue. A simple example of a TML application is depicted
in Fig. 2.2a. It shows two tasks, named Task1 and Task2, communicating by
FIFO channels, named C1 and C2. Task1 performs infinite amount of computa-
tions and writing actions of a single sample on the channel C1. For each component
of the application an abstract model is derived. It captures the component key behav-
ior including both computation and communication aspects. We rely on the Labelled
Transition System (LTS) formalism [4] for encoding the models.

2.3.2 Execution Platform

The architecture consists of a set of interconnected hardware components, on which
the application will be executed. For each processing element (e.g., processor or
co-processor), the designer provides its number of cores, number of communication
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Fig. 2.2 Example of mapping of an application onto an architecture

interfaces, size of local memory. In case of multitask scheduling, the scheduling
policy is specified (fixed-priority, random, round-robin). For each storage element
(e.g., RAM, ROM, buffer), the size of the storage element and access policy
(random access, FIFO) are given. For each interconnection or interface element,
the designer specifies the type of interconnection (e.g., dedicated buffered line,
shared bus, full-crossbar, bridge), transfer granularity, arbitration policy. Referring
to the architecture in Fig. 2.2b, it consists of a CPU and a dedicated coprocessor, both
connected to a bus and a memory.

2.3.3 Mapping and Partitioning

The mapping process distributes application tasks and channels over hardware ele-
ments. The mapping determines over which processing elements the tasks will be
executed and which memory regions will store data. The allocation is static and is
described by the designer. The model of the obtained system represents the com-
bination of the behavioral models of the application components integrating the
constraints imposed by the architecture. Consider the application and the archi-
tecture given in Fig. 2.2, Task1 (resp. Task2) is mapped see dashed arrows over
CPU (resp. co-processor) nodes and the channels C1 and C2 are mapped over
a shared memory and communicate through the bus. A more complex example of
application, architecture, and mapping is presented in Sect. 2.5, Fig. 2.10.

From a formalism’s point of view, this combination can be seen as a product of
Labelled Transition Systems (LTSs). However, in order to perform this product, one
has to adapt the communication granularity, the interface protocols and to manage
the shared resources. This is the purpose of the transformation rules described in the
following section.
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2.4 Transformation Rules

To assist the designer in developing models from Level-0 to Level-3, we provide
guidelines for formally refine the tasks and communication medium from the simple
channels to concrete infrastructures. After generating the initial model, the guidelines
suggest three steps: 1. Refinement of data granularity, 2. Refinement of channel man-
agement, and 3. Introduction of an abstract bus. These transformations manipulate
orders and substitutions between elementary actions labelling the LTS of the initial
model. In Mokrani [13], these transformations have been formalized with partially
ordered multisets referred to in the term pomset [16] and then translated into LTS for-
malism. This section presents an intuitive description of the transformations required
by the three steps. A more formal and complete description of these transformations
is presented in Mokrani [13].

To begin at Level-0, we build behavioral models of TML applications in terms of
a set of interacting LTSs. For each task, we build an LTS, in which the transitions
are the atomic actions executed by the TML task. For each channel, we generate
an LTS, which encodes its specific behavior and captures the parameters of interest
such as maximal capacity and access policy. For instance, the behavior of task2 and
channels may be modeled by the LTSs presented in Fig. 2.3a, b, respectively.

2.4.1 Refinement Steps

2.4.1.1 First Step: Refining Granularity of Data

The first refinement step considers the capacity (or size) of memory elements allo-
cated to each communication channel during the allocation phase. This capacity may
be lower than the size of the TML sample to be transmitted, which imposes a rescal-
ing of the granularity of data transfer and may also impact the granularity of the
computation. The granularity of data measures, both, the atomic amount of compu-
tations associated to each exec statement and the atomic amount of data associated
to each read or write statement (i.e., the amount of data carried away by a channel).
The refinement of data granularity converts the unit of data from the coarse-grained
unit into the finer-grained one (e.g., from Image into Pixel) with a given granularity
scaling factor of n (so that total size of Image = n × size of Pixel). The models of
channels are refined by the transformation 1 (denoted by [T1]). The latter associates

exec

write

read

write

read

(a) (b)

Fig. 2.3 Initial LTSs for Task2 and channels
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to each channel a size bounded by the number of samples of the new granularity,
which it can transfer, and the maximal memory size of the architecture allocated for
the channel given by the MEMSIZE function.

Transformation 1 A channel C is transformed into a channel C′ with a granularity
scaling factor n such that:

Type(C′) =
{

BR-BW if Type(C) = BR-BW ∨ BR-NBW
NBR-NBW otherwise

and
size(C′) ≤ min(MEMSIZE(C), n × size(C))

Models of tasks are also impacted by the rescaling of the data granularity. Each
initial action is transformed into an ordered set of micro-actions, according to the
granularity of a scaling factor. These ordered sets are gradually built and combined
by taking into account the parallelism between actions, data dependency and data
persistency. The result of this transformation leads to the transformations [T2]–[T6],
which are described in the subsequent paragraphs.

Maximal Parallelism Between Actions

For each action of the models derived at Level-0, the order of the corresponding
micro-actions depends on the associated data granularity, as well as on the maximal
parallelism that the architecture offers. As channels are point-to-point communica-
tion media, the generated order for the micro-actions of communication (read and
write) should be total. Whereas for the micro-actions of computation (exec), it is
defined by the maximal parallelism degree p offered by the processing unit executing
it (e.g., number of cores within processors). Initially, for each action, an order is built
by applying transformation 2 Expansion of actions (denoted by [T2]).

Transformation 2 Consider the model of a task characterised by the set of asso-
ciated actions S. Given a parameter n (granularity scaling factor), and a parame-
ter p (maximal parallelism degree), the transformation expansion of actions consists
in replacing each action of S by a (n, p)-ordered group of actions with the same
label.

In the case of TML model S = {read, write, exec}, it contains primitives of
TML model. Once each group of (micro-)actions being locally ordered, the order
of the tasks is reinforced by introducing linear order between the terminal ele-
ments of each group. This is performed by the transformation 3 Global order of
actions (denoted by [T3]).

Transformation 3 Consider the model of a task and the associated set of the groups
of ordered micro-actions. This transformation consists of identifying the terminal
element of each group of micro-actions, and building an order relating these terminal
actions which respects the order of the initial model.
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Data Dependency and Data Persistency

A consequence of data abstraction in TML is the loss of information about the
data dependency. This information, which can be expressed as a relation between
reading-writing, reading-execution, execution-writing, and execution-execution
actions, is required for an optimal management of the memory space of the archi-
tecture. In fact, this relation can be restored from the algorithm targeted by the
application, or provided by the designer. Thereby, this relation strengthens the order
between actions by the transformation 4 Data dependency introduction (denoted
by [T4]).

Transformation 4 Consider the model of a task and the relation R between all its
actions. Given a data dependency relation D between its actions, the data dependency
introduction transformation consists in building the order resulting from the transitive
closure of R ∪ D, so that it produces an order (i.e., no cycle is introduced).

Moreover, the models of tasks have to ensure that the data in the local space
remains available until its use has been completed. This is taken into account by
transformation 5 Data persistency (denoted by [T5]). It enforces that the actions
consuming data are executed before the ones removing it.

Transformation 5 Consider the model of a task. Given a data dependency relation
and a size of local memory, the data persistency transformation consists in strength-
ening the order of the model of the task such that for any execution, a sequence of
actions producing data never exceeds the memory size.

Shared Resources

Another kind of material constraint taken into account along the refinement process is
the number of interfaces and the number of cores which are included in the processing
unit onto which the task is executed; this is done by transformation 6 (denoted
by [T6]).

Transformation 6 Consider the model of a task. Given the number of interface and
cores of the processing element associated to the task, the transformation forces the
order between the actions of the task so as to guarantee a mutual exclusion of shared
resources.

Actually, transformations [T5] and [T6] are performed through a symbolic tra-
versal of the model of a task. They are constrained by the order of micro-actions
already computed by way of transformations [T2]–[T4]. At each transformation step
compatible with the input order, one has to ensure that both data persistency and
resource exclusion conditions are satisfied. If these conditions are not met, the order
is strengthened, which forces some sequentialization of concurrent actions, up to the
satisfaction of persistence and exclusion conditions.
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Fig. 2.4 Behavioral models of Task2 and channels resulting from the first refinement step

The result obtained after applying these transformations is a set of possible execu-
tion traces of the considered application, which satisfies imposed design constraints.
Referring to the example in Fig. 2.2, we suppose that the written data (resp. read)
are refined with a scaling factor equal to 2 (resp. 3). Suppose also that the space
allocated to each channel does not exceed two storage compartments. The models
of the Task2 and the channels obtained at the end of this refinement step are shown
in Fig. 2.4.

At this stage, the number of atomic execution steps and data transfers are fixed
at the granularity offered by the size of memories storing channels, and ordered
according the maximal parallelism allowed by the architectural description. However,
the communication have to be refined to reflect the access policy of the TML channels.
The following step produces a detailed view of these actions.

2.4.1.2 Second Step: Refining Channel Management

In the second step, channels are replaced by communication media equipped with an
abstract protocol respecting the blocking-read/blocking-write semantic. The selected
protocol is inspired from [10]. The reading and writing primitives are expressed by
a series of operations that 1. stall a process until data or memory space (named
room) in the shared memory is available, 2. transfer data, and then 3. signal the
availability of data or room. This protocol uses six primitives: check-room and
signal-room to test and inform a room is available for writing; store-data and
load-data to perform the transfer; and check-data and signal-data to check
and inform the availability of a data to read. The actual transfer of data are the
primitives store-data and load-data, the other operations are synchronization
primitives. Transformation 7 (denoted by [T7]) replaces the models of channels by
the ones depicting this protocol.

Transformation 7 The model of channel of type BR-BW is replaced by the model
encoding the selected protocol of communication.

Furthermore, the introduction of a communication protocol impacts as well the
models of tasks. The communication primitives within each task (read and write)
are changed to support the protocol. The transformation is performed in two
phases (transformations [T8] and [T9]): the first replaces all the communication
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(transfer) actions to a channel of type BR-BW by a communication scheme, which
respects the protocol.

Transformation 8 Consider the model of a task and the selected communication
protocol, the actions of transfer to a channel of type BR-BW are transformed by the
following rules:

write ≡ check-room → store-data → signal-data

read ≡ check-data → load-data → signal-room

exec ≡ exec

In the second phase, the orders between the primitive of transfer and the primitive
of synchronization are calculated according to the order established in the abstract
model, in a way to preserve a maximal parallelism.

Transformation 9 Consider the model of a task and the selected communication
protocol. The transformation introduction of the protocol consists in restoring the
orders between actions according to the rules given in Table 2.1.

The patterns in Table 2.1 are modeled with pomsets. The pomset formalism is a
compact representation of concurrent actions without expliciting interleavings. The
ordering of the operations on each pattern reflects the happens-before relationship
between the actions. For instance, the first pattern specifies that the system tests the
availability of data before its loading and then issues the room-release after the load
operation; all operations of the first instance of reading precede the corresponding
ones of the second instance:

check-data →load-data →signal-room

↓ ↓ ↓
check-data →load-data →signal-room

This representation leads to the interleaving interpretation, so that a system exe-
cuting actions concurrently is no different from one that executes them in arbitrary
sequential order. With this interleaving interpretation, the system modeled by the
pomset above represents five linear traces:

1. check-data load-data signal-room check-data load-data

signal-room

2. check-data load-data check-data signal-room load-data

signal-room

3. check-data load-data check-data load-data signal-room

signal-room

4. check-data check-data load-data signal-room load-data

signal-room

5. check-data check-data load-data load-data signal-room

signal-room
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Table 2.1 Patterns of transformation of the actions orders. Each line of the table presents a replace-
ment pattern: the left pattern is replaced by the one on the right

No Action pattern Replacement pattern

(1) Read → Read

check-data → load-data → signal-room

↓ ↓ ↓
check-data → load-data → signal-room

(2) Write → Write

check-room → store-data → signal-data

↓ ↓ ↓
check-room → store-data → signal-data

(3) Write → Read

check-room → store-data → signal-data

↓ ↓ ↓
check-data → load-data → signal-room

(4) Read → Write

check-data → load-data → signal-room

↓ ↓ ↓
check-room → store-data → signal-data

(5) Read → Exec

check-data → load-data → signal-room

↓
Exec

(6) Write → Exec

check-room → store-data → signal-data

↓
Exec

(7) Exec → Read

Exec

↓
check-data → load-data → signal-room

(8) Exec→ Write

Exec

↓
check-room → store-data → signal-data

(9) Exec→ Exec Exec → Exec

Back to our example, the abstract channel is transformed into a shared buffer,
which separates data-transfer and synchronisation (see Fig. 2.5).

Because of the interleaving of actions of different operations, the resulting LTS
for the Task2 is large. This makes it highly unreadable. We shall give then its pomset
representation (see Fig. 2.6).

2.4.1.3 Third Step: Introduction of Abstract Bus

Once the Level-2 models are available, we introduce information of sharing com-
munication infrastructures. We define an abstract protocol for bus management. The
proposed protocol targets a wide family of centralized buses, it contains an arbitration
component, interface modules (to depict initiator and target interfaces). It provides a
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Fig. 2.5 Behavioral model of a two-element channel resulting from the second refinement step

Fig. 2.6 Pomset representation of Task2 resulting from the second refinement step

transfer policy abstraction which does not distinguish between atomic, burst or split
transfers. At this stage, the models of channels remain unchanged, whereas, those
of tasks are transformed to incorporate the interface modules. Moreover, a generic
model of bus arbiter is introduced. This is performed by transformations [T10] and
[T11], which we shall not detail here.
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2.4.2 Generation of Models for Level-1, Level-2, and Level-3

As usual in the setting of distributed and concurrent systems, we give behavioral
model of the application and the application-architecture combination in terms of a
set of interacting finite state machines, called Labelled Transition Systems (LTSs).
An LTS is a structure consisting of states with transitions, labelled with actions,
between them. The states model the system states; the labelled transitions model the
actions that a system can perform.

At each level i, we build an LTS for each component (LTS
i
t and LTS

i
c for resp. task

and channel) of the system obtained at this level and by synchronous product (denoted
by ||) of elementary LTSs we build the global model of the overall system (Mi):

∀i ∈ {0, 1, 2}. M
i = ((||t∈Task LTS

i
t) || (||c∈Channel LTS

i
c))

The LTS models of the highest level (Level-0) are generated automatically from
the source code TML application. The intermediate models (of Level-1 and Level-2)
up to the most concrete one (Level-3) are generated by applying the transformations
of the channel models and the task models. The models of Level-1 are built by
applying transformation [T1] to each channel and transformations from [T2]–[T6]
to each task:

∀c ∈ Channel : LTS
1
c = T1(LTS

0
c) and ∀t ∈ Task : LTS

1
t = T6(T5(T4(T3(T2(LTS

0
t )))))

The models of Level-2 are built by applying transformation [T7] to each channel and
transformations from [T6]–[T9] to each task:

∀c ∈ Channel : LTS
2
c = T7(LTS

1
c) and ∀t ∈ Task : LTS

2
t = T6(T9(T8(LTS

1
t )))

Notice that the transformation [T6] is reused at this level. Indeed, it consists in
guaranteeing the exclusive access to resources.

Finally, the global LTS of the Level-3 (M3) is obtained by the synchronized product
of the models of channels and of tasks, plus the models of components introduced
in the third step:

M
3 = ((||t∈Task LTS

3
t ) || (||c∈Channel LTS

2
c) || (||i∈Interface LTSi) || (||a∈Arbiter LTSa))

In the same way as previous steps, LTS
3
t is obtained by applying transformations

[T10] and [T11] to the models of tasks.

2.4.3 Proof of Property Preservation

Once the behavioral models have been generated, we prove complete and infinite
trace inclusion between lower levels and higher levels by proving the existence of
a simulation relation between two successive models (e.g., ∀i : M

i+1 � M
i); this
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Fig. 2.7 Verification process with the first strategy of hiding operation

result ensures the preservation of stuttering linear-time properties from M
0 down

to M
3. Actually, the refinement process introduces new actions, so that the set of

actions of abstract level is included in the set of concrete level, Ai ⊆ Ai+1. Refinement
checking between successive levels requires the hiding of the additional details about
its behavior. To perform this, we used two strategies:

1. we kept the transitions of M
i (for i > 0) labelled over Ai−1 but the new ones (from

Ai\Ai−1), introduced by the refinement, were considered as non observable
τ actions. In terms of traces, we can find the trace of the path σi−1 by removing
the transitions labelled by new actions from the path σi (see Fig. 2.7).

2. We kept the transitions of M
i (for i > 0) labelled over A0. So we can find the

trace of the path σ0 embedded into the trace of the transitions in σi (see Fig. 2.8).

The second-solution is more scalable. Indeed, the full system size obtained with
the second strategy is much smaller than the one obtained with the first strategy since
we hide more actions. However, the first solution appears more interesting. It allows
us to prove a large set of properties: properties related to the different levels not only
those related to application level. In our methodology, first, we try the experiment
with the first strategy. If it fails, we apply the second one.

2.5 Case Study

This section illustrates the use of the proposed methodology for the design and func-
tional verification of a digital camera initially presented in Vahid and Givargis [17].
The functional specification is partitioned into five modules, namely Charge-Coupled
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Fig. 2.8 Verification process with the second strategy of hiding operation

Device (CCD), CCD PreProcessing (CCDPP), Discrete Cosine Transformation +
quantization (CODEC), transmitter (TRANS), and controller (CNTRL).

The digital camera captures, processes, and stores pictures into an internal mem-
ory. This task is initiated when the user presses the shutter button to take a picture.
The CCD model simulates the capture of a picture and the transmission of pixels.
The CCDPP module performs the luminosity adjustment on each pixel received
from CCD module. The CODEC module applies the Discrete Cosine Transformation
(DCT) algorithm to each bloc transmitted from CNTRL before being retransmitted
into the CNTRL. The CNTRL module serves as the controller of the system. It also
executes the quantization and Huffman compression algorithm after receiving the
transformed bloc from CODEC. The camera is able to upload the stored picture to
external permanent memory. The TRANS module takes care of this task, when it
receives data from CNTRL.

Based on the SystemC code of the application given in Vahid and Givargis [17],
we encoded it into TML language (the code is shown in Fig. 2.9), we provide a target
architecture, which can support the application and a mapping relationship between
them (Fig. 2.10). The architecture consists of five Processing Elements (PE1 to PE5)
equipped with their own local memory. PE1 and PE2 communicate through a dedi-
cated buffered line SE2; PE2 to PE5 as well as a shared memory SE1 are connected
through a bus, which access is controlled by an arbiter. The allocation is represented
with dashed lines from the task graph given on the upper part of Fig. 2.10; it asso-
ciates one TML task per processing element; channel CI1 will be implemented on
buffered line SE2 while all other channels are implemented into the shared mem-



2 Assisting Refinement in System-on-Chip Design 37

Fig. 2.9 TML code of digital camera

Fig. 2.10 Architecture and mapping of digital camera

ory SE1. We consider that a maximal capacity is associated to each memory space.
We built the global models M

0, M
1, M

2, and M
3 of the platform corresponding to

the different levels of refinement from Level-0 up-to Level-3 by following the gener-
ation scheme described in Sect. 2.4.2. In the current state of our research, we encode
manually the models (LTSs) into Fiacre language [5].

We ran the use case with different architectural parameters summarized in
Table 2.2: each PE has 1 core, each PE except PE2 has 1 interface, PE2 has 2 inter-
faces, and each local memory size equals to 2 units. The size of shared memories
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are defined by the required size for all the channels, which are mapped onto it. So,
for SE2, the required size is defined as

∑

c∈C
size(c) such that C = {CB1, CB2, CI3}.

We experimented the use case with different sets and different sizes of data, which
are expressed by the number of units.

2.5.1 Refinement Checking

At each refinement step, we built the corresponding models. By using the equiva-
lence checker BISIMULATOR of the CADP toolbox [7], we compared the models
at successive levels of abstraction. The refinement preorder relation, which we used,
takes finite stuttering into account. It verifies the non-introduction of new traces.
Moreover, for verifying the inclusion of complete and infinite traces, we also verify
at each level the non-introduction of new blocking state (deadlock freedom) and the
non-introduction of τ -cycles (livelock freedom).

The full state generation fails with the two last test cases. We chose the second
solution for the hiding operation to further reduce and to generate the state space
of the system. Then, we verified the trace inclusion between successive models,
so M

0 � M
1 � M

2 � M
3. Table 2.3 summarizes quantitative results obtained

from the experiment with the first and the last test case: they show the system sizes
(states/transitions, after minimization) as well as the time consumption for the refine-
ment verification.

2.5.2 Properties Verification

We also verified several properties that express various facets of the system correct-
ness. They are expressed using the Model Checking Language (MCL) logic [12],
which is an extension of the alternation-free regular μ-calculus and supported by
CADP toolset. The MCL formulae are logical formulae built over regular expressions
using boolean operators, modalities operators (necessity operator denoted by “[]” and
the possibility operator denoted by “<>”) and maximal fixed point operator (denoted
by “mu”). Notice that atomic propositions are the actions labels of the Level-0, which
should be preserved under the refinement process.

• Deadlock freedom: Absence of states without successors.

P0:[true*] <true> true

• Initially, no reading action on channel CB1 can be reached before the correspond-
ing writing:

P1:[true*.(not write_CB1)*.read_CB1] false
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Table 2.3 Computation times of refinement and verification analysis

Test case 1 Test case 3

Level-0 Level-1 Level-2 Level-3 Level-0 Level-1 Level-2 Level-3

� States 336 123088 437782 173546709 2542 141302 516326 2369408

� Transitions 872 431622 1646712 472413097 7212 419758 1038037 6593033

Verif time P0 0.8 s 13 s 9 min 26 min 3 s 3 min 11 min 40 min

Verif time P1 0.5 s 8 s 5 min 16 min 2 s 2 min 5 min 25 min

Verif time P2 0.7 s 9 s 5 min 15 min 2 s 2 min 6 min 25 min

Verif time P3 0.9 s 21 s 13 min 41 min 5 s 4 min 16 min 66 min

Verif time P4 0.8 s 14 s 11 min 39 min 5 s 3 min 16 min 64 min

Refine time n/a 8 s 3 min 13 min n/a 3 min 25 min 75 min

• No more than two actions of writing on channel CB1 is possible before the corre-
sponding reading:

P2:[true*.write_CB1.(not read_CB1)*.write_CB1.
(not read_CB1)*.write_CB1] false

• A writing action on channel CI1 will be eventually reached:

P3:mu X.[true*] (<true> true and [not write_CI1] X)

• After a writing action onto channel CI1, the corresponding reading is eventually
reachable:

P4:[true*.write_CI1] mu X.(<true> true
and [not (read_CI1)] X)

The properties are verified at each level hence preserved from M
0 down-to M

3.
Table 2.3 shows the time consumption for the properties verification at each level
from the experiment (and for each test case). Furthermore, we compare the time
required for the verification of these properties at each level of refinement with the
time required by the refinement-based strategy. We observe that without using the
strategy of checked refinement, the properties have to be verified at each level until
Level-3. In the refinement-based strategy, once the validity of the properties has been
established on M

0 and the refinement relation satisfied, the properties are guaranteed
to be true in subsequent levels.

The Table 2.3 shows the benefits of the refinement-based strategy by comparing
verif time of any property at Level-0 + Refine time of any Level-i (for i > 0) with
verif time of the property at Level-i. When multiple properties have to be satisfied
(which is generally the case), it is worth using our refinement strategies instead of
a direct verification of properties on the Level-3 models. On small models (see left
part of Table 2.3), the refinement verification is always much smaller than any single
property verification time. For more complex models, the refinement time becomes
similar to single property verification time, and this approach remains interesting
when multiple behavioral properties have to be checked.
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2.6 Conclusion

We presented a refinement-based methodology for design-space exploration of
system on chip. Our approach provides guidelines to assist the designer in the refine-
ment process, focusing on communication refinement. We established well-identified
abstraction levels and transformation rules to derive a more concrete model from a
more abstract one. Each abstraction level can be associated with a verification envi-
ronment, in order to prove functional properties or refinement properties between
different abstraction levels. This last point allows us to establish the validity of func-
tional properties of concrete descriptions by testing the property on the most abstract
level and proving the refinement, which is less costly than verifying the property on
the concrete model directly; we exemplified this fact on a digital camera case study.

These encouraging results draws several perspectives. A first direction consists
in proving that the transformation algorithm always produces a refinement, for any
initial (deadlock-free) model; up to now, the refinement is established when the
transformations are applied to a particular initial model. We saw in the experimen-
tal section that with more complex systems, this application-dependent refinement
verification becomes as costly as the verification of a single property (and remains
interesting in case of the verification of multiple properties). A generic proof, based
on the formal definitions of our transformations is under study and would simplify
the overall verification process. Another perspective concerns the extension of the
approach to task computation refinement. For instance, we shall add computation
details as computation scheduling.
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Chapter 3
A New Assertion Property Language
for Analog/Mixed-Signal Circuits

Andrew N. Fisher, Dhanashree Kulkarni and Chris J. Myers

Abstract In automating the verification of Analog/Mixed-Signal(AMS) circuits,
it is essential to have a specification language that can describe the behavior that
needs to be checked. Although powerful and very expressive, many such languages
have a steep learning curve for designers and are complicated to use. This chapter
describes a simpler, more intuitive language called the Language for Analog/Mixed-
Signal Properties (LAMP) that is incorporated into our LEMA verification tool, and
demonstrates how this language can be used for AMS verification.

Keywords Formal verification · Model checking · Analog/Mixed-Signal (AMS)
circuits · Property language · Assertions · Language for Analog/Mixed-Signal Prop-
erties (LAMP) · Temporal logic · Labeled petri nets · LPN Embedded Mixed-Signal
Analyzer (LEMA) · Phase interpolator · Voltage-Controlled Oscillator (VCO)

3.1 Introduction

It is well-known that the process of verifying analog circuits is not nearly as automated
as its digital cousin. The difficulty is exacerbated when these areas are combined to
create AMS circuits. To address this, there has been significant recent interest in
developing formal approaches for verifying AMS circuits [16]. In order to apply
formal verification approaches, such as model checking, it is necessary to create
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or extend formal languages to be able to describe the time-dependent properties of
AMS designs. Several languages have been proposed, which for the most part fall
into two categories. They are either inspired by temporal logics like Linear Temporal
Logic (LTL) and Computational Tree Logic (CTL) or have a grammar closer to a
programming language in the vein of SystemVerilog Assertions (SVA) [5].

A few examples of languages inspired by LTL/CTL are Metric Temporal Logic
(MTL), Metric Interval Temporal Logic (MITL), and Signal Temporal Logic (STL).
MTL augments LTL with timing [7], but unfortunately, it is not decidable in gen-
eral [1]. MITL creates a balance between decidability and expressiveness by relaxing
the continuous model of time [1]. In Maler and Ničković [10] and Maler et al. [12],
the authors study the use of MITL in online monitoring while in Maler and Ničković
[11], the authors extend MTL to create STL. These languages have been difficult
to convince the analog and AMS community to use in practice since the formalism
is so foreign to designers, and it is often difficult to determine which expression is
needed to capture a desired property.

In addition to languages being built from LTL or CTL like formalisms, several lan-
guages have been proposed taking inspiration from assertion languages. A prominent
example is the Property Specification Language (PSL), which can be used for spec-
ifying properties both in the digital and AMS domain. For example, Boulé and Zilic
[3] uses PSL to express temporal properties of AMS designs and Jones et al. [6] uses
PSL to describe the behavior of the DDR2 memory protocol in terms of assertions.
Furthermore, Steinhorst and Hedrich [14] extends PSL to the Analog Specification
Language (ASL) to better describe state space properties of AMS designs. As an alter-
native to PSL, Smith [13] uses SystemVerilog to describe the inherent asynchronous
behavior in synchronous circuits, and Havlicek and Little [4] introduces Real-Time
SystemVerilog Assertions (RT-SVA) as an extension of SVA adding more direct
support for continuous assertions. Despite their generality and their aim to provide
designers with a more program-like language, it is still difficult to craft a particular
property of interest when using these languages.

This chapter introduces LAMP, the Language for Analog/Mixed-Signal Prop-
erties, to provide AMS designers with a more intuitive and easier to use property
language. To demonstrate the utility of LAMP, this chapter describes how it can
be used to specify verification properties for a Phase Interpolator (PI) and Voltage-
Controlled Oscillator (VCO). In particular, the property for the PI that must be
verified is that it changes to the appropriate phase for a given control signal and the
property for the VCO is that the appropriate phase occurs after a suitable settling
time. LAMP is incorporated into our AMS verification tool LEMA, which uses LPNs
as its primary model for verification. Accordingly, LEMA includes a compiler for
the language, which converts statements into a property LPN that can be combined
with a model LPN for the AMS circuit, and then model checking techniques can be
performed to check that the AMS circuit satisfies the property of interest.

This chapter is organized as follows. Section 3.2 provides more detail on LEMA,
as well as, gives the necessary background for LPNs. Section 3.3 introduces the
PI circuit, which is used as a motivating example. Section 3.4 describes LAMP and
gives a sketch as to how the properties in LAMP are compiled by LEMA into LPNs.
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Section 3.5 shows our results using LAMP for the verification of a PI and a VCO
circuit, and finally, Sect. 3.6 gives our conclusions and ideas for future work.

3.2 Background

This section introduces our verification tool, LEMA, and the formal LPN model used
by our tool. Although LEMA uses LPNs, most of the automatically generated LPNs
can be thought of as state machines. In addition, the ideas presented in this chapter
can just as easily be formulated with automata instead of LPNs, if desired.

3.2.1 LPN Embedded Mixed-Signal Analyzer (LEMA)

LEMA supports a Simulation-Aided Verification (SAV) approach that is depicted
in Fig. 3.1. LEMA takes simulation traces generated by transistor-level SPICE sim-
ulations as input for a given circuit. These traces can be compiled by our model
generator into an abstract SystemVerilog model for simulation-based verification.
Alternately, our model generator can generate a formal model of the circuit in the
form of an LPN [2, 8]. During the model generation process, LEMA identifies dis-
crete variables by identifying variable traces that switch to different discrete levels
within a certain time tolerance. Thus, LEMA can handle simulations with discrete
variables as well as simulations where the discrete variables do not instantaneously
change. To handle the continuous portion of the model, the generator relies on a set
of thresholds that partition the traces into a set of places. Thus, it is the number of
thresholds that influences the size of the resulting LPN model and not necessarily
the size of any input file used in the generation of the model. This LPN can be com-
bined with an LPN generated by the LAMP compiler introduced in this chapter. The
AMS circuit can then be verified by passing the combined LPN for the circuit model
and the property to one of LEMA’s three model checkers: an exact Binary Decision
Diagram (BDD) based model checker [15], a bounded Satisfiability Modulo Theory
(SMT) based model checker [15], or a conservative zone-based model checker [9]. In
like fashion, multiple properties can be checked simultaneously by compiling each
into a corresponding property LPN and adding them to the model LPN. As before,
the resulting combination can be checked by one of the model checkers.

3.2.2 Labeled Petri Net (LPN)

Labeled Petri Nets (LPNs) are the primary formalism used to model circuits when
using LEMA for verification. This formalism is isolated from the user by providing
the model generation procedure and verification property compilation as described
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below; however, internally the property language is intimately tied to the LPN for-
malism. Thus, to provide context for this relationship, this section provides a formal
definition. An LPN is a tuple N = 〈P , T , T f , V , F , M0, Q0, R0, L 〉1:

• P: is a finite set of places;
• T : is a finite set of transitions;
• T f ⊆ T : is a finite set of failure transitions;
• V : is a finite set of continuous variables;
• F ⊆ (P × T ) ∪ (T × P) is the flow relation;
• M0 ⊆ P is the set of initially marked places;
• Q0: V → (Q∪{−∞})×(Q∪{∞}) is the initial range of values for each continuous

variable;
• R0: V → (Q∪{−∞})× (Q∪{∞}) is the initial range of rates of change for each

continuous variable;
• L: is a tuple of labels defined below.

An LPN consists of a finite set of places, P , and a finite set of transitions, T ,
together with a set of specially designated failure transitions, T f . Failure transitions
are used by LPNs to signal when a failure has occurred and are thus important to LPNs
representing properties. The set V represents the set of continuous variables that are

1 A simplified version of LPNs is used in this chapter that is sufficient for AMS circuit models.
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used to represent the signal values in the AMS circuit. The flow relation, F , describes
how places and transitions are connected. The sets M0, Q0, and R0 represent the
initial markings of the places, the initial values of the continuous variables, and the
initial rates of change for the continuous variables, respectively.

The labels, L , for an LPN are defined by the tuple, L = 〈En, D, VA, RA〉:
• En: T → Pφ labels each transition t ∈ T with an enabling condition.
• D: T → Pχ labels each transition t ∈ T with a delay, for which t has to be enabled

before it can fire.
• VA: T × V → Pχ labels each transition t ∈ T and continuous variable v ∈ V

with the continuous variable assignment that is made to v when t fires.
• RA: T × V → Pχ labels each transition t ∈ T and continuous rate variable v ∈ V

with the rate assignment that is made to v when t fires.

The enabling conditions are Boolean expressions, Pφ , with the following
grammar:

φ ::= true | ¬φ | φ ∧ φ | vi ≥ ci

where ¬ is negation, ∧ is conjunction, vi is a continuous variable, and ci is a rational
constant. The assignments are numerical formulae, Pχ , with the following grammar:

χ ::= ci | ∞ | vi | (χ) | − χ | χ + χ | χ ∗ χ |
INT(φ) | uniform(ci , c j ) | rate(vi )

where the function INT(e) converts a Boolean expression that evaluates to true or
false to 1 or 0, respectively, the function uniform (l, u) gives a uniform random value
in the interval (l, u), and the function rate (vi ) returns the current range of rates for
the continuous variable vi .

Although the above definition only refers to continuous variables, LPNs are able
to handle discrete variables as well. Discrete variables can be modeled as simply
continuous variables that evolve at a rate of zero.

3.3 Motivating Example

This chapter uses the PI circuit shown in Fig. 3.2 as an example. A PI circuit is
a circuit that shifts the phase of an input clock, phi, according to the value of a
control signal, ctl, to produce a shifted output clock, omega. Figure 3.3 gives an
example of a LPN model generated by LEMA from simulation data for a PI circuit
with four different phase shifts. In this diagram, the circles are the places and the
intervening text between the places are the transitions. A transition is enabled when
all the incoming places to the transition are marked, and the enabling condition (the
expression in the curly braces) is true. A transition can fire after being enabled for
the amount of time given by the delay assignment shown in the square brackets.
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Fig. 3.2 Phase interpolator circuit implementation

phi =[−250,−250]
ctl = [100, 100]
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Fig. 3.3 Generated LPN model of a PI circuit

The firing of a transition removes the marking from all the incoming places of the
transition, and adds a marking to each outgoing place leaving the transition. The
firing of a transition also executes all of the variable and rate assignments found in
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the angle brackets. For the example LPN shown in Fig. 3.3, transition, t0, is enabled,
and it fires immediately since its delay assignment is 0. This moves the marking from
place p0 to p1 and changes omega to a value between 194 and 195. At this point, the
circuit waits until phi goes high (i.e., above 0) then checks the value of the ctl signal to
determine which uniform statement is evaluated. It then waits the specified amount
of time before firing transition t1 to set omega to a value between 245 and 246,
and moves the marking to place p2. Note that in Fig. 3.3 all the values are integers.
During the model generation process, all of the continuous variables are scaled (with
the same factor) to ensure that all the values are integers. Similarly, the time is scaled
by a factor to ensure integer values as well. These two scaling factors are returned to
the user to adjust their properties accordingly. For the LPN in Fig. 3.3, the time units
are in picoseconds and the values of phi, omega, and ctl are in 10−2 V. While this
scaling is not strictly necessary, it does simplify the implementation.

The verification property for the PI circuit can also be expressed as an LPN as
shown in Fig. 3.4 [2]. This LPN checks that the phase shift of the output clock omega
generated by the circuit matches the desired phase shift for the given control signal
value. The LPN accomplishes this by first waiting for phi to go high which marks
the places pCheckMin and pCheckMax. At this point, one of the tMin and one of
the tMax transitions become enabled depending on the value of ctl. If the output
clock, omega, goes high before the delay on the appropriate tMin transition passes,
then the fail transition, tFailMin, fires indicating that the phase shift is too small.
On the other hand, if the appropriate tMin fires first, then pCheck becomes marked,
and the LPN is now waiting for omega to go high. If the delay on the appropriate
tMax transition passes first, then the tMax fail transition fires indicating that the phase
shift is too large. However, if omega goes high first, then pReset becomes marked,
and the LPN waits for phi to go low and high again before checking the next phase
shift. When this LPN is combined with the LPN for the circuit and an LPN describing
the environment’s behavior, reachability analysis can be performed to determine if
a failure transition can fire [9].

As opposed to the model and environment LPNs, the property LPN must be
constructed by hand, which is a very tedious and error-prone process. It is certainly

pReset
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{¬ ( phi ≥ 0)}

[0]tMin3

[759]
{( ≥ 320)}

tMin3

(ctl ≤ 320)}
{(ctl ≥ 250)

[999]

tMin2
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{(ctl ≥ 170)
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Fig. 3.4 An LPN for the phase interpolator verification property
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not very reasonable to require designers to formulate their properties in this way.
Therefore, a more intuitive property language is needed that can be readily compiled
into property LPNs for verification purposes.

Before creating LAMP, we also considered using an existing AMS property lan-
guage. For example, this same property can be written in STL as shown below:

�(((↑ (phi ≥ 0) ∧ (ctl ≤ 1.7)) →
(�[0,1699]omega < 2.2) ∧ (♦[1699,1801]omega > 2.2))

∨((↑ (phi ≥ 0) ∧ (ctl ≥ 1.7) ∧ (ctl ≤ 2.5)) →
(�[0,1479]omega < 2.2) ∧ (♦[1479,1501]omega > 2.2))

∨((↑ (phi ≥ 0) ∧ (ctl ≥ 2.5) ∧ (ctl ≤ 3.2)) →
(�[0,999]omega < 2.2) ∧ (♦[999,1021]omega > 2.2))

∨((↑ (phi ≥ 0) ∧ (ctl ≥ 3.2)) →
(�[0,759]omega < 2.2) ∧ (♦[759,761]omega > 2.2)))

The � notation requires that the property is always checked. The statement ↑
waits for the positive edge of the Boolean expression (phi ≥ 0). Thus, col-
lectively the first part of the statement checks that phi goes high and ctl is
below 1.7. If this condition is satisfied, then the statement (�[0,1699]omega <

2.2) ∧ (♦[1699,1801]omega > 2.2) is checked. The interval subscript on � indicates
that the statement omega < 2.2 must remain true for 1699 time units. The next part
of the statement (♦[1699,1801]omega > 2.2) requires that the statement omega > 2.2
become true between 1699 and 1801 time units. The rest of the statements are similar.

Writing a specification in a temporal logic is quite far away from the environ-
ment designers commonly use. Thus, it can be difficult for them. To address this
issue somewhat, this property can be written using Signal Temporal Logic Property
Specification Language (STL/PSL) as follows:

vprop PhaseInterpolator{
PI1 assert:

always((rise(a:phi >= 0) and (a:ctl <= 1.7))
→ (always[0,1699](a:omega < 2.2)) and
(eventually[1699, 1801](a:omega > 2.2)) or
(rise(a:phi >= 0) and (a:ctl >= 1.7) and (a:ctl <= 2.5))
→ (always[0, 1479](a:omega <2.2)) and
(eventually[1479, 1501](a:omega > 2.2)) or
(rise(a:phi >= 0) and (a:ctl >= 2.5) and (a:ctl <= 3.2))
→ (eventually[0, 999](a:omega < 2.2)) and
(eventually[999, 1021](a:omega > 2.2)) or
(rise(a:phi >= 0) and (a:ctl >= 3.2))
→ (eventually[0, 759](a:omega < 2.2)) and
(eventually[759, 761](a:omega > 2.2)));

}
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This version is less intimidating, but it still requires designers to learn some tempo-
ral logic semantics in order to correctly use the always and eventually statements.
Furthermore, it is difficult to determine how to convert this type of language into
an LPN with failure transitions, which is needed for LEMA.

An alternative would be to write this property using RT-SVA [4] as shown below:

(phi ≥ 0)[∼> 1] ##0
(((ctl ≤ 1.7)[∼> 1] ##0

(!(omega > 2.2))[∗1699 : 1801] ##1 (omega > 2.2))

or
(((ctl ≥ 1.7)&&(ctl ≤ 2.5))[∼> 1] ##0

(!(omega > 2.2))[∗1479 : 1501] ##1 (omega > 2.2])
or

(((ctl ≥ 2.5)&&(ctl ≤ 3.2))[∼> 1] ##0
(!(omega > 2.2))[∗999 : 1021] ##1 (omega > 2.2))

or
(((ctl ≥ 3.2))[∼> 1] ##0

(!(omega > 2.2))[∗759 : 761] ##1 (omega > 2.2))) ##1
(phi < 0)[∼> 1]

In RT-SVA, the expression [∼> 1] is an expression that waits for the preceding
Boolean expression to become true. Thus, the first line waits for the input clock phi
to become non-negative. The expression A ##0 B is a concatenation operator that
indicates the next expression B should become true at some time overlapping when
A is true. Therefore, the next part checks the value of ctl when phi goes high. Finally,
the A[∗l : u] statement specifies that A must remain true for between l time units and
u time units. Therefore, the last part of the statement checks for a change in omega
from a low to a high value within a specified amount of time. Considering this exam-
ple, it again appears to be tricky and somewhat tedious to read and write verification
properties in RT-SVA. We also found it difficult to translate these properties into
LPNs with failure transitions.

3.4 LAMP

To make properties easy to read and write, this chapter presents a more intuitive prop-
erty language for AMS circuits called LAMP. LAMP is based on a set of functions
that can be automatically compiled into a property LPN. Listing 3.1 is the format
for a property in LAMP. The property starts with its name which is followed by the
continuous variable declarations. The statements of the language are as follows:

1. delay(d)—wait for d time units. This statement is compiled into the LPN
shown in Fig. 3.5a. The enabling condition is true, so the transition fires as soon
as the delay d is met.
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Listing 3.1 Format for a LAMP property

1 property <name > {
2 <declarations >
3 always {
4 <statements >
5 }
6 }

t0
{true}

[d]

p1

p0

(a)

t0
{b}
[0]

p1

p0

(b)

p1

p2

p0

t1
{b}
[0]

t0
{¬ (b)}

[0]

(c)

tFail0
{¬(b)}

[d]

t0
{b}
[0]

p1

p0

(d)

tFail0
{¬b}
[0]

t0
{b}
[d]

p1

p0

(e)

tFail0

[0]

t0
{b2}
[0]

p1

p0

{¬(b1) ¬(b2)}

(f)

Λ

Fig. 3.5 LPNs for the basic LAMP statements: adelay(d), bwait(b), cwaitPosedge(b),
d wait(b,d), e assert(b,d), and f assertUntil(b1,b2)

2. wait(b)—wait until Boolean expression b becomes true. This statement is
compiled into the LPN shown in Fig. 3.5b. In this LPN, transition t0 fires when
b becomes true. There is no time limit, which means that the firing of t0 can wait
as long as necessary for b to become true.

3. waitPosedge(b)—wait for a positive edge on the expression
b (i.e., wait(b); wait(b)). The LPN for this statement is shown in Fig. 3.5c.

4. wait(b,d)—wait at most d time units for the expression b to become true.
This statement is compiled into the LPN shown in Fig. 3.5d. If b is false initially,
the failure transition, tFail0, is enabled, but it has a delay of d time units. If
during this time interval b goes true, t0 is fired immediately, since it has 0 delay.
If, however, b remains false for d time units, tFail0 fires and a failure is recorded.

5. assert(b,d)—ensures that b remains true continuously for d time units. This
statement is compiled into the LPN shown in Fig. 3.5e. If b is true initially, the
transition, t0, is enabled, but it has a delay of d time units. If during this time inter-
valbgoes false, the failure transition, tFail0, fires immediately indicating a failure.
If, however, b remains true for d time units, t0 fires.

6. assertUntil(b1,b2)—ensures that expression b1 remains true until b2
becomes true. This statement is compiled into the LPN shown in Fig. 3.5f.
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R1 R3R2

pEnd0

t0

[0]
{b1}

pStart0

[0]

t2
{¬ (b1) ¬ (b2)}

t1

[0]
{¬ (b1) (b2)}Λ Λ

(a) (b)

Fig. 3.6 LAMP syntax and LPN for an if-else statement

In this LPN, the failure transition, tFail0, fires if b1 and b2 are false before
b2 becomes true.

7. The language also provides an if-else statement as shown in Fig. 3.6.
8. always(conditionsList) {statements} – continue to execute the

statements until one of the signals in the list of variables conditionsList
changes, then break out. The generated LPN is shown in Fig. 3.7, assuming a
list containing at least the variables a and b. First, transition t0 fires and stores
the current values of the variables in the list conditionsList in a set of
new variables _a, _b, . . .. Then, the statements inside the always block continue
to execute as long as the condition alcond = (a = _a) ∧ (b = _b) ∧ . . .

remains true. If alcond becomes false, an exiting transition fires leaving the
loop. In particular, every transition in the always block has alcond added to
the enabling condition while every place has an exit transition with ¬alcond. If
the conditionsList is empty, then alcond is taken to be true and all the
exiting transitions are removed.

Note that the formal semantics of each of these statements is defined by the corre-
sponding LPN given in Figs. 3.5, 3.6 and 3.7.

A property compiler for LAMP is incorporated into the LEMA verification tool.
This compiler generates a property LPN from a property written in this language as
follows:

1. Create an LPN with the name of the property.
2. For each variable declaration, create a continuous variable in the LPN.
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p0

t2
{¬ alcond}

[0]

pend0

t3
{¬ alcond}

[0]

pexit0
t4

{alcond}
[0] t5

{¬ alcond}
[0]

t0
{true}

[0]
< _a := a, _b := b, . . . >

t1
{cond alcond}

[d]

pstart0

...

Λ

Fig. 3.7 LPN for an always statement with sensitivity list {a, b, . . .}. The LPN associated with the
statements in the always block go between the pstart0 and pend0 places. Each transition belonging
to the statements has the condition alcond combined with the original condition. The expression
alcond is (a = _a) ∧ (b = _b) · · ·

3. For each statement, construct an LPN using the templates described above making
the last place for each statement the same as the first place for the following
statement.

4. When an always block is encountered, create a new variable _a for each variable a
in the condition list. Add the transition that stores the variables and add the starting
place for the always block. Construct all the interior statements according to step 3
while adding the alcond to each transition constructed. A transition is added from
the last place to the starting place with the alcond as its enabling condition. Finally,
add the exit place and the exit transitions with enabling condition ¬alcond.

Using LAMP, the property for our PI circuit can be expressed as shown in Listing
3.2, which is clearly more intuitive then the approaches described earlier. Note that
the values have been scaled according to the factor provided by the model generator
to give integer values. After this property is compiled by LEMA, the property LPN
shown in Fig. 3.8 is obtained.
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Listing 3.2 PI circuit property using LAMP

1 property PhaseInterpolator {
2 real ctl;
3 real omega;
4 real phi;
5 always {
6 wait(phi >= 0);
7 if (~(ctl >= 170)) {
8 assert(omega < 220, 1699);
9 wait(omega >= 220, 102);

10 }
11 else if ((ctl >= 170) & ~(ctl >= 250)) {
12 assert(omega < 220, 1479);
13 wait(omega >= 220, 102);
14 }
15 else if ((ctl >= 250) & ~(ctl >320)) {
16 assert(omega < 220, 999);
17 wait(omega >= 220, 102);
18 }
19 else if (ctl >= 320) {
20 assert(omega < 220, 759);
21 wait((omega >= 220, 102);
22 }
23 wait (~(phi >= 0));
24 }
25 }

3.5 Results

We designed and simulated a circuit implementation for PI circuits with 4, 8, and
16 different phase shifts. Using simulation data and the model generator in LEMA,
we created models for these three different PI circuits. Figure 3.3 shows the model
generated for the circuit with four possible amounts of phase shift. Using LAMP, we
constructed verification properties, such as the one shown in Listing 3.2, for each of
these PI circuits to check that the phase shift generated by the circuit is correct. The
LPN generated for this property is combined with the LPN for the model and one for
the environment. Then, LEMA’s zone-based model checker is used to verify whether
the PI circuit satisfies the property (i.e., no fail transitions fired). The verification
results of PI circuits for 4, 8, and 16 phases are given as the first three entries of
Table 3.1. As can be seen from this table, LEMA is able to successfully verify that the
output phase shift is correct.

We also considered a couple of variations that cause verification errors. First, to
simulate an output clock that goes high too soon, we changed the property for the PI
with four phases, so that the assert statement for the control value 40 asserts that
omega is less than 220 for 680 time units instead of 759. As seen in the fourth entry
of Table 3.1, the property correctly signals a failure. Each of these checks is done
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Fig. 3.8 The LPN generated for the property expressed in LAMP in Listing 3.2

with an environment that can non-deterministically change the control signal shortly
before the next time the input clock goes high. If this restriction is removed and the
control signal is allowed to change at any time, LEMA finds a failure as indicated by
the fifth result of Table 3.1. This failure occurs because after the property LPN begins
checking the output clock phase for one control signal, the environment can change
the control signal to a different value, resulting in a different phase. The property then
continues to check for the behavior for the previous control value, which indicates a
failure. This failure can be fixed by adding a second always block around the whole
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Table 3.1 Verification results for a PI circuit

Property Time (s) States Verifies?

PI with 4 control signals 0.135 126 Yes

PI with 8 control signals 0.277 300 Yes

PI with 16 control signals 1.362 769 Yes

PI with short delay 0.083 14 No

PI with changing controls 0.779 2,407 No

These results are generated using LEMA, a Java-based verification tool, on a 64-bit machine running
an Intel Core i5 CPU M 480 @ 2.67 GHz with 4 processors and 4 GiB of memory
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Fig. 3.9 Model of a VCO with a stable and unstable phase

property and adding the control signal ctl to the condition list. Dealing with such
transient behavior is further illustrated in the next example, a VCO circuit.

A VCO is a circuit that outputs a clock signal, out, which frequency changes
according to the voltage level of a control signal, ctl. A model for a VCO is shown
in Figs. 3.9 and 3.10. This model is generated using LEMA’s model generator on
simulation data for three control voltages 2, 3, and 4 together with interpolation
between these values as described in Sect. 4 of Kulkarni [8]. The model consists of
two phases: an unstable phase signified by stable = 0 and a stable phase signified
by stable = 1. The unstable state is modeled by the p2, t2, p3, and t3 loop while
the stable state is modeled by the p4, t5, p5, and t6 loop. When the control signal
changes, it takes the system some amount of time before the system settles into the
expected phase. This transient behavior is modeled by setting the stable signal to
0 when the control changes and then the stable signal is set to 1 after some delay.
The setting of the stable signal is handled by the model in Figure 3.10. The delays
in Fig. 3.9 are:

f0 ((ctl ≥ 2)∧¬(ctl ≥ 3)) ∗ 19 + ((ctl ≥ 3)∧¬(ctl ≥ 4)) ∗ 19 + (ctl ≥ 4) ∗ 19
f1 (¬(stable ≥ 1)∧ (ctl ≥ 2)∧¬(ctl ≥ 3))∗uni f orm((ctl ∗ (−2)+17), (ctl ∗
(−2) + 113)) + (¬(stable ≥ 1) ∧ (ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ uni f orm((ctl ∗
(0) + 11), (ctl ∗ (0) + 107)) + (¬(stable ≥ 1) ∧ (ctl ≥ 4)) ∗ uni f orm((ctl ∗
(0) + 11), (ctl ∗ (0) + 107))
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t30
{(ctl ≥ 2.5)&¬(ctl ≥ 3.5)}

[0]
<stable:=0>

p11

t25
{¬(ctl ≥ 2.5)}

[0]
<stable:=0>

p13

t26
[970]

<stable:=1>

t27
[957]

<stable:=1>

p12

t28
[874]

<stable:=1>

t29
{(ctl ≥ 3.5)}

[0]
<stable:=0>

pt0
{(ctl ≥ 3.5)}

[0]
<stable:=0>

pt1
{¬(ctl ≥ 2.5)}

[0]
<stable:=0>

pt2
{(ctl ≥ 2.5)&¬ (ctl ≥ 3.5)}

[0]
<stable:=0>

{(ctl ≥ 2.5)&¬(ctl ≥ 3.5)}
[0]

<stable:=0>

pt4
{¬(ctl ≥ 2.5)}

[0]
<stable:=0>

pt5
{(ctl ≥ 3.5)}

[0]
<stable:=0>

p10

pt3

Fig. 3.10 Model for the process that changes the stable and unstable phases for Fig. 3.9

f2 (¬(stable ≥ 1)∧ (ctl ≥ 2)∧¬(ctl ≥ 3))∗uni f orm((ctl ∗ (−2)+21), (ctl ∗
(−3) + 26)) + (¬(stable ≥ 1) ∧ (ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ uni f orm((ctl ∗
(−2) + 21), (ctl ∗ (−2) + 23)) + (¬(stable ≥ 1) ∧ (ctl ≥ 4)) ∗ uni f orm((ctl ∗
(−2) + 21), (ctl ∗ (−2) + 23))

f3 (¬(stable ≥ 1) ∧ (ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ (ctl ∗ (−2) + 19) + (¬(stable ≥
1) ∧ (ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ (ctl ∗ (−1) + 16) + (¬(stable ≥ 1) ∧ (ctl ≥
4)) ∗ (ctl ∗ (−1) + 16)

f4 (¬(stable ≥ 1) ∧ (ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ (ctl ∗ (−5) + 3) + (¬(stable ≥
1) ∧ (ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ (ctl ∗ (−2) + 21) + (¬(stable ≥ 1) ∧ (ctl ≥
4)) ∗ (ctl ∗ (−2) + 21)

To verify that the VCO has the correct delay after a suitable time has passed
for the unstable period, one could use the property in Listing 3.3 and compile it
into the LPN shown in Fig. 3.11. This property declares a control system, ctl, and
the clock signal, out. The first always block indicates that the following property
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Listing 3.3 VCO circuit property using LAMP

1 property VCO {
2 real ctl;
3 real out;
4 always {
5 delay (1000);
6 waitPosedge(out >= 40);
7 always (ctl) {
8 assert(out >= 40, f3);
9 wait(out <= 30, 3);

10 assert(out <= 30, f4);
11 wait(out >= 40, 5);
12 }
13 }
14 }

should be repeatedly checked. Next, there is a delay to wait for the clock to stabilize
followed by a waitPosedge to ensure that the frequency check starts when the
clock, out, first goes high. The second always block includes ctl in its condition
list, thus the next statements are repeatedly checked unless ctl changes. On the event
of ctl changing, the second always block exits and the outer always block starts
again. The statements inside the inner always check that the output clock remains
high (indicated by out being at least 40 units) for the appropriate delay it f3. Then,
the clock must go low (out less than 30) within 3 time units. The clock must remain
low for a delay of f4 and finally go high again with 5 time units.

The results of applying the property in Fig. 3.11 to the VCO model in Figs. 3.9
and 3.10 are contained in Table 3.2 with the label Limited Phase Checker. The first
three lines show the results when the control is set to a single control value of 2, 3,
or 4 and in each case the system is verified. Next, the environment is modified to non-
deterministically change to one of the three values 2, 3, or 4 every 3000 time units and
again the system is verified. Finally, the environment is modified to allow the volt-
age level to change to 2, 3, or 4 at any time. In this case, the property fails. The reason
is due to the placement of the delay statement outside the second always block. If
the control changes just prior to entering the second always block, then the model is
in the unstable state while the property LPN checks for the stable frequency. Once the
delay and waitPosedge statements are placed inside the second always block,
the property is verified in all cases of the environment as shown in the last five lines
of Table 3.2.
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p_t2
[0]

< _ctl := ctl >

p_p1

p_p3 {¬(out ≥ 40) (ctl = _ctl)}
prop_tFail0

[0]

[ f 3]

p_t3
{(out ≥ 40) (ctl = _ctl)}

p_p4

p_p8

p_p5

pt10
{¬(_ctl = ctl)}

[0]
[0]

{¬(out ≤ 30) (ctl = _ctl)}
p_tFail2

pp6

p_t11
{¬(_ctl = ctl)}

[0]

[0]
{(out ≥ 40) (ctl = _ctl)}

p_t6

p_t12
{¬(_ctl = ctl)}

[0]

{(out ≤ 30) (ctl = _ctl)}
[0]

p_t4

p_p0

[ f 4]
{(out ≤ 30) (ctl = _ctl)}

p_t5

[0]

[0]

p_p7

p_p2
p_p1_5

p_t1_8
{¬(ctl = _ctl)} {(out ≥ 40) (ctl = _ctl)}

{¬ (ctl = _ctl)}p_t1
p_t1_5_8

p_t13

[0]

{¬ (ctl = _ctl)}
p_t0_8

[0]

p_t0
{(ctl = _ctl)}

[1000]

p_t1_5
{¬(out ≥ 40) (ctl = _ctl)}

[0]

[0]
[0]

{¬ (_ctl = ctl)}
p_t8

[0]

{(ctl = _ctl)}
p_t7

[5]
{¬(out ≥ 40) (ctl = _ctl)}

p_tFail3

p_tFail1
{¬(out ≤ 30) (ctl = _ctl)}

p_t9
{¬(_ctl = ctl)}

[0][3]

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Fig. 3.11 The LPN generated for the property expressed in LAMP in Listing 3.3
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Table 3.2 Verification results for a VCO circuit

Property Control signals Time (s) States Verifies?

Limited phase checker 2 0.144 22 Yes

Limited phase phecker 3 0.177 22 Yes

Limited phase checker 4 0.177 136 Yes

Limited phase checker 2, 3, 4 reg. int. 0.223 185 Yes

Limited phase checker 2, 3, 4 random 0.419 322 No

General phase checker 2 0.158 18 Yes

General phase checker 3 0.161 18 Yes

General phase checker 4 0.161 24 Yes

General phase checker 2, 3, 4 reg. int. 0.195 24 Yes

General phase checker 2, 3, 4 random 1.411 336 Yes

These results are generated using LEMA, a Java-based verification tool, on a 64-bit machine running
an Intel Core i5 CPU M 480 @ 2.67 GHz with 4 processors and 4 GiB of memory

3.6 Conclusion

In order to verify whether an AMS circuit is correct given a model of the behavior, one
needs to start with a property to verify. Several options have been proposed that are
primarily inspired by LTL/CTL-like formalisms or by programming-like languages
such as PSL and SystemVerilog. Although these methods are powerful and quite
general, these languages often are difficult to convince designers to use since they
have a steep learning curve.

This chapter presents LAMP, a more intuitive language for AMS property spec-
ification. This chapter demonstrates the utility of LAMP by showing how it can be
used to express a desired property of a PI and VCO circuit. For the PI, the property
is a precise phase shift should be produced by this circuit under the control of its
input signal. This property is shown to be simple to express in LAMP while it is
more opaque in formalisms such as STL and RT-SVA. Furthermore, this chapter
demonstrates the use of LAMP in a verification setting by verifying that the output
phase for various control signals is correct for a PI circuit with 4, 8, or 16 different
phase shifts. This chapter further demonstrates that our tool can detect failures in
the phase shift for a PI circuit. For the VCO example, the property is to verify the
appropriate frequency is produced according to what the voltage signal is, after a
suitable delay for the frequency to stabilize. This property is checked for three con-
trol voltages and it is shown that the property can be written to verify the circuit in
an environment that randomly changes the control voltage.

For future work, one direction is to extend the language to support more types
of constructs. For example, as is seen in Listing 3.2, the property has to be scaled
according to how the original model is scaled. To aid in such circumstances, the
language could be augmented to more gracefully handle scaling factors. In addition,
it may be helpful to have the ability for the property language to hold state in more
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cases then in the condition list for an always block. As a second direction, it is useful
to study the exact class of properties that can be expressed and those that cannot. In
addition to being useful in knowing when the language is applicable, this also aids in
comparisons between this language and the myriad of other possibilities. Finally, one
notable drawback to LAMP is that it is unable to verify liveness properties beyond the
level of bounded liveness. Thus, it would be useful to investigate how to incorporate
such a check into the LEMA framework.
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Chapter 4
Integrating Circuit Analyses
for Assertion-Based Verification
of Programmable AMS Circuits

Dogan Ulus, Alper Sen and Faik Baskaya

Abstract Digitally-programmable analog circuits provide reconfigurability and
flexibility for next-generation electronic systems and modern electronic systems
need such circuits more than ever. For verification of these circuits, the change in
analog characteristics according to digital inputs should be monitored and checked
to determine whether measured analog characteristics satisfy desired conditions in a
unified Analog/Mixed-Signal (AMS) verification environment. Therefore, we inte-
grate common analog circuit analyses into an assertion-based verification flow, and
we verify time-varying analog characteristics of digitally-programmable AMS cir-
cuits. We use results of DC, AC, and Fourier transform based analyses in our AMS
assertion language, and monitor violations caused by any change in digital inputs.
We show an application of our approach on a programmable low-pass filter circuit
where cut-off frequency can be digitally controlled.
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4.1 Introduction

There are growing demands for mixed-signal circuits especially for system-on-a-chip
applications. However, a desire for more functionality in a more compact device has
increased the level of complexity of these applications and made their verification
harder than ever. Especially bugs that can occur at the boundaries of analog and
digital blocks may remain hidden until the very end because analog and digital
blocks are verified separately. To prevent such bugs and verify analog and digital
blocks together, some proven techniques from digital domain have been extended
toward analog domain in recent years.

Among these digital techniques, Assertion-Based Verification (ABV) has gained
popularity for its practicality and scalability. Formal description of AMS properties
and automatic evaluation of simulation runs are two main benefits of ABV flow for
mixed-signal designs. Assertion-based methodology reduces manual effort, increases
reusability and leads to a productivity increase in AMS verification.

These digital techniques are built on top of the analog verification techniques
such as circuit analyses. Assertions can check properties from time-domain simu-
lation (transient analysis) results but these assertions are mostly safe operating area
checks, that observe voltages and currents in design. For performance related prop-
erties, analog designers perform other types of analog analyses for their designs
besides transient analysis. Therefore, assertions for other analog analyses and their
integration into mixed-signal time-domain verification still remains a challenge.

In this chapter, we integrate circuit analyses into assertion-based verification flow
and we verify a specific class of mixed-signal circuits, that is digitally-programmable
analog circuits, where analog circuit characteristics can be controlled by switching
digital inputs. In Fig. 4.1, we show our unified assertion-based verification flow that
includes circuit analyses such as DC, AC, transient, Fourier transform based analyses
as well as digital verification. In our approach, assertion-based flow can check and
monitor results of circuit analyses whenever a digital event changes the state of the
analog circuit.

Temporal Layer

Boolean Layer

Analog Layer

DC
Analysis

AC
Analysis

Transient
Analysis

FFT
Analysis

} AMS Assertion
Language

} Circuit
Analyses

Fig. 4.1 Structure of an assertion-based AMS verification environment including circuit analyses
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In the next section, we briefly give a summary of assertion-based AMS verification
from the literature. In Sect. 4.3, we present the grammar of our assertion language
integrating circuit analyses for assertion based verification flow. In Sect. 4.4, we
explain DC, AC, and Fourier transform based analyses and their integration into
mixed-signal verification and we validate our approach on a programmable low-pass
filter circuit in Sect. 4.5.

4.2 Related Work

Several formal or semi-formal approaches for AMS circuit verification are pre-
sented in [3, 16]. Formal approaches like [1, 13] use state-space discretization and
symbolic computations for AMS verification. Alternatively, works proposing semi-
formal methods use simulation traces to verify AMS properties. Expressive monitors
and checkers are crucial for simulation-based approach, therefore several specifica-
tion languages have been proposed to describe assertions addressing different aspects
of AMS verification.

In most monitoring techniques, predicates over real-valued signals convert real-
valued signals into Boolean signals and temporal properties are monitored and
checked in simulation traces. Among them, Signal Temporal Logic (STL) [9], which
extends the Metric Interval Temporal Logic (MITL) [2], is presented to monitor
time-domain properties of continuous signals. The underlying idea and logic of STL
is extended with many useful constructs such as auxiliary state machines in [10],
frequency-domain operators in [5], haloes in [14] and measurement operators in [15].
Similarly, specification languages in [8, 11] use assertions to verify AMS designs
but they use a discrete-time notion in synchronization between analog and digital
domains unlike a continuous time notion as in STL.

Expansion towards frequency domain is a natural and required step for more
feature-rich assertion-based verification. Therefore, the authors of [8] include an
FFT operator in their analog layer but it is limited to amplitude measurement only.
In [5], the relation between time and frequency domain is discussed from AMS
assertion perspective, and Time-Frequency Logic (TFL) is introduced. However,
important tools for analog verification such as DC, AC, and other FFT-based analyses
are missing in current assertion languages. In this chapter, we investigate the benefits
of integration between circuit analyses and current assertion languages.

4.3 A New AMS Assertion Language

AMS assertion languages consist of several abstraction layers and are influenced
by Property Specification Language (PSL) [6]. Alongside Boolean and Temporal
layers as in PSL, AMS assertion languages introduce an Analog layer to capture
analog properties. In early AMS assertion languages, analog layer is only capable of
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Table 4.1 Grammar of our AMS Assertion Language

Temporal layer TempExpr ::= �BoolExpr

| �TempExpr

| TempExpr • TempExpr

| ¬TempExpr

Boolean layer BoolExpr ::= SignalExpr � SignalExpr

| BoolExpr • BoolExpr

| ¬BoolExpr

Analog layer SignalExpr ::= RawSignal � RawSignal

| RawSignal

| Const

RawSignal ::= dcExpr

| acExpr

| tranExpr

| fftExpr

| dataExpr

dcExpr ::= D(Node)@DC( EventsExpr )

acExpr ::= A(Node)@AC( EventsExpr )

tranExpr ::= Node

fftExpr ::= F(Signal Expr)@F FT ( EventsExpr )

dataExpr ::= datatowf ( data )

EventsExpr ::= Ea(SignalExpr)

| Ed (BoolExpr)

Operators

� Temporal operators D DC property operators

• Binary boolean operators A AC property operators

¬ Boolean negation operator F FFT Property operators

� Arithmetic operators Ea Analog event operators

� Comparison operators Ed Digital event operators

processing transient analysis results. However, other circuit analyses used in tradi-
tional analog verification is crucial to verify all aspects of analog design. Therefore,
we extend our AMS assertion language to handle other types of circuit analyses such
DC, AC, and FFT analysis.

We show the grammar of our AMS assertion language in Table 4.1. The temporal
and Boolean operators have their usual semantics. DC, AC, and FFT operators
denote corresponding operators. Note that FFT operator needs parameters such as
the number of points and the window function, which we do not detail in Table 4.1.
The operator datatowf converts custom time-data points into analog signals, which is
useful to compare analysis result with desired values. DC property operators, shown
as D, extracts DC values from a given DC analysis. AC property operators, shown
as A, calculate AC properties like the bandwidth BW from a given AC analysis.
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Similarly, FFT property operators, shown as F , calculate FFT properties like Total
Harmonic Distortion (THD) from a given FFT analysis. Events are used to determine
analysis points in time. Event detection is done by digital event operators Ed such as
rise on digital signals and by analog event operators Ea such as crossing detect events
on analog signals. An example property using our grammar is as follows:

Always(10e6 < BW(out)@AC( rise(ctrl)) < 12e6 )

where out denotes an output node of an analog filter. For this assertion, the bandwidth
operator (BW ) in the analog layer calculates the bandwidth from AC analysis results
for each rise event on the Boolean signal ctrl. Then, the bandwidth value is checked
to see whether it is between 10 and 12 MHz in Boolean layer, and the Always operator
in the Temporal layer checks whether it is true for all simulation times.

4.4 Circuit Analyses

Circuit analyses are well-defined ways of collecting information (metrics) about
analog designs. Because circuit analyses provide valuable metrics for verification,
we see a great benefit to integrate them into assertion-based mixed-signal verification.

Among circuit analyses, DC operating point analysis determines the quiescent
state of circuits. AC analysis extracts small-signal linear response of the circuit for a
single frequency input around the DC operating point. Transient analysis computes
time-domain response of the circuit by iteratively solving the algebraic differential
system of equations. Fast Fourier Transform (FFT) analysis, returns power spec-
trum of time-domain signal so that we can see how much power resides in frequency
components of that signal. FFT analysis allows us to analyze noise and linearity char-
acteristics of analog circuits from time-domain simulation. In AMS design, design-
ers need to combine these analyses with digital properties for a unified verification
environment.

Therefore, we focus on DC, AC, and FFT specifications of AMS circuits, and
express properties for their time-varying characteristics using our AMS assertion
language. We propose to perform circuit analyses at the specific time instants spec-
ified by events during transient analysis, and monitor time-varying characteristics.
In following sections, we explain DC, AC, and FFT analysis in detail and events to
integrate these analyses into transient analysis (time-domain simulation).

4.4.1 Circuit Analyses at Events

Events in our context correspond to a change on either an analog or a digital signal.
Events can be classified as analog events (such as a signal crossing a certain voltage
value) or digital events (a transition in corresponding digital signal). We use events
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Fig. 4.2 Crossing detection for threshold y_level = 0.0 and upward direction on an analog signal

to determine the time instants to perform circuit analyses in the middle of transient
analysis. It means that we start a transient analysis and we pause transient analysis
whenever a specified event occurs and we check the corresponding property for that
time instant.

Event operators observe either an analog or a digital signal and return a set of
events denoted by E . For example, the event operator crossing on the analog signal
returns a set of events such as E = {e0, e1, . . . , en} where each event en indicates that
the signal crosses specified threshold in specified direction. In Fig. 4.2, we illustrate
a crossing detection for the threshold y_level = 0.0 and the upward direction on
an analog signal. Then, we are able to perform circuit analyses for these events, and
check DC, AC, and FFT properties whenever a control input changed in AMS circuit.
This way, we can monitor these properties dynamically without specifying external
or pre-determined time points for analyses.

4.4.2 DC Operating Point Analysis and DC Assertions

DC operating point analysis determines the quiescent state or stable initial condition
of the circuit. The quiescent state is computed by the simulator with capacitances
opened and inductances short-circuited. It provides operating point information
before a small-signal (AC) analysis or a transient analysis so it is the starting point
in the analog design flow.

In traditional analog design flow, designers make assumptions and choices for
DC values inside their analog blocks. Assertions capture these assumptions and
design choices and they report if there is an undesired situation. DC characteristics
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of analog circuits include DC voltage levels of circuit nodes, DC current values for
circuit branches as well as operating modes and conditions for circuit devices.

Related analog circuit specifications that can be extracted via DC analysis include
offset voltage values, offset voltage drifts, bias current values, current drifts and
operation modes of transistor devices. For example, if intended DC voltage level for
the output node is between 0.85 and 0.95 V for an amplifier design, we can capture
this specification in the following formula:

0.85 < V (out)@DC(E) < 0.95

For time-invariant analog circuit blocks, DC analysis is performed at the start of sim-
ulation and it is considered as valid for all simulation. Therefore, single DC analysis
is sufficient to verify DC characteristics for time-invariant systems. However, in the
case of circuits having time-varying DC characteristics such as adaptive or digi-
tally controlled analog circuits, it is beneficial to integrate DC analysis checks into
time-domain simulation (transient analysis). This way, the interaction between dig-
ital and analog domains can be investigated in a single simulation environment. To
ensure desired DC characteristics are achieved during such a mixed-signal simula-
tion, we integrate DC analysis checks into AMS assertions. For example, we want to
check DC voltage level for the output node of an amplifier with digitally-adjustable
transconductance. Because transconductance adjustment by digital events can shift
DC voltage levels in the analog circuit, output DC voltage level should be monitored
and checked during time-domain simulation via the following assertion:

Always(0.85 < V (out)@DC({e1, e2, e3}) < 0.95 )

This assertion monitors the DC value of the output node and checks if it satisfies the
desired condition when events e1, e2, and e3 occur during all simulation times.

4.4.3 AC Analysis and AC Assertions

Traditionally, designers analyze analog circuits by exciting them with a single-
frequency input signal, and they measure the output signal to see how the magnitude
and phase of the input signal is changed by the circuit. In general, only linear analog
circuits can be analyzed using this technique; therefore, a nonlinear circuit should
be linearized by assuming input signals are small enough. This technique, called
as small-signal analysis or AC analysis, is a common and useful procedure when
analyzing the frequency response of analog circuits.

Related analog circuit specifications that can be extracted via AC analysis include
DC gain, bandwidth, phase margin, gain margin and roll-off slopes. In Fig. 4.3, we
show an example AC analysis plot, where we can see AC metrics for the output node
of a low-pass filter circuit. We can write assertions to check whether the measured
metrics satisfy the specifications in assertion-based verification. For example, if the
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Fig. 4.3 An example AC analysis plot and measured AC specifications

desired value for DC gain is between 0 and −0.5 dB for a low-pass filter design, this
specification is captured as:

−0.5 < dcgain(out)@AC(E) < 0.0

In Linear Time-Invariant (LTI) analog blocks, AC analysis is performed at the start
of simulation after DC analysis and it is considered as valid for all simulation times.
Therefore, single AC analysis is sufficient to verify AC characteristics for LTI sys-
tems. However, in case of circuits having time-varying AC characteristics such as
adaptive or digitally controlled analog circuits, it is beneficial to integrate AC analysis
checks into time-domain simulation (transient analysis) as we did for DC assertions.

For example, if we want to check the DC gain value for a low-pass filter with
digitally-adjustable cut-off frequency, then we write the following assertion to cap-
ture DC gain property:

Always( −0.5 < dcgain(out)@({e1, e2, e3}) < 0.0 )

where e1, e2, and e3 denote discrete events such as changes in digital control inputs.
In Fig. 4.4, we illustrate how AC analysis is performed in the middle of a time-
domain simulation. During time-domain simulation, AC analysis is performed for
time instants when events e1, e2, e3 occur. Then, our assertion monitors DC gain at
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Fig. 4.4 Monitoring time-varying AC characteristics in the middle of time-domain circuit simula-
tion. A new AC analysis is performed when an event changes the state of the circuit

the output node from AC analysis results and checks if it always satisfies the desired
condition when these events occur.

An important limitation of our work is as follows. Although current simulators
can perform AC analysis in the middle of transient analysis, they use current node
voltages for AC analysis instead of performing true DC analysis. This limitation
makes each AC analysis that is performed at the exact time of the event wrong.
Therefore, we solve this problem practically by delaying the corresponding event
times (until DC voltages are stabilized) for AC analyses. With simulators allowing
event-driven DC and AC analyses, analysis and verification of time-varying analog
circuits are easier and more comfortable.

4.4.4 FFT Analysis for Noise and Linearity

Noise and linearity characteristics of analog circuits determine the range of useful
signals that the circuit processes as intended for. The smallest value of signals that
can occur is limited by the noise floor of the circuit whereas the largest value of
signals is limited by the nonlinearity of the circuit. Therefore, we use Fast Fourier
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Fig. 4.5 Power spectrum example

Transform (FFT) based analyses to verify the dynamic range of analog circuits in
practice.

Dynamic range metrics include Total Harmonic Distortion (THD), Signal-to-
Noise and Distortion Ratio (SNDR), and Spurious Free Dynamic Range (SFDR).
We can extract these metrics by performing an FFT to get the power spectrum of
time-domain simulation results if the circuit is excited with a single-frequency input.
On the other hand, we should consider all factors to compute a healthy FFT such
as the number of points, windowing choice, and sampling frequency during these
analyses.

In Fig. 4.5, we illustrate an example power spectrum plot, which shows the power
of each frequency component along frequency axis. The biggest peak indicates the
fundamental frequency (13 MHz in this case), where most of the power is concen-
trated, and we can see the noise and distortion components in other frequencies.
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Fig. 4.6 Total Harmonic Distortion (THD) example

4.4.4.1 Total Harmonic Distortion

The Total Harmonic Distortion (THD) of a signal is the ratio of the total power of all
second and higher harmonic components to the power of the fundamental harmonic
(first harmonic) for that signal. Because a nonlinear system produces second, third
and higher-order distortion components at the harmonics of the input (fundamental)
frequency, when excited with a sinusoidal source, it is used as a measurement for the
nonlinearity of a system. The THD metric is calculated by the formula below and is
expressed in gain (dB) or percentage:

THD = 10 log
H2

D2 + H2
D3 + · · · + H2

Dn

H2
D1

where H2
D1, H2

D2, H2
D2, and H2

Dn represent the power value of first-, second-, third-
and nth-order harmonics, respectively.

In Fig. 4.6, we illustrate an example THD analysis of an analog circuit, which
is excited by an input frequency of 1.3 MHz. In the normalized power spectrum
of output signal, we can see the biggest peak at 1.3 MHz, which is the fundamental
frequency, and a few smaller peaks at the integer-multiples of fundamental frequency,
which are called harmonics. Then, the THD operator calculates the ratio of the power
of fundamental frequency and the power of all other harmonics. We write an assertion
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to monitor time-varying THD characteristics of any weakly nonlinear analog circuit
as follows:

Always(0.0 < THD(out)@FFT({e1, e2, e3}) < 2.5)

This assertion checks if calculated the THD value always satisfies the desired spec-
ification at the time instants when events e1, e2, and e3 occur.

4.4.4.2 Signal-to-Noise and Distortion Ratio

Another widely-used metric for noise and linearity specification is Signal-to-Noise
and Distortion Ratio (SNDR). It is the ratio of signal power to power sum of all other
spectral components, and expressed in dB. SNDR is a good indicator about system’s
performance because it takes both distortion and noise components into account.
SNDR is calculated by using the formula below:

SNDR = 10 log
Psignal

Pnoise + Pdistortion

where Psignal, Pnoise and Pdistortion denote the value of power of signal, noise, and
distortion components. We write an assertion to monitor time-varying SNDR char-
acteristics of any weakly nonlinear analog circuit as follows:

Always(SNDR(out)@FFT({e1, e2, e3}) > 30)

This assertion checks if calculated SNDR value always satisfies the desired specifi-
cation at the time instants when events e1, e2, and e3 occur.

4.4.4.3 Spurious Free Dynamic Range

Spurious Free Dynamic Range (SFDR) is the ratio of the input signal to the peak
spurious component. Spurs can occur at the harmonics of fundamental frequency
because of nonlinearity or at other frequency values because of mismatches in the
circuit. In Fig. 4.7, we illustrate an example SFDR analysis of an analog circuit. In
the normalized power spectrum, we see that the ratio of the input signal power and
the power of biggest peak component (third harmonic) is 23 dB.

We write an assertion to monitor time-varying SFDR characteristics of any weakly
nonlinear analog circuit as follows:

Always(SFDR(out)@FFT({e1, e2, e3}) > 20)

This assertion checks if the calculated SFDR value always satisfies the desired spec-
ification at the time instants when events e1, e2, and e3 occur.
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Fig. 4.7 Spurious Free Dynamic Range (SFDR) example

4.5 Case Study

We investigate a digitally-programmable continuous-time Gm-C low-pass filter
design to integrate circuit analyses in our assertion-based verification flow. In a typ-
ical receiver system used in communication applications, three basic operations are
performed: amplification, filtering and data conversion. Programmable Gain Ampli-
fierss (PGAs), Low-Pass Filters (LPFs), Analog-to-Digital Converters (ADCs), and
Digital-to-Analog Converters (DACs) are designed to implement these operations
in actual circuits. In next-generation applications, these circuits should be very flex-
ible and capable of adapting their performance to different standard requirements
with reduced power consumption [4]. To achieve this, we need to design and ver-
ify analog circuits with digital control of biasing, gain, circuit-level, and stage-level
reconfiguration, block power down/up.

Designers can implement filter designs in both digital and analog
domains. Domain selection includes many design trade-offs and challenges.
Although filtering at digital domain is preferred over analog domain, because of
digital domain’s robustness and scalability, the overwhelming requirements for the
following data conversion step makes programmable analog filters attractive for new
generation mixed-signal applications.

To demonstrate our approach, we have designed a digitally-programmable low-
pass Gm-C filter by using architectures and ideas presented in [7, 12] for 0.18 µm
technology and we simulated the circuit with the Eldo SPICE simulator.

Cut-off frequency for this circuit is determined using the following equation:

fc = k × gm0

2π
√

C1 · C2
× 0.6412 (4.1)
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Fig. 4.8 The programmable low-pass filter circuit

where fc denotes the cut-off frequency of the filter, gm denotes the transconductance
value of amplifiers, C1, C2 denote capacitor values in the circuit and the k value
provides programmability for this filter. We can change cut-off frequency of the
low-pass filter during operation by changing k (Fig. 4.8).

As in [12], we achieve such programmability in actual circuit by connecting
three Operational Transconductance Amplifier (OTA) in parallel, where the OTAs
have binary weighted transconductance values, gm0, 2gm0, and 4gm0, respectively.
Each OTA has a dedicated digital control bit to drive transistor switches inside the
OTA circuit and this way we can turn it on or off. Because transconductance val-
ues of parallel OTAs are added up if OTAs are turned-on, we can control overall
transconductance by adjusting three control bits of OTAs. The k value represents
a binary-coded decimal 3-bit digital input and it is connected to the control bits of
the OTAs for transconductance adjustment.

Note that k = 0, thus binary “000”, is an invalid value for the low-pass filter circuit
according to Eq. (4.1). Therefore, before starting to check circuit characteristics, we
write an assertion to ensure that k is never equal to zero. We captured this property
as follows:

Always( k[0] ∨ k[1] ∨ k[2])

where k[n] denotes the Boolean value of the nth bit binary-coded decimal k. This
assertion warns if all bits of k are logic zero, thus k = 0.

In verification of programmable analog filters, we should check DC operat-
ing points of different states. The simulator performs a DC analysis and computes
DC levels of all nodes. Then, we check if these values satisfy desired conditions
for all time instants. However, changing 3-bit digital k value can disrupt DC levels
in the circuit and cause a shift in DC level of the output node. On the other hand,
ensuring that DC levels remain in a specified range is important for robustness of a
system time-varying characteristics. Therefore, the simulator performs a DC analysis
whenever a change in k occurs and we check the DC levels for each change during
simulation. In Fig. 4.9, we illustrate the change in DC level of the output node based
on time and varying k. If we want to keep the value of output DC level of the filter
between 880 and 920 mV, we write this property:
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Fig. 4.9 Monitoring time-varying DC level of the filter output according to k

Always(880e − 6 < V (out)@DC(Ek) < 920e − 6)

where Ek denotes an event set for changes in k. In Fig. 4.9, we can see that varying
DC level for output node is always between specified values so the assertion is
satisfied. However, a stricter requirement for output DC level such as [895, 905 m]
would fail for this circuit. We annotate the results of these checks in the form of
boolean signals in Fig. 4.9.

As the next step, we verify time-varying AC characteristics of the our low-pass
filter. Design specification states that bandwidth value of the low-pass filter should
be changed linearly depending on k. According to Eq. (4.1), the bandwidth value
of the filter should be approximately equal to k· 2.1 MHz (e.g., 2.1 MHz if k = 1,
8.4 MHz if k = 4) in the ideal case if we select circuit parameters, gm0, C1 and C2
as 25 µA/V, 1 and 4 pF, respectively. To verify linearity of bandwidth adjustment,
one approach we can take is to extract bandwidth per k metric and check whether
it always stays in an acceptable region. This way, we ensure that the error deviated
from expected value stays in specified limits and we capture this property as follows:

Always(2.0e6 < BW(out)@AC(Ek)/k < 2.2e6)

To monitor this property, an AC analysis is performed and a frequency plot is returned
for each change in k. Bandwidth operator (BW ) computes bandwidth value from each
AC analysis, and we plot bandwidth of the filter versus time in Fig. 4.10. We can see
that this assertion is evaluated true in Fig. 4.10 because the bandwidth per k metric
always remains inside the [2, 2.2 M] region.

According to Eq. (4.1), incorrect transconductance values of Operational Transcon-
ductance Amplifiers (OTAs) can lead to erroneous behavior. Therefore, we write the
following assertions to check whether transconductance values of both (OTAs) in
the filter circuit satisfy desired values:
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Fig. 4.10 Monitoring time-varying bandwidth per k value of the filter according to k factor.

Always(−5e6 < GM(x, in, out)@AC(Ek) − datatowf (gm(k)) < 5e6)

Always(−5e6 < GM(out, x, out)@AC(Ek) − datatowf (gm(k)) < 5e6)

where the GM operator calculates the transconductance value using AC analysis
results of input and output nodes of OTAs, and datatowf (gm(k)) denotes a custom
waveform for theoretical values of transconductance. This way we can trace the
error up to the smallest circuit block and we can say which block is not working
properly. Note that tracing error is an important benefit of our verification flow.
Although writing assertions in hierarchical manner still requires design expertise,
the checking process is now automatic, standardized, and less error-prone.

Ultimately, a filter is designed to implement a linear operation however actual
implementations of filter circuits (or any other circuit that implements a linear oper-
ation) are slightly nonlinear because of nonlinearity of transistor devices. FFT-based
THD and SNDR metrics are used to measure the amount of nonlinearity of designs
from transient simulation results. We captured the THD and SNDR specifications as
follows:

Always(0 < THD(out)@FFT{Ek} < 3)

Always(SNDR(out)@FFT{Ek} > 30)

In Fig. 4.11, we plot the output node of the filter and monitor the THD and
SNDR properties for our filter design according to the change in k and we annotate
calculated THD and SNDR values on the plot. We see that the THD and SNDR values
are not always in the specified range so the THD and SNDR specifications are not
satisfied for all k. Unsatisfied linearity specifications usually do not have easy fixes
and designers may require a change in circuit topology to achieve desired linearity.
However, the same assertions can be used for several topologies; therefore, verifica-
tion effort across different topologies is reduced compared to manual verification.
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Fig. 4.11 Monitoring time-varying THD and SNDR values of the filter according to k

4.6 Conclusion

Any simulation-based AMS verification methodology would be incomplete without
an integrated support for circuit analyses. Therefore, we integrated circuit analyses
such as DC, AC, and FFT analyses into an assertion-based verification flow, and
proposed an AMS verification language including support for these analyses as well
as transient analysis. This is a required step for a more unified and expressive envi-
ronment for assertion-based AMS verification. In current setup, we used traditional
SPICE simulators to perform circuit analyses where you have limited control over
simulation. However, if we model our circuits at higher abstraction levels, we are
able to use simulators like SystemC-AMS, where we have much better control over
simulation. We performed our experiments on a specific class of analog circuits,
digitally-programmable analog circuits whose analog characteristics can change in
time. Extending our work to support the SystemC-AMS simulator is a natural next
step in the future. At the end, we aim to use the same assertions for both high-level
SystemC-AMS and low-level SPICE models. Also, we will analyze the applicabil-
ity of our approach for other cases that include time-varying characteristics such as
analog circuits with aging transistors.
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Chapter 5
Hybrid Dynamical Systems
for Memristor Modelling

An Approach to Avoid the Terminal-State Problem

Joachim Haase and André Lange

Abstract Leon O. Chua introduced the memristor as the fourth circuit element to
complete the set of fundamental passive two-terminal elements in 1971. For a long
time it seemed as if memristors were just toys in the sandbox of network theo-
rists. The situation abruptly changed in 2008 when scientists from HP reported on a
nanoelectronic device, which showed a memristive behaviour. Main hopes for new
opportunities and circuit concepts in the transition to increasingly smaller integrated
circuits are going to be related to this discovery. For an examination of these possibil-
ities by means of simulation, a large number of memristor models has been developed
in recent years. A special property of the behavioural models of memristive nanoelec-
tronic devices is the restricted range of internal state variables. A number of tricky
solutions has been developed up to now to handle this problem. In this section we
present a straightforward solution for this problem within the framework of hybrid
dynamical systems.

Keywords Memristor · Hybrid dynamical systems · Nanoelectronic devices ·
Memristive systems · Terminal state-problem · Linear drift · Nonlinear drift · Tita-
nium dioxyde memristive device · Analog/Mixed-Signal (AMS) · VHDL-AMS

5.1 Introduction

The classical passive two-terminal network elements are resistor, inductor, and
capacitor. The resistor is defined by a relationship between voltage and current of
the branch that connects the terminals. A relationship between the integral of the
voltage (i.e., the flux-linkage) and the current defines an inductor. Similarly, we can
define a capacitor by a relationship between the integral of the current (i.e., the
charge) and the voltage. Chua [5] noted that for reasons of completeness a forth ele-
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ment was missing that is described by a relationship between flux-linkage and charge.
He called the missing circuit element memristor because “it behaves somewhat like
a nonlinear resistor with memory”. Thus, memristor is an abbreviation for memory
and resistor. The current value of its resistance—called memresistance—depends
on terminal voltages and currents in the past. The value of the memristance is held
even if the power is taken away. This makes the memristor an attractive candidate
for low-power computation and memory elements.

In the conclusions of his famous 1971 paper Chua remarked: “It is perhaps not
unreasonable to suppose that such a device might already have been fabricated as
a laboratory curiosity but was improperly identified!” However, it took more than
35 years that Stanley Williams and his colleagues Dimiriy Strukov, Gregory Snider,
and Duncan Stewart from the Hewlett Packard Labs reported on the long-sought
realization of the missing element [23]. They presented a nanoelectronic device
with memristive behavior based on ionic drift in solid-state TiO2 thin films in 2008
and used the generalized memristor concept of Chua and Kang [7] to discuss the
behaviour of the device. A state space equation describes the dynamic behaviour of
the drift whereas the memristance depends on the continuous state.

The article of Wiliams et al. sparked numerous other activities. The interest in
this field has been increasing enormously ever since. On the one hand, this work has
aimed at a better understanding of memristive effects in nanoelectronic devices and
issues of technological realization of these components. On the other hand, work on
new circuit concepts and applications of memristive devices has been carried out.
Chua and Williams gave an insight into the current investigations of possibilities
of future electronic system design in a DATE tutorial in 2012. They addressed the
potential of memristors for nonvolatile memory devices to replace current Flash,
DRAM, and SRAM architectures as well as their potential for brain-like machines
using nano-scale neuromorphic chips [24]. An overview on other applications is sum-
marized in Tetzlaff and Schmidt [25]. Further aspects of memristor-based Resistive
RAM (ReRAM) can be found in Niu et al. [20].

A large number of studies in this field is based on simulation experiments. These
experiments require accurate and robust models of memristors. Thus, a lot of work
has been done in this field over the last years (see for instance Batas and Fiedler [3],
Biolek et al. [4], Corinto and Ascoli [8], Corinto et al. [9], Johlekar and Wolf [14],
Kvatinsky et al. [16], Lehtonen and Laiho [18], Pickett et al. [21], Prodromakis
et al. [22]). To improve the accuracy, an appropriate description of the nonlinear
behaviour, especially the nonlinear ionic drift in memristive devices is required and
has been included into the models. Regarding the robustness of the models, we have to
mention an essential difference between an “ideal” memristor and its nanoelectronic
realisations. While the “ideal” memristor allows an unlimited integration of voltage
and current, the range of continuous state variables of models of nanoelectronic
devices is limited. If the state variable hits the boundaries then no further enlargement
or reduction is possible. Special precautions are necessary to ensure that the limits
can be left. This behaviour is called the “terminal state-problem” [22]. More or
less sophisticated solutions have been proposed to solve this memristor modeling
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problem (see for instance Biolek et al. [4], Corinto and Ascoli [8], Corinto et al. [9],
Johlekar and Wolf [14], Kvatinsky et al. [16], Prodromakis et al. [22]).

However, we know a similar question handling the integrator windup [2] if
saturation at the integrator’s output occurs. It is obvious that we can try to han-
dle the terminal state-problem similar to modeling a limited integrator block. We
will show how this can be done in a straightforward way using hybrid dynamical
systems (see for instance Abate et al. [1], Goebel et al. [12], Lee and Seshia [17]) as
modeling approach for nanoelectronic memristive devices. This concept can be sim-
ply applied using behavioural modeling languages for analog mixed-signal systems
as VHDL-AMS and Verilog-AMS. At the present time, besides SPICE models [3,
4], Verilog-A(MS) models for memristors are proposed [10, 15]. However, existing
models do not make use of mixed-signal languages’ capabilities. In the subsequent
sections, we will figure out the basics of the modeling approach and describe its
implementation using VHDL-AMS [13] examples.

5.2 Basic Concepts

5.2.1 Hybrid Dynamical Systems

We start with a short account on some basics of how to describe hybrid
dynamical systems. Discrete modes and time-continuous state variables character-
ize the behaviour of hybrid dynamical systems. We recap some fundamental ideas
regarding the modelling requirements based on Abate et al. [1], Goebel et al. [12].

A hybrid dynamic system is described by a finite set Q of discrete modes
(also referred to as discrete states). We can assign a domain Di ⊆ R

ni to each
mode i ∈ Q. Regarding the current status of mixed-signal behavioural modelling
languages, we will only consider the case that all ni are equal. The time-continuous
behaviour of a mode is given by a differential inclusion F (flow map) with
x ′(t) ∈ Fi (x(t), inp(t), t) with x(t) ∈ Di and input inp(t). Such an inclusion
can be described as an explicit or implicit system of differential and algebraic equa-
tions. The output y(t) ∈ Y ⊆ R

nY of the hybrid dynamical system depends on the
input u of the system and the state x of the active mode.

Possible transitions from one mode to another can be represented by a graph
whose nodes form the set Q of the modes. The transitions are directed edges in
this graph. The start mode of an edge e is referred as s(e). The target mode is z(e).
A transition defined by an edge e is activated if a guard condition Gs(e),z(e)(x, u, t) is
fulfilled and s(e) is the current mode. Furthermore, we have to describe how after the
activation of an edge at time t = ta the new state x+(ta) in Dz(e) can be determined
based on the value x(ta) in Ds(e). This procedure is called set action.

In the initialization phase at time t = 0 and during a transition from one mode to
another at time ta , we need to assure that the values x(0) and x+(ta), respectively, are
consistent initial values for the corresponding flows. If the flow is given by an explicit
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Fig. 5.1 Description of a limited integrator by a hybrid dynamical system

system of differential equations, it is in general sufficient that the value belongs to
the domain of the associated mode.

Example

Figure 5.1 illustrates the concept on behalf of a limited integrator, where x is the
integral of the input inp. However, it is limited to the closed interval [VSS, VDD].
After the limits VSS or VDD have been reached, no further integration is carried out
until the input inp will result in increasing or decreasing the value of the integral,
respectively. The output y equals to the continuous state x .

5.2.2 Memristor Modelling Aspects

Chua and Kang [7] extended the memristor concept to memristive systems. Chua [6]
remarked that it is a nonlinear circuit foundation for nanodevices. Further extension
to memcapacitors and meminductors were figured out in Di Ventra et al. [11].

We restrict the subsequent representation to time-invariant first-order memris-
tive one-ports. A first-order time-invariant current-controlled memristive one-port is
defined by:

x ′(t) = f (x(t), i(t)) (5.1)

v(t) = R(x(t)) · i(t) (5.2)
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Fig. 5.2 Current-controlled memristive device with x(t) ∈ [xl , xu]

v(t) and i(t) denote the voltage and current across the device at time t , respectively.
x represents one internal state variable. f is a map f : R × R → R. R is called
memristance. The device is passive if and only if R(x(t)) ≥ 0 for all t . The current i
controls the state x that condenses the past. The memristor remembers the past even
without power if the state x is always stable when no current flows through the device,
that means

∨
x(t)( f (x(t), 0) = 0).

In a corresponding manner, we can define a first-order time-invariant voltage-
controlled memristive one-port

x ′(t) = f (x(t), v(t)) (5.3)

i(t) = G(x(t)) · v(t) (5.4)

where G is called the memductance.
For the current-controlled memristive device, we are going to discuss the

consequences of a limitation of the state variable x to a closed interval I = [xl , xu].
Thus, if we note x(t) ≤ xl , we must stop the integration given by the Eq. (5.1) and
set x(t) = xl . We can only continue with the integration when f (x(t), i(t)) > 0.
Analogously, we have to stop if x(t) ≥ xu and set x(t) = xu . We continue with the
integration when f (x(t), i(t)) < 0. Figure 5.2 shows this behaviour.

The voltage-controlled memristive device can be handled in an analogous manner.
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Fig. 5.3 Principle arrangement of the TiO2 memristive device [16, 23]

5.3 Memristor Models

5.3.1 Model with Linear Drift

The TiO2 device (Fig. 5.3) of the HP Labs is based on changing the boundary between
a lower resistance part and a high resistance part [23].

The position w of the boundary is influenced by the current i through the device.
Using x = w

D as state variable, the behaviour of the device is characterized by [23]:

x ′(t) = μV · RON

D2 · i(t) (5.5)

v(t) = (RON · x(t) + (1 − x(t)) · ROFF) · i(t) (5.6)

μV is the ion mobility for the linear ion-drift model that is given by Eq. (5.5). D is the
physical width of the device. The width w can change between 0 and D. Thus the state
variable x is in the interval [0, 1]. We can distinguish three modes. The memristance
is RON if the width w is at the upper limit D. This is mode ONE (value of state x is 1).
If the width w is at the lower limit 0, the memristance is ROFF. We call this case
mode ZERO (value of state x is 0). If the width w is between 0 and D, the memristance
is RON · x + (1 − x) · ROFF and the mode is FREE. To avoid “chattering” of the
model, we require i(t) > εi > 0 and i(t) < −εi < 0 to switch from mode ZERO
to FREE and from mode ONE to FREE, respectively, where εi is a sufficient small
value.

Figure 5.4 shows the corresponding state diagram. Based on the diagram, a model
can easily be implemented using a mixed-signal behavioural modelling language.
A VHDL-AMS implementation that illustrates the principal procedure is given in
Listings 5.1 and 5.2. The entity declaration in Listing 5.1 describes the interface
as shown in Fig. 5.3. The architecture in Listing 5.2 represents the behaviour from
Fig. 5.4.
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Fig. 5.4 Memristor model with linear drift with x(t) ∈ [0, 1]

Listing 5.1 VHDL-AMS entity declaration of the memristor model with linear drift

1 library IEEE;
2 use IEEE.ELECTRICAL_SYSTEMS.all;
3 use IEEE.MATH_REAL.all;
4
5 entity MEMRISTOR is
6 generic (-- Initial state (between 0 and 1)
7 X0 : REAL := 0.1;
8 R_OFF : REAL := 16.0E3;
9 R_ON : REAL := 100.0;

10 D : REAL := 10.0E-9;
11 UV : REAL := 1.0E-14);
12 port (terminal POS : ELECTRICAL;
13 terminal NEG : ELECTRICAL);
14 constant EPS_I : REAL := 1.0E-9;
15 begin
16 assert (X0 > 0.0) and (X0 < 1.0)
17 report "ERROR: X0 in (0,1) required ."
18 severity ERROR;
19 end entity MEMRISTOR;

The model code is largely self-explanatory. The simultaneous statements
(with == equal sign) represent the Eqs. (5.5) and (5.6). The process state-
ment describes the update of the mode. The wait on statement checks whether
one of the guard conditions is activated. Afterwards, the reaction on the active
guard is carried out. The model must be initialized with a value X0 greater
than 0 and less than 1 (mode FREE). This is only done to simplify the repre-
sentation. With some small extensions for the operating point analysis (DOMAIN
equalsQUIESCENT_DOMAIN), the initial values 0 and 1 are also possible. An imple-
mentation using Verilog-A/Verilog-AMS can be carried out in the same manner. It is
of course possible to reproduce the results from Strukov et al. [23] that are used
to discuss properties of memristive devices, which are based on the linear drift
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Listing 5.2 VHDL-AMS architecture definition of the memristor model with linear drift

1 architecture LINEAR of MEMRISTOR is
2 type MODE_TYPE is (FREE , ZERO , ONE);
3 signal MODE : MODE_TYPE := FREE;
4 quantity V across I through POS to NEG;
5 quantity X : REAL;
6 begin
7 if DOMAIN = QUIESCENT_DOMAIN use
8 X == X0;
9 elsif MODE = ZERO use

10 X == 0.0;
11 elsif MODE = ONE use
12 X == 1.0;
13 else
14 X’DOT == (UV/(D**2))*R_ON*I;
15 end use;
16
17 break on MODE;
18 V == (R_ON*X + (1.0-X)*R_OFF)*I;
19
20 P1: process is
21 begin
22 wait on DOMAIN;
23 while TRUE loop
24 wait on X’ABOVE (0.0), X’ABOVE (1.0),
25 I’ABOVE(EPS_I), I’ABOVE(-EPS_I);
26 if MODE = FREE then
27 if X <= 0.0 then
28 MODE <= ZERO;
29 elsif X >= 1.0 then
30 MODE <= ONE;
31 end if;
32 elsif MODE = ZERO then
33 if I > EPS_I then
34 MODE <= FREE;
35 end if;
36 elsif MODE = ONE then
37 if I < -EPS_I then
38 MODE <= FREE;
39 end if;
40 end if;
41 end loop;
42 end process P1;
43
44 end architecture LINEAR;
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Fig. 5.5 Simulation results for the linear drift model (parameters from Strukov et al. [23])

model (μV = 10−14m2/Vs, D = 10nm). In the upper left diagrams of Fig. 5.5,
i and v depending on time t are shown. The lower left diagrams show x . The right
diagrams represent i − v plots, where i depending on v is shown.

5.3.2 Models with Nonlinear Drift

Strukov et al. [23] already mentioned that the linear drift model is not in accordance
with the observation in thin film devices. To describe the qualitative behaviour
correctly, they multiplied Eq. (5.5) by a window function that is equivalent to
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Table 5.1 Window functions

Name Description of the window function g(0) g(1) Ref.

Strukov g(x) = x(1 − x) 0 0 [23]

Joglekar g(x) = 1 − (2x − 1)2p 0 0 [14]

with p ∈ Z
+ = N \ {0}

Biolek g(x) = 1 − (x − 1)2p for current i ≤ 0 0 1 [4]

g(x) = 1 − x2p for current i > 0 1 0

with the same p ∈ Z in both cases

Prodromakis g(x) = j · ((x − 0.5)2 + 0.75)p 0 0 [22]

where p ∈ R
+ and the window function can be

scaled to lower or higher values with j

g(x) = x · (1 − x). This function is sometimes called Strukov function after the
first name in the list of authors of Strukov et al. [23].

Using this window function, there is no further drift when the state reaches the
boundaries (x(t) = 0 or x(t) = 1). This is in accordance with the physics of the
device. For state values between 0 and 1, the drift velocity x ′(t) is not constant. It
depends for a constant current i on x . That means, nonlinear drift is described by a
model with g(x) �= const in the range of x :

x(t) = μV · RON

D2 · g(x(t)) · i(t) (5.7)

v(t) = (RON · x(t) + (1 − x(t)) · ROFF) · i(t) (5.8)

Other window functions g : R → R have been proposed and applied over the last
years. Table 5.1 gives an overview over them.

Using these window functions and values x0 ∈ (0, 1) to initialize a memristor
model, the x values can move asymptotically to 0 or 1. For numerical reasons,
they can also reach 0 and 1. Looking closer at Fig. 5.2, we detect the difficulties
to move back from the lower limit mode (LOWER_LIMIT or ZERO) or the upper
limit mode (UPPER_LIMIT or ONE) to FREE. For window functions g with val-
ues g(0) = 0 or g(1) = 0, we cannot leave mode LOWER_LIMIT (ZERO) and
UPPER_LIMIT (ONE), respectively, because

∨
i(t)( f (0, i(t)) = μV · RO N

D2 · g(0) ·
i(t) = 0) and

∨
i(t)( f (1, i(t)) = μV · RO N

D2 · g(1) · i(t) = 0), respectively. This
means that the required guard condition is never fulfilled. This situation describes
the problem that is usually called the terminal-state problem [22].

Biolek window function avoids this problem by switching between two function
descriptions depending on the direction of the current i . This might be one reason
for using Biolek window function as a popular candidate for model implementations
[4, 10].
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Fig. 5.6 Memristor model with nonlinear drift (based on window functions g) with x(t) ∈ [0, 1]

We sketch a more general solution for the family of models described by Eqs. (5.7)
and (5.8) in Fig. 5.6. The current i is guarded in modes ZERO and ONE. If a guard
condition is fulfilled, a set action assigns a new value to x for the continuation in
mode FREE. We assign x+(t) = εx > 0 or x+(t) = 1 − εx < 1 using a small,
but sufficiently large enough, εx > 0. This approach assures that we avoid the
terminal-state problem in a systemic manner.

The VHDL-AMS implementation requires only some small modifications of the
code. For instance, the statement:

X’DOT == (UV/(D**2))* R_ON*I;

has to be replaced by:

X’DOT == (UV/(D**2))* R_ON*G(X)*I;

to consider a window function G. The set action can be carried out in the process
statement using the break statement. The affected part can be modified to:

...
elsif MODE = ZERO then

if I > EPS_I then
MODE <= FREE;
break X => EPS_X;

-- inserted
end if;

elsif MODE = ONE then
if I < -EPS_I then

MODE <= FREE;
break X => (1.0 - EPS_X);

-- inserted
end if;

...
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Fig. 5.7 Simulation results for the nonlinear drift model with Strukov window (v(t) = 4 V ·
sin

( 2π
2s · t

)
, RON = 100 �, ROFF = 1.7 k� (instead of ROFF

RON
= 50 for Fig. 5.3c in Strukov

et al. [23]))

Fig. 5.8 Simulation results for the nonlinear drift model with Joglekar window (left with state
handling as shown in Fig. 5.6, right without – x is fixed w). v(t) = 4 V · sin

( 2π
2s · t

)
, RON = 100 �,

ROFF = 1.7 k� (Joglekar window function with p = 3)

Figure 5.7 shows simulation results with the Strukov window function. Figure 5.8
shows simulation results with a Joglekar window function. The left diagrams show
voltage v and the corresponding state x using a model that applies the state handling
as figured out in this section. The right diagrams show results of a simulation with a
model without state handling. We observe that the state x is fixed after x hits once
the upper limit 1. The terminal-state problem is not handled correctly.

5.3.3 Further Models

Over the past years, further models have been investigated to describe the behaviour
of nanoelectronic memristive devices that use Strukov et al. [23] as starting point.

Lehtonen and Laiho [18] presented a nonlinear voltage controlled memristor
model. The drift velocity of the state x is given by x ′(t) = a · g(x(t)) · v(t)q ,
where a is a real constant, g is a window function, and p is an odd natural num-
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ber. They required to restrict x in [s1, s2], where
∨

x(t) ∈ [s1, s2] (g(x(t) > 0).
Kvatinsky et al. [16], Pickett et al. [21] developed a further model where a resistor is
in series with an electron tunnel barrier also known as Simmons tunnel barrier model.
The velocity of the tunnel barrier width is described by a complex analytical relation
that depends on the direction of the current. The width movement is restricted to a lim-
ited range. Kvatinsky et al. [15, 16] introduced simplified assumptions to make the
Simmons tunnel diode model computational more efficient. They proposed equa-
tions for their ThrEshold Adaptive Memrister Model (TEAM) that constrain the
state variable to x(t) ∈ [xO N , xO F F ] . Restrictions also occur in the Boundary
Condition-based Model (BCM) [8, 9]. The approach presented in this paper can
successfully be applied in all these cases.

5.4 Conclusion

We demonstrated that hybrid dynamical systems are a promising approach to
overcome the terminal-state problem in current models of nanoelectronic mem-
ristive devices. We can easily implement such models using modelling languages
such as VHDL-AMS that support mixed-signal modelling features. Verilog-AMS/
Verilog-A are also good candidates for doing this. Development of memristive
devices continues. Investigators study fundamental issues and problems in the real-
isation of memristors [19] as well as they apply new principles. For instance, Valov
et al. [26] report on an arrangement that is no longer passive and describe it using a
model with more than one state. However, the terminal-state problem remains. Thus,
we expect that the presented approach can also help with solving future modelling
requirements.
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Chapter 6
Code Generation Alternatives to Reduce
Heterogeneous Embedded Systems
to Homogeneity

Franco Fummi, Michele Lora, Francesco Stefanni and Sara Vinco

Abstract The high level of heterogeneity of modern embedded systems forces
designers to use different computational models and formalisms, thus making reuse
and integration very difficult tasks. Reducing such an heterogeneity to a homoge-
neous implementation is a key solution to allow both simulation and validation of the
system. Furthermore, the implementation may be executed on highly optimized archi-
tectures or used as a starting point for redesign flows. This paper proposes two novel
flows to gain a homogeneous implementation of a starting heterogeneous system,
thus showing how heterogeneity can be reconciled to a single language, still pre-
serving correctness. The target languages are SystemC-AMS, that enhances support
for continuous behaviors and allows complete validation, and C++, an executable
implementation that can be the starting point of redesign flows. The approaches are
compared with respect to state-of-the-art techniques in terms of performance and
accuracy, also through the application to a complex case study.
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6.1 Introduction

Since their introduction, embedded systems have become more and more heteroge-
neous [9]. On the one hand, analog and digital HW coexists with the SW managing the
system, thus introducing integration issues focused on HW-SW communication. On
the other hand, embedded systems are more embedded in the physical environment,
that must be included as a design constraint to preserve a correct design flow.

This heterogeneity makes integration and reuse of already existing components a
very difficult task [7]. Designers are forced to use formalisms, languages, and Models
of Computation (MoCs) that fit better with each specific domain. Thus, interaction
across different domains becomes very challenging and time demanding. Integrating
such existing components, through co-simulation [2] or component-based flows [4],
is error prone as there is no guarantee on the correctness of the integrated system.

A key solution is to support integration and reuse by generating of a homogeneous
implementation of the starting heterogeneous system. Indeed, this implementation
can simulate the system behavior and validate both interaction and functionality of
the result of integration. On the other hand, the implementation is as an executable
specification of the functionality, and it thus can be run on optimized architectures
providing a SW version of the system. Finally, the generated code can be the starting
point of redesign flows, thus enhancing design space exploration.

In literature, many approaches tried to tackle embedded system heterogeneity. On
one hand, Model-Based Design (MBD) approaches propose top-down flows, where
a model of the system is gradually refined, providing as a result a code implementa-
tion of the whole functionality in the chosen MoCs [1, 6]. Unfortunately, adopting
strict top-down methodologies makes reuse of already existing components very dif-
ficult, as integrating different MoCs is far from trivial [9]. On the contrary, bottom-up
methodologies and component reuse are supported by several co-simulation frame-
works [2], where each component is simulated in its own native simulator. As a result,
co-simulation assembles components without providing a rigorous formal support
and preserving the degree of heterogeneity of the starting system. This makes integra-
tion and validation very hard tasks. Furthermore, homogeneous code implementation
of the system functionality is not supported.

This posed a urge for a computational model able to cover the heterogeneity typical
of embedded systems, but supported by automatic tools to allow and ease reuse [9].
To cover this lack, Di Guglielmo et al. [7] proposed univerCM, an automaton-
based formalism that allows to model both analog and discrete behaviors, together
with typical SW behaviors. They also presented the mapping from heterogeneous
components to univerCM. Unfortunately, so far the effectiveness of univerCM is
limited, as code generation from the formal homogeneous representation has been
targeted only weakly.

This chapter exploits univerCM to reduce heterogeneous components to a homo-
geneous formalism (top of Fig. 6.1). Indeed, univerCM covers a wide range of
heterogeneous domains [7] and it allows to reduce the heterogeneity to a single
formalism. From this starting point, the paper targets a comparison between various
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Fig. 6.1 Proposed methodology: the heterogeneous system is reconciled to a homogeneous for-
malism, to achieve then code generation for simulation, execution in SW, and to apply redesign

flavors of C++ code generation, targeting the implementation of a homogeneous
representation of the starting heterogeneous embedded system. In detail, the chapter
focuses on two flavors: sequential C++ and SystemC-AMS [11] (bottom of Fig. 6.1).
The generated code can be used to validate the integrated system by checking the
result of integration. To this extent, SystemC-AMS is adopted, as it fully supports
analog evolution. The generated code may also be used to apply redesign flows and
to execute the system functionality on optimized and parallel processors. In this case,
C++ code generation provides a flexible starting point.

As a result, the focus of the chapter will be on two methodologies that start from
a heterogeneous system to automatically generate 1. an efficient C++ implementa-
tion and 2. a SystemC-AMS implementation. The target is to obtain a simulatable
description of a system by using the MoC, that allows to fully validate the system
reproducing also its continuous behaviors. The proposed flows are compared also
with state of the art approaches, to highlight both effectiveness and portability.

6.2 The UNIVERCM Computational Model

The univerCM formalism is an automaton-based representation that unifies the
modeling of both the analog (i.e., continuous) and the digital (i.e., discrete) domains,
as well as hardware-dependent SW. A formal and complete definition is available
in Di Guglielmo et al. [7]. univerCM has been chosen as starting point of the
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Fig. 6.2 Graphical representation of a univerCM automaton

proposed methodology for two different reasons. The paper also proposed a deep
analysis on the applicability of univerCM to heterogeneous domains, thus showing
that the computational model allows to cover the heterogeneity that characterizes
embedded systems. Also, the paper showed that it is possible to provide formal
rules and automatic tools to convert the heterogeneity to univerCM and to produce
a homogeneous simulatable implementation of the generated univerCM system.
Thus, reuse and bottom-up design are enhanced.

The rest of this section highlights the main characteristics of univerCM. In each
univerCM automaton, states model the continuous dynamics of the system, whereas
edges between states model its discrete dynamics. A univerCM automaton can be
depicted as shown in Fig. 6.2.

States are characterized with three predicates. The flow predicate (flow) constrains
the evolution of continuous variables into the state. The invariant predicate (inv)
specifies whether it is possible to remain into the state or not, depending on a set of
conditions on variables. Finally, the atomicity predicate (atomic) allows to specify
sections of the univerCM automaton that are traversed as one single transition when
executing more automata in parallel.

The activation of an edge between two states is constrained by a guard (Evar) and
a set of incoming labels (E label), i.e., the edge can be traversed only if the guard is
satisfied and the incoming synchronization labels are received. When the edge is tra-
versed, the values of continuous and discrete variables are updated as specified by an
update function associated to the edge (U var). Furthermore, a set of synchronization
labels listed into the set of outgoing labels of the edge are activated (U label), to allow
synchronization with other automata.

Both edges and states are associated with a priority, that allows to partially order
states and edges and to model non-deterministic as well as deterministic behaviors.

6.3 Code Generation from UNIVERCM

When generating code from a univerCM description, the univerCM semantics
must be mapped to the semantics of the target language and platform. This step
requires to provide support for three main aspects of univerCM:

• Management of the evolution, as activation of automata and update of variables
and synchronization labels by respecting the univerCM semantics;
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Fig. 6.3 Taxonomy of code generation alternatives. This chapter focuses on the generation of
SystemC-AMS code and of sequential C++ code

• Parallelism, to reproduce the composition semantics of univerCM, realized as
automata that evolve in parallel and share variables and synchronization events;

• Implementation of continuous behaviors, with support libraries or through dis-
cretization steps.

These aspects constitute the three dimensions of the taxonomy of target languages
proposed in Fig. 6.3.

The barest support is provided by sequential C/C++, as C++ does not natively
support any of the listed aspects. As such, code generation must implement also
a scheduling capability to reproduce the univerCM semantics, while continuous
evolution must be discretized with mathematical approaches. Parallelism support can
be provided either by the operating system (e.g., with the pthread library) or with
ad-hoc libraries (e.g., OpenMP and MPI). Unfortunately, the OS support implies a
heavy overhead that makes this alternative non viable for efficient parallelism [8]. On
the other hand, ad-hoc libraries require to take into account restrictions of the target
architecture, such as constraints on resource usage or communication overhead. This
part will be developed as future work.

Support for evolution management is provided by SystemC, that has been first
explored for code generation in Di Guglielmo et al. [5]. SystemC supports execution
with a complex event-driven semantics. The scheduler, in charge of activating com-
putation and of managing data and event update in the system, is exploited to map
the univerCM semantics. Parallelism is emulated, as all parallel entities behave as if
they were executed in parallel, despite of their execution being sequential. The main
drawback of SystemC is that continuous evolution is not supported. To cover this
lack, the Accellera consortium developed the SystemC-AMS standard as an extension
of SystemC. It provides the possibility of describing continuous dynamics through
a variety of styles such as Laplace domain descriptions or by connecting continuous
base constructs.
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Given this wide range of alternatives, this chapter will focus on sequential C++
code generation (for efficiently executing the system functionality in SW or to apply
redesign flows) and SystemC-AMS code generation (for validating the system with
the support of analog behaviors and non-determinism).

6.3.1 Generation of C++ Code

6.3.1.1 Automata Management

Each univerCM automaton is mapped to a C++ function representing the whole
automaton evolution. A state variable is used to store the current state of the automa-
ton. The state variable is defined as an enumeration over the set of automaton states
and its default value is associated to the initial state s0 of the automaton.

The function generated from an automaton is built as a switch statement, where
each case label represents one of the automaton states. Each state case lists then the
implementation of all the outgoing edges and of the delay transition provided for the
state, as shown in Fig. 6.4 on the right side.

Each edge ∈ EDG is implemented as an if or else if statement, which guard
is a logic conjunction of the enabling condition of the edge Evar and of the activation
condition on labels Elabel. The body, which is executed when the guard is satisfied,
includes the update of variables Uvar and the activation of labels Ulabel. Furthermore,
the state variable is updated to the destination state of the edge (e.g., lines 3–7
and 12–16 of the non-deterministic code of Fig. 6.4).

The default case of the switch statement is an error handling branch, which
is managing cases when the automaton can neither perform continuous evolution
nor traverse outgoing edges. An error is risen to notify this exception and execution
is interrupted (e.g., with an assert checked at runtime) (lines 21–22 of the non-
deterministic code of Fig. 6.4).

Continuous evolution is implemented as an if or else if statement, which
guard is the invariant condition inv. The body, which is executed when the guard is
true, describes the continuous evolution as a discretized flow function (lines 8–11 of
the non-deterministic code of Fig. 6.4). The approach adopted in this chapter exploits
the Euler numerical integration algorithm taking as input a time discretization step
chosen by the designer [3]. The Euler method is a first-order method, i.e., the error
at any given time is proportional to the step size. As such, it is possible to replace the
Euler classic algorithm with one of the many available algorithms for the approx-
imation of solutions of ordinary differential equations [3], such as its backward or
exponential variants or algorithms from the family of Runge-Kutta methods.
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Fig. 6.4 univerCM automaton (top) as well as the corresponding generated code by preserv-
ing non determinism (left) and by choosing an arbitrary order between transitions with the same
priority (right)

6.3.1.2 Priority Management

In univerCM, both edges and states are annotated with a priority, to determine which
one prevails when one or more conditions (Elabel and Evar for edges, inv for states) are
satisfied. To respect the relationship between such priorities in the code generation
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process, transitions are listed in theif-else enumeration by respecting the priority,
i.e., higher priority transitions come first so that they are evaluated and, if conditions
are satisfied, activated before checking other possibly active transitions.

Whenever two transitions have the same priority, it is possible to preserve the
non-determinism of univerCM by using a pseudo-random generator, so that the
choice of the transition to take is non-deterministic. As an example, in Fig. 6.4, two
transitions have the same priority when the current state of the automaton is A: the
delay transition (➀) and the edge with destination state C (➂). Figure 6.4 on the left
shows the generated code. Whenever both the enabling conditions are satisfied, the
code non deterministically chooses the path to follow (lines 3–13). This approach
is effective in a validation phase, as it allows to activate all possible paths in the
automaton and it respects the non-determinism intrinsic to the univerCM formalism.
However, it introduces a lot of overhead for managing randomness, that may not be
necessary in a final C++ implementation.

As a result, the C++ generation algorithm may also list the transitions by choos-
ing an arbitrary order between transitions with the same priority. Figure 6.4 on the
right shows the implementation of the automaton that avoids non determinism. The
transitions with the same priority are listed in an arbitrary order, i.e., first the edge to
state C (➂, lines 3–7) and then the delay transition (➀, lines 8–11). Transitions with
lower priority are still listed after higher priority transitions (➁, lines 12–16) and the
error statement closes the current case for state A (line 17). This approach is adopted
when the goal is to see one of the possible implementations of the univerCM sys-
tem, rather than a simulation of univerCM automata. Finally, it is worth noting in
Fig. 6.4, how the automata and the code generated from it resemble each other, thus
enhancing the readability of the code and easing the tracking of the MoC constructs
inside the generated implementation.

6.3.1.3 Variable and Label Management

In univerCM, variables can be written by multiple automata. When multiple
automata write on the same variable at the same time, then the value is updated
non-deterministically by choosing among the values assigned by each automaton.

To reproduce this behavior in the C++ implementation, each variable is assigned
a read value, i.e., the current value that is read by all automata, and a set of written val-
ues, i.e., one per automaton writing on the variable. Such values are C++ variables,
which type matches as much as possible the value range for the univerCM variable.
Each univerCM variable is also provided with one boolean flag per automaton,
which is stating whether the automaton tried to change the variable value. This
flag is necessary to determine whether each automaton updated the variable called
written_value: in each step, and thus whether such value must be considered
in the choice of the updated the variable read_value. Variable management will
rely on a management function, which is used to support execution and interaction
between all automata (as explained in Sect. 6.3.1.5).



6 Code Generation Alternatives to Reduce Heterogeneous Embedded Systems. . . 111

This approach preserves the univerCM semantics, but it is complex and it intro-
duces a lot of overhead. Thus, two complementary approaches are possible. On one
hand, it is possible to deterministically choose that one automaton always prevails on
others, i.e., the value written by such automaton is always chosen as next read value
for the variable. In this way, there is no need for flags and the algorithm for choosing
the next read value is straightforward. On the other hand, one can adopt only one
written value per variable, thus implying that all automata can freely write on it. As
a result, one of the values will non-deterministically prevail at any execution step.
Once again, choosing one of the latter approaches implies that the generated code
distances itself from the univerCM semantics, thus gaining performance and more
efficient execution.

Finally, labels L are represented with two boolean values. A current value flag
states whether the label is active (i.e., true) in the current step. Complementary, a
future value is set to activate a label in the next step. At the end of each simulation step,
the management function sets the current value to the future one, and puts the future
value flag to false.

6.3.1.4 Preservation of Atomicity

The atomic construct was added to univerCM to preserve atomicity conditions of the
starting description. Figure 6.5 represents this behavior on a univerCM automaton
where all the transitions between state A and state D belong to the atomic region.

To support this behavior in the final C++ code, the atomic region (Fig. 6.5a)
must be collapsed into a single transition (Fig. 6.5b). The enabling condition of the
transition invokes a function (atomic_foo() in the Fig. 6.5) emulating the evolution
of the atomic region on local variables. If all edges of the atomic transition can be
traversed, the return value is true (in Fig. 6.5b, execution reaches the edge between
states S2 and S0). As a result, the atomic region is traversed correctly and the update
function of the transition propagates the new variable values.

An error may occur if a necessary synchronization event is not available inside of
the atomic region or if one of the guards is false, thus not allowing the activation of
an internal edge (in Fig. 6.5b, execution reaches state SE ). In this case, the function
returns false. As a result, the transition can not be activated and the automaton can
evolve by following a different transition.

6.3.1.5 Role of the Management Function

The management function is a C++ function generated once for each system of
univerCM automata converted to C++. The role of this function is similar to a
scheduling routine as it manages the status of the overall system and parallel com-
position of automata.

The Algorithm 6.1 presents a pseudo code of the management function. For each
simulation step, the management function activates all automata by invoking the
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Fig. 6.5 Example of preservation of the atomic construct. The starting atomic region in the
univerCM automaton (a) is converted into a support function atomic_foo() (b)

Algorithm 6.1: Outline of the management function code

forall the simulation steps do1
forall the automata A do2

execution_step(A);3

forall the variables v do4
v.current_value = choose_next_value(v);5

forall the synchronization labels l ∈ L do6
l.current_value = l.future_value;7
l.future_value = f alse;8

corresponding generated C++ function (lines 2–3). Once that all of them advanced
their execution, the function updates the system status by managing variables and
events (lines 4–8), as explained in Sect. 6.3.1.3.
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6.3.2 Generation of SystemC-AMS Code

SystemC code generation from univerCM descriptions was first described in Di
Guglielmo et al. [7], but such a work provided a very limited support for continuous
evolution. SystemC-AMS is an extension of SystemC built for supporting the design
of Analog/Mixed-Signal (AMS) systems. SystemC-AMS introduces new language
constructs for the design of analog behaviors, defining a new execution semantics
and different modeling formalisms. Thus, the adoption of SystemC-AMS allows a
complete mapping of the univerCM semantics.

6.3.2.1 SystemC-AMS and the Linear Signal Flow

SystemC-AMS extends standard discrete-event-based SystemC by providing more
than one way for describing continuous behaviors. This chapter adopts the Linear
Signal Flow (LSF) formalism, as it reflects many of the univerCM characteris-
tics. The LSF formalism produces a component-based structural description of a
SystemC-AMS module by using basic analog components such as integrators, adders,
gain operators, or delays. Other than continuous base elements, LSF descriptions
gives the possibility to insert discrete components such as multiplexer or demulti-
plexer that can be controlled by standard, discrete-event-based SystemC processes.
A major advantage of LSF is that time is considered as a continuous value (thus
reflecting the semantics of univerCM and of hybrid systems).

On the contrary, in Timed Data Flow (TDF) semantics, time is considered as a set
of discrete points. Furthermore, TDF does not support continuous evolution (e.g., in
the form of differential equations) and thus it can not be straightforwardly adopted
to model continuous evolution. Consequently, exploiting the LSF formalism permits
to fully express the univerCM semantics.

It is important to note that LSF is non-conservative. Thus, if the starting code is
conservative, all implicit relations (e.g., Kirchhoff’s laws) must be explicitly mod-
eled. Straightforwardly supporting conservative components will be part of future
extensions. Figure 6.6c shows an example of the usage of LSF to represent the dif-
ferential equation w′(t) = 0.6v(t)− 0.03w(t), adopted in the following as reference
example.

6.3.2.2 Continuous Time Description with SystemC-AMS

In the univerCM formalism, each state of an automaton may have a different continu-
ous evolution modeled with the flow predicate. Thus, each flow predicate is expressed
by using LSF constructs. The differential equation modeled by flow is analysed to
identify time-dependent variables. Then, the equation is decomposed into primitive
operations, that are mapped to LSF basic constructs to build an interconnection of
basic analog constructs.
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Fig. 6.6 Continuous-time representation synthesis flow using the LSF formalism of SystemC-AMS
applied to the univerCM automaton representing the Tank component of the Water Tank example
used in Sect. 6.4. a depicts the original univerCM state, b represents the equation extracted by the
state represented in (a), c depicts the block diagram derived from the equation in (b), d shows the
block diagram implemented using SystemC-AMS LSF blocks

Figure 6.6 shows this approach. The flow predicate of the depicted state (Fig. 6.6a)
is analyzed to reconstruct the differential equation (Fig. 6.6b) and then translated into
a block diagram (Fig. 6.6c). Finally, the block diagram is realized as an interconnec-
tion of LSF basic blocks (Fig. 6.6d).

Given the LSF implementation of all flow predicates of an automaton, it is then
necessary to build a mechanism to activate, at any execution time, only the portion
of the LSF diagram implementing the flow predicate of the current state. To solve
this problem, the LSF structural description of the interconnection is enriched with
demultiplexers and multiplexers, inserted near the sources and the sinks of the inter-
connection respectively. This allows to preserve the correct evolution that is imposed
by the current discrete state. The introduced multiplexers and demultiplexers are con-
trolled by the process modeling the discrete state evolution of the automaton.
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6.3.2.3 Discrete Behavior Description with SystemC-AMS

The formal semantics of univerCM state that automata evolve in parallel. Thus,
each automaton is mapped to a SystemC module composed by a process, imple-
menting the state transition system, and some support functions. Furthermore,
the SystemC module contains the LSF interconnection modeling the continuous
behaviors.

The support for discrete behaviors reflects the approach proposed for the C++
code generation (Sect. 6.3.1). However, some differences are necessary to meet some
limitations imposed by the LSF formalism. In the C++ mapping, univerCM labels
are represented by using couples of boolean variables. Instead, in SystemC-AMS,
each label is expressed by one sc_event (declared in the global scope) and a flag
for every automaton, where true states that the label is active. Using sc_events
permits to exploit the characteristics of the SystemC discrete-event scheduler, thus
preserving the univerCM semantics while reducing the overhead for synchroniza-
tion. Therefore, the management function only handles non-determinism and con-
current write operations on shared variables. The management function is therefore
encapsulated in a separate SystemC module.

6.4 Experimental Results

The effectiveness of the proposed methodologies is proven on a heterogeneous case
study: a water tank system (Sect. 6.4.1) and a boiler system (Sect. 6.4.2). Experiments
were run on an Intel Core i7 CPU working at 3.40 GHz, running kernel version 3.2.0
of Ubuntu Linux 12.04. Execution times are calculated as the average of execution
time of 100 iterations of each functionality.

6.4.1 The Water Tank System

The water tank system is made of five components: 1. a tank, which is characterized
by an uncontrolled outbound water flow; 2. an evaluator, which checks the level
of water in the tank and compares it with the upper and lower bounds (if the water
level is too low or too high, warnings are notified to the controller); 3. a valve, which
aperture affects the incoming flow of water; 4. a controller, which acts on the aperture
of the valve in order to keep the water level in a safe interval; 5. a software driver,
which sets the legal upper and lower bounds accepted for the water level and the
maximum number of warnings accepted before the system is halted.
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6.4.1.1 Application of Code Generation Methodologies

In the starting heterogeneous system, analog components are implemented as
CIF hybrid automata, the controller is implemented in VHDL while the driver is
written in C.

First of all, the components have been converted to univerCM automata [5], as
shown in Table 6.1. Column Language shows the starting language of the reused
component. Columns States (#) and Transitions (#) (actions or delays) outline the
main characteristics of each automaton. Column Conversion time (ms) shows the
time spent in the conversion of each component by means of automatic tools [5].

The application of the C++ generation methodology (Sect. 6.3.1) leads to the gen-
eration of a C++ function for a each automaton. Table 6.1 (Column C++) shows the
main characteristics of the generated code. Column Switches/branches cases shows
the number of cases contained by the switch construct of each C++ function (left)
and the maximum number of branches per each case (right). After generating the
C++ function corresponding to each automata, it is necessary to implement the
management function, which occupies 102 lines of code. Column Implementation
shows the number of generated lines of code, both for the deterministic and non-
deterministic versions. As the water tank system does not contain a high level of
non-determinism, the two versions have few differences in their code and behavior.

Then, the SystemC-AMS generation methodology has been applied, as outlined in
column SystemC-AMS of Table 6.1. Same considerations about the C++ code gener-
ation outlined above can be drawn also in the case of SystemC-AMS code generation
for the non-determinism internal to each automaton (i.e., the only one presenting
some is the valve).

6.4.1.2 Effectiveness of the Proposed Approaches

Ptolemy is one of the main model-based design frameworks for the design of hetero-
geneous embedded systems [6]. Its strict top-down flow allows to achieve code gen-
eration through a set of refinement steps and by applying ad-hoc design choices.
Ptolemy has thus been adopted to build a top-down implementation of the water tank
system to build a reference in terms of accuracy and of execution time.

The C++ and SystemC-AMS generated code is therefore compared w.r.t. the
Ptolemy implementation and w.r.t. the SystemC implementation generated by apply-
ing Di Guglielmo et al. [5], to test the advances w.r.t. the current state of the
art of univerCM-based flows. Table 6.2 outlines the results of this comparison.
Column Code gen. time (ms) outlines the overall code generation time, while col-
umn Code (loc) reports the number of lines of code. Column Execution time (s)
shows the time necessary to perform the same functionality in all code versions,
while column Error (%) shows the accuracy w.r.t. the Ptolemy implementation.

In terms of execution time, all the univerCM-based implementations are faster
than the Ptolemy-based simulation (ranging from 2.24× to 217.03×). The C++ gen-
erated code is in average as fast as the SystemC code generated with Di Guglielmo
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Table 6.2 The water tank system: comparison of the SystemC-AMS and C++ code w.r.t. the
Ptolemy top-down implementation and the SystemC implementation

Version Code gen. time (s) Code (loc) Execution time (ms) Error (%)

Ptolemy Two person days – 16.060 –

SystemC 171 750 0.074 0.45

Deterministic C++ 160 377 0.098 0.34

Non-deterministic C++ 167 561 0.154 0.35

Deterministic SystemC-AMS 201 831 7.040 0.36

Non-deterministic SystemC-AMS 206 1002 7.152 0.36
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Fig. 6.7 Simulation trace of the code generation alternatives for the water tank system

et al. [5]. Indeed, the SystemC scheduler is substituted by the C++management func-
tion, in charge of activating automata and of updating the system status. On the other
hand, in SystemC automata are activated only when fresh data is available thus
avoiding the activation of all automata at any execution time. SystemC-AMS is slow
(40× slower than the C++ implementation), as its execution is affected both by the
SystemC scheduler and by the analog evolution manager. Still, it is 2× faster than
the Ptolemy implementation.

Table 6.2 highlights that all the versions of code generated from univerCM have
a high accuracy w.r.t. Ptolemy (max. error is 0.45 %). This is highlighted also by
Fig. 6.7, where the simulation traces of all code versions are shown. The adherence
of all the implementations to the Ptolemy evolution proves that univerCM preserves
the correctness of the starting heterogeneous components, and that the transformation
and code generation steps proposed in this paper preserve the univerCM semantics
also in the generated code. Code generation time is much higher for Ptolemy, as it
implied to redesign the whole system from the specifications. These considerations
highlight the strength of the proposed automatic code generation approaches, that
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Fig. 6.8 Blow up of a segment of Fig. 6.7 to highlight the precision of the various approaches w.r.t.
the Ptolemy implementation

start from a reconciliation of the starting heterogeneity, both in terms of accuracy
and of performance.

Figure 6.8 blows up a section of Fig. 6.7 to highlight the differences in terms of
accuracy between the different code generation flavors. It is possible to note that
the C++ generation methodology achieves a higher precision (∼0.34 %) than Sys-
temC (∼0.45 %), mainly due to the automata activation mechanism, that fully reflects
the univerCM semantics. On the other hand, SystemC-AMS is comparable to the
C++ implementations (∼0.36 %). However, SystemC-AMS is heavily impacted by
a heavy scheduling overhead. Thus, it is important to find a reasonable trade off
between accuracy and execution time. In order to achieve a better precision than
the C++ versions, SystemC-AMS had to be configured accordingly and the whole
simulation took 601.345 ms. Accepting a negligible increase of the error (+0.01 %),
it was possible to reduce simulation time to 7.100 ms.

Finally, non-determinism has little impact on the performance and accuracy of
the generated code, as preferring one transition to another may slow down reaction
to error notifications. However, this is likely due to the low level of non-determinism
provided by the water tank system. All variables are written by one single automaton
and the only non-determinism occurs with the management of synchronization labels.
Thus, the impact of non-determinism will be deepened as future work.

These considerations highlight that the methodologies proposed in the chapter
allow to determine a good trade off between accuracy and execution speed, according
to the target code generation. Furthermore, the methodologies allow to generate
multiple versions and to evaluate a set of alternatives, in order to tune the final code.
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Fig. 6.9 The boiler system

6.4.2 The Boiler System

The starting point of the system is the bang-bang-control boiler model provided with
the Mathworks Simulink tool [10]. Such a system is composed of a discrete bang-
bang controller (i.e., Controller) and a boiler plant (dashed in Fig. 6.9). Intuitively, the
controller controls when the boiler is turned on and off. When the boiler’s temperature
is lower than the specified set point, the boiler is activated to warm up. Otherwise,
the boiler is switched off to reduce its temperature.

The boiler system has been realized by adding reused components and manually
defined components that complete the system functionality (solid in Fig. 6.9). The
1. Controller component has been implemented in SystemC starting from the bang-
bang Stateflow model, while the behavior of 2. the Boiler plant has been formalized
into a CIF description. It was then necessary to add 3. an AMBA bus (AHB) Sys-
temC model, 4. a simple generic RAM module and 5. an Analog-to-Digital Converter
(ADC), both modeled by using VHDL.

Finally, the system includes two software components written in C (i.e., UI handler
and UI). The 6. UI handler is a device driver that accesses the RAM memory to retrieve
the value of the digital temperature used by the controller for turning on and off the
boiler, while the 7. UI software prints on a file such values.

Transducers have been introduced to allow binding of components following a
communication protocols different from the standard AMBA one.

6.4.2.1 Application of Code Generation Methodologies

In the starting heterogeneous system, components are implemented in a variety of
languages, ranging from CIF to C and VHDL. All the components have been auto-
matically translated into univerCM automata, combined together and then trans-
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Table 6.3 The boiler system: characteristics of the components and generated univerCM automata

Component Language univerCM Conversion C++ SystemC-

automata time (ms) (loc) AMS (loc)

Controller SystemC 2 76 384 342

Boiler plant CIF 1 31 104 185

AMBA AHB bus SystemC 10 112 1486 1304

RAM VHDL 4 71 495 403

ADC VHDL 1 25 158 140

UI handler C 3 27 164 88

UI software C 1 29 98 73

Controller transd. SystemC 3 108 145 180

Boiler transd. SystemC 1 30 196 179

ADC transd. SystemC 1 29 142 129

UI handler transd. SystemC 3 97 164 88

UI SW transd. SystemC 1 32 157 142

Table 6.4 The boiler system: comparison of the SystemC-AMS and C++ code w.r.t. the Ptolemy
top-down implementation and the SystemC implementation

Version Code gen. time (ms) Code (loc) Execution time (ms) Error (%)

Ptolemy Two man-days – 112.896 –

SystemC 1390 3059 7.880 0.34

Deterministic C++ 1542 3693 7.948 0.33

Deterministic SystemC-AMS 1422 3166 8.227 0.30

lated to C++ and SystemC-AMS, by following the methodologies presented in this
chapter. The main characteristics of the generated code are outlined in Table 6.3.

The univerCM implementation of the system highlighted that the system is deter-
ministic, i.e., it never occurs that the same system status allows the activation of two
different transitions with the same priority. This implies that the non-deterministic
version of the code would be identical to the deterministic implementation, and it is
thus omitted.

6.4.2.2 Effectiveness of the Proposed Approaches

Ptolemy has been adopted to build a top-down implementation also of the boiler
system to build a reference in terms of accuracy and of execution time.

The C++ and SystemC-AMS generated code is thus compared w.r.t. the Ptolemy
implementation and w.r.t. the SystemC implementation generated by applying Di
Guglielmo et al. [5]. Table 6.4 outlines the results of this comparison.
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Fig. 6.10 Simulation trace of the code generation alternatives for the boiler system

Also in this case study all univerCM-based implementations are one order of
magnitude faster than the Ptolemy implementation (in average the speed up is 14×).
The C++ implementation speed is comparable with the one of the SystemC gen-
erated code, as functionality is the same and the SystemC scheduler overhead is
replaced by the management function overhead. The SystemC-AMS implementa-
tion is once again slower than the SystemC and C++ implementations, due to the
analog solver overhead. However, this case study features only one simple analog
component (i.e., the boiler plant). Thus, the AMS computational weight is by far bal-
anced by the remaining of the system functionality and execution time is increased
only by 4 %.

Table 6.4 shows that all the generated versions of the system preserve a high level
of accuracy w.r.t. Ptolemy. This is highlighted also by the simulation trace reported
in Fig. 6.10, that compares the evolution of temperature during the simulation for
all code versions. Figure 6.11 focuses on a subset of execution time (from 450 to
550 s) to blow up the differences between the different implementations. All the code
versions achieve a precision comparable with Ptolemy (with an error rate ranging
from 0.30 to 0.34 %). This occurs because the analog part is limited w.r.t. the overall
functionality and it thus does not interfere on precision and on synchronization.

The adherence of all the implementations to the Ptolemy evolution proves that
univerCM preserves the correctness of the starting heterogeneous components, and
that the transformation and code generation steps proposed in this paper preserve the
univerCM semantics also in the generated code.

Code generation time is much higher for Ptolemy, as it implied to redesign the
whole system from the specifications. These considerations highlight the strength of
the proposed automatic code generation approaches, that start from a reconciliation
of the starting heterogeneity, both in terms of accuracy and of performance.
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Fig. 6.11 Blow up of a segment of Fig. 6.10 to highlight the precision of the various approaches
w.r.t. the Ptolemy implementation

6.5 Conclusions

The chapter enhances reuse and eases design of heterogeneous embedded systems
with two code generation flows, targeting C++ and SystemC-AMS. The chapter
compares then the behavior of the generated code both in terms of performance
and accuracy, and shows the effectiveness of the approach on complex case studies.
Future work will investigate the relationship between the supported degree of non-
determinism and modeling errors.
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Chapter 7
SystemC Modeling with Transaction Events

Bastian Haetzer and Martin Radetzki

Abstract Today, in the design of embedded systems several abstraction levels are
used ranging from register transfer level to transaction level. In this contribution
we will introduce a new SystemC modeling technique with transaction events for
communication modeling. Transaction events extend traditional timed events with a
communication payload, thus combining state update and process triggering. This
modeling technique can be used at all abstraction levels to create deterministic sim-
ulation models in a conceptual clean way.

Keywords SystemC · Transaction-Level Modeling (TLM) · OSCI TLM-2.0 ·
Register Transfer Level (RTL) · Bus modeling · Transaction Level (TL) model-
ing styles · Deterministic simulation · Preemption modeling · Parallel simulation ·
AMBA High-performance Bus (AHB)

7.1 Introduction

In recent years there is a high interest in system level design, especially modeling
at the Transaction Level (TL) [5, 6]. SystemC [2] has become the de facto standard for
system level modeling. There are several sub levels defined at the
transaction level (Fig. 7.1), which differ by the level of accuracy they provide. Cycle-
Accurate Transaction Level Models (CATLMs) are evaluated in each clock cycle
and thus provide the same amount of information as Register Transfer Level
(RTL) models. In Bus Cycle Accurate (BCA) models, only the communication
infrastructure (e.g., bus) model is run in each cycle, whereas masters are executed in
chunks, possibly spending several cycles [15]. Another abstraction level is the Cycle
Count At Transaction Boundaries (CCATB) level introduced by [16]. Here, not only
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Fig. 7.1 Accurate abstraction levels at the transaction level

masters, but also the communication infrastructure models are executed in chunks
whenever possible. Besides these three levels there are other abstraction levels pro-
posed, e.g., untimed and approximately timed TL models [18]. Some approaches also
combine several levels in one adaptive model [19]. However, for all such levels there
is a common problem in communication modeling, namely to create deterministic
models, i.e., make sure that a process is only executed after all inputs have the right
(updated) value.

Over the last years, several modeling styles for TLM have been proposed, mainly
for bus modeling, which ensure the right order of state update and process execution.
In this work, we compare these modeling styles in respect of modeling effort and
simulation performance. Furthermore, we propose a new communication modeling
style which is based on so-called Transaction Events (TEs). This modeling style
elegantly creates deterministic models while hiding the state update details from the
models which leads to simpler models and to higher simulation performance. Our
new modeling style is compatible to the OSCI TLM-2.0 standard [1] and can be
understood as a proposed extension. We will introduce the concept of transaction
events at the CCATB level. However, TEs can be used at RTL too, which will also
be shown.

The remainder of this chapter is subdivided into the following sections. In
Sect. 7.2, related work is given and in Sect. 7.3, the TL modeling styles found
in the literature are presented in detail along with a discussion of their pros and cons.
Section 7.4 introduces our proposed modeling style. Section 7.5 compares trans-
action events with payload event queues—a modeling class from OSCI TLM-2.0.
Section 7.6 presents extensions of transaction events for preemption modeling. In
Sect. 7.7, it will be shown how the concept of TEs can be used for RTL modeling.
Section 7.8 shows experimental results for transaction level models. Section 7.9 gives
an outlook of TEs in parallel simulation. Finally, Sect. 7.10 concludes the work.
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7.2 Related Work

Over the last years, transaction-level modeling has been applied to several
communication architectures, e.g., Networks-on-Chip [13, 14]. However, most work
concentrates on modeling a bus [7, 16, 18, 22], which is the original domain for TLM.
The focus here is often on evaluating the simulation speedup over RTL [17, 23] not on
specific modeling guidelines. Nowadays, SystemC [2] can be considered as the most
used language for TLM. There are several ways to use language constructs (events,
channels, etc.) to create transaction level models. A fundamental modeling decision is
about how to implement the state update while maintaining deterministic simulation.
An early approach for modeling a bus at the transaction level [11] uses the two phase
synchronization principle, which was applied in several other works [4, 7] and was
later adapted to another abstraction level [16]. The first TLM proposal by OSCI [20]
is using the request-update/update mechanism. Beside these existing approaches,
there are other possible techniques, which are presented in detail in the next chapter.
The aim of this work is to evaluate the pros and the cons of these modeling styles
and to introduce a new solution which simplifies the modeling process.

7.3 Analysis of TL Modeling Styles

A typical SystemC transaction level model consists of masters (also often named
as initiators), which are active modules containing a process. These masters are
connected through ports to a communication channel model (e.g., a bus model),
which provides a communication interface and has a process, too. Slaves (or targets)
are normally modeled as passive modules. Such a model is shown in Fig. 7.2.

Normally, we are interested in having deterministic models that guarantee that
the simulation output is independent from the simulation run. In SystemC, how-
ever, the process execution order is not defined and cannot be specified by the user.
This means that, if two processes communicate, there is always the risk that some
non-deterministic state update happens. To create deterministic models (or to be
more precise, models that create deterministic simulation outputs while using non-
deterministic execution), we have to ensure that all processes work with the up-to-date
input values. SystemC provides three different language constructs, which can be
used to build deterministic models:

• request-update/update mechanism
• delta event notification
• timed event notification.

The request-update/update mechanism is used by so called primitive channels
(e.g., sc_signals) to establish a signal semantics, i.e., writes to channels are
not immediately visible, but are delayed to the next update phase. Delta events are
normally used to resolve combinational dependencies, but can also be used to assign
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Fig. 7.2 Model of a bus-based
system at the transaction level

Master1

Master2

bus model Slave

Listing 7.1 Master behavior at the CCATB level

1 void master :: behavior ()
2 {
3 while(run)
4 {
5 computation();
6 wait(time);
7 po_bus ->b_transport(payload);
8 }
9 }

Listing 7.2 Bus behavior at the CCATB level

1 void bus:: behavior ()
2 {
3 while(true)
4 {
5 wait(m_request_event);
6 // arbitration ...
7 }
8 }

process execution to different delta cycles. Timed events can be used to represent
delays in state assignments. All these solutions can be used, but each has its own
advantages and drawbacks.

As an example, we will consider the bus based system from Fig. 7.2. Listings 7.1
and 7.2 show the corresponding master and bus behavior processes. The master
performs some computation for a period of time which is annotated by a wait call.
After that, it initiates a blocking transaction call to the bus representing a read or a
write to the slave, depending on the payload. The bus model implements the interface
method and has its own process responsible for the bus functionality (arbitration
and communication to the slaves). For convenience, in the following we will use
SC_THREADs to describe processes. But SC_METHODs can be used as well because
each SC_THREAD can be transformed to an equivalent SC_METHOD. Next, we will
show different modeling styles for CCATB bus models, which are using the discussed
SystemC constructs to create deterministic models.
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Listing 7.3 First bus modeling style (TLM1) at CCATB

1 void bus:: b_transport(payload_type& payload)
2 {
3 si_payloads[payload.id] = payload;
4 m_request_event.notify(CLK_PERIOD);
5 wait(m_response_events[payload.id]);
6 }

7.3.1 TLM1

The first modeling style (Listing 7.3) uses the SystemC request-update/update mecha-
nism to delay the state update to the next SystemC update phase. This ensures that
no state update happens at the time of the rising clock edge and thus all processes
run before any state is updated. SystemC does not allow that a user class derived
from sc_module at the same time also inherits from sc_prim_channel. That
means to apply the request-update/update mechanism, internal channels have to be
used. In Listing 7.3, we use a signal for every connected master, but other prebuilt
or user defined channels can be used as well. The advantage of this modeling style
is that only events at clock edges are generated. Furthermore, this modeling style is
easy to use, because it is quite similar to modeling at RTL. However, the request-
update/update mechanism creates additional simulation overhead: in each simula-
tion cycle, a list of all channels requiring an update in this cycle has to be created.
This modeling style is proposed by the OSCI TLM-1.0 standard [20], by means of,
e.g., tlm_req_rsp_channel.

7.3.2 TLM2

The second modeling style (Listing 7.4) uses delta event notifications to establish the
right sequence of state update and process execution by assigning them to different
delta cycles. Masters do the state update at times of the rising clock edge and the
bus model is triggered at the next delta cycle. There are two main drawbacks of this
modeling style. First, in SystemC, it is not possible to notify an event for a specific
delta cycle at some future time. Consequently, we have to wait for the future time
and only then, we can do the delta notification. This creates additional overhead due
to process activation only for event notification and also makes the modeling more
complicated. Second, this style is not suitable if TL models should communicate
with RTL models, which may take several delta cycles until the final output value is
stable. This modeling style is used by [22] in the Arbitrated Transaction Level Model
(ATLM) of an AMBA AHB bus.
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Listing 7.4 Second bus modeling style (TLM2) at CCATB

1 void bus:: b_transport(payload_type& payload)
2 {
3 wait(CLK_PERIOD);
4 m_payloads[payload.id] = payload;
5 m_request_event.notify(0, SC_NS);
6 wait(m_response_events[payload.id]);
7 }

Listing 7.5 Third bus modeling style (TLM3) at CCATB

1 void bus:: b_transport(payload_type& payload)
2 {
3 wait(DELAY);
4 m_payloads[payload.id] = payload;
5 m_request_event.notify(CLK_PERIOD - DELAY);
6 wait(m_response_events[payload.id]);
7 }

7.3.3 TLM3

The third modeling style (Listing 7.5) uses timed event notifications to introduce a
delay to the state update. Master processes and the bus process execute at times of the
rising clock edge. Somewhere in the open interval between two clock edges, mas-
ters update the bus state by waiting a specific time Θdelay ∈ (0,Θclk) before doing
assignments. Because of the delay, such models are compatible with RTL models.
Furthermore, no channels are required, variables are sufficient for data exchange
between processes. The main drawback of this modeling style is that the number
of event time points is increased, which leads to an increased number of simula-
tion cycles.

7.3.4 TLM 4

Similar to TLM 3, this modeling style also uses timed event notification. However,
compared to TLM 3, the time point of bus execution is changed, i.e., now the masters
update the state at the positive clock edge and the negative edge of the clock is
used to run the bus process (Listing 7.6). This modeling style is known as the two-
phase synchronization principle [11] and is the most commonly used approach for
transaction level models [4, 7]. The simple bus example in the SystemC distribution
uses this approach to build CATLMs.

This modeling style is also used by [16] to build models at the CCATB level. Here,
the bus process is triggered at times of the negative clock edge instead of running each
clock cycle. That means the bus model is not cycle accurate, however, the number
of cycles the bus model spends is the same as in cycle accurate models leading to
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Listing 7.6 Fourth bus modeling style (TLM4) at CCATB

1 void bus:: b_transport(payload_type& payload)
2 {
3 m_payloads[payload.id] = payload;
4 m_request_event.notify(DELAY);
5 wait(m_response_events[payload.id]);
6 }

the name cycle count accurate. The bus model is now virtually running at negative
clock edges, which has no correspondence to real behavior. Furthermore, by using
times of the negative clock edge the bus model is not time accurate anymore, i.e.,
the start and end times are not the same as with cycle accurate models, but shifted
by half of the clock period. This time behavior is the main drawback of TLM4 and
is only valid for this modeling style. All other modeling styles presented here are
time accurate. In addition, the same drawback as for TLM3 holds, i.e., the increased
number of simulation cycles due to increased number of event time points.

In Fig. 7.3, a comparison of the explained modeling styles is given to illustrate
how events are used and when state updates are done. The figure describes a sit-
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Listing 7.7 Transaction Event class

1 template <class T>
2 class transaction_event : public sc_event
3 {
4 public:
5 T m_curr_payload;
6 T m_next_payload;
7
8 protected:
9 virtual void trigger ()

10 {
11 sc_event :: trigger ();
12 m_curr_payload = m_next_payload;
13 }
14 }

uation, in which masters issue a communication request after they have finished a
computation. The bus process starts the first transaction at the next clock edge at
time Θ1. In TLM1 models, the state update is done during the update phase, after all
runnable processes have been executed. In TLM2 models, masters update the state
at the rising clock edge and the bus process is executed in the following delta cycle.
In TLM3 models, state update happens between two clock edges while the bus is
executed at rising clock edges. In TLM4 models, state updates are done at rising
clock edges, but the bus runs at negative clock edges (time Θ ′

1).

7.4 TL Modeling with Transaction Events

As discussed in the previous section, to create deterministic models we have to
make sure that all input values of a process are updated before actually running this
process. We propose to use Transaction Events (TEs) as a solution to this problem.
The idea is to use the event triggering mechanism for performing state updates
together with filling the runnable process queue. A transaction_event class,
which is derived from sc_event is used for this purpose (Listing 7.7).

This class holds the current active payload together with the desired value after
the update (m_next_payload) similar to a sc_signal. A small modification
in the SystemC kernel is necessary to make this work: the trigger() function
from sc_event has to be declared as a virtual function. This modification guaran-
tees that the trigger() function of the transaction event class is called instead of
the function from the base class. There are two things done in the trigger() func-
tion: the base function is called so that waiting processes are put in the runnable
queue, and finally the state update is done by copying m_next_payload to
m_curr_payload. With transaction events, state updates can now be modeled
in an elegant way by simply calling the notify method.
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Listing 7.8 Bus modeling using transaction events

1 void master :: behavior ()
2 {
3 while(run)
4 {
5 computation();
6 po_bus ->b_transport(payload , time);
7 }
8 }

Listing 7.8 shows the bus model using transaction events. Masters are not call-
ing wait() anymore to annotate the computation time, instead they provide their
computation time as parameter to the interface call. For each master, there is a corre-
sponding transaction event object. The transport call sets the payload as next state of
the transaction event object and calls notify with the request time. The bus process
simply waits on all transaction events (e.g., by a sensitivity list). Because of the
trigger mechanism it is ensured that all transaction events are updated before the
bus process runs. The bus process can now read out the current state of all inputs
(m_events[i].m_curr_payload). Typically, in object oriented programming
getter/setter methods are used to access member variables of classes. Such methods
(e.g., write() or read()) can be added to the transaction event class, similar to
sc_signals. In addition, operators (e.g., operator=()) can be overloaded to
provide a convenient interface to transaction events.

Figure 7.4 shows how the bus model is processed during simulation using trans-
action events (cf. to Fig. 7.3). The request from master0 is scheduled for time Θ1. At
this time the state update happens and the bus process is triggered subsequently. The
request from master1 is scheduled for time Θ2. As the bus process is not waiting for
any request (because the bus is busy), the event only triggers the state update. It can
be clearly seen from the figure that the number of events necessary to reproduce the
communication sequence is reduced, while maintaining time accuracy.
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Fig. 7.5 SystemC scheduler (simplified) Start
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The simulation semantics of transaction events is as follows. As shown in Fig. 7.5,
after advancing the current simulation time, the SystemC scheduler triggers all events
from the timed event list. Triggering might put waiting processes into the runnable
process queue. This procedure is completed before going to the next evaluation phase,
where processes are executed. Consequently, the state update with transaction event
happens at the notified simulation time Θnoti f y before any process is run.

The example presented so far uses blocking transport interface calls. However,
our modeling approach can also be used with a non-blocking interface. In this case a
transaction event can be used for the response payload, too. Depending on the time
behavior, masters can either wait for the response event or can read the status out of the
response payload. If masters can issue several transaction requests without waiting for
the response (e.g., bus pipelining), then the transaction event class may be modified
according to the modeling requirements. In our proposal, transaction events contain
only one payload with variable semantics, but more complex data structures (e.g.,
queues) can also be incorporated. In this case, the transaction event class has to
be extended accordingly by modifying the trigger() method with the proper
state update function and by providing a suitable interface. Alternatively, new features
can also be supported by deriving from the transaction event class and overloading
of the trigger() method.

In contrast tosc_ports, which are not allowed to bind to a sc_channel during
runtime, transaction events can be created dynamically during the SystemC execution
phase. Hence, they can be used to model adaptive systems with communication
structures that can change during runtime.

In Hardware Description Languages (HDLs), there are typically modeling con-
structs for delayed assignments available, which are not directly supported by
SystemC. Such delayed assignments can easily be replicated with transaction events.
Consider the transport delay mechanism from VHDL:

1 y <= transport a and b after 10 ns;
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With transaction events using the convenience interface, this delayed assignment
can be expressed by:

1 y = a & b;
2 y.notify(10, SC_NS);

Of course, such behavior can also be modeled in other ways in SystemC, e.g., by a
process waiting for a time, but with transaction events, the modeling is more clear.

7.5 Comparison with OSCI TLM-2.0 Payload Event Queues

In OSCI TLM-2.0, there exists a utility class called Payload Event Queue (PEQ),
which can be used to schedule transactions for some future simulation time similar
to our transaction events. However, the internal mechanism and the usage of the
class differs. Transactions can be added to the PEQ, where the payloads are stored
together with the scheduled time in a priority list. A process can wait for an event
from the PEQ, which will be the earliest event in the queue. Transactions scheduled
for the current simulation time can be read out of the queue sequentially by calling
get_next_transaction(). If there is no more transaction stored with the
current simulation time, the earliest transaction in the queue is scheduled again.
With PEQ, the same simulation semantics can be expressed, but the state update has
to be modeled explicitly, e.g., with a loop extracting all payloads from the PEQ to
create the current state (Listing 7.9). This manual recreation of the state increases
the modeling effort. With transaction events, the state update details are hidden from
the user, which simplifies the modeling (cf. to Listings 7.1 and 7.2). Furthermore, no
additional priority lists have to be allocated, all transaction events are simply stored
in the global timed event list.

7.6 Extensions for Preemption Modeling

Some bus protocols allow that a higher priority bus request can preempt a currently
active burst transfer. Modeling bus preemption needs additional effort, because a sim-
ple wait(time) in the bus process is not sufficient anymore. If a higher priority
request occurs, the bus process has to be triggered again to switch to the new master,
what is normally done by a wait on a request event. This event is also scheduled by
the bus process for the end time of the transaction to apply for the situation when no
preemption occurs. With that technique, the preemption is modeled in the right way,
but another difficulty arises: the bus process is triggered by all requests, whether they
have lower or higher priority than the active one. If the bus process has to handle such
situations, the modeling gets complicated. Furthermore, the unnecessary triggering
and execution of the bus process slows down simulation performance. A far better
solution will be to run the bus process only for higher priority requests, while lower
priority requests do not interrupt bus process execution. With transaction events, this
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Listing 7.9 Bus modeling using OSCI TLM-2.0 payload event queues

1 void bus:: behavior ()
2 {
3 while(true)
4 {
5 wait(m_peq.get_event ());
6
7 m_payload = m_peq.get_next_transaction();
8 while (m_payload != 0)
9 {

10 m_payloads[m_payload ->id] = *m_payload;
11 m_payload = m_peq.get_next_transaction();
12 }
13 // arbitration ...
14 }
15 }

Listing 7.10 Extended trigger method for preemption modeling

1 virtual void transaction_event:: trigger ()
2 {
3 if (m_enable)
4 sc_event :: trigger ();
5 m_curr_payload = m_next_payload;
6 }

solution can be easily achieved. For this purpose, we add a boolean field (m_enable)
to the member variables of the transaction event class. This variable allows to acti-
vate or deactivate the corresponding process triggering. Listing 7.10 shows how the
variable is used inside the trigger() function. Now, only if m_enable is true,
the corresponding process is triggered, otherwise, only the state update happens. A
bus process can use this feature by disabling all lower priority request events at the
time of a new granted bus access.

7.7 RTL Modeling with Transaction Events

So far, transaction events have been used for transaction level modeling. However,
the concept is independent of the abstraction level. In this section, it will be shown
how transaction events can be applied for modeling at RTL. Furthermore, we will
introduce a new modeling technique called querying, which can be used to resolve
combinational dependencies without delta events. Combining these two techniques
allows for replacing the request-update and delta event mechanisms. As a conse-
quence, the request-update and delta notification phase can be removed from the
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SystemC scheduler while maintaining the same modeling capabilities. This can be
useful in parallel simulation, because the number of synchronization between threads
can be reduced. This will be illustrated in Sect. 7.9.

7.7.1 SystemC RTL Models

RTL models with SystemC typically contain a sequential process sensitive to the
clock edge, which is used for computing the next state based on the current state and
the inputs (often represented by a function δ). Additionally, there might be combi-
national output process(es), which compute the output values based on the current
state (function λ). This is especially necessary if output values are of Mealy type,
i.e., if they also depend on input values. Outputs that only depend on the current
state (Moore type) can be assigned in the sequential process. The local state is stored
in sc_signal(s). For inputs and outputs, ports with signal interface are used,
which are bound to other modules via signals. An example RTL model is shown
in Listing 7.11. Here, the combinational process comb_proc is used to determine
the value of the output signal po_write, which depends on the state and on the
input pi_full. The main mechanism from SystemC used by the RTL models are
the request-update mechanism and delta event notification. Both mechanisms are
triggered by sc_signals.

7.7.2 Signals with Transaction Events

As already introduced for transaction level modeling, transaction events can be used
to replace the traditional request-update mechanism from SystemC. Likewise, for
RTL modeling, we can provide a new signal class te_signal based on TEs,
which replaces sc_signals. The corresponding class is shown in Listing 7.12.
Withte_signals, the update of the current value happens at times of the clock edge
immediately before processes reading from the signal are executed (cf. to Sect. 7.4).

7.7.3 Querying

In traditional SystemC RTL models combinational dependencies are resolved by
use of delta events. Updates of the current state or inputs trigger combinational
process(es) through a delta event. At the next delta cycle, the new output values
are written to the output signals. We call this procedure writing. Other components
reading from this output signal can read the new value in the next delta cycle through
an interface method call of the port (Fig. 7.6a).



140 B. Haetzer and M. Radetzki

Listing 7.11 Example SystemC RTL model

1 class rtl_sender : public sc_module
2 {
3 public:
4 sc_port <sc_signal_in_if <bool > > pi_clk;
5 sc_port <sc_signal_in_if <bool > > pi_full;
6 sc_port <sc_signal_out_if <bool > > po_write;
7 sc_port <sc_signal_out_if <unsigned > > po_data;
8
9 virtual void end_of_elaboration ()

10 {
11 SC_METHOD(seq_proc);
12 sensitive << pi_clk ->posedge_event ();
13
14 SC_METHOD(comb_proc);
15 sensitive << lo_reg_state.default_event ();
16 sensitive << lo_reg_count.default_event ();
17 sensitive << pi_full ->default_event ();
18 }
19
20 private:
21 sc_signal <state_type > lo_reg_state;
22 sc_signal <unsigned > lo_reg_count;
23 ...
24 };

Listing 7.12 Transaction-Event-based signal

1 template <class T, class CLOCK_PERIOD >
2 class te_signal : public
3 transaction_event <T>, public
4 sc_signal_in_if <T>, public
5 sc_signal_out_if <T>
6 {
7 public:
8 void write(const T& value)
9 {

10 m_next_payload = value;
11 notify(CLOCK_PERIOD);
12 }
13
14 const T& read() {return m_curr_payload ;}

A::comb_proc B::seq_proc

Q1 sc_signal Q2
write()read() read() write()

(a)
B::seq_proc

Q1 socket Q2
read()read() read() write()

(b)

Fig. 7.6 Writing (a) and querying (b) of outputs
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Listing 7.13 Socket for querying

1 template <class T>
2 class rtl_socket : public sc_signal_in_if <T>
3 {
4 public:
5 virtual const T& read() const;
6 void bind(sc_module* component , method_ptr ↵

handler);
7 ...
8 private:
9 sc_module* m_component;

10 method_ptr m_handler;
11 };
12
13 const T& rtl_socket <T>:: read() const
14 {
15 return (m_component ->*m_handler)();
16 }

A completely new point of view is shown in Fig. 7.6b. The idea is to exe-
cute the output function λ through the read call of connected components, which
we call querying. To provide several different outputs with the same signal inter-
face (sc_signal_in_if), an intermediate class similar to sc_export is used,
which is called rtl_socket (Listing 7.13). The socket forwards read calls to
corresponding member methods that realize the output function λ.

Querying can be used for output functions of Mealy type to remove all com-
binational processes allowing to resolve combinational dependencies without the
need for delta cycles. As a consequence, the delta notification phase is not necessary
anymore.

The two techniques, TEs and querying, can be simply applied in RTL models
by replacing sc_signals with te_signals and output ports of Mealy type by
rtl_sockets. The corresponding combinational process can be removed and the
process function is registered at the socket.

7.8 Experimental Results

We have used an AMBA AHB bus [3] based system to evaluate the simulation
performance of the presented modeling style. The system consists of several masters
and slaves connected to the bus (Fig. 7.7). The slaves are simple models of memory
modules. Similar to [7], the masters create generic bus traffic, i.e., bus burst access
with a fixed burst length. Each master performs a configurable number of computa-
tions and initiates a communication after that.
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master 0 master 1 master 2 master 3

AHB BUS

slave 0
RAM

slave 1
RAM

Fig. 7.7 Model of the AMBA AHB bus

Table 7.1 Simulation execution times for AHB bus model

Modeling style SC_THREAD SC_METHOD

Time [s] Speedup Time [s] Speedup

TLM1 182 1 149 1

TLM2 217 0.8 197 0.8

TLM3 211 0.9 177 0.8

TLM4 169 1.1 140 1.1

OTLM2 152 1.2 133 1.1

TE 131 1.4 99 1.5

We have built a model of the system at the CCATB level using the TL model-
ing styles presented in Sect. 7.2. We have also implemented a model using our pro-
posed modeling style based on transaction events. The TLx models use the standard
SystemC kernel, whereas the transaction event model uses a SystemC kernel with
the modification mentioned in Sect. 7.4. Furthermore, a model using the OSCI TLM-
2.0 payload event queue was built (OTLM2 model). All experiments were run on a
2.8 GHz Intel Core 2 Quad machine with Linux kernel 2.6. The SystemC 2.2.0 kernel
and all models were compiled using GCC 4.1.2 with optimization -O3.

Table 7.1 shows the simulation execution times using a setup of 4 masters and a
burst length of four. The reference for comparison is the TLM1 model, because it
is fast and time accurate. TLM2 and TLM3 models perform worse than TLM1. The
most commonly used approach at transaction level, TLM4, performs slightly better
than TLM1, but is not time accurate, because the bus model is running at the nega-
tive edge. The model using the OSCI TLM-2.0 payload event queue leads to further
performance improvement with a speedup of 1.2 over the TLM1 model. Having a
speedup of 1.4, our proposed modeling style with Transaction Events (TEs) outper-
forms all other modeling styles. We additionally tried using SC_METHODs instead of
SC_THREADs for all processes. With SC_METHODs, the simulation execution times
are faster, because of the smaller overhead for process context switching. However,
the speedup relation remains approximately the same.

We also did experiments with other setups, e.g., more masters, longer computa-
tion cycles, different burst length. The speedups in all these experiments are approx-
imately the same as before.
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7.9 Outlook Towards Parallel Simulation

Over the last years, there is increasing interest in parallel SystemC simulation
[8, 9, 12, 21, 24]. The approaches so far parallelize the kernel while maintain-
ing compliance to the SystemC scheduler. However, the performance of parallel
approaches that rely on the SystemC simulation phases may be limited. This will be
illustrated with two examples of basic synchronous parallel simulation approaches.

In the approach from [24], only the execution of runnable processes is done in par-
allel with several threads (Fig. 7.8a). The update and notify phases are processed by
only one master thread. The other threads are waiting during this processing. Through
the centralized processing by the master thread, the synchronization between threads
is minimized. However, the achievable speedup of parallel simulation is limited due
to Amdahl’s Law and depends on the ratio of CPU time for sequential process-
ing (update and notify) in relation to CPU time for parallel processing (execute
phase).

In the synchronous approach from [8], each thread processes all simulation phases
of the scheduler (Fig. 7.8b). However, this requires synchronization between threads
after each phase, which is mostly done through a barrier [21].

Barrier synchronization can be a costly operation, especially at low levels
like RTL, where the amount of computation in each cycle typically is low. Fur-
thermore, often there are situations, where some already executed combinational
processes are again triggered for the next delta cycle. In such cases, the number of
runnable processes might be low. In the worst case, only one process is ready to
run, which is dramatically reducing performance. This situation is shown in Fig. 7.9.
Here, the execution of an RTL model is shown where one combinational process
have to be executed twice. It can be easily seen, that such a situation requires a
high amount of barrier synchronization. At higher level models, e.g., at transaction

execute 
processes

initialization

update

END

process delta 
notification

process timed 
notification

N 
Threads

(a)

execute 
processes

initialization

update

END

process timed 
notification

process delta 
notification

sync. with other threads

sync. with other threads

sync. with other threads

(b)

Fig. 7.8 Parallel SystemC simulation kernel approaches: centralized (a) and synchronous (b)
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Fig. 7.9 Synchronizations during synchronous parallel simulation

level, delta events and/or the update mechanism are typically not used. Thus, the
update phase and delta notification phase is redundant at such levels.

Transaction events are conceptually more elegant than the traditional SystemC
simulation cycle, because only timed events exist. In parallel simulation, this
may be useful, because communication between threads is only done via timed
events and only time synchronization is needed. Additionally, querying can be
used if some combinational dependencies exist—however, without need for further
synchronization. Compared to the basic synchronous parallel SystemC approach
(Fig. 7.8b), the number of synchronization can be reduced. Furthermore, different
abstraction levels are treated homogeneously, because all modeling is done only
with timed events.

Only having timed events is also more in conformance with the concepts of the
traditional discrete event simulation field. This makes it easier to adopt other parallel
simulation approaches like the promising asynchronous approach [10]. Using trans-
action events for synchronous and asynchronous parallel simulation will be our next
step.

7.10 Conclusion

In this contribution, we have presented the concept of a transaction event, which
extends timed events with a communication payload. Transaction events can fully
replace the standard SystemC update phase, while providing same modeling capa-
bilities. Furthermore, by a new technique called querying, also the delta notification
phase is no longer needed. This leads to a clean and homogeneous modeling at
all abstraction levels. We have shown how TEs can be used for modeling at the
transaction level and the register transfer level. We are currently working on using
transaction events in parallel simulation.
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Chapter 8
Automatic Generation of Virtual Prototypes
from Platform Templates

Seyed Hosein Attarzadeh Niaki, Marcus Mikulcak and Ingo Sander

Abstract Virtual Prototypes (VPs) provide an early development platform to
embedded software designers when the hardware is not ready yet and allows them
to explore the design space of a system, both from the software and architecture
perspective. However, automatic generation of VPs is not straightforward because
several aspects such as the validity of the generated platforms and the timing of the
components needs to be considered. To address this problem, based on a framework
which characterizes predictable platform templates, we propose a method for
automated generation of VPs which is integrated into a combined design flow
consisting of analytic and simulation based design-space exploration. Using our
approach the valid TLM-2.0-based simulated VP instances with timing annotation
can be generated automatically and used for further development of the system in
the design flow. We have demonstrated the potential of our method by designing a
JPEG encoder system.

Keywords Design automation ·Design Space Exploration (DSE) ·Predictable plat-
forms · Real-time systems · Simulation · Virtual Prototype (VP) · Mixed-Criticality
System (MCS) · Transaction-Level Modeling (TLM) · Constraint programming ·
Analytical models · Interoperability

8.1 Introduction

Design Space Exploration (DSE) is a key step in platform-based design of
embedded multiprocessor systems which aims at finding an optimum platform
instance, mapping, and scheduling of application tasks with respect to a set of
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performance and cost objectives. The evaluation of design points in the DSE can be
performed either analytically, simulation-based, or with a combination of both [9].

Analytic approaches such as scheduling theory [2], dataflow analysis [16, Sect. V]
and real-time calculus [17] can be applied while the target architecture is not ready
yet and can be used to formulate a correct-by-construction design flow, cutting the
extensive verification costs. Unfortunately, these methods mostly assume a determin-
istic behavior of the system, exact Worst-Case Execution Time (WCET) bounds for
tasks, and precise platform characteristics, which are not always valid. On the other
hand, simulation-based techniques based on MoCs [8] or TLM [12] do not suffer
from these limitations but instead require a longer time to evaluate each design point.
Additionally, a careful selection of input stimuli—especially for the corner cases—
needs to be performed, which is non-trivial. As a result, combined DSE methods
have emerged as a solution to exploit the benefits of these two methods. First, an
analytic DSE can be performed to identify a set of Pareto-optimal design points
or even optimal solutions for the application tasks and platform components where
precise estimates are available. Later, simulation can be performed on a—possibly
automatically generated—VP to identify the final solution.

However, the current methods proposed for a combined DSE have considerable
limitations. Some approaches are tailored for a small part of the design problem,
such as analyzing simulation traces for the investigation of memory architecture
parameters [18]. Other techniques generate the simulation models based on additional
information from the platform such as a library of virtual prototypes or source level
annotations. It is beneficial to exploit the same platform characteristics information
used in the analytic DSE phase to generate a rapid prototype of the platform. This
prototype can be refined later when a more detailed model of the platform is available.

The present work takes a step towards a combined design flow by automatically
generating virtual prototypes for simulation-based exploration of the design space
based on the output of an analytic exploration phase. In the first phase of the design
flow, applications are captured in a framework with well-defined semantics [1] and
mapped onto predictable platform templates characterized using a formal framework.
Then, for each Pareto-optimal solution a TLM VP is generated which the designer
can use for further exploration of the design space. The generated VP is based on the
interoperability layer of TLM, which makes it easier to refine it using more accurate
platform models.

Using our proposed method the designer can start with implementing the possibly
hard real-time applications on predictable platforms in a correct-by-construction flow
and later add and test the applications with less time-criticality on a generated VP,
hence enabling a mixed-critical design flow.

The contributions of this work are summarized as:

• introducing a flexible method for automatic and rapid generation of virtual proto-
types based on characterized predictable platform templates;

• integrating the method into a combined analytic and simulation-based design flow
for embedded real-time systems; and

• demonstrating the method in practice by applying it to a JPEG encoder example.
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Sections 8.3 and 8.6 serve as the background and related work while the rest of
the paper describes our contribution. Section 8.2 motivates the work and sketches the
intended design flow while Sect. 8.4 shows how the VPs are generated. Section 8.5
demonstrates the method in action using a case study and Sect. 8.7 concludes the
paper.

8.2 Motivation

Using a correct-by-construction design flow for implementing time-critical real-time
applications saves the designer from performing extensive verification efforts. An
input application model with well-defined timing semantics and a predictable plat-
form which provides timing guarantees enable us to formulate a design-space explo-
ration problem which analytically finds the Pareto-optimal solutions in the design
space. However, in design of mixed-critical multiprocessor systems, dynamic explo-
ration of the design space based on simulation methods might still be needed. If there
are soft- or non-real-time1 tasks or applications which are going to be implemented
beside the ones with Hard Real-Time (HRT) requirements, we might prefer to get the
most performance out of the platform for a representative stimuli, without worrying
about occasionally missing a deadline. In such a case, having a fast simulation model
of the system which the embedded software designer can use to explore the candidate
design points is of great help.

Figure 8.1 shows a two-phase scenario for designing a real-time application
with mixed-criticality requirements on top of a multi-core architecture, based on
a platform-based design methodology. First, the designer specifies the desired func-
tionality of the application tasks in a platform-independent modeling framework
with a well-defined semantics and proper support for the intended abstractions lev-
els, possibly using heterogeneous Models of Computation (MoCs). Examples of such
frameworks are Ptolemy [3], HetSC [7], and ForSyDe [1]. A predictable platform
template, which is mainly a set of flexible and characterized architectural compo-
nents plus a set of rules stating how to compose them is chosen as the target of the
mapping. Together with a set of non-functional system constraints such as the max-
imum area and minimum throughput of the system, an analytic DSE and mapping
tool instantiates a platform and maps the functionality of the application onto it.
Depending on the characteristics of the platform components and the constraints, the
DSE tool yields different Pareto-optimal solutions.

In the second phase, a VP of each candidate solution is automatically generated
to further explore the design-space of the software design. Each VP includes the
model of the platform plus the mapping of the input application. The designer, or
an automated design flow, can alter the generated VPs, refine the NHRT tasks, exe-
cute each VP with the stimuli and pick the best candidate for final implementation.
Chapter 9 introduces a similar design flow with mixed-criticality requirements where

1 In other words, Non-Hard Real-Time (NHRT).

http://dx.doi.org/10.1007/978-3-319-06317-1_9
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Fig. 8.1 An example of a two-phase system design scenario for real-time MPSoC design with mixed
time-criticality. First, starting from a functional specification and a platform template, an analytic
design space exploration and mapping tool comes up with solutions that satisfy the given constraints
for the hard real-time tasks. Then, a set of virtual platforms are generated for the candidate solution
to dynamically explore the design space further for non-hard real-time tasks based on simulation

a simulation-based DSE is preceded with an analytic one which prunes the design
space from non-safe design points.

Alternatively, generation of a simulation model out of an analytic model can be
motivated by generating a simulation trace of the application mapped to a platform.
These traces are used for example in simulation-based cost estimation techniques
such as power analysis. Also, the generated VPs can be used to bridge the gap between
the formal analytic design methods and the current industrial practice which is based
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on incremental refinement of a system using available IP blocks, with validation of
the system in each refinement step by simulation.

8.3 Background

This section briefly describes the approach we use for characterizing predictable
platform templates. It is included for clarity and self-containing the paper.

8.3.1 Predictable Component Templates

The framework captures a predictable platform template as a set of predictable com-
ponent templates. Each predictable component template m can provide a specific
service, at a given cost.

8.3.1.1 Characterization

The behavior of m can be tuned by setting a set of variables Vm upon instantiation. For
example, a processing element mpe might be able to run with different frequencies.
In this case, the frequency νfreq ∈ Vpe is a variable of mpe.

Choosing specific values for variables of a component template m restricts the set
of possible values for the other variables. An instantiation constraint set Cm captures
these restrictions for a component template m. For example, setting a variable of the
processing element, which enables its floating point unit, might reduce the maximum
allowed value for the frequency variable.

The main purpose of m is to provide a set of service functions Rm to the application.
In our running example, based on the variable set for the processing element during
instantiation, it can provide an execution time function which gives the execution
time of each task in the input application.

Each component in an instantiated system comes with its own cost. Depending
on the values of a component template variable, the set of component cost indica-
tors Om provide the design space exploration tool with the costs associated with each
component template m. The on-chip area usage of the processing element example
is one of its cost indicators.

Thus, a predictable component template m is characterized using its variables Vm ,
instantiation constraints Cm , service functions Rm , and cost indicators Om .

An allocation of a component template m, denoted by Am , is a copy of its variable
set. If m is allocated n times, then Am = {Am,1, . . . , Am,n} is called the allocation
set of m. An instance of a component template m, denoted by Im , is an assignment
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of values to the variables of one of its allocations while satisfying all of its instan-
tiation constraints. If m is instantiated n times, then Im = {Im,1, . . . , Im,n} is the
instantiation set of m.

8.3.1.2 Examples

Typical components of an embedded platform can be categorized roughly as proces-
sors, interconnections, storage, and I/O-elements. We pick a processing element and
a TDM bus as an example predictable component templates.

Processing element The guaranteed service that a predictable processor provides
for execution of software tasks can be expressed in terms of a Worst-Case Execution
Time (WCET). A processing element which is a candidate for running a set of
computation tasks K is characterized as a processing component template mpe =
(Vpe,∅, Rpe, Ope), where for ∀k ∈ K , we have Vpe = {vfreq}, Rpe = {rwcetk }, and
Ope = {oarea, omemk }. The frequency of the processor vfreq ∈ { f1, f2, . . . , fn} is a
component variable. The processor provides a WCET service rwcetk = WCECpe(k)×

1
vfreq

where WCEC(k) is the worst-case execution cycles for computation task k,
derived from the analysis tool. The constant area cost indicator oarea = pe_area
and the worst-case memory requirement cost indicator omemk = WCMR(k) of each
application tasks complete the characterization of our example.

TDM bus A simple TDM bus mbus is characterized as a component template mbus =
(Vbus, Cbus, Rbus, Obus) where Vbus = {vports, vtbl, vfreq}, Cbus = {cports,tbl}, Rbus =
{rwccts }; ∀s ∈ 1..vports, and Obus = {oarea} in which the component variables are
the number of IP blocks connected to the bus vports ∈ N, the TDM table which
is an array indicating to which component the access is granted in each time slot
vtbl = 〈vtbl,i ∈ 1..vports | i = 1..|vtbl|〉, and the frequency of the bus which is the
inverse of the length of each slot in terms of global time units vfreq ∈ { f1, f2, . . . , fn}.
In addition,

cports,tbl : nvalue(vports, vtbl)

rwccts = |vtbl|
count (vtbl,s)

× 1
vfreq

; ∀s ∈ 1..vports

oarea = vports × (|vtbl| × mem_area+ port_area)

(8.1)

A single instantiated constraint (nvalue) ensures that the number of distinct
values appearing in the TDM is equal to the number of IP blocks connected to
the bus. The WCCT per word is provided by this communication component template
is expressed in terms of the number of associated time-slots that a source has access
to the bus. The chip area used by the bus is the cost indicator in this example where
for each port the amount of logic required for connecting an IP block is assumed to
be a constant port_area and each memory location for the local TDM tables take
mem_area units.
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8.3.2 Predictable Platform Templates

A platform template m introduces a set of template components, their dependencies
on each other, services provided by the platform, and overall system costs.

8.3.2.1 Characterization

In an instance of a platform template, the values assigned to variables and the number
of instances of different components might be interdependent. We capture this fact
using a set of interdependent instantiation constraints C . For example, in a serial
interconnection of IP-blocks using simplex links, the number of instances of IPs is
constrained to be equal to the number of the links plus one.

A platform template m can provide a set of overall cost indicators O that compute
the overall system costs based on the cost indicators of the instantiated component
templates. For example, the overall area usage of a typical MPSoC is the sum of the
area usage of its individual components plus some additional glue logic.

In short, a predictable platform template m presents a set of predictable com-
ponent templates Mm and their exposed services, a set of interdependent instantia-
tion constraints Cm , and a set of global cost indicators Om .

A platform template is instantiated where at least one of its component templates
are allocated and the instantiation set of all of its component templates satisfy the
interdependent instantiation constraints.

8.3.2.2 Example

Assuming the availability of component templates for a predictable processor mpe,
a simplex point-to-point communication link msmp, and a TDM bus mbus (such as
the one presented above), we can characterize a predictable platform template m p =
(Mp, C p, O p) with Mp = {mpe, mbus, msmp}, C p = {cbus,smp, cbus,pe, csmp,pe}, and
O p = {oarea} as

cbus,smp : (|Ambus | = 0) ∨ (|Amsmp | = 0)

cbus,pe : Ambus,1 ◦ vports = |Ampe |
csmp,pe : |Amsmp | + 1 = |Ampe |

oarea = ∑
m∈Mp

∑
A∈Am

A ◦ oarea

(8.2)

In the above platform template, the cbus,smp restricts the interconnection used
in the platform to be either bus-based or composed of simplex links. In the first
case, cbus,pe ensures that the number of processing elements connected to the bus
is equal to the number of bus ports. In serial simplex-based communication, the
csmp,pe constraint establishes a relation among the number of processing elements
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and communication links. The overall cost indicator oarea sums up the individual
area cost of the component allocations in the platform.

8.3.3 The DSE Problem

An analytic design-space exploration problem is formulated as a Constraint Satis-
faction Problem (CSP), which can be solved using a constraint satisfaction toolkit.
A CSP is a set of variables with usually finite domain that are related together by a
set of constraints. The goal is to find the possible values for these variables which
satisfy these constraints, optionally optimizing for an objective function.

The input application is a task graph, which could be converted from an
HSDF graph, and will be mapped to a predictable platform template using the intro-
duced framework. It is modeled as an acyclic task graph with tasks K representing
computations and edges E representing the communication. Each task ki ∈ K is a
triple of decision variables (δk

i , lk
i , ρk

i ), where δk
i is the time ki is scheduled to start,

lk
i is the WCET of it and ρk

i is the processing element onto which it is mapped.
Similarly, each edge ei, j ∈ E from ki to k j is defined as a triple (δe

i, j , le
i, j , ρ

e
i, j ),

which represents the scheduled time, execution time, and the assigned communica-
tion element of the communication represented by ei, j .

Apart from the constraints coming from the platform, there are three classes
of constraints which together form the DSE problem. The first are the constraints
coming from the application logic, which for example respect the causal precedence
between the nodes and edges of the graph after the mapping and scheduling. The
second class are mapping constraints which for example state that not more than a
single task can run on a node at any point in time. The third class are the additional
constraints provided by the designer, such as the maximum number of available
processing cores.

The output of the DSE is the instantiation set of all component templates Im ,
mapping of the application tasks ρk

k and communication edges ρe
e as well as their

scheduled start times δk
k , δe

e .

8.4 Generating Virtual Prototypes

Based on the characterization framework and the analytic design-space exploration
problem introduced in Sect. 8.3, this section proposes a flexible method for automatic
generation of high-level simulate-able transaction-level models for predictable plat-
forms. The designer is liberated from providing an extra library of transaction-level
models for the target platform. Model generation and their timing annotation is only
based on the information already provided in the characterization framework.
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8.4.1 Overview

In this section, we describe different aspects of the generated VPs shortly followed
by the method used to generate the VP.

8.4.1.1 Abstraction

Virtual prototypes can be in different levels of abstraction each for a specific purpose.
TLM-2.0 suggests two modeling styles the Loosely Timed (LT) and Approximately
Time (AT). The LT style typically uses the blocking transport interface with timing
annotations and is sufficient for early software development. AT models use the non-
blocking transport interface, include more phases in addition to timing annotations,
and can be used for more detailed cycle-accurate architectural exploration. This work
focuses on generation of LT models.

8.4.1.2 Integration into the Design Flow

As shown in Fig. 8.1, the VP generation happens after the analytic DSE. The inputs
to this step are the functionality of the application, abstract platform characteristics,
and the output of the analytic DSE which consists of an instantiation of the platform,
mapping of the applications tasks to it and a valid schedule for their execution. For
our purpose, only the ordering of the tasks running on a processor is sufficient as the
schedule.

Once the LT virtual prototypes are generated they can be used for implementing the
dummy tasks (if any) which represent non-hard real-time tasks, and obtaining other
simulation-related information such as execution trace of the system. Also, LT VPs
can be refined further by replacing the system components with more accurate ones,
moving towards an AT model and finally the implementation of the systems.

8.4.1.3 Semantics

The platform executes the input task graph of the application periodically, where each
node runs its sub-graph in a self-timed fashion [10]. This means that the tasks on
each node are invoked based on the order defined by the schedule and the availability
of their input tokens. Computations on each node are performed sequential, but are
parallel to inter-node communication, possibly implemented using Direct Memory
Access (DMA) cores on each node.
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Fig. 8.2 A virtual processor
and its software layers. The
shaded layers are emulated
by the SystemC engine in our
generated VPs

8.4.2 Virtual Processors

A virtual processor is a simulation primitive which implements execution services
provided to the system applications. It is used to simulate the component templates
which provide the WCET service to the application and are treated as processing
nodes in the design flow. It represents a processing node in the hardware architecture
consisting of a processing core such as a RISC, VLIW, DSP, or a HW accelera-
tor core together with local memory, and peripherals such as interrupt controller,
DMA engine, etc.

Figure 8.2 represents a virtual processor and its software layers. On the top,
the application tasks defined in the original application model which are mapped
to this node and scheduled in the analytic DSE phase are provided for execution.
These applications interface the hardware platform via a Hardware-dependent Soft-
ware (HdS) API, or middleware layer which provides high-level and architecture-
independent communication primitives such as send_token and recv_token.
An RTOS/scheduler layer provides the basic services required for defining the appli-
cation tasks, providing communication mechanisms between the tasks, and perform-
ing context switch among them. The Hardware Abstraction Layer (HAL) or device
drivers provides simple communication and I/O facilities. In our generated VPs, all
the layers below the middle-ware layer (shaded boxes in Fig. 8.2) are abstracted and
implemented using SystemC primitives.

A SystemC process is used to run each application task,sc_fifos with blocking
semantics implement inter-task communication, and the SystemC kernel performs
the context switching. The processes contain a loop in which, following the seman-
tics of the application model, they read their inputs before and write their results
after their execution from/to the corresponding buffers. They are also annotated with
their WCET by advancing the local processor time. Application tasks mapped to a
processor must run sequentially, so, appropriate wait statements for synchronization
with local processor time are added after execution of each task and before writing
out its results to mimic sequentiality. To model the overlapping computation and
communication, a separate SystemC process is added which transmits the computed
results and runs in parallel with other tasks. Data receiving logic is implemented by
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Fig. 8.3 Pseudo-code for generating the virtual prototype

implementing the b_transport method as part of the blocking transport inter-
face of TLM-2.0. This method decodes the address from the generic payload of the
incoming transfers and puts the data on the appropriate input buffer of the corre-
sponding task input. Each VP has a simple initiator and a target socket provided by
the convenient sockets of TLM-2.0.

8.4.2.1 Generation

The GenProc procedure in Fig. 8.3 shows the pseudo-code for generating a virtual
processor. Having a characterized processing component template m, its instantia-
tion Im , and all application tasks Km mapped to it, the skeleton for a virtual proces-
sor is generated first. For each mapped application task an sc_process and for
each of its communication signals an sc_fifo is added. The WCET of each task,
derived from the characterization framework and the instantiation of the processor, is
annotated. The encoding logic for outgoing transfers and the decoding logic for the
incoming transfers are added to the DMA process and the b_transport method,
respectively, using generic payloads.
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8.4.3 Interconnection

As stated before, we use the interoperability layer of TLM-2.0 for the communica-
tion between the components. A generic interconnection model is used to simulate
the component templates which provide the WCCT service to the application and
are treated as communication links (e.g., TDM bus, dedicated simplex link) in the
design flow. All predictable interconnections are modeled in the generated virtual
platforms as modules which implement the blocking interfaces via initiator and target
sockets. Based on the communication service delay that they imply, they annotate the
blocking transport calls on the forward path with the worst-case execution time that
each transport suffers. The tagged simple sockets provided by the convenient sockets
and the target buffer address encoded in the generic payload are used to distinguish
different transport paths.

8.4.3.1 Generation

The GenComm procedure in Fig. 8.3 shows the pseudo-code for generating an inter-
connection component. For each communication link mapped to this component
the processing components to which the source and target nodes are mapped are
extracted and added to the set of source and target components. The skeleton code
for the interconnection component is generated. For each processing component in
the source/target set a simple tagged initiator/target socket with the id of the process-
ing component is added to the skeleton. The blocking transport method of the target
sockets are added with the logic to decode the incoming transports and forward it
with the WCCT of the link annotated.

8.4.4 Top Level

The pseudo-code for generating a virtual prototype is presented in the GenVP pro-
cedure of Fig. 8.3. This step is trivial and comprises the individual generation of the
virtual processors and interconnections. Binding of the sockets is based on mapping
of the communication links and follows the same logic described in the generation
of interconnections.

The generated code compiles against the TLM-2.0 library and simulates the sys-
tems with the semantics of the application specification and timing characterization
of the framework introduced in Sect. 8.3.
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8.5 Case Study

The following section will present the application of the introduced design flow
using the example of a real-time image compression algorithm to be implemented
on a predictable hardware platform.

8.5.1 Realization of the Design Flow

The platform characterization is captured as an XML+mzn format. The XML part
includes all the characterization elements except the implementation of the con-
straints, including the service and cost functions. The mzn file captures the constraints
as predicates of the constraint programming language MiniZinc [11].

The above format is used to produce a constraint-based formulation of a DSE prob-
lem as a MiniZinc model. A generic constraint programming solver kit Gecode [5]
is used as the backend to solve the DSE problem.

8.5.2 The Application

The implemented example is a parallel implementation of a JPEG compression algo-
rithm, modeled as an HSDF process network using ForSyDe-SystemC [1]. A possible
application, shown in Fig. 8.4a, is in the real-time compression of a collection of live
camera images. As can be seen in the example, individual camera feeds occasionally
turn black if the sending camera is shut off. This behavior is simulated via a separate
NHRT task that is disconnected from the encoder task graph whose functionality and
implementation will be refined on the generated VP.

The encoder consists of a source task (RB) reading blocks of 16×16 pixels of the
combined input images which it sends to a variable number of PBs that simultane-
ously encode these input blocks into JPEG bit streams. To compress the image blocks,
the processing elements employ color conversion, chroma down-sampling and sub-
sequent compression of each color component using a discrete cosine transformation
and entropy coding, making them the most computationally intensive tasks. These
compressed bit streams are then sent to a sink task (WJ) concatenating them into
the compressed JPEG output image. This structure, using four block encoding tasks,
can be seen in Fig. 8.4b. Due to the implementation of the application as a network
of side-effect free processes using ForSyDe, computation and communication are
independent from each other and can be analyzed separately.

The developed process network has been functionally verified by simulation of
the ForSyDe-SystemC model and converted into a task graph and the accompanying
C code describing the functionality of each block.
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Fig. 8.4 Real-time JPEG encoder example: a The collection of four camera input streams to be
compressed by the real-time JPEG encoder example. b The task graph of the developed parallel
JPEG encoder application. c The mapping of the application to the target platform

8.5.3 The Platform

The target platform is derived from an FPGA-based predictable hardware archi-
tecture and has been captured as a platform template, as explained in Sect. 8.3. Its
individual components are a set of processing elements and two possible forms of
interconnection structures: a TDM bus, connecting all processing elements, and sim-
plex FIFO buffers, each connecting a pair of processing elements. Listing 8.1 shows
the XML file used for the experiments performed in this section.

In this example, the component cost indicator pe_area of the processing ele-
ments is 1200 Logic Elements (LEs) at a frequency of 50 MHz while the cost indi-
cators port_area and mem_area of the TDM bus are 100 LEs and 10 LEs,
respectively. As it is possible to tightly predict execution time estimates for applica-
tions running on the platform, the SWEET tool suite [4] has been used to analyze
the worst-case execution time bounds of each task in the application graph. These
timing bounds of the application relating to the platform template can be found in
Table 8.1.

8.5.4 Results

The parameters of the platform, the task graph as well as the task metrics given in
Table 8.1 have been converted into a DSE problem using the developed script and
solved using an analytic DSE tool while aiming for a solution yielding minimal
FPGA resource usage.
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Listing 8.1 The captured platform used in the case study. Constraints appear in a MiniZinc file

1 <platform name="simple">
2 <component name="pe">
3 <comp_parameter name="cycle" ↵

domain="{10 ,20 ,40}" />
4 <comp_service service="wcet">
5 <application_arg name="mapped_task" ↵

domain="tasks"/>
6 </comp_service >
7 <comp_cost cost="area" />
8 </component >
9 <component name="smp">

10 <comp_parameter name="cycle" ↵
domain="{10 ,20 ,40}" />

11 <comp_parameter name="depth" domain="1..128" />
12 <comp_service service="wcct">
13 <application_arg name="mapped_edge" ↵

domain="tasks"/>
14 </comp_service >
15 <comp_cost cost="area" />
16 </component >
17 <component name="bus">
18 <comp_parameter name="cycle" ↵

domain="{10 ,20 ,40}" />
19 <comp_parameter name="ports" domain="1..32" />
20 <comp_parameter name="tbl" ↵

domain="1.. n_max_insts" size="n_max_insts" ↵
/>

21 <comp_inst_cons constraint="ports_tbl" />
22 <comp_service service="wcct">
23 <application_arg name="mapped_edge" ↵

domain="tasks"/>
24 </comp_service >
25 <comp_cost cost="area" />
26 </component >
27 <plat_inst_cons constraint="bus_or_smp" />
28 <plat_inst_cons constraint="bus_ip" />
29 <plat_inst_cons constraint="smp_ip" />
30 <plat_service service="wcet">
31 <comp_service service="pe_wcet" />
32 </plat_service >
33 <plat_cost cost="area" />
34 </platform >



162 S.H. Attarzadeh Niaki et al.

Table 8.1 Worst-case
execution cycles of the
three tasks in the application

Task WCEC

read_bitmap (RB) 450,000

process_block (PB) 3,600,000

write_jpeg (WJ) 90,000

8.5.4.1 TDM-Bus-Based Solution

The first proposed solution allots four processing elements to execute the application
with a mapping shown in Fig. 8.4c, connected via a TDM bus. The task reading
the input frames and one image block compression task are mapped to the first
processing element while the remaining three conversion tasks are each mapped
to a single processing element. The output writing task is mapped to the second
processing element to make use of the parallelism of the application. The cost of this
platform instance is 5,360 LEs. Next to this mapping solution, an execution schedule
has been generated by the DSE tool, which predicts an execution time of 81,950µs
of a single iteration of the task graph.

Virtual Prototype

Finally, a virtual prototype of the platform instance has been generated, onto which
the functionality of the application has been ported. Using this solution, it is possible
to simulate the execution of the application using the timing parameters of the specific
platform instance suggested by the DSE tool and, if necessary, modify elements to
improve upon the solution. The execution of the application on the VP using an
input image collection of 425 × 640 pixels yields a network graph iteration length
of 72,900µs while performing 1,564 TLM transfers across the TDM bus.

8.5.4.2 FIFO-Based Solution

The second proposed solution again allots four processing elements to execute the
application which are connected by three FIFO buffers.

Mapping and Execution Time

The proposed mapping solution is the same as in the result discussed above, while the
cost of the platform instance is 5,280 LEs and the schedule predicts an application
iteration time of 79,000µs. Table 8.2 summarizes the results for comparison.
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Table 8.2 Worst-case predicted and measured results of running the application

Scenario Predicted (µs) Measured (µs) Transactions

Bus-based 81,950 72,900 1,564

FIFO-based 79,000 71,500 1,564

Virtual Prototype

Simulation of the application on the VP yields a network graph iteration length
of 71,500µs while performing the same number of 1,564 TLM transfers across
the FIFO instances. For both of the generated VPs the simulation time is within the
predicted time by the analytic DSE. The observed timing difference is due to the
necessary pessimism is the DSE logic and also potential corner cases not revealed by
the example’s stimuli. This allows for further refinement of timing and functionality
of both the application itself as well as the NHRT tasks in the system. For reader’s
reference a simplified version of the generated code for the bus interconnection is
presented in Listing 8.2. The TDM table and processor frequency variables have
been assigned and the WCCT service characterization is used to annotate the timing
of the blocking transports (Sect. 8.3).

8.6 Related Work

Several approaches for generating MPSoC VPs based on high-level specifications
have been proposed [15, 19]. Popovici et al. [14] introduce four abstraction levels to
be used in the process of programming MPSoC. Starting from a functional descrip-
tion of the application and a global view on the architecture, a system architecture
model is generated after partitioning and mapping. By mapping the communication
to hardware resources using a HdS API, a virtual architecture model is obtained as
the second step. Adapting the software to the selected communication architecture
and adding the OS functionality results to a transaction accurate architecture while
the adaptation to specific processor and memories by adding the hardware abstrac-
tion layer and instruction-set simulators yields a virtual prototype. The introduced
flow requires available simulation models of each hardware type and the software is
adapted and verified in each step by simulation.

Kempf et al. [9] propose a design flow, which combines analytic design-space
exploration with a simulation-based approach. After an early DSE based on statistical
timing information of the tasks, architectures with their temporal and spatial mapping
and schedule is generated. Afterwards, abstract simulation models are generated and
execution time of software blocks are annotated to them in different levels such
as statistical, source-level, or implementation-based to be able run the software on
virtual processing units. In contrast to the above approaches, our VP generation does
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Listing 8.2 Generated VP for the predictable bus

1 const unsigned int NR_OF_INITIATORS = 4;
2 const unsigned int NR_OF_TARGETS = 4;
3
4 class bus1 : public sc_module
5 {
6 ...
7 public:
8 target_socket_type ↵

target_socket[NR_OF_INITIATORS ];
9 initiator_socket_type ↵

initiator_socket[NR_OF_TARGETS ];
10
11 SC_HAS_PROCESS(bus1);
12 bus1(sc_module_name name) : sc_module(name)
13 {
14 for (unsigned int i = 0; i < NR_OF_INITIATORS; ↵

++i)
15 target_socket[i]. register_b_transport(this , ↵

&bus1:: initiatorBTransport , i);
16 }
17 ...
18 void initiatorBTransport(int SocketId ,
19 transaction_type &trans ,
20 sc_time &t)
21 {
22 initiator_socket_type *decodeSocket;
23 unsigned int dest_id = ↵

decode(trans.get_address ());
24 decodeSocket = &initiator_socket[dest_id ];
25 trans.set_address(trans.get_address() & ↵

getAddressMask(dest_id));
26
27 t += trans.get_data_length () / 4 *
28 sc_time(wcct(SocketId ,dest_id >>8), SC_NS);
29 (* decodeSocket)->b_transport(trans , t);
30 }
31 private:
32 vector <unsigned int > v_tbl = {0,1,2,3};
33 unsigned int v_cycle = 20;
34 ...
35 int wcct(unsigned int s, unsigned int d)
36 {
37 return v_tbl.size() * v_cycle /
38 count(v_tbl.begin(), v_tbl.end(), s);
39 }
40 };
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not require any available TLM model of the components and the generation can be
fully automated. Also, valid instances of the platform are instantiated automatically
during the analytic DSE phase based on the instantiation constraints introduced in
the characterization framework.

The Sesame approach [13] is a simulation-based design-space exploration with
the simulation models composed of applications as Kahn process networks, archi-
tecture as a discrete-event model, and a dataflow-based mapping layer which drives
the architecture based on simulation traces of the application. Unlike Sesame, our
approach is based on the interoperability layer of TLM and the generated VPs can
be connected to/replaced by the available IPs without extensive adaptation effort.

A highly relevant work is the SystemCoDesigner approach [6]. Starting from a
SystemC-based executable formal application model, multi-objective evolutionary
optimization is used for analytic DSE. Similar to our approach, generation of VPs
for simulation-based exploration is also supported which uses virtual processing
components for processing nodes. There is no explicit support for generation of other
IPs, including interconnections. In contrast, we permit a more complex modeling of
the services and costs for each IP.

The readers are encouraged to consult Chap. 9 for detailed presentation of a design
flow for mixed-critical systems which can benefit from the automatic generation of
simulation models presented in this work.

8.7 Conclusion

Virtual prototypes are a precious tool for validation of embedded real-time systems
during their design flow but they are time-consuming to generate. We have proposed
a method for automatic generation of VPs in a combined analytic/simulation-based
design flow for predictable platform templates. The core enabler of our method is a
framework for characterization of predictable platform templates which captures a
set of flexible predictable component templates, their instantiation rules, the services
that they provide to the application and their costs. Starting from a platform template
captured by the characterization framework and a real-time application captured as a
task graph, an analytic design-space exploration is performed which gives a (set of)
valid platform instance(s) together with the mapping and schedule of the application
on it. For each instance, a simulatable VP is generated which can be used for

1. execution of the applications on the platform to get simulation traces;
2. development of software code for non-hard real-time tasks; or
3. further refinement to a lower-level simulation models and implementation.

These VPs are valid instances of the platform because they have already satisfied
the instantiation constraints in the analytic DSE phase and they are annotated with
the timing information captured as service functions in the platform characterization
template. The generated VPs are based on the interoperability layer of TLM-2.0 and
can be connected to, or refined by partially replacing available IP.

http://dx.doi.org/10.1007/978-3-319-06317-1_9
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A limitation of this approach is that it can be used for predictable platforms, which
provide static timing guarantees to the applications.
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Chapter 9
Combining Analytical and Simulation-Based
Design Space Exploration for Efficient
Time-Critical and Mixed-Criticality Systems

Fernando Herrera and Ingo Sander

Abstract In the context of the design on time-critical systems, analytical models
with worst case workloads are used to identify safe solutions that guarantee hard
timing constraints. However, the focus on the worst case often leads to unnecessar-
ily pessimistic and inefficient solutions, in particular for mixed-critical systems. To
overcome the situation, the paper proposes a novel design flow integrating analytical
and simulation-based Design Space Exploration (DSE). This combined approach is
capable to find more efficient design solutions, without sacrificing timing guarantees.
For it, a first analytical DSE phase obtains a set of solutions compliant with the crit-
ical time constraints. Search of the Pareto optimum solutions is done among this set,
but it is delegated to a second simulation-based search. The simulation-based search
enables more accurate estimations, and the consideration of a specific (or an average-
case) scenario. The chapter shows that this can lead to different Pareto sets which
reflect improved design decisions with respect to a pure analytical DSE approach,
and which are found faster than through a pure simulation-based DSE approach. This
is illustrated through an accompanying example and a proof-of-concept implemen-
tation of the proposed DSE flow.

Keywords Design Space Exploration (DSE) · Joint Analytical and Simulation
Based DSE · Time critical systems · Mixed-Criticality System (MCS) · Embedded
system design · Real time system design · Constraint-programming · Predictable
systems · Performance estimation · Time Division Multiplex (TDM) bus · Opti-
mization techniques · Formally-based design

9.1 Introduction

Real-time systems are ubiquitous and appear in an important set of practical
application domains. A main characteristic of real-time systems is that their cor-
rect behaviour depends on the fulfilment of constraints on their time performance,
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e.g., after considering metrics like response time, throughput, etc. The criticality of
such constraints depends on the application domain. In aeronautics, automotive, or
medical domains [8], time constraints can be safety-critical, and related to a high
Safety Integrity Level (SIL) [16], while, in consumer electronics, real-time constraints
might not guarantee safety, but a minimum Quality of Service (QoS) to ensure the sur-
vival of the system in the market. Moreover, mixed-criticality systems have appeared
as a consequence of the integration of applications and functionalities with different
criticality on their associated performance constraints [8, 14].

Design Space Exploration (DSE), a central design activity of embedded system
design in charge of finding an efficient solution given the design constraints and opti-
misation goals, has to consider these levels of criticality on performance constraints.
DSE has become a high and active research field. In [19], two main approaches
to DSE are distinguished, analytical and simulation-based DSE. In an analytical
approach the design problem is abstracted into a formal problem, in order to enable
the application of analysis techniques [21]. Analytical approaches are convenient
for a first and fast filtering of the design space [19]. However, analytical approaches
have also limitations. Expressing the design problem of complex systems might not
be straightforward, and for real-time design, the consideration of pessimistic work-
loads can lead to inefficient solutions. Simulation-based performance analysis can
tackle more complex platform models and performance metrics, and provide more
accuracy for typical use cases, provided a good model of the environment. Moreover,
simulation-based performance analysis considers the dynamism of the application.
In order to combine the advantages from both approaches, Joint Analytical and
Simulation-based Design Space Exploration (JAS-DSE) has been proposed in [19].
In most cases, a two-phase approach is proposed, where in a first step simulation is
used, to get traces and/or perform a calibration before a second analytical phase [19].

This chapter revises the novel JAS-DSE, or combined-DSE, for efficient design of
time-critical systems proposed in [13]; updates the related work to consider a recent
and close proposal [17]; extends the experimental section to show the speed-up; and
adds a section where the limitations of the shown proof-of-concept and thus the
possible extensions of the proposed framework are introduced.

The proposed flow consists of a first analytical DSE phase, relying on constraint
programming and worst-case estimations. The goal of this phase is to filter the design
space and get a set of safe solutions. These solutions are safe in the sense that the
fulfilment of the critical time constraints is ensured at a certain level of criticality. The
actual safety level depends on the predictability of the platform executing the critical
part, and on the technique for evaluating the worst-case workloads. In a second phase,
the set of safe solutions is evaluated through an executable performance model of
the system, which is stimulated by input traces reflecting the most likely or a specific
working scenario for the system. The consideration of that scenario, and the fine
granularity in the performance assessment thanks to simulation and basic-block level
annotations enables an accurate finding of the Pareto solution set. This Pareto set is
in general different to the one that would be found only by means of the analytical
phase based on worst-case workloads.
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The rest of the chapter is structured as follows. Section 9.2 discusses the related
work. Section 9.3 formulates the problem and Sect. 9.4 states the generic flow. Then,
Sect. 9.5 presents an illustrative DSE problem and a proof-of-concept instance of the
combined-DSE flow based on open frameworks and easy to reproduce. Section 9.6
discusses the main limitations of the proof-of-concept example in order to introduce
future extensions of this work. Finally, Sect. 9.7 provides the main conclusions.

9.2 Related Work

Simulation-based methods have been extensively applied for performance analysis
and so for DSE. A summary of them can be found in [19]. DSE frameworks such as
Sesame [27, 36] or Multicube [31] have proposed a clear separation among appli-
cation, platform architecture, and mapping in the system description, and moreover,
the separation of the system simulatable performance model from the exploration
tool, e.g., Multicube Explorer [39], which steers the search. Well defined interfaces
and configurable performance models which avoid re-modelling and re-compilation
every DSE iteration, and fast performance assessment technologies, such as native
simulation [28, 37], have enabled simulation speed-ups of orders of magnitude, which
has been exploited in frameworks like Multicube-SCoPE [25]. The UML/MARTE
COMPLEX methodology [15] enabled a model-driven front-end for DSE.

Several analytical approaches have been proposed so far. They have abstracted
applications and platform resources to different formalisms, such as network calcu-
lus [35], conditional process graphs [7], or workload models using formal schedul-
ing analysis techniques and symbolic simulation, such as Sym/Ta [12]. Real-Time
(HRT) theory [6] has traditionally addressed the analysis of time critical systems
by relying on worst-case workloads, e.g., Worst-Case Execution Times (WCET)
[38]. Similarly, the consideration of hard-real time constraints in analytical DSE
approaches has been based on worst-case workloads. Due to the NP-complex nature
of the mapping and scheduling problem, earlier approaches tackled the problem in
separated phases [32], which prevented completness. In [33] each implementation
found is suited to a specific scenario. Constraint-based Programming (CP) has been
proposed in [3] to achieve completeness, and to separate the modelling of the DSE
problem from the solver engine, which can be independently optimised. In [22], an
analytical DSE is performed at design time to find a set of Pareto optimum map-
pings considering a throughput-energy trade-off, and which are used by a dynamic
scheduler at run-time.

Relying on sound modelling formalisms has been common to both types of DSE
approaches. Most of the aforementioned analytical approaches [3, 22, 32] have
relied on the Synchronous Data Flow (SDF) or the Homogeneous Synchronous
Dataflow (HSDF) [24]. The SDF MoC provides functional determinism by construc-
tion and analysability for deciding deadlock protection and other properties, such as
boundeness. Later approaches [33] have relied on more generic models, e.g. the
Scenario-Aware SDF (SA-SDF) MoC [34]. However, simulation-based approaches
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are capable to cope with more general formalisms, e.g., Kahn Process Networks
(KPNs), as in [27].

In order to achieve the advantages from analytical and simulation based appro-
aches, e.g., evaluation speed and accuracy, JAS-DSE approaches have been pro-
posed [19]. A common JAS-DSE approach is to use simulation traces to compute
the workloads which are later used in an analytical phase. In [23], simulation is used
to obtain traces of the computation and communication events of the application
which are abstracted as an acyclic communication analysis graph (CAG), and which
is later used for performance analysis. Big speed-ups suitable for DSE are obtained.
However, the approach does not link to an automatic exploration and/or optimisation
mechanism. The methodology in [9] achieves sub-optimal configurations of sepa-
rated cache memory by using a sensitivity-based optimisation. The approach relies
on a system-level simulation environment and on an analytical model of the energy
consumption for obtaining the traces. The approach in [21] couples network calculus
event streams with events in a SystemC simulation environment through a set of con-
verters. The approach speeds-up the evaluation of a configuration, since not all the
system has to be simulated, making it more suitable for DSE. This approach is focused
on the combination of analytical and simulation-based techniques for enhancing per-
formance estimation, e.g., [21, 23], and not in defining a DSE flow, stating how to
integrate search and optimization techniques with performance assessment.

A recent work [17] has got much closer to [13], since it also proposes a two-
phases approach. A relevant distinction with the aforemetioned JAS-DSE approches
is that the proposed approach places the analytical phase in first place. In fact, in [17],
the pruning of the design space is totally delegated to the analytical phase, which
relies on a set of heuristic-based algorithms for producing the potential HW/SW
partition, task clustering and mapping. All the solutions derived from the analytical
phase are later assessed by means of a simulation framework. The methodology
in [17] supports the modelling of a virtual plaform with a shared-memory based
mechanism.

In contrast, the methodology proposed in [13], and revised in this chapter, tar-
gets the design of more efficient real-time systems or systems where certain time
constraints are critical. For it, the main objective of the analytical phase is to dis-
card any solution which cannot fulfill hard or critical time constraints. At the same
time, the analytical phase will perform a fast pruning of the design space. However,
it might not prevent a large set of solutions compliant with the critical constraints,
making unfeasible an exhaustive simulation of every safe solution. On one side, this
is an issue, on the other side, getting a large set of solutions compliant with the
critical time constraints raises the chances for finding efficient solutions in the later
simulation-based phase. This explains the convergence of two specific characteristics
in the proposed approach, which are at the same time two main differences versus
the approach in [17], namely: an analytical phase based on constraint-programming,
which preserves the possibility to obtain a complete set of compliant or safe solutions;
and an exploration tool in the simulation-base phase, to cope with the simulation-
based exploration of large safe solution sets. To feed the former analytical phase with
worst-case workloads, a third and previous phase, based on simulation traces, as in
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[9, 23], or as it is later shown in Sect. 9.5 in the proof-of-concept example, can be
added. However, the proposed approach does not fix a specific method.

9.3 Problem Formulation

Let a system S be composed of a set of applications A running on a set of plat-
form resources R; a set of performance metrics P associated to the system; and a
set of constraints on performance and resources Cr(P) ∪ Cr(R). Let consider the
spliting of P into a specific set of time-related metrics T |T ∈ P , plus a remain-
ing set of performance metrics P1 ∪ P2, such P = T ∪ P1 ∪ P2. Notice that
P1 ∪ P2 can contain also time-related metrics, and that the set of constraints on
T , Cr(T ), fulfills Cr(T ) ⊆ Cr(P). Finally, let consider also a set of performance
goals G(P). S is time critical because ∃Cr(T ) which fulfillment has associated a
high criticality, denoted χ(Cr(T )) = χH I . Moreover, S is a mixed-criticality sys-
tem if there are additional performance constraints with a lower criticality, denoted
χ(Cr(P1)) = χ(Cr(P2)) = χL O . Then the DSE problem stated consists in finding
an efficient set of solutions (E SS), ideally a Pareto set, according to G(P), ensuring
the fulfillment of Cr(T ) for a χH I criticality level and of Cr(P1) ∪ Cr(P2) for a
χL O criticality level.

9.4 Proposed Flow

The combined-DSE approach proposed is sketched in Fig. 9.1. In a first step, a Worst
Case Analytical Design Space Exploration (WCA-DSE) filters the original design
space, to get the set of Safe Solutions (SSs), i.e., which fulfills Cr(T ) at the χH I criti-
cality level. That means an assessment of the performance based on worst-case work-
loads associated to a high criticality level, WCW (χH I ). Here, WCW (χ) denotes
a Worst-Case Workload for a given criticality χH I level. Typically, the higher the
criticality, the more pessimistic the WCW [1]. The criticality strongly determines the
performance estimation technique used to obtain the WCW (PET1 in Fig. 9.1), which
has to take into account possible variations or refinements on the platform architec-
ture, and the dynamism, that is, the data and state dependency of the workload figures
to be associated to a piece of code.

An analytical description of the DSE problem (CP in Fig. 9.1) is captured in a
declarative way, by relying on a constraint-programming language. Such description
contains different constraints which define valid implementations of the system by
considering, for instance dependencies on the applications; the limitations on avail-
able resources, C(R); and on the feasible architectural mappings. The CP-model
will also capture an analytical performance model for time-related metrics, e.g.,
throughput and response times; and their associated constraints Cr(T ). Support of
constraints on different types of time performance metrics, such as throughput and



172 F. Herrera and I. Sander

Fig. 9.1 Proposed JAS-DSE flow

response times, enable to tackle in an unified way design problems which have
been separately addressed so far, e.g., throughput optimisation and hard-real-time
scheduling.

A solver (Sol. in Fig. 9.1) provides all the solutions compliant with the analytical
model, that is, the Safe Solution (SS) set. If the SS set on the original Cr(T ) is too
big for the second phase of the proposed approach, a reduced set of safe solutions
(RSS) of size size(RSS) < size(SS) can be produced. For it, the original time-
critical constraints Cr(T ) can be tightened, settling a more demanding Cr ′(T ) set.
Furthermore, more constraints on an additional set of performance metrics P1, can
be used, whenever such constraints can be also stated in an analytical form and
reflected in the CP program. The additional constraint set Cr(P1) can be tuned
to yield the targeted size(RSS). Constraint-based programming frameworks enable
optimisations, which can be used to guide the production of the RSS.

In the proposed approach, a second Scenario-Aware Simulation-based Design
Space Exploration (SAS-DSE) phase is applied in order to obtain the Pareto optimum
solutions among the SS set, or among the RSS if it is the case. In its simplest form,
the SAS-DSE consists in performing a simulation-based performance estimation of
each solution of the SS/RSS set. For it, a configurable and executable performance
model (CEPM) of the system, coherent with analytical model, is built up, and linked
to an executable environment model. The environment model is in charge of feeding
the most likely stimuli (scenario) which the system will receive in its working envi-
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ronment. The CEPM is configurable in the sense that the generation of a simulatable
model of a specific solution only requires to read the specific values of the explored
variables which define such solution, without requiring manual re-coding and re-
compilation. This speeds-up each iteration of the DSE loop in the SAS-DSE phase.

The methodology is not tied to a specific simulation-based performance assesment
technique (PET2 in Fig. 9.1). For fast simulation vs accuracy trade-off, the use of
native source simulation integrating performance annotations at basic block level
[28] is proposed. Resource constraints Cr(R) and critical constraints Cr(T ) used
in the WCA-DSE phase are also an input to the SAS-DSE phase, which has to
validate them. The result of the SAS-DSE is a new estimation for the performance
metrics associated to the solutions of the SS (or RSS) set. In general, these new
estimations will be less pessimistic and will involve a shift in the position of each
solution in the Pareto diagram. Therefore, the application of the SAS-DSE phase
is capable to show more accurately and for a given scenario the most efficient and
yet safe solutions. Such set of solutions is called Efficient Safe Solutions (ESS) set.
Moreover, additional goals on the T set, G(T ), can be stated, which would make
more likely the consideration of solutions which were not optimum after the WCA-
DSE phase. The simulation approach facilitates the consideration of performance
metrics P2|P2 ∈ P of different nature (time, energy, power, etc.), and therefore a
wider set of constraints Cr(P) = Cr(T ∪ P1 ∪ P2), and more general goal functions
G(P) in the SAS-DSE phase. Finally, the proposed flow contemplates the integration
of an Exploration Tool (ET) in the SAS-DSE phase. An ET in the SAS-DSE phase
makes it feasible to cope with potentially large safe solution sets, and thus to apply
the WCA-DSE analytical phase considering only the highly critical constraints. This
way, the chances for finding efficient solutions in the SAS-DSE phase are maximized.

9.5 Proof-of-Concept DSE Problem and Flow
Implementation

9.5.1 DSE Problem Model

Fig. 9.2 sketches a proof-of-concept system model. The application model abides
a Synchronous Dataflow (HSDF) MoC [24]. An application A is partitioned into
a set of N ∈ N side-effect free functions fi , which are associated to correspond-
ing tasks or actors ai (nodes in Fig. 9.2). A N × N dependency matrix D reflects
the dependencies among actors (shown as solid directed edges in Fig. 9.2). In D,
di j = 1|di j ∈ D means that ai has to execute before a j , while di j = 0 means that
there is no dependency. Such dependencies can reflect either a data-dependency or
an explicit synchronization, but the model does not capture or involves a specific
implementation.

For instance, Fig. 9.2 application can be represented as:
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Fig. 9.2 System model

A = {a0, a1, a2} = {0, 1, 2} (9.1)

D =
∣∣∣∣∣∣

d00 d01 d02
d10 d11 d12
d20 d21 d22

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 1 0
0 0 0
0 0 0

∣∣∣∣∣∣
(9.2)

Eq. (9.1) assigns unique integer identifiers to the actors. Equation (9.2) reflects a
dependency matrix showing a dependency between a0 and a1.

The platform model comprises a HW layer and a SW layer. The HW layer consists
of a finite set of processing elements (P E j ), where the working frequency of each PE
( f req j ) can be customized. A frequency vector f req is used to model it, and a finite
range of frequencies is assumed for each f req j for simplicity. The SW platform is
composed of a finite set S of static schedulers (s j ). In this example, we will assume
that each PE will run only one static scheduler associated to a single PE. Therefore,
there is a one-to-one association among schedulers and PEs, which match in number
(NS = NP E ). For instance, the HW/SW platform of Fig. 9.2 can be represented as
follows:

S = {s0, s1} = {0, 1} (9.3)

P E = {P E0, P E1} = {0, 1} (9.4)

f req = { f req0, f req1} = {100, 50} (9.5)

Eqs. (9.3) and (9.4) assign unique integer identifiers to scheduler and PE instances.
Equation (9.5) configures PE working frequencies. The architectural mapping defines
the association of application tasks to schedulers, or equivalently in this case,
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to processing elements. The mapping can be expressed as a matrix M , where
mi j = 1|mi j ∈ M represents allocation of an actor ai ∈ A to a scheduler s j ∈ S,
while mi j = 0 means that there is no allocation. Once the mapping is defined, the set
of actors assigned to a scheduler is specified, and a design solution has to be com-
pleted by defining the static schedule sc j for each scheduler s j . For a HSDF Graph
(HSDFG), the size of sci matches the number of actors allocated to the scheduler.
For the Fig. 9.2 example, mapping and static schedule solutions can be represented
as follows:

M =
∣∣∣∣∣∣

m00 m01
m10 m11
m20 m21

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0
1 0
0 1

∣∣∣∣∣∣
≡ proc = [0, 0, 1] (9.6)

sc = {s0, sc1} = {{0, 1}, {2}} ≡ next = [1,−1,−1] (9.7)

Eqs. (9.6) and (9.7) also show the equivalent compact forms through the proc
and next vectors shown in [2]. The application model is annotated with Worst-
Case Executed Instructions (WCEI). WCEI is a characterization of the computational
effort required by a functionality, independent of the Cycles Per Instruction (CPI) (we
will assume C P I = 1) and of the processor frequency. Then, WCETs are calculated
as WC ETi j = WC E Ii ∗ (1/ f req j ), where i refers to the i-th functionality/actor
and j to the j-th processing element.

To complete the statement of the DSE problem, as well as the system model, we
need to state the performance constraints, that is, boolean conditions stated in terms
of the performance metrics of interest. In the Fig. 9.2 example, we will handle two
types of performance metrics. Two response times, R0 and R1, for the corresponding
connected task sets, τ0 = {a0, a1} and τ1 = {a2}, are considered. Then, assuming
that the system triggers after receiving input data and will not process more data until
both task sets have completed, the throughput for this system can be defined as:

T h = 1/max{R0, R1} (9.8)

T hmin denotes a constraint on throughput, such Cr(T h) = {T h > T hM I N }.
A deadline Dk denotes a constraint on each k-th response time, such Cr(Rk) =
{Rk < Dk}. Real-time theory focus on deadline constraints, i.e., Cr(T ) = ∪k Dk ,
while other approaches [3, 11, 22] focus only on the throughput constraint, i.e.,
Cr(T ) = Cr(T h). However, the proposed approach and this proof-of-concept
example covers both kinds of constraints on time-metrics in a holistic way, for
all possible constraints, Cr(T ) = Cr(R0) ∪k Dk , or for a subset of them, e.g.,
Cr(T ) = Cr(R0) ∪ Cr(T h).
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Fig. 9.3 Implementation of the combined DSE flow

9.5.2 Implementation of the Combined-DSE Flow

An implementation of the combined-DSE flow capable to tackle the DSE problem
shown in the previous section has been done. It is sketched in Fig. 9.3.

For tackling the WCA-DSE phase, the DSE problem of Sect. 9.5.1 has been gener-
ically described as a constraint satisfaction problem using the MiniZinc CP language
[26]. Listing 9.1 shows a simplified version of the generic MiniZinc program (without
frequency parametrisation) for the DSE problem introduced in Sect. 9.5.1.

First, a set of MiniZinc parameters are declared, i.e., the number of tasks N, the
number of processing elements N_PE, the D (dependency matrix) and the vector of
worst-case execution times wcet. They are stated (in the data.dzn file) before
solving the MiniZinc program, and behave as constants during the analytical DSE.
The Minizinc program contains a set of decision variables, e.g., M (mapping matrix),
s (starting job times), e (end job times), and end. While all of them are subject to
the tuning of the solver, only a group of them represent a solution variable, namely,
M, plus s (or equivalently e). Notice that from the vector of starting times s, and from
M, the set of scheduling vectors sc (or the next vector) can be extracted, and that
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Listing 9.1 MiniZinc code of the Sect. 9.3 DSE problem

1 int: N; int: N_PE;
2 array [1..N] of int: wcet;
3 array [1..N,1..N] of par 0..1: D;
4 array [1..N,1.. N_PE] of var 0..1: M;
5 int: seq_t = sum(i in 1..N) (wcet[i]);
6 int: digs = ceil(log(10.0, int2float(seq_t)));
7 array [1..N] of var 0.. seq_t: s;
8 array [1..N] of var 0.. seq_t: e;
9 var 0.. seq_t: end;

10 % end t i m e s ( no p r e e m p t i o n )
11 constraint forall(i in 1..N)
12 (s[i] + wcet[i] = e[i] );
13 % p r e c e d e n c e c o n s t r a i n t
14 constraint forall(i,j in 1..\,N where i!=j) (if ↵

D[i,j]>0 then e[i] <= s[j] else true endif);
15 % j o b s t o same p r o c e s s o r s e q u e n t i a l i z e d
16 constraint forall(i,j in 1..\,N where i!=j)
17 (forall(k in 1.. N_PE) (
18 (M[i,k]!=0 /\ M[j,k]!=0 /\ (e[i] <= s[j] \/ ↵

e[j] <= s[i]))
19 \/ M[i,k]==0 \/ M[j,k]==0));
20 % m a p p i n g c o n s t r a i n t
21 constraint forall(i in 1..N) (
22 sum(j in 1.. N_PE) (map[i,j]) == 1);
23 % g l o b a l p e r f o r m a n c e c o n s t r a i n t
24 constraint forall(i in 1..N)
25 (e[i] <= end);

the one-to-one association between scheduler instances and PEs have been captured
in a compact way, through a single PE vector.

A set of constraints are associated to the system model. The constraint in
Listing 9.1, line 11, reflects the relation among starting and end times, assuming non-
preemptive scheduling. Line 14 constraint states the precedence among jobs obliged
by the dependency matrix. For instance, in the Fig. 9.2 example, D[1, 2] > 0 means
that ao job has to be executed before a1 of the same HSDFG firing, or equivalently,
that the start time of a1 has to to be bigger or equal than the end time of ao, i.e.,
s[1] >= e[0]. Notice that this constraint relies on the fact of handling an HSDFG,
so there will be one job per periodical firing of the HSDFG. The constraint in line 16
states that any pair of jobs assigned to the same processor cannot execute at the same
time. Line 21 constraints task migration and ensures that any valid solution maps
every task to a PE. Finally, line 24 constraint bounds the set of interesting solutions
to those where the execution time of the HSDFG is bounded by the fully sequential
case.

Modelling performance constraints can be done also as additional constraints, as
shown in Listing 9.2, added to the Listing 9.1 code. The constraint in line 1 of Listing
9.2 states the deadline constraints for individual tasks. For it, a deadline vector Dd is
used, where Dd[i] = 0 means that there is no deadline for the i-th task. Line 2 sets
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Listing 9.2 MiniZinc code of the Sect. 9.3 DSE problem

1 constraint forall(i in 1..N) (( bool2int(Dd[i])*e[i] ↵
<= Dd[i]);

2 constraint forall(i in 1..N) (( bool2int(th_inv)*e[i] ↵
<= th_inv);

Listing 9.3 MiniZinc code for stating the analysis target

1 solve satisfy
2 solve minimise th_inv

the throughput constraint by stating the maximum response time. If the constraint is
set to 0, the condition holds, and thus no throughput constraint is stated. In case that
no performance constraint is set, the aforementioned Listing 9.1, line 24 constraint
limits the set of interesting solutions.

The simple CP shown in Listing 9.1 can be extended with additional constraints
to focus on subsets of solutions and to involve a more efficient search. Section 9.5.3
discuss and reports the effects of adding additional constraints to the CP introduced
in this section.

Line 1 of Listing 9.3 shows how the solver can be asked to provide all compliant
solutions (what is required in the proposed flow). Line 2 illustrates how to ask for an
optimisation (of throughput in the shown case).

Getting back to Fig. 9.3, two integer solver back-ends have been used to show the
decoupling of the DSE problem description from the solver engine. One is the g12fd
solver available in the G12 Minizinc distribution. The other is an efficient solver
included in Gecode [10], an open C++-based CP-toolkit. Gecode also includes
tools like gist, which has been used to visualise the exploration as a decision tree.
Both solvers have been used to provide all safe solutions. Each solution is defined by
a mapping, a static scheduling for each PE, and the configured frequencies, that is, the
tuple (M, sc, freq), or equivalently (proc, next, freq). Each of these solutions
is used to configure the executable performance model in the WCA-DSE phase.

The proposed flow does not fix a specific technique for the estimation of worst-case
workloads feeding the analytical phase (PET1 in Fig. 9.1). In the proof-of-concept
flow implementation, a simulation-based technique has been used to calculate a
vector with the number of Maximum Observed Executed Instructions (MOEI). In
such PET1 implementation, each functionality associated to a task has been enclosed
by a Module under Test (MuT) in Fig. 9.3, which has been stimulated by a module
which generates random test vectors. Each vector accounts for a valid set of inputs
enabling a single fire of the functionality. The response time of the MuT functionality
is measured for each vector, and the maximum one reported as a MOEI. Therefore,
the MOEI is to the WCEI, as the Maximum Observed Executed Time (MOET) to
the WCET [38]. That means that, strictly speaking, a MOEI is not a bound to the
execution time and therefore, it is not what we propose to feed to the analytical
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phase. However, as it is reasoned in Sect. 9.6, using MOEI will be sufficient for the
demonstration purposes of this chapter.

Moreover, a main advantage is that it enables that the performance estima-
tion techniques PET1 and PET2 of the presented proof-of-concept implementa-
tion rely on a common source code annotation technique which facilitates com-
parisons and the illustration of the advantages of the combined-DSE approach. The
scope-g++ utility of the SCoPE performance estimation framework [30] has been
used. By compiling source code with the SCoPE scope-g++ utility (enabling the
opcost option), each basic block, is automatically and transparently annotated.
The annotation takes into account the different types of source-level operations per-
formed, e.g., conditional branches, additions, logical comparisons, etc. [28]. The
scope-g++ utility introduces several annotations. Specifically, an annotated vari-
able which accounts for the number of instructions has been used. The number of
instructions executed by a piece of code depends on the processor architecture. In
the scope-g++ utility, this is tuned by changing the configuration of an operator
cost file. We have used the default operator costs, tuned to an ARM architecture.
If the measured piece of code has several paths traversing several basic blocks, the
measured number of executed instructions will depend on the input data and state.

For building the executable performance model used for the SAS-DSE phase, a
SystemC-based infrastructure for simulation and time analysis called KisTA [20]
has been used. KisTA supports the generation of executable and configurable perfor-
mance models (CEPM) of the system, and its linking to a SystemC description of the
scenarios, which provide the stimuli and which retrieves the performance data and
performs functional validation. For simulation and assessment of the performance
of a solution under a specific scenario, it is only necessary to pass to the KisTA
CEPM, the parameters (frequency vector, mappings and schedulings) found by the
WCA-DSE phase defining a safe solution.

A complete explanation of the KisTA framework is out of the scope of this paper.
For the setting of the experiment, it has been exploited that KisTA supports the mod-
elling of schedulers, and different scheduling policies, specifically of static schedul-
ings. It also supports the annotation of worst-case workloads, to validate the results
of the analytical phase. What it is more interesting for the experimental set shown in
this chapter, KisTA has a hook to integrate code annotated with scope-g++. This
way, the dynamism of the model, and thus the different time behaviour of the model
can be exposed when different stimuli can be applied. The use of the same anno-
tation technique for estimating worst case workloads and the simulated workloads
provides a common reference to enable a fair comparison between the proposed
JAS-DSE method, and aforementioned methods relying only on either analytical or
simulatable performance models. Moreover, KisTA provides reports of metrics, such
as PE usage, which can be incorporated to the DSE in the simulation-base phase.
The simulation-based framework also enables to perform a functional validation.
By using KisTA synchronization facilities, the KisTA model has been ensured to be
coherent with the dependencies stated in the analytical model.
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Table 9.1 Number of solutions found by the WCA-DSE for different versions of the CP model

th−1 TS TS+M OS+FS OS TS+D1 OS+D1

6 152 76 38 5 76 4

5 58 29 17 2 36 2

4 16 8 6 1 16 1

3 2 1 1 1 2 1

9.5.3 Experiments

9.5.3.1 Experiments on the WCA-DSE

A first set of experiments was done for analysing the effect of constraints on the
number of solutions found. For it we ran the solver for four different versions of the
CP program to find all satisfying solutions given a single constraint on maximum
latency (th−1). Table 9.1 reports the number of solutions found for different values of
the constraint. All the experiments considered N = 3, NP E = 2, fixed frequencies
and fixed wcet = {1, 2, 3}. The TS column reports the results for the first version of
the CP program, basically reflected by the Listing 9.1, which is a timed scheduling
version, where two schedules with jobs in the same order, but different time tags,
define two different solutions. The TS+M column reports the number of solutions
found by a the TS version when adding a symmetry breaking condition to avoid
considering solutions which are equivalent if processor names are swapped. The OS
column corresponds to an order scheduling version, which distinguishes schedules
only by their ordering. The third column (OS+FS) refers to an order scheduling ver-
sion flexible in the time that a processor can start its assigned computation. Although
every solution set was obtained in less than 70 ms with any of the solvers, the results
can be scaled to more complex cases and they show the importance to transfer into
constraints all the knowledge of the design problem for an efficient search. In the
example, the symmetry breaking condition, proper of homogeneous architectures,
reduced the TS solution set to the half. Considering if order scheduling, instead of
timed scheduling, is sufficient for the design purpose is also important since it avoids
the much larger set of timed-scheduled solutions.

Additionally, we checked the capability of the implemented WCA-DSE phase for
merging constraints. We were able to run the WCA-DSE for a design problem, which
included a throughput constraint and a deadline constraint (D1 = 4 ⇒ R1 < 4), both,
for the TS version, (TS+D1), and for the OS version (OS+D1). For it, we only had
to add both constraints to the input data.dzn file. The results show that posing all
the performance constraints available from the design problem, throughput and one
deadline here, makes more efficient the WCA-DSE, being noticeable for the TS case.
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Table 9.2 Maximum
Observed Executed
Instructions (MOEI)

Function → f0 (ALU) f1 (averager) f2 (sort)

MOEI (instr.) 257 118 776

9.5.3.2 Exercising the Combined DSE

For exercising the whole combined flow, a specific code for f0, f1, f2 has been
considered. For f0, a three input ALU functionality has been implemented. The
ALU applies either an addition or a product operation on two input integer vectors of
size 5. The operation applied is configured by a third mode input. The operations have
saturation, to limit values to a maximum value 255. For f1 and f2, an averager of a size
5 input vector and a bubble sort of the same type of vector have been implemented,
respectively. We consider a design case, where there is a critical throughput constraint
T h = 1/(16000 ns) and where it is known that the system will work in an scenario
where inputs to the sorting functionality ( f2) are partially preordered, and where the
ALU mostly performs multiplications.

The MOEIs of each functionality was obtained and reported in Table 9.2. It
was obtained through the performance estimation technique PET1, explained in
Sect. 9.5.2, using 10 million random input vectors for each functionality.

These MOEIs were used to feed the order scheduling version of the MiniZinc
description. Two values of frequency were considered, 50 MHz and 100 MHz, which
here are labelled L and H, respectively. For this simple example, 70 implementation
solutions can be considered if the combinations of possible clusterings, scheduling
orders (without considering dependencies), and frequency assignations are taken
into account. When the flow was fed with a single throughput constraint T h =
1/(16000 ns), the WCA-DSE phase produced 12 solutions in less than 3 ms (using
the gecode solver). The simulation time of each solution took 8 ms in average. The
simulation of each solution was minimized by exploiting that KisTA has features to
limit the required simulated time based on the task set properties and considering
a sequential execution of the task set. Taking into account the measured simulation
times, the JAS-DSE exploration takes 99 ms (3 ms of WCA-DSE plus 12 · 8 ms of
SAS-DSE), while the full simulation of each variant for this simple case would have

Table 9.3 Solutions found by the WCA-DSE for th_inv = 16000 ns

Solution freqi proci nexti cost LWC A/ns L S AS/ns

1 H,H 0,0,1 1,−1,−1 6 7760 3620

2 L,H 0,0,1 1,−1,−1 5 7760 7260

3 H,H 0,1,1 −1,−1,1 6 8940 4350

4 L,H 0,1,1 −1,−1,1 5 8940 6080

5–7 H,L 0,0,0 * 3 11510 6800

8 H,L 0,0,1 1,−1,−1 5 15520 6340

9 L,L 0,0,1 1,−1,−1 4 15520 7260
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Fig. 9.4 Translation of WCA-DSE solutions after the SAS-DSE

taken 560 ms (70·8 ms). Therefore, the speed-up of the JAS-DSE flow on the example
versus an approach based on exhaustive simulation of each variant was 82.3 %.

The set of safe solutions is summarised in Table 9.3. A solution is identified by
the first column, while the next three describe the solution through the frequencies
assigned to the processor, the mapping (proci ) and the schedules (nexti ) ([2] nota-
tion). From the 12 solutions, 6 were fully sequential, but only three of them, solutions
5–7, are reported, since the other three refer to the same solution, but applying the
high frequency to the unused processor. A cost was assigned to each solution calcu-
lated as cost=2*#PE+#H, where #PE and #H are the number of processors and
high frequencies respectively. The LWC A column reports the latency of the solution,
where LWC A = th−1

WC A. The solutions found by the WCA-DSE phase have been
represented in red with the * symbol and placed by their the cost and latency in
the Pareto diagram of Fig. 9.4. The WCA-DSE phase reported solutions 1 and 2 are
equivalently optimum in terms of latency. Considering the cost, solution 2 was better.
In order to let the solver obtain solution 2 as the optimum one, the cost criteria has
to be added to the constraint program.

A simulation with KisTA using MOEIs of each solution reported in Table 9.3
confirmed each value of the LWC A column. After this, the SAS-DSE phase was
applied. For it, each solution of the Table 9.3 was simulated with KisTA, configured
to execute the aformentioned functionalities, and estimating the workload with the
scope-g++ annotations. The WCA-DSE solutions moved to the ones reported in
the column L S AS of Table 9.3, represented in blue with the x symbol in Fig. 9.4.

Figure 9.4 clearly shows that the configuration of Pareto optima solutions changes.
Interestingly, the simulation-based phase exposes new solutions, i.e., solutions 4 and
1, as part of the Pareto set, while other solutions, i.e., solution 2, disappear from
the Pareto set. The simulation-based phase also enabled to expose for the given
scenario trade-offs which did not exist after the WCA-DSE analysis, i.e., between
solutions with cost 5 and 6. Moreover, more interesting information is unveiled after
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Fig. 9.5 Histogram (for 107 input vectors) of instructions executed by function f2 (sorter) for
random stimuli (red) and for a specific scenario (green)

the simulation-based analysis, such as changes in the relevance of the trade-offs. For
instance, for the considered example, the application of the SAS-DSE phase reveals
that the speed-up vs cost trade-off between solutions 5–7 and solutions 4 or 2 is not
as interesting as it was indicated by a pure analytical-based assessment.

A deeper analysis shows the connection of the shifts, as the one between solutions
2 and 4, with the consideration of a specific scenario. In this case, the scenario keeps
f0 and f1 workloads close to their maximum, but the workload of function f2, i.e.,
the sorter, was reduced more than 50 %, as shown in Fig. 9.5. Under such conditions,
solution 2 keeps a minimum latency of 7260 ns because of the sequencing of f0
and f1 in the first processor, and regardless the shortened execution of f2 in the
second processor. However, the same scenario enables a more drastic reduction of the
latency in solution 4 (from 8940 to 6080 ns), which balances better the computation
by executing f1 in the same processor as f2.

Therefore, taking the same design constraint, throughput in this case, the SAS-
DSE phase, attending to a scenario-aware optimisation, may select safe solutions
different from the ones that would be selected if the optimisation is left to the WCA-
DSE phase.

9.6 Extension of the Approach

The use of MOEIs does not invalidate the results of Sect. 9.5.3 to the effects of
showing the over-estimation of the analytical phase. In fact, considering WCEIs will
show a more remarkable over-estimation. Moreover, MOEI calculation relies on the
same annotation technique used for the dynamic annotation, which enables to get
more accurate performance assessment in the SAS-DSE phase. Thus, more efficient
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Pareto solutions can be derived and it can be better detected where the important
trade-offs for a given scenario are. However, a practical application to a real-time
and mixed-criticality design requires the integration to the proposed approach of
tools and techniques capable to provide WCETs and/or WCEIs [38]. Further experi-
mental examples to explore the potential of the approach, and the use cases where it
better fits are required. Such experiments shall include examples with analysis and
simulation times bigger than the proof-of-concept shown, and shall take into account
the times for obtaining the worst-case workloads feeding the analytical phase, and
the overheads in the connection of the analytical and simulation-based phases.

The JAS-DSE approach proposed in Sect. 9.4 is generic regarding the system
modelled. However, there are obvious points where the presented proof-of-concept
example and implemented framework can be generalized. For instance, the appli-
cation model can be extended. An immediate extension is the support of cyclic
graphs or more generic computational models, e.g., Synchronous Data Flow (SDF),
or the Scenario-Aware SDF (SA-SDF) MoC [33], to take into account inter- and
intra-application dynamism already in the analytical phase. This generalization will
not remove sense to a JAS-DSE approach, which can still get better accuracy since
the simulation-based assessment can take into account intra-node dynamism, that
is, the different response times that can appear at the firing of each single node of
the application due to input data and the actor state. Similarly, the platform model
can be enhanced to target the modelling of a predictable platform. For instance,
the communication penalties of a predictable communication resource, e.g., a TDM
bus, could be taken into account. Both application and platform model generaliza-
tions require the extension of the corresponding analytical and simulation frame-
works.

The proof-of-concept example did not deal with advanced throughput calcula-
tions [5, 11, 18, 22], for simplicity and to focus and remark better the capability
of the proposed approach to cover at once in the analytical phase different types of
constraints, which have traditionally lead to separated analysis theories.

Another possible enhancement has to do with providing the user an interface
to capture the input to the flow, specifically the system model template, in order
to hide to the user the complexities and particularities of constraint-programing. A
framework, as the one reported in [29], is a good candidate, since it not only hides
such complexities, to ask the user just the required input information, but it already
overcomes the aformentioned modelling limitations.

The JAS-DSE approach described in Sect. 9.4 covers the case of using one explo-
ration tool or solver for the analytical model and another one for its executable
counterpart. It enables the application of different exploration mechanisms adapted
to each phase, analytical and simulation-based. It is also useful for coping with cases
where the set of safe solutions found by the WCA-DSE phase is yet large for an
exhaustive simulation. Notice that, in order to maximixe the chances for finding effi-
cient solutions, it is not interesting to reduce the size of the set of safe solutions by
analytical means, either with additional non-critical constraints or making the critical
ones artificially tighter. To the contrary, the goal is to target a complete set of safe
solutions, which maximizes the amount of candidate solutions. The larger the amount
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of candidate solutions, the higher the chances to find more efficient solutions for a
given scenario through accurate simulation-based assesment. The proof-of-concept
example and flow implementation shown in this chapter has focused on showing
that the approach can actually lead to improved solutions, using for simplicity and
clarity a single solver (the one used to run the CP model) in the analytical DSE phase.
No solver or heuristic was used in the SAS-DSE phase, since all the safe solutions
were simulated. The integration of an exploration tool in the SAS-DSE flow is not
straightforward and deserves additional treatment beyond the bounds of this chapter,
since the exploration tool in the SAS-DSE phase has to consider the constraint that
any valid solution has to fit to a custom and likely non-homogeneous set of solutions.
Anyhow, a sucessful integration of a search heuristic tied to that constraint would
enable that the presented methodology can be applied to complex time-critical and
mixed-criticality systems.

Another possible enhancement is related to the approach presented in Chap. 8.
Such an approach introduces platform template characterizations, a flexible way to
describe a family of predictable platforms. Platorm template characterizations take
into account the instantiation rules of the component templates of the platform, the
services they provide, and their costs. This approach would enable to increase the
amount of potential safe solutions under consideration. Moreover, Chap. 8 deals with
automated generation of simulatable models from the platform template characteri-
zations in a combined analytical and simulation-based DSE approach. Therefore, the
integration of this work with the presented approach, should facilitate the develop-
ment of a JAS-DSE framework where not only the automation, but also the coherence
of the analytical and simulatable models is ensured.

A complete support of the methodology proposed in Fig. 9.1 will make it suitable
for the design of efficient mixed-criticality systems.

These systems require the consideration of platforms, which are heterogeneous
in terms of predictability, that is, platforms, which merge predictable resources with
non-predictable ones. In this sense, the integration of further simulation-based per-
formance assessment technologies and tools would be very interesting. For instance,
the integration of native estimation technology, e.g., through the SCoPE framework
[30], would enable fast assessment of the non-predictable parts. Moreover, the inte-
gration of such performance estimation technology would enable the consideration
of additional performance metrics beyond time related ones, e.g., power consumption
and temperature.

9.7 Conclusion

This chapter has presented a novel DSE flow, which targets efficient design of time-
critical and mixed-criticality systems. Through a first analytical phase based on
worst-case workloads, the flow enables the identification of a set of safe solutions.
The implementation of this phase relies on constraint-based programming, which
enables a holistic and portable description and analysis of the DSE problem, and the

http://dx.doi.org/10.1007/978-3-319-06317-1_8
http://dx.doi.org/10.1007/978-3-319-06317-1_8
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derivation of a complete set of safe solutions, taking into account different types of
time constraints. Passing such complete solution set to a later simulation-based phase
maximizes the chances to find more efficient solutions, thanks to the capability of
the simulation-based performance assessment to consider the intra-node dynamism
and the specific working scenario. The proof-of-concept simulation-based frame-
work introduced in Sect. 9.5 has shown that the approach can yield solutions more
efficient, by considering the system working environment, than the solutions found
by a pure analytical phase, without sacrificing certainty on the time constraint fulfil-
ment; and that it can be done significantly faster than through a pure simulation-based
approach. Many of the enhancements mentioned in Sect. 9.6 will be tackled in the
context of the FP7 CONTREX project [4].
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Chapter 10
Bridging Algorithm and ESL Design:
MATLAB/Simulink Model Transformation
and Validation

Liyuan Zhang, Michael Glaß, Nils Ballmann and Jürgen Teich

Abstract MATLAB/Simulink is today’s de-facto standard for model-based design
in domains such as control engineering and signal processing. Particular strengths of
Simulink are rapid design and algorithm exploration. Moreover, commercial tools
are available to generate embedded C or HDL code directly from a Simulink model.
On the other hand, Simulink models are purely functional models and, hence,
designers cannot seamlessly consider the architecture that a Simulink model is later
implemented on. In particular, it is not possible to explore the different architectural
alternatives and investigate the arising interactions and side-effects directly within
Simulink. To benefit from MATLAB/Simulink’s algorithm exploration capabilities
and overcome the outlined drawbacks, this work introduces a model transformation
framework that converts a Simulink model to an executable specification, written
in an actor-oriented modeling language. This specification then serves as the input
of a well-established Electronic System Level (ESL) design flow, enabling Design
Space Exploration (DSE) and automatic code generation for both hardware and
software. We also present a validation technique that considers the functional cor-
rectness by comparing the original Simulink model with the generated specification
in a co-simulation environment. The co-simulation can also be used to evaluate dif-
ferent quality numbers of implementation candidates during DSE. As a case study,
we present and investigate a torque vectoring application from an electric automotive
vehicle.
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10.1 Introduction

Driven by the rapid development of microelectronics technology, the functionality
and, thus, the design complexity of modern distributed embedded systems are contin-
uously increasing. To cope with these challenges, Electronic System Level (ESL) [21]
design methodologies introduce higher abstraction and model the complete embed-
ded system as an executable specification at system level. At this level, the decisions
such as the partition of functional units to software or hardware are yet to be made.
Therefore, Design Space Exploration (DSE) [20] allows for an early evaluation of
design decisions and searches for optimized implementation alternatives. After DSE,
various tools, cf. to Gerstlauer et al. [11], are available to (semi-)automatically syn-
thesize the implementation into software and hardware. Overall, ESL design helps
the designer to deliver optimized systems and to shorten the design cycle.

In domains such as control engineering and signal processing, the development
of an embedded system typically starts with the application engineer using domain-
specific modeling tools such as MATLAB/Simulink [25] to build a functional model,
e.g., a controller in a feedback control system. The application engineer often also
uses Simulink to model the physical environment and to create the test bench for
design validation. Simulink allows rapid design and is therefore often used to carry
out algorithm optimization in early design stages. By using Simulink Coder [24],
a Simulink model can be automatically translated into embedded C code for soft-
ware implementation or HDL code for hardware implementation. However, there is
no information about the architecture that a Simulink model is later implemented
on. Therefore, considering different implementation alternatives and investigating
architectural interferences and side-effects directly within Simulink is not possible.

In this work, we aim at closing the gap between classic ESL design flows and
Simulink models by applying 1. model transformation and 2. a system-level vali-
dation technique (see Fig. 10.1). We employ an actor-oriented modeling language
(SysteMoC [10]), which is based on SystemC [12], the de-facto standard for system-
level modeling, to serve as the intermediate representation of the Simulink models
and the input of an ESL design flow. Representing a Simulink model in an actor-
oriented fashion is very suitable due to the nature of Simulink modeling, cf. to
Lee and Neuendorffer [19]. Here, we introduce a model transformation framework
(Sect. 10.4) that automatically generates an executable specification in SysteMoC
from a given Simulink model. This executable specification is transformed with a
component library to an exploration model. The exploration model is used within a
Design Space Exploration (DSE) to consider different implementation candidates,
which are evaluated by the DSE framework with respect to multiple design objectives
and constraints. DSE delivers a set of high quality implementation candidates, from
which the designer may subsequently choose the best trade-off as the system-level
implementation for subsequent design phases. Moreover, we propose to validate
the correctness of the automatic generated SysteMoC model using a co-simulation
approach. We consider a control application from an electronic automotive vehicle
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Fig. 10.1 Proposed
design flow from
MATLAB/Simulink to
prototype via automatic
model transformation and
validation via co-simulation
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to give evidence of the effectiveness of the proposed approach in Sect. 10.5 before
we conclude the chapter in Sect. 10.6.

10.2 Related Work

Several contributions relevant to this work have been made in recent years by var-
ious research groups. Caspi et al. [5] focus their work on designing embedded
software by translating Simulink models to SCADE/Lustre [8]. This intermediate
representation is then implemented on the Time Triggered Architecture (TTA) intro-
duced by Kopetz [17], which is a platform for running safety critical applications.
Czerner and Zellmann [6] try to combine SystemC and MATLAB/Simulink for cycle-
accurate hardware modeling and system verification by integrating SystemC modules
into Simulink via S-Functions [22]. A co-simulation framework between SystemC
and MATLAB/Simulink is built by Boland et al. [4] with the purpose of hardware
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verification of DSP-based designs. There, Simulink is used to model the environ-
ment and to generate real-world stimuli to drive the design under verification that is
implemented in SystemC. MathWorks also has a commercial tool (HDL Verifier [23])
to verify hardware designs using HDL simulators and FPGA hardware-in-the-loop
test-benches. Above works only focus either on software design or on hardware
design.

Kai et al. [14] present a Simulink-based MPSoC design flow by composing the
Simulink model into a Combined Algorithm and Architecture Model (CAAM). The
CAAM model can be then implemented at different abstraction levels using a multi-
threaded code generator. Atat and Zergainoh [1] propose to refine a Simulink model
at three different abstraction levels: transactional model, macroarchitecture model,
and microarchitecture model. The system verification is carried out at all abstrac-
tion levels. These works try to enable system-level design with Simulink models.
However, the partitioning of functional blocks into software or hardware must be
performed manually by the designer.

Jersak et al. [13] introduce an approach to transform time-driven Simulink models
into System Property Intervals (SPIs) to enable system-level timing analysis. They
propose to transform time-driven models to data-driven models by combining regis-
ter and virtual FIFO queues to guard the data exchange in multi-rate systems. Baleani
et al. [2] use the Synchronous Reactive (SR) model as intermediate layer to enable the
model transformation between MATLAB/Simulink, SR, and the model-based devel-
opment tool set ASCET [9], which enables automatic code generation for automotive
applications. In contrast to these works, we also consider domain- and application-
specific knowledge during model transformation, where either a data-driven or a
time-driven Model of Computation (MoC) can be chosen.

Another option to transform MATLAB/Simulink models is offered by employ-
ing SystemC Analog/Mixed-Signal (AMS) extensions [3], enabling the modeling of
continuous systems within a SystemC-based design. In particular, it enables the trans-
formation of hybrid systems (i.e., systems containing continuous and discrete state)
from Simulink to SystemC. Since Simulink is no longer required to simulate the
continuous part of the system, the simulation speed compared to the co-simulation
technique increases. However, it may often not be desired or even possible to trans-
form the huge and possibly closed-source continuous environmental models from
Simulink to SystemC. Moreover, the result of such transformation does not come
with the same benefits with respect to DSE.

In this work, we propose 1. a model transformation framework to automatically
generate an executable specification from a Simulink model and 2. a system-level
validation technique. Since our executable specification serves as the input for a well-
established ESL tool flow introduced by Keinert et al. [15] that enables DSE, highly-
optimized system implementations that satisfy given constraints can be achieved
automatically. The advantage of our validation technique lies in re-using the test
bench (including the environment model) created in Simulink.
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10.3 Design Fundamentals

This section introduces the basics of Simulink and the actor-oriented model used to
represent a Simulink model as an executable specification.

10.3.1 Simulink

Simulink is a commercial software from MathWorks [25] for modeling, simulation,
and analysis of dynamic systems. Simulink is widely used to solve problems in
automotive applications, communications, electronics, and signal processing. The
basic elements in Simulink are blocks and lines. Basic blocks are mandatory units
to perform computation or display functions, such as Add, Memory, Scope, etc. The
designer builds hierarchical systems by encapsulating basic blocks into subsystems.
Lines (also called edges or channels) are used to connect blocks and have regis-
ter semantics (non-destructive read, destructive write). Besides these basic building
elements, Simulink also has rich libraries that offer a broad variety of predefined
blocks and can be used together with user-defined functions. Simulink provides sev-
eral solvers to compute models that contains continuous and/or discrete states. It is
very efficient to use Simulink during early design stages for algorithm exploration.
By using Simulink Coder, a Simulink model can be automatically translated into
highly-optimized C code for software implementation or HDL code for hardware
implementation.

10.3.2 Executable Specification

In [10], a library for modeling and simulation of actor-oriented behavioral mod-
els termed SysteMoC is introduced. SysteMoC is based on SystemC, the de-facto
standard for system-level modeling, adding actor-oriented MoCs to form executable
specifications. In actor-oriented models, actors, which encapsulate the system func-
tionality, are potentially executed concurrently and communicate over dedicated
abstract channels. Thereby, actors produce and consume data (so-called tokens),
which are transmitted by those channels.

• An actor (see the example in Fig. 10.2) is a tuple a = (I, O, F, R), containing a
set of actor ports partitioned into a set of actor input ports I (e.g., i1) and a set of
actor output ports O (e.g., o1, o2), a set of functions F (e.g., fpositive, fnegative),
and a Finite State Machine (FSM) R. Actors can be grouped together to form
graphs. A graph may also contain other graphs to build a hierarchical system.
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start

i1(1)&!check&o2(1) / fnegative

return  
i1[0]>=0;

check

i1r 

int  in = i1[0];
o1[0] = in;
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int in = i1[0];
o2[0] = in;
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i1(1)&check&o1(1) / fpositive

o1

o2

period = 1 ms
offset = 0 ns

Fig. 10.2 A graphical representation of a SysteMoC actor, which sorts a sequence of input data
depending on its algebraic sign

• The functions F encapsulated in an actor are partitioned into so-called actions
faction and guards k and are executed during a transition of the FSM R that also
represents the communication behavior of the actor (i.e., the number of tokens
consumed and produced for each transition).

• A transition is a tuple t = (qsrc, k, faction, qdst) containing the source state qsrc
before the execution of the transition, and the destination state qdst after the exe-
cution of the transition. An action faction (e.g., fpositive) performs a computation
task for the actor and may consume or produce tokens on the channel. A guard k
(e.g., check) checks the availability of a transition by returning a Boolean value
and the assignment of one or several guards to the FSM implements the required
control flow. The firing of an actor corresponds to the execution of exactly one
transition of the actor. If multiple actors have transitions that can be fired, they are
chosen non-deterministically by the SysteMoC runtime system.

• A channel is a tuple c = (I, O, n, d), containing a set of channel ports parti-
tioned into a set of channel input ports I and a set of channel output ports O , its
buffer size n ∈ N∞ = {1, . . . ,∞}, and a possibly empty sequence d ∈ D∗ of
initial tokens, where D∗ denotes the set of all possible finite sequences of tokens.
In SysteMoC, actors are only permitted to communicate with each other via chan-
nels, to which the actors are connected by ports. Hence, in a SysteMoC actor, the
communication behavior is completely separated from its functionality.

Figure 10.2 gives a graphical representation of an actor, which sorts a sequence
of input data arriving on input port i1 to either output port o1 or o2 depending on
its algebraic sign. The actor reads its input data from a register r and writes its
output data into two FIFOs. The actor has only a start state. Transitions of the
finite state machine R are depicted as directed edges in the actor. Each transition
is annotated with an activation pattern, a Boolean expression which decides if the
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transition can be taken, and an action which is executed once the corresponding
transition is taken. Using parameters period and offset indicates that this actor is
time-triggered.

SysteMoC exploits the event-driven scheduler from SystemC to manage the firing
sequence of the actors according to their FSMs. The basic SysteMoC implementa-
tion uses channels with FIFO semantics to provide a unidirectional point-to-point
connection between an actor output port and an actor input port. Using FIFOs as com-
munication channels makes SysteMoC suitable to model data-driven systems (e.g.,
signal processing applications). In other areas such as automotive systems, tasks are
often executed periodically, i. e. they are time-triggered. In order to improve this kind
of systems, SysteMoC supports periodic actors and register channels (see Fig. 10.2).
A periodic actor has two additional parameters: period and offset, which describe the
time that the SysteMoC scheduler evaluates the FSM of the actor. A register channel
has non-destructive read, destructive write semantics. This extension enables a time-
triggered MoC, hence, the modeling ability is greatly enhanced. For example, in a
typical embedded control system, the sensors can be modeled using periodic actors
and the rest of computation blocks can be data-driven.

We use actor-based design to construct the executable models (Fig. 10.3). The key
advantage of actor-based design is that the interaction between actors follows some
kind of communication pattern, called Model of Computation (MoC) [18]. A certain
model of computation is given by a predefined type of communication behavior and
a scheduling strategy for the actors. Separating actor computation and actor com-
munication gives the designer the ability to refine the communication at different
abstraction levels. Thus, the model is ideal for ESL design, since at the system level,
the decision about the hardware software partitioning has yet to be made. Design
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Fig. 10.3 To apply design space exploration for the controller (a), a graph-based exploration model
(c) is automatically generated from the executable specification (b), a given architecture, as well as
mapping constraints between them
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Space Exploration (DSE) follows the commonly accepted Y-chart approach [16].
For each implementation, multi-objective optimization is used to evaluate the imple-
mentation quality. In the end, we obtain a set of high quality candidates as optimized
implementation solutions.

10.4 Model Transformation

After the initial modeling in Simulink is finished, a block diagram of the system
(e.g., containing controller and plant) is at hand. The Simulink model is verified via
simulation. If the simulation results meet the design goals, the model transformation
can be started.

10.4.1 Model Transformation Preparation

The first step of model transformation is transformation preparation, which changes
the interface of a model that is going to be transformed (see Fig. 10.4). The part that
is going to be transformed to SysteMoC (e.g., the controller) is connected with the
environment model (e.g., the plant). Before model transformation, the designer must
disconnect the chosen part from the environment (e.g., disconnect the controller from
the plant) and then re-connect every input at the top level of the chosen part with an
Inport block and every output at the top level with an Outport block. These I/O blocks
form the interface of the chosen part. After model transformation, these I/O blocks
are mapped to special actors that enable the data exchange between Simulink and
SysteMoC.

Matlab/Simulink

controller 

1/z

+ 

sub

< 0

| u |

controller 

1/z

+ 

sub

< 0

| u |

inport 1 

outport

inport 2 

plant 

Fig. 10.4 The automatic model transformation requires a preparation step, in which those parts
that shall be transformed (e.g., the controller) are disconnected from the other parts (e.g., the plant)
and re-connected via I/O blocks
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Fig. 10.5 The model transformation framework consists of an actor library and a Code Generator
that maps Simulink basic blocks and lines to SysteMoC actors and FIFO channels

10.4.2 Model Transformation Framework

The core of the model transformation framework is a Code Generator that takes
Simulink as input language and produces SysteMoC as output language. The structure
of the Code Generator is shown in Fig. 10.5. The Code Generator has the most com-
mon operations in compiler design, such as lexical analysis, parsing, and code gen-
eration. There are three building parts:

• The Scanner reads the Simulink block diagram and filters the basic information
elements.

• The Parser analyzes and identifies the semantics of the elements (e.g., basic blocks,
lines). All the necessary information needed for model transformation is deter-
mined here (see Sect. 10.4.3), which includes the hierarchy and topology of the
Simulink block diagram.

• The Translator determines the targeted MoC for the current Simulink block dia-
gram (see Sect. 10.4.4). Additionally, the translator is responsible for the SysteMoC
code generation.

10.4.3 Evaluating Simulink Block Diagrams

The Code Generator reads the source code of a Simulink block diagram in the form of
an mdl-file and abstracts all the necessary information by using the scanner and the
parser. The elements in an mdl-file currently supported by the Code Generator are
atomic blocks, subsystems, reference, user-defined blocks, lines, and branches. We do
not consider Simulink models with algebraic loops. An atomic block (i.e., Simulink
basic block) represents a basic computation or display function. A subsystem contains
multiple Simulink atomic blocks as well as subsystems. A reference is used to link an
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atomic block or a subsystem. It contains, therefore, only a path to the implementation,
which is normally stored in a library file (e.g., simulink.mdl). The Code Generator
supports user-defined blocks, e.g., S-Function written in C/C++, by generating a
wrapper in the SysteMoC model (as a placeholder). However, the designer has to
integrate the implementation of the S-function into the wrapper.

A Simulink line represents a communication channel and has register seman-
tics. Each line can have branches, which represent the multiple destinations. The
multi-driver for a connection (i.e., one line, multiple source blocks) is forbidden in
Simulink, but multicast of signals is allowed (i.e., one line, multiple target blocks).

All the necessary information described above are parsed by the Code Generator.
The Code Generator also determines the I/O data types of each Simulink block. All
signals by default have double types except 1. the types of the signals are implied
from the block type or 2. the types are specified by the designer.

10.4.4 Model Transformation

The main task of the translator is to transform the Simulink model to SysteMoC with
the targeted MoC. If the Simulink model is a single-rate system, all blocks share the
same sampling rate. For this kind of models, it is straightforward to represent them
as data-driven SysteMoC models. The Code Generator maps each Simulink block to
a SysteMoC actor, whose function code is stored in the actors library (see Fig. 10.5).
Each Simulink subsystem is mapped into a SysteMoC graph. Each Simulink line
that has a point-to-point connection is mapped to a SysteMoC FIFO, which is a uni-
directional point-to-point connection. For each Simulink line that enables multicast,
a multicast actor is added between the source actor and the destination actors. This
additional actor only serves as a relay for transmitting the data to all destination
actors.

If the Simulink model is a multi-rate system, the blocks are sampled at different
rates. For example in Fig. 10.6a, two Simulink blocks b1 and b2 are connected through
a line l. Block b1 has the sampling rate λ and block b2 has the sampling rate λ/n.
Block b1 and block b2 are transformed to actor a1 and actor a2, respectively. There
are several options to represent this Simulink model in the SysteMoC environment:

10.4.4.1 Rate Transition Actors

Adding a rate transition actor c allows to explicitly coordinate the data exchange
between a1 and a2 (see Fig. 10.6b). Two FIFOs are used to connect a1 and a2 with c.
Per activation, a1 produces one token on the left FIFO, c reads one token from the
left FIFO and produces n tokens on the right FIFO, a2 reads one token from the
right FIFO. This solution is easy to implement but consumes additional memory
space and causes extra delay.
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sample λ sample λ/n
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1 1 n 1 

a 1 a 2r 
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a1´ a2´ r 

period λ period λ/n
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Fig. 10.6 A Simulink multi-rate model, as shown in (a), can be represented in SysteMoC by: adding
a rate converter actor (b); transforming time-driven models to data-driven models (c); or creating
time-driven SysteMoC models (d)

10.4.4.2 Data-Driven Transformation

Applying the technique introduced in [13] indicates adding a register channel r and
two virtual FIFOs to govern the activation of a1 and a2 (see Fig. 10.6c). Activation
of a1 and a2 is enabled by the availability of tokens on the two virtual FIFOs.
This solution replaces the absolute periodic timing in Simulink models with relative
execution rates. Thus, the time-driven Simulink MoC is transformed into a data-
driven model. However, adding two virtual FIFOs per connection may increase the
complexity of the design.

10.4.5 Time-Driven Transformation

Here, we propose to transform Simulink multi-rate models to time-driven SysteMoC
models in order to preserve the simulation semantics of Simulink models. Blocks b1
and b2 are mapped to periodic actors a1

′
and a2

′
. Line l is mapped to a SysteMoC
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register channel r (see Fig. 10.6d). The sample rate of the Simulink block corresponds
to the period of the periodic actor. Here, the activation of a1 and a2 is no longer gov-
erned by the availability of data on the communication channel. Because SysteMoC is
originally designed to mainly model data-driven applications, the data dependencies
(or topology dependencies in Simulink) are automatically preserved by the FSMs
and FIFOs. But, this is no longer given when time-driven semantics are applied: If
the two periodic actors have the same period, the SysteMoC runtime scheduler will
not consider the partial order dependencies, hence, either actor that can be first sim-
ulated. Thus, the simulation behavior of SysteMoC may differ from Simulink. As
a remedy, we propose to introduce artificial offsets for the periodic actors to reflect
partial-order dependencies in time-driven SysteMoC. The Code Generator assigns
a proper offset automatically for each periodic actor by running an analysis of the
topology dependencies. In summary, the proposed model transformation technique
can be divided into three parts:

1. using periodic actors to enable time-driven simulation,
2. using register channels to preserve the Simulink communication semantics,
3. using artificial timing offsets to include partial-order dependencies into SysteMoC

models.

No matter which MoC is applied, each Inport block added during transformation
preparation (Sect. 10.4.1) is mapped to a periodic actor. These periodic actors can be
seen as hardware sensors (fetching the states of the environment model in Simulink).
The sample rate ta in a sensor actor is specified by the designer. Each Outport block
added during transformation preparation is mapped to an actor, which is a repre-
sentation of an actuator (sending the computation results back to Simulink). These
sensor and actuator actors are typically grouped together to form a co-simulation
interface for the auto-generated SysteMoC model.

10.5 Case Study: Torque Vectoring

In this section, an automotive application is used to evaluate the accuracy and effi-
ciency of the proposed model transformation framework. Torque Vectoring (TV) is a
new driver assistance system that distributes torque sent to each wheel to suit driving
conditions and road surface in order to get more traction in curves. In this work, the
Automotive Simulation Models (ASMs) of dSPACE [7] are used for modeling an
electric rear-wheel drive vehicle and the environment in Simulink. A torque vectoring
differential is realized by modifying the ASM to contain two basic engines (Fig. 10.7),
so the left-side engine controls the torque sent to the left rear wheel, and the right-side
engine for the right rear wheel, respectively. These two engines are controlled by a
torque vectoring controller, which is implemented by an application engineer. A sim-
ple testing maneuver and the driving conditions are configured in ASM. The driving
scenario is as follows: 1. the vehicle first remains motionless at position [0, 0] for
2 s; 2. the vehicle starts to accelerate and keeps a straight cruise without any steering;
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Fig. 10.7 Overview of the co-simulation between torque vectoring controller in SysteMoC and
environment in MATLAB/Simulink for validation

3. the acceleration lasts for 20 s and the speed of the vehicle reaches 90 km/h at the
new position [400, 0]; 4. the driver performs a step steering. This action lasts for 1s
and causes the steering wheel to turn left for 100◦; 5. the steering wheel keeps its
position for the rest of the scenario.

Simulating this maneuver in Simulink (with a continuous solver) first with
TV enabled and then with TV disabled, the changes of the vehicle’s position
(Fig. 10.8) show that using TV controller shortens the radius while turning.

After the initial modeling and validation in Simulink, the TV controller is trans-
formed to SysteMoC by the model transformation framework. Since TV is a single-
rate system, the data-driven SysteMoC is used. The auto-generated torque vectoring
controller contains 10 graphs, 98 actors, 110 FIFOs, and 770 lines of code (excluding
library code).

After converting the Simulink model to an executable specification, a
validation function unit is created in Simulink. Next, the co-simulation server
and co-simulation interface are configured. The co-simulation checks whether the
auto-generated TV controller will perform as intended in its operational environment.
The testing maneuver configured in ASM is reused to evaluate the generated TV
controller. The result of the co-simulation is given in Fig. 10.9: While the vehicle
turns, in order to get more traction to shorten the curve, each engine is applied
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Fig. 10.9 Validation via co-simulation of Simulink and SysteMoC using the virtual pedal posi-
tion seen by the engine: the proposed co-simulation shown in (b) delivers almost identical results
compared to the plain Simulink simulation depicted in (a)

with an individual pedal signal calculated by the TV controller based on the current
physical pedal position. These pedal signals are interpreted by the engines as virtual
pedal positions, with a positive position for acceleration and a negative position for
deceleration. Figure 10.9a shows how these two pedal signals change while using
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the Simulink TV controller. When the vehicle is turning, the engine that generates
torque for the inner wheel (in this case the left-side engine) actually receives a sig-
nal from the TV controller indicating a negative pedal position, this causes the inner
wheel to brake while the outer wheel is still experiencing acceleration. As depicted in
Fig. 10.9b, the SysteMoC TV controller delivers almost identical simulation results.
The co-simulation shows a minor simulation deviation, which is observed by the val-
idation function unit through comparing the pedal signals (see Fig. 10.9) calculated
by the original TV controller and the generated TV controller. The small deviation
shown in Fig. 10.10, which is always below 0.09 %, indicates a high accuracy of the
proposed model transformation.

The development time for the presented case study is shown in Fig. 10.11: The
development time consists of (I) implementing the initial model in MATLAB/
Simulink (mandatory); (II) validating the initial model within the Simulink envi-
ronment (mandatory); (III) automatic model transformation (proposed); and (IV)
validation of the auto-generated model via co-simulation (proposed). The first two
mandatory phases of modeling and validation in Simulink consume almost 70 %
of the complete development time. The proposed automatic model transforma-
tion that converts the Simulink TV controller into SysteMoC requires 20 % of the
overall development time—a high value at first glance. The reason is that the actors
library did not yet include all the atomic blocks used in the Simulink TV model.
Thus, the designer had to implement those Simulink atomic blocks and add them to
the actors library. Note that this effort has to be invested only once for an atomic
block. It is expected that the time consumption of this phase reduces dramatically
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Fig. 10.10 The relative simulation error for the virtual pedal position remains below 0.09 %
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Fig. 10.11 The proposed methodology reduces the time from the Simulink model to the ESL model
to only ≈30 % of the overall development time

for future applications (ideally to 0 %), given the constant extension of the actors
library. But, this phase may include the integration of user-defined S-functions in the
ESL model such that an application-dependent amount of development time remains
to be taken into account. The last phase of system-level validation consumes about
10 % of the overall development time, resulting from the creation of the validation
function unit and the configuration of the co-simulation framework. For the pre-
sented case study, it can be concluded that bridging algorithm design to automatic
ESL design flows requires less than 50 % of extra development time compared to the
mandatory MATLAB/Simulink part. Note that a huge amount of the extra develop-
ment time arose from implementing basic blocks and configuring the co-simulation.
Both aspects do not scale with the complexity of the modeled application, such
that for future large and complex Simulink models, the extra effort for bridging to
ESL design flows will become almost negligible.

10.6 Conclusion

In this chapter, we presented a framework that enables an automatic model transfor-
mation from MATLAB/Simulink to an actor-oriented design language (SysteMoC),
which enables Design Space Exploration (DSE). This framework is integrated into
an ESL design flow to further reduce development efforts. The automatic genera-
tion of an executable specification from Simulink has freed system designers from
converting Simulink functional models into implementation models manually. On
the other hand, by applying the proposed system validation technique, which is
based on the co-simulation of the original Simulink model and SysteMoC model,
the designer can easily validate the correctness of the executable specification.
Furthermore, combining this work with DSE allows the designer to automatically get
a first-hand evaluation on the performance of different implementation alternatives.
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Software Allocation in Automotive Networked
Embedded Systems: A Graph-Based
Approach
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Abstract Complex automotive networked embedded systems require novel
algorithms for exploring different design decisions at early stages of the design flow.
The problem of allocating the software components on electronic control units lies
at the core of these design decisions. This chapter formalizes this allocation problem
using graph theory. The proposed formalism allows the designer to use a wide variety
of graph-theoretic optimization algorithms, which are capable of minimizing more
than one criterion simultaneously. The proposed algorithm is then proven, by means
of numerical examples, to find the same solution as mathematical optimization, but
it is 15 times faster in computation time.
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11.1 Introduction

The growth of electronic systems led to an increase in number of functionalities
and SoftWare Components (SWCs) in vehicle engineering. Current vehicles have
more than 80 Electronic Control Units (ECUs) and thousands of SWCs. This large
number of ECUs and SWCs (or functions) complicates the task of efficient allocation
of SWCs onto the different ECUs, especially when considering the impact of this
allocation on the overall system performance.

The problem above is studied in Hardung [6] and Honnavara [7]. Hardung [6]
proposed to use search-based optimization techniques. These techniques suffer from
the exploding solution-space. He showed an example, which needs 400,000 years
on an ordinary computer to evaluate all possible solutions. Honnavara [7] developed
a binary quadratic programming model representation of the problem. The model
applies a branch-and-cut algorithm to obtain the optimal solution. Although his math-
ematical formulation of the problem ensures a Pareto-optimal solution, the proposed
mathematical model suffers from a scalability problem in terms of expanding the
model to newer minimization criteria (e.g., bus schedulability). Similar problems
are studied in other contexts. For example, the work reported in Leonardi et al. [11]
proposes a methodology to realize a distributed embedded system, in the context of
smart buildings, given dataflow specifications. It utilizes mathematical optimization
techniques aiming to minimize a quadratic objective. The general problem of design
space exploration for networked embedded systems is also reported in Fummi et
al. [5]. The objective was to use a mathematical language to model a distributed
application in terms of tasks, hosting nodes, and interactions with the environment.

In this chapter, we model the SWC allocation problem using graph theory. Graph
representation allows more flexibility in adding new minimization criteria without
affecting the main algorithm. Graph-based optimization techniques are widely proven
to be efficient in many problems, like allocation of components in VLSI [13, 14] as
well as task scheduling and allocation in operating systems [10, 12, 15]. Accordingly,
the proposed representation allows making use of familiar algorithms in graph the-
ory in order to achieve better results based on such formalization. This chapter
draws inspiration from the “task Allocation by Recursive Mincut (ARM)” heuris-
tic scheme [3]. We adapt the ARM heuristic to the problem under consideration.

The proposed algorithm is implemented as a tool, which utilizes the AUTomotive
Open System ARchitectures (AUTOSARs) description [2]. The information avail-
able in the AUTOSAR model is parsed and fed to the algorithm. The output of
the algorithm is then written back automatically into the AUTOSAR model files.
The performance of the proposed algorithm is then compared to a mathematical
optimization done using the binary quadratic programming model. The proposed
recursive scheme is proven to get the same results, as obtained by the mathematical
optimization, but in shorter computation times for the same examples.

The rest of this chapter is organized as follows. A brief review of current multilevel
graph partitioning algorithms is presented in Sect. 11.2. The main contribution of
this chapter, which is the graph representation of the SWC allocation problem along
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with the “Partition-and-Map” algorithm used to solve the allocation problem, are
then developed in Sects. 11.3 and 11.4. Different evaluation criteria are discussed
in Sect. 11.5. Three examples of running the proposed algorithm are provided in
Sect. 11.6. Finally, Sect. 11.7 concludes this work.

11.2 Multilevel Graph Partitioning

Consider a weighted graph G = (V, E) as a set of vertices V and a set of weighted
edges E , where each vertex v and edge e has an associated weight, denoted by w(v)
and w(e), respectively. A decomposition of V into k disjoint subsets V1, V2, ..., Vk,

is called a k-way partitioning of V . The cut of a k-way partitioning of V is equal
to the sum of weights of the edges that contain vertices from different sub-domains
or partitions. Many algorithms were developed in order to partition a graph into
two domains while obtaining the minimum cut size. Recently, a new class of graph
partitioning algorithms has been developed based on the multilevel paradigm. In these
algorithms, a sequence of successively smaller graphs is constructed. A partitioning
of the smaller graph is computed and this partitioning is then successively projected
to the next level of finer graphs. At each level, an iterative refinement algorithm
(e.g., KL [8] or FM [4]) is used to further improve its quality. Experiments have
shown that multilevel graph partitioning algorithms can produce substantially better
solutions than those produced by non-multilevel schemes [1].

11.3 Graph Model of the Software Allocation Problem

Allocating SWCs onto ECUs represents a provider-consumer problem, where ECUs
provide resources in terms of memory bytes and processor cycles, whereas SWCs
represent consumers for these resources. The objective of the software allocation
problem is not to optimize the utilization of these resources or balance the load on
different ECUs. However, these resources provide physical limitations on how the
SWCs can be allocated, which the algorithm has to satisfy.

SWCs communicate with each other via signals. If two communicating SWCs
are assigned to different ECUs, then all signals between these two SWCs will be
transferred over the bus connecting these two ECUs. These signals are either periodic
(identified by signal frequency and signal size) or sporadic signals (identified by
minimum-start interval and signal size).

The intuition of the proposed SWC-ECU allocation framework can be explained
as follows. Given a set of SWCs, ECUs, and signals, we can model our problem as
a graph. Graph vertices represent SWCs while graph edges represent the communi-
cation between SWCs. Edge weights differ according to the minimization criteria.
Edge weights are chosen such that the higher the edge weight, the higher tendency
of these two SWCs (connected by this edge) to be allocated on the same ECU.
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We start by allocating all SWCs to one ECU. If no ECU can fit all the SWCs (i.e., the
resources provided by this ECU are not enough to satisfy the resources required by
all SWCs), the algorithm tries to bisect the SWCs into two different clusters while
minimizing the objective function. Accordingly, a graph partitioning algorithm is
applied on the prescribed graph. The algorithm tries again to find suitable ECUs to
fit the smaller SWC graphs. This process is then repeated a number of times until all
SWCs are allocated on ECUs. Remember that graph edges correspond to the criteria
the algorithm aims to minimize. Hence, by utilizing a graph partitioning algorithm
that tends to cut through edges with minimum weights, the resulting partitioning in
turn corresponds to the minimization of the required criteria.

We consider two main minimization criteria in our examples, named communi-
cation bandwidth and sporadic signal bandwidth. However, the proposed framework
can be extended directly to other criteria as well.

11.3.1 Minimizing Communication Bandwidth between ECUs

Highly coupled software components, i.e., those communicating frequently to
achieve their goals, are better to be allocated on the same ECU. Accordingly,
the first optimization criteria aims to increase the intra-communication bandwidth
between the SWCs operating within the same ECU. However, as discussed before,
graph weights are assigned as a criterion that needs to be minimized. Hence, it is more
convenient to minimize the bus communication bandwidth between different ECUs
instead of maximizing the intra-communication bandwidth over the same ECU.

By minimizing the communication bandwidth criterion, the graph edge weight is
given by:

w(e) = max

{
1

signal frequency
, minimum start interval

}
× signal size, (11.1)

where “signal frequency” is the property associated with periodic signals, whereas
“minimum start interval” is the property associated with sporadic signals and reflects
the lower bound on the frequency of such signals. “Signal size” measures the number
of bytes required by each signal.

11.3.2 Minimizing Sporadic Signal Bandwidth between ECUs

A major task in designing real-time systems is to design a bus scheduling policy. On
the first hand, signals with periodic occurrence on the bus are easier to be scheduled.
On the other hand, sporadic signals which do not occur periodically, but have a lower
bound on their occurrence, are harder in terms of designing a scheduling policy.
Hence, sporadic signals decrease the schedulability of the bus and decrease the bus
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stability. By minimizing the sporadic signal bandwidth, the proposed framework tries
to decrease the bandwidth required by sporadic signals. It is obvious to show that
minimizing the overall communication bandwidth does not guarantee minimization
of sporadic signals’ bandwidth. Hence, we are interested in reflecting this behavior
in our framework. Accordingly, if the signal is sporadic the graph edge weight is
given by Eq. (11.2) and zero otherwise.

w(e) = minimum start interval × signal size (11.2)

11.4 Partition-and-Map Algorithm

In this section, we discuss the details of the “Partition-and-Map Algorithm” along
with some issues related to the performance and design constraints. The objective of
this algorithm is to allocate each SWC onto an ECU while minimizing the overall
communication bandwidth and the sporadic bandwidth between ECUs as well.

11.4.1 The Algorithm

For each minimization criterion, we have a preference vector item to weight the
effect of each criterion. The proposed algorithm starts by constructing the graph
representation for the problem, as discussed in Sect. 11.3. For each minimization
criteria, a separate graph is constructed. All graphs are then merged to form one
graph with multiple edge weights. After creating and merging graphs, the algorithm
creates a queue called “Unmapped Clusters”. Then, the algorithm works, as shown
in Algorithm 11.1.

The proposed algorithm uses a multi-objective, multi-level partitioning algorithm,
like the k-way Fiduccia-Mattheyses (FM) heuristic described in Kumar et al. [9]. The
objective of the k-way FM is to bisect the graph into two clusters such that the sum of
edge weights between the two clusters is minimal. Since edge weights represent the
tendency of two SWCs to be allocated to the same ECU, then by finding the minimum
edge cut, the proposed “Partition-and-Map” algorithm ensures finding clusters that
satisfy the minimization goal.

As discussed before, the main objective of the proposed algorithm is to allocate
the SWCs in order to minimize the communication. The proposed algorithm does
not try to balance the loads between different ECUs. Hence, it is more convenient to
use a 2-way partitioning instead of k-way partitioning (with k > 2), which usually
appears in the context of load balancing. The intuition behind the 2-way partitioning
is the following. First, the algorithm tries to allocate all SWCs to the same ECU. If it
succeeds, then the resulting system will have zero communication bandwidth and
zero sporadic signals. If the physical constraints imposed by the available resources
prevent such allocation, the algorithm partitions the set of SWCs using 2-way
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partitioning. This partitioning will result in an increase in the amount of needed ECUs
by one and thus communication between the two ECUs is needed. However, a k-way
partitioning will result in increasing the number of used ECUs by k and thus more
and more communication is needed by those k ECUs.

Algorithm 11.1: The Partition-and-Map algorithm
Input: A list of different ECUs and a weighted graph representing different SWCs and

communication between them
Output: A list of all ECUs and SWCs mapped to each ECU
Sort all ECUs in an ascending order based on the available resources;1
Put all SWCs in one cluster and push this cluster onto the “Unmapped Clusters” queue;2
while the “Unmapped Clusters” queue is not empty do3

Pop an unmapped cluster from the queue;4
Use either Algorithm 11.2 or Algorithm 11.3 to map this cluster to one of the ECUs;5
if the cluster can fit onto one of the ECUs then6

decrease the resources provided by this ECU;7
reorder ECUs again;8

if the cluster cannot fit onto any ECU then9
Use the multi-objective, multi-level partitioning algorithm described in [9] in order to10
bisect this cluster into two smaller clusters;
Push the resulting two clusters into the “Unmapped Clusters” queue;11

Algorithm 11.2: Mapping SWCs to ECUs using the first-fit approach
Input: A list of different ECUs, a list of remaining resources for each ECU, and the required

resources by the SWC cluster, which needs to be mapped
Output: An ECU to which the SWC is to be assigned
Let i = 1;1
while i �= length of the ECU list do2

if available resources of ECUi > the required resources by the SWC cluster then3
return ECUi ;4

return Failure;5

An aside effect of the intuition behind the algorithm is the minimization of
the number of used ECUs and hence the system cost. This follows from the fact
that the algorithm tries to map all SWCs onto just one ECU and then gradually
increase the number of ECUs.
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Algorithm 11.3: Mapping SWCs to ECUs using the best-fit approach
Input: A list of different ECUs, a list of remaining resources for each ECU, and the required

resources by the SWC cluster, which needs to be mapped
Output: An ECU to which the SWC is to be assigned
Let i = 1;1
while i �= length of the ECU list do2

if available resources of ECUi > the required resources by the SWC cluster then3
Calculate ri = available resources of ECUi − required resources by the SWC cluster;4

else5
ri = 0;6

if ri = 0 for all i then7
return Failure;8

else9
return ECUi with the maximum ri ;10

11.4.2 First-Fit Versus Best-Fit Mapping

Algorithm 11.1 can use either the first-fit mapping algorithm or the best-fit map-
ping algorithm while trying to fit an SWC cluster onto an ECU. In the first-fit
algorithm (Algorithm 11.2), the ECUs are sorted in an ascending order based on
the remaining resources and the SWC cluster is mapped to the first ECU that fits
the SWC cluster. Despite the fact that first-fit approach (Algorithm 11.1) performs
fast in practice (as will be shown in the results Sect. 11.6, Examples 2 and 3), the
major drawback of this approach could be stated as follows: As more SWC clusters
are mapped, the remaining resources in each ECU become less. After some time,
each ECU may have small amount of resources available. The sum of these few
resources is adequate to map new SWCs , but since these resources are distributed
over multiple ECUs, they are all unused. This is similar to the fragmentation problem
that arises in storage devices.

The best-fit approach (Algorithm 11.3) tries to overcome the drawbacks of the
first-fit approach at the expense of the execution performance. In best-fit approach,
another loop is required, which goes through all ECUs aiming to find the ECU, which
results into leaving fewer resources compared to all other ECUs. This ensures fewer
resource gaps in the final SWC allocation.

11.4.3 Design Constraints

In many design examples, some constraints need to be satisfied. In the context of
mapping SWCs to ECUs, we identify three design constraints, which the “Partition-
and-Map” algorithm handles directly. These constraints are named:

1. Pre-mapped SWCs,
2. Mutually inclusion of SWCs, and
3. Mutually exclusion of SWCs.
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The first constraint, which is “pre-mapped SWCs” asks that certain SWCs must
be assigned to specific ECUs. For example, an SWC, which handles some sensors
measurements, must be mapped to the ECU, which contains these sensors. In this
case, the “Partition-and-Map” (Algorithm 11.1) have a prior initialization step, where
these SWCs are mapped to the required ECU even before the algorithm starts.

The “mutually inclusion of SWCs” asks that certain SWCs must be mapped to
the same ECU. In such case, we treat these SWCs as only one “bundled” SWC. The
rest of the algorithm remains the same.

On contrast to the second constraint, the “mutually exclusion of SWCs” asks that
certain SWCs are not mapped to the same ECU. In this case, we add two modifications
to the proposed algorithm. First, while partitioning the SWCs graph into clusters,
one needs to add relatively high weight on the edge connecting the two mutually
exclusive SWCs. This forces the multi-way partitioning algorithm to cluster these
two SWCs into two different clusters. Second, the first-fit and best-fit mapping algo-
rithms (Algorithms 11.2 and 11.3) need to accommodate that constraint. The two
mapping algorithms check whether the SWC cluster (which needs to be mapped)
has a conflict with the ECU that is selected for mapping. If there exists a conflict,
the mapping algorithm discards this ECU and searches for the next first/best-fit
ECU.

11.4.4 ECU Heterogeneity

So far, the SWCs are assumed to require a fixed amount of resources regardless the
type of the ECU. A more practical case is that each SWC has different resource
requirements based on the ECU. For example, the code footprint for the same SWC
differs from a 16-bit processor to a 32-bit processor. In order to accommodate such
cases, we attach an array of resource requirements to each SWC. The mapping algo-
rithms (Algorithm 11.2 and 11.3) utilize these information while comparing the
required resources to the available ones on each ECU.

11.5 Evaluation Criteria

To evaluate results of the proposed algorithm, six metrics are developed to
measure the mapping results as given by Eqs. (11.3)–(11.8). The first two metrics
evaluate the communication bandwidth criterion. The third metric evaluates the bus-
schedulability criterion since, from the scheduling point-of-view, the less the sporadic
signals on the bus, the better the schedulability. The other metrics are considered as
aside metrics, which can affect the decision of the designer. These metrics reflect the
utilization of the available resources as a consequence of different SWC allocations.
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11.5.1 Inter-ECU Communication Bandwidth

This metric is calculated for each ECU. It measures the communication sent and/or
received over the bus by each particular ECU as a percentage of the total communi-
cation in the system:

%

[
Total intercommunication bandwidth

Total communication bandwidth

]
. (11.3)

11.5.2 Intra-ECU Communication Bandwidth

This metric is calculated for each ECU. It measures the intra-communication inside
a particular ECU as a percentage of the total communication in the system:

%

[
Total intra-communication bandwidth

Total communication bandwidth

]
. (11.4)

11.5.3 Sporadic Communication Bandwidth

This metric is calculated for each ECU. It measures the sporadic communication
sent and/or received over the bus by each particular ECU as a percentage of the total
communication in the system:

%

[
Total sporadic communication bandwidth

Total communication bandwidth

]
. (11.5)

11.5.4 Total Normalized Cost

This metric is calculated for the whole system. It measures the cost of the ECUs
being utilized as a percentage of the set of the provided ECUs:

%

[∑
Cost for all ECUs that contain SWCs∑

Cost for all ECUs

]
. (11.6)
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11.5.5 Processors’ Cycles Utilization

This metric is calculated for each ECU. It measures the utilization of the processor
computational resources measured as the percentage of processor cycles utilized in
each ECU:

%

[ ∑
Processor cycles used

Processor cycles provided

]
. (11.7)

11.5.6 Memory Bytes Utilization

This metric is calculated for each ECU. It measures the utilization of the processor
memory resources measured as the percentage of processor memory bytes utilized
in each ECU:

%

[ ∑
Memory bytes used

Memory bytes provided

]
. (11.8)

11.6 Implementation and Results

The proposed algorithm is implemented using Java on the Eclipse platform. The
input to the developed software is a set of AUTOSAR (version 3.0) XML descrip-
tion files. The software parses these XML files in order to get the information of
the ECUs from the ECUResourceTemplate nodes in the XML files, SWCs from
the SwcImplementation nodes, and Signals from the AssemblyConnector
and the InternalBehavior nodes. The distinction between the periodic and
sporadic signals is based on the type of the InternalBehavior event associated
with the corresponding Runables. The output of the mapping algorithm is then
written to the SystemImpl node in the same XML files.

Here, we will show three different examples. The first example is to show that the
proposed algorithm tends to minimize more the two criteria proposed earlier based
on the given preference vector. The second example is to show that the proposed
algorithm can give the same results of the optimal solution obtained by mathematical
optimization model, proposed by Honnavara [7], while reducing the computation
time by an order of a magnitude. The third example is to show that the proposed
algorithm can scale up with the increase in the dimension of the system.



11 Software Allocation in Automotive Networked Embedded Systems … 217

Table 11.1 SWCs
configuration used in
Example 1

SWC Cycles Memory

required (%) required

(Bytes)

SWC1 10 256

SWC2 10 384

SWC3 10 640

SWC4 20 256

SWC5 30 640

SWC6 40 1,152

SWC7 40 2,176

SWC8 50 1,651

Table 11.2 ECUs
configuration used in
Example 1

ECU Cycles Memory Cost ($)

provided provided

(%) (Bytes)

ECU1 70 1,024 50

ECU2 70 2,048 80

ECU3 70 3,072 100

ECU4 70 4,096 120

ECU5 70 5,120 170

11.6.1 Example 1: Performance Results

This example is used to test the performance of the proposed algorithm. Number
of SWCs : 8, number of ECUs: 8, number of Signals: 18. Configuration of these
ECUs, SWCs, and signals are presented in Tables 11.1, 11.2 and 11.3, respectively.

Applying the first phase of the algorithm, to build the graph, we get the graph
shown in Fig. 11.1. Vertices represent different SWCs and edge weights represent
{signal frequency, minimum start interval} for each signal connecting two SWCs.

Results of running the proposed algorithm with the following preference vec-
tors [100, 0], [0, 100], and [50, 50], which target minimization for bandwidth only,
sporadic communication only, and minimizing both criteria, respectively, are pre-
sented in Table 11.4. The first column shows the preference vector, second column
shows the ECU, and the third column shows the output of the algorithm, which is
the allocation of SWC. The remaining columns show resource and communication
statistics resulting from this allocation.

The results of running the proposed evaluation criteria Eqs. (11.3)–(11.8) for
the three different runs of the algorithm are shown in Table 11.5. These metrics
show that the proposed algorithm tends to minimize the required preference. For
instance, rows 1 and 3 show that the minimum values for bandwidth and sporadic
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Table 11.3 Signals configuration used in Example 1

Source Destination Signal Minimum start

SWC SWC frequency (Hz) interval (s)

SWC1 SWC7 5.0

SWC1 SWC3 0.0833

SWC2 SWC7 7.0

SWC2 SWC1 9.5

SWC2 SWC4 8.0

SWC3 SWC1 10.0

SWC3 SWC4 0.1111

SWC3 SWC6 5.0

SWC4 SWC2 9.0

SWC4 SWC5 0.0833

SWC5 SWC4 11.0

SWC5 SWC3 10.0

SWC5 SWC6 7.0

SWC6 SWC3 6.0

SWC6 SWC1 0.333

SWC7 SWC4 2.0

SWC7 SWC1 4.0

SWC8 SWC3 9.0

SWC1

SWC7

SWC2

SWC4

SWC5

SWC6

SWC8

SWC3

{5,0}

{4, 0}
{7, 0}

{9.5, 0}

{9, 0}
{8, 0}{2, 0}

{11,0}
{12,0.0833}

{9, 0.111}

{10, 0}

{9, 0}
{12, 0.0833}

{10,0}{3, 0.33}

{6, 0}

{5, 0}

{7, 0}

Fig. 11.1 Merged graph used in Example 1. Vertices represent different SWCs and edge weights
represent {signal frequency, minimum start interval} for each signal connecting two SWCs
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Table 11.4 Mapping results of Example 1 for three different preference vectors

Preference
vector

ECU Allocated
SWCs

Remaining
processor
cycles (%)

Remaining
memory
(%)

Inter-ECU
bandwidth
(%)

Intra-ECU
bandwidth
(%)

Sporadic
bandwidth
(%)

[100, 0] 1 1, 2 71.43 37.50 41.88 6.86 10.83

2 5, 6 0.00 12.50 33.94 5.05 10.83

3 3, 4 0.00 0.00 77.98 7.94 17.33

4 8 28.57 59.69 6.50 0.00 0.00

5 100.00 100.00 0.00 0.00 0.00

[0, 100] 1 4, 5 71.43 37.50 32.49 16.61 6.50

2 2, 8 0.00 12.50 30.68 0.00 0.00

3 3, 7 0.00 0.00 57.04 0.00 15.17

4 1, 6 28.57 59.69 42.24 2.17 8.67

5 100.00 100.00 0.00 0.00 0.00

[50, 50] 1 4, 3 57.14 12.50 67.87 6.50 17.33

2 8 28.57 19.38 6.50 0.00 0.00

3 7, 2 28.57 16.67 27.07 5.05 0.00

4 6, 1 28.57 65.62 42.24 2.17 8.67

5 5 57.14 87.50 28.88 0.00 8.67

Table 11.5 Results of the evaluation criteria in Eqs. (11.3)–(11.8) for preference vectors [100, 0],
[0, 100], and [50, 50], respectively, for Example 1

Metric Run #1 Run #2 Run #3

[100, 0] (%) [0, 100] (%) [50, 50] (%)

1 80.15 81.23 86.28

2 19.85 18.78 13.72

3 19.50 15.17 17.34

4 58.33 58.33 86.66

5 37.50 37.50 37.50

6 36.28 39.11 37.29

communication occur when the algorithm minimizes bandwidth and sporadic com-
munication, respectively. Running time of the shown example was less than 2 s.

11.6.2 Example 2: Profiling Results

The proposed algorithm is then used with the same example shown in [7], where the
optimization criterion is to minimize the bandwidth only. Our proposed algorithm
gives exactly the same results given by the mathematical optimizations, but it is
more than 15× faster in computation time. Although having the same results from
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two different algorithms in one example never means that they will always give
same results. Still, it gives confidence that our approach can give results, which are
very near to the optimal solution, but in a way which is significantly faster than the
mathematical approach given in [7], for the same number of SWCs , ECUs, and
signals.

11.6.3 Example 3: Profiling Results

We here use a higher order example, where a random data is generated for a system
consisting of 80 ECUs, 230 SWCs, and 1000 signals. The amount of time needed to
parse the AUTOSAR XML files is 8 min, while the processing time of the algorithm
is approximately 22 min. This example shows that the time response of the “Partition-
and-Map” algorithm is still acceptable for high-dimensional systems.

11.7 Conclusion and Future Work

This chapter presents a framework for solving the problem of software component
allocation using graph-theoretic techniques. The proposed model opens the venue to
use a set of proven algorithms from graph theory in order to minimize multi-criteria
problems.

The graph representation is simpler than the mathematical equivalent in terms
of adding new optimization criteria to the model. The proposed “Partition-and-
Map” algorithm is proven to minimize the given optimization criteria with a sig-
nificant computation speedup compared to mathematical optimization techniques.

Further investigation is required for handling situations other than discussed here,
like physical location of ECUs and wiring cost. Other directions for research include
how to handle the multi-network situation where the designer is allowed to use
a heterogeneous networking platform (Controller Area Networks (CANs), Local
Interconnect Networks (LINs), FlexRay). The allocation algorithm is then needed
to take into consideration which ECU is connected to which network type and the
congestion on the nodes, which bridge between the different types of networks.
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Chapter 12
Fine-Grained Adaptive Simulation

Marcus Eggenberger and Martin Radetzki

Abstract While gate level simulation precision is still required for certain tasks,
its high simulation detail is rarely required throughout the total simulated dura-
tion. To overcome the low simulation performance that comes along with gate level
simulation, we present an adaptive simulation approach allowing to choose between
register transfer and gate level abstractions online during simulation. This is achieved
by adaptive SystemC models encapsulating an RTL model and a synthesized gate
level counterpart. Adaptive models multiplex between fixed abstraction models and
efficiently perform the necessary state transfer, which is enabled by giving adaptive
models limited access to the simulation kernel. Adaptivity works with almost any
given RTL model and is established in an automated, seamless way. Simulation per-
formance is further increased by the fine-grained selection of simulation precision
on a submodule basis. The benefits of having spatial and temporal freedom to choose
the abstraction level online during simulation have been confirmed in our evaluations
where speedups of up to 150 times have been achieved.

Keywords Adaptive simulation ·Register Transfer Level (RTL) ·Gate Level (GL) ·
SystemC · VHDL · Mixed-language modeling · Multi-level simulation · Network
on Chip (NoC) · Abstraction

12.1 Introduction

With technology nodes still continuing to decrease, the number of integrated tran-
sistors per die further grows. And while this allows to satisfy the every increasing
need for more computational power, it comes at the price of high simulation times,
calling for novel simulation techniques to improve simulation performance. One way
to accelerate simulations is by raising the level of abstraction, and techniques like
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system level modeling and Transaction-Level Modeling (TLM) have been success-
fully employed to increase simulation performance at the cost of reduced simulation
accuracy [10]. However, while TLM is very helpful in the early design phases, its
application becomes more and more limited in the later phases, where a higher
degree of accuracy is needed for design verification. For example, TLM can be used
to evaluate faults in a system context, but the precise nature and effect of actual
faults is lost as faults must be modeled in an abstract way as well. On the extreme
end, precise fault simulation in terms of structural fault injection requires gate level
models, but the complexity of gate level models prohibits gate level simulations of
full systems on chips. Moreover, the small feature sizes, we have reached in the nano
scale area, make chips highly susceptible to faults, which requires integration of fault
resilience methods into the designs and thorough system simulation under various
fault conditions to evaluate such counter measures.

However, even for structural fault simulations, gate level simulation detail is not
necessarily required through the whole simulation. For example when simulating a
degrading system with permanent hardware defects occurring over time, the system
can be simulated at a higher abstraction level until the first error occurs. And even
from that point on, only the part of the system where the fault site is located must be
simulated at gate level precision. When simulating transient faults, the time during
which gate level precision is required is even less, as the simulation of a single cycle
at gate level is enough to determine whether a transient fault will cause a bit flip in
a register or not.

With the increasing chip complexity, we currently see a trend towards multi and
many core architectures, as single core performance has not significantly improved
in recent years. Since traditional bus-based communication architectures do not scale
with the number of connected cores, Networks on Chip (NoCs) have been proposed
as a new communication paradigm for such architectures to overcome these limi-
tations [4]. Many features of large scale networks can be applied to NoCs as well;
therefore, and due to their inherently redundant communication paths, NoCs allow
tackling faults on many different network or abstraction levels. This makes NoCs
an especially interesting candidate for a simulation approach, where high simulation
detail is only provided when actually needed.

To achieve both low level fault simulation and fault evaluation in a system level
context, we propose a novel adaptive simulation approach, which allows simulating
individual subcomponents at gate level only when actually needed. For the remainder
of the simulation, components are simulated at register transfer level to ensure a high
simulation performance. While NoCs are an ideal candidate for adaptive simulation,
our approach is not limited to the field of NoCs, and it can be applied to speedup
simulations of almost any arbitrary Register Transfer Level (RTL) model, when gate
level precision is not required all the time. For that reason, we not only demonstrate the
applicability on the example of NoCs but also using a freely available microprocessor.

The rest of this chapter is organized as follows: Sect. 12.2 introduces relevant
work in the field of adaptive simulation in general and fault simulation in particular.
Section 12.3 identifies the targeted scope of this work and defines the problem state-



12 Fine-Grained Adaptive Simulation 225

ment. Section 12.4 details how adaptive simulation is enabled. Finally, Sect. 12.5
provides evaluation results and Sect. 12.6 concludes this paper.

12.2 Related Work

While this work does not directly cover fault simulation specifically, it aims to be
the foundation for efficient fault evaluation at a system level, by providing means
to change the abstraction level of a system at a subcomponent level at runtime. In
this chapter, we cover existing work for both runtime adaptive simulation as well as
fault simulations, either offering gate level precision or allowing fault evaluation in
a system context.

12.2.1 Structural and System Level Fault Simulation

Detailed fault simulations, such as the evaluation of the performability of a degrading
NoC switch [3] requires simulation at gate level precision. However, the evaluations
are often limited to single module instances (i.e., a single NoC switch) as the com-
plexity of gate level models prohibits examinations at a system level scope.

To evaluate the gate level faults in a system context without suffering performance
penalties induced by full gate level simulations, Kochte et al. [9] integrate a gate
level model, on which fault injection is performed, into a TLM-based system model.
However, the gate level component(s) must be chosen statically in advance, rendering
this method ineffective when faults in several subcomponents need to be simulated in
one simulation run, as again the growing number of gate level components constitutes
a prohibitive factor on simulation performance.

Fast system level fault evaluation is proposed in [2], which leverages the benefits of
TLM. The necessary models are automatically generated on the basis of RTL models
and generated TLM test patterns can be synthesized to RTL test patterns. However,
being based on RTL models, the details of structural fault simulation are unavailable.

While providing dynamic switching between behavioral and gate level models, the
sequential fault simulation [12] offers an analytical methodology to investigate fault
propagation and cannot be used to evaluate system level methods for fault resilience.
The dynamic switching automatically selects between behavior and gate level mod-
els, depending on whether a fault must be propagated or actually simulated. Thus
the dynamic switching offers a different type of adaptivity than the one proposed in
this work.
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12.2.2 Adaptive Simulation

Adaptivity in terms of simulation accuracy has been proposed and employed in
several different forms.

Aiming at software performance evaluation, SimOS [15] can perform simulations
at different level of precision by switching hardware models at runtime. However,
aiming at software evaluation SimOS does not offer a general adaptive simulation
concept.

Hines and Borriello [8] propose an adaptive communication model, where com-
munications can be either simulated at full detail by simulating all steps of the com-
munication stack and using detailed interconnection models, or by using shortcuts
and end to end communications at different levels of the communication stack.

In the field of transaction level modeling, adaptive simulation has been employed
by using differently detailed timing annotations to trade off simulation performance
for timing accuracy [13, 16]. Specialized on timing, this form of adaptivity is not
suitable for fault simulations.

Another adaptive simulation methodology for transaction level models was intro-
duced in [1], which multiplexes fixed abstraction models. Changing the level of
abstraction is only possible at transaction boundaries. This work differs as we target
adaptivity between register transfer and gate level models and enable abstraction
changes at any given simulation cycle.

To the best of our knowledge, this is the first adaptive simulation concept that
offers switching between gate and register transfer abstraction level at runtime on a
subcomponent granularity. We also offer a generic solution as switching abstraction
levels is not only working for combinational but also for sequential models, as we
provide means to automatically transfer the state from one abstraction level to another.

12.3 Preliminaries and Problem Statement

In this work we focus on the adaptive simulation of RTL models and their synthesized
gate level counterparts, where adaptivity is enabled in an automated, generic way.
Both RTL and gate level models are used during the simulation, but at any given time,
only one instance of abstraction level is active. While such adaptivity can be achieved
seemingly easily by multiplexing models of the individual abstraction levels, there
are several challenges that must be taken care of.

With the exception of purely combinational models, models are associated with a
state, which changes during simulation. Since in adaptive simulation there is always
only one active model, the state of the model must be transferred to the newly
activated model whenever switching abstraction levels. This state transfer must be
done in an automated, generic way to avoid modeling overhead and to reduce the
possibility of implementation errors. Furthermore, it is desirable that the degree of
expressiveness of the modeling language is constrained as little as possible, i.e.,
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switching of abstraction level, including state transfer, should be possible for almost
any given model. Additionally, since the total simulated model is larger in size than
any individual model, it must be ensured that the increased model complexity does
not affect simulation performance noticeably, i.e., the inactive model must be shut
down in such a way that it does not reduce simulation performance.

Solving the aforementioned challenges lays down certain requirements on the
simulator. To transfer the state from one model to another, it is not only necessary to
have insight into arbitrary data structures of a model, but also to have the possibility
to manipulate the current state of the simulation by altering the current state of
individual models. In this work we use Mentor Graphics ModelSim, which meets
the requirements with its Foreign Language Interface (FLI), a C-Library that can
be used “to traverse the hierarchy of an HDL design, get information about and set
the values of VHDL objects in the design, get information about a simulation, and
control (to some extent) a simulation run” [11].

12.4 Adaptive Modules

The core concept of our adaptive simulation is an advanced form of mixed simulation,
not only combining SystemC and VHDL models, but also by coupling SystemC mod-
els and ModelSim’s simulation kernel in a unique way.

The centerpieces of the adaptive simulation are special SystemC models, called
Adaptive Modules, encapsulating RTL and gate level VHDL models. Adaptive Mod-
ules perform input and output (de)multiplexing of the fixed abstraction level models
and provide the necessary means to read and write the state of these models. The
structure of an Adaptive Module is shown in Fig. 12.1. A complete simulation model
can consist of many different Adaptive Modules and they are supported on arbitrary
levels of the model hierarchy. This enables fine-grained control over the abstraction
levels, while at the same time delivering a high simulation performance, as only the
parts actually requiring high simulation accuracy are simulated using a low abstrac-
tion level.

12.4.1 Multiplexing Fixed Abstraction Level Models

The basis of an Adaptive Module provides a synthesizable RTL model, which is
given in the hardware description language VHDL. For this model, a gate level
counterpart is generated using hardware synthesis. In this work, we used Synop-
sys Design Compiler (DC) to synthesize the gate level model, which is then exported
as a VHDL model. In combination with cell models of the targeted vendor library, this
model can be used for a timing accurate simulation. Having both abstraction levels
incorporated into one model allows selecting between fast simulation performance
and high simulation precision at simulation time.
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Fig. 12.1 Adaptive module structure

Whereas the fixed abstraction level models are provided in VHDL, the wrapping
Adaptive Module is designed as a SystemC module. While multiplexing between
the different submodules is possible in VHDL, it is the mixed simulation model
that makes efficient adaptive simulation possible. Using SystemC, and thus C++,
gives access to the full scope of ModelSim’s Foreign Language Interface (FLI) by
linking against the respective C-Library. This, in turn, provides Adaptive Modules
with introspective capabilities giving insight into its fixed abstraction submodules
and enabling the manipulation of their states.

To transfer the state between two similar models, it is required to know how the
state is represented in each model and how to transform between the individual rep-
resentations. In both RTL and gate level models, the state is stored in registers. While
in RTL designs, registers are modeled using VHDL signals, possibly of aggregate
data types, gate level models use flip-flop instances. Since a flip-flop only stores
a single bit, multiple flip-flops might be necessary to store the content of a sin-
gle RTL register. Therefore, a bijective mapping from RTL registers to gate level
flip-flops is required to enable state transfer. During the elaboration phase of the sim-
ulation, this mapping is automatically generated by each Adaptive Module. Building
the mapping is possible from within a SystemC model by using FLI functions for
enumerating subregions and signals within a given region.

Creating the register map consists of two steps: First, an intermediate mapping
between the individual subregions of the fixed abstraction models is built. This map
of matching regions is necessary due to inconsistent region names between autogen-
erated regions in ModelSim and Synopsys DC and because of flattened region levels,
which is especially the case for regions created using VHDL’sgenerate statement.
In the second step the actual mapping between RTL registers and corresponding gate
level registers is established. For each matching pair of items in the region map,
the gate level region is scanned for flip-flops. Here, flip-flops are instances of gate
level models, which can be identified by their entity and architecture names, as given
in the vendor library. Synopsys DC derives names for flip-flop instances based on
the names of their corresponding RTL signals. E.g., an RTL signal named value
of unconstrained integer type, would be synthesized into flip-flop instances named
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value_reg_0_inst to value_reg_31_inst. We use this naming convention
to find the matching RTL signal and to identifiy the corresponding bit position inside
the RTL signal in the case of array, scalar (integer) and enumeration types.

Note that for synthesizing the gate level model, the Synopsys DC command
ungroupmust not be used as it destroys the model’s hierarchy and with that removes
information necessary to establish the register mapping.

Input and output (de)multiplexers are used to select between the individual, fixed
abstraction level models. Output multiplexers forward the values of the currently
active model to the output ports of the Adaptive Module and suppress all events
from the currently unused model. For this purpose, output multiplexers contain spe-
cial, suspendable signals, derived from sc_signal. When disabled, these signals
prohibit event generation when being written to. While the output multiplexers are
needed for functional reasons, the input demultiplexers enable fast simulation per-
formance. The input demultiplexer only forwards new values to the currently active
module, and for the inactive model, the input ports are kept at the last active value,
which ensures that no new events are generated inside the model and thus that the
unused model is effectively deactivated.

For the input and output (de)multiplexers, using SystemC is also beneficial as
it makes them not only more efficient, but also simpler. For each input and out-
put port, one demultiplexer or multiplexer is needed, and the data type of the port
can be arbitrary and is not known in advance. While in VHDL, that would require
one (de)multiplexer definition (not only instance) per data type, using SystemC
allows a generic design by using template classes for the (de)multiplexers having
the data type of the port as a template parameter. For example, a VHDL outport of
type std_logic corresponds to a SystemC sc_out<sc_logic>, which, in the
Adaptive Module, corresponds to a OutputMultiplexer<sc_logic, 2>.1

12.4.2 3-Phase Switchover

Switching the abstraction level of an Adaptive Module consists of three distinct
phases, which must be performed in a strict order to ensure a correct simulation
outcome. In order, these phases are:

1. Switch the input demultiplexers to forward values to the newly activated model
and to inhibit updates for the old one.

2. Transfer the state of the previously active model to the new model.
3. Switch the output multiplexers to forward values from the new model and to

ignore updates from the old model.

When switching adaptivity without strictly adhering to this order, the external view
of the Adaptive Module can deviate from that of a fixed abstraction level model. That
is, signal toggles, caused by the switchover, can propagate to an output port before

1 The value of 2 determines the number of multiplexer inputs.
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reaching a stable state, thus leading to an erroneous behavior of the model. The
reason for the switchover order is as follows: Fairly obviously, switching the output
multiplexers must be performed as the last step. This ensures that until the newly
activated model has reached a stable state, the still correct values of the previously
active model are output and no glitch resulting in input switching or state transfer
will be visible at the outputs of the Adaptive Module.

State transfer must be performed after switching the inputs to ensure that the state
is not altered after transfer. Switching the inputs will cause new input values to be
applied to the model, which in turn causes VHDL processes to run. If the inputs were
switched after state transfer, this could cause an erroneous state. For example, imagine
a simple counter model, incrementing its value with each clock cycle; if the counter
has a value of N at the time of switchover and the clock input is connected after
the state transfer, this can result in an unwanted increment of the counter, effectively
setting a value of N +1. Therefore, the state must be transferred after input switching,
and combined with necessity to switch outputs last, yields the aforementioned order.

12.4.3 State Transfer

Transferring the state between the models is efficiently done by copying the current
register values from one model to the other, using the register map created during
elaboration (cf. to Sect. 12.4.1). The process illustrated in Fig. 12.2, where the flow
for transfer from RTL to gate level follows top-down direction and vice versa for gate
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Fig. 12.2 State transfer between RTL and GL models. State transfer consists of a transformation
and aggregation or splitting. The necessary meta information is provided by the register map,
established during elaboration
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level to RTL. When switching from RTL to gate level abstraction, the RTL values are
first transformed into bitvector representations before they are split into the individual
bit values, ready to be assigned to the individual flip-flops. In the other direction,
gate level to RTL, flip-flop values are first aggregated to a bitvector, which is then
transformed into the RTL data type. The necessary meta informtion for this process
(data type, corresponding set of flip-flops) is readily available in the register map
enabling an efficient state transfer.

Due to the similar data types employed in RTL and gate level modeling, the
transform stage is optional and can be skipped in many cases. If the RTL value is
based on a data type used for digitally encoded values, the transform stage is bypassed
and the values are directly copied to the flip-flops. This is the case for the data types
std_logic, std_logic_vector, signed,2 unsigned,2 and any of their
subtypes.

For scalar and enumeration types, the transformation is mandatory. In gate level,
scalar data types are encoded using two’s complement for integer type and simple
binary encoding for the types natural and positive, which do not include neg-
ative values. Unfortunately, the ModelSim FLI does not differentiate between those
individual scalar types, which makes it impossible to determine whether a value is
encoded using two’s complement or not. For example, in gate level, a value of 11112
could either represent a value of −1, if the corresponding RTL type is integer,
or 15, if the RTL type is natural or positive. To overcome this limitation of the
FLI, we perform transformation of scalar types by applying bit manipulation opera-
tions on the C data type, representing the RTL value. For example, when transforming
from RTL to gate level, a bit mask is shifted and applied to the RTL value, to detect
which bits have been set. The transformation from gate level to RTL is handled
similarly.

To transfer the value of enumeration types, which are commonly used for state
machines, the encoding of the individual states must be known. Fortunately, Synop-
sys DC encodes states linearly according to the order they have been declared in.
Also, Synopsys DC does only little optimizations to the state encoding: there is no
reordering of states, no state reduction due to equivalence, and states that can never
be reached are only removed to save flip-flops if they are at the end of the state
declaration list. Example, assume a type state_t having states s0, s1, s2; if only
s0 and s1 are used, only one flip-flop is used to encode the state, but two flip-flops
are synthesized even if only s0 and s2 are used. Due to the linear encoding and
the minimal optimizations, a fixed bijective relation between abstract RTL values
and bit-encoded gate level values exists, which enables state transfer of enumeration
types in a general way.

2 Like std_logic_vector, signed and unsigned types from package
ieee.numeric_std are arrays of std_logic. However, they have added numerical
interpretation. signed and unsigned types are not to be confused with scalar types integer,
natural or positive types!
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12.4.4 Controlling the Level of Abstraction

While the Adaptive Modules provide the means for input and output switching as well
as state transfer, the actual execution of the 3-phase switchover protocol, described
in Sect. 12.4.2, is not carried out by themselves. Between every two steps of the
3-phase switchover, we have to ensure that all events generated by a previous phase
have been processed before continuing with the next phase. These pending events
are processed by a centeralized instance, called Adaptive Module Manager (AMM).
This not only allows efficient abstraction switching of multiple Adaptive Modules
at the same time but also ensures that the proper method to process pending events
is selected and the same for all Adaptive Modules. The latter is necessary as our
adaptive simulation approach supports two types of switching the abstraction level.
These are interactive switchover and on-the-fly switchover and are described in detail
in the remainder of this section.

12.4.4.1 Interactive Switchover

The purpose of interactive switchover is to allow users controlling the abstraction
level of the individual Adaptive Models using ModelSim’s Command Line Interface
(CLI) and to enable abstraction switching in scripted simulation runs.

The ModelSim FLI allows exporting custom C-functions to ModelSim’s CLI
augmenting the simulation with new functionality. However, such C-functions
do not have any knowledge of C++ objects and therefore cannot call methods
of Adaptive Modules, which, in turn, prohibits accessing Adaptive Modules via
the CLI. To overcome this limitation, the Adaptive Module Manager is imple-
mented as a singleton [7], which enables global access to its instance, including
plain C-functions exported to the CLI. And since all Adaptive Modules automat-
ically register with the manager, the AMM can forward calls to individual Adap-
tive Modules. For the purpose of abstraction switching, the manager provides a
static method SwitchAdaptiveModule(...), which is directly exported to
the CLI. From there, it can be called as SwitchAdaptiveModule<AM_NAME>

<ABSTR_LVL> having the name of an Adpative Module and the desired abstraction
level as parameters. The effective call sequence when accessing an Adaptive Mod-
ule via the CLI is shown in Fig. 12.3. Note that the FLI acts as a bridge connecting
simulation control and the simulation model. This, in combination with the single-
ton AMM, exposes control over the individual Adaptive Modules to the CLI, which
otherwise would not be possible.

When SwitchAdaptiveModule is called, all currently pending events must
be processed before starting with the first phase of the actual switchover. Since
CLI functions can only be called when the simulation is currently halted or paused,
processing the pending events means advancing the simulation accordingly. Unfor-
tunately, the FLI does not provide any function to run the simulation. However, the
FLI can execute CLI commands, and we use this feature to call run -all, which
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Fig. 12.3 Call sequence for interactive control over adaptive modules

advances the simulation until all currently pending events have been processed. After
all events have been processed, the AMM sequentially executes the three phases,
interleaved by calls to run -all to ensure that all newly generated events have
been processed. To efficiently change the abstraction level of several Adaptive Mod-
ules at the same time, the AMM keeps track of the phase an Adaptive Module is
currently in. This allows different Adaptive Modules to be in different switchover
phases at the same time, which reduces the number of calls to run -all and
speeds up abstraction switch of multiple modules.

While interactive switchover is useful for manual simulation runs and evaluation,
ModelSim also allows scripted execution of simulations in terms of .do-files using
the interpreted language TCL. All CLI commands, including custom commands
exported using the FLI, can be used in TCL scripts to control the flow of a simulation.
This enables an automated simulation run with script-controlled adaptivity. With that,
interactive switchover can be used to perform fault simulation at gate level. Here,
Stuck-At faults are injected using the CLI command force, which overrides any
value applied by a regular driver of the signal with a fixed value. An exemplary
script for the simulation of a transient fault is shown in Listing 12.1. First the system
undergoes a warmup phase at register transfer level. Then, to simulate the transient
fault the abstraction level of a submodule is changed to gate level, which allows
fault injection by forcing a specific signal to logical 1. The simulation continues to
evaluate the effect of the fault before removing the injected fault and bringing the
submodule back to RTL.

12.4.4.2 On-The-Fly Switchover

On-the-fly switchover enables models to programmatically change the abstraction
level online during a running simulation with triggers based on observered or
timed events. On-the-fly switchover increases the range of applications for adaptive
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Listing 12.1 Example use case: TCL script for transient fault simulation

1 # warm up s y s t e m a t RTL
2 run 10 us
3 # s w i t c h / d u t / i n s t t o g a t e l e v e l
4 switchAdaptiveModule /dut/inst GATELVL
5 # i n j e c t f a u l t
6 force /dut/inst/signal -freeze 1
7 # p e r f o r m f a u l t s i m u l a t i o n
8 run 20 ns
9 # r e m o v e f a u l t

10 noforce /dut/inst/signal
11 # r e t u r n / d u t / i n s t t o RTL
12 switchAdaptiveModule /dut/inst RTLLVL
13 # c o n t i n u e w i t h s i m u l a t i o n
14 run 10 us

simulation, as interactive switchover can only be performed when the simulation is
not running. However, because any observerable condition can be used to trigger
abstraction switching, defining and testing the conditions is highly model-specific
and therefore cannot be done in a generic way. Thus, triggering automatic changes of
abstraction level requires user implemented functionality to check for the occurence
of the conditions of interest, e.g., test for a specific input or output bit pattern.

If the condition of interest is observable at the input or output ports, a simple
SC_METHOD, sensitive to the respective ports, can be added to the Adaptive Module.
The method has to check for the occurence of the condition and, in the case of a
match, call the Adaptive Module Manager’s SwitchOnTheFly method to trigger
an online change of abstraction level. If the condition is not observable at the input
or output ports, the checking method can be implemented as an SC_THREAD, which
periodically checks the internals of the model for the occurence of the condition. Since
the SystemC model has no immediate insight into the fixed abstraction models, the
checking method has to rely on FLI functions, which provides the Adaptive Module
with introspective capabilites. This makes it possible to test for any arbitrary condition
inside both RTL and gate level models. Again, when the triggering condition is met,
the SC_THREAD calls the AMM’s SwitchOnTheFly method taking care of the
switchover.

Since on-the-fly switchover happens while the simulation is running, pending
events cannot be processed by simply calling run -all, as it is handled in the
interactive case. But since the simulation is running anyways, the AMM simply
queues the Adaptive Module for switchover and waits until all events for the cur-
rent simulation time have been processed before it starts executing the individual
switchover phases. Similarly to interactive switchover, the succeeding phases must
not be executed until all pending events have been processed, and thus the AMM
waits for these events to be processed.

Unfortunately, neither the FLI nor any CLI command offer the possibility to detect
whether there are pending events or not. Therefore, the only way to wait for events to
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be processed is by waiting a fixed amount of delta cycles. This timeout is highly model
dependent, and chosing a timeout value that is too short can lead to an erroneous
switchover possibly voiding the simulation outcome. On the other hand, too long
timeouts lead to unneeded additional delta cycles. Fortunately, experiments showed,
that this overhead does not impose a significant performance penalty, which is most
likely because there are almost no actions to be performed during these unnecessary
delta cycles.

While online adaptivity changes come at the price of additional implementation
efforts, they are also a powerful tool to get detailed insight into a complex model’s
behavior without suffering the low simulation performance of a full gate level simula-
tion. For example, on-the-fly switchover allows conditional fault injection to observe
the behavior under given faults only for specific packets. Another possible use case is
tracing a packet at gate level through a full NoC model, where switches not currently
transporting the packet are simulated at RTL ensuring a high simulation performance.
However, the field of application is not limited to these examples, and custom imple-
mented trigger functions can be used to speed up nearly any simulation scenario,
where gate level simulation is required only in certain situations.

12.4.5 RTL Modeling Requirements and Simulation
Limitations

By and large, we achieved our goal of enabling adaptive simulation for any arbitrary
given RTL model. However, RTL models, where the state is stored in a variable of a
VHDL process, prohibit adaptive simulation. If other signals or outputs of the model
depend on this variable, it is necessary to run the process, to which the variable
belongs to, in order to propagate the changed value of the variable. While it is
generally possible to force a process run via the FLI, such state carrying variable can
only occur in sequential processes, which have a control flow that possibly prohibits
a proper process run. In VHDL, sequential processes active on the rising edge of a
clock signal clk are usually modeled similiar to the example shown in Listing 12.2.
If the switchover is performed at a time when clk = 0, the if clause will not be
satisfied and the branch will not be taken. On the other hand, if a model is deactived
and activated again, when at both times clk = 1, then the condition of the if clause
again will not be satisfied since the old and current value of clk are the same and thus
clk’eventwill evaluate to false. As a result, the part of the process responsible
for handling the variable will never be executed, and thus the depending signals and
outputs will not be properly updated.

Instead, it is recommended to use a clean design methodology, such as the two-
process design method [6], where combinational logic and sequential logic are split
into separate processes. While such design methods are generally recommended for
the design of synthesizable models, such methods also ensure that the state is never
stored in VHDL variables and help identifying registers at design time.
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Listing 12.2 Sequential Process in VHDL

1 process (clk) begin
2 if clk ’event and clk = ’1’ then
3 ...
4 end if;
5 end process;

There is also a minor limitation when using timing-accurate gate level mod-
els. In such models, it is not possible to switch from gate level to RTL abstraction
immediately at a simulation time of a positive clock edge. On positive clock edges,
registers will latch the value currently applied to their inputs. However, a timing
accurate simulation respects setup and hold times of registers as well as wire delays.
Therefore, as opposed to an RTL model, a gate level register will not output the new
value of the next cycle until the setup time of the register has passed. As long as
only registers triggering on the positive clock edge are used, a safe time to switch
from gate level to RTL is at the negative clock edge. However, this limitation can be
simply overcome by delaying the switchover until the register’s output has settled for
the new value. Note that it is still possible to switch abstraction levels in any given
cycle.

12.4.6 Building an Adaptive Module

Building an Adaptive Module is an automated task, for which we wrote a small
program in Python. Mixed-language simulation with VHDL entities inside SystemC
modules requires special SystemC stub modules matching the interface of the VHDL
models. These stub modules can be generated by ModelSim using the scgenmod
command. We use the output of this command to automatically build an Adap-
tive Module. The generated SystemC module derives from a base class providing the
state transfer logic, including register map generation, and it instantiates all neces-
sary input and output (de)multiplexers. If necessary, the generated Adaptive Module
can be extended according to individual needs, e.g., by implementing methods to
perform on-the-fly switchover (cf. to Sect. 12.4.4.2).

12.5 Evaluation

Evaluation of our adaptive simulation approach was carried out in two ways: First,
we evaluated the general applicability of our simulation model to a freely available
microprocessor model; and second, we used a NoC model, implemented by ourselves,
to evaluate performance benefits of adaptive simulation on a submodule level.
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12.5.1 General Applicability of Adaptive Simulation

In Sect. 12.3, we identified the goal to have a generic approach for adaptive simu-
lation, which can be applied to any existing model. To back this claim, we applied
the methods developed in this work to the freely available microprocessor model
Plasma [14], a System on a Chip (SoC) using a MIPS I microcontroller, which has
been published in the public domain as an opencores project. However, we had to
make two minor modifications to the Plasma SoC. These modifications were neces-
sary to make Plasma properly synthesizable with Synopsys DC, as it was designed
for usage with Field-Programmable Gate Arrays (FPGAs). For on-chip memory,
the SoC instantiated hard blocks of random access memory, available in FPGAs.
Obviously, these FPGA-specific memory blocks are unavailable in general synthesis
tools, and we had to replace them with a synthesizable memory model. The second
change was necessary because the register file was modeled in such a way that it
relied on signal initialization, which is not supported by Synopsys DC, instead of
initializing the register file on reset. Note that while we made changes, these changes
were only necessary to make the SoC synthesizable and to make the synthesized
model match the RTL model. The changes were not caused due to a lack of support
by our adaptive simulation.

The gate level model of Plasma was synthesized for the LSI_10K target library.
Based on the SystemC stub, generated using ModelSim’s scgenmod, the corre-
sponding Adaptive Module of Plasma was generated using the Python program
described in Sect. 12.4.6. The Adaptive Module was then instantiated in the test bench
that comes with the Plasma SoC. We also instantiated a fixed abstraction, pure
RTL model of Plasma to check the correctness of the Adaptive Module. The sim-
ulations were carried out using ModelSim in version 6.6d, running on a simulation
platform featuring an Intel® CoreTM 2 Quad processor and 8 GB of main memory.
We ran the simulation for 50µs and changed the abstraction level of the Adaptive
Module at various points in time. The outputs of the two models were compared on
every clock edge. At no time, there was a difference in the output, which proves the
correctness of the Adaptive Module and thus the general applicability of our adaptive
simulation approach.

We also carried out initial performance evaluation of our adaptive simulation
using Plasma. Again, the test bench provided by Plasma was used, this time without
the overhead of checking the outputs against a reference model, i.e., only a single
Plasma instance was used. We used the CPU time spent by the simulation kernel
as performance metric. The results are summarized in Table 12.1. First, a reference
baseline is established using two fixed abstraction, pure VHDL models. We then
repeated the simulation using the adaptive model, setting the abstraction level to
RTL or GL at the start of the simulation and no abstraction switching to measure
the overhead of adaptive simulation. In the pure RTL case, the adaptive simulation
imposes a significant overhead, having a CPU time of 1.623 s compared to 0.02 s in the
pure VHDL case. However, further investigations showed, that the overhead in RTL
does not depend on the simulation duration, as running the same scenario for 500µs
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Table 12.1 CPU time required for a 50 µs simulation of Plasma [14]

Model type Abstraction level CPU time (s)

Fixed RTL Model — 0.02

Fixed GL Model — 606.04

Adaptive Model 100 % RTL 1.62

Adaptive Model 100 % GL 616.31

Adaptive Model 20 % RTL, 80 % GL 467.06

only increased the CPU time to 1.9 s. Moreover, in the pure gate level scenario the
overhead is negligible (about 1 %), where the CPU time increased from 606 to 616 s.
Since the idea of adaptive simulation is to use—at least to some degree—the low
gate level abstraction, the overhead pays off even when the RTL abstraction is only
used for a short time.

For an example of adaptive simulation, we first ran the simulation for 10µs at
RTL abstraction level, and then simulated the remaining 40µs at gate level. In this
case, the consumed CPU time was only 467 s, which is about 77 % of a full gate
level simulation (606 s). The super-linear CPU time reduction3 is possible because
the CPU time required to simulate a time step at gate level depends on the current
switching activity, which can change throughout a simulation run. This supports that
adaptive simulation is also beneficial if it is only used to warm up a simulation model,
e.g., until a boot up sequence has finished.

12.5.2 Performance Evaluation

To evaluate the performance of our adaptive simulation, especially on a sub-
module level, we designed an adaptive NoC model, based on a self-designed
VHDL switch. The model consists of 16 adaptive switches aranged in
a 4×4 mesh topology. For the switches, we used a basic model, featuring XY-routing
and wormhole switching [5]. Again, the corresponding gate level model was syn-
thesized for the LSI_10K target library using Synopsys DC. Figure 12.4 shows the
general structures of the adaptive NoC model (left) and the adaptive switches (right).
In addition to the four ports shown (left, right, top, bottom), every switch has an addi-
tional local port connected to a Processing Element (PE), which is responsible for
generating and receiving test data. The PEs are generating synthetic network traffic
by sending a fixed message to a predefined destination PE repeatedly. Destination PEs
are selected in a transpose pattern.

The simulation environment is the same as in the previous section, and perfor-
mance metric is again CPU time spent by the simulation kernel. All simulations were
run for 2,500 simulated cycles.

3 77 % CPU time compared to 80 % gate level simulation time.
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Fig. 12.4 Adaptive NoC model of 4 × 4 mesh topology and structure of an adaptive switch

First, we evaluated the performance, when only a part of the model is simulated
at gate level. For that purpose, we performed simulations with different number of
switches simulated at gate level. Each switch was fixed at either gate level or RTL
throughout the whole simulation, and the abstraction level was never changed during
a simulation run. Simulations were repeated with gl = 0 to 16 switches at gate level,
and the results are shown in Fig. 12.5. As expected, the simulation duration increases
nearly linearly with the number of switches simulated at gate level. This shows that
adaptive simulation is helpful even if only a part of a model needs to be simulated at
lower abstraction levels. While this can also be achieved by using fixed abstraction
instances of RTL and gate level models, the adaptive simulation has the advantage that
the models to be simulated at gate level can be selected at runtime and there is no need
to change the simulation model. For example, this can be helpful when evaluating
fault tolerance methods for different fault scenarios. Based on these measurements,
we can derive the average simulation times for a single switch at RTL and gate level
as approximately 0.3 and 55 s respectively. The large ratio of these simulation times
confirm that the gate level models are properly shut down when simulating at RTL
and that overhead of adaptive simulation is negligible.

We also evaluated how adaptive simulation can reduce simulation times when gate
level precision is only required for a short period of time, but repeatedly throughout
the simulation run and for different submodules. For this purpose, we evaluated
the performance of a transient fault simulation. While the general simulation was
performed at RTL abstraction, the simulation of transient faults requires gate level
precision for a short time. Therefore, we periodically changed the abstraction level
of one switch to gate level precision, and after one cycle switched back to RTL. This
time is sufficient to evaluate whether a transient fault affecting a certain wire will
manifest in a flipped register bit or not. We adaptively changed precision to gate
level every n cycles and repeated simulations with doubling n between simulation
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Fig. 12.6 Simulation performance for transient fault simulation. One NoC switch is changed to
gate level precision every n cycles for a duration of 1 cycle

runs, n ranging from 2 to 128. The performance of the transient fault simulation
is shown in Fig. 12.6. It can be clearly seen that adaptive simulation pays off even
for very high transient fault probabilities. Especially in the case of the lowest fault
probability (n = 128), the consumed CPU time (6.1 s) was only about 50 % higher
than the CPU time of a pure RTL simulation (4.1 s). Note that without adaptive
simulation, a full gate level simulation would be required, which has a CPU time of
900 s (cf. to Fig. 12.5). This yields a speedup of 150 over traditional, fixed abstraction
simulation.



12 Fine-Grained Adaptive Simulation 241

12.6 Conclusion and Future Work

We presented a novel methodology for adaptive simulation allowing to change the
simulation accuracy between register transfer level and gate level online during the
simulation. The fine-grained adaptivity at submodule level makes it possible to sim-
ulate only the parts actually needed at gate level while keeping the rest of the model
at register transfer level to ensure a high simulation performance.

For this, we introduced Adaptive Modules taking care of abstraction switching
in an automated way. The necessary state transfer is enabled by an automatically
generated mapping between RTL registers and synthesized flip-flops. To generate this
mapping and to copy the state from one model to another, we incorporated usage of
ModelSim’s Foreign Language Interface into the adaptive SystemC wrapper models
in a novel way giving limited access to ModelSim’s simulation kernel.

The general applicability was verified using Plasma [14], a freely available micro-
processor. And our evaluations show the benefits of adaptive simulation, whenever
gate level precision is required only for a part time of the simulated duration. Speedups
of a factor of 150 compared to full gate level simulation highlight the applicability of
our approach especially in the context of transient fault simulation, where arbitrary
parts of the simulation model are required at gate level repeatedly for a short duration
each time.

For future work, we intend to incorporate additional abstraction levels into the
Adaptive Modules including TLM-based models.
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Chapter 13
Model-Based Design of Real Time Embedded
Application Reconfiguration
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Abstract Maximizing the system output quality under resource constraints presents
an inherent challenge in the design of RTES. To deal with this issue, scaling the
application quality level through algorithmic or parameters tuning is an interest-
ing adaptation mechanism since it permits to handle the complexity of modern
embedded applications. Unfortunately, this adaptation mechanism is still under-
explored by existing model-based design approaches. It is also not supported by the
UML MARTE profile. Therefore, we propose in this chapter a model-based design
of application reconfiguration using the MARTE standard. We define an additional
package extending the Software Resource Modeling sub-profile. Then, in order to
promote reusability of our proposed extension and facilitate its use by non-experts,
we exploited it in the definition of a design pattern for an adaptation RTES deci-
sion making process.
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13.1 Introduction

A self-adaptive system is a system that is able to change its structure or behavior at
run-time in response to the execution context variations and according to adaptation
engine decisions [14]. The design of adaptive embedded systems presents many chal-
lenges due to the complexity of the problem it handles. A common basic challenge is
optimizing system non-functional properties (e.g., maximizing output quality) while
meeting internal and external constraints (e.g., real-time constraint). For example,
a high quality of service may require a high utilization of system resources, such
as CPU cycles and memory space, and implies high energy consumption. Numer-
ous approaches for the development of self-adaptive Real-Time Embedded System
(RTES) have been proposed in the literature. They tackle various layers of the sys-
tem, ranging from the application to the hardware, with different adaptation scope
granularities and different performances [19, 20]. The software adaptation is fast but
performed locally, while the hardware adaptation is complex but has more global
effect. Thus, adaptation needs to be integrated at different system levels, and with
different granularities (fine and coarse) to yield considerable benefits in resource
utilization.

Due to the hardness of self-adaptive systems development at a low abstraction
level, designers have resorted to high level design methods [23] based on the Model-
Driven Engineering (MDE) paradigm. Using MDE [22] with the Unified Modeling
Language (UML) is becoming a promising solution to decrease the complexity of
RTES design via UML profiles. The recent profile Modeling and Analysis of Real-
Time and Embedded systems (MARTE) [13] comes to provide a rich terminology for
the specification and analysis of RTES. High level existing design methods of adap-
tive RTES are restricted to the modeling of coarse-grain adaptation techniques which
bring modification to the whole system configuration. A typical modification is an
allocation scenario of the software part on the execution resources. However, modern
applications, typically multimedia ones, are increasingly complex and require more
and more high computational capacity that may exceed existing systems capacity.
Fine-grain application adaptation permits to manage this complexity by scaling the
applications output quality according to context variations and resources availability.
It is therefore an important capability of embedded systems that has been proven to
be beneficial but is unfortunately still under-explored. Indeed, the MARTE standard
offers features to model global adaptation but does not offer explicit semantics to
support local application adaptation. Moreover, there is still a lack of reusable designs
that are sufficiently generic to fit different systems and permit to fasten the designer
task.

The main contribution of this work consists in extending the MARTE standard in
order to cover the lack of fine-grain application reconfiguration support and permit
the modeling of more complex adaptation approaches through hierarchical solutions
yielding both local and global adaptations. We also exploit our extension in the
definition of a generic model, taking the form of a design pattern [8], for the design
of an adaptation decision process for real-time and embedded systems. The proposed
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pattern enables experts of adaptive RTES to get fast and reusable designs of fine-grain
reconfigurable systems. It also gives them the liberty to insert additional details that
are specific to their case studies.

The remainder of this paper is organized as follows. In Sect. 13.2, we give some
useful definitions and details concerning the application adaptation. In Sect. 13.3,
we briefly review some related works that address MDE-based software adaptation
design for real time embedded systems. We present in Sect. 13.4 a targeted overview
of the UML MARTE profile, where we outline its capabilities and limitations regard-
ing RTES reconfiguration modeling. Section 13.5 describes our proposed extension
of MARTE and presents a case study illustrating the use and importance of this
extension. In Sect. 13.6, we show how the proposed reconfiguration package is used
for the development of an adaptation decision design pattern. Finally, we conclude
the paper and present future works in Sect. 13.7.

13.2 Self-Adaptation in RTES

In order to ease the understanding of the contributions presented in this chapter and
keep the paper self-contained, the underlying concepts of self-adaptive systems are
briefly reviewed in the following subsections.

13.2.1 The MAPE Adaptation Loop

Self-adaptation can be conceived in different ways depending on various aspects
such as target platform, application domain, adaptation goals, users’ requirements,
system constraints, context changes, adaptation mechanisms, targeted system layers,
adaptation scope, and many others [1]. However, there is a common structure of the
adaptation mechanism that a self-adaptive system embodies. It is an adaptation loop
referred to as the Monitor, Analyze, Plan, Execute (MAPE) loop [10]. It is composed
of sensors, effectors, and four basic modules, which are the monitoring, analyzing,
planning (or deciding), and executing (or acting). Figure 13.1 presents a bloc diagram
illustrating the global structure of a self-adaptive system.

The entities forming the MAPE loop are described as follows:

• Sensors collect data about the status of the system and its environment.
• The Monitoring module processes the collected data to decide about relevant

changes and then trigger change events.
• The Analyzing process examines the received events to detect if an adaptation is

required. It can also identify the source of the change. Monitoring and Analyzing
processes stand for all forms of observation and evaluation of systems’ execution
such as performance monitoring, safety inspection and constraint verification [14].
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Fig. 13.1 Global structure of a self-adaptive system

• The Planning process generates an adaptation decision which specifies what ele-
ments to change and how to change them in order to best meet system requirements.
Two common approaches are used in the literature to construct Decision makers:
rule-based approaches and intelligent approaches. The second approach does not
fit the real-time and embedded systems domain because of its requirements in
terms of computing time. Adaptation decision mechanisms can be classified in
two categories [12]: Parameters tuning and compositional. The former reconfig-
ures the application through parameters’ values or algorithms modification to scale
the application quality level. It is an application-specific adaptation, called fine-
grain adaptation that is performed locally on the application. However, the latter
reconfigures the system by modifying its software/hardware allocation or changing
its structural components to improve its outcome. It is an application-independent
adaptation, called coarse-grain adaptation that is applied globally for the whole
system in case of reconfigurable architectures (like FPGA-based architectures).
In this work, we are interested in the fine-grain application reconfiguration mech-
anism which is described in the next subsection.

• The Executing module applies the decision to the system. It maps actions to effec-
tors’ interfaces.

• An effector is related to an adaptable system element and is responsible for apply-
ing adaptation actions to it.

13.2.2 Application of Reconfiguration-Based Decision Making

The fine grain application adaptation mechanism consists in dynamically recon-
figuring the running applications to scale their output quality levels in order to
meet resource allocations. The reconfiguration consists in algorithmic or parameters
modification. To do that, each reconfigurable application has a set of modes (i.e.,
algorithmic versions), each yielding a different quality level. Each algorithm or para-
meters combination provides, for the same task, different values of non-functional
properties, such as execution time, and different output quality such as video
quality. The set of non-functional properties and the corresponding output qual-
ity define an application quality level that we also call Q-level. Q-levels range from
<highest quality/highest complexity> to <lowest quality/lowest complexity>. The
more we dispose of algorithmic versions, the more we can adapt efficiently. This
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adaptation decision mechanism fits very well many multimedia applications, such
as video codecs (H264, MPEG), 3D object synthesis and cryptography application,
which are highly configurable.

13.3 Related Work

Due to the increased complexity of embedded applications, researchers have resorted
to high abstraction modeling methods to decrease the design complexity of embedded
systems. In the present research, we are interested in application adaptation modeling
for real-time embedded systems using UML/MARTE profile. Multiple works in the
literature have dealt with embedded systems modeling and have shown the benefits
of using the model-based approach and the UML/MARTE standard [5]. However,
adaptive embedded systems modeling is a recent research area.

Most of existing works on adaptation modeling [3, 11, 17, 26, 27] were inter-
ested in the modeling of reconfigurable systems and especially in dynamic and partial
reconfiguration. For example, in Rafiq Quadri et al. [17], a SoC co-design approach
for reconfigurable systems modeling is developed under the GASPARD [7] frame-
work. The reconfigurable system is modeled using a mode automata composed of a
Mode Switch Component and a State Graph. In this work, the software application
is transformed from high abstraction model into a hardware accelerator, which is
then considered as a reconfigurable region with several implementations. A model-
based approach for software reconfiguration in Distributed Real-time Embedded
(DRE) systems is also proposed in Krichen et al. [11]. The authors propose a solu-
tion for global adaptation of a DRE system by reconfiguring it using a non-predefined
set of configurations, which are dynamically captured using mode structure concept.
They present a MARTE and AADL inspired meta-model, which is a combination of
model and component paradigms. A configuration is described by a set of structured
components, connections between them, their configuration, and their allocation on
the execution supports. This work adds valuable extension to the support of soft-
ware adaptation in embedded systems using UML, MARTE, and AADL. However,
a configuration only describes the software part allocation on execution supports.
Additionally, the authors used MARTE reasoning in dealing with the reconfigura-
tion issue, but they do not reuse or make a link between the proposed meta-model
and the useful reconfiguration-related semantics already defined in the standard.

The common downside of the cited approaches is that they are limited to
global adaptation. Coarse grain adaptation requires, at every event occurrence, to
reconfigure the whole system by changing its operational mode, which is time and
power consuming. Additionally, modes are often defined as black boxes with a simple
name and an associated allocation scenario. There is no detail about the actual effect
of the mode on resource consumption and output quality. These are important facts
that have to be taken into account in modes modeling. To the best of our knowledge,
fine grain adaptation modeling on the application level using the MARTE standard is
not tackled in literature. The notion of application Q-level is also absent. Moreover,
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MARTE does not offer explicit semantics to support local application adaptation. It
only offers features to model global adaptation. What makes the present work differ-
ent is that we extend the MARTE standard to permit fine grain adaptation modeling by
specifying an adaptive application with per-application Q-levels and configuration.

All the previously described approaches are beneficial since they facilitate and
fasten the development of adaptive systems. However, they present some weaknesses.
They are not sufficiently generic since they tackle specific adaptation problems,
which consequently compromises their reusability as well as their ability to adapt
to new system requirements and constraints. The development of design patterns is
a promising alternative approach to deal with the above problems. A design pattern
gives a higher abstraction view of a commonly recurring problem, thus promoting
the reusability and extensibility of the design.

Research works tackling pattern-based adaptation are limited. We classify them
into two classes: structural patterns which deal with the structure of adaptive systems
and behavioral patterns which rather focus on the internals of adaptation modules.
Concerning the structural patterns, Gomaa and Hashimoto [9] proposed a dynamic
self-adaptation pattern for distributed transaction management in Service-Oriented
Applications (SOAs). SOA coordination patterns are used to deal with the coordina-
tion of distributed transactions. In Weyns et al. [28], the authors proposed patterns to
decentralize multiple adaptation loops in large and complex self-adaptive systems.
In Puviani et al. [16], a taxonomy was proposed for self-adaptation patterns at both
component and ensemble levels. As for the behavioral patterns, Gamma et al. [8]
proposed design patterns to specify the behavior of dynamically reconfiguring soft-
ware architectures. Schmidt et al. [21] proposed a set of patterns that can be used
for the development of adaptive middleware such as the virtual component pattern
and the component configurator pattern [4]. Ramirez and Cheng [18] proposed a
set of patterns aiming at adapting distributed networked systems. They classified
them into three principle categories: monitoring, decision-making and reconfigura-
tion activities. These patterns are useful for the development of adaptive systems in
different domains. However, they are most appropriate for distributed systems and
do not fit the real-time and embedded systems domain since they do not deal with
RTES constraints.

13.4 MARTE Capabilities for Software Adaptation Modeling

This section presents an overview of the UML/MARTE profile on which the present
work is based, outlining the concerns related to software adaptation issues in RTES
modeling. MARTE consists of three major packages. MARTE Foundations Package
represents the foundational concepts for RTES design. It allows the specification of
basic real time concepts such as non-functional properties (NFPs), time constraints
and useful resources. The other two packages are refined from the first one. The
second package named MARTE Design Model is dedicated for a detailed hardware
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and software description. The third package, the MARTE Analysis Model package,
offers annotations for generic basis of quantitative performance and schedulability
analysis.

In the MARTE Design Model package, the Software Resource Modelings (SRMs)
and the Hardware Resource Modelings (HRMs) sub profiles present a specialization
of the Generic Resource Modeling (GRM). SRM is also intended to describe multi
tasking software platforms such as Real Time Operating System (RTOS). In the
MARTE Foundations package, the Core Elements profile defines general basis for
the specification of most elements of the other MARTE packages. It is split in two sub-
packages. The Foundations package describes the basic elements for model-based
design of RTES such as the classifier root concept. The Causality package permits
the description of any dynamic model of RTES through behavioral modeling and
run-time semantics definition. A behavior describes the dynamic of a system or its
elements at run-time. In our context, i.e. reconfigurable RTES, the main concepts
related to the system behavior are described through the Common Behavior package
of Causality, and more specifically the modal behavior model.

The modal behavior relates to the notion of operational mode and configura-
tion which represent an operational state of a system that may be changed at run
time to permit dynamic system reconfiguration. The system is modeled by a set of
modes stereotyped �Mode� and each characterized by a configuration, and tran-
sitions between modes stereotyped �ModeTransition�. State machines are used
to describe the dynamics of system modes. The system configuration under a given
mode is described by a composite structure. The MARTE standard represents a com-
mon conceptual basis for coarse-grain reconfiguration behavior of RTES, however,
it lacks explicit support of fine-grain adaptation modeling, in particular the applica-
tion modal behavior. It gives an abstract definition of system mode which is simply
modeled using a name and a configuration illustrating an allocation scenario. Thus,
it does not offer support for application Q-level modeling which requires details
about the implied resource consumption and output quality of an application mode.
In the rest of this chapter, we propose an extension of MARTE for the modeling of
fine-grain adaptation applied to the application level.

13.5 The Proposed Extension

Since it relates to the software part of the system, our extension is integrated in the
Software Resource Modeling (SRM) sub-profile as an additional package named
SW_Reconfiguration. The overall structure of the extended profile is illustrated in
Fig. 13.2.

The existing SRM sub-profile is composed of four packages. The package
SW_ResourceCore provides the basic software resource semantics. The package
SW_Concurrency specifies the execution context of concurrent entities. It defines,
in particular, �SwSchedulableResources�, which are CPU competing resources
brokered by a software scheduler which decides on the order and timing of their
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Fig. 13.2 Structure of the extended SRM modeling framework

execution. Traditionally, software applications in an OS-based multitask system are
stereotyped �SwSchedulableResource�. The package SW_Interaction defines two
interaction modes between concurrent resources through communication and syn-
chronization resources. The package SW_Brokering focuses on the management of
software and hardware resources.

In next subsections, we give a brief description of the new reconfiguration pack-
age. Then we detail the modeling of the reconfiguration behavior key features. We
illustrate our extension through a case study.

13.5.1 The SW_Reconfiguration Package

The structure of the SW_Reconfiguration package is shown in Fig. 13.3. The meta-
model specifies the structure and behavior of a reconfigurable software resource
stereotyped �SwAdaptiveResource�. The reconfiguration behavior of a software
adaptive resource (software resource is assumed to be called application for the rest
of this paper) consists in a switch between a set of operational modes according to
mode transitions. The adaptive application is associated to a software adaptor which
controls this behavior. In order to enable MARTE to cohabit both coarse and fine
grain adaptation, we kept unchanged the existing �Mode�, �ModeBehavior�
and �Configuration� stereotypes of CoreElements::Causality::CommonBehavior
package, while we define three new stereotypes to model per-application modes:
�ElementaryMode�, �ElementaryModeTransition� and �SwAdaptor�. The
association between �ElementaryMode� and �Mode� means that an elementary
mode may be part of one or several system mode. A whole system mode may be
composed of a set of elementary application modes.
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Fig. 13.3 The SW_Reconfiguration package overview

The �SwAdaptor� is composed of one or several �ElementaryMode� con-
nected by �ElementaryModeTransition�. It extends the UML StateMachine meta-
class. An elementary mode is characterized by a combination of the application
configuration parameters and a given output quality level indicating the implied
resources usage amounts and the output quality.

The purpose and content of each of these new stereotypes are described in subse-
quent sub-sections.

13.5.2 The Software Adaptive Resource Modeling

We describe in this section both structural and behavioral views of a software adaptive
resource. The former is defined by the �SwAdaptiveResource� stereotype. The
latter is represented by the �SwAdaptor� stereotype.
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Fig. 13.4 The software
adaptive resource structural
view

13.5.2.1 Structural View

Since we consider a context of multitask systems where competing tasks execution
is managed by a scheduler, a �SwAdaptiveResource� is then both schedulable and
concurrent. Hence, it is a specialization of the �SwSchedulableResource� of the
SW_Concurrency package. An import association between this and the new pack-
age is added to the SRM profile structure (Fig. 13.2). The �SwAdaptiveResource�
structure is illustrated in Fig. 13.4. An adaptive application is characterized by an exe-
cution mode representing its current operational elementary mode. It has a swAdaptor
defining the dynamics of its modes. It saves its actual execution quality level in a
�QualityLevel� attribute. This information is to be used in further extension for
an evaluation purpose of the reconfiguration behavior.

13.5.2.2 Behavioral View

The behavior of adaptive application is controlled by a �SwAdaptor� entity. It
is represented by a UML state machine in order to clearly describe the differ-
ent application modes stereotyped �ElementaryMode� and the switching tran-
sitions stereotyped �ElementaryModeTransition�. The software adaptor structure
is described in Fig. 13.5. �ElementaryMode� extends the UML State meta-class
and �ElementaryModeTransition� extends the UML Transition meta-class. The
elementary modes are mutually exclusive, i.e., only one mode is active at a given
instant.

When an event occurs, the adaptor decides of the convenient mode transition to
be triggered to switch to the next execution mode. An important issue concerning
mode switch needs to be revised here; in the context of embedded systems, which
have a fluctuant environment, transitions from one mode to another are not always
straightforward. Modes may not be related to each other since the transition from
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Fig. 13.5 The per-application
software adaptor structure

the current mode to the next one is not static. It varies according to the environment
variation. A typical example is the network BandWidth (BW) variation, which does
not follow a specific law. At instant i , BW = maxBW , at instant i + 1, there is no
network coverage, at instant i + 2, BW = maxBW/2. Therefore, each transition of
our state machine is triggered by an Event-Condition-Action tuple as follows:
Event(arg1,…)[Condition]/Action

Transitions between modes are triggered by a resource constraint event, which
indicates that a variation of one or several system resources has occurred and is
accompanied by a set of newly required resource amounts for the application exe-
cution. A condition is a comparison between the required amounts of constrained
resources brought by the event and the corresponding resource usage implied by the
target mode. Both condition elements are variable in order to permit run-time updates
of the NFP values when necessary. The selected elementary mode is the one, which
resource usage satisfies the application resource requirements while maximizing its
output quality.

13.5.3 Application Modes Modeling

An elementary mode represents a Quality level implied by a certain combination of
algorithmic parameters values. Thus, an �ElementaryMode� stereotype is essen-
tially characterized by one or more �SwConfigParameter� and a corresponding
�QualityLevel�. Figure 13.6 illustrates an �ElementaryMode� structure. A con-
figuration parameter has a couple of attributes indicating its name and value. A quality
level represents the application output quality and the resources usage implied by the
configuration parameters combination. Therefore, it needs to be characterized by:

• A set of non functional properties representing the consumed amounts of resources,
such as the worst case execution time taken from a computing resource, the mem-
ory and energy consumption and the number of generated bytes to be transferred
through a network. The �ResourceUsage� stereotype is finely suitable here. We
therefore define a �ResourceUsage� attribute for the quality level. We have to
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Fig. 13.6 The elementary mode modeling

mention here that for rigorous quality levels definition, the resource usages implied
by a quality level must be defined by intervals of values instead of one value. In fact,
in the context of data flow systems, in particular multimedia systems, the resource
consumption of an application varies with the input data. A typical example is the
different CPU times consumed by a video encoder when treating a slow motion
news video and a motion-based action film. Intervals of NFPs may be expressed
as follows:
ResourceUsage NFP = (value, unit, max),(value, unit, min)
Example: execTime = (40, ms, max),(20, ms, min)

• One or several quality metrics stereotyped �QualityMetric� to evaluate the
offered output quality of the mode. A quality metric is defined by a metric kind,
such as the PSNR for video quality, and a metric value quantifying the quality.

13.5.4 Modeling of the Adaptation Controller

When a variation of the system context occurs a variation event is launched
with information about new context data. An adaptation controller stereotyped
�SwAdaptationController� analyses the input context data (resource constraints),
re-allocates resource budgets for applications and notifies application adaptors of the
newly allocated per-application resource budgets. It has therefore two input ports for
context variation events and context data and one output port for the list of allocated
resource amounts, as illustrated in Fig. 13.7.

The control must be applied periodically. Therefore we define a period attribute
for the �SwAdaptationController�. Details about the internal functioning of this
component will be presented in next works.
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Fig. 13.7 The adaptation controller modeling

13.5.5 Case Study: An Adaptive H264/AVC Video Encoder

We present here a case study to illustrate our extension for the modeling of fine
grain software adaptation. The case study relates to a highly reconfigurable multi-
media application, the H264/AVC video encoder. The standard H.264 or MPEG-
Four part Ten Advanced Video Coding (AVC) is one of the most important devel-
opments in video coding in the last few years that has been defined jointly by
the Joint Video Team (JVT) of the ITU and the ISO/IEC. It has been proven in
Wiegand et al. [29] to be the best video encoder compared to previous standards.
H.264/AVC-compliant encoders achieve essentially the same reproduction quality
as encoders that are compliant with the previous standards (the quality is measured
by the Peak Signal-to-Noise Ratio (PSNR) value and subjective testing) while typi-
cally requiring 60 % or less of the bit rate. The H264 encoder is characterized by a
big set of configuration parameters, each has a number of possible values. As exam-
ples of parameters, we cite the Quantization Parameter (QP) (Allowable values are
from 0 to 51), the period of Intra-coded frames, the Motion Estimation (ME) search
algorithm (−1 for Full Search, 0 for Fast Full Search, 1 for UMHexagon Search).
More details can be found in Ostermann et al. [15], Tourapis et al. [24]. We are inter-
ested in this case study in the respect of the real-time constraint.

Figure 13.8 defines a state machine representing a �SwAdaptor� that is
associated to the H264_encoder application. It is composed of three elementary
modes, highVideoQ, mediumVideoQ and lowVideoQ. These modes indicate three
levels of video quality from the highest to the lowest quality. Since our modes are not
related between them, we define a particular state named CurrentMode to be always
the entry point of the adaptor. To do this, we define direct transitions from all modes
to the current mode with a simple action demanding the update of the current mode
with the selected one.

Since we are concerned with the temporal constraints, transitions are triggered
by a TaskEntry event which indicates an increase of the total CPU load causing
the exceed of the CPU computing capacity and leading to deadlines misses. Upon
receiving the resource requirements, the H264 adaptor selects the transition whose
condition is validated, i.e., the target elementary mode satisfies the required resource
amounts. The corresponding mode is then activated to be the application execution
mode.
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Fig. 13.8 The software adaptor of the H264 encoder case study

Fig. 13.9 Modeling of the H264 encoder HighVideoQ elementary mode

Figure 13.9 illustrates the structure of the HighVideoQ elementary mode. This
mode is defined by a combination of values of four H264-specific
�SwConfigParameter�, which are SearchMode, IntraPeriod and QPISlice. Each
parameter is defined by a couple of name and value. Since we only consider the
timing constraint, we are content with defining the range of CPU time usage implied
by the mode. The output quality is quantified using the PSNR quality metric.
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13.6 Using the Proposed Extension in a Decision
Making Pattern

As we have already mentioned, we focus in this chapter on the decision making
process of the adaptation loop. We propose a pattern for adaptation decision mecha-
nisms according to the [2] pattern template. However, we only give details of the five
fundamental fields which are the pattern name, intent, context, problem and solution.

Different classifications of decision strategies have been proposed in the litera-
ture. In Andersson et al. [1], McKinley et al. [12], Salehie and Tahvildari [20], the
authors proposed a classification in two types according to the level of granularity
and complexity of the change: Parametric and structural strategies. The paramet-
ric strategy modifies parameters of system components which have effect on the
system behavior. It is a low-cost fine grain adaptation applied locally on system
elements. However, structural strategy modifies the system structure such as com-
ponents allocation change and their activation/inactivation. It is a high-cost coarse
grain adaptation that involves the entire system. A self-adaptive system may have
a parametric or structural adaptation strategy, or a combination of these. This latter
case is called hierarchical adaptation that has been tackled by a number of research
works like Diguet et al. [6], Vardhan et al. [25] and has been proven to be effective:

Name: RTE Decision Maker
Problem: The problem treated by this pattern is to decide what artifact in an

RTES to adapt and how to adapt it to meet a set of requirements and
constraints.

Intent: When an adaptation decision is required, the RTE Decision Maker
pattern decides what system elements to change and how to meet
requirements and constraints. This pattern defines the adaptation strat-
egy to apply. It can be based on parameters tuning of system’s change-
able elements, the modification of system’s structure or a hierarchical
adaptation coordinating both strategies.

Context: This pattern is used when a real time embedded system exhibits new
constraints or requirements due to change in its execution context.

Motivation: When modeling self-adaptive RTES, designers need to specify the
adaptation strategy to use to calculate the adaptation decision. The
RTE Decision Maker pattern permits to model three types of adapta-
tion strategies.

Solution:

Structural view: We designed the RTE Decision Maker pattern at a high abstrac-
tion level so that it is enough simple and generic to permit the
design of a hierarchical adaptation decision-making by consid-
ering two different adaptation strategies at once: the parametric
fine-grain and the structural coarse-grain strategies.
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Fig. 13.10 Structural view of the RTE decision maker pattern

Participants: The structure of this pattern, depicted in Fig. 13.10, is com-
posed of two basic classes: a DecisionMaker (DM) and a Con-
figurationManager:

• DecisionMaker is the principal class of the pattern. It is responsible for gener-
ating the adaptation decision that best meets the received adaptation request
requirements. It initiates a hierarchical decision making by cooperating with
fine and coarse-grain configuration managers. It asks for partial reconfigu-
ration decisions. Then it coordinates between them through its coordinate()
method which generates the final decision that is encapsulated in an Adap-
tationPlan and sent through the notifyPlan() method to an acting process.
The DecisionMaker is therefore an active class stereotyped �RtUnit�. An
illustrative example of the hierarchical adaptation decision making is the
GRACE platform proposed in Vardhan et al. [25]. Its authors proposed a
hierarchical adaptation approach performing expensive global adaptations



13 Model-Based Design of Real Time Embedded Application Reconfiguration 261

occasionally at large system changes (e.g., application entry or exit) and low-
cost limited-scope per-application adaptations frequently at the start of every
frame. Since we are in the context of RTES, which behavior needs to be pre-
dictable, the overhead of adaptation activities has to be taken into account. It is
presented by the Worst-Case Execution Time (WCET) and required resources
of the adaptation process. We use the �ResourceUsage� stereotype to cap-
ture the deciding cost.

• ConfigurationManager is the generalization of AdaptableSystem and Change-
ableElement. It is an �RtUnit� responsible for the management of adapt-
able elements configurations. It delivers, when required, the next mode that
best responds to received requirements using its getNextMode() method. It is
stereotyped �ResourceUsage� to capture its adaptation cost.

• AdaptableSystem represents the system to adapt as a whole. Its behavior is
specified using a UML State Machine which manages global system recon-
figuration through structural modifications.

• ChangeableElement represents an element of the adaptable system that is
amenable to change. It is stereotyped �SwAdaptiveResource�. Similarly
to the AdaptableSystem, it owns a state machine managing fine-grain recon-
figuration of a ChangeableElement, which is based on simple parameters
modification.

Behavioral view: The behavior of the Decision Maker pattern is modeled using
a sequence diagram accompanied with state machines of the
adaptable system and changeable system elements. In fact,
the configuration selection is modeled by state machines com-
posed of a set of modes and transitions between them. The
triggering of an event ensures the transition from one mode to
another. To model global adaptation decision, we use MARTE
capabilities for reconfigurable systems modeling defined by
the modal behavior model of the CommonBehavior package.
A state machine, stereotyped �ModeBehavior� is used to
model the dynamics of the adaptable system configurations. It
is composed of a set of mutually exclusive modes, stereotyped
�Mode�, each characterized by a configuration, and transi-
tions between modes, stereotyped �ModeTransition�. As
for the design of local adaptation decision, we use our pro-
posed extension. The behavior of a changeable element is
controlled by a state machine stereotyped �SwAdaptor�,
which is composed of a set of configurations stereotyped
�ElementaryMode� and switching transitions stereotyped
�ElementaryModeTransition�. An elementary mode rep-
resents a quality level of the changeable element. It is charac-
terized by a combination of configuration parameters and its
implied output quality and resources usage. These
characteristics are to be compared to change requirements
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and constraints in order to select the best next mode.
When the DecisionMaker receives a valid adaptation request,
it processes the data that it captures to determine requirements
and constraints to take into consideration. Then it decides
whether a local, structural or both decision strategies are
necessary and which elements of the system to change. If
local adaptation of a ChangeableElement is required, the
DecisionMaker triggers mode switch of this element by
invoking the getNextMode() method, giving them require-
ments and constraints to respect. The�ElementaryTransition�
that best meets constraints is then activated and the destina-
tion �ElementaryMode� is selected and returned back to
the DecisionMaker. the same scenario is applied to the adapt-
able system which returns back the next �Mode� of the
whole system. Having received destination modes decisions,
the DecisionMaker coordinates between them, if needed, gen-
erates the final adaptation plan, notifies the Actor.

13.7 Conclusion

A self-adaptive system is structured using an adaptation loop, referred to as the
MAPE loop which is composed of four adaptation processes: monitoring, analyz-
ing, deciding and acting, accompanied with sensors and effectors. In this chapter,
we were interested in the deciding process. We dealt with the high abstraction level
modeling of reconfigurable RTES using the UML/MARTE profile. The reconfigura-
tion behavior consists in mode switch. It can be either coarse-grain adaptation which
is applied globally for the whole system, or fine-grain that is locally performed for
one application.

An overview of the current MARTE capabilities for the specification of reconfig-
urable RTES has shown that the current version of the standard is inadequate for a
detailed description of per-application reconfiguration. A main contribution of this
work is that it supplies the MARTE standard with new semantics to model application
fine-grain reconfiguration. We illustrated the use and importance of our extension
through a case study of a reconfigurable H264/AVC video encoder.

At the aim of promoting reusability and ease of use of our proposed extension for
MDE and MARTE non-experts, we exploited it in the definition of a design pattern
for an adaptation RTE decision making process. Additionally, the DecisionMaker
pattern permits to handle concurrency and real-time features relative to the adaptation
operations, which are key issues in RTES design.

We plan in future works to define generic models for the remaining modules of
the adaptation loop. Indeed, we aim at proposing an MDE-based approach for the
automatic generation of complex self-adaptive RTES.
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Chapter 14
Split of Composite Components
for Distributed Applications
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Abstract Composite structures as in UML are a way to ease the development of
complex applications. Composite classes contain sub-components that are instanti-
ated, interconnected and configured along with the composite. Composites may also
contain operations and further attributes. Their deployment on distributed platforms
is not trivial, since their sub-components might be allocated to different computing
nodes. In this case, the deployment implies a split of the composite. In this chapter,
we will motivate why composites need to be allocated to different nodes in some
cases by examining the particular case of interaction components. We will also dis-
cuss several options to achieve the separation and their advantages and disadvantages
including modeling restrictions for the classes.
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14.1 Introduction

The basic idea behind any component-oriented approach is that elementary appli-
cation pieces (i.e., components) can be composed together in order to achieve the
functionality of a more complex system. Component-oriented approaches are usually
grounded on a design process including component development or reuse, assembly,
and deployment.

In the component assembly step, the system under design is itself considered as a
component. It is hierarchically defined by an assembly of existing components using
an Architecture Description Language (ADL) [4], where the assembly is concretely
specified by connections expressed between sub-components (parts). In the context
of this chapter, we focus on Unified Modeling Language (UML) [16] as modeling
language. Sub-components can themselves be defined as assemblies, resulting in
hierarchical systems of arbitrary depth.

In the deployment specification step, the target execution platform for the appli-
cation is considered. The model of the execution platform usually consists, at least, of
an identification of the various execution nodes, as well as available communication
paths between them. The deployment specification consists of allocating the compo-
nents of the application model to execution nodes of the platform (often indirectly
by allocating them to processes or threads which in turn are allocated to execution
nodes, but we simplify this aspect in the context of this chapter). Allocation is usually
done taking into account non-functional requirements of the system under design,
such as execution time constraints, memory footprint, communication throughput,
etc.

It is sometimes necessary to allocate sub-components to different execution nodes,
which requires a split of the associated composite. The next section illustrates this
problem by means of a small example. Section 14.3 provides multiple options how to
split composites. Section 14.4 examines how existing component frameworks split
composites. An evaluation and comparison of these options is given in Sect. 14.5.
Sect. 14.6 concludes this chapter.

14.2 Motivating Example

In this section, we motivate why some composites need to be split by examining
interaction components.

Consider a very simple application with two components, A and B as shown in
Fig. 14.1. A has a port q with a required interface I, B has a port p with a provided
interface I.

Now consider that the communication between A and B is realized by a component
that implements the interaction on top of the operating system’s socket API. We call
such a component an interaction component (also called connector in the context of
the DDS-for-CCM specification [15]). On a logical level, this component is a single
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Fig. 14.1 A system with two components and uni-directional communication
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Fig. 14.2 Distribution of the system given in Fig. 14.1. The System composite component is now
with sockets and allocation

entity that may contain configuration data such as a port number, connection policies
or a unique identifier (object reference).

If we want to distribute the application onto two nodes, a and b are allocated to
different nodes. Figure 14.2 shows the architecture of the example system. Please note
that the composite structure diagram distinguishes between a role (corresponding to a
kind of instance) and its type, i.e., the socket is not a nested classifier within the system
but a part of the system on an instance level. Thus, the first component that is split is the
component representing the system itself (System). However, the System component
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Fig. 14.3 Internal structure of the SocketConnector composite component given in Fig. 14.2

is a particular case, since there exists only one instance, it has no behavior of its
own and there are no connections from the system boundary to inner parts (called
delegation connectors in UML [16]). Thus, it is a pure assembly component and
basically used to define the instances of a system and their interconnections.

Figure 14.3 shows the internal structure of the SocketConnector component. It
consists of a client and server stub (clientFrag and serverFrag, respectively) which
both access a socket run-time. The dashed outline of the latter indicates that this
component is shared: it is not instantiated along with SocketConnector but exists
independently. The access to a shared resource within a composite corresponds to a
kind of vertical connection: the communication of the stubs with the run-time is a
communication between different layers, pre-assembled within the composite.

Since the communication with the interaction component is a simple local com-
munication, the interaction component itself needs to be separated. We can further
follow local connections within the connector to determine the allocation of the
internal parts of the connector. The allocations within the socket connector can thus
be derived from the allocations of the application components: the client fragment
of the connector needs to be co-located with A and the server fragment with B. An
interesting aspect is the socket run-time that is shared by the client and by server
fragments. Whereas it exists only once from a logical viewpoint, it must be present
on each node and thus be allocated to NodeA and to NodeB. Figure 14.4 shows the
resulting split of the SocketConnector.

Since a composite can enable distribution, its split should be authorized under
the condition that this split does not modify the component’s semantics.1 This is the
case if a composite does not have a behavior of its own (only delegation to parts) nor

1 Preserving semantics of components is also important in order to be able to analyze them
correctly [11].
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Fig. 14.4 Splitting the composite component SocketConnector during the system distribution

any configuration data. Since the latter is too strict, the composite may offer virtual
configuration attributes that are effectively realized by its parts. This means that the
configuration attributes of the composite are linked with configuration attributes in
the parts. The same attribute might appear in multiple parts.

Now consider a slight extension of the example: B also talks to A, using the same
interface, A has an additional port p, B has an additional port q and both are connected,
as shown in Fig. 14.5.

In this case two parts (connAB and connBA) are typed with SocketConnector. But,
the allocation of the sub-part is different for the two instances (parts):

Since a is on NodeA, the clientStub part of the instance connAB must be on NodeA
as well to satisfy the co-localization constraint caused by the assumption of insepa-
rable simple connections. But with the same argument, clientStub of instance connBA
must be on NodeB, co-localized with b. Thus, allocation is instance based and it
might happen that two different instances of a composite have different allocation
specifications for their parts. Thus, the split is not trivial and we will study multiple
options how to split the composite in case of the example in Sect.14.3.
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Fig. 14.5 A system with two components and bi-directional communication

14.3 Different Ways to Split Composites

In the sequel, three different options to split composites are shown by means of the
simple example from Sect. 14.2.

14.3.1 Option 1—Keep Composites

The first option is to keep a modified variant of the composite that only contains the
subset of parts which are deployed on a certain node. Figure 14.6 shows the result
for the uni-directional variant of the example: SocketConnector’ is the variant of the
original SocketConnector. It contains the subset of parts that are allocated on NodeA,
clientStub and socketRuntime. Note that splitting is in general not trivial, since the split
must also consider super-classes. In our case, the ports of the socket are inherited
by an abstract interaction component (a.k.a. connector type). Depending on how the
super-class is organized, the composite only inherits from a subset of super-classes
or super-classes need to be split as well, which complicates the design.

Please note that it is not the part that is allocated on a certain node, but the
(sub-)instance that is associated with a part. If there is a second instance, which
sub-instances are allocated in a different way, a second variant of the composite with
a part subset must be created. This is shown in Fig. 14.7. The creation of multiple
variants implies a certain overhead which—although small—may be non-acceptable
on resource-constrained systems.
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Fig. 14.6 Option 1: Splitting components in the uni-directional example given in Fig. 14.1 by
keeping composites
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composites

14.3.2 Option 2—Flatten Composite

Flattening a composite component is a well-known approach in the literature [6, 7,
11], in which a composite component may disappear in the deployment model, i.e., it
is replaced by its internal structure. The internal assembly connections of a composite
become assembly connections of the containing composite (the System class in case
of the example). The delegation connections2 refine the final targets of existing
assembly connections in the containing composite.

Figure 14.8 shows the example system for NodeA, in which the SocketConnector
composite component has been flattened. The two parts in the system typed by
a socket implementation have been replaced by parts that are directly typed with

2 Assembly connectors are connections between inner parts; delegation connectors are connections
from the composite to an inner part.
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Fig. 14.8 Option 2: Splitting components in the bi-directional example given in Fig. 14.5 by
flattening composites

elements of the socket implementation. The original composition hierarchy may still
be visible via a suitable naming convention for these new parts by prefixing them with
the original part name, as done in the example with the prefixes connAB and connBA.

14.3.3 Option 3—Flatten Composite, Require Explicit
Fragment Sub-Components

The third option is a variation of the 2nd solution. We also flatten the SocketConnector
composite component, but require that the composite must contain exclusively spe-
cific sub-components that we call fragments. A fragment encapsulates the parts
of a composite that are allocated on the same node, conversely each fragment
within a composite is typically allocated on a different node. The latter implies a
restriction that is verified by a validation rule: fragments may not be connected
by UML assembly connectors. The modeling of SocketConnector with fragments is
shown in Fig. 14.9.

The resulting system is shown in Fig. 14.10. The composite has been flattened;
the fragments have become top-level elements. The result looks very similar as the
solution in Fig. 14.7, effectively the explicitly modeled fragments replace the derived
subsets of the composite.
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14.4 Support for Splitting Composites
in Existing Frameworks

In the following, we sketch the existing component frameworks that have a specific
support for interaction components3 and show how these frameworks may handle
composite splitting, mainly in the context of interaction components.

3 Having specific support for interaction components is needed in order to be able to address the
composite split in a systematic way.
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14.4.1 DDS for CCM

The connector element that we have used in the motivating example is supported in
multiple component models. As already mentioned, it has been standardized within
the context of the OMG (Object Management Group) standard CCM (CORBA Com-
ponent Model) [13]. More specifically, it is part of the DDS for CCM [15] specifica-
tion, enabling component interactions via OMG’s Data Distribution Service (DDS).
Within this specification, the term GIS (Generic Interaction Support) is introduced.
GIS will be part of the upcoming OMG Unified Component Model (UCM) [17]. The
underlying connector extension for CCM has been proposed in Robert et al. [19].
Deployment with CCM is based on the specification for Deployment and Config-
uration (D&C) of distributed component-based applications [14]. The D&C stan-
dard describes a so-called deployment plan, a specification of instances that refer
to component implementations, the interconnections between these instances, their
configuration and their allocation to a node.

In the DDS for CCM specification, DDS interaction components are not identified
as composites, since there are separate writer and consumer components. This is
useful in case of a DDS, in which connections are implicitly created by sharing
the same topic, i.e., there is no single component that represents an interaction.
However, the generic interaction support enables explicit point-to-point interactions,
for which composites would be useful. D&C supports two kinds of implementations
of software components [14]:

• Monolithic implementations, where the code of the composite component is com-
piled as a single block.

• Assembly (composite) implementations, including the set of implementation of
all the parts that the composite component includes. There must eventually be
monolithic implementations at the “leaves” of the hierarchical implementation.
Assembly allows dependent packages to be deployed on distinct target nodes,
enabling flexibility in composite component instantiation.

While the D&C specification allows composites, the composites have no identity
and cannot be reused. This has been analyzed in Lau and Wang [10]. In this article,
the authors review and compare the ability of 13 component models of handling
component composition. They identify the development with D&C as a “deposit
only” repository for composites: a composite component that results from the com-
ponent assembly step can be deposited in a repository but cannot be retrieved from
it, because it does not have an identity of its own. In the end, only monolithic com-
ponents are deployed, i.e., the component hierarchy is flattened. Note that this does
not only apply to interaction components but to all composite components, even
if they deployed on the same node, i.e., a stronger variant of the flatten option in
Sect. 14.3.
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14.4.2 Fractal

Connectors have also been introduced in the context of Fractal4 [2, 5]: a binding
is defined as a communication path between component interfaces. Bindings can
be primitive or composite. A primitive binding (direct connector) binds one client
interface and one server interface in the same address space. A composite bind-
ing is a communication path between an arbitrary number of distributed component
interfaces and is represented as a set of primitive bindings and binding components.
Binding components are called Fractal connectors, and are normal Fractal compo-
nents, which role is dedicated to communication.

However, there is no support for splitting in Fractal in the sense of interaction
components as shown in Sect. 14.2.

14.4.3 SOFA

In SOFA5 [1, 3, 12], connectors are used to support transparent distribution of appli-
cations. A connector might support a transport mechanism such as CORBA6 or
low-level socket mechanisms. In this context, they are responsible for marshalling
and unmarshalling as well as interfacing with the transport layer. But they can also
be used for synchronization or interception. Connectors are automatically generated.

In SOFA, the connector plugging is performed after component instantiation
using a split of the connector into two parts: the server and the client connec-
tor units (fragments). Whenever component interfaces query a connector reference,
the corresponding server connector unit is returned (instead of returning a refer-
ence directly to an interface). Similarly, whenever an interface is being connected
to another component, a client connector unit is created and bound. The connector
composite specifies the parts, into which it is later split explicitly, corresponding to
the fragment option (Option 3).

14.4.4 Qompass

The FCM [8] (Flex-eWare Component Model Flex-eWare component model) has
the objective to unify the component models of Fractal and CCM. It extends the
UML composite structures with dedicated interaction components—as, for instance,
the socket connector presented in the motivating example (Sect. 14.2)—flexible ports
and container services. This component model is supported by an add-on to the

4 The Fractal Component Model, http://fractal.objectweb.org/specification/, last access
on 07/02/2014.
5 SOFA 2, http://sofa.ow2.org/, last access on 07/02/2014.
6 Common Object Request Broker Architecture, http://www.corba.org/, last access on 07/02/2014.

http://fractal.objectweb.org/specification/
http://sofa.ow2.org/
http://www.corba.org/
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Fig. 14.11 Definition of a socket connector within Papyrus, using the client and server fragments

Papyrus7 UML modeler called Qompass designer. Figure 14.11 shows the defini-
tion of the socket interaction component within a Qompass modeling library and
the Qompass context menu. This add-on was first introduced as eC3M (embedded
Component Container Connector Model/Middleware) [18]. Upon deployment, the
tool chain executes a model transformation that replaces annotated UML connectors
with the associated interaction components, as shown in the motivating example given
in Sect. 14.2 (the transition from Fig. 14.1 to 14.2). This transformation includes an
instantiation of the interaction component to the context in which it is used (similar
to the generation of in SOFA). A further model transformation produces a model
per node. During the latter, the composites within the FCM models are split. The
composites that are concerned are mainly interaction components and the dedicated
system component.

In Qompass, interaction components with explicitly identified fragments are flat-
tened, i.e., the fragment option (Option 3). Being based on UML, Qompass must
handle the specific case of a dedicated system component. Such a component is
required, since connections can only be defined in the context of an enclosing com-
posite (unlike for instance in D&C). Thus, Qompass must also split the system com-
ponent, if the contained components are deployed on different nodes. The approach
that has been chosen is to create a specific variant of the System component on each
node, i.e., the keep option (Option 1). Note that it is not possible to flatten the system
component, since the UML component model requires an enclosing composite for
defining connections.

7 The Papyrus UML modeler, http://www.eclipse.org/papyrus, last access on 23/01/2014.

http://www.eclipse.org/papyrus
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Table 14.1 Footprint of different deployment options for the simple uni-directional (Fig. 14.1) and
simple bi-directional (Fig. 14.5) systems. The results show that flattening has the smallest footprint
among three deployment (splitting) options

Example system Code size (bytes)

Option 1 (keep) Option 2 (flatten) Option 3 (fragments)

Simple uni-direct 13,904 12,233 13,936

Simple bi-direct 14,668 13,754 14,710

14.5 Discussion

Obviously, all splitting options increase the number of classes. When the composites
are kept (Option 1), there is no need to remove additional assembly connections
from the system. Flattening (Option 2) makes top-level composites bigger, since
these composites have to incorporate the contents of a flattened component (sub-
components and their connections) instead of the component itself. In fragmenta-
tion (Option 3), a possible split is anticipated and explicitly defined by the developer.
Since the composite may not have assembly connectors, no additional connectors are
added to the System class (the composite that contains the split composite). Based
on this observation, to make a quantitative comparison, we measured the footprints
associated with the different splitting options. The code size of a complete application
has been measured in case of the simple uni-directional system and its bi-directional
variant for splitting options 1, 2, and 3, as shown in Table 14.1. The results were
obtained on a Linux machine with gcc 4.7 (optimizations disabled). As expected,
flattening (Option 2) results in a slightly smaller footprint compared to the other two.

However, flattening is evidently not possible for a top-level component, since the
transformation towards a model having only monolithic components and assembly
connections8 is rather straight forward. Thus, the resulting system is different, since
the internal connections become visible in the system. This may be annoying, if
the same composite is instantiated more than once in the original model, e.g., if
we have more than one socket connector. Also note that the internal structure of an
interaction component might be more complex than the simplified SocketConnector
used for illustration purposes. This makes it a bit difficult to link it with the original
model, for instance when debugging is done on the level of the deployed model,
but fixes must be made in the original design model. Other tasks that are affected
by this difference are for instance trace mechanisms (which must translate a trace
specification for a composite into suitable specifications for the inner parts) and the
replacement of a composite implementation with another one (e.g., in the context of
different system configurations). The advantage is a slightly reduced footprint and a
resolution for the splitting problem.

8 In UML-like languages, connectors are always owned by a composite, i.e., a System composite
must be kept.
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Another important thing to consider is debugging. Debugging is generally defined
as the process of locating and fixing or bypassing bugs in the underlying software, to
achieve reliable systems. To this end, various debugging tools are developed help to
identify errors at the various stages of the software development process. Especially,
debugging and visualizing the behavior of component-based embedded software
using models such as the UML [16] diagrams has become a reality. For instance,
model-based tools such as Papyrus and the commercial tool Rhapsody9 (“live-
animation” features) enable model-based debugging of embedded software systems
using sequence diagrams and state charts. In case of Papyrus, animation is based
on an injected probe that communicates with the development environment. Show-
ing the activation of a delegation connector within a composite is evidently only
possible if the composition hierarchy has not been flattened. Hence, the closer the
deployed model is to the original architecture, the easier it is to debug. In this sense,
since keeping the original composition hierarchy (Option 1) has the advantage that
the deployed model is closer to the original architecture, it is a bit easier to debug
compared to Options 2 and 3.

In some domains (such as aerospace and electrical cars), the overall architecture
of vehicles becomes very complex [20]. One possibility to tackle this complexity at
run-time is the use of dynamic reconfiguration abilities. Dynamic reconfiguration is
a process of modifying the software architecture and enact the modifications during
the system’s execution [9], which means making the software evolve from one con-
figuration to another at run-time, as opposed to design-time, while introducing little
or ideally no impact on the systems execution. This prevents the system to be taken
off-line and/or restarted to accommodate changes. Considering the split of compos-
ite components discussed in this chapter, a dynamic reconfiguration would replace
the SocketConnector component with another interaction component. In order to be
able to do this seamlessly, splitting Option 1 is better suited since we do not need to
remove additional assembly connections from the system.

14.6 Conclusion

We have shown that the deployment of composite instances, which are partly allo-
cated on one node and partly on another can be tackled in several ways with different
advantages and disadvantages. The choice of a suitable split option depends on prop-
erties of the composite that should be split. For instance, in Qompass designer, we
keep the composite of the System component, since this particular component (no
inheritance, single instance) can be split easily and since flattening would result in
multiple top-level components. On the other hand, we flatten interaction compo-
nents and require the explicit use of fragments, since we want to avoid the problems
that come with multiple instances (creating potentially multiple variants of a split
component). The choice depends also on the deployment goals, e.g., whether an opti-
mized application compared to a debug-enabled application should be delivered. The

9 IBM Rational Rhapsody Developer, http://www-03.ibm.com/software/products/en/ratirhap/, last
access on 04/02/2014.

http://www-03.ibm.com/software/products/en/ratirhap/
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options are rather evident, but—to our knowledge—the task had not been examined
systematically earlier.

The interest of deploying composites with complex allocation properties is not
artificial: a composite definition is a suitable choice for interaction components
enabling distribution. In this context, the raised issues concern principally frame-
work and tool developers, i.e., developers of interaction components and developers
of model transformations associated with the split of composites. However, the results
also apply to a sub-system modeled by composite classes that need to be allocated on
multiple execution nodes. In this case, system modellers or designers are concerned
since they need to respect restrictions associated with the split of a composite and
should know the consequences of different split options.
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Chapter 15
ProMARTES: Performance Analysis Method
and Toolkit for Real-Time Systems

Konstantinos Triantafyllidis, Egor Bondarev and Peter H.N. de With

Abstract In this chapter, we present a cycle-accurate performance analysis method
for real-time systems that incorporates the following phases: 1. profiling SW com-
ponents at high accuracy, 2. modeling the obtained performance measurements in
MARTE-compatible models, 3. generation, scheduling analysis and simulation of a
system model, 4. analysis of the obtained performance metrics, and 5. a subsequent
architecture improvement. The method has been applied to a new autonomous nav-
igation system for robots with advanced sensing capabilities, enabling validation of
multiple performance analysis aspects, such as SW/HW mapping, real-time require-
ments and synchronization on multiprocessor schemes. The case-study has proved
that the method is able to use the profiled low-level performance metrics through-
out all the phases, resulting in high prediction accuracy. We have found a range of
inefficient design directions leading to RT requirements failure, and recommended
to robot owners a design decision set to reach an optimal solution.

Keywords Profiling · Modeling · Component-based · Simulation · Schedulability
analysis · Performance analysis · Evaluation · Prediction · Assessment · Opti-
mization · Real-time system · Modeling and Analysis of Real-Time and Embedded
systems (MARTE)

15.1 Introduction

The composition of real-time systems based on the mapping of software (SW)
and hardware (HW) components, has become an adopted practice, since it enables
rapid prototyping and development of a system from existing blocks. The result-
ing real-time systems still should meet the performance requirements, such as
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throughput, latency, etc. At the early composition phase, the architect needs reliable
assessment methods in order to evaluate and predict the performance of the designed
system. An incorrect performance prediction may lead to adopting an inefficient sys-
tem architecture with the consequences of system re-design or re-implementation.

The challenge of performance predictions comes from the fact that at design-time
the HW and SW components implementations are frequently not available. Instead,
models representing abstractions of the components are used for computation and
reasoning. Accuracy of such models is vital for obtaining reliable performance pre-
dictions on behavior of the future system. Component vendors, supplying the models,
still face the challenges of automated generation and detailed profiling specification
of models.

The analysis of the component composition should take into account the intrinsic
properties of the hardware, such as cache hierarchy and dynamics, bus/network
congestion, tasks floating across the processor cores and parameter-dependent execu-
tion/workload. These system aspects severely complicate the performance analysis
of a composed system, even if an architect deploys detailed and accurate component
models.

Another challenge comes from the limitations of analysis mechanisms, which are
normally classified in two categories: analytical (formal) methods and simulation
techniques. The former are not able to provide a detailed execution timeline, while
the latter cannot guarantee reachability of worst cases.

In this chapter, we present a cycle-accurate performance analysis method for real-
time systems (ProMARTES). Our analysis method consists of four individual phases:
1. profiling SW components at high accuracy, 2. modeling the obtained performance
measurements in MARTE-compatible models, 3. composition, scheduling analysis,
and simulation of a system model, 4. analysis of obtained performance metrics, and
5. a subsequent architecture improvement. The presented method is the cornerstone
of our Design Space Exploration (DSE) approach [28], which is targeting automated
identification of optimal architecture alternatives.

In our previous work [28], we have presented the first phase of cycle-accurate
profiling and parameter-dependent MARTE-based modeling of individual compo-
nents. In this chapter, we extend this phase with network utilization metrics and a
detailed memory usage model, thereby addressing the above-mentioned challenges
of model generation. The focus of this chapter is on the component/system composi-
tion, performance analysis and evaluation phases. The following paragraphs outline
the contributions to these phases.

At the component composition phase, candidate SW/HW architectures and a
set of workload scenarios are defined. The SW architecture is represented by
composition of individual components with associated performance models. The
mapping of software components on hardware nodes defines the SW/HW architec-
ture. A set of scenarios defines the worst-case workload on a system. The instruction-
level metrics of models are converted to processor-specific execution-time metrics,
thereby incorporating intrinsic hardware properties.

At the system evaluation phase, we perform scheduling analysis and simulation
of the scenarios, obtaining the usage and sharing of all involved hardware Intellectual
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Property (IP) blocks. The scheduling and simulation results provide predicted
performance properties, i.e., latencies, throughput and bottlenecks of the designed
system. Comparing the predicted properties to the system requirements, we iden-
tify weak points of the candidate architecture, which direct us to a more efficient
alternative.

To validate this method, we have performed a case study on the real-world problem
of a new autonomously navigating robot with advanced sensing capabilities. The most
critical performance attributes of the system are latency in the navigation control loop
and throughput. We have profiled and modeled the available components, proposed
a number of architectural alternatives and analyzed them with respect to the critical
attributes. Based on the analysis results, we have proposed to the robot owners the
optimal architecture with low HW costs that still satisfies the real-time requirements.

The sequel of this chapter is as follows. Section 15.2 records the related literature
to our work. Section 15.3 explains the overall DSE methodology. Sections 15.4, 15.5
and 15.6 describe the method in detail. Section 15.7 presents the tooling developed
for the method. Section 15.8 illustrates the case study used for the validation of
our method. Section 15.9 describes our findings from the case study. Section 15.10
concludes the chapter.

15.2 Related Work

In the last decade, the real-time research community developed several innovative
methods addressing the problems of SW/HW component modeling, predictable
assembly and evaluation of real-time systems. Currently, a wide variety of model-
ing profiles are available for composition of (real-time) embedded systems: SysML,
UML-RT, MARTE and AADL. The Systems Modeling Language (SysML) [22]
is a UML profile for specifying, analyzing, and verifying complex systems that
may include hardware, software, information, personnel, procedures, and facili-
ties. However, SysML does not provide sufficient primitives for the real-time sys-
tems domain. Thereby, the OMG released the MARTE profile [23], which targets
specification of real-time and embedded systems. MARTE enables the HW and
SW modeling and defines specific primitives for timing and power consumption
analyses. Nevertheless, MARTE lacks low-level resource modeling metrics, such as
instructions, effective execution cycles and cache misses. Another alternative, AADL
[24], enables modeling of SW and the HW components of real-time embedded sys-
tems. The AADL models are of high abstraction level and therefore do not provide
cycle-accurate modeling primitives. Numerous composition and evaluation
approaches have been proposed based on the aforementioned modeling profiles.

Cortellessa et al. [6] have proposed a comprehensive approach for modeling,
composition, and mapping of SW components onto HW platforms and consequent
behavior simulation. Their modeling methodology is based on UML-RT [11], which
is the predecessor of the UML-MARTE. The simulation is performed by RRT [14],
which is a proprietary simulator and this limits broad applicability of the approach.
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However, this approach can be adopted by any modeling and simulation technique
without focusing on a specific toolkit.

For automotive real-time systems, Klobedanz et al. [16] have discussed a per-
formance analysis technique based on the AUTomotive Open System ARchitecture
(AUTOSAR) [1] model. The technique targets such performance attributes as CPU
load, end-to-end latency, and throughput. The AUTOSAR model lacks high-detailed
performance attributes, since it is aiming at simple Electronic Control Unit (ECU)-
type nodes and therefore can be applied only in the automotive domain.

For a general-purpose distributed real-time system, Määttä [21] have proposed
an analysis method based on combining the UML-MARTE profile and the Ptolemy
II simulator [8]. The authors target the methodology to multi-core network-on-a-
chip platforms. The Ptolemy II broadly supports network communication schemes,
which is crucial for performance analysis of Real Time (RT) distributed systems.
Moreover, it provides the majority of the real-time scheduling policies. A limitation
of this method is that the conversion of the MARTE models for the Ptolemy II tool is
not fully automated, which requires a high effort of the architect during the analysis.

The UML profile is the cornerstone of many well-established performance
analysis methods. Bertolino and Mirandola [3] proposed the performance analy-
sis method CB-SPE. The components are modeled based on the UML-SPT profile,
while the performance models are based on queuing networks. Another performance
analysis method based on UML and queuing networks was proposed by Mos and
Murphy [17] from National ICT Australia Ltd (NICTA). Unlikely to the CB-SPE
approach, the one from NICTA does not distinguish the roles between the compo-
nent developer and the architect of the system. Moreover, the applicability of this
approach is limited, supporting only EJB applications. Another framework dealing
with EJB applications is the Component Performance Assurance Solutions (COM-
PAS) framework, developed by Mos and Murphy [20]. The COMPAS framework
deploys three individual phases: monitoring, modeling (UML), and performance
analysis. Unfortunately, COMPAS does not provide any performance analysis tool.

Regarding the RT component-based embedded systems domain, the method
Prediction-Enabled Component Technology (PECT) was introduced by Hissam et al.
[13]. The PECT is based on the Component Composition Language (CCL) and sup-
ports synchronous and asynchronous communication, behavioral models as well as
composite components. Focusing on the distributed system domain, Wu and Wood-
side [30] have proposed the Component-Based Modeling Language (CBML). The
CBML comprises an extension of the layered queuing networks and, similarly to
PECT, enables synchronous and asynchronous calls among the components. Both,
PECT and CBML, approaches provide performance analysis either by formal or by
simulation techniques.

Focusing on the performance evaluation of distributed systems, Becker et al.
[2] proposed Palladio. Palladio incorporates its proprietary metamodel, the Palladio
Component Model (PCM). During the performance evaluation, PCM is transformed
to specific performance models (EQN, LQN), enabling both formal and simulation
analysis techniques.
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Grassi et al. [12] proposed Kernel LAnguage for PErformance and Reliability
analysis (KLAPER), a method which facilitates the transformation from proprietary
component structure (UML, OWL-S) to desired performance models. The perfor-
mance models are expressed as Markov chains or queuing networks, enabling sim-
ulation analysis technique. KLAPER does not consider composite components and
graphical modeling tools.

Following a completely different analysis approach, both, Thompson et al. [26]
and Silvano et al. [25], annotate the source code of the SW components with relative
performance costs of the corresponding HW platform and simulate the execution
providing the performance results. Both approaches require source code of the com-
ponents and cannot be considered as a conventional model-based solution.

In the domain of pure model-based techniques, Bondarev et al. [4, 5] have
proposed a solution for design and performance analysis of conventional Component-
Based Software Engineering (CBSE) embedded real-time systems (ROBOCOP com-
ponents [15]). The Component ARchitectures Analysis Tool (CARAT) supporting
the approach, synthesizes SW/HW component models, constructs a system model
with corresponding scenario models and simulates the resulting models for worst,
best, and average cases of CPU load, latency and throughput. CARAT supports Ear-
liest Deadline First (EDF), Rate Monotonic (RM), and Deadline Monotonic (DM)
scheduling algorithms, but it does not support network modeling and simulation.
Also, CARAT does not provide a cycle-accurate profiling tool for components, which
leads to less precise performance analysis.

In contrary to the above-described simulation- and scheduling-based techniques,
Wandeler et al. [29] have presented a compositional method, incorporating both types
of techniques for distributed embedded systems. The Modular Performance Analysis
(MPA) approach models resources and their usage in a high abstraction layer, while
the performance components represent the transformation of the input timing prop-
erties to the output timing properties. The modularity of the MPA approach enables
the analysis and the exploration of different mapping and resource sharing strategies.
As a result, the technique guarantees rapid identification of the worst-case resource
load and latencies. However, intrinsic cycle-accurate execution properties cannot be
incorporated during the analysis, while the task execution timeline and interleaving
aspects cannot be obtained with this technique.

15.3 Overview: Architecture Analysis and Optimization

The presented performance evaluation approach is part of a larger DSE framework
for real-time embedded systems, which has been developed over the last decade
[4, 5, 28]. Let us first outline the framework phases, that are subdivided into three
blocks: 1. Profiling and Modeling, 2. Architecture Composition, and 3. Architecture
Evaluation and Optimization (Fig. 15.1).

During the Profiling and Modeling phase, the component developer profiles
the developed SW components at cycle-accurate instruction level and generates a
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Fig. 15.1 Overview of the DSE methodology. We focus on the architecture composition, analysis
and assessment phases

performance model for each individual component [28]. Each performance model
may target various hardware usage aspects (CPU, bus, Random Access Memory
(RAM), network, etc.) and can be specified for multiple platforms. Our tooling sup-
ports automated profiling and model specification, as well as the repository placement
for the subsequent phases.
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The Architecture Composition phase aims at selection of the required compo-
nents (based on functional requirements) and the automated generation of a model
of the composed system using defined workload scenarios. The composition can be
performed for a number of architectural alternatives. Each alternative design includes
the component instantiations and connections, as well as the mapping on a selected
HW platform. Being applied onto the critical execution scenarios, the design specifi-
cation is converted into a system model. Other challenges addressed are the support
for multiple component architecture styles and provisioning of resulting composition
models in common formats (MARTE, UML, etc.).

The Analysis and Optimization phase enables evaluation of system performance
properties by schedulability analysis and simulation of the obtained system models.
Both techniques support various hardware platforms, multiple scheduling policies
and different network protocols. Performing schedulability analysis and simulation of
the system model brings predicted performance properties such as latency, hardware
use, and throughput. The system is validated with a comparison to the requirements,
leading to consequent design iteration(s). Each iteration searches for an optimal
architecture by tuning the allowed factors of freedom (SW component, hardware
structure, SW/HW mapping and scheduling policies). In the sequel, we focus on the
architecture composition and analysis blocks of the framework.

15.4 Detailed Profiling and Modeling

With the ProMo tool [28], a component developer profiles the execution behavior and
hardware resource usage of each individual SW component. The ProMo tool provides
the following benefits. Firstly, the profiling phase is generic, supporting the majority
of the CPUs available (AMD, Intel, ARM). Secondly, the obtained performance
metrics are cycle-accurate, since the measurements are directly collected from the
performance monitor unit of the attached CPU. Finally, the automatically composed
performance models are compatible with MARTE or AADL resource models.

The ProMo tool has been extended in order to support network utilization metrics
and a more detailed memory usage model. The structural view on the model is
depicted in Fig. 15.2.

We model performance attributes for each operation of the provided interfaces
of the component. For each operation, the attributes are grouped into four types:
cpuUsage, memoryUsage, busUsage, and networkUsage.

The Profiling and Modeling phase supports identification and specification of best-
, average-, and worst-cases execution of the profiling as well as parameter-dependent
usage of hardware resources.
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15.5 Architecture Composition

At this phase, an architect selects software components that may satisfy the defined
functional and extra-functional requirements and graphically specifies the compo-
nent composition by instantiating and connecting the involved components. The
hardware architecture can be specified in parallel, but in most of the cases, a hardware
platform is already pre-specified. If not, an architect can select available hardware
components from a repository and choose a specific topology, number of processing
nodes, types of memory, communication means and scheduling policy.

Once the software and hardware architecture are specified, the mapping of the
software components on the hardware nodes is made. The mapping shows on which
processing node each software component should be executed. Efficient mapping is
required to distribute the load of hardware resources in an optimal way. However, at
the first mapping iteration, it is not clear how to best deploy the software components
to achieve the optimal load distribution. Various mapping alternatives are possible
at this stage. Each alternative represents a system architecture.

Additionally, an architect needs to define the workload on a system by means
of execution scenarios, which represent either internal or external triggers for the
system and the operations that are invoked by those triggers.
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The creation of a system model is based on the performance models of the involved
components, the scenario models and the SW/HW mapping architecture. The result-
ing system model represents an executable structure that can be simulated and/or
analysed for performance.

15.6 System Model Analysis

The system model obtained from the previous phase is applicable to both types of
evaluation techniques: schedulability analysis and simulation.

Schedulability analysis enables prediction of the best- and worst-case response
latencies for each task instance, associated with a real-time deadline. This type of
analysis provides guaranteed worst-case boundary conditions and can be executed
within a few seconds. However, it does not provide 1. detailed behavior timeline
data, 2. average-case resource usage, 3. corresponding latencies. To find the latter
metrics, we also apply simulation techniques.

Simulation-based analysis deploys JsimMAST virtual schedulers that simulate
the execution of the tasks specified in the system model. The selection of scheduling
algorithms is dictated by 1. the types and the number of the used CPUs/HW plat-
forms, 2. the protocols, 3. the topology of the deployed communication lines/net-
works, and 4. the operating system used for the composed system. While simulation
techniques cannot guarantee identification of worst-case executions, they provide
detailed system behavior (execution timeline of the system tasks), thereby enabling
identification of possible bottlenecks already at the early design phases. However,
simulation requires a substantial time span (from minutes to days), to obtain sta-
ble prediction results. Therefore, simulation can be selectively used for a detailed
exploration of execution problems in the architecture, such as buffering and task-
interleaving problems.

The worst-case performance properties obtained from the schedulability analysis
can be further used as a guideline for next iterations of the design space exploration
process, since the analytical techniques are time-efficient. The filtered candidates
that meet the system requirements are further simulated to identify performance
attributes which cannot be extracted by formal methods, like possible bottlenecks
and average response time. Moreover, at the saturation point of identification of local
or global optima, the simulation techniques facilitate the analysis of other efficient
alternatives. In order to analyze the performance of the system, we have developed
the ProMARTES framework, which involves several tools for profiling, modeling,
both simulation and schedulability analysis and also the corresponding metamodel
transformation tools. These tools are summarized in the next section.
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15.7 Tooling

The ProMARTES toolchain is a combination of a number of proprietary and
existing tools, which distinguish two main categories: 1. Models transformation
tools, 2. Performance Analysis tools. The model transformation tools enable the
conversions from various metamodels to model formats, complying with the perfor-
mance analysis methods that are supported by the ProMARTES toolchain. The con-
verted metamodels act as sources to the performance analysis tools, which analyze the
performance of the system by using either formal (MAST) or simulation (JSimMast)
methods.

15.7.1 Promo2Marte: Metamodel Transformation

During the phase of Profiling and Modeling, the generated performance models
are based on the structure of the ProMo performance model and comply with the
XML Metadata Interchange (XMI) framework as depicted in Fig. 15.4. The meta-
model converter “ProMo2MARTE” has been implemented for the translation of
the ProMo performance models to MARTE-compatible SW/HW instantiations. The
ProMo2MARTE tool receives as input the ProMo performance models (generated by
the ProMo tool) and it outputs MARTE-compatible SW/HW platform instantiations,
ready to be placed into the repository for future utilization by the architect of the
system.

15.7.2 Marte2Mast: Metamodel Transformation

In the Architecture Composition phase, we specify the generated system model by
using the MARTE profile. In order to simulate the composed system, we use the
MAST performance analysis tool [10, 23] with a proprietary model input format.
Therefore, a meta-modeling tool is required for transforming the MARTE system
model to the MAST format. We have performed this transformation by using the
Marte2Mast tool [18, 19] and have extended the MARTE conversion to support: 1.
the latest Eclipse IDE Juno and its Papyrus modeling plugin, 2. the extended MARTE
profile, and 3. the MAST 1.4.0 scheduling analysis tool.

15.7.3 MAST: Schedulability Analysis Tool

The MAST analysis tool [10] provides a set of schedulability analysis methods,
resulting in identification of worst-case latencies, throughputs, blocking times, and
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resource utilization. Furthermore, the MAST sensitivity analysis techniques enable
predictions on the system robustness. In our approach, we deploy the following
algorithms: Response Time Schedulability Analysis (RTA), Offset-Based Optimized
RTA and Holistic RTA for fixed priorities, as well as the local and global EDF
algorithms. For hierarchical scheduling, we deploy the varying priorities RTA, EDF
mono-processor RTA and EDF-within-priorities RTA.

15.7.4 JSimMAST: Simulation Tool

The JsimMAST [7] simulation tool is used for analysis of the architectural alter-
natives, which have been pre-approved by the MAST tool. The JsimMAST simu-
lation algorithms receive a pre-formatted MAST-2 system model as an input, and
result in detailed task-execution timelines, buffer/bus/network-load timelines and
task-interleaving/blocking aspects.

15.7.5 MARTE Extension

Since the MARTE profile does not support the Network Drivers of the MAST tool,
we have extended the MARTE profile with the new stereotype SaNetwork in the
Schedulability Analysis Modeling package. Our ProMARTES toolkit is available as
an open-source distribution [27].

15.8 Case Study: Autonomously Navigating Robot

15.8.1 Introduction

We have been requested to verify real-time requirements for an advanced setup of
an autonomous robot with complex navigation algorithms and propose an optimal
architecture with respect to the latency of control loops and cost. We use this case
study to validate our performance evaluation approach.

The autonomous robot control is normally composed of multiple hardware units: a
robot with an embedded PC and a set of processing remote workstations (Fig. 15.3).
The provided robot has a set of infrared laser sensors and a differential axis with
two wheels (left and right). The data from infrared sensors is used to compute the
map of the obstacles surrounding the robot. Based on the computed map, remote
workstations suppose to send timely feedback signals to the robot for the wheel
control, thereby imposing real-time requirements for specific tasks.
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15.8.2 Component Selection

For the case study, we have selected a set of suitable components from a ROS repos-
itory [9], such that the component set enables the functionality of the autonomous
control loop. Robot Operating System (ROS) is an open-source operating system for
robot-based applications. It provides hardware abstraction, device drivers, message-
passing and package management. The ROS is based on the publish-subscribe
architectural style, where each component subscribes for, or publishes, a service
wrapped into a topic type.

From the hardware point of view (Fig. 15.3), the system is fully distributed. The
robot sends the infrared and odometry sensor data to a processing unit, which facili-
tates wireless communication with the robot and tunnels the packets to remote work-
stations, which handle major computations. The computation results are transmitted
back to the processing unit to control the robot movements in real-time.

From software component point of view, the creation of surrounding map is the
cornerstone of the navigation process, defining the reference model of the real world
for further robot control. We have selected a GM (Slam_Gmapping) component for
the map generation. The GM component instantly receives the laser and the odometry
data and generates the actual 2-D map.

To control the robot wheels, we have selected the MB (Move_Base) component.
This component subscribes for the actual 2D map as well as for the laser/odometry
data. It also computes the local and the global plan to provide a global strategy and
to publish navigation control signals.

The RVIZ component visualizes the environment (2-D map) to the control officer
and allows setting the final destination goal for the robot. This goal is issued to the
MB component for further wheel control. The MD (Mojo_Driver) component is
responsible for the communication between the robot and ROS. The MD publishes
the sensor data and subscribes to the wheel control data. The MF (Mojo_Frame)
component publishes the 3-D geometrical representation of the robot with the exact
position of the infrared sensors in space.
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Table 15.1 HW platforms used for profiling

Model CPU BUS RAM

Frequency Cache Cores/ Transfer rate Size Frequency

(GHz) (MB) threads (GT/s) (GB) (MHz/dual)

Intel i5-750 2.8 8 4/4 2.5 4 1,333

Intel i5-2520 2.5 3 2/4 5.0 8 1,066

Fig. 15.4 An example of a ProMo performance model for the MoveBase (MB) component

15.8.3 Component Profiling and Modeling

We have profiled the selected components for two different platforms: i5-750\ CPU
(1st generation) and i5-2520 Mobile CPU (2nd generation). The specifications of
the HW platforms are summarized in Table 15.1. During the profiling process, the
ProMo tool automatically generates a performance model for each individual SW
component. An example of the performance model of the MB component is depicted
in Fig. 15.4.
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15.8.4 System Composition Phase

At the system composition phase, we have decided to use three different architecture
alternatives varying in hardware topologies and SW/HW mapping (Fig. 15.5). In
Architecture A, we deploy 2 processing nodes. The most computationally expen-
sive component, GM, is mapped on the i5-750 CPU node, while the rest of
navigation components are mapped on the i5-2520 node. In Architecture B,
all SW components are mapped on the single i5-750 CPU processing node.
Architecture C balances the workload of the system between two nodes: the i5-750
CPU processing node executes the GM and the MF components, while the i5-2520
CPU processing node executes the MD and the MB components.

15.8.5 Scenario Definition

The analysis of predicted system behavior has shown that the workload on the system
can be characterized by nine execution scenarios (Fig. 15.6 and Table 15.2). In this
section, we describe the functionality, the trigger period and the deadline for each
individual scenario. The triggering periods and real-time requirements (deadlines)
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Fig. 15.6 Specification of scenarios in a message sequence chart diagram style

for each scenario are presented in Table 15.2. The deadlines are not scoped by periods
and are defined to maintain the system’s stability only, here the freshness of the data
is not critical for each period.

This paragraph defines infrastructural scenarios with no hard real-time deadlines
and is optional for reading. The scenarioGM:Odom describes the robot odometry data
transmission to the GM component. In this scenario, the odometry data is transmitted
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Table 15.2 Periods and
deadlines for the RT scenarios

Scenario Name Period ( ms) Deadline ( ms)

GM:Odom 37 1,000

GM:Laser 79 1,000

MB:Odom 37 1,000

MB:Laser 79 1,000

GM:Frame 1,000 1,000

MB:NewGoal 500 500

MB:Frame 1,000 1,000

GM:Map 1,000 1,000

MB:Nav 50 150

every 37 ms and the GM component stores these data to an internal buffer (memory).
Similarly, during the scenario GM:Laser, the infrared sensor data is transmitted
to the GM every 79 ms for internal storage. Commonly, the scenarios MB:Odom
and MB:Laser are triggered every 37 ms and 79 ms, respectively, transferring the
odometry and the laser data from the robot node to the MB component for internal
storage. The scenarios GM:Frame and MB:Frame describe transmission of the
infrared sensor positions to the GM and MB components. The scenario is iterative
with 50 ms period and a missing deadline does not lead to system failure.

The scenario GM:Map describes generation of the 2-D map of the robot environ-
ment. The Map operation is the core of the GM component. The operation is triggered
with a 1,000 ms period. During iteration, Map loads the laser and odometry data from
the internal buffer and updates/generates the actual 2-D map. The completion dead-
line of the task instance is set to 1,000 ms.

The scenario MB:Nav is the main scenario of interest, since it is computationally
expensive and has a hard real-time deadline at a very low time span (150 ms). The
scenario describes the feedback control loop for the robot wheels. The Nav operation
of the MB component is triggered every 50 ms. It loads the odometry, laser, and the
actual 2-D map data from the internal buffers, creates the global/local planners and
sends the control signal for the engine of the robot wheels.

The scenario MB:NewGoal represents the workload on the system when a new
goal arrives from RVIZ during the navigation process. For worst-case analysis, we
set it to be periodic with 500 ms period.

The deadlines for the scenarios have been defined to guarantee that the autonomous
navigation system: 1. avoids collisions with newly appeared obstacles and 2. does
not introduce a noticeable response in delay in setting a new goal.

In this case study, we strived for identification of an architecture alternative
able to satisfy the two hard real-time requirements at a low cost of materials.
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Table 15.3 Performance evaluation of three architecture alternatives

Architecture A Architecture B Architecture C

CPU Util. i5-2520 Core 1 7.62 % – 48.74 %

Core 2 27.24 % – 2.62 %

i5-750 Core 1 53.93 % 4.80 % 1.67 %

Core 2 – 21.06 % 48.74 %

Core 3 – 38.76 % –

Core 4 – 93.35 % –

Network Utilization/Slack 10.43 % – 10.39 %

Events GM:Odom Scenario 595.213 ms 915.925 ms 575.751 ms

GM:Laser Scenario 604.806 ms 929.603 ms 576.429 ms

MB:Odom Scenario 111.186 ms 19.726 ms 280.717 ms

MB:Laser Scenario 112.963 ms 19.726 ms 280.967 ms

GM:Frame Scenario 602.565 ms 985.737 ms 576.023 ms

MB:NewGoal 5.158 ms 176.959 ms 188.964 ms

MB:Frame Scenario 113.653 ms 176.404 ms 280.775 ms

GM:Map Scenario 609.131 ms 947.877 ms 577.534 ms

MB:Nav Scenario 113.903 ms 18.635 ms 270.594 ms

15.8.6 Performance Evaluation Phase

The evaluation of the three alternative system architectures has been performed using
both schedulability analysis MAST and the simulation JsimMAST techniques. First,
we perform schedulability analysis for all parallel tasks in the identified scenarios and
check whether their real-time requirements are satisfied. The alternatives featuring
all met deadlines were applied to a simulation analysis, providing detailed behavior
predictions. Finally, we compare the predicted performance results of the alternatives
and propose the optimal alternative with respect to the response latency in critical
scenarios, robustness, resource load and cost. In the following paragraphs, we present
the analysis results (see Table 15.3).

The Architecture A meets all the real-time requirements specified in Table 15.2.
However, the worst-case response time of the task in theMB:nav scenario (113.9 ms)
is close to the deadline. For this task, unexpected CPU overload may lead to a missing
deadline and to an undesirable collision, making the alternative sensitive to higher
load conditions (low robustness).

The Architecture B, where all the SW components are mapped on a single node,
satisfies all hard real-time requirements (Table 15.2 and 15.3). However, due to the
mapping of all SW components on the same node, the CPU load is high. This influ-
ences the end-to-end execution time of the GM:Map scenario (947 ms with a 1,000 ms
deadline), thereby substantially reducing the robustness of the map generation task
under overload conditions.
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Table 15.4 Performance validation of schedulability versus simulation versus actual execution for
the crucial RT events GM:MapScenario and MB:NavScenario of the autonomously navigat-
ing robot

Model GM:Map Scenario (ms) MB:Nav Scenario (ms)

WCET schedulability analysis 947.877 19.726

WCET simulation analysis 874.818 11.565

WCET in reality 899.123 18.833

ACET simulation analysis 559.331 3.807

ACET in reality 565.983 3.687

Architecture C fails to satisfy the hard real-time requirement (150 ms) for the
MB:Nav scenario task, accounting to 270 ms. The introduced network delay increases
the task latency resulting in the RT requirement failure.

In the optimal architecture selection phase, the reasoning is as follows. Both,
architectures A and B, satisfy the real-time requirements, but have low robustness
under overload conditions. The task in MB:nav is not sufficiently robust in Architec-
ture A, while the task in GM:Map is not robust in Architecture B. The former task has
more severe consequences when missing a deadline (potential collision), therefore
this task has higher importance for deadline fulfillment. Therefore, the Architec-
ture B is a first choice to be considered optimal among alternatives. Moreover, the
Architecture B deploys only one processing node, reducing the system cost. Finally,
deployment of more than one HW node (platform, network) increases the possibility
of HW or communication failures. Therefore, the Architecture B has been advised
to robot owners as an optimal solution among the alternatives.

15.8.7 Validation of the Predictions on the Implemented System

In order to validate our method, we have implemented the optimal Architecture
B, then measured the latencies of the most critical scenarios, MapScenario and
NavScenario, and compared them to the predicted latencies. For the worst-case,
the predicted vs. actual latency deviations have shown to be within a 6 % range, while
for the average case it is even lower, as presented in Table 15.4. In order to compute
the actual worst-case and average-case latency of the two scenarios, we let the sys-
tem navigate for more than 1 h, while recording the latencies to log files. However,
for the actual measurements, we cannot guarantee that the system has reached its
worst-case latency.

By comparing the delays that are depicted in Table 15.3, a number of interesting
observations can be made. Firstly, the Worst-Case Execution Time (WCET) that the
simulation analysis predicts is lower than the predicted WCET of the schedulability
analysis. This can be explained by the nature of these two performance analysis
methods, since that the simulation analysis cannot guarantee the reachability of the
WCET, in contrast to the schedulability analysis where WCET is predicted due to
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its formal substance. Secondly, the actual WCET is lower than the WCET predicted
by the schedulability analysis, indicating that during the actual execution of the
system, the worst-case scenario has not been reached. Thirdly and finally, we notice
that the simulation prediction delays are lower than the actual worst-case scenarios,
highlighting that during simulation, the system did not execute a scenario, which
imposes a delay close to the WCET that both the schedulability analysis and the
actual execution have reached. This means that if we were building our navigating
robot system based only on the simulation predictions, our prototype would not meet
the real-time requirements, leading to a failure. Thus, the simulation WCET cannot
act as a reliable source for building a hard real-time system and should be combined
with the schedulability analysis predictions, in order to sufficiently predict 1. the
worst- and average-case execution scenarios and 2. the identifications of possible
bottlenecks.

15.9 Case Study Findings and Lessons Learned

During the schedulability analysis we have noticed that the mapping of tasks on CPU
cores a plays a definitive role for the system performance. Two computationally
expensive tasks mapped on the same core may introduce high task interleaving,
therefore increasing WCET of both tasks. An advised strategy is to map the identified
heavy tasks on separate CPU cores. This will reduce latencies and increase robustness
for each task, even at the expense of under-use of each CPU core.

We have also observed that the architecture, where the critical tasks are data-
and execution-independent from performance of all other tasks, is very robust under
overload conditions. All our tasks in the scenarios execute independently of the
success/failure of other tasks, by taking the data from internal buffers. Failure of
neighboring task to store actual data to the internal buffer does not influence the
critical task delay, but only decreases the operation quality.

Another interesting conclusion is that for low-latency tasks, the mapping of
involved components on different nodes led to disproportionally high increase in
latency due to the added communication delay. One example is the low-latency
MB:nav task rendering 18 ms delay in single-node mapping and 113 ms delay in
multiple-node mapping case. In opposite, heavy but high-latency tasks improve on
execution speed when being mapped on several nodes, e.g., the GM:Map task with
947 ms delay on a single node and 609 ms delay in two-node mapping.

The case study revealed a number of limitations of our approach. We were not
able to analyze the internal memory-CPU bus usage and cache behavior. For this
case study, it was not critical, but it would be of high importance for data-intensive
systems. Besides this, we noticed an influence of Operating System (OS) tasks on
the latency values during the performance validation on implemented system, while
these tasks were not taken into account during the analysis. Finally, the migration
of the tasks over different cores within one processing node is extremely difficult to
predict, since it is dynamically defined by an OS scheduler at run time.
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15.10 Conclusions

In this chapter, we have proposed an accurate performance analysis method for
real-time systems. We have evaluated and validated our method on a real-time
autonomous navigation robot system. The method incorporates 1. profiling and
modelling of SW components at cycle-accurate level, 2. automated generation
of system performance model from the models of individual components, and 3.
evaluation of the obtained system model by schedulability analysis and simulation
techniques resulting in predicted latencies, throughput, resource usage, and robust-
ness. The presented component and system models are MARTE-compatible.

The method features multiple advantages for profiling, modeling and
evaluating real-time systems. Firstly, the profiling provides cycle-accurate perfor-
mance measurements collected directly by the Performance Monitor Unit (PMU)
of the attached CPU. Secondly, the performance models are compatible with the
commonly used UML-MARTE profile. Thirdly, the established pipeline generating
models at different analysis phases automates the analysis process and carries the
profiled low-level metrics of the components through all phases till the overall sys-
tem performance is predicted. This brings high accuracy in predictions, as it was
shown by the case study (6 % error range). Fourthly, the method deploys both types
of techniques: schedulability analysis and simulation enabling predictions of both
guaranteed worst-case executions and detailed behavior of tasks. Finally, we inte-
grate the Eclipse Papyrus IDE into our tooling pipeline, so that an architect can easily
design the SW/HW architectures graphically and automatically convert the design
into models.

Our method has a number of limitations that require further research. Firstly, the
component performance models can be obtained only for Linux-based operating
systems, and the component profiling requires availability of actual HW platforms.
Secondly, we do not provide reliable solution for generation of behavior models for
component operations, leaving this notorious task to a component developer. Thirdly,
we do not fully take into account the influence of the memory, internal bus and cache
behavior on the performance of the system. Similarly, we do not provide support for
GPU-based and OS tasks, which may decrease the prediction accuracy.

Let us briefly outline our future research steps. Since our performance analysis
method does not incorporate the memory and the CPU cache structures, we plan to
integrate a cycle-accurate platform simulator executing cache behavior. Moreover,
due to the increasing popularity of applications that can be executed on a GPU, it is
vital to support the modeling and the evaluation of such systems. Last but not least,
the architecture alternatives are composed manually, which bounds the DSE process
to a limited number of alternatives. We are developing an architecture generation
method to automate the creation and assessment of optimal alternatives. The latest
open source version of the ProMARTES toolchain is available online [27].
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JA, Szyperski C, Wallnau K (eds) Component-based software engineering—9th international
symposium, CBSE 2006, Västerås, Sweden, Lect Notes Comput Sci, vol 4063, Springer, Berlin,
Germany, pp 254–269. doi:10.1007/11783565_18

5. Bondarev E, Chaudron M, de With P (2007) CARAT: a toolkit for design and performance
analysis of component-based embedded systems. In: Proceedings of the design, automation
test in Europe conference exhibition (DATE) 2007, pp 1–6. doi:10.1109/DATE.2007.364428

6. Cortellessa V, Pierini P, Rossi D (2007) Integrating software models and platform models for
performance analysis. IEEE Trans Softw Eng 33(6):385–401. doi:10.1109/TSE.2007.1014

7. Cuesta C (2010) JsimMAST: The performance analysis simulator for real-time. http://mast.
unican.es/jsimmast/

8. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y
(2003) Taming heterogeneity—the Ptolemy approach. Proc IEEE 91(1):127–144. doi:10.1109/
JPROC.2002.805829

9. Garage W (2007) ROS: the robot operating system. Open Source Robotics Foundation. http://
www.ros.org/wiki/

10. Gonzalez Harbour M, Gutierrez Garcia J, Palencia Gutierrez J, Drake Moyano J (2001) MAST:
modeling and analysis suite for real time applications. In: Proceedings of the 13th Euromicro
conference on real-time systems 2001, pp 125–134. doi:10.1109/EMRTS.2001.934015

11. Graf S, Ober I, Ober I (2006) A real-time profile for UML. Int J Softw Tools Technol Transf
8(2):113–127. doi:10.1007/s10009-005-0213-x

12. Grassi V, Mirandola R, Sabetta A (2005) From design to analysis models: a kernel language
for performance and reliability analysis of component-based systems. In: Proceedings of the
5th international workshop on software and performance (WOSP) 2005, ACM, New York, NY,
USA, pp 25–36.doi:10.1145/1071021.1071024

13. Hissam S, Moreno G, Stafford J, Wallnau K (2003) Enabling predictable assembly. J Syst Softw
65(3):185–198. doi:10.1016/S0164-1212(02)00038-9 component-Based Software Engineer-
ing

14. IBM (2003) Rationale rose: a modeling environment. IBM. http://www-01.ibm.com/software/
rational/

15. ITEA (2000) ROBOCOP: robust open component based software architecture for configurable
devices project. ITEA. http://www.hitech-projects.com/euprojects/robocop/

16. Klobedanz K, Kuznik C, Thuy A, Mueller W (2010) Timing modeling and analysis for
AUTOSAR-based software development—a case study. In: Proceedings of design, automa-
tion test in Europe conference exhibition (DATE) 2010, pp 642–645. doi:10.1109/DATE.2010.
5457125

17. Liu Y, Fekete A, Gorton I (2005) Design-level performance prediction of component-based
applications. IEEE Trans Softw Eng 31(11):928–941. doi:10.1109/TSE.2005.127

18. Medina JL, Cuesta AG (2011) MAST: modeling and analysis suite for real-time applications.
http://mast.unican.es

http://www.autosar.org/
http://dx.doi.org/10.1145/1216993.1217006
http://dx.doi.org/10.1007/978-3-540-24774-6_21
http://dx.doi.org/10.1007/11783565_18
http://dx.doi.org/10.1109/DATE.2007.364428
http://dx.doi.org/10.1109/TSE.2007.1014
http://mast.unican.es/jsimmast/
http://mast.unican.es/jsimmast/
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/JPROC.2002.805829
http://www.ros.org/wiki/
http://www.ros.org/wiki/
http://dx.doi.org/10.1109/EMRTS.2001.934015
http://dx.doi.org/10.1007/s10009-005-0213-x
http://dx.doi.org/10.1145/1071021.1071024
http://dx.doi.org/10.1016/S0164-1212(02)00038-9
http://www-01.ibm.com/software/rational/
http://www-01.ibm.com/software/rational/
http://www.hitech-projects.com/euprojects/robocop/
http://dx.doi.org/10.1109/DATE.2010.5457125
http://dx.doi.org/10.1109/DATE.2010.5457125
http://dx.doi.org/10.1109/TSE.2005.127
http://mast.unican.es


302 K. Triantafyllidis et al.

19. Medina JL, Garcia Cuesta A (2011) Model-based analysis and design of real-time distributed
systems with Ada and the UML profile for MARTE. In: Reliable software technologies—Ada-
Europe 2011, Lect Notes Comput Sci, vol 6652, Springer, Berlin and Heidelberg, Germany,
pp 89–102.doi:10.1007/978-3-642-21338-0_7

20. Mos A, Murphy J (2002) A framework for performance monitoring, modelling and prediction
of component oriented distributed systems. In: Proceedings of the 3rd international workshop
on software and performance (WOSP) 2002, ACM, New York, NY, USA, pp 235–36. doi:10.
1145/584369.584403

21. Määttä S, Indrusiak LS, Ost L, Möller L, Glesner M, Moraes FG, Nurmi J (2010) Model
based approach for heterogeneous application modelling for real time embedded systems. In:
Proceedings of the third international workshop on model based architecting and construction
of embedded systems (ACES-MB 2010), held as part of the 2010 international conference on
model driven engineering languages and systems (MoDELS’10), Oslo, Norway. http://www.
inf.pucrs.br/moraes/my_pubs/papers/2010/2010_ACESMB_moller.pdf

22. OMG (2007) SysML: systems modeling language. OMG. http://www.omgsysml.org/
23. OMG (2009) MARTE: modeling and analysis of real time and embedded systems. OMG.

http://www.omgmarte.org
24. SAE (2000) Architecture analysis and design language. SAE. http://www.aadl.info/aadl/

currentsite
25. Silvano C, Fornaciari W, Palermo G, Zaccaria V, Castro F, Martinez M, Bocchio S, Zafalon R,

Avasare P, Vanmeerbeeck G, Ykman-Couvreur C, Wouters M, Kavka C, Onesti L, Turco A,
Bondik U, Marianik G, Posadas H, Villar E, Wu C, Dongrui F, Hao Z, Shibin T (2010) MULTI-
CUBE: multi-objective design space exploration of multi-core architectures. In: Proceedings
of the 2010 IEEE Annu Symp VLSI (ISVLSI), IEEE Comput Soc, Washington, DC, USA, pp
488–493. doi:10.1109/ISVLSI.2010.67

26. Thompson M, Polstra S, Erbas C, Pimentel AD (2008) Calibration of abstract performance
models for system-level design space exploration. J Signal Proc Syst 50(2):99–114. doi:10.
1007/s11265-007-0085-2

27. Triantafyllidis K (2013) ProMARTES: profiling, modeling, analysis of real-time embedded
systems. http://vca.ele.tue.nl/demos/ProMARTES

28. Triantafyllidis K, Bondarev E, de With P (2012) Low-level profiling and MARTE-compatible
modeling of software components for real-time systems. In: Proceedings of the 38th EUROMI-
CRO conference on software engineering and advanced applications (SEAA) 2012, pp 216–
223.doi:10.1109/SEAA.2012.25

29. Wandeler E, Thiele L, Verhoef M, Lieverse P (2006) System architecture evaluation using
modular performance analysis: a case study. Int J Softw Tools Technol Transfer 8(6):649–667.
doi:10.1007/s10009-006-0019-5

30. Wu X, Woodside M (2004) Performance modeling from software components. In: Proceedings
of the 4th international workshop on software and performance (WOSP) 2004, ACM, New
York, NY, USA, pp 290–301. doi:10.1145/974044.974089

http://dx.doi.org/10.1007/978-3-642-21338-0_7
http://dx.doi.org/10.1145/584369.584403
http://dx.doi.org/10.1145/584369.584403
http://www.inf.pucrs.br/moraes/my_pubs/papers/2010/2010_ACESMB_moller.pdf
http://www.inf.pucrs.br/moraes/my_pubs/papers/2010/2010_ACESMB_moller.pdf
http://www.omgsysml.org/
http://www.omgmarte.org
http://www.aadl.info/aadl/currentsite
http://www.aadl.info/aadl/currentsite
http://dx.doi.org/10.1109/ISVLSI.2010.67
http://dx.doi.org/10.1007/s11265-007-0085-2
http://dx.doi.org/10.1007/s11265-007-0085-2
http://vca.ele.tue.nl/demos/ProMARTES
http://dx.doi.org/10.1109/SEAA.2012.25
http://dx.doi.org/10.1007/s10009-006-0019-5
http://dx.doi.org/10.1145/974044.974089


Index

A
Abstraction, 223–229, 231–234, 236–239,

241
Adaptive simulation, 223–228, 234–241
Advanced Video Coding (AVC) video

encoder, 257
AMBA High-performance Bus (AHB), 131,

141, 142
Analog/Mixed-Signal (AMS), 89

circuit, 45, 53, 67, 69, 72
Analytical models, 149
Application reconfiguration, 245, 246, 248
Architecture Description Language (ADL),

266
Architecture exploration, 21, 22
Assertion, 46, 68, 69, 72, 73, 81–83

checker, 69
language, 69

Assessment, 282, 286, 300
Automata management, 108
Automotive

AUTomotive Open System ARchitecture
(AUTOSAR), 208, 216, 220

Electronic Control Unit (ECU), 208–
217, 219, 220

networked embedded system, 208
SoftWare Component (SWC), 208–220

B
Bus modeling, 128, 131–133

C
Circuit analysis, 67–72, 79, 83
Code generation, 189

C++, 107, 108, 116, 121

SystemC, 107
Common Object Request Broker Architec-

ture (CORBA), 275
Communication refinement, 23, 41
Component selection problem, 4–6, 10–13,

18, 19
Component-based

design, 113
embedded system, 284

Component-oriented approach, 266
Composite structure, 265, 267
Constraint-programming, 168, 170–172,

182, 184, 185

D
Decision making, 259, 260, 262
Design automation, 148
Design pattern, 245, 247, 250, 262
Design Space Exploration (DSE), 148–151,

163, 167–173, 175–185, 190,
192, 204

joint analytical and simulation based
DSE, 168, 170, 179, 181, 182, 184, 185

Deterministic simulation, 129
Distributed application, 274

E
Electronic System Level (ESL), 190, 192,

195, 204
Embedded system design, 168
Energy efficiency, 9
Evolutionary algorithm, 3, 13, 15, 17, 19

© Springer International Publishing Switzerland 2015
M.-M. Louërat and T. Maehne (eds.), Languages, Design Methods,
and Tools for Electronic System Design, Lecture Notes in Electrical Engineering 311,
DOI 10.1007/978-3-319-06317-1

303



304 Index

F
Fine-grain adaptation, 248, 251
Flex-eWare Component Model (FCM), 275
Formal methods, 69
Formal verification, 22, 24, 45
Frequency-domain analysis, 69

G
Gate Level (GL), 223–229, 231, 233, 234,

236, 238, 239, 241
Generic Interaction Support (GIS), 274
Graph-theoretic optimization, 208

H
Heterogeneous

components integration, 104, 105
embedded system, 104–106, 123
system simulation, 104, 105, 120

Heuristic algorithm, 5, 15, 16, 19
High abstraction level, 4
Homogeneous

code generation, 104, 105
Hybrid dynamical system, 87, 89, 90, 99

I
Interoperability, 148, 158, 165

L
Labeled Petri Net (LPN), 45
Language for analog/mixed-signal proper-

ties (LAMP), 46, 47, 49, 52, 53,
55–59, 62–64

Linear drift, 92, 93, 95
Local search, 11–15, 19
LPN Embedded Mixed-signal Analyzer

(LEMA), 46

M
MATLAB/Simulink, 189
Memristor, 87, 88, 90–93, 95–99

memristive system, 88–93, 98, 99
titanium dioxyde memristive device, 87

Mixed-criticality system (MCS), 168, 171,
185

Mixed-language modeling, 236
Model checking, 46
Model driven engineering, 246
Model of computation, 104–106
Model reuse, 249

Model transformation, 189
Model validation, 189
Model-based design (MBD), 192
Modeling, 282–285, 287, 289–291, 293, 300
Monitor, 69, 73, 74, 247, 250, 262
Monitor Analyze Plan Execute (MAPE)

adaptation loop, 247, 259
Multi-level simulation, 226, 227
Multilevel graph partitioning, 208, 209

N
Nanoelectronic device, 88, 98, 99
Network on Chip (NoC), 224
Nonlinear drift, 95–98
NP-completeness, 11, 19

O
Optimization, 15, 170, 285, 287

P
Parallel simulation, 143, 144
Partition-and-map algorithm, 211, 212
Performance

analysis, 68, 282, 284, 285, 290, 298, 300
estimation, 170–173, 179, 181, 185
evaluation, 282–285, 287, 289, 291, 297,

300
prediction, 282, 289, 291, 297–300

Phase interpolato, 45
Platform-Based Design (PBD), 23, 37
Predictable platforms, 148, 154, 166
Predictable systems, 184, 185
Preemption modeling, 137
Profiling, 282, 285–287, 289, 290, 293, 300
Property language, 46, 48, 52, 53, 63
Property-preservation checking, 34

Q
Quality level, 245, 248, 253–256, 261

R
Real time system design, 167, 168, 170
Real-Time Embedded System (RTES), 249
Real-time system, 148, 165, 281, 283, 284,

299, 300
Recursive mincut heuristic, 208
Register Transfer Level (RTL), 127–129,

131, 132, 138–141, 224, 226, 228,
230, 231, 233, 236, 237, 239, 241



Index 305

S
Schedulability analysis, 287, 289–291, 297–

300
Simulation, 75, 76, 80, 82, 83, 147–151,

156, 159, 163, 165, 282–285, 287,
289–291, 297–300

Socket connector, 268, 275, 277
System integration, 4
System level, 4
System modeling, 26, 31, 34, 279
System on a Chip (Soc), 21–23
SystemC, 190–193, 195, 223, 227–229
SystemC-AMS Linear Signal Flow (LSF),

105, 113–115
SysteMoC, 189

T
Task allocation problem, 208
Temporal logic, 46, 52, 53, 69
Terminal state-problem, 88, 89
Time critical systems, 168
Time Division Multiplex (TDM) bus, 184
Time-domain analysis, 68, 73

Torque vectoring, 200
Transaction Level (TL), 127

modeling, 128, 129, 131–134, 137, 138,
142, 148, 154, 165

modeling styles, 128, 129, 131, 134

U
UML/MARTE profile, 245, 247, 249, 250,

262, 282–284, 287, 290, 291, 300
MARTE extension, 246, 249, 252

Unified Modeling Language (UML), 265,
266, 276

V
Vehicle engineering, 208
Verification, 68–71, 73, 75, 79, 80, 82, 83
VHDL, 227–229, 235
VHDL-AMS, 89, 92, 93
Virtual Prototype (VP), 148, 158, 162, 163,

165
Voltage-Controlled Oscillator (VCO), 46,

47, 59, 60, 63


	Preface
	Contents
	Contributors
	Figures
	Tables
	Algorithms
	Listings
	Acronyms
	Part I
Applications of Formal Methodsfor Specification and Verification
	1 Optimal Component Selection  for Energy-Efficient Systems
	1.1 Introduction
	1.2 Related Work
	1.3 Problem Definition
	1.3.1 Example
	1.3.2 NP-Hardness

	1.4 Algorithms
	1.4.1 Random Solution Generation
	1.4.2 Local Search
	1.4.3 Evolutionary Approach

	1.5 Integration into a Specification Tool
	1.6 Evaluation
	1.6.1 Results
	1.6.2 Using DEAP for Performance Improvements
	1.6.3 Application on an FPGA Framer Component

	1.7 Conclusion
	References

	2 Assisting Refinement in System-on-Chip  Design
	2.1 Introduction
	2.2 Related Works
	2.3 Our Method
	2.3.1 Application
	2.3.2 Execution Platform
	2.3.3 Mapping and Partitioning

	2.4 Transformation Rules
	2.4.1 Refinement Steps
	2.4.2 Generation of Models for Level-1, Level-2, and Level-3
	2.4.3 Proof of Property Preservation

	2.5 Case Study
	2.5.1 Refinement Checking
	2.5.2 Properties Verification

	2.6 Conclusion
	References

	Part II
Embedded Analog and Mixed-SignalSystem Verification
	3 A New Assertion Property Language  for Analog/Mixed-Signal Circuits
	3.1 Introduction
	3.2 Background
	3.2.1 LPN Embedded Mixed-Signal Analyzer (LEMA)
	3.2.2 Labeled Petri Net (LPN)

	3.3 Motivating Example
	3.4 LAMP
	3.5 Results
	3.6 Conclusion
	References

	4 Integrating Circuit Analyses  for Assertion-Based Verification  of Programmable AMS Circuits
	4.1 Introduction
	4.2 Related Work
	4.3 A New AMS Assertion Language
	4.4 Circuit Analyses
	4.4.1 Circuit Analyses at Events
	4.4.2 DC Operating Point Analysis and DC Assertions
	4.4.3 AC Analysis and AC Assertions
	4.4.4 FFT Analysis for Noise and Linearity

	4.5 Case Study
	4.6 Conclusion
	References

	Part III
Embedded Analog and Mixed-SignalSystem Design
	5 Hybrid Dynamical Systems  for Memristor Modelling
	5.1 Introduction
	5.2 Basic Concepts
	5.2.1 Hybrid Dynamical Systems
	5.2.2 Memristor Modelling Aspects

	5.3 Memristor Models
	5.3.1 Model with Linear Drift
	5.3.2 Models with Nonlinear Drift
	5.3.3 Further Models

	5.4 Conclusion
	References

	6 Code Generation Alternatives to Reduce Heterogeneous Embedded Systems  to Homogeneity
	6.1 Introduction
	6.2 The univerCM Computational Model
	6.3 Code Generation from univerCM
	6.3.1 Generation of C++ Code
	6.3.2 Generation of SystemC-AMS Code

	6.4 Experimental Results
	6.4.1 The Water Tank System
	6.4.2 The Boiler System

	6.5 Conclusions
	References

	Part IV
Digital Hardware/Software EmbeddedSystem Design
	7 SystemC Modeling with Transaction Events
	7.1 Introduction
	7.2 Related Work
	7.3 Analysis of TL Modeling Styles
	7.3.1 TLM1
	7.3.2 TLM2
	7.3.3 TLM3
	7.3.4 TLM 4

	7.4 TL Modeling with Transaction Events
	7.5 Comparison with OSCI TLM-2.0 Payload Event Queues
	7.6 Extensions for Preemption Modeling
	7.7 RTL Modeling with Transaction Events
	7.7.1 SystemC RTL Models
	7.7.2 Signals with Transaction Events
	7.7.3 Querying

	7.8 Experimental Results
	7.9 Outlook Towards Parallel Simulation
	7.10 Conclusion
	References

	8 Automatic Generation of Virtual Prototypes from Platform Templates
	8.1 Introduction
	8.2 Motivation
	8.3 Background
	8.3.1 Predictable Component Templates
	8.3.2 Predictable Platform Templates
	8.3.3 The DSE Problem

	8.4 Generating Virtual Prototypes
	8.4.1 Overview
	8.4.2 Virtual Processors
	8.4.3 Interconnection
	8.4.4 Top Level

	8.5 Case Study
	8.5.1 Realization of the Design Flow
	8.5.2 The Application
	8.5.3 The Platform
	8.5.4 Results

	8.6 Related Work
	8.7 Conclusion
	References

	9 Combining Analytical and Simulation-Based Design Space Exploration for Efficient Time-Critical and Mixed-Criticality Systems
	9.1 Introduction
	9.2 Related Work
	9.3 Problem Formulation
	9.4 Proposed Flow
	9.5 Proof-of-Concept DSE Problem and Flow  Implementation
	9.5.1 DSE Problem Model
	9.5.2 Implementation of the Combined-DSE Flow
	9.5.3 Experiments

	9.6 Extension of the Approach
	9.7 Conclusion
	References

	10 Bridging Algorithm and ESL Design: MATLAB/Simulink Model Transformation  and Validation
	10.1 Introduction
	10.2 Related Work
	10.3 Design Fundamentals
	10.3.1 Simulink
	10.3.2 Executable Specification

	10.4 Model Transformation
	10.4.1 Model Transformation Preparation
	10.4.2 Model Transformation Framework
	10.4.3 Evaluating Simulink Block Diagrams
	10.4.4 Model Transformation
	10.4.5 Time-Driven Transformation

	10.5 Case Study: Torque Vectoring
	10.6 Conclusion
	References

	11 Software Allocation in Automotive Networked Embedded Systems: A Graph-Based  Approach
	11.1 Introduction
	11.2 Multilevel Graph Partitioning
	11.3 Graph Model of the Software Allocation Problem
	11.3.1 Minimizing Communication Bandwidth between ECUs
	11.3.2 Minimizing Sporadic Signal Bandwidth between ECUs

	11.4 Partition-and-Map Algorithm
	11.4.1 The Algorithm
	11.4.2 First-Fit Versus Best-Fit Mapping
	11.4.3 Design Constraints
	11.4.4 ECU Heterogeneity

	11.5 Evaluation Criteria
	11.5.1 Inter-ECU Communication Bandwidth
	11.5.2 Intra-ECU Communication Bandwidth
	11.5.3 Sporadic Communication Bandwidth
	11.5.4 Total Normalized Cost
	11.5.5 Processors' Cycles Utilization
	11.5.6 Memory Bytes Utilization

	11.6 Implementation and Results
	11.6.1 Example 1: Performance Results
	11.6.2 Example 2: Profiling Results
	11.6.3 Example 3: Profiling Results

	11.7 Conclusion and Future Work
	References

	12 Fine-Grained Adaptive Simulation
	12.1 Introduction
	12.2 Related Work
	12.2.1 Structural and System Level Fault Simulation
	12.2.2 Adaptive Simulation

	12.3 Preliminaries and Problem Statement
	12.4 Adaptive Modules
	12.4.1 Multiplexing Fixed Abstraction Level Models
	12.4.2 3-Phase Switchover
	12.4.3 State Transfer
	12.4.4 Controlling the Level of Abstraction
	12.4.5 RTL Modeling Requirements and Simulation  Limitations
	12.4.6 Building an Adaptive Module

	12.5 Evaluation
	12.5.1 General Applicability of Adaptive Simulation
	12.5.2 Performance Evaluation

	12.6 Conclusion and Future Work
	References

	Part V
Model-Driven Engineeringfor Embedded System Design
	13 Model-Based Design of Real Time Embedded Application Reconfiguration
	13.1 Introduction
	13.2 Self-Adaptation in RTES
	13.2.1 The MAPE Adaptation Loop
	13.2.2 Application of Reconfiguration-Based Decision Making

	13.3 Related Work
	13.4 MARTE Capabilities for Software Adaptation Modeling
	13.5 The Proposed Extension
	13.5.1 The SW_Reconfiguration Package
	13.5.2 The Software Adaptive Resource Modeling
	13.5.3 Application Modes Modeling
	13.5.4 Modeling of the Adaptation Controller
	13.5.5 Case Study: An Adaptive H264/AVC Video Encoder

	13.6 Using the Proposed Extension in a Decision  Making Pattern
	13.7 Conclusion
	References

	14 Split of Composite Components  for Distributed Applications
	14.1 Introduction
	14.2 Motivating Example
	14.3 Different Ways to Split Composites
	14.3.1 Option 1---Keep Composites
	14.3.2 Option 2---Flatten Composite
	14.3.3 Option 3---Flatten Composite, Require Explicit  Fragment Sub-Components

	14.4 Support for Splitting Composites  in Existing Frameworks
	14.4.1 DDS for CCM
	14.4.2 Fractal
	14.4.3 SOFA
	14.4.4 Qompass

	14.5 Discussion
	14.6 Conclusion
	References

	15 ProMARTES: Performance Analysis Method and Toolkit for Real-Time Systems
	15.1 Introduction
	15.2 Related Work
	15.3 Overview: Architecture Analysis and Optimization
	15.4 Detailed Profiling and Modeling
	15.5 Architecture Composition
	15.6 System Model Analysis
	15.7 Tooling
	15.7.1 Promo2Marte: Metamodel Transformation
	15.7.2 Marte2Mast: Metamodel Transformation
	15.7.3 MAST: Schedulability Analysis Tool
	15.7.4 JSimMAST: Simulation Tool
	15.7.5 MARTE Extension

	15.8 Case Study: Autonomously Navigating Robot
	15.8.1 Introduction
	15.8.2 Component Selection
	15.8.3 Component Profiling and Modeling
	15.8.4 System Composition Phase
	15.8.5 Scenario Definition
	15.8.6 Performance Evaluation Phase
	15.8.7 Validation of the Predictions on the Implemented System

	15.9 Case Study Findings and Lessons Learned
	15.10 Conclusions
	References

	Index



