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Abstract. This paper demonstrates that the discovery technique using his-
torical event logs can be extended to predict business performance and rec-
ommend performers for running instances. For the prediction and
recommendation, we adopt decision trees, which is a decision support tool in
management science. Decision trees are commonly used to help identify the
most likely alternative to reach a goal. To provide effective performer rec-
ommendation, we use several filters with previous performers and key tasks to
the decision tree. These filters allow for a suitable recommendation according
to the characteristics of the processes. The proposed approach is implemented
on ProM framework and it is then evaluated through an experiment using real-
life event logs, taken from a Dutch Financial Institute. The main contribution of
this paper is to provide a real-time decision support tool by recommendation of
the best performer for a target performance indicator during process execution
based on historical data.
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1 Introduction

Process mining is the business analytical method that allows for the analysis of
business processes based on event logs [1, 2]. The basic idea is to extract knowledge
from event logs recorded by information systems to improve business performance
[3]. Most process mining techniques work on ‘‘post mortem’’ event data in that they
analyze events that belong to completed cases. However, huge data are being gen-
erated in executing business processes and they need to be analyzed in (near) real-time
[4, 5]. Therefore, process mining should be extended to online operational support to
include real-time decision support [6].

In this paper we introduce decision trees to process mining in order to deal with
the recommendation of performers. Among decision support tools, decision trees have
two advantages which can be applied to performer assignment. First, decision trees
simplify decision making problems by evaluating performances of competing alter-
natives and pruning inferior alternatives from leaf nodes. Second, decision trees have
two types of nodes, chance nodes and decision nodes, which are appropriate to rep-
resent scheduled tasks in a process model and possible performers based on historical
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data, respectively. Furthermore, decision trees can reflect control-flow patterns such as
sequence, AND-split, XOR-split and loop. We also define three filters which allow for
a suitable recommendation depending on the characteristics of processes in the
decision trees: non-filter, k-recent performer filter and key-task performer filter.
Moreover, key performances of performers are predicted and the predicted perfor-
mance values (e.g., the predicted remaining flow time or total labor cost according to
performers) are projected onto the decision trees. The decision tree is then pruned with
a running case and filter. Finally, best performers are recommended to minimize
completion time or total labor cost.

The approach presented in this paper is implemented in the open-source process
mining framework ProM and it is evaluated through an experiment using a real-life
event log, taken from a Dutch Financial Institute. The proposed approach is also
expected to be applied to manage business processes or projects in which performer
assignment has a critical effect on business performance (e.g., software development
project, troubleshooting process, and product repair process) [7]. The recommendation
technique for performers presented in this paper can also be easily extended for
business roles (e.g. skill levels of software engineers) and organizations (e.g. com-
petitive teams).

2 Related Work

Process mining is a process management technique that allows for the analysis of
business processes based on logs. van der Aalst categorized three types of process
mining such as discovery, conformance and enhancement [3]. The last type is also
regarded as operational support. He also suggests three ways of process mining to
provide operational support: detect, predict and recommend. For the second type of
operational support, van der Aalst et al. demonstrated that the discovered process
models could be extended with information to predict the completion time of running
instances [8]. For the third type of operational support, Schonenberg et al. proposed a
recommendation service that could be used in combination with flexible process-
aware information systems to support end users during process execution by giving
recommendations on possible next steps [9].

There is also related work on job dispatching and task assigning to support
decision making in business process management. Ha et al. devised process execution
rules using individual worklists and proposed task assignment algorithms to maximize
the overall process efficiency under the limitation of the agent’s capacity [10].

The proposed approach in this paper differs from existing approaches. First of all,
we predict performance indicators based on historical data. Second, we introduce a
graph-based decision support tool (i.e. decision tree) to predict key performances by
analyzing historical data. Finally, compared to existing process mining algorithms, the
proposed approach can be applied to real-time decision support (i.e. filtered decision
tree) to recommend the best performer to optimize the chosen performance indicator
such as cost and time based on historical data.
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3 Performer Recommendation Using Process Mining

This section describes the overall procedure of the proposed technique as shown in
Fig. 1. There are information systems supporting and executing real operational
processes. Events which occur in operational business processes are used to discover a
process model. For process discovery, many process discovery algorithms have been
proposed so far by many researchers. In our approach a decision tree is constructed
from the given event log. Based on the historical data, performances are then predicted
and annotated with information about times and costs (e.g., the average time and cost
spent in a particular task) on the decision tree. Subsequently, the decision tree is
matched with a running case and filtered according to process characteristics. Finally,
the decision tree allows us to evaluate performances and recommend the best per-
former for the next possible tasks in terms of time and cost (e.g., the best performer in
terms of completion time, or the best performer in terms of total cost).

4 Decision Tree Construction for Performance Prediction

In this section, we describe how to construct a decision tree for performance pre-
diction based on an event log. To apply decision trees to the problem, tasks and
performers are considered as environmental factors and decision factors, respectively.
Therefore, in decision trees, tasks are represented by decision nodes which are
depicted by squares while performers are represented by chance nodes which are
depicted by circles. Then the information of predicted performances such as pro-
cessing time and labor cost is annotated on the decision tree.

To explain how to predict performances, we first define the concept of a per-
former-oriented event log, a performer-oriented activity log and their annotation. Then
we explain how to construct a decision tree from historical process data.

Fig. 1. Overview of performance recommendation based on historical data.
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4.1 Historical Process Model

We first define the concept of a historical process data. To be able to reason about
event logs and precisely specify the requirements for the logs, many researchers
proposed their formal models of process mining. In this research, we adopt and extend
the formal models presented by van der Aalst [3]. The performer-oriented event log in
Definition 1 is described to define the performer-oriented event and case [11].

Definition 1 (Performer-oriented event log). Let C and N be the sets of all pos-
sible case identifiers and activity names, respectively. For any case c [ C and name
n [ N, #n(c) is the value of attribute n for case c. Each case has a special mandatory
attribute trace: #trace(c) [ E� where E� is the set of all finite sequences over the set of
all possible event identifiers. ĉ = #trace(c) is a shorthand for referring to the trace of a
case. A performer-oriented event e is an event which is characterized by a performer.
A performer-oriented trace of case ĉ is a trace of a performer-oriented event e, and a
performer-oriented event log L ( C is a bag of performer-oriented cases.

Performer-oriented events are identified by their activity names, performers, time and
transactions, i.e., performer-oriented event e = (#activity(e), #performer(e), #time(e),
#trans(e)). Also, a performer-oriented case ĉ = \e1, e2, … en[ and a performer-
oriented event log L = [ĉ]. In this paper, we apply two following operators for
considering processing time and labor cost: Given an activity identifier a = #activ-
ity(e), operator1 is ‘‘#processingtime(a) = #completetime(a) - #starttime(a)’’ and
operator2 is ‘‘#labor_cost(a) = #performer(a).unitcost 9 #processingime(a)’’. Here
#performer(a).unitcost means labor cost per an hour of #performer(a).

Definition 2 (Performer-oriented activity log). Let L ( C be a bag of performer-
oriented cases as defined in Definition 1. If two operators are applied to a performer-
oriented event e, then a performer-oriented activity model (annotated with processing
time and labor cost) a = (#name(a), #performer(a), #processingtime(a), #laborcost(a)) and a
performer-oriented activity trace m̂c = \a1, a2, a3, …[ i.e., sequence of a, are
obtained. Therefore a performer-oriented activity log M = [m̂c], i.e., a bag of per-
former-oriented activity traces m̂c, is defined.

4.2 Construction of Decision Tree

In this section we explain the procedure of creating a decision tree for performance
prediction based on historical data. First we define formally the concept of performer-
oriented decision tree.

Definition 3 (Performer-oriented decision tree). A performer-oriented decision
tree is a tuple pDt = (T, t0, P, F, E) where T is the set of task nodes, t0 [ T is the root
node of the decision tree, P is the set of performer nodes, F is the set of final nodes and
E ( (T 9 P) [ (P 9 T) [ (P 9 F) is the set of directed arcs that determines the flow
direction of the tree. We assume that nodes are characterized for some attributes, e.g.,
task nodes have a label attribute and performer nodes have a label attribute and a
processing time attribute. For any t [ T and p [ P, #n(t) or #n(p) represent the value of
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attribute n for the node t or p. For example #label(node) refers to the value of the
attribute label of node.

Now let us define the procedure for constructing a performer-oriented decision
tree pDt based on historical process data. Having a performer-oriented activity log
M we define the steps for creating the decision tree as follows:

1. Create an empty performer-oriented decision tree pDt and a node called current
node that will point to the current task node traversed on pDt.

2. Start traversing every m̂c [ M and every a [ m̂c.
3. If t0 is empty, it means that is the first activity read from the activity log therefore

a new node is created and added as root of the decision tree i.e., t0 of pDt. The
creation of new nodes is as follows:
a. Create a new task node tnode assigning #label(tnode) = #name(a).
b. Create a new performer node pnode assigning #label(pnode)

= #performer(a) and #processingtime(pnode) = #processingtime(a).
c. Assign pnode as child of tnode.
d. Assign tnode as current node.

4. If t0 is not empty, it means the tree is being traversed.

a. Define a task node n that can take two possible values: the value of current
node or the value of any task node connected to current node by means of its
performer child node such that #label(current node-child) = #performer(a). After
that, three possible cases could occur

i. Node n such that #label(n) = #name(a) does not exist. In this case the steps
for new node creation are repeated (i.e., 3a, 3b, 3c and 3d) and the new
node is added to pDt.

ii. Node n such that #label(n) = #name(a) already exists, but the node n does
not have a child nchild that satisfy #label(nchild) = #performer(a). In this
case a new performer node is created assigning #label(pnode) = #per-

former(a) and #processingtime (pnode) = #processingtime(a). Then the new per-
former node is added as a child of the node n.

iii. Node n such that #label(n) = #name(a) already exists, and node n has a child
nchild that satisfy #label(nchild) = #performer(a). In this case add a new
processing time to the bag of processing times B(pt) of nchild such as
#processingtime(nchild) = #processingtime(a).

After completing the steps given before, we have each performer node on the
decision tree annotated with a bag of processing times B(pt). Thus each processing
time pt [ B(pt) represents a specific case in which the performer appears into the
performer-oriented activity log M.

The next step is to calculate expected values of KPI, such as predicted processing
time of individual performers, represented as performer nodes on the constructed
performer-oriented decision tree. In this paper we combine the approach used in [8]
with our approach as follows. First we have to convert the bag of processing times
B(pt) into a single value. For this we use the same prediction function used in [8], in
which the authors state that the bag of a chance node should be seen as a sample of
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times. Based on this, the sample mean (i.e., pt ¼
Pn

i¼1 pti=n) is a good estimator of
the population mean of processing times. Moreover, predicted processing times could
be calculated independent or dependent on previous performers.

Let us define first how to calculate predicted processing time independently.
If processing time is assumed to be independent on previous performers, the predicted
processing time of the pending task by a particular performer is given by the average
of the processing times contained in the union of bags B(pt) belonging to all the cases
corresponding to the same performer, that have the same previous partial trace r
without taking in consideration the performer who executed each previous activity in
r. For example, in Fig. 2, if we want to calculate predicted processing time assuming
independent of previous performers of W1 in task B in the first path of the decision
tree, we have to take in consideration traces r1 \(A,W1) (B,W1) (C,W3)[ and
r3 \(A,W2) (B,W1) (C,W3)[. The bag of the first trace is B(r1) = [3, 5, 7] and the
bag of the second trace is B(r3) = [2, 3]. As we defined before, the predicted pro-
cessing time of W1 on task B, assuming independent of previous performers, is
calculated with the average of the union of bags of r1 and r3 (B(r1) [ B(r3) = [3, 7,
5, 2, 3]). Therefore the predicted processing time of W1 in task B is 4 units of time.
It is important to remark that the last trace of Fig. 2, r4 \(A,W1) (C,W1) (B,W1)[ is
not taken in consideration in the calculation of predicted processing time assuming
independency of previous performers, although r4 has a performer W1 executing task
B, the previous partial trace is not the same than r1 and r3.

Now we define how to calculate predicted processing time dependently. If pro-
cessing time is assumed to be dependent on previous performers, the predicted pro-
cessing time of the pending task by a particular performer is given by the average of
the annotated processing times bag B(pt), belonging to the cases corresponding to the
same performer, that have exactly the same previous partial trace r, i.e. the task and
the performer who executed each previous activity in r should be the same.

5 Decision Tree Matching with Running Case

5.1 Running Process Case

We first present a model for running cases that can be monitored in process-aware
information systems. During process execution, a partial trace can be captured through
a running process. To represent the partial trace, the information of the running case is
defined as a partial trace of a performer-oriented activity trace of case.

Fig. 2. A simple annotated decision tree with each chance node, representing a performer,
annotated with processing times.
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Definition 4 (Running case). A running case is represented as a partial trace of
performer-oriented activity trace of a case. A partial trace of a running case rp

produces some representation. Formally, rp ( m̂c where m̂c is a performer-oriented
activity trace. A pending task, i.e., candidates of next task, is represented as
t [ A where A is a set of activities.

5.2 Decision Tree Matching

We now explain how to match a constructed decision tree with a running case. The
procedure of matching a decision tree with running cases is composed of three steps.

The first step is to select a filter and extract the subtrees from pDt according to the
characteristics of the filter selected. Business processes include many tasks that do not
affect the performance of performers because the tasks are not related between them.
For this reason, we propose three kinds of filters that help to enhance the effectiveness
of performance prediction. The filtering seeks to include only the tasks that have a
considerable effect on predicting the value of KPI.

We propose three kinds of filters: non-filter, k-recent performer filter and key-task
performer filter. The non-filter does not apply any special filtering over a decision tree
and it considers all cases that have exactly the same partial trace r than the running
case. If the non-filter is selected, only a single subtree is extracted from the con-
structed decision tree. The k-recent performer filter filters a decision tree with k-recent
performers. The filter considers that k-recent performers of a task affect the perfor-
mance of the performer for a pending task. If the k-recent performer filter is selected,
one or more subtrees are extracted from the constructed decision tree. The key-task
performer filter filters a decision tree with the performers of the key tasks. It considers
that the performers of important tasks affect the performance of the performer on a
pending task. The extracted subtrees are merged into a single subtree. If one assumes
independence on previous performers, the values of predicted processing time do not
need to be updated, whereas if one assumes dependence on previous performers, the
values of predicted processing time need to be recalculated and updated combining the
bags of processing times B(pt) of the nodes merged corresponding to the same task
and/or same performer depending on the filter selected.

Finally, we can evaluate and recommend performers using the performer-oriented
decision tree. The procedure for recommendation of the best performer for a given a
running case has two steps:

1. Evaluate performer, in this step performers are evaluated based on the predicted
processing times calculated in previous steps. The filtered performer-oriented
decision tree is traversed backwards. Starting from final nodes, a new attribute
called total remaining time is calculated and added to the node being traversed.
The attribute total remaining time is equal to the summation of the current node
traversed processing time attribute value plus the minimum total remaining time
attribute among its children nodes. From here it depends on which value of KPI we
want to apply. If the KPI value concerns only on remaining time, we use the attribute
total remaining time for evaluation. However, if the KPI value concerns about cost,
the evaluation is based on the attribute labor cost defined in previous sections.
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2. Recommend the best performer, the performer of the pending task who has the
highest predicted value of performance indicator in the evaluation step is then
recommended.

6 Implementation and Experiment

The technique presented in this paper was implemented as a plug-in for the ProM
Framework. The ProM framework integrates the functionality of several existing
process mining tools and provides additional process mining plug-ins [12, 13].

In this paper we implement the plug-in called DTMiner which takes an event log
as an input. The plug-in constructs a performer-oriented decision tree based on an
event log using the algorithm defined in previous sections. As an initial result, a
performer-oriented decision tree is displayed on the screen as shown in Fig. 5. Task
nodes are filled with blue color and performer nodes with green color. Node infor-
mation such as processing time is displayed when the mouse pointer hovers on the
node. The edge connection between task and performer nodes displays the predicted
processing time taken by the performer to reach the next task.

The analysis section of the plug-in is displayed at the bottom of the screen as
shown in Fig. 5. The completed activities of target running cases can be edited (i.e.,
added or removed) from here. Moreover different filter actions can be executed over
the decision tree constructed as described in previous sections (e.g., non-filter filter or
k-recent performer filter). Finally recommendation is provided to the user showing the
recommended paths by means of filling nodes and coloring edges with color red as
shown in Fig. 5. The predicted total remaining time (i.e. the predicted remaining time
needed to finish the case) for each decision and chance node is calculated and showed
when the mouse pointer hovers on the nodes.

We demonstrate the applicability of our approach using a real-life event log using
DTMiner plug-in. For the experiment we used the real-life event log of a Dutch
Financial Institute which was prepared by Business Process Intelligence Challenge
(BPIC’12). We first explain the log and describe how to preprocess the log for
experiment. Our approach is then validated and tested using the log.

6.1 Process Discovery from Event Log

As mentioned on the website1 of BPIC, this log contains 13,087 cases and 262,200
events over a six month period from October 2011 to March 2012. The process
represented in the event log is an application process for a personal loan or overdraft
within a global financing organization.

To provide some insight into the structure of the process, we have used Disco
which draws process models using the improved fuzzy algorithm. It also shows

1 See http://www.win.tue.nl/bpi2012/doku.php?id=challenge
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meaningful information such as variants, frequency, and duration and provides
powerful filtering features. We found that the whole process could be split into three
sub-processes by end events (i.e. A_DECLINED, A_CANCELLED, A_ACTIVATED).
In the next subsection, we experiment using the three groups split from whole cases.
The group that ends with A_DECLINED has 7,635 cases. The A_CANCELLED group
has 2,807 cases and the A_ACTIVATED group has 2,246 cases.

Before testing our approach the log needs to be preprocessed, e.g., event and cases
may be removed for various reasons. There are some events in the log where the
resource information is missing. We first removed all the cases that have at least one
event with NULL resource information because they cannot be used for the performer
recommendation method. Also, we removed all cases which have at least one event
with performers who have lower than 5 % of relative frequency. Second, we used only
cases whose sequence of activities is shared by at least 10 cases using variation
filtering functionality of Disco. Moreover, we consolidated all the resources per-
formed in automatic activities which have zero duration into a resource called
‘Automatic’. Finally, we split the filtered log into three sub-processes. As a result the
group that ends with A_DECLINED has 5280 cases. The A_CANCELLED group has
1024 cases and A_ACTIVATED group has 534 cases after filtering. Figure 3 shows the
process models of each group discovered by Disco.

(a) (b) (c) A_DECLINED A_CANCELLED A_ACTIVATED

Fig. 3. The sub-process models discovered from Dutch Financial Institute’s log

232 A. Kim et al.



6.2 Performance Recommendation

In this subsection, we present an example scenario with the log of Dutch Financial
Institute to describe how the proposed approach can be applied to performer’s allo-
cation problem with our plug-in for ProM. Using the plug-in with the example sce-
nario, the historical process log of a business process was analyzed to construct the
decision tree, which was used to recommend the best performers for an ongoing
instance of the process.

To improve the quality of the customer loan service, the Dutch Financial Institute
would want to reduce the lead time of their services. At the same time, they would
want to decrease the cost of their processes. For this reason, the purpose of this
experiment is to recommend the best performer who allows the remaining time and
the total labor cost to be reduced for each possible next task.

As depicted in Fig. 1 the overall procedure of the proposed approach consists of
three primary steps. Following these steps, we first constructed decision trees from the
log using our DTMiner plug-in. In this step, we used three sub-logs and constructed
decision trees separately. Figure 4 shows the decision trees constructed from the sub-
process that ends with ‘A_DECLINED’ and the annotated time is calculated by option
of ‘dependence’.

Fig. 4. The constructed decision tree from the sub-process that ends with ‘A_DECLINED’
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In the second step, we considered that one running case rp = (A_SUBMITTED,
Automatic, 0, 0) (A_PARTLYSUBMITTED, Automatic, 0, 0) (W_Afhandelen lead,
11259, 3.8, 8)[ was captured by information system. Also, we assumed that a man-
ager did not want to filter with previous performers, and he wanted to obtain the
recommended performers who can reduce the remaining time. Then, we set up the
running case and filter options as shown in the bottom of Fig. 5.

In the last step, information about the running case was matched with the decision
trees and its subtrees were extracted and merged. Also, the predicted KPIs were
updated. Finally, we evaluated performance and recommended the best performer for
each next possible task by means of reducing inferior performers from leaf nodes.
Figure 5 shows the pruned decision tree and the best performer of each task in sub-
process that ends with ‘A_DECLINED’.

After executing the running case, the pruned decision tree showed two possible
traces with different excution probabilities as shown in Fig. 5. The first trace
r1 = \A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen lead, W_Afhande-
len lead, A_PREACCEPTED, W_Completeren aanvraag, A_DECLINED[ had an
execution probability of 40 % and the second trace r2 = \A_SUBMITTED,
A_PARTLYSUBMITTED, W_Afhandelen lead, W_Afhandelen lead, W_Afhandelen
lead, A_DECLINED[ had an execution probability of 60 %. Based on this proba-
bilities, we can recommend the best performer for task ‘W_Afhandelen lead’ is
‘10913’, and the best performer for task ‘W_Completeren aanvraag’ is ‘10228’ in r1

in which the remaining time is 3.41 and is also the minimum remaining time. In the
same way, the best performer for task ‘W_Afhandelen lead’ is ‘11259’ in r2. Also,
Fig. 6 shows performer evaluation and recommendation for the sub-process that ends
with’A_CANCLLED’ when a running case rp = (A_SUBMITTED, Automatic, 0, 0)
(A_PARTLYSUBMITTED, Automatic, 0, 0) (W_Afhandelen lead, 10982, 2.3, 9)
(A_PREACCEPTED, Automatic, 0, 0)[ is given and 3-recent filter is selected.

Fig. 5. Performer evaluation and recommendation for the sub-process that ends with
‘A_DECLINED’
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7 Conclusion

In this paper, we presented a new approach that constructs decision trees based on
process event log for performer recommendation. Given a running case, our approach
to performer recommendation allows answering questions such as ‘‘Who is the best
performer to minimize remaining time until completion?’’ and ‘‘Who is the best
performer to save additional labor costs?’’ Those questions are dependent on various
aspects, e.g., orders or frequencies of performers. The solutions to the best performers
are discovered by considering the predicted values of KPI based on historical data.
To solve the problem, decision trees are constructed based on historical process events
to support simple decision making for performance recommendation.

One of the main contributions of this paper lies in a real-time decision support
technique for ongoing processes. Although existing decision support methods evaluate
alternatives in run-time, the proposed technique can recommend an alternative of
performers for every task in a running case during process execution based on the
probabilistic data of historical events.
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