Activity-Centric and Artifact-Centric Process
Model Roundtrip

Andreas Meyer®™) and Mathias Weske

Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
{Andreas.Meyer,Mathias.Weske}Ohpi.uni-potsdam.de

Abstract. Currently, two major process modeling paradigms exist:
activity-centric and artifact-centric. They focus on different first class
modeling constructs and therefore, they are eligible for different sce-
narios. Nevertheless, both paradigms compete for users raising the own
capabilities over the other’s ones neglecting that both paradigms are
compatible to each other such that one can transform one into the other
one. In this paper, we provide a set of algorithms to allow these trans-
formations as roundtrip, ie from an artifact-centric process model to an
activity-centric one and back and vice versa. To this end, we utilize a
synchronized object life cycle as mediator between both paradigms. We
show applicability of our algorithms by discussing them in combination
with an example.

Keywords: Process modeling - Activity-centric - Artifact-centric -
Object life cycle - Model transformation

1 Introduction

Since the 1990s, workflow modeling received much attention, because of the
need to specify organizations’ workflows and business processes structurally and
to use this representation for analysis, improvement, control, management, and
enactment of the processes [1]. Today, two process modeling paradigms are of
major importance: activity-centric and artifact-centric process modeling. struc-
tures (gateways) as first class modeling constructs and regards data objects in
specific data states as pre- and postconditions for activity enablement or as main
decision indicator at exclusive gateways. The main representative and industry
standard is the Business Process Model and Notation [2]. The usage of one data
object in different data states in combination with multiple activities allows
to derive a so-called object life cycle, which describes the manipulations per-
formed on a data object [3,4]. Artifact-centric process modeling [5-8] regards
data objects and their object life cycles as first class modeling constructs and
multiple data objects synchronize on their data state changes, ie data state
changes in different object life cycles need to be performed together. The syn-
chronization information is stored with the object life cycles instead of a control

N. Lohmann et al. (Eds.): BPM 2013 Workshops, LNBIP 171, pp. 167-181, 2014.
DOI: 10.1007/978-3-319-06257-0_14, (© Springer International Publishing Switzerland 2014

168 A. Meyer and M. Weske

unit. Subsequently, the order of activities is not modeled explicitly, but can be
extracted by analyzing the artifact-centric process model.

Currently, both process modeling paradigms compete for users, where espe-
cially the artifact-centric one lacks major evidence of applicability. It is proved
to be useful if the process flow follows from data objects as, for instance, in man-
ufacturing processes [7]. In contrast, in many domains, eg accounting, insurance
handling, and municipal procedures, the process flow follows from activities,
which need to be executed in a predefined order. While most research only con-
siders one paradigm, we present a set of algorithms allowing the transformation
of process models of one paradigm into the other one via a synchronized object
life cycle—a set of object of life cycles with their transitions synchronized indicat-
ing which data state changes need to occur simultaneously. Liu et al. transform
an activity-centric process model into a synchronized object life cycle utilizing
the notion of data object dominance [9]. However, the authors have a restricted
view on the usage of data objects, because only objects written by an activity
are considered for data state determination. Implicit state transitions resulting
from, for instance, underspecified process models are missing. The algorithms
presented here consider paths of process models to handle underspecification
properly. We also discussed this issue recently [10].

The remainder of the paper is structured as follows. Section 2 introduces four
types of process models, ranging from artifact-centric to activity-centric process
models before we discuss the algorithms to transform one process model type
into another one by ensuring a roundtrip from one of the mentioned paradigms
to the other and back. Finally, we discuss related work in Sect.4 and conclude
the paper in Sect. 5.

2 Types of Business Process Models

In the context of artifact-centric and activity-centric process models, we identi-
fied four different types of process models (cf. Definitions 2 to 5). Thereby, object
life cycles describe the allowed data object manipulations and the interdepen-
dencies of multiple data objects in the course of process model execution. These
can be combined in a synchronized object life cycle, which acts as mediator
between activity- and artifact-centric process models as both require to align to
this data flow specification. Further, an activity-centric process model may exist
in two variations: with and without information about attribute types. Below,
we introduce each process model type. But first, we start with the definition of
a data object and data object class. Both concepts are the major connection
between the artifact-centric and the activity-centric modeling paradigm.

Definition 1 (Data object and data object class). A data object class
C = (P,S,i,Sr) consists of a finite set P of attributes, a finite non-empty set
S of data states (P, S are disjoint), an initial data state i € S, and a non-empty
set Sp C S of final data states. A data object D = (s, P) consists of a data state
s € § and a finite set P C P of attributes. Each data object D is an instance of

Activity-Centric and Artifact-Centric Process Model Roundtrip 169

a data object class C such that (D) = C, where ¢ : D — C with D denoting
the finite set of all data objects and C denoting the finite set of all data object
classes. o

The concept of business artifacts [6,11] has been established based on the initial
work of Nigam and Caswell [5]. We define an artifact-centric process model —
closely related to existing work [11] — as follows.

Definition 2 (Artifact-centric process model). An artifact-centric process
model ACP = (Z,V,B) consists of a schema Z = (C, A, k) with a finite non-
empty set of data object classes C, the in-state function A : C xS — {true, false},
and the defined function k : C x P — {true, false}, a finite set V of tasks, and
a finite set B of business rules. Functions A and x evaluate to true or false
depending on the existence of a data object of class C' being in a data state s or
containing a value for the attribute p respectively. A task v = (label, O), v € V|
consists of a label and a finite set O € C of data object classes referring to
data objects being manipulated by this task. A business rule b = (pre, post, W)
consists of a precondition pre, a postcondition post, and a finite set W C V of
tasks manipulating data objects to meet the postcondition. A pre- as well as
a postcondition comprises a set of in-state and defined functions connected by
operators A and V. Thereby, a defined function may only contain a data object
class, which is used in at least one in-state function. o

Artifact-centric process models focus on the data objects involved in the process
with each object having a life cycle and being synchronized by their state transi-
tions. Following, a commonly used visual representation of such artifact-centric
process model is a synchronized object life cycle, which also describes the execu-
tion semantics of such process model. We define a synchronized object life cycle
as follows.

Definition 3 (Synchronized object life cycle). A synchronized object life
cycle £ = (L, SE) consists of a finite set £ of object life cycles and a finite set
SE of synchronization edges. An object life cycle L = (S,i,Sp,T,3,n), L € L,
consists of a finite set .S of data states, an initial data state ¢ € S, a non-empty set
Sr C S of final data states, a finite set T' C S x S of data state transitions, and a
finite set ¥ of actions representing the manipulations on data objects. Function
n: T — 3 assigns an action to each data state transition. Each object life cycle
L corresponds to a data object class C' such that (L) = C, where ¢ : L — C
with C denoting the finite set of all data object classes. A synchronization edge
e = (t1,t2), e € SE, connects two object life cycles Ly, Ly € £ by assigning an
edge between data state transitions ¢; € Ty, and te € T, being part of object
life cycles Ly and Lo respectively. o

For a data state transition from state sl to state s2 we refer to sl as source and
to s2 as target. The second process modeling paradigm focuses on the partial
order of activities, but also requires data flow information for execution, which is
comprised as second class modeling artifact. Therefore, the correct usage of data

170 A. Meyer and M. Weske

objects needs to be verified by checking them against the allowed manipulations
specified in the corresponding object life cycles. We define such activity-centric
process model as follows.

Definition 4 (Activity-centric process model). An activity-centric process
model M = (N,D,Q,C, F,type, u, &) consists of a finite non-empty set N C
AUG U E of nodes being activities A, gateways G, and Events £ C Eg U Eg
comprising start and end events, a finite non-empty set D of data objects, and a
finite non-empty set @ of activity labels (N, D, @ are pairwise disjoint). The set
of attributes P of a data object D € D is suppressed in this type of process model
such that P = 0. C C N x N is the control flow relation, ' C (Dx A) x (Ax D) is
the data flow relation representing read respectively write operations of activities
with respect to data objects; type : G — {zor, and} assigns to each gateway a
type, 4 : A — @ assigns to each activity a label, and £ : (G x (A x G) » D
assigns data conditions to control flow edges having an xor gateway as source. ¢

In this paper, we refer to read data objects as input and to written data objects
as output data objects. We call a gateway g € G an zor (and) gateway if
type(g) = zor (type(g) = and). An xor (and) gateway with two or more out-
going edges is called split (fork) and an xor (and) gateway with two or more
incoming edges is called join (merge). As usual, we assume process model M
to be structural sound, i.e., M contains exactly one start and one end event
and every node of M is on a path from the start to the end event. Further,
each activity of M has exactly one incoming and one outgoing control flow edge.
Finally, we define an activity-centric process model with attribute definitions as
extension to M as follows.

Definition 5 (Activity-centric process model with attribute definition).
An activity-centric process model with attribute definition MX is an activity-
centric process model M, where the set of attributes P of a data object D is
regarded. o

For all notions, we use subscripts, e.g., Cacp, S, Ay, and Dxys, to denote the
relation of the sets and functions introduced above to one of the process models.
Subscripts are omitted where the context is clear. Attributes are considered to be
flat for all process model types, ie attribute nesting is not in scope of this paper.

3 Roundtrip @
])) Alg. 1 K
In this section, we introduce five A|95®

algorithms to transform the differ- ‘%@
ent types of process models defined
in Sect.2 into each other. Figurel
shows allowed transformations and
aligns the corresponding algorithm to

Fig. 1. Transformations between different
types of process models

Activity-Centric and Artifact-Centric Process Model Roundtrip 171

Algorithm 1. Transformation of an artifact-centric process model ACP =
(Z,V, B) into a synchronized object life cycle £ = (L, SE)

1: create object life cycle for each data object class

2: for each business rule, add (if not existing yet) states used as precondition respectively
postcondition and
corresponding transitions labeled with the task name of the business rule to the respecting
object life cycle

3: add synchronization edges between transitions of different object life cycles extracted from
the same business rule

4: identify initial and final state in each object life cycle

NCIDD
2 St
. 2 o)
Cinit D> received N K
e
N analyze -
rejected

Fig. 2. Synchronized object life cycle

each of them. Algorithm 1 transforms an artifact-centric process model ACP
into a synchronized object life cycle £, which in turn can be transformed into
an activity-centric process model M by using Algorithm 2. The enrichment
of a process model M with data object attribute information towards MX is
described in Algorithm 3. Required information about the attributes is derived
from the respecting ACP. For the opposite transformation, we do not provide
an explicit algorithm, because it suffices to remove the attribute information to
derive M from M X . Further, Algorithm 4 allows the transformation of a process
model MX with attribute definition into a synchronized object life cycle £. It
can be easily adapted to use M as its basis. Finally, Algorithm 5 transforms a
synchronized object life cycle £ into an artifact-centric process model ACP by
considering information about attributes taken from MX. All algorithms will
be explained in detail and supported by brief algorithm representations; fully
detailed algorithm representations are provided in our technical report [12].
We start with Algorithm 1. First, the single object life cycles to be comprised
by the synchronized one are initialized, one for each data object class used in the
business rules of the respecting artifact-centric process model (line 1). Then, we
analyze the business rules to extract the data object states and the transitions
and dependencies between them. For each business rule, first, the data states
used as precondition or postcondition are extracted and added to the set of
states of the corresponding data object class if they are not yet present in the
respecting set of states. Next, for each data object class, we add a transition
from each state used in the precondition to each state used in the postcondition
where both states belong to that data object class. Afterwards, the tasks of
each business rule are extracted and the tasks labels are assigned to priorly

172 A. Meyer and M. Weske

added data state transitions. Thereby, multiple tasks used in one business rule
are combined such that their labels are concatenated with + as operator due
to the semantics of activity-centric process models, where all activities changing
the input data objects into the output data objects are comprised by one single
activity instead of multiple tasks affecting different state transitions as allowed
for artifact-centric process models (line 2). Finally, after identifying all data state
transitions for all data object classes used in one business rule, we synchronize
the different object life cycles with respect to these data states by adding a
synchronization edge between each two transitions belonging to different object
life cycles indicating that these are executed together (line 3). For ensuring the
alignment of each object life cycle to definition 3, the state without an incoming
transition becomes the initial state of the specific object life cycle and the all
states without an outgoing transition become a final data state (line 4).

Table 1. Artifact-centric process model

Data object classes: order, product, invoice

Set of tasks: receive, analyze, checkStock, manufacture, stocking, ship, sendInvoice, receivePayment, setPayed
Business rules: bl, b2, b3, b4, b5, b6, b7, b8

b1: Organization receives order from customer

Precondition: A(Order, init)

Tasks: receive(Order)

Postcondition: A(Order, received) A k(Order, CustomerNumber) A k(Order, ReceiveDate) A

#(Order, Products)

b3: Organization checks warehouse stock for product availability

Precondition: A(Order, confirmed) A A(Product, init)
Tasks: checkStock(Order, Product)
Postcondition: (A(Product, inStock) V A(Product, notInStock)) A A(Order, checked)

b8: Organiazation receives payment for order from customer

Precondition: A(Order, invoiced) A A(Invoice, sent) A k(Invoice, Amount)
Tasks: receivePayment(Invoice)

setPayed(Order)
Postcondition: A(Order, paid) A A(Invoice, paid) A k(Order, PaymentDate)

Table 1 shows an extract of an artifact-centric process model describing a
simple order and delivery process consisting of three data object classes, nine
tasks, and eight business rules, where three of them are completely presented.
Due to space requirements, the others are omitted. Based on Algorithm 1, this
process model can be mapped into the synchronized object life cycle shown
in Fig.2 consisting of three object life cycles corresponding to the data object
classes. Based on business rule b3, transitions from data state init to in stock
respectively not in stock labeled with the checkStock are added to the life cycle
of data object Product and a transition from confirmed to checked also labeled
checkStock is added for the life cycle of Order. Additionally, both transitions of
the product life cycle are synchronized with the one from the order life cycle.

Activity-Centric and Artifact-Centric Process Model Roundtrip 173

In Algorithm 2, the transformation of a synchronized object life cycle into
an activity-centric process model without attribute definitions (cf. definition 4),
the first step is the identification of data state transitions, which are executed
together. Therefore, all transitions with the same label are grouped into a com-
bined transition; more specifically, a combined transition comprises the transitive
closure over all transitions of the synchronized object life cycle being connected
by a synchronization edge. Next, the activity-centric process model is created
with a start event as only node (lines 1 to 2).

Then, we iteratively create the process model until no more nodes can be
extracted from the synchronized object life cycle (lines 3 to 8). With respect
to the nodes of the process model, we distinguish whether it has already been
checked for succeeding nodes or not. Each node needs to be checked exactly
once. Therefore, in each iteration, we start with the nodes that have not been
checked yet, i.e., the nodes added to the process model in the previous iteration.
For each such not yet checked node n, we derive the set of combined transi-
tions of the synchronized object life cycle, which are enabled after termination
of that node. Additionally, we derive the set of all combined transitions, which
might be enabled after termination of that node. Therefore, we determine the
combined transition and the corresponding transitions ¢ executed by node n
and collect all combined transitions of the synchronized object life cycle, which
contain a transition having the target state of ¢ as source state. We call these
combined transitions potentially enabled transitions. For each such potentially
enabled transition, we check whether it becomes enabled after termination of all
enabled nodes. If not, we remove that combined transition from the collection.
If the node contains output data objects reaching the final state of the corre-
sponding object life cycle, we add an activity labeled nop : state to the process
model, where state refers to the actual final data state. This activity does not
contain any data association. Additionally, a corresponding combined transi-
tion is added to the set NOP,, of no operation activities of the specific node
n such that this activity gets directly marked as checked for combined transi-
tions. Before checking the next node, the currently one is marked as checked for
combined transitions (line 4).

Next, we create for each enabled or potentially enabled combined transition
an activity and define the corresponding data object accesses, where the source
states of all transitions grouped in the respecting combined transition are read
while the target states are written. Third, the activity gets assigned the action
names of the transitions as activity label. Thereby, the names of multiple tran-
sitions are concatenated by using the 4. In post processing, a stakeholder may
adapt the activity labels (line 5).

Next, we establish the control flow of the activity-centric process model first
focusing on sequences, splits, and forks before we focus on joins and merges. If,
for a node, the number of combined transitions being enabled equals one, we
add a control flow edge from that node to the activity created for the combined
transition relating to the node. If the number exceeds one, we either add a split
if the set NOP,, of no operation activities of node n is empty or we intersect
the combined transitions to determine the split respectively fork for cases where

174 A. Meyer and M. Weske

Algorithm 2. Transformation of a synchronized object life cycle £ = (£, SE)
into an activity-centric process model M = (N, D, Q,C, F, type, u, &)

: group transitions executed together, i.e., identically named ones, into combined transitions
. create activity-centric process model with a single start event
. repeat
identify enabled combined transitions for all not yet checked nodes of the process model
for each identified combined transition, create an activity with input data objects
conforming to the source
states and output data objects conforming to the target states of the transitions comprised
in the respecting
combined transition; the label corresponds to one of the transition actions
6: add control flow edges to process model (if there exist several combined transitions for one
node, an xor
gateway with respecting edge conditions respectively an and gateway is added as well)
7: for activities with more than one incoming control flow edge, an xor respectively and
gateway is added
preceding that activity and the control flow is rerouted accordingly
8: until all nodes have been checked for enabled combined transitions
9: combine all paths of the process model with an xor gateway (if necessary) and route them
towards a single end
event also added to the process model

NOP,, is empty. If the intersection reveals at least one data object class being
used in all combined transitions, we create an xor gateway (split), otherwise we
create an and gateway (fork). Then, control flow edges from the node to the
created gateway as well as from the gateway to each activity being created for
respecting combined transitions are added to the process model. For splits, we
also add the edge conditions to the corresponding edges by assigning the data
object being input to the activity the edge targets to and being output of the
activity being the predecessor of the edge’s source, the split. The added gateway
gets marked as checked for combined transitions as we processed all paths with
above described actions (line 6). Afterwards, all activities having more than one
incoming control flow edge are adapted by adding an xor respectively an and
gateway, which consumes all these control flow edges. Further, a control flow
edge connects that gateway with the activity. To distinguish the type of gateway,
we retrieve the combined transition for each activity being the first preceding
one of the activity with multiple incoming control flow edges. We intersect these
combined transitions as described above. Data object classes used in all combined
transitions indicate an xor gateway, otherwise we set the gateway type to and.
Again, the added gateway is marked as checked for combined transitions (line 7).

We finalize the process model by adding a single end event. If there exists
exactly one node, or more specifically one activity, without an outgoing control
flow edge, either this node is connected to the end event via a control flow edge,
if it is commonly labeled, or the control flow edge targeting the node is rerouted
towards the end event and the node is removed from the process model, if it is
labeled with nop : state. In case there exist multiple nodes without an outgoing
control flow edge, an xor gateway is also added, which connects to the end event.
Each such node being labeled with nop : state, the control flow edge targeting
the node is rerouted to target the added xor gateway while the node gets removed

Activity-Centric and Artifact-Centric Process Model Roundtrip 175

Order Order Order Product Product
{init] [received] [rejected] a ..., [created] [in Stock]
T A oA T
Product Manu; -
Receive Analyze [notin stock] Stock
facture
order order product
product
Ship Send Receive
products invoice payment
Product Order Invoice Invoice
(instock [shipped] [sent] [paicl]
Product Invoice Order Order
[shipped] [init] [invoiced] [paid]

Fig. 3. Activity-centric process model

Order Product
[confirmed] [in stock]

Algorithm 3. Transformation of an activity-centric process model M =
(N,D,Q,C, F, type, u,§) into an activity-centric one MX with attribute defi-
nition

1: extract XML representation of activity-centric process model

2: for all data objects of the activity-centric process model do

3: extract attribute types from business rules of corresponding artifact-centric process model
4: extend XML representation of the data object accordingly to Listing 1

5: end for

from the process model. For all other such nodes, the node is connected to the
xor gateway via a control flow edge (line 9).

Figure 3 shows the activity-centric process model resulting from the synchro-
nized object life cycle given in Fig. 2 after applying Algorithm 2. After termina-
tion of activity Analyze order, the combined transition comprising all transitions
labeled checkStock and the one representing a no operation path for the reject
case are enabled. As there are two combined transitions enabled with one being
a no operation path, we add an xor gateway and control flow edges to the cor-
responding activities nop:reject and Check stock. The latter one has two input
(Order in state confirmed and Product in state init) and three output data
objects (Order in state checked and Product in states in stock and not in stock
respectively). The nop:reject activity has no associated data objects and gets
removed while integrating all paths into the single end event.

The first step towards the activity-centric process model with attribute def-
inition is to extract the XML representation from the activity-centric process
model as noted in line 1 of Algorithm 3. This extraction aligns to standard XML
extractions as, for instance, aligning to the one described in the BPMN specifi-
cation [2]. Afterwards, all data objects used in the process model are determined
(line 2). For each data object, the attribute types are extracted from the busi-
ness rule of the respecting artifact-centric process model, because the attribute
information is only available there (line 3). The correct business rule is identified
via the data object and its state as well as the type of access, i.e., read or write.

176 A. Meyer and M. Weske

A read data object is aligned to the precondition and a written data object is
aligned to the postcondition of the business rule containing the respecting data
state. Based on the defined functions specified in the pre- respectively postcon-
dition, the XML representation of the data object is extended with attribute
tags using extension mechanisms (line 4). For BPMN, the extension mechanism
is called extension points and allows to specify for each tag extension elements.
Listing 1 shows the structure of the XML representation of an extended data
object. The extension comprises lines 2 to 7 and is adapted to the number of
attributes extracted from the business rule. The attribute type is added to the
name field of the attribute tag; the value is set in the course of process execu-
tion. Generally, an empty value indicates that an attribute is not defined while
an existing value indicates successful attribute definition.

Based on business rule b1 from Table 1, data object Order being output
to activity Receive order in Fig. 3 gets extended with the attributes Customer-
Number, ReceiveDate, and Products; on model level, each has an empty value.

<dataObject id="”" name="">
<extensionElements>
<attribute id="" name="">value</attribute>

</extensionElements>
<dataState id="" name="" />
</dataObject>

N O Ul W N

Listing 1. Extended XML representation of data object comprising attribute infor-
mation

Algorithm 4. Transformation of an activity-centric process model MX with
attribute definition into a synchronized object life cycle £ = (£, SE)

1: create object life cycle for each data object class
2: for all traces through the activity-centric process model with attribute definition do
repeat
4: if node is an activity then
5: add input data states of node to corresponding object life cycle and connect them via
T-labeled
transitions to respecting previous states

6: synchronize transitions belonging to different object life cycles

7 add output data states of node to corresponding object life cycle and connect them
via transitions to respecting previous states considering succeeding xor blocks; the
label of the node is mapped to the action of the transition

8: synchronize transitions belonging to different object life cycles

9: end if

10: until trace has no next node

11: end for

12: identify initial and final state in each object life cycle

The extraction of a synchronized object life cycle from an activity-centric
process model is described in Algorithm 4. First, all data object classes used in
the activity-centric process model are identified before for each of them, the cor-
responding object life cycle consisting of the initial state only is created and the

Activity-Centric and Artifact-Centric Process Model Roundtrip 177

distinct data states are determined. Both information is stored in the correspond-
ing sets of data object classes and data states; the latter one exists separately
for each class (line 1). Next, we extract all traces from the start event to the
end event of the process model (loops are reduced to a single trace). Then, we
handle each trace separately (lines 2 to 11). Thereby, we first create the object
life cycle specific collections K¢, which will be used to store data states relating
to data objects of the corresponding class. The initial state of the object life
cycle is added to each collection. Then, all nodes of the trace are checked for
their type and processed accordingly (line 4).

If the node is an activity, the set of input data objects is received grouped
by data object classes. Afterwards, if not existing yet, the identified input data
states are added to the corresponding object life cycle and the transitions between
them are specified; from each entry of the data state collection K¢ to each data
state identified for the data object class, one transition is added to the object
life cycle, if source and target are different states. Each of these transitions gets
assigned 7 as action, which requires adaptation from the stakeholder in post
processing, because these transitions cover implicit data state transitions of the
process model. The last step in this regard is to replace the content of collections
K¢ with the data states valid for the current node (line 5). Adding a synchro-
nization edge between each two transitions just added and belonging to different
object life cycles (representing a combined transition) finalizes the processing of
the input data objects of the current node (line 6). Next, we process the output
data states of the node again grouped by data object classes. After extracting
the output data states, they need to be filtered whether they are used as edge
condition on outgoing control flow edges of an succeeding split such that not
all outgoing data states are utilized in this trace. If a data object class is part
of such edge condition, all data states not matching the condition are removed
from the set of identified output states. The remaining data states are added to
the set of states of the corresponding object life cycle and the new transitions are
specified. Comparably to the input data objects, one transition is added from
each data state currently stored in data state collection K¢ to each remaining
output data state independently from source and target state. Following, differ-
ently to the input data objects, self-loops are allowed. Afterwards, each newly
added transition gets assigned the activity label as action. Transitions being
skipped for addition due to existence get their action extended by the label of
the current node. Again, the action labeling can be adapted by the stakeholder
in post processing (line 7). The output state processing closes with the replace-
ment of data states as discussed for the input data objects before synchronization
edges are added between each two transitions being added or skipped above and
belonging to different object life cycles (line 8).

If the node is a split, the collection of data states for the data object class
used in the edge condition on the outgoing control flow edges is adapted. It is
set to the state of the data object used in this trace. After processing all traces,
we finalize Algorithm 4 by specifying each state without an incoming transition

178 A. Meyer and M. Weske

Algorithm 5. Transformation of a synchronized object life cycle £ = (£, SE)
into an artifact-centric process model ACP = (Z,V, B)

1: group transitions executed together, i.e., identically named ones, into combined transitions

2: for each object life cycle, create data object class with respecting sets of states and final
states and the initial state

3: for each data object, extract the attributes from the activity-centric process model with
attribute definition

4: create business rules with information from combined transitions (tasks, in-state functions)
and the attributes (defined functions)

5: build artifact-centric process model with a schema comprising all data object classes, the
business rules, and the set of tasks utilized in the business rules

as initial and each state without an outgoing transition as final state of the
respecting object life cycle (line 12).

Activity Check stock from the activity-centric process model with attribute
definition (visual representation in Fig. 3) adds the states init, in stock, and not
in stock with transitions from init to the other two states to the Product life
cycle and adds state checked with a transition from confirmed to checked to
the Order life cycle. The latter transition is synchronized with the others. All
transitions get assigned the action checkStock.

Finally, the transformation of an synchronized object life cycle into an
artifact-centric process model is described in Algorithm 5. This transformation
requires information about the attributes of the data objects, which are taken
from the corresponding activity-centric process model with attribute definition.
Similarly to Algorithm 2, we first group the transitions of the synchronized object
life cycle into combined transitions. Two transitions are executed together if they
are connected by a synchronization edge (line 1). Next, for each object life cycle
of the synchronized one, we create a corresponding data object class, which gets
the states, the initial state, and the final states from that object life cycle. Addi-
tionally, for each object life cycle, we create an empty Ko map, which stores
for each data state concatenated with a unique identifier a collection of defined
functions (line 2). Then, we extract the attribute information from the activity-
centric process model with attribute definition. Thereby, we parse the XML
structure and for each data object, the set of attribute types is extracted and
added to map K¢ as well as the set of attributes of the respecting class (line 3).
Afterwards, the combined transitions that have been determined in beginning are
processed. For each combined transition, one business rule is created. The task
affected by the business rule is derived from the action of the transitions (they
are equal for all transitions comprised by one combined transition) and added
to the business rule. Then, we derive the in-state and defined functions for both
the pre- and postcondition of the business rule. An in-state function consists of
the data object class the respecting transition belongs to and the source respec-
tively target data state of that transition. The defined functions are taken from
map K¢ of the data object class the respecting transition belongs to depending
on the source respectively target data state of that transition. The assignment
of these functions to the pre- and postcondition of the business rule requires

Activity-Centric and Artifact-Centric Process Model Roundtrip 179

a grouping of them with respect to both conditions as well as the correspond-
ing data object class. The elements within one group are connected by the V
operator while different groups belonging to the same condition are connected by
the A operator. Based on the condition, these two statements are added to the
pre- respectively postcondition of the business rule (line 4). Finally, the actual
artifact-centric process model consisting of a schema comprising all data object
classes, a set of business rules, and a set of tasks utilized in the business rules is
created (line 5).

Transformation of the synchronized object life cycle presented in Fig. 2 to the
artifact-centric process model partly shown in Table 1 is achieved by applying
Algorithm 5. Considering the combined transition comprising transitions with
label paid, a new business rule is created (cf. b8) with the source states being
added to the precondition and the target states being added to the postcondi-
tion for both affected data object classes. Differently to the representation in
Table 1, the corresponding task is summarized in one task with both classes as
arguments: pay(Order, Invoice). k(Order, PaymentDate) is extracted from the
corresponding data object of the activity-centric process model with attribute
definition. The data object classes are order, product, and invoice.

For both algorithms with required external information, we utilize this infor-
mation if it is present. Otherwise, the algorithms ignore the corresponding parts
resulting in incomplete process models. Algorithm 3 results in a plain XML rep-
resentation of the input activity-centric process model, ie for all data objects,
there do not exist any attribute tags. Algorithm 5 results in an artifact-centric
process model, where the set of attributes is empty for all data object classes.
Subsequently, no defined function exists in any business rule for resulting the
process model.

4 Related Work

Activity-centric business process modeling emerged from workflow modeling and
is described extensively in several works, e.g., [1], with BPMN being the widely
used industry standard [2]. The artifact-centric modeling paradigm was initiated
by IBM research [5] and further formalized by several researchers [6,11]. Addi-
tionally, deviations of this paradigm have been developed and process engines
executing such process models have been established [7,8]. Both paradigms com-
pete each other although they only provide different views on the same business
processes putting either activities or data objects in focus. Instead of keep-
ing both paradigms separated, we combined them with a set of transformation
algorithms. First steps towards an integration have been taken by extracting
unsynchronized [3,4] and synchronized [9] object life cycles from activity-centric
process models as well as by extracting activities statically from processing paths
through data objects [13] or goals [14] or dynamically from data dependencies
on missing data [15]. All mentioned approaches provide means to partly support
one of the five transformations introduced in this paper. Liu et al. [9] provide an
approach closely related to Algorithm 4 without attribute consideration. Addi-
tionally, they also assume that each data object written in a specific state is also

180 A. Meyer and M. Weske

read in this state, if the object gets read again. Besides considering data object
attributes, we also allow the read of a previously written object, if there exists
a path between the respecting states in the object life cycle (cf. [10], where we
discussed the issue of underspecification).

5 Conclusion

We presented a set of five algorithms allowing to transform artifact-centric
process models into activity-centric ones and vice versa via an synchronized
object life cycle acting as mediator between both process modeling paradigms.
We showed applicability of these algorithms by applying them to a simple order
and delivery process. In future work, we will implement the algorithms to allow
interested stakeholders to transform their processes from one paradigm into
another; e.g., transforming an artifact-centric process model into an activity-
centric one to apply existing analysis techniques.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures,
2nd edn. Springer, Berlin (2012)

2. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)

3. Ryndina, K., Kiister, J.M., Gall, H.C.: Consistency of business process models and
object life cycles. In: Kiihne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80-90.
Springer, Heidelberg (2007)

4. Eshuis, R., Van Gorp, P.: Synthesizing object life cycles from business process
models. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012.
LNCS, vol. 7532, pp. 307-320. Springer, Heidelberg (2012)

5. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428—-445 (2003)

6. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32(3), 3-9 (2009)

7. Miiller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131-149. Springer, Heidelberg (2007)

8. Kiinzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-
aware process management. J. Softw. Maint. 23(4), 205-244 (2011)

9. Liu, R., Wu, F.Y., Kumaran, S.: Transforming activity-centric business process
models into information-centric models for soa solutions. J. Database Manag.
21(4), 14-34 (2010)

10. Meyer, A., Polyvyanyy, A., Weske, M.: Weak conformance of process models with
respect to data objects. In: Services and their Composition (ZEUS) (2012)

11. Yongchareon, S., Liu, Ch., Zhao, X.: A framework for behavior-consistent special-
ization of artifact-centric business processes. In: Barros, A., Gal, A., Kindler, E.
(eds.) BPM 2012. LNCS, vol. 7481, pp. 285-301. Springer, Heidelberg (2012)

12. Meyer, A., Weske, M.: Activity-centric and artifact-centric process model
roundtrip. Hasso Plattner Institute at the University of Potsdam, Technical report
(2013)

13.

14.

15.

Activity-Centric and Artifact-Centric Process Model Roundtrip 181

Wang, J., Kumar, A.: A framework for document-driven workflow systems. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 285-301. Springer, Heidelberg (2005)

Vanderfeesten, 1., Reijers, H.A., van der Aalst, W.M.P.: Product-based workflow
support. Inf. Syst. 36(2), 517-535 (2011)

van der Aalst, W.M.P., Weske, M., Griinbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129-162 (2005)

	Activity-Centric and Artifact-Centric Process Model Roundtrip
	1 Introduction
	2 Types of Business Process Models
	3 Roundtrip
	4 Related Work
	5 Conclusion
	References

