
Short Paper: A Framework for the Privacy
Access Control Model

Sandugash Askarova1(&), Darkhan Mukhatov2,
Altynbek Sharipbayev1, and Dina Satybaldina1

1 L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
sandugash.kz@gmail.com, sharalt@mail.ru,

satybaldina_dzh@enu.kz
2 ‘‘Zerde’’ Holding JSC, Astana 010000, Kazakhstan

dmukhatov@zerde.gov.kz

Abstract. Today privacy is a key issue when securing business processes. It
has received increasing attention from consumers, companies, researchers and
legislators. Organizations claim to have their own privacy policy as well as
guarantee its proper enforcement. In this work we consider privacy features at
the early stages of the systems development and specifically focus on model-
ling and analysis of the system requirements. A framework for modelling
privacy access control policies was created through (i) defining access control
policies that satisfy privacy requirements (ii) verification of designed privacy
access control policy, and (iii) a set of heuristics for defining policy.

Keywords: Security management � Access control � Privacy policy modelling
languages � Information systems

1 Introduction

Privacy is an increasingly important business concern in health care, financial ser-
vices, and other organizations. Organizations that collect and use personal information
face the growing challenge of conducting their business effectively while managing
privacy risks and compliance requirements [1]. Organizations have adopted various
strategies to protect personal data privacy. In particular, in the financial sector laws
and regulations have been created to protect privacy data such as Basel II, Sarbanes-
Oxley Act (SOX), Gramm-Leach-Bliley Act (GLBA) [2].

Access control policies are defined as rules, which regulate how users can access
resources [3]. These access control policies are created based on models. The classical
models are Mandatory Access Control, Discretionary Access Control and Role Based
Access Control [4]. Access control models cannot enforce privacy policies and
designed access control policies do not include privacy requirements such as purpose
binding, conditions and obligations [5].

In order to enforce privacy policies in organizations, access control policies sat-
isfying the privacy requirements in the requirements engineering should be formally
identified [6]. Existing privacy policy languages such as P3P [7], APPEAL [9], E-P3P
[8], EPAL [10] and XACML [4] do not completely solve privacy issues, and they are

N. Lohmann et al. (Eds.): BPM 2013 Workshops, LNBIP 171, pp. 513–519, 2014.
DOI: 10.1007/978-3-319-06257-0_40, � Springer International Publishing Switzerland 2014

isolated from requirements analysis. As a result, defined privacy policies do not
comply with system requirements. There are many frameworks for access control
requirements modelling such as i* framework [12], GBRAM and its extension [13],
analytical role modelling framework (ARMF) [14], and Knowledge Acquisition in
Automated Specification [15].

The focus of this research study is to model privacy requirements into access
control policies. Our research is aimed at delivering a model of designing privacy
aware systems by incorporating privacy requirements into access control policy. The
framework for modelling privacy access control policies was created. This framework
is developed by extending ARMF [14]. Sections 2 and 3 present our framework for
modelling privacy access control policies and its heuristics for defining and verifying
these policies. In Sect. 4 we summarize the findings by focusing on the aim and
objectives of study and provide future work.

2 A Framework for Modelling Privacy Access Control
Policies

The framework was developed based on ARMF [14], by adding the purpose meta-
concept and corresponding relations. Purpose specification principle has been selected
to investigate how access control policies can be defined and how it can be enforced
during the requirements modelling. It also has been selected as the only principle
stated in the Law of the Republic of Kazakhstan [6]. The framework uses notations of
Z language [16].

Policies define restrictions to access valuable assets (privacy data). Such an access
is required to carry out tasks. The tasks cannot be processed in a way that may be
incompatible with the purposes for which the data have been collected. To include
these notion into the framework the following meta-concepts are needed:

[Asset] – represents privacy data that we wish to protect;
[Task] – the activities that an organizational unit or individual carries out;
[Purpose] – personal data that shall be collected for specified, lawful and

legitimate purpose or purposes and not processed in ways that are incompatible with
the purposes for which data have been collected.

The meta-concepts of an agent and role are identified as follow:
[Agent] – represents a physical person;
[Role] – an assignment of an obligation, of performing some function, which is a

composite element representing the organisational function, organisational domain,
and authority. Three types of roles are defined according to organizational structures:
roles based on seniority, roles based on function, and roles based on market. The
meta-concepts are as following:

[Authority] – represents the seniority of a role;
[Org_Function] – a functional grouping within an organisation;
[Org_Domain] – represents a ‘‘market based’’ grouping i.e. a grouping that is

delegated a market to serve such as a set of clients in a specific geographic location.
The meta-concept role is a composite of authority, organizational function, and

organizational domain and is defined formally as follows:

514 S. Askarova et al.

Role ¼̂ [authority: Authority; org_function: Org_Function;
org_domain: Org_Domain]

The inheritance between organizational functions is formally defined as follows:
Inheritance_f ¼̂ {inhf: Org_Function p! Org_Function; org_func-

tion: P Org_Function| (Vof: org_function • of 62 inhf+ (|{of}|))}.
The inheritance of roles is formally defined as follows:

Inheritance_r ¼̂ {inhr: Role p! Role; role: P Role| (Vr: role •r62
inhr+ (|{r}|)}.

The aggregation hierarchy for organizational domain is formally identified as
follows:

Aggregation_d ¼̂ {aggd: Org_domain p! Org_domain; org_

domain: P Org_domain| (Vod: org_domain • od 62 aggd+ (|{od}|)}
Formally the task aggregation is defined as follows:
Aggregation_t ¼̂{aggt: Taskp! Task; task: P Task|(Vt: task • t 62

aggt+ (|{t}|))}.
Purpose aggregation is defined as follows:
Aggregation_p ¼̂{aggp: Purpose p! Purpose; purpose: P Purpose|

(V p: purpose • p 62 aggt+ (|{p}|))}.
The relationship between tasks and purposes is represented by a task purpose

dependency relation as follow:
Task_purpose_dependency ¼̂ {task_purpose_dependency: Task

?Purpose |(Vt: Task. A1p: Purpose • (t, p) [task_purpose_depen-

dency) ^ (Vt: aggt+(|{t}|). A1p:aggp+(|{p}|) • (t, p) [

task_purpose_dependency)}.
The relation between purpose and asset or assets is represented by purpose asset

dependency as follow:
Purpose_asset_dependency ¼̂ {purpose_asset_dependency:

Purpose ?P Asset; purpose: P Purpose; asset: P Asset| (Vp: pur-

pose. Aa: asset • (p, a) [purpose_asset_dependency)}.
The relationship between asset and organizational domain is formally identified

as:
Asset_domain ¼̂ {asset_domain: Asset ? Org_Domain| (Va: Asset.

A1od: Org_domain • (a, od) [asset_domain)}.
Policies will be defined using the following composite type:
Authorization_Policy ¼̂ {role: Role; task: Task}
There are implicit assumptions in this defined policy: firstly, the policy applies to

any subtask if the task in the policy; secondly the organizational domain in the role of
the policy applies to all assets associated with the task through the following relations:

Task_purpose_dependency ¼̂ {task_purpose_dependency: Task

?Purpose |(Vt: Task. A1p: Purpose • (t, p) [task_purpose_

dependency) ^ (Vt: aggt+(|{t}|). A1p:aggp+(|{p}|) • (t, p) [

task_purpose_dependency)};

Short Paper: A Framework for the Privacy Access Control Model 515

Purpose_asset_dependency ¼̂ {purpose_asset_dependency:
Purpose ?P Asset; purpose: P Purpose; asset: P Asset| (Vp: pur-

pose. Aa: asset • (p, a) [purpose_asset_dependency)}.

3 Heuristics for Defining and Verifying Policies

Application of ARMF extensions is applied through six steps: (i) identifying orga-
nizational groups (ii) identifying level of authority (iii) defining roles (iv) identifying
tasks, assets, purposes (v) defining policies, and (vi) verifying policies.

Once we have identified organizational functions, we need to show specialization
hierarchy using the principle of inheritance as follow: Definition: inhf:

Org_Function p! Org_Function; Constraint: org_function: P

Org_Function •(Vof: org_function • of 62 inhf+ (|{of}|)).
Similarly, once we have identified organizational domains, we need to show them

in aggregation hierarchy as follow: Definition: aggd: Org_domain p! Org_domain;
Constraint: org_domain: P Org_domain • (Vod: org_domain • od 62
aggd+ (|{od}|).

Levels of authority need to be assigned to groups. Once we have identified
authority’s levels we need to show their seniority as follow:

Definition: senior: Authority p! Authority; Constraint:
authority: P Authority • (Va: authority • a62 senior+(|{a}|)).

In next step we need to identify tasks and their associated purposes and then assets
related to purposes in the organization: Definition: aggt: Taskp! Task; Con-
straint: task: P Task • (Vt: task • t 62 aggt+ (|{t}|)).

Next, we need to identify purposes for defined tasks, which enable tasks to have
access to asset or group of assets. Identified purposes are needed to be organized in
hierarchical structure. It can be done by aggregation hierarchy as follow:

Definition: aggp: Purposep! Purpose; Constraint: purpose: P

Purpose • (V p: purpose • p 62 aggt+ (|{p}|)).
After that we need to show task purpose dependency as follow:
Definition: task_purpose_dependency: Task ?Purpose: Con-

straint: (Vt: Task. A1p: Purpose • (t, p) [task_purpose_depen-

dency) ^ (Vt: aggt+(|{t}|). A1p:aggp+(|{p}|) • (t, p) [

task_purpose_dependency).
The relation between purpose and asset or assets is represented by purpose asset

dependency: Definition: purpose_asset_dependency: Purpose ?P

Asset; Constraint: no constraint.
The relationship between asset and organizational domain is formally identified as

follow: Definition: asset_domain: Asset ? Org_Domain; Constraint:
no constraint.

Once we have identified organizational context, roles and tasks we now define
policies as follow: Definition: Authorization_Policy ¼̂ {role: Role;

task: Task}; Constraint: no constraint.

516 S. Askarova et al.

The final step is to verify policies through scenarios. In creation scenario the
following domain concepts should be instantiated. Instantiation of domain:

Definition: insd: Org_Domain p! Org_Domain; Constraint: org_

domain: P Org_Domain • (Vod1; od2: org_domain • od2[insd (|{od1}|) ¼)
insd (|{od2}|)=[); Constraint: V od1; od2: Org_Domain • od1[aggd

(|{od2}|) ¼) (insd (|{od1}|)=[^ insd (|{od2}|)=[) _ (insd

(|{od1}|)= [^ insd (|{od2}|)= [).
Instantiation of role: Definition: insr: Role p! Role; Constraint:

role: P Role • (Vr1; r2: role • r2[insr (|{r1}|) ¼) insr (|{r2}|)=[);
Constraint: 9= role: Role • (insr (|{role}|) = [^ insd
(|{role.org_domain}|) =[) _ (insr (|{role}|) =[^ insd

(|{role.org_domain}|) = [); Constraint: 9= policy: Authoriza-

tion_Policy • insr(|{policy.role}|) =[.
Instantiation of task: Definition: inst: Task p! Task; Constraint:

task: P Task • (Vt1; t2: task • t2[inst (|{t1}|) ¼) inst (|{t2}|)=[)
Instantiation of purpose: Definition: insp: Purpose p! Purpose; Con-

straint: purpose: P Purpose•(Vp1; p2:purpose•p2[insp(|{p1}|)¼)
insp (|{p2}|)=[)

Instantiation of asset: Definition: insa: Asset p! Asset; Constraint:
asset: P Asset • (Va1; a2: asset • a2[insa (|{a1}|) ¼) insa (|{a2}|)=[)

Instantiated roles are assigned to agents as follow: Definition: role_

assignement: Agent $ Role. Constraint: no constraint.
There is needed to model the carrying out of a task by an agent. This will be

represented by relation performs, which defines an agent performing a task:
Definition: performs: Agent $Task; Constraint: V p: perform •

Vtask: ran performs • inst(|{task}|) = [. Constraint: Vp:
performs • Vtask : ran performs •V ins_purpose: task_
purpose_dependency (|{task}|) • A purpose: task_
purpose_dependency (|inst(|{task}|)|) • purpose[

insp(|{ins_purpose}|).
Constraint: Vp: performs • Vtask : ran performs •V ins_asset:

purpose_asset_dependency (|{purpose}|)• A asset: purpose_
asset_dependency (|insp(|{purpose}|)|) • asset[

insa(|{ins_asset}|).
After identifying a scenario, we determine relation performs between specific

agent and corresponding instantiated task. It can be done by using elimination rules
and substituting instantiated elements, which was used in creating performs relation.

4 Conclusion

This paper has addressed the problem of modelling access policies in order to ensure
that security goals can be achieved and that operational requirements are consistent
with access policies. The framework includes a meta-model and a set of heuristics.

Short Paper: A Framework for the Privacy Access Control Model 517

The meta-model represented a link between organizational context and privacy
enforcement in order to capture the whole privacy domain. Heuristics were deter-
mined for defining policies and scenarios.

The limitation of this research is that proposed framework was created in Z
language. This language requires a special knowledge in a set theory and mathe-
matical logic. In addition, heuristics for defining and verifying policy were not
illustrated by any example. The future research for this research study is implemen-
tation of the proposed framework in banks. In addition the future research can be done
by considering other policies and validating them in the case studies.

References

1. Barth, A., Datta, A., Mitchell, J.C., Sundaram, S.: Privacy and utility in business processes.
In: Proceedings of 20th IEEE Computer Security Foundations Symposium, pp. 279–294
(2007)

2. Anton, A.I., Earp, J.B., Potts, C., Alspaugh, T.A.: The role of policy and privacy values in
requirements engineering. In: Proceedings of the 5th IEEE International Symposium on
Requirements Engineering (RE’01), Toronto, Canada, pp.138–145 (2001)

3. Sandhu, R., Samarati, R.: Access control: principles and practice. IEEE Commun. Mag.
32(9), 40–48 (1994)

4. Ni, Q., Trombetta, A., Bertino, E., Lobo, J.: Privacy-aware role based access control. In:
Proceedings of SACMAT’07, Sophia Antipolis, France (2007)

5. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control, 2nd edn.
Artech House, London (2007)

6. Law of the Republic of Kazakhstan ‘‘On informatization’’, Astana (2007)
7. Lu, C.: Powerful Privacy Potential: P3P in the Context of Legislation and Education (2003)
8. Stufflebeam, W., Antón, A.I., He, Q., Jain, N.: Specifying privacy policies with P3P and

EPAL: lessons learned. In: Proceedings of the Workshop on Privacy in the Electronic
Society, Washington (2004)

9. Anton, A.I., Earp, B., Bolchini, D., He, Q., Jensen, C., Stufflebeam, W.: The lack of clarity
in financial privacy policies and the need for standardization. IEEE Secur. Priv. 2(2), 36–45
(2003)

10. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-P3P privacy policies and privacy
authorization. In: Proceedings of the Workshop on Privacy in the Electronic Society
(WPES’02), Washington (2002)

11. Karjoth, G., Schunter, M., Waidner, M.: Platform for enterprise privacy practices: privacy-
enabled management of customer data. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002.
LNCS, vol. 2482, pp. 69–84. Springer, Heidelberg (2003)

12. Liu, L., Yu, E.S.K., Mylopoulos, J.: Security and privacy requirements analysis within a
social setting. In: Proceedings of 11th IEEE International Conference on Requirements
Engineering (RE’03), Monterrey, USA, pp. 151–61 (2003)

13. He, Q., Anton, A.I.: A framework for modelling privacy requirements in role engineering.
In: Proceedings of 9th International Workshop on Requirements Engineering – Foundation
for Software Quality (REFSQ’03), pp. 137–146, Klagenfurt/Velden, Austria (2003)

14. Crook, R., Ince, D., Nuseibeh, B.: On modelling access policies: relating roles to their
organisational context. In: Proceedings of 13th IEEE International Requirements
Engineering Conference (RE’05), Paris, France (2005)

518 S. Askarova et al.

15. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley, England (2009)

16. ISO/IEC 13568:2002. Information Technology – Z Formal Specification Notation – Syntax,
Type System and Semantics (2002)

Short Paper: A Framework for the Privacy Access Control Model 519

	Short Paper: A Framework for the Privacy Access Control Model
	Abstract
	1 Introduction
	2 A Framework for Modelling Privacy Access Control Policies
	3 Heuristics for Defining and Verifying Policies
	4 Conclusion

