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Abstract. Surface electromyographic (sEMG) signals from the residual limb 
muscles after amputation have been widely used for prosthesis control. Howev-
er, for the amputees with high-level amputations, there usually exists a dilemma 
that the sEMG signal sources for prosthesis control are limited but more limb 
motions need to be recovered, which strongly limits the practicality of the cur-
rent myoelectric prostheses. In order to operate prostheses with multiple de-
grees of freedom (DOF) of movements, several control protocols have been 
suggested in some previous studies to deal with this dilemma. In this paper, a 
prosthesis control system based on the combination of speech and sEMG sig-
nals (Strategy 1) was built up in laboratory conditions, where speech commands 
were applied for the prosthesis joint-mode switching and sEMG signals were 
applied to determine the motion-class and execute the target movement. The 
control performance of the developed system was evaluated and compared with 
that of the traditional control strategy based on the pattern recognition of sEMG 
signals (Strategy 2). The experimental results showed that the difference be-
tween Strategy 1 and Strategy 2 was insignificant for the control of a 2-DOF 
prosthesis, but Strategy 1 was much better in the control of a prosthesis with 
more DOFs in comparison to Strategy 2. In addition, the positive user expe-
rience also demonstrated the reliability and practicality of Strategy 1. 

Keywords: sEMG, Speech, Prosthesis control, Pattern recognition, Limb Am-
putee. 

1 Introduction 

Multifunctional prostheses are very useful for amputees to recover the lost body func-
tions and improve their life quality. Up to now, most modern motorized prostheses are 
controlled with the surface electromyographic (sEMG) signals from muscles of resi-
dual limbs, and several methods have been developed to realize possible practical 
control of myoelectric prostheses [1-4]. Conventionally, sEMG signals from a pair of 
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residual muscles are applied to control one degree of freedom (DOF) of movements 
[5]. However, in the case of high-level amputations, the residual muscles are usually 
limited and cannot supply sufficient sEMG signals for the control of multifunctional 
prostheses with multiple DOFs. In order to control multiple DOFs with a pair of resi-
dual muscle (a muscle pair), a so-called “mode switching” [6] procedure is used for 
the switching among different joints, which is mostly realized by simultaneous co-
contractions of a muscle pair. Take a 3-DOF-prosthesis as example: it has three joint-
modes of “hand”, “wrist” and “elbow”, and sEMG signals recorded from the muscle 
pair of bicep-tricep determine the motion-classes of each joint. The switching among 
the three joint is performed by the co-contraction of bicep-tricep muscle pair as well. 
The predetermined switching order is “hand-wrist-elbow…” and the current mode is 
“hand”. If the user wants to do an elbow movement, he/she has to conduct the co-
contraction of the muscle pair twice to switch the joint-mode from “hand” to “wrist” 
and from “wrist” to “elbow”, and then contracts either the bicep or the tricep to  
execute an elbow movement. In this way, users have to take a lot of time and efforts 
in the mode switching and always remember the current joint-mode. As a result,  
the control method based on the sequential mode switching is strongly limited and 
commonly rejected by most of the users. 

To improve the control performance of the current myoelectric prostheses, a  
control strategy based on the pattern recognition of sEMG signals has been proposed 
[7-8]. Here, a pattern recognition algorithm is applied to classify the target motion-
classes by decoding the sEMG signals from residual muscles. However, the pattern 
recognition method is still not much practical if there are not enough residual mus-
cles, especially after high-level amputations. In addition, the signal quality, the opera-
tion flexibility, and the real-time patter recognition algorithm are also big challenges 
which prevent the further improvement of this method. 

Some extra non-sEMG signals have been taken into account to overcome the prob-
lem of insufficient sEMG signal sources in the present prosthesis control, and one of 
the possible candidate control information may be the human speech [9]. Speech is a 
native ability for most people except for the language disabled, and is also indepen-
dent off the limb functions and amputation conditions. In our pilot study [9], the 
speech signals were used as additional information and combined together with the 
sEMG signals for the control of a multifunctional myoelectric prosthesis. A PC-based 
control system was built up and the primal results demonstrated the practicality of the 
proposed strategy. 

In order to further investigate the performance of the recently proposed control 
strategy for its practical application, in this work, an embedded myoelectric-prosthesis 
control system was built up in laboratory conditions by the combination of speech and 
sEMG signals (Strategy 1). For comparison purpose, another system based on the 
pattern recognition of sEMG signals was also set up. The control performances of 
both systems were evaluated and compared. The outcomes of this study could make 
an important progress of the proposed method toward developing a practical prosthe-
sis control system for clinical use. 
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2 Method 

2.1 Subjects 

In this study, three able-bodied subjects (marked as A1, A2 and A3) and one unilateral 
transradial amputee (marked as B1) were recruited. The demographic information of 
the subjects is summarized in Table 1. All subjects had full language competence. The 
protocol of this research was approved by the Institutional Review Board of Shenzhen 
Institutes of Advanced Technology, Chinese Academy of Sciences. All subjects gave 
written informed consent and provided permission for publication of photographs for 
a scientific and educational purpose. 

Table 1. Demographic information of the subjects recruited in the study 

Subjects Gender Age Body situation Test side 
A1 Male 22 Able-bodied Right 
A2 Male 31 Able-bodied Right 

A3 Male 24 Able-bodied Right 
B1 Male 24 Right forearm amputated Right 

2.2 Control Strategies 

In the experiments, a commercial myoelectric prosthesis from Shanghai Kesheng 
MH32, China was used. This prosthesis has three joint-modes of “hand”, “wrist”, and 
“elbow”, and each joint-mode involves two motion-classes as “hand clos-
ing/opening”, “wrist pronation/supination”, and “elbow flexion/extension”. Two con-
trol systems based on different strategies were built up and examined in the study: 

 
(1) System 1(Strategy 1): Prosthesis control based on the combination of speech 

and sEMG signals 
 
In Strategy 1, the joint-mode switching was firstly conducted according to the us-

er’s speech commands, and then the sEMG signals from a muscle pair were used to 
determine one of two motion-classes involved in the selected joint-mode and execute 
the target movement, as shown in Fig 1. 
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Fig. 1. Strategy 1: Prosthesis control based on the combination of speech and sEMG signals 

In an office environment (background noise of 55±5 dB), speech signals were ac-
quired with a commercial throat microphone that was attached to the subject’s larynx 
near the vocal folds. Different from normal microphones, the throat microphone only 
recorded the speech signals transferred through the larynx and was insensitive to the 
background noise, which might improve the recognition accuracy [10]. Practically, 
any words could be used as the speech commands depending on users’ preference. In 
this study, three single Chinese characters as shown in brackets, “hand (手)”, “wrist (
腕)”, and “elbow (肘)”, were used as the keywords to represent each of the three 
joint-modes in Strategy 1. To avoid the recognition failure due to the dialect or accent 
of different subjects, an individual recognition template was created for each subject 
instead of a preset standard speech bank. The speech-signal processor used in this 
work was SPCE061A (SUNPLUS Technology). After amplification, second-order 
butterworth band-pass filtration (passing band of 340-3700 Hz), and A/D conversion, 
the speech signals were recognized with the dynamic time warping (DTW) algorithm 
[11]. In addition, instead of the linear prediction coefficients (LPC) [12], the mel-
frequency cepstral coefficients (MFCC) [11] based on auditory mode was used to 
extract the speech characteristic parameters to improve recognition precision. The 
acquired speech signals were compared to each template with the DTW algorithm, 
and the template that had a minimum Euclidian distance to the speech signals was 
considered as the most matching one and its corresponding keyword was considered 
as the recognition result to represent the desired joint-mode. 

For sEMG signal acquisition, the muscle pair of flexor-extensor was used as the 
signal source, and each muscle was attached with a bipolar sEMG electrode  
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respectively, as shown in Fig 2. Each muscle corresponded to one of two motion-
classes involved in a selected joint-mode, e.g. flexor to “hand closing” and extensor to 
“hand opening” in the “hand mode”, and similarly, flexor to “wrist pronation” and 
extensor to “wrist supination” if the “wrist mode” was chosen. 

 

Fig. 2. Position of bipolar electrodes on the residual forearm of the transradial amputee in 
Strategy 1 

In the embedded system, MC9S12XEP100 (Freescale semiconductor company, 
USA) was used as the micro-controller and responsible for the signal processing and 
the prosthetic arm driving. sEMG signals were acquired through the bipolar elec-
trodes with a sampling rate of 1000 Hz. After amplification, 50 Hz notch filtration, 
and A/D conversion, the sEMG signals were transmitted to the micro-controller. The 
mean absolute value (MAV) was used as the characteristic parameter of the sEMG 
signals and the K-nearest neighbors (KNN) algorithm was applied for the sEMG  
signal decoding [13]. Compared to other algorithms, the KNN algorithm is one  
of the simplest machine learning algorithms with high performance [14]. In this work, 
it was found that K=3 could achieve the real-time processing and relatively high  
accuracy. 

The control system was composed of five parts as micro-controller, sEMG acquisi-
tion module, speech acquisition module, speech recognition module, and motor driv-
er, as shown in Fig 3. The hardware realization is shown in Fig 4. 
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Fig. 3. Diagram of the control system based on the combination of speech and sEMG signals 

 

Fig. 4. Hardware realization of the system shown in Fig 3 

(2) System 2 (Strategy 2): Prosthesis control based on the pattern recognition of 
sEMG signals 

 
For a comparison purpose, a control system based on the pattern recognition of 

sEMG signals was also developed. In this study, it was not necessary to recover the 
elbow movements for the transradial amputee and therefore the joint-mode of elbow 
was excluded in Strategy 2. Five motion-classes, “hand opening”, “hand closing”, “wrist 
pronation”, “wrist supination”, and “no-movement”, were defined. Each subject was 
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asked to accomplish a simple training process to construct his specific pattern tem-
plate. Four time-domain features, mean absolute value (MAV), waveform length 
(WL), zero-crossings rate (ZC), and slope sign change (SSC), were extracted as the 
characteristic parameters of the sEMG signals. The length of the analysis window was 
150 ms with an overlap of 100 ms. sEMG signals were decoded with the pattern rec-
ognition algorithm of Linear Discriminant Analysis (LDA) [15], and the motion-
classes were classified according to the pattern template. 

Here, a commercial wireless biological signal acquisition system (Delsys Trigno 
Wireless, USA) was used to acquire sEMG signals. Four sEMG electrodes were 
placed on the subjects’ full/residual muscles of the forearm, as shown in Fig 5. sEMG 
signals were recorded with a sampling rate of 1000 Hz and transmitted to the comput-
er via a data acquisition card (USB-6218, National Instruments Corp, USA). 

 

Fig. 5. Four bipolar sEMG electrodes were placed on the residual forearm of the transradial 
amputee in Strategy 2 

2.3  Experiment Protocol 

To evaluate and compare the control performance of Strategy 1 and Strategy 2, a 
measure of task execution time was proposed and two different functional tasks were 
designed. 

 
Task Execution Time: The time needed to complete a whole task without any miso-
peration. A task might contain a series of movements, and the procedure to finish a 
single movement included the joint-mode switching (in Strategy 1) and the movement 
execution (start and stop, in both strategies). 

 
Task 1 (Three Joint-Modes Applied): Subjects were required to complete a task of 
“water pouring” continuously without any misoperation, which included a series of 
following movements: “hand-closing” to hold a cup with water inside, “elbow-
flexion” to lift up the cup, “wrist-pronation” to pour the water out, and then  
“wrist-supination”, “elbow-extension”, and “hand-opening” to return. Since it was not 
possible to execute elbow movements with Strategy 2, only Strategy 1 was tested in 
this task. 
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Task 2 (Two Joint-Modes Applied): Similar to Task 1 but the elbow-joint move-
ments were excluded, i.e. “hand-closing” to hold a cup with water inside, “wrist-
pronation” to pour the water out, and then “wrist-supination” and “hand-opening” to 
return. Both strategies were tested in this task. 

 
All the tests were repeated at least five times and the results were calculated as the 

average values over the repeated measurements.  

3 Results 

In Task 1 where three joint-modes were applied, all the able-bodied subjects and the 
transradial amputee could complete the specified “water pouring” successfully with 
Strategy 1, and the task execution time of each subject is summarized in Table 2. As 
can be seen, the able-bodied subjects A1, A2 and A3 spent 19.4, 21.7, and 21.9 s to 
complete the task, respectively. The transradial amputee B1 spent similar time of 
21.2 s to complete the same task as the able-bodied subjects did. 

Table 2. Task execution time to complete Task 1 with Strategy 1 for all the subjects 

Subjects Task execution time (s) 

Strategy 1 

A1 19.4±1.3 
A2 21.7±0.5 

A3 21.9±1.0 
B1 21.2±2.8 

In Task 2 where two joint-modes were applied, all the subjects could also complete 
the required movement series successfully, and the task execution time is shown in 
Table 3. With Strategy 1, the able-bodied subjects A1, A2 and A3 spent 10.8, 10.5, 
and 11.4 s to complete the task, respectively, and the task execution time for the trans-
radial amputee B1 was 11.8 s. With Strategy 2, the time was 11.1, 10.3 and 9.2 s for 
the able-bodied subjects, respectively, and 9.5 s for the transradial amputee B1. The 
average value of task execution time for Strategy 2 was slightly less than that for 
Strategy 1. Fig 6 shows the comparison of the statistical analysis for the task execu-
tion time with different control strategies. 

Table 3. Task execution time to complete Task 2 with Strategy 1 and Strategy 2 for all the 
subjects 

Subjects Task execution time (s) 

Strategy 1 Strategy 2 

A1 10.8±0.8 11.1±0.6 

A2 10.5±1.2 10.3±2.4 
A3 11.4±0.9 9.2±1.0 
B1 11.8±0.4 9.5±0.7 

Average 11.1 10.0 
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Fig. 6. Comparison of task execution time for Strategy 1 and Strategy 2 in Task 2, where the 
circles represent the value of each subject, and the triangles represent the calculated average 
value 

4 Discussion 

In Strategy 1, only a pair of muscles was applied to control the prosthesis with  
multiple DOFs, which was quite suitable for the amputees without sufficient residual 
muscles. With Strategy 1, the burden from the frequent muscle-pair co-contraction 
used in the traditional control strategy may be released. What is more, the speech-
based joint-mode switching is very flexible and it will be possible to control more 
DOFs by just adding more speech commands to the system. In Strategy 2, high quali-
ty sEMG signals and long training process were required for accurate motion-class 
classification. In addition, it was found that during the experiments the subjects  
always became tired just after the execution of a few movements. With Strategy 2, it 
will be difficult if more DOFs are required since a more sophisticated recognition 
algorithm is needed. It should be noted that the transradial amputee still owned the 
elbow joint, and thus the prosthetic movements of elbow were actually not necessary 
for them. In the experiments, the joint-modes of “hand”, “wrist”, and “elbow” were 
just used to represent a 3-DOF experimental prosthesis to assess the control perfor-
mance. In the case of transhumeral amputation, the users can still control a 3-DOF 
prosthesis (e.g. hand, wrist, and elbow) by the residual muscles of upper arm (e.g. 
bicep and tricep) with Strategy 1. However, with Strategy 2, the transhumeral ampu-
tees cannot conduct any hand or wrist movements because no sEMG signals from 
forearm can be acquired. 

With Strategy 1, the able-bodied subjects and the transradial amputee achieved 
similar experimental results of task execution time in both Task 1 and Task 2 since 
they all had full language competence. Generally speaking, in Task 2, the average task  
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execution time with Strategy 1 is slightly longer than that of Strategy 2. This is be-
cause the pronunciation and recognition of speech signals took some time. Compared 
with Strategy 2, Strategy 1 does not have obvious advantage for the control of pros-
theses with less DOFs. Nevertheless, Strategy 1 can be easily expanded for more 
DOFs and complicated tasks, but Strategy 2 will be strongly limited. 

5 Conclusion 

In this study, a myoelectric-prosthesis control system based on the combination of 
speech and sEMG signals was built up. Its control performances were evaluated 
through practical operations and compared with the system based on the pattern  
recognition of sEMG signals. The strategy of the combination of speech and sEMG 
signals is flexible and easy to use, which has been approved by the positive user expe-
riences. In addition, it can be expanded in the case that more DOFs are required. The 
strategy based on the pattern recognition of sEMG signals is practical only if suffi-
cient residual muscles can be obtained and less DOFs are needed. The control systems 
designed in this work is practical and stable and can be embedded into the present 
myoelectric prostheses for applications. 
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