
Supporting Domain Experts to Select
and Configure Precise Compliance Rules

Elham Ramezani(B), Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, Eindhoven, The Netherlands
{e.ramezani,d.fahland,w.m.p.v.d.aalst}@tue.nl

Abstract. Compliance specifications concisely describe selected aspects
of what a business operation should adhere to. To enable automated
techniques for compliance checking, it is important that these require-
ments are specified correctly and precisely, describing exactly the behav-
ior intended. Although there are rigorous mathematical formalisms for
representing compliance rules, these are often perceived to be difficult to
use for business users. Regardless of notation, however, there are often
subtle but important details in compliance requirements that need to
be considered. The main challenge in compliance checking is to bridge
the gap between informal description and a precise specification of all
requirements. In this paper, we present an approach which aims to facil-
itate creating and understanding formal compliance requirements by
providing configurable templates that capture these details as options
for commonly-required compliance requirements. These options are con-
figured interactively with end-users, using question trees and natural
language. The approach is implemented in the Process Mining Toolkit
ProM.

Keywords: Compliance specification · Compliance checking · Config-
urable compliance rules · Auditing · Question tree

1 Introduction

Compliance checking techniques determine if business operations are within the
boundaries set by law, managers and other stakeholders or obey security require-
ments set by the company. Such constraints can be formalized using different spec-
ification formalisms such as temporal logic [14] or deontic logic [30] depending
on the compliance checking technique that is being employed. A problem often
encountered in practise [19], however, is specifying precisely the behavior intended.

Many practitioners prefer capturing compliance requirements using infor-
mal notations, such as natural language, instead of formal specification lan-
guages. These representations are more accessible but often imprecise and of
less value when doing automated compliance checking. Since domain experts
usually describe informally a compliance requirement, technical experts may
invest considerable effort formalizing it and check if the recorded process exe-
cutions conform with it, only to later determine that the property has been

N. Lohmann et al. (Eds.): BPM 2013 Workshops, LNBIP 171, pp. 498–512, 2014.
DOI: 10.1007/978-3-319-06257-0 39, c© Springer International Publishing Switzerland 2014

Supporting Domain Experts 499

specified incorrectly. Whereas if domain experts are involved in the specification
process, the intended behavior with all its subtle aspects can be specified directly
and thus avoiding ambiguities.

Numerous researchers have developed specification patterns to facilitate con-
struction of formal specification of compliance requirements. Feedback indicates
[16] that these patterns are considered helpful but they fail to capture subtle
aspects of a specific requirement. In addition, adaption and application of these
patterns are not trivial for many practitioners as they are less familiar with the
underlying formalization.

This paper describes an approach that addresses the gap between informal
requirements and formal compliance specifications. We introduce an interactive
approach for using tacit knowledge of domain experts to specify compliance
requirements. Our approach aims at (i) enabling business users and compliance
experts to specify compliance constraints and (ii) encouraging them to think
about the subtle aspects of their intended behavior when specifying a constraint.
The key components of this process are question trees, and configurable generic
compliance patterns pre-formalized in configurable Petri nets that capture com-
mon compliance requirements. We have developed a repository of configurable
compliance patterns. Every pattern allows for alternative variations of a com-
pliant behavior. Selecting an appropriate configurable pattern and configuring a
pattern for its configuration options are done interactively with user. A question-
naire consisting of two question trees asks users about their intended compliant
behavior. The first question tree helps the user selecting a general compliance
requirement, i.e., a configurable pattern. The second tree helps the user config-
uring a general requirement w.r.t. various subtle semantic aspects. The approach
is implemented and a case study is being prepared to evaluate the approach.

The remainder of this paper is organized as follows. Section 2 explains a com-
pliance management life cycle. An overview of the methodology and notions that
our work is built on are discussed in Sect. 3. Section 4 introduces the repository
of configurable compliance patterns. Section 5 describes how this approach facili-
tates compliance specification for domain experts and showcases implementation
of the technique in ProM. We will review the related work in Sect. 6 and finally
Sect. 7 concludes the paper and motivates future work.

2 Compliance Management

Organizations are confronted with an ever growing set of laws and regulations
to comply to. Failing to comply to regulations can impose severe risks such as
penal consequences on management level or lost contracts with clients. Com-
pliance Management (CM) within an organization comprises the design, imple-
mentation, maintenance, verification and reporting of compliance requirements
and it calls for a structured methodology. We proposed a compliance manage-
ment life cycle in [23] as a methodology to elicit, formalize, implement, check,
and optimize compliance requirements in organizations. As is shown in Fig. 1,
compliance management activities can be identified as:

500 E. Ramezani et al.

elicit

compliance
requirements

formalize

implementcheck

improve

Fig. 1. Compliance management life cycle

– Compliance Elicitation: determine the compliance requirements that need to
be satisfied. (i.e., rules defining the boundaries of compliant behavior).

– Compliance Formalization: specify formally compliance requirements origi-
nating from laws and regulations derived in the compliance elicitation phase.

– Compliance Implementation: enforce specified compliance requirements in
business operation.

– Compliance Checking : investigate whether the constraints will be met (for-
ward compliance checking) or have been met (backward compliance checking).

– Compliance Optimization: improve business processes and their underlying
information systems based on the diagnostic information gained from compli-
ance checking.

In the following we will elaborate on elicitation and formalization and briefly
discuss compliance checking.

Compliance Elicitation and Formalization. Specifying precise compliance
requirements spans over Compliance Elicitation and Compliance Formalization
phases of the CM life cycle and introduces many challenges. It calls for combi-
nation of different knowledge areas such as compliance expertise, formalization
skills, and domain specific knowledge.

Regulations are usually presented informally and described in an abstract
way because they need to be independent from implementation. Moreover, the
writers and users of regulations are lawyers or business users, their instrument
of work uses natural language. This language is non-formalized and incorpo-
rates domain specific terminology, as well as structure and definitions. Therefore
enforcing and checking a compliance requirement requires a precise formalization
of this requirement. In the step from natural language to precise formalization
many subtle aspects of the requirement have to be considered.

For instance, consider a compliance requirement we obtained from internal
policies of a specialized hospital that accepts only patients requiring a specific
medical treatment: “For every patient registered in the hospital an X-ray must be
taken”. This compliance requirement enforces that patient registration must be
followed by activity X-ray. The requirement seems very straightforward but no
matter which formalism is chosen for this simple requirement, while formalizing,
it is important to decide about some details e.g.,: (1) whether patient registration
should be directly followed by X-ray or other activities may occur in between the
specified sequence; (2) whether it is allowed that other activities occur before

Supporting Domain Experts 501

patient registration or a patient cannot receive any treatment without regis-
tration; (3) whether a patient can be registered several times (for instance in
different departments) and if yes; (4) should the specified sequence be followed
every time; (5) whether it is allowed that the specified sequence never occurs
i.e., if it is allowed that a patient is never registered. Interpreting an informal
rule with all its details can be surprisingly difficult and must be done by domain
experts who are usually less familiar with different formalisms. Therefore an
approach is required to hide the complexity of formalization from business user
and at the same time support automated compliance checking. In this context
an interactive ‘question and answer’ approach based on “disciplined” natural
language seems promising. Such an approach is used in property specification
for software development in [8,19,28] and is a suitable candidate for compliance
specification. However, compliance specification is more challenging as, unlike in
software development, the formalized requirement is not inspected again by an
expert in formal techniques and immediately used to check compliance.

Compliance Checking. Precisely formulated compliance requirements derived
from previous phases in CM life cycle are used for verification, monitoring and
auditing of business processes. There are two basic types of compliance checking:
(1) forward compliance checking aims to design and implement processes where
compliant behavior is enforced [6,12,13,18,26] and (2) backward compliance
checking aims at detecting and localizing non-compliant behavior [2,5,17,25]
that happened in the past. Regardless of which analysis technique is used, auto-
mated compliance checking can only be applied if a compliance requirement has
been specified precisely.

Compliance Rule Repository. In [2,23] we have shown that compliance
requirements (originating from legislations) restrict one or several perspectives
of a process including control flow, data flow, process time or organizational
aspects. In [20,22] we have shown how a complex compliance requirement cover-
ing several perspectives of a process can be decomposed into smaller compliance
rules which can be formalized as parameterized compliance patterns in terms of
Petri nets. These Petri nets then can be used in backward compliance checking
to provide diagnostic information about compliance violations.

This approach is supported by a repository of more than 50 compliance
patterns covering a majority of the compliance rules found in literature [21]. In
this paper we present an approach to consolidate this repository and to select
and configure the right rule to precisely express a given informal description.

3 Methodology

As is motivated in Sect. 2, compliance requirement specification calls for an app-
roach that allows for defining different variations of a compliance requirement,
and is accessible in order to benefit from the compliance expertise of business
users and mathematically precise to enable automated compliance checking.
That is, it needs to offer variations of a specified behavior, hide complexity

502 E. Ramezani et al.

Configurable Compliance
Pattern Repository

Questions for Selecting
a Configurable

Compliance Pattern

A

Questions for
Configuring a Pattern

Configured
Compliance Pattern

Configurable
Compliance Pattern

Fig. 2. Compliance specification overview

of formalization from business users and at the same time produce a formal
definition of the compliance requirement.

In this section, we explain how our approach can help practitioners elucidate a
compliance requirement by making informed choices between different variations
of a compliance rule. Figure 2 gives an overview of our approach for compliance
specification. This approach is built upon a repository of configurable compliance
patterns.

Configurable Compliance Pattern Repository. Although the collection of
compliance rules in [21] is comprehensive, there are subtle variations of a compli-
ance requirement which cannot be expressed only by selecting a compliance rule
from the rule repository and instantiating it for its parameters, rather slight
modification in the underlying formalization may be necessary. Therefore one
would like to see a general rule which allows to define all possible variations.

In addition there are over 50 compliance rules (only for control-flow perspec-
tive) in the rule repository which makes the choice of appropriate compliance
rule cumbersome and error prone if the user is not familiar with the under-
lying formalization. To help the user selecting the right rule, we consolidated
the compliance rules by merging similar rules (that differ in variations of sub-
tle semantic aspects) into one configurable compliance pattern that is easier to
describe in general terms. Consolidating similar rules into a configurable pattern
is done manually following a generic approach. We first define a core behavior
for the configurable pattern and then extend the core behavior with all possi-
ble configuration options. These configuration options allow to define different
variations of a compliance requirement. The idea is that a user first picks a gen-
eral configurable pattern with all its configuration options and then configures
it w.r.t. various subtle aspects. Details of the repository of configurable patterns
are given in Sect. 4.

Supporting Domain Experts 503

Question Tree. In order to enable domain experts to specify the intended
behavior of a compliance requirement, we apply an interactive question and
answer based approach. We aim to guide users to select an appropriate config-
urable compliance pattern and elaborate on how to configure its configuration
options such that it represents intended behavior. Thus we apply a Question
Tree (QT) representation which is basically a decision tree and its content is
based on disciplined natural language.

We apply two distinct question trees; a set of questions which guide the
user to select a specific configurable compliance pattern and a set of questions
which are asked to resolve different configuration options of a chosen configurable
pattern in order to specify details of intended admissible behavior.

Questions to Select a Configurable Compliance Pattern. The QT of
the first phase breaks the problem of deciding which configurable pattern is
most appropriate by asking users to consider only one differentiating attribute
at a time. In this phase, QT has a hierarchical structure and this structure
supports the isolation of concerns, only presenting a question to the user that is
relevant in context of their previous answer. A new question that can be revealed
after answering a given question is a child question of that previous answer; the
previous question is the parent question of that child question. By selecting a
different answer to a parent question, the user will explore a different set of
child questions that are relevant to that answer and will arrive at a different
configurable pattern. Figure 3 QT-phase1 (left) presents the question tree for
selecting a configurable pattern in the example discussed earlier in Sect. 2.

Questions to Configure a Configurable Compliance Pattern. Questions
in the second phase concern configuring subtle behavioral aspects of a specific

Which activities are constrained by the rule?

One activity

Two activities: patient_registration and X-ray

Choose the type of limitation you would like to exert.

Dependent existence

Bounded existence

Sequence of occurrence

Are the activities you would like to restrict structured or atomic?

The activities are structured (start and completion of activities
are represented with two different events)

The activities are atomic (only one event represents
occurrence of every activity)

Activity patient_registration must be followed by
activity X_ray.

Please specify the limitation you would like to exert.

Q
ue

st
io

ns
 fo

r S
el

ec
tin

g
a

C
on

fig
ur

ab
le

 C
om

p
lia

nc
e

Pa
tt

er
n

Activity X_ray must be preceded by activity
patient_registration.

Activity patient_registration must be followed by activityX_ray.

Is it allowed that the sequence <(patient_registration) (X-ray)>
occurs more than once in a trace?

Yes. The sequence <(patient_registration) (X-ray) > may occur
several times in a trace.

No. The sequence <(patient_registration) (X-ray)> must not
occur several times in a trace.

Is it allowed that a trace starts with activity X_ray?

Yes. A trace may start with activity X-ray.

No. Traces must not start with activity X_ray.

Is it allowed that after sequence <(patient_registration) (X-ray)>,
activity X_ray occurs independently from patient_registration ?

Yes. After occurrence of sequence <(patient_registration)
(X-ray)> activity X_ray may occur independently from
patient_registration.

No. Activity patient_registration must never occur without
a following X ray

Is it allowed that other activities occur in between
sequence <(patient_registration) (X-ray)>?

Q
ue

st
io

ns
 fo

r C
on

fig
ur

in
g

a
Se

le
ct

ed
 P

at
te

rn

Fig. 3. QT-phase1 (left), QT-phase2 (right)

504 E. Ramezani et al.

pattern. Not all questions in this phase have a hierarchical structure. That is,
many questions in this phase can be asked in any order, since there are some
options in each of configurable patterns which are conceptually orthogonal to
each other. These questions will be presented to the user together and s/he may
answer them in any order based on personal preferences and understanding.
However, some options are not orthogonal e.g., a question whether a sequence
of repeated events may occur several times is only meaningful if the user first
answers that a sequence of repeated events is allowed. In such cases, the former
question is only asked if a certain pre-configuration holds for it. Please note
that the configurable pattern i.e., the underlying Petri net and its configura-
tion options are not shown to the end user and user only deals with textual
descriptions of rules in terms of questions and answers. In the back-end, every
answer node of QT in the second phase is mapped to a configuration option in
a configurable pattern and configures the pattern based on choices user makes.
The configuration process is continued until all details of a compliant behavior
is decided. Figure 3 QT-phase2 (right) presents partially the question tree of the
second phase for the example of Sect. 2.

Illustrating a Compliance Rule to a Domain Expert. The configurable
compliance pattern is hidden from user and s/he is only represented with ques-
tions and answers which are designed in a simple hence structured and clear
text. In order to remove any ambiguity for the user while answering questions of
subtle behavioral aspects, there are several compliant and non-compliant sample
traces given for every answer. That is, a user can easily see how a certain choice
can impact (i.e., limit or extend) admissible behavior. The configured compli-
ance pattern determined in the second phase is a Petri net that can be used for
automated compliance checking applying the techniques in [20,22].

In the following we will first discuss the repository of configurable compliance
patterns and then show a walk-though example illustrating how a user selects
and configures a compliance rule using the two question trees.

4 Consolidating and Organizing Compliance Rules
in a Repository

The configurable compliance pattern repository is built upon the collection of
control-flow compliance rules in [21]. We consolidated these rules by merging
similar rules into a configurable pattern to eliminate redundancies and allow for
specifying different variations of a rule. A configurable compliance pattern is a
configurable Petri net which describes a group of compliance rules in a concise
way. Originally configurable process models [3,24] were proposed to describe
variants of a reference process. Here, we are applying the concept to describe
variants of compliance requirements.

Every configurable compliance pattern is parameterized and formalized in
terms of Petri nets with a core component. This core structure enforces a core
behavior (e.g., a sequence). In addition a pattern has several other components

Supporting Domain Experts 505

laniFlaitinI

P-Reg X-ray

End

IcmpIst

Start

Fig. 4. Sequence of P-Reg and X-ray

which determine variations of core behavior. Core behavior enables a clear dis-
tinction between commonalities shared among compliance rules in one category
and variability.

To consolidate the rules in [21], we studied rules which share a common
behavior. We kept the core component in a configurable pattern and added
all possible configuration options to it. The resulting configurable pattern can
describe all the original rules it is derived from, and many more because of the
new possible combination of different configuration options. The configurable
patterns are sound be design. Please recall the example given earlier in Sect. 2.
The Petri net pattern shown in Fig. 4 formalizes the core behavior of the require-
ment of this example.

The compliance pattern starts by firing transition Start and a token in place
Final represents a completed case. The core of the rule is formalized in the grey-
shaded part between transitions Ist and Icmp which represents an instance of
the compliance rule. The rule becomes active when Ist fires and it is satisfied
when Icmp fires. The hollow transitions (Start , Ist , Icmp , and End) are invisible.
The core structure of the pattern enforces; if patient registration (P-Reg) occurs
then it must be followed by X-ray. Every compliance pattern allows to focus
on activities restricted by the corresponding compliance rule and abstract from
all other activities in a process. The Ω activity after Icmp represents any other
activity in a process apart from P-Reg and X-ray. If we want to add other options
to the behavior specified in the Petri net pattern in Fig. 4, we need to add some
more components to the pattern and build a configurable pattern out of it.

The configurable pattern shown in Fig. 5 is parameterized over the activity
names such that activity A = P-Reg and activity B = X-ray. The configurable
pattern allows for defining variations of the core behavior and by blocking or
activating a component we can extend or limit admissible behavior. In the fol-
lowing we will explain the components of the configurable pattern in Fig. 5 and
explain how blocking or activating a component can change the behavior of the
pattern.

• Comp.1-Ω: Activating this component allows for occurrence of arbitrary other
activities in between the sequence 〈(P-Reg)(X-ray)〉 and blocking this compo-
nent enforces that activity P-Reg must be followed directly by X-ray.

• Comp.2-Ω: Activating or blocking this component, enforces that other activ-
ities may occur before P-Reg or not.

506 E. Ramezani et al.

Fig. 5. Configurable sequence of P-Reg and X-ray

• Comp.3-τ : Activating or blocking this component allows that the sequence
〈(P-Reg)(X-ray)〉 occurs multiple times in a trace or not.

• Comp.4-End2: Activating or blocking this component allows that a patient,
would never get registered or not.

• Comp.5-A: Activating or blocking this component allows that several regis-
trations of a patient can be followed by one execution of activity X-ray or
not.

• Comp.6-A: Activating or blocking this component allows that after occurrence
of the sequence 〈(P-Reg)(X-ray)〉 a patient gets registered without a following
X-ray or not.

• Comp.7-B : Activating or blocking this component allows that activity X-ray
occurs independently from the specified sequence of 〈(P-Reg)(X-ray)〉 or not.

When designing a configurable compliance pattern, we abstract from con-
crete examples and consider all possible configuration options. The configu-
ration options we address in our approach include: activating, blocking, and
hiding/skipping a transition, an arc or a group of transitions and arcs. In addition
we consider configuring arc weights.

By developing configurable patterns, we could eliminate redundancies in a
compliance rule family and reuse the commonalities, thus decreasing the num-
ber of patterns to 22 configurable compliance patterns having 0–38 configura-
tion options each. This way, over 1000 different compliance patterns can be
derived (including the original 50 patterns) though picking different configura-
tion options.

5 Supporting Domain Experts to Specify Compliance
Constraints

In this section we will elaborate our methodology and its implementation by
going through a real life example step by step and showcase how a user who is
not familiar with any formalism specifies his/her admissible behavior considering
its detailed aspects.

Supporting Domain Experts 507

The technique is implemented in the Compliance package of the Process Min-
ing Toolkit ProM6, available from http://www.processmining.org. The package
contains the repository of all configurable compliance patterns. The Elicit Com-
pliance Rule plug-in takes a log as input and returns a compliance rule using
the approach of Sect. 3. The returned rule can be used for compliance check-
ing using the Check Compliance of a Log plug-in. In the following we show
how a user can use this implementation to select and configure a compliance
rule.

We chose the event log taken from BPI Challenge 2011 available from [1].
The log is taken from a Dutch Academic Hospital. This log contains some 150.000
events in over 1100 cases. Apart from some anonymization, the log contains all
data as it came from the hospital’s systems. Each case corresponds a patient
of the hospital’s Gynaecology department. The log contains information about
when certain activities took place, which group performed the activity and so
on. Many attributes have been recorded that are relevant to the process.

To demonstrate the approach, we chose to formalize a rule that captures the
following behavior observed on the event log [7]: Glucose level must be estimated
4 times repetitively if a patient diagnosed for cervical cancer of uterus (diagnosis
code M13) and classified as an urgent case1. We have preprocessed this log for
patients who are suffering from cervical cancer of uterus. Urgent patients are
those cases where at least one activity of type urgent is manifested. A very com-
mon activity representing an urgent case is ‘haemoglobin photoelectric-urgent’.
If we rephrase the constraint and substitute the activity names with correspond-
ing event names in the log, the rule states: In case of patients diagnosed for
code M13, activity ‘haemoglobin-photoelectric-urgent’ must be followed 4 times
by activity ‘glucose-urgent’.

We take this log as input and run the Elicit Compliance Rule plug-in that
implements the approach of Sect. 3. The very first question of the questionnaire
always asks the user to specify the number of activities of primary interest. For
this a list of available activities in log is shown to user and the user can choose
the activities s/he wants to restrict from this list. Depending on the number of
activities chosen different sets of questions will be triggered. For instance if the
user chooses one activity of primary interest, the next question will ask about the
number of times a specified activity is allowed to occur. If more than one activity
(e.g., in case of our example two activities) is chosen, the questions related to
relationships between chosen activities will be asked. In our example:

– Which type of limitation you would like to exert?
• Dependent Existence; define whether the occurrence or non-occurrence

of an activity imposes an obligation on occurrence or non-occurrence of
another activity, e.g., define an inclusive relation between two activities.

1 Please note that the observed behavior does not indicate a medical rule but we chose
this observation to show how we can specify a behavior using Elicit Compliance Rule
plug-in.

http://www.processmining.org

508 E. Ramezani et al.

Fig. 6. Elicit compliance rule plug-in

• Bounded Existence; define whether number of occurrences of one activity
is dependent to number of occurrences of the other activity.

• Sequence of Occurrence; define whether there should be a sequential rela-
tion between occurrence of two activities, e.g., define a precedence or simul-
taneous relation between two activities.

• Bounded Sequence of Occurrence; define whether a specified sequence must
be repeated.

We choose Bounded Sequence of Occurrence from the list of alternative
answers. As the result of this choice, a configurable pattern is selected in the
back-end and questions to configure the selected pattern are presented.

The first question from the second phase will ask whether the user wants
to limit the repetition of activity ‘glucose-urgent’ after activity ‘haemoglobin-
photoelectric-urgent’ and if yes how many times ‘glucose-urgent’ must occur
after ‘haemoglobin-photoelectric-urgent’. Figure 6 illustrates this step in ‘Elicit
Compliance Rule’ plug-in in ProM where we chose: 4 times repetition of ‘glucose-
urgent’ after ‘haemoglobin-photoelectric-urgent’.

In order to support the user to make informed choices, for every answer a
sample compliant trace and non-compliant trace is given as shown in Fig. 6.
Additionally, the outcome of the currently chosen configuration is visualized to
the user: the selected and partially configured rule is used to check compliance
of the log w.r.t. this preliminary rule using the technique of [20]. The screen
in Fig. 6 shows several compliant and non-compliant traces by which the user
can use her domain knowledge to assess which answer translates her intention
best.

Supporting Domain Experts 509

Subsequent questions assist the user in deciding about details of the intended
behavior. These questions concern configuration options which are orthogonal
to each other, hence they can be resolved in any order. These questions include:

– Is it allowed that other activities occur between occurrences of activity
‘haemoglobin-photoelectric-urgent’ and ‘glucose-urgent’?

– Is it allowed that other activities occur between occurrences of activity
‘glucose-urgent’?

– Is it allowed that several occurrences of activity ‘haemoglobin-photoelectric-
urgent’ be followed by specified repetitions of activity ‘glucose-urgent’?

– Is it allowed that activity ‘glucose-urgent’ occurs before activity ‘haemoglobin-
photoelectric-urgent’ independently from the defined sequence?

– Is it allowed that the specified sequence of 〈(haemoglobin-photoelectric-urgent)
(glucose − urgent) . . . (glucose − urgent)
︸ ︷︷ ︸

4

〉 occurs multiple times?

– Is it allowed that the specified sequence of 〈(haemoglobin-photoelectric-urgent)
(glucose − urgent) . . . (glucose − urgent)
︸ ︷︷ ︸

4

〉 never occurs?

– Is it allowed that after the specified sequence 〈(haemoglobin-photoelectric-
urgent) (glucose − urgent) . . . (glucose − urgent)

︸ ︷︷ ︸

4

〉, activity ‘haemoglobin-

photoelectric-urgent’ occurs without being followed by repetitions of ‘glucose-
urgent’?

Resolving these questions yields a configured pattern which describes pre-
cisely the intended behavior. This Petri net can be used further for automated
compliance checking.

6 Related Work

Informal description of compliance requirements can be interpreted differently in
context of different business operations. Therefore precise specification of them
is necessary [15]. Specification patterns are extensively used in software develop-
ment [4,8,9,16,28] and also in formulating compliance requirements
[10–12,27,29]. Most of these approaches use some type of structured natural
language and pre-formulated templates to construct formal specifications that
can then be analyzed. Often, these informal specifications are initially mapped
to an intermediate representation (e.g., model-driven patterns), at which point
context dependencies and ambiguities are resolved. The result is then further
refined into a targeted formalism. In [10,11,29] Elgammal et al. introduce a
pattern-based approach for capturing compliance requirements. Their patterns
are parameterized and formalized in LTL. In order to make the approach usable
for business users, they developed a tool-set where user can define compliance
requirements using a specialized version of declare modeling notation. A com-
mon problem in most of above mentioned works is that pre-formulated patterns

510 E. Ramezani et al.

are limited and hard coded; hence they fail to capture subtle aspects of different
compliance requirements. In addition in most of the approaches, mapping and
adapting patterns in a specific context requires extensive knowledge in specifi-
cation languages. Our approach aims to allow compliance specification for end
users without such extensive knowledge.

7 Conclusion and Future Work

The Compliance plug-in of ProM supports the capabilities described in this
paper. The configurable compliance pattern repository is comprehensive and
allows for specifying different types of compliance requirements we found in
literature and many more. However, an accurate evaluation of the tool and app-
roach is required. In future we would like to evaluate how effective the approach
and tool are in practise involving business users. In the presented approach,
we focused on control-flow compliance rules. We would like to investigate sim-
ilar approaches for formalizing requirements restricting other perspectives of
processes such as time, data, and resource. In addition we would like to check
the scalability of configurable compliance patterns by applying our approach in
different domains and identify compliance requirements that we are not able to
specify using our current set of configurable compliance patterns.

References

1. http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on

process models for conformance checking and performance analysis. Wiley Inter-
disc. Rew.: Data Min. Knowl. Disc. 2(2), 182–192 (2012)

3. van der Aalst, W.M.P., Dreiling, A., Gottschalk, F., Rosemann, M., Jansen-Vullers,
M.H.: Configurable process models as a basis for reference modeling. In: Bussler,
ChJ, Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 512–518. Springer, Heidel-
berg (2006)

4. Abid, N., Dal Zilio, S., Le Botlan, D.: Real-time specification patterns and tools. In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 1–15. Springer,
Heidelberg (2012)

5. Adriansyah, A., van Dongen, B., van der Aalst, W.M.: Conformance checking using
cost-based fitness, analysis. In: EDOC’11, pp. 55–64 (2011)

6. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and
explaining their violations for business processes. J. Vis. Lang. Comput. 22(1),
30–55 (2011)

7. Bose, R.P.J.C., van der Aalst, W.M.P.: Analysis of Patient Treatment Procedures.
In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I.
LNBIP, vol. 99, pp. 165–166. Springer, Heidelberg (2012)

8. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: SIGSOFT FSE, pp. 208–218. ACM (2006)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP. pp. 7–15. ACM (1998)

http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

Supporting Domain Experts 511

10. Elgammal, A., Türetken, O., van den Heuvel, W.J.: Using patterns for the analysis
and resolution of compliance violations. Int. J. Coop. Inf. Syst. 21(1), 31–54 (2012)

11. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Root-cause
analysis of design-time compliance violations on the basis of property patterns. In:
Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol.
6470, pp. 17–31. Springer, Heidelberg (2010)

12. Fötsch, D., Pulvermüller, E., Rossak, W.: Modeling and verifying workflow-based
regulations. In: ReMo2V. CEUR Workshop Proceedings, vol. 241. CEUR-WS.org
(2006)

13. Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

14. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance checking between business
processes and business contracts. In: Hung, P.C.K. (ed.) EDOC, pp. 221–232. IEEE
Computer Society, Los Alamitos (2006)

15. Koliadis, G., Desai, N., Narendra, N.C., Ghose, A.K.: Analyst-mediated contex-
tualization of regulatory policies. In: IEEE SCC, pp. 281–288. IEEE Computer
Society (2010)

16. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-
based properties. In: RE, pp. 329–338. IEEE Computer Society (2005)

17. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and resource-aware
conformance checking of business processes. In: Abramowicz, W., Kriksciuniene,
D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 48–59. Springer, Heidel-
berg (2012)

18. Lu, R., Sadiq, S.K., Governatori, G.: Compliance aware business process design.
In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007.
LNCS, vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

19. Smith, R.L., Avrunin, G.S., Clarke, L.A.: From natural language requirements to
rigorous property specifications. In: Monterey Workshop 2003 (SEES 2003), No.
UM-CS-2004-019, Chicago, IL, pp. 40–46, September 2003

20. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did I Misbehave? diag-
nostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E.
(eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012)

21. Ramezani, E., Fahland, D., van Dongen, B., van der Aalst, W.: Diagnostic informa-
tion in temporal compliance checking. Technical report, BPM Center Rep. BPM-
12-17 (2012)

22. Ramezani Taghiabadi, E., Fahland, D., van Dongen, B.F., van der Aalst, W.M.P.:
Diagnostic information for compliance checking of temporal compliance require-
ments. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol.
7908, pp. 304–320. Springer, Heidelberg (2013)

23. Ramezani, E., Fahland, D., van der Werf, J.M., Mattheis, P.: Separating compli-
ance management and business process management. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 459–464.
Springer, Heidelberg (2012)

24. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling lan-
guage. Inf. Syst. 32(1), 1–23 (2007)

25. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

26. Sadiq, W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

512 E. Ramezani et al.

27. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den
Heuvel, W.-J.: Business process compliance through reusable units of compliant
processes. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp.
325–337. Springer, Heidelberg (2010)

28. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach
supporting property elucidation. In: ICSE, pp. 11–21. ACM (2002)

29. Türetken, O., Elgammal, A., van den Heuvel, W.J., Papazoglou, M.P.: Enforcing
compliance on business processes through the use of patterns. In: ECIS (2011)

30. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Syst. J. 46(2), 335–361 (2007)

	Supporting Domain Experts to Select and Configure Precise Compliance Rules
	1 Introduction
	2 Compliance Management
	3 Methodology
	4 Consolidating and Organizing Compliance Rules in a Repository
	5 Supporting Domain Experts to Specify Compliance Constraints
	6 Related Work
	7 Conclusion and Future Work
	References

