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Abstract. Process model matching refers to the creation of correspon-
dences between activities of process models. Applications of process
model matching are manifold, reaching from model validation over har-
monization of process variants to effective management of process model
collections. Recently, this demand led to the development of different
techniques for process model matching. Yet, these techniques are heuris-
tics and, thus, their results are inherently uncertain and need to be
evaluated on a common basis. Currently, however, the BPM community
lacks established data sets and frameworks for evaluation. The Process
Model Matching Contest 2013 aimed at addressing the need for effective
evaluation by defining process model matching problems over published
data sets.

This paper summarizes the setup and the results of the contest.
Besides a description of the contest matching problems, the paper com-
prises short descriptions of all matching techniques that have been
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submitted for participation. In addition, we present and discuss the
evaluation results and outline directions for future work in this field of
research

Keywords: Process matching · Model alignment · Contest · Matching
evaluation

1 Introduction

Business process models allow for managing the lifecycle of a business process,
from its identification over its analysis, design, implementation, and monitor-
ing [1]. A process model captures the activities of a business process along with
their execution dependencies. Process model matching is concerned with sup-
porting the creation of an alignment between process models, i.e., the identifi-
cation of correspondences between their activities.

In recent years, many techniques building on process model matching have
been proposed. Examples include techniques for the validation of a technical
implementation of a business process against a business-centered specification
model [2], delta-analysis of process implementations and a reference model [3],
harmonization of process variants [4,5], process model search [6–8], and clone
detection [9]. Inspired by the field of schema matching and ontology alignment,
cf., [10,11], this demand led to the development of different techniques for process
model matching. Yet, these techniques are heuristics and, thus, their results are
inherently uncertain and need to be evaluated on a common basis. Currently,
the BPM community lacks established data sets and frameworks for evaluation.

In this paper, we report on the setup and results of the Process Model Match-
ing Contest 2013. It was organized as part of the 4th International Workshop
on Process Model Collections: Management and Reuse (PMC-RM 13) that took
place on August 26, 2013, at the 11th International Conference on Business
Process Management in Beijing, China. The Contest Co-Chairs were Henrik
Leopold and Matthias Weidlich.

The Process Model Matching Contest (PMMC) 2013 addresses the need for
effective evaluation of process model matching techniques. The main goal of
the PMMC is the comparative analysis of the results of different techniques. By
doing so, it further aims at providing an angle to assess strengths and weaknesses
of particular techniques and at outlining directions for improving process model
matching. Inspired by the Ontology Alignment Evaluation Initiative (OAEI)1,
the PMMC was organized as a controlled, experimental evaluation. Two process
model matching problems were defined and published with respective data sets.
Then, participants were asked to send in their result files with the identified
correspondences along with a short description of the matching technique. The
evaluation of these results was conducted by the Contest Co-Chairs.

There have been seven submission to the contest covering diverse techniques
for addressing the problem of process model matching. All submissions provided
1 http://oaei.ontologymatching.org

http://oaei.ontologymatching.org
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reasonable results and could, therefore, be included in the evaluation and this
paper. For each submitted matching technique, this paper contains an overview
of the matching approach, details on the specific techniques applied, and pointers
to related implementations and evaluations.

We are glad that the contest attracted interest and submissions from a variety
of research groups. We would like to thank all of them for their participation.

The remainder of this paper is structured as follows. The next section gives
details on the process model matching problems of the PMMC 2013. Section 3
features the short descriptions of the submitted matching approaches. Section 4
presents the evaluation results. Based on these results, Sect. 5 outlines directions
for future work in process model matching before Sect. 6 concludes the paper.

2 Data Sets

The contest includes two sets of process model matching problems:

– University Admission Processes (UA): This set contains process models
representing the admission processes of nine German universities. All models
contain English text only. The models have been created by different mod-
elers using varying terminology and capturing activities at different levels of
granularity. All models are available as Petri-nets in the PNML format and
shall be matched pairwise. Further, for eight out of the 36 model pairs, we
also provide a gold standard alignment for initial evaluation.

– Birth Registration Processes (BR): This set comprises nine models of
birth registration processes in Germany, Russia, South Africa, and the Nether-
lands. Four models were created by graduate students at the HU Berlin and
five of the models stem from a process analysis in Dutch municipalities. Again,
all models contain only English text, are available as Petri-nets in the PNML
format, and shall be matched pairwise to obtain 36 alignments.

Table 1 gives an overview of the main characteristics of the two data sets.
In addition to the minimum, maximum, and average number of labeled transi-
tions per model, it shows the total and average number of simple and complex

Table 1. Characteristics of test data sets

Characteristic UA BR

No. of labeled Transitions (min) 11 9
No. of labeled Transitions (max) 44 25
No. of labeled Transitions (avg) 22 17.9

No. of 1:1 Correspondences (total) 345 348
No. of 1:1 Correspondences (avg) 9.6 9.7
No. of 1:n Correspondences (total) 83 171
No. of 1:n Correspondences (avg) 2.3 4.75
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correspondences. From the numbers, we can learn that both model sets partic-
ularly differ with regard to the number of complex correspondences. While the
admission models only contain an average of 2.3 complex correspondences per
model, the birth certificate models contain 4.75. Consequently, we expect the
birth certificate set to represent the more challenging sample.

3 Matching Approaches

In this section, we give an overview of the participating process model match-
ing approaches. In total, seven matching techniques participated in the process
model matching contest. Table 2 gives an overview of the participating approaches
and the respective authors. In the following subsections, we provide a brief
technical overview of each matching approach.

Table 2. Overview of participating approaches

No. Approach Authors

1 Triple-S: A Matching Approach for
Petri Nets on Syntactic,
Semantic and Structural Level

Cayoglu, Oberweis, Schoknecht,
Ullrich

2 Business Process Graph Matching Dijkman, Dumas, Garćıa-Bañuelos
3 RefMod-Mine/NSCM - N-Ary

Semantic Cluster Matching
Thaler, Hake, Fettke, Loos

4 RefMod-Mine/ESGM - Extended
Semantic Greedy Matching

Hake, Thaler, Fettke, Loos

5 Bag-of-Words Similarity with Label
Pruning

Klinkmüller, Weber, Mendling,
Leopold, Ludwig

6 PMLM - Process Matching Using
Positional Language Models

Weidlich, Sheetrit

7 The ICoP Framework:
Identification of
Correspondences between
Process Models

Weidlich, Dijkman, Mendling

3.1 Triple-S: A Matching Approach for Petri Nets on Syntactic,
Semantic and Structural Level

Overview. So far, a handful contributions have been made to the problem of
process model matching. The Triple-S matching approach adheres to the KISS
principle by avoiding complexity and keeping it simple and stupid. It combines
similarity scores of independent levels as basis for a well-founded decision about
matching transition pairs of different process models. The following three levels
and scores are considered:
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– Syntactic level - SIMsyn(a, b): For the syntactic analysis of transition labels
we perform two preprocessing steps: (1) tokenization and (2) stop word elim-
ination. The actual analysis is based on the calculation of Levenshtein dis-
tances between each combination of tokens (i.e. words) from the labels of
transitions a and b. The final syntactic score is the minimum distance over all
tokens divided by the number of tokens, i.e. the minimum average distance
between each token.

– Semantic level - SIMsem(a, b): Prior to analysis, we perform the same
preprocessing steps as above mentioned. Subsequently, we apply the approach
of Wu & Palmer [12] to calculate the semantic similarity between each token of
labels of transitions a and b based on path length between the corresponding
concepts. The final semantic score is the maximum average similarity, i.e. it
is calculated in an analogous manner to the final syntactic score.

– Structural level - SIMsem(a, b): Here, we investigate the similarity of tran-
sitions a and b through a comparison of (i) the ratio of their in- and outgoing
arcs and (ii) their relative position in the complete net.

These three scores are combined to the final score SIMtotal(a, b) which represents
the matching degree between two transitions a and b from different process
models. It is calculated according to the following formula:

SIMtotal(a, b) = ω1 ∗ SIMsyn(a, b) + ω2 ∗ SIMsem(a, b) + ω3 ∗ SIMstruc(a, b)

The three parameters ω1, ω2 and ω3 define the weight of each similarity level. A
threshold value θ is used to determine whether transitions actually match, i.e.
iff SIMtotal ≥ θ, two transitions positively match.

Specific Techniques. Compared to [13], the Triple-S approach makes several
adjustments. Firstly, stop words are eliminated and the Levenshtein distance is
calculated on the level of single tokens instead of complete sentences. Secondly,
for the semantic level an established NLP approach is introduced. Finally, on
the structural level TripleS performs contextual analysis by investigating local
similarity only.

Implementation. The Triple-S approach has been implemented using Java.
For the calculation of the semantic score with the approach of Wu & Palmer,
the WS4J Java API 2 has been used to query Princeton’s English WordNet 3.0
lexical database [14]. Relative positions of transitions are calculated using the
implementation of Dijkstra’s algorithm by Vogella3. The code can be obtained
from http://code.google.com/p/bpmodelmatching/wiki/Download?tm=4 under
GNU GPL v3 license.
2 https://code.google.com/p/ws4j/
3 http://www.vogella.com/articles/JavaAlgorithmsDijkstra/article.html

http://code.google.com/p/bpmodelmatching/wiki/Download?tm=4
https://code.google.com/p/ws4j/
http://www.vogella.com/articles/JavaAlgorithmsDijkstra/article.html
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Evaluations. During our experiments we tried to approximate optimal results
based on the gold standard examples. For the contest, we have used the following
values: ω1 = 0.45, ω2 = 0.3, ω3 = 0.25 and θ = 0.6. The Triple-S approach is
currently developed as part of the ongoing SemReuse research project addressing
business process model reuse. This contest on business process similarity presents
a welcome possibility for first experiments. We are planning on refining the
current measures for the individual levels, especially the semantic and structural
level and improved detection of 1:n matches.

3.2 Business Process Graph Matching

Overview. Business process graph matching works by considering a business
process as a labeled graph, wherein nodes correspond to tasks, events or gate-
ways, and edges capture the flow of control between nodes in the process. Nodes
are generally assumed to have a label, although gateways may be unlabeled.

Graph matching aims at computing a mapping between the nodes in the
input graphs. In its most common form, the mapping relates one node in a
graph to at most one node in the another graph (partial inductive mapping). The
mapping induces a distance between the two graphs, which is usually calculated
by adding the following components:

– the number of inserted nodes: nodes that appear in one graph, but not in the
other (i.e.: nodes that are not part of the mapping);

– the sum of the distances between nodes that are part of the mapping based
on their labels (e.g.: the nodes labeled ‘receive request’ and ‘receiving request’
are closer than the nodes labeled ‘receive request’ and ‘reject request’); and

– the number of inserted edges: edges that appear in one graph, but not in the
other.

The goal of a typical graph matching algorithm is to find the mapping with
the smallest possible distance, also called as the graph-edit distance [15]. This
is a computationally complex problem, because the space of possible mappings
that need to be explored. Thus in practice, some pruning technique must be
employed.

Specific Techniques. Graph matching algorithm can primarily be varied with
respect to two points. The first variation point is the metric that is used for com-
puting the weight of mapped nodes. The second variation point is the algorithm
that is used to explore the space of possible mappings.

The two main classes of metrics to compute the weight of mapped nodes are
syntactic metrics and semantic metrics. Syntactic metrics look at the label as a
string of characters. For example, a typical syntactic metric between two labels
is string-edit distance, which is the minimum number of character insertions,
deletions and substitutions that must be performed to transform one string into
another. Semantic metrics treat the label as a list or bag of words. A typical
semantic similarity metric is based on matching the words of two given labels and
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defining a distance based on this matching. Words that are closer semantically
(e.g. they are synonyms or share a hypernym) are more likely to be matched.
The number of matches found and the strength of the matches then determines
the similarity between the labels. Additional tweaks may be applied to deal with
unlabeled nodes such as gateways.

Several algorithms can be envisioned to explore the space of possible map-
pings between two business process graphs. One is a greedy algorithm that, in
each iteration, adds a mapping between two nodes that decreases the distance
the most, until no such mapping can be found anymore. Another is based on
search of the space of mappings based on the so-called A-star heuristics. We
have investigated these alternatives in a number of papers [16,17].

Implementation. The graph matching approach to business process matching
has been implemented both as part of the ICoP framework [18] and as part of
version 5 of the tool ProM4. ProM is open source. ICoP is available on request.
The tool uses WordNet to compute the semantic weights of node mappings.

Evaluations. We have evaluated several graph matching techniques on a col-
lection of models extracted from the SAP R/3 reference model. The extracted
collection consists of 100 so-called “document” models that simulate a reposi-
tory of process models, and 10 so-called “query” models that simulate business
process graphs that a user would be looking for. The goal is, given a query model,
to rank the document models according to their similarity to the query model.

In this experiment, the aim was to test how close different techniques corre-
spond to the “perceived similarity” of models as determined by a golden stan-
dard. The golden standard was constructed by asking a number of individuals
to rate the similarity between pairs of process models in the collection (query
model, document model) on a scale of 1 to 7.

In this respect, we found that a technique based on A-star achieves a higher
mean average precision, which is a measure of ranking accuracy commonly used
in information retrieval. The greedy algorithm comes relatively close to the
A-star algorithm, while being faster.

3.3 RefMod-Mine/NSCM - N-Ary Semantic Cluster Matching

Overview. The approach for clustering business process model nodes consists
of four components which are executed sequentially. First of all it conducts
a semantic error detection (1), where defects of modeling are being identified
and automatically handled. After that, it uses all models as input for an n-ary
cluster matcher (2), which uses a semantic similarity measure (3) for pairwise
node comparison. As a result of that cluster matching we get a set of clusters
containing nodes of all considered models, which are being extracted to binary
complex matchings (4).

4 http://www.processmining.org

http://www.processmining.org
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Specific Techniques. Semantic error detection. While analyzing different busi-
ness process models, we recognized the existence of model failures which leads
to a misinterpretation of nodes during a process matching. Against that back-
ground, the main function of semantic error detection is the identification of
wrong modeled transition nodes. Since the algorithm as well as the gold standard
only matches transitions, this functionality checks whether the label suggests a
node being a place or confirms it being a transition. Therefore the form and order
of nouns and verbs of a label are being analyzed, which leads to the applicability
only to English language models. The identified transitions are being marked as
“ignore” and will not be considered in the following matching components.

N-Ary cluster matching. In contrast to existing matching techniques, the
authors use an n-ary clustering instead of a binary matching. The nodes of all
models are being pairwise compared using a semantic similarity measure. Since
the cluster algorithm is agglomerative [1], it starts with clusters of size 1 (=
transitions) and consolidates two transitions to a cluster if their similarity value
passes a user-defined threshold. If two nodes are being clustered and both are
already part of different clusters, the two clusters are being merged. Thus, the
resulting clusters are hard and not fuzzy [19].

Semantic similarity measure. The used similarity measure consists of three
phases. The first phase splits node labels L into single words wiL , so that
split(L) = {w1L , ..., wnL

}. Stop words, like the, is, at as well as waste char-
acters like additional spaces are being removed. The second phase computes the
Porter Stem [20] stem(wiL) for each word and compares the stem sets of both
labels. The number of stem matchings is being divided by the sum of all words.

sim(L1, L2) =
|{stem(w1L1

), ..., stem(wnL1
)} ∩ {stem(w1L2

), ..., stem(wmL2
)}|

|split(L1) + split(L2)|

If the resulting similarity value passes a user-defined threshold, the third
phase checks the labels for antonyms using the lexical database WordNet [21]
and checking the occurrence of negation words like not. Thus, that phase decides
the similarity being 0 or sim(L1, L2).

Binary matching extraction. The last component extracts binary matchings
from the node clusters calculated by the n-ary cluster matcher. For each model
pair all clusters are being scanned for the occurrence of nodes of both models.
The containing node set of the first model is then being matched to the node
set of the second model. Thus, the component returns a binary complex (N:M)
matching for each model pair.

Implementation. The mentioned technique has been implemented in form
of a php command line tool and can publicly checked out5. Next to the n-ary
semantic cluster matching and other matching techniques, the research prototype
is able to calculate node and process similarities from recent literature as well
as analyzing models and matchings.
5 https://refmodmine.googlecode.com/svn

https://refmodmine.googlecode.com/svn
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Evaluations. To evaluate the approach, the authors analyzed the precision and
recall values in case of the delivered admission models with the corresponding
gold standard. After justifying the algorithm, the results leaded to a precision
of 67 % and a recall of 34 %. Thereby, the threshold for semantic similarity was
set to 60 %.

3.4 RefMod-Mine/ESGM - Extended Semantic Greedy Matching

Overview. In a first attempt dealing with the matching problem, a greedy
matching [17] was implemented and evaluated based on precision and recall.
Though a considerably high precision is achieved by this approach, only a low
degree of recall is reached due to neglect of potential complex matches. To attain
a higher recall and meet the demands of complex matches, the approach is
extended.

The approach introduced here matches business process models pair-wisely
based on the similarities of the process models’ transitions. The result of the
matching algorithm is a set of complex (N:M) transition matches between two
process models. The matching is subdivided into three steps.

In the first step, a pre-processing of data is applied to the models. The second
step consists in computing the similarity of all potential 1:1 transition matches of
two models using a word matching technique. In a final step, a heuristic grouping
of similar transitions from step 2 is conducted.

Specific Techniques. Pre-Processing. While evaluating precision and recall,
the authors noticed that some transitions which seemed to represent process
events rather than activities, had not been matched with regard to the gold-
standard. Hence one step of the pre-processing is a heuristic filter which excludes
such transitions from further matching steps.

Moreover, the labels of the transitions are split up into word sets according to
split characters like whitespace or hyphen. After all non-word characters6 have
been removed from the word sets, stop words like to, the, and is are removed
from the word sets.

Word Matching. Unlike most approaches, the computation of the transitions’
similarity is accomplished applying the greedy matching technique [17] on busi-
ness process models to transition labels. Therefore, at first, the similarity of the
words of two labels is determined.

The computation of the similarity score simw of two words is based on dictio-
nary lookups and a syntactic similarity measure [16]. In case the words represent
synonyms or it exists a nominalization of one word that is synonymic to the other
or vice versa, they receive a similarity score of 1. If the words or their nominal-
izations are considered antonyms, a similarity score of -1 is returned, otherwise
they receive a syntactic similarity score based on Levenshtein’s edit distance.

Let L be a label of Transition T that belongs to process model M and W
a set of words of a label L. simw(w1, w2) denotes the similarity of two words
6 http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html
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w1 ∈ W1 and w2 ∈ W2. Furthermore, let MW : W1 → W2 be a partial injective
mapping on the word sets W1,W2. Then simL(L1, L2) denotes the similarity of
two labels L1, L2.

simL(L1, L2) =

∑
(w1,w2)∈MW

simw(w1, w2)

max(|W1|, |W2|)
(1)

Heuristic Grouping. The subsequent grouping of transitions consists in
adding all pairs which do not fall below a predefined similarity threshold t to
the result. The following rules depict the heuristic grouping technique.

Let G be a set of transitions representing a group of transitions. Given a pair
of transitions (T1, T2), which satisfies the threshold criterion (simL(Li, Lj) ≥ t),
a new group G = {T1, T2} is added to the result set if neither T1 nor T2 belongs
to any group. In case only one transition, either T1 or T2, is not represented in
any group, this transition is added to the group the other transition belongs to.
If T1 belongs to group Gi and T2 to group Gj , the groups Gi, Gj are replaced
by the new group Gn = Gi ∪ Gj .

Implementation. The matching approach is implemented in Java (jre6) and
is embedded in RefMod-Mine, which is a tool set dedicated to the mining of
reference models. The computation of the labels similarity largely relies on dic-
tionary lookups. The underlying dictionary is the WordNet [21] database (v 3.0)
and it is accessed via the RiTa.WordNet Java/Javascript API7, which is free and
open-source licensed under GPL.

Evaluations. The approach has been evaluated based on the partial gold stan-
dard provided. Therefore, the threshold for the grouping was set to 65 %.

3.5 Bag-of-Words Similarity with Label Pruning

Overview. The approach to process model matching discussed here is a subset
of our previous paper [22]. While we explored various options before, herein
we focus on the matching strategy that provided the most significant increase
in match quality in our experiments. This technique solely considers activity
labels, disregarding other information present in the process models such as
events, process structure or behavior.

In a nutshell, the approach computes label similarity by (i) treating each
label as a bag of words (a multi-set of words), (ii) applying word stemming
(to transform, e.g., “evaluating” into “evaluate”) for better comparability,
(iii) computing the similarity scores as per Levenshtein [23] and Lin [24] for each
pair of words, (iv) pruning the multi-sets for both activity labels under compari-
son to be equal in the number of words, (v) computing an overall matching score
for each activity pair, and (vi) selecting all activity pairs whose score is above a
given threshold.
7 RiTa.WordNet, http://www.rednoise.org/rita/wordnet/documentation/

http://www.rednoise.org/rita/wordnet/documentation/


452 U. Cayoglu et al.

Specific Techniques. For a detailed introduction of the overall approach we
refer the reader to [22]. In the following we explain specific aspects of it and the
configuration used in this paper.

One characteristic of the bag-of-words similarity is that it neglects the gram-
matical structure of the label. This is in contrast to [25] where the individual
words of the labels are assigned with types; and words will only be compared
if they belong to the same type. The rationale for neglecting label structure is
that the brevity of labels makes it hard to deduce information like word forms.
In this way, the bag-of-words similarity aims to offer a means to find matches
like “reject applicant” vs. “send letter of rejection”.

Furthermore, in case the two bags-of-words under comparison are different in
size, the larger one is pruned to the size of the smaller one. Therefore, words with
a small similarity score are removed from the larger set. This is done to better
capture activity labels with a strong difference in specificity. For instance, “rank
case” vs. “rank application on scale of 1 to 10” may have a very low average
word similarity as the second label also contains information about a condition
not present in the first label.

Finally, the decision to rely on a syntactical (Levenshtein) as well as a seman-
tic (Lin) word similarity notion tries to lessen the weaknesses of both notions.
While syntactical notions cannot account for a strong conceptual similarity of
two words, a semantic notion struggles when spelling errors are present. However,
there are still cases where this combination struggles.

Implementation. The technique is implemented in Java and part of the Process
Model Matching Tools for Java (jpmmt)-project which aims at providing algo-
rithms and measures for process model matching. The project is publicly avail-
able8 under the terms of the MIT License9.

Evaluations. In [22] we evaluated various configurations of the bag-of-words
similarity with label pruning and its basic variant the bag-of-words similar-
ity. These configurations included different pruning criteria and word similar-
ity functions. In order to achieve comparability, we used the data set from [25]
which includes the university admission processes and the corresponding match-
ing standard also part of the data set of this matching contest. The evaluation
showed that the technique has the potential to increase recall of process model
matching compared to results yielded by the approaches introduced in [18,25].

Furthermore, we applied the technique in the context of Business Process
Querying (BPQ). In [26] an approach to BPQ is presented that decomposes a
BPMN-Q query [27] into a set of sub-queries. For these sub-queries correspond-
ing process model fragments are determined within a process collection. Finally,
these fragments are aggregated in order to provide a list of process model frag-
ments that provide answers to the whole query. Our technique constitutes the
8 http://code.google.com/p/jpmmt/
9 http://opensource.org/licenses/mit-license.php

http://code.google.com/p/jpmmt/
http://opensource.org/licenses/mit-license.php
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base for an extension of this approach. Instead of relying on 1:1 matches for
the activities in the query this assumption is relaxed and more complex match-
ing constellations are allowed. An evaluation which also relies on the university
admission processes shows that the technique in combination with the approach
from [26] yields promising results. However, the size of the collection and queries
is relatively small, and further experiments need to be conducted.

3.6 PMLM - Process Matching Using Positional Language Model

Overview. This matching technique is tailored towards process models that
feature textual descriptions of activities, introduced in detail in [28]. Using ideas
from language modeling in Information Retrieval, the approach leverages those
descriptions to identify correspondences between activities. More precisely, we
combine two different streams of work on probabilistic language modeling. First,
we adopt passage-based modeling such that activities are passages of a document
representing a process model. Second, we consider structural features of process
models by positional language modeling. While using those probabilistic lan-
guage models, we create a similarity matrix between the activities and derive
correspondences using second line matching.

Specific Techniques. Activities as Passages. Let T be a corpus of terms. For a
process model P , we create a document d = 〈T1, . . . , Tn〉 as a sequence of length
n ∈ N of passages, where each passage is a set of terms d(i) = T ⊆ T , 1 ≤ i ≤ n.
The set d(i) = T comprises all terms that occur in the label or description of
the activity at position i. The length of d is denoted by |d|. We denote by D a
set of processes, represented as documents.

Our model is built on a cardinality function c : (T × D × N) → {0, 1},
such that c(t, d, i) = 1 if t ∈ T = d(i) (term t occurs in the i-th passage of d)
and c(t, d, i) = 0 otherwise. To realize term propagation to close-by positions,
a proximity-based density function k : (N × N) → [0, 1] is used to assign a
discounting factor to pairs of positions. Then, k(i, j) represents how much of
the occurrence of a term at position j is propagated to position i. We rely on
the Gaussian Kernel kg(i, j) = e(−(i−j)2)/(2σ2), defined with a spread parameter
σ ∈ R

+ [29]. Adapting function c with term propagation, we obtain a function
c′ : (T × D × N) → [0, 1], such that c′(t, d, i) =

∑n
j=1 c(t, d, j) · kg(i, j). Then,

our positional, passage-based language model p(t|d, i) captures the probability of
term t occurring in the i-th passage of document d (μ ∈ R, μ > 0, is a weighting
factor):

pμ(t|d, i) =
c′(t, d, i) + μ · p(t|d)
∑

t′∈T c′(t′, d, i) + μ
. (2)

Derivation of Passage Positions. To instantiate the positional language model
for process models, we need to specify how to order the passages in the docu-
ment to represent the order of activities in a process. In this matching contest,
we chose to use a Breadth-First Traversal over the process model graph starting
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from an initial activity that creates the process instance (we insert a dummy
node connect to all initial activities if needed).

Similarity of Language Models. Using the language models, we measure the
similarity for document positions and, thus, activities of the process models,
with the Jensen-Shannon divergence (JSD) [30]. Let pμ(t|d, i) and pμ(t|d′, j)
be the smoothed language models of two process model documents. Then, the
probabilistic divergence of position i in d with position j in d′ is:

jsd(d, d′, i, j) =
1
2

∑

t∈T
pμ(t|d, i) lg

pμ(t|d, i)
p+(t)

+
1
2

∑

t∈T
pμ(t|d′, j) lg

pμ(t|d′, j)
p+(t)

(3)

with p+(t) =
1
2
(pμ(t|d, i) + pμ(t|d′, j))

When using the binary logarithm, the JSD is bound to the unit interval [0, 1],
so that sim(d, d′, i, j) = 1 − jsd(d, d′, i, j) can be used as a similarity measure.

Derivation of Correspondences. Finally, we derive correspondences from a
similarity matrix over activities, which is known as second line matching. Here,
we rely on two strategies, i.e., dominants and top-k, see [31]. The former selects
pairs of activities that share the maximum similarity value in their row and
column in the similarity matrix. The latter selects for each activity in one model,
the k activities of the other process that have the highest similarity values.

Implementation. The application was built in C#, and uses the Lemur ToolKit
for stemming terms, and calculating the probability of each term to be relevant
given a certain passage and position in a document. In our implementation, we
first read the XML files representing the process models, transform each ele-
ment into an object according to its type (transition, place or arc) and order the
transitions. In the first phase, we create an ordered document containing only
the activity labels (with no propagation), create a similarity matrix using the
Lemur ToolKit and find correspondences using dominants approach. In the sec-
ond phase, we create another ordered document with activity labels, descriptions
and term propagation, create a similarity matrix using the Lemur ToolKit and
find correspondences using top-3 approach. Finally, we choose matches according
to the dominants result and add the selected top-3 if their similarity score is no
less then 80 % of the highest similarity value in their row.

The implementation is still in development stage, so for the time being it is
not available for a public use.

Evaluations. We conducted experiments with several real-world model collec-
tions. First, we used models from the Bank of Northeast of Brazil (BNB) that
capture business processes on three levels: business perspective, technical per-
spective, or executable process specification, also used in [2]. Second, we used
models from an electronics company and from municipalities in the Netherlands,
described and used for evaluation in [32]. All sets include textual annotations for
at least some of the activities. Our results indicate that this matching technique is
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geared towards high recall, increasing it up to a factor of 5 over existing work [28].
While average precision is rather low, we observe k-precision values (k-precision
extends precision to top-k lists, where a match is a top-k list where a correct
pair is found) above 60 %. Hence, correct correspondences can be extracted by
an expert with reasonable effort, thereby supporting semi-automated matching.

3.7 The ICoP Framework: Identification of Correspondences
between Process Models

Overview. The ICoP framework [32] aims at solving the problem of matching
process models with a particular focus on complex correspondences that are
defined between sets of activities instead of single activities. Towards this end,
the framework proposes an architecture and a set of re-usable components for
assembling concrete matchers.

The ICoP architecture defines process model matching as a multi-step app-
roach involving four different types of components.

Searchers try to cope with the combinatorial challenges induced by potentially
complex correspondences by applying heuristics to search the space of pos-
sible matches. Here, different strategies are first applied for group activi-
ties and, second, for assessing the similarity of these groups of activities.
Searchers return a set of candidate correspondences with assigned confidence
scores.

Boosters aggregate candidate correspondences and adapt their scores. On the
one hand, the multiset of matches returned by the searchers is aggregated
to obtain a set of candidate correspondences. Also, scores are adapted, e.g.,
based on subsumption of candidate correspondences.

Selectors build up the actual final set of correspondences from the set of
candidate correspondences, by selecting the best candidates that are non-
overlapping in their sets of activities. Here, selection is guided by the scores
of the candidates as well as an evaluation score computed by an evalua-
tor (see below). Then, selection of correspondences is done iteratively. Yet,
exhaustive search for the best selection is typically not possible, so that a
greedy strategy or an approach with a certain lookahead is followed.

Evaluators assign a score to a set of correspondences. Computation of this score
is typically based on the original process models, such that the consistency
of certain structural or behavioural properties of the process models under
the given correspondences is assessed.

In addition to this architecture, the ICoP framework provides different imple-
mentations of these four components that may be used to assemble matchers.
Examples include searchers that rely on vector space scoring, different aggrega-
tion boosters, evaluators based on the graph edit distance, and selectors that
implement different strategies for combining scores of individual candidates and
the evaluation scores for sets of correspondences.
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Specific Techniques. We want to highlight two specific techniques that are
used in components of the ICoP framework:

Virtual Document Searchers. Searchers implement heuristics to first group activ-
ities in either process model and then assess the similarity of these groups to
derive candidate correspondences. Given a set of activities groups in either model
(e.g., derived based on proximity in terms of graph distance or by structural
decomposition), searchers in the ICoP framework exploit virtual documents for
similarity assessment. Here, the notion of a virtual document is inspired by work
on ontology alignment [33] where a virtual document of a node consists of all
textual information in an ontology that is related to that node. Then, two vir-
tual documents are scored based their Cosine similarity in a vector space that is
spanned by the terms that appear in the documents. In the ICoP searchers, a vir-
tual document for a group of activities consists of the terms of the activity label
and any additional textual information related to the activity, such as an activ-
ity description, data input and output artefacts, and names and descriptions of
related roles and information systems. Combined with common techniques from
information retrieval, e.g., stop-word filtering and term-frequency based weight-
ing, this technique provides a means to consider not only activity labels, but a
broad spectrum of textual information related to an activity for the matching.

Execution Semantics Evaluator. An evaluator scores a set of correspondences,
typically based on the original process models. The ICoP framework defines an
evaluator that exploits the execution semantics of the process models for scoring
a set of correspondences. To this end, it relies on the relations of the behavioural
profile of a process model, cf., [34]. Such a profile abstracts trace semantics of a
process by a set of binary behavioural relations defined over its activities: two
activities are ordered (if one can occur before the other but not vice versa),
exclusive (if they cannot occur jointly in an execution sequence), or interleaved
(if they can occur in either order). This information is used for assigning a score
to a set of correspondences by checking for each pairs of activities of distinct
correspondences in one model, whether their behavioural relation is mirrored by
all the corresponding activities in the other model. Then, the ratio of consistent
pairs and all investigated pairs provides us with a score that captures the extent
to which the behavioural characteristics of one model are preserved in the other
model under the given correspondences.

Implementation. The ICoP framework has been implemented in Java and is
available upon request from the authors of [32]. Currently, process models are
expected to be given as Petri nets in the PNML format.

A major revision of the framework is under way. By building upon the jBPT
library [35], this new implementation will support a broader class of process
model descriptions and serialization formats.
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Evaluations. The ICoP framework has been designed with a particular focus on
the identification of complex correspondences. An evaluation of the framework
can be found in [32]. It illustrates that the ICoP architecture allows for the
creation of matchers that find a significant share of complex correspondences.
Yet, it also shows that a certain homogeneity of the process model vocabulary
is required for the identification of complex correspondences.

4 Results

For assessing the submitted process model matching techniques, we compare
the computed matches against a manually created gold standard. Using the gold
standard, we classify each computed activity match as either true-positive (TP),
true-negative (TN), false-positive (FP) or false-negative (FN). Based on this clas-
sification, we calculate the precision (TP/(TP+FP), the recall (TP/(TP+FN)),
and the f-measure, which is the harmonic mean of precision and recall (2*pre-
cision*recall/(precision+recall)). Table 3 gives an overview of the results for the
university admission data set and Table 4 presents the results for the birth cer-
tificate data set. For getting a better understanding of the result details, we
report the average (AVG) and the standard deviation (STD) for each metric.
The highest value for each metric is marked using bold font.

Table 3. Results of university admission matching

Precision Recall F-Measure
No. Approach AVG STD AVG STD AVG STD

1 Triple-S 0.31 0.19 0.36 0.26 0.33 0.12
2 BP Graph Matching 0.60 0.45 0.19 0.30 0.29 0.29
3 RefMod-Mine/NSCM 0.37 0.22 0.39 0.27 0.38 0.19
4 RefMod-Mine/ESGM 0.16 0.26 0.12 0.21 0.14 0.17
5 Bag-of-Words Similarity 0.56 0.23 0.32 0.28 0.41 0.20
6 PMLM 0.12 0.05 0.58 0.20 0.20 0.08
7 ICoP 0.36 0.24 0.37 0.26 0.36 0.23

Table 4. Results of birth certificate matching

Precision Recall F-Measure
No. Approach AVG STD AVG STD AVG STD

1 Triple-S 0.19 0.21 0.25 0.33 0.22 0.23
2 BP Graph Matching 0.55 0.48 0.19 0.28 0.28 0.30
3 RefMod-Mine/NSCM 0.68 0.19 0.33 0.22 0.45 0.18
4 RefMod-Mine/ESGM 0.25 0.28 0.18 0.26 0.21 0.23
5 Bag-of-Words Similarity 0.29 0.35 0.22 0.30 0.25 0.31
6 PMLM 0.19 0.09 0.60 0.20 0.29 0.12
7 ICoP 0.42 0.27 0.28 0.23 0.33 0.24
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Fig. 1. Detailed results of admission data set

Fig. 2. Detailed results of birth certificate data set

From the results presented in Table 3 and Table 4, we can draw the follow-
ing conclusions. Most importantly, it has to be noted there is no clear winner.
As the employed data sets are different with respect to characteristics such as
the number of complex correspondences and the linguistic consistency, different
capabilities are required to come up with a good matching result. Apparently,
no technique can perfectly deal with both data sets. However, there are a couple
of interesting observations.

Focussing on the f-measure, the bag-of-words similarity approach yields the
best result for the university admission set (0.41) and the RefMod-Mine/NSCM
approach yields the best result for the birth certificate set (0.45). However, it
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should be noted that the RefMod-Mine/NSCM approach is quite close to the
f-measure of the bag-of-words similarity approach for the university admission
set (0.38) while the bag-of-words approach has a rather average result quality
for the birth certificate models (0.25). Interestingly, the best f-measure is not
necessarily associated with the best recall and precision. The PMLM approach
yields the best recall (0.60 and 0.58) for both sets. Nevertheless, due to its rather
low precision, it only yields average f-measures. The opposite situation can be
observed for the BP Graph Matching approach. While it has rather low recall
values, it yields top precision values (0.48 and 0.60). Apparently, the trade-off
between precision and recall is still a major issue in the context of process model
matching.

Looking at the standard deviation, we can see that many approaches suffer
from quite unstable results. A detailed consideration of the results for individual
model pairs reveals that there are some model pairs that are matched well,
while others represent a considerable challenge for all participating techniques.
Figures 1 and 2 illustrate this fact by showing the average and maximum f-
measure among all techniques for each matching pair. In the admission set,
we observe particular high results for the pairs 1,7, 14, 17, 19, and 28. The
pairs 25 and 36 apparently represent complex matching problems. For the birth
certificate data set, we observe a quite similar constellation. While the techniques
yield good results for the pairs 31, 32, and 34, they fail to adequately match the
pairs 10 and 15. Having a closer look into these extreme cases, we can identify
two main characteristics that influence the result quality for a matching pair:
the similarity of labels and the number of complex matches.

The more similar the labels of the matching pair, the better the matching
result. By contrast, if many business objects are different or even missing, the
identification of the matches may represent a serious challenge. As example, con-
sider the match between Checking if complete and Check documents. Here, the
rather unspecific verb check is the only connection between the labels. The sec-
ond characteristic indicating the hardness of the matching challenge is the the
number of complex matches. As such matches often require a semantic grouping
of activities, their identification is a complicated and error-prone task. The iden-
tification of complex matches is often further aggravated by the fact that the
connection between actions and business objects is hard to detect. As example,
consider the complex match between the activity Clarify name and the activities
Consult mother and Consult father. Taking a standard semantic similarity mea-
sure such as the Lin metric, the similarity between these labels is close to zero.
In order to adequately address such problems, more sophisticated approaches
are required.

Besides this comparative discussion, the obtained precision and recall values
indicate that matching techniques cannot yet be expected to provide an out-of-
the-box solution for fully automated matching. However, the detailed analysis
of individual model pairs reveals that very good results can be obtained for a
certain setting. Also, the variability of the techniques in terms of their preference
for either precision or recall outlines potential for further improvements.
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5 Future Directions

Based on the results and the observations from the Process Model Matching
Contest 2013, we use this section to outline major directions for future work
in the field of process model matching. In particular, we discuss strategies to
address the overall matching result quality, the need for addressing semantics,
the applicability of push-button approaches, and the question of how process
model matching can be evaluated.

The results from this contest highlight that the overall result quality still
needs to improved. Still, the differences between the employed data sets also
indicate that many techniques can properly match a particular set of models.
This raises the question whether appropriate matchers can be automatically
selected based on the matching problem at hand. This, however, requires a pre-
cise understanding of the capabilities of the different matchers and an accurate
selection algorithm. A promising strategy to address this problem might be the
incorporation of prediction techniques as they have been recently proposed in
the area of schema matching [36]. If the quality of the result of a matching tech-
nique can be predicted based on certain characteristics of the model or the match
constellation, the best matching technique can be selected in an automated fash-
ion. In this context, it could be also a promising strategy to determine a set of
matchers that jointly address the given matching problem.

The detailed consideration of the matching results revealed that particular
semantic relationships are hard to detect. Hence, we are convinced that semantic
technologies need to be explored in more detail. While it turned out to be helpful
to differentiate between label components such as action and business object, the
simple comparison with semantic similarity measures is not sufficient. In order
to detect more complex semantic relationships, it might be necessary to include
ontologies or additional information such as textual descriptions of the models.

Most of the currently existing process model matching techniques repre-
sent push-button approaches that compute results without any user interac-
tion. Thus, matching shall be considered as an iterative process that includes
feedback cycles with human experts, a process known as reconciliation in data
integration [37,38]. Given the general complexity of the matching task, such a
semi-automated technique could still provide significant support to the user. By
collecting feedback from the user, important decisions during the construction
of a matching can be validated, leading to a better overall result.

So far, many matching techniques evaluate the result quality using precision,
recall, and f-measure. However, considering the complexity of the matching set-
ting, it can be doubted that these simplistic metrics are appropriate. In many
cases, a match constellation is not necessarily true or false and the decision is
even hard for humans. Against this background, it might be worth to pursue dif-
ferent evaluation strategies, such as non-binary evaluation [39]. Also, one shall
consider the actual benefit achieved by (semi-) automated matching. However,
measuring the post-match effort turned out to be challenging and is also not
well understood for related matching problems [40]. Further work is needed to
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understand how tool-supported matching compares to manual matching in terms
of time and quality.

Altogether, it must be stated that there are many directions for future
research. Many of them are concerned with improving existing techniques. How-
ever, acknowledging that process model matching is not a simple task with
a single correct result, it is also important to focus on alternative evaluation
strategies.

6 Conclusion

In this paper, we reported on the setup and the results of the Process Model
Matching Contest 2013. This contest addressed the need for effective evaluation
of process model matching techniques. We provided two different process model
matching problems and received automatically generated results of 7 different
techniques. The evaluation of the results showed that their is no clear winner of
the contest since no approach yielded the best performance for both data sets.
We learned that there is still a huge trade-off between precision and recall, and
that semantic and complex correspondences represent considerable challenges.

For future work, we highlighted that it is important to further improve the
result quality achieved by the matching techniques. This may be accomplished
by automatically selecting the best matcher based on the matching problem at
hand, by exploiting semantics in a more elaborated way, or by incorporating
user feedback. Further, we emphasized the importance of proper evaluation. As
precision, recall, and f-measure are overly simplistic and only allow matches do
be true or false, it might be worth to consider alternative evaluation strategies.
This may, for instance, include the comparison of a matching technique with a
human matching in terms of time and quality.

Acknowledgement. This work has been developed with the support of DFG (Ger-
man Research Foundation) under the project SemReuse OB 97/9-1.
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