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Abstract Accurate reference solutions are very important in stability analysis,
where they must act as a reliable base-state. They are also quite useful for un-
steady numerical simulations, where they play key roles as initial conditions and
in the implementation of boundary conditions, such as buffer zones. Quite often
they are approximate solutions for a simplified version of the particular problem at
hand, such as boundary-layer solutions. However, these approximate solutions are
usually not available, their development is problem dependent and they may not be
accurate enough. Hence, there is a need for methodologies that are capable of gen-
erating steady-states for arbitrary unsteady differential models. One attempt in this
direction is the selective frequency damping technique, despite being developed for
problems with a well defined self-excitation frequency. Another attempt to do so is
the physical-time damping technique, but temporal dissipation is proportional to the
time step. Since numerical instability can keep this time step too small in many non-
linear problems, this technique may not be able to introduce enough dissipation for
the damping of all perturbations in very unstable flows. The present work overcomes
this problem by noting that optimal damping is not introduced through maximum
temporal dissipation, but minimal gain. The implicit Euler scheme employed in the
physical-time damping technique achieves both in the limit of infinite CFL num-
bers, which usually cannot be imposed due to nonlinear effects. This time marching
scheme was modified in order for its minimal gain to occur at smaller CFL numbers.
Several test cases confirm the efficacy of this new approach.
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1 Introduction

Reference solutions are not only useful but often required for numerical simulation
studies in many different areas. Stability analysis is one such example, where the
reference solution should be a representative profile of the flow under consideration.
It is usually called base flow in this context. In order to verify the stability of a given
flow field, one must perturb its base flow and measure the growth or decay of the
perturbations introduced. In a rigorous sense, this base flow should be a solution of
the unperturbed governing equations, although early studies employed approximate
profiles that fit well available experimental data [1]. However, such a procedure
might lead to incorrect predictions, since numerical residues in the base flow become
forcing terms in the perturbation governing equations. This difficulty is transformed
into an asset by the Method of Manufactured Solutions for code verification [2, 3],
where the force term created is reintroduced into the governing equations. Hence, an
approximate solution of the original governing equations becomes an exact solution
of the modified governing equations. Both approaches have been blended recently,
where a linear stability analysis of a time-averaged solution is performed through
direct numerical simulations of the modified governing equations [4]. On the other
hand, this approach makes the numerical residue an integral part of the model, which
undermines its ability to reproduce the correct flow physics. A preferred alternative
in this field is the development of similarity solutions of a simplified model to be
used as base flows [5]. However, this may not be enough to improve accuracy in
the analysis of complex flow fields. Linear stability analyzes of transverse jets using
approximate [6] and similar [7] profiles as base flows show opposite trends for the
range of unstable frequencies with respect to the jet to cross flow velocity ratio. This
is compelling evidence that an inaccurate base flow can and will lead to qualitatively
incorrect predictions [8]. As the numerical tools available for eigenvalue calculations
improved over the years, the computer time required by a linear stability analysis
of complex base flows became smaller to the point such studies are commonplace
nowadays [9]. Hence, the need for new methods capable of generating accurate base
flows is greater than ever.

Initial and boundary conditions are yet another example where accurate reference
solutions are important. Both approximate and similar solutions introduce unwanted
oscillations when used as initial conditions in the unsteady numerical simulation of
absolutely unstable mixing-layers [10]. Although the amplitude of these oscillations
is much smaller in the latter case, their frequency content is much richer as well. This
problem manifests itself in the calculation of the temporal growth rates, which can
have relative errors as high as 18% due to the use of approximate initial conditions
even though high order schemes are employed [11]. It is important to emphasize
another problem caused by inaccurate initial conditions. Their use in the simulation
of flows around two-dimensional bodies lead to the presence of large perturbations at
early times [12, 13]. Hence, large simulation times are required for these numerical
waves to be convected out of the simulated domain before accurate flow statistics
can be extracted. Accurate reference solutions are also very useful for a type of
boundary condition known as absorbing layers [14] or sponge zones [15], since
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they can improve its effectiveness. This is specially relevant in aeroacoustics [16]
and receptivity [17] studies, where both problems become quite worse since the
perturbations of interest are much smaller in magnitude than the vorticity waves that
feed them. In the simulation of acoustic fields over airfoils [18, 19], these problems
were minimized with the use of steady-states as reference solutions for both initial
condition and sponge zones. A similar procedure was adopted tominimize numerical
errors in receptivity studies of compressiblemixing-layers [20].Hence, a newmethod
that is able to generate steady-states from the governing equations of interest would
yield the most accurate reference solutions available.

A few methods exist today for the construction of accurate steady-states. The
most traditional one is the class of Newton iteration methods, usually adapted to
use continuation techniques as well [21]. However, they are very sensitive to initial
conditions, require heavy computational resources for large systems and have severe
convergence difficulties for globally unstable problems. Selective frequency damping
(SFD) was developed to overcome these difficulties [22]. It works by introducing
a source term in the governing equations that forces the time marching scheme to
converge towards a reference solution, which is a filtered version of the unsteady
solution being marched in time. Since this source term disappears at steady-state,
the reference solution becomes the steady-state in this limit. Furthermore, it is quite
simple to implement and requires the adjustment of only two additional parameters.
However, this method has been applied to flows that only have a single dominant
self-excited frequency that needs to be filtered. Applications where a broad range
of frequencies must be damped, such as convectively unstable flows with intrinsic
sources of noise, have yet to be investigated with this method. Recently, Physical-
Time Damping (PTD) was developed to generate steady-states for both convectively
and absolutely unstable flows [23]. This method uses a dual-time-stepping technique
to switch the time-marching scheme of the unsteady code being used to an implicit
Euler scheme. Since timemarching schemes used bymost codes are explicit, doing so
avoids the need to implement the more complex algorithms associated with implicit
time marching schemes. If the dissipative properties of the implicit Euler scheme
are able to damp perturbations, a steady-state is reached without jeopardizing spatial
resolution accuracy. Furthermore, it is quite easy to implement, requiring only a
simple source term to switch time marching schemes and an outer loop for the
dual-time-stepping. It works well for convectively unstable flows, but its temporal
dissipation might not be strong enough for absolutely unstable flows with large
temporal growth rates. This is caused by nonlinear effects, which limit the maximum
time steps and, hence, the dissipative properties of the implicit Euler scheme. The
present paper describes an attempt to improve this method.

2 Minimal Gain Schemes

In order to improve the damping capabilities of a time marching scheme, one must
first quantify this property. This is traditionally done in numerical analysis through
an evaluation of its gain. If one considers the differential system of equations
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Fig. 1 Absolute value of the nonlinear gain function in Eq. (3) for θ1 = 1 (left) and θ2 = 1 (right)

∂q
∂t

= f(q) , (1)

where t is time, q is the unknown variable vector and f is the steady-state residue. A
possible generalization of the implicit Euler scheme (IES) is

θ1
qn+1 − qn

Δt
+ (1 − θ1)

qn+1 − qn−1

2Δt
= θ2 f(qn+1) + (1 − θ2) f(qn) , (2)

where the IES is recovered when θ1 = θ2 = 1. The truncation error of Eq. (2)
requires θ1 �= 2 θ2 to maintain its dissipative properties. Assuming f(q) = λ q, a
traditional linear stability analysis of this new numerical scheme yields the gain G
as a funtion of β = λ Δt , where Δt is the time step and λ is the overall growth or
decay rate of the solution. Linearization can be avoided if the modified equation is
employed to estimate f(q) [24], leading to the nonlinear stability result

G = e−β
(

eβ
(
β(θ2 − 1)

(
β

(
6βθ22 − 3(β + 2)θ2 + β

)
+ 6

)
− 3θ1 (3)

×
(
β2 (θ2 − 1) (βθ2 − 1) + 2

))
+ 3θ1 − 3

)
/
(
β3θ2(1 − 3

×(θ1 − 2θ2 + 1)θ2) + 3β2 (θ1 − 2θ2) θ2 + 6βθ2 − 3 (θ1 + 1)
)

,

whose behavior is shown in Fig. 1 for θ1 = 1 and θ2 = 1. Equation (3) yields a
similar behavior and will not be discussed here. It is important to note that λ < 0
implies the governing equation is stable and a steady-state can always be achieved
without modifications to the marching scheme. Hence, we focus on the behavior
of the new scheme when λ > 0. This figure indicates that it is possible to achieve
improved damping properties at small time steps by decreasing θ1 or increasing θ2.
Hence, the new scheme is less sensitive to the maximum time step restriction caused
by the loss of numerical stability due to nonlinear effects.
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Fig. 2 Lorenz solution unsteady behavior with physical-time damping turned on and off (left) as
well as the overall temporal decay rate of Eq. (2) when applied to the Lorenz equations (right).
Solid circles are the smallest time steps that are able to generate a solution at the specified tolerance

3 Results

3.1 Lorenz Equations

Two test cases are utilized to evaluate the performance of Physical-Time Damping
when the implicit Euler scheme is replaced by Eq. (2). The first one is given by
the Lorenz equations. Figure 2 (left) shows the unsteady behavior of a solution
of this problem for a set of control parameters that do not allow the fourth-order
explicit Runge-Kutta scheme to reach steady-state.However, it does sowith Physical-
Time Damping, even if it is turned on after the exponential temporal growth leads
the solution to nonlinear saturation. Figure 2 (right) shows the measured overall
damping rate λ as a function of Δt . It confirms the theoretical finding that improved
damping rates are achieved by decreasing θ1 or increasing θ2 at smallΔt . This result
is important because it confirms that a linear stability analysis can be utilized to
construct minimal gain time marching schemes.

3.2 Spatially Periodic Planar Mixing-Layer

In order to provide a more difficult challenge to the new method, the absolutely un-
stable planar mixing-layer is simulated with the new minimal gain scheme given
in Eq. (2). Details of this code are provided elsewhere [23]. Figure 3 shows a
performance comparison between the implicit Euler scheme (θ1 = θ2 = 1) and
a modified scheme with θ1 = 1 and θ2 = 1.5. The left plot in this figure shows
that the number of pseudo-time iterations versus physical-time step only asymptotes
to one for the modified scheme. The reason why is clear in the right plot of this
figure, which shows that only the modified scheme is able to reduce the residue of
the streamwise velocity component until it reaches steady-state.
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Fig. 3 Number of pseudo-time iterations (left) and streamwise velocity component increment
(right) per physical-time step for θ1 = θ2 = 1.0 as well as θ1 = 1.0 and θ2 = 1.5

4 Conclusions

A new method was developed to improve the performance of PTD. It is based on
constructing time marching schemes that achieve minimal gain at the smallest time
step possible. Future work will compare it with SFD using different test cases.
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