
Synthesizing Object-Centric Models from
Business Process Models

Rik Eshuis(B) and Pieter van Gorp

Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
{h.eshuis,p.m.e.v.gorp}@tue.nl

Abstract. Business process models expressed in UML activity diagrams
can specify the flow of multiple stateful business objects among activities.
Such business process models implicitly specify not only the life cycles of
those objects, but also their communication. This paper presents a semi-
automated approach that synthesizes an object-centric system design
from a business process model referencing multiple objects. The object-
centric design can be used to perform the process in a flexible way.

1 Introduction

The classic way to model business processes is to specify atomic activities and
their ordering in a flowchart-like process model. In recent years, data-centric
modeling paradigms have increasingly grown popular in research and industry
as alternative to the classic, process-centric paradigm. Data-centric modeling
approaches aim to have a more holistic perspective on business process [1,2] and
support semi-structured, knowledge-intensive business processes [3].

These two paradigms are often positioned as alternatives, each having their
own modeling techniques and implementation technologies. Data-centric
approaches use for instance state machines [1,2,4,5] or business rules [6] as
modeling techniques, while process-centric approaches use process flow models
such as UML activity diagrams [7] or BPMN [8], where each modeling technique
is supported by dedicated engines.

In practice, however, the strengths of both approaches should be combined.
Process-centric models show clearly the behavior of the process, while in data-
centric models the expected behavior is difficult to predict, either since the
global process is distributed over different data elements or since the behavior
is specified in a declarative, non-operational way such as with the Guard-Stage-
Milestone approach [6]. Whereas data-centric approaches support more flexible
ways of performing business processes than process-centric approaches [9].

We envision that process modeling techniques will be used to specify the
main “default” scenarios of a process whereas a data-centric approach is actually
used to realize the approach, adding additional business rules for exceptional
circumstances. This allows actors to perform the process in the prescribed way
for a default scenario, but respond in a flexible way to exceptional circumstances

N. Lohmann et al. (Eds.): BPM 2013 Workshops, LNBIP 171, pp. 155–166, 2014.
DOI: 10.1007/978-3-319-06257-0 13, c© Springer International Publishing Switzerland 2014



156 R. Eshuis and P. van Gorp

not covered by the default scenarios, which is one of the strengths of object-
centric process management [9].

This paper outlines a semi-automated approach for creating an object-centric
design from a business process model that specifies the main scenarios in which
these objects interact. The approach uses synthesis patterns that relate process
model constructs to object life cycle constructs. The resulting object-centric
design can be refined with additional “non-default” behavior such as exceptions.

The approach uses UML, since UML offers a coherent notation for specifying
both process-centric and data-centric models. We specify business process models
that reference objects in UML activity diagrams with object flows. We use UML
statecharts (state machines) to model communicating object life cycles, which
specify an object-centric design.

The remainder of this paper is structured as follows. Section 2 summarizes
a previously developed approach for synthesizing one object life cycle from a
business process model that references the object. This paper extends that app-
roach to the case of multiple objects that interact with each other. Section 3
presents coordination patterns between multiple object life cycles that realize
object-flow constraints from the activity diagram. Section 4 presents execution
patterns between multiple object life cycles that realize control-flow constraints
from the activity diagram. Section 5 discusses various aspects of the approach.
Section 6 presents related work and Sect. 7 ends the paper with conclusions.

2 Preliminaries

We assume readers are familiar with UML activity diagrams [7] and UML stat-
echarts [7]. Figure 1 shows an activity diagram of an ordering process that we
refer to in the sequel.

2.1 Synthesizing Statecharts from Activity Diagrams

In previous work [10], we outlined an approach to synthesize a single object life
cycle, expressed as a hierarchial UML statechart, from a business process model,
expressed in a UML activity diagram. This paper builds upon that approach.
To make the paper self-contained, we briefly summarize the main results here.

Input to the synthesis approach is an activity diagram with object nodes.
Each object node references the same object but in a distinct state. An activity
can have object nodes as input or output. An activity can only start if all its input
object nodes are filled, and upon completion it fills all output object nodes [7].
If an activity has multiple input or output object nodes that reference the same
object, the object is in multiple states at the same time; then the object life
cycle contains parallelism. Object nodes are exclusive: if multiple activities require
the same object node as input, only one activity can read (consume) the object
node.

The synthesis approach consists of two steps. First, irrelevant nodes are fil-
tered from the activity diagram. Object nodes are relevant, but activities are



Synthesizing Object-Centric Models from Business Process Models 157

Fig. 1. Activity diagram of ordering process

not. Control nodes are only relevant if they influence the object nodes. Second,
the filtered activity diagram is converted into a statechart by constructing a
state hierarchy that ensures that the behavior of the statechart induced by the
state hierarchy is equivalent to the behavior of the filtered activity diagram.

A limitation of that approach is that it assumes that an activity diagram
references exactly one object. If an activity references multiple different objects,
for each object a different version of the activity diagram specific to that object
can be created. While this ensures that for each object a statechart skeleton can
be created, the generated statechart skeletons are not yet executable, lacking



158 R. Eshuis and P. van Gorp

Fig. 2. Statecharts for a few ordering process artifacts

coordination and execution logic. This paper removes that limitation by defining
coordination and execution patterns that materialize statechart skeletons syn-
thesized using the earlier defined approach [10]. Figure 2 shows for some objects
part of the object life cycles that are generated using the approach proposed in
this paper. The earlier defined synthesis approach [10] is used to construct the
skeletons of the life cycles, so the nodes and edges without labels. The approach
defined in this paper adds annotation to the skeletons. Also, it refines some
atomic states into compound states (not shown due to space limitations).

2.2 Terminology

To simplify the exposition, we introduce the following terminology for UML
activity diagrams with objects. Let A be an activity (action node) and let o:O[s]
be an object node representing object o of class O where o is in state s. Node :O
represents an anonymous object of class O.

A finalizes :O if there is an object flow from :O to A but not from A to :O.
A creates :O if there is an object flow from A to :O but not from :O to A.
A accesses :O if there is an object flow from :O to A and from A to :O. There

are two kinds of access-relation:
A reads :O if there is an object flow from :O[s] to A and from A to O:[s].
A updates :O if there is an object flow from :O[s] to A and from A to O:[s′]

for s �= s′.



Synthesizing Object-Centric Models from Business Process Models 159

3 Coordination Patterns

Coordination Patterns specify how different objects interact with each other.
They derive from the object flows of an activity diagram. Coordination Patterns
are not executable, since the patterns do not consider external event triggers.
Section 4 presents executable patterns.

3.1 Roles

For each pattern, we identify two different roles for objects: coordinator and
participant. Each activity that accesses an object has exactly one coordinator.
Performing the activity typically causes a state change with the coordinator.
This implies that the activity updates the coordinator. Any object that the
activity updates can play the role of coordinator.

If A does not access any object, there is no coordinator. We consider this
as a design error that can be detected automatically and fixed via additional
user input. If A accesses multiple objects, the user has to decide which object
is responsible for coordinating :P . Alternatively, from a process model with
object flows a priority scheme on object classes can be automatically derived, for
instance based on the dominance criterion [4]. The object class with the highest
priority can be made the default coordinator of :P .

In the sequel, we present patterns for which we assume each activity has one
coordinator, which is either derived automatically from the activity diagram or
designated by the user.

3.2 Creation

Activity A creates an object of type P under coordination of object :O. Figure 3
specifies the creation pattern: Since :O is coordinator, A changes the state of :O
from S1 to S2. When coordinator :O moves from S1 to S2, an object of type
P is created with action create(P ). Coordinator :O moves state in task A, but
task execution details are not considered for coordination patterns, only for the
execution patterns.

Fig. 3. Creation pattern



160 R. Eshuis and P. van Gorp

Fig. 4. Finalization pattern

Fig. 5. Read-access pattern

3.3 Finalization

Activity A finalizes object p:P by moving :P into its end state; finalization does
not mean that the object is destroyed, The finalization is realized (Fig. 4) by
sending a special event finalize to p:P that moves the life cycle to the end
state, provided :P is indeed in the expected state T1. It might be that the life
cycle has multiple end states; in that case, the other branches of the life cycle
can still continue after this branch has been finalized.

3.4 Read-Access

If activity A reads object p:P , then :P does not change state but is accessed. To
model this, we use a self-loop from and to the state of :P (Fig. 5) that is triggered
an event from the coordinator, but only if the state of :P is the precondition
for A.

3.5 Update-Access

If activity A updates object p:P under coordination of :O, then both :O and :P
move to a new state. The state change of :P is triggered by :O. Figure 6 shows
that :O generates an event that triggers p:P to move to its next state, but only
if p:P is currently in the state that is precondition for A.



Synthesizing Object-Centric Models from Business Process Models 161

Fig. 6. Update-access pattern

Fig. 7. Task pattern

4 Execution Patterns

Coordination Patterns only capture the object-flow constraints from activity
diagrams. To capture the control-flow constraints, we use execution patterns
based on control-flow constructs in activity diagrams.

4.1 Task

A task is invoked in an activity node. A typical distinction is between manual,
automated, or semi-automated tasks. For this paper, we only consider automated
tasks, but we plan to study other task types in future work. Figure 7 shows how
a task invocation can be specified in object-centric design. The coordinator :O
is responsible for invoking task A; there its precondition state S1 is decomposed
into two states, where busy A denotes that activity A is being executed. Upon
completion, the coordinator moves to S2 and informs the other object :P that
it has to move to new state T2. In Fig. 7, the underlying coordination pattern
is the update-access pattern, but the task pattern can be combined with any
coordination pattern or none.



162 R. Eshuis and P. van Gorp

Fig. 8. Decision pattern

4.2 Decision

An object node can have multiple outgoing flows. This represents exclusive
(choice) behavior: exactly one of the outgoing flows is taken if the object node is
active. The actual decision is taken in the control flow, represented by a diamond.

Figure 8 shows the decision execution pattern that realizes a decision in an
object-centric system. State S1 is precondition to both A and B; upon com-
pletion of either A or B object :O moves to S2 or S3. As in the case of the
task-pattern, the precondition state S1 is hierarchical. In this case, S1 contains
the decision logic to decide between A or B; note that this decision logic comes
from the control flow.

4.3 Merge

As in the previous case, an object node with multiple incoming edges represents
exclusive behavior: if one of the edges is activated, the object node is entered.
Again, the actual behavior is governed by control flow. The resulting merge pat-
tern is symmetric to the decision pattern and omitted due to space limitations.

4.4 Fork

So far, we have seen only sequential state machines that do not contain any
parallelism. However, an object can be in multiple states at the same time.
Parallelism is created by an activity node that takes the object in a certain state
as input and outputs the object in two distinct states, to the activity has two
output object nodes that reference the same object. Since activity nodes activate
all outgoing edges, both output object nodes are filled.

Figure 9 shows how the resulting fork pattern is specified. The state hier-
archy is constructed using the approach we developed previously [10]. The two
concurrent states model the two parallel branches started upon completion of
A. The state hierarchy for S2 and S3 derives from the task pattern. The state
hierarchy for S1 is not shown to simplify the exposition.



Synthesizing Object-Centric Models from Business Process Models 163

Fig. 9. Fork pattern

Note that if the object node with state S1 referred to another object, say :P ,
a create pattern would be present and no state hierarchy would be needed for
the object life cycle of :O. In that case, the concurrency is expressed implicitly
by having two object life cycles (:O and :P ) active at the same time.

4.5 Join

The join pattern is symmetric to the fork pattern (Fig. 10). Complicating factor
is how to invoke the activity C that actually synchronizes the parallel branches.
Using the task pattern, the parallel branches are only left if C completes. This
implies that C needs to be invoked in one of the parallel branches, but only if
the other branch is in the state that is precondition to C, i.e. S4. Which parallel
branch is chosen to invoke C is arbitrary.

5 Discussion

Order example. To obtain the statecharts in Fig. 2 from the activity diagram in
Fig. 1 all four coordination patterns are required. Next, the task, decision and
merge patterns are used. Using these patterns introduces compound states which
are not shown due to space limitations.

Multiple start states. If an object life cycle has multiple start states that are
active in parallel, the synthesis approach will create multiple create actions.
This results in multiple objects rather than a single object with parallelism.

We consider multiple start states as a design error: two parallel actions that
create the same object :O suggests that :O is created synchronously while the two
activities operate independently from one another. This error can be repaired



164 R. Eshuis and P. van Gorp

Fig. 10. Join pattern

by merging the activities that create the object. Another option is to insert an
initial state that leads to the start states.

Refining. The object-centric design generated using the approach can be further
refined, for instance to incorporate human-centric behavior. Suppose the com-
pany of the order process wishes to allow that a customer cancels a finalized
order that has not yet been paid by rejecting bill. Extending the global process
model of Fig. 1 results in a complex diagram with a lot of additional edges. In the
object-centric design, only a few local changes are required: extending the life
cycle of bill and order with additional cancelled states that can be reached if the
cancel event occurs. Note the guard condition on the transition from delivered
to closed in Fig. 2 prevents that a cancelled order is closed.

6 Related Work

As stated in the introduction, the last years a lot of research has been per-
formed in the area of data-centric process modeling approaches such as business
artifacts [1,4,5,11], case management [3,12], data-driven process models that
are executable [2,9,13] and process models with data flow [14–16]. Sanz [17]
surveys previous work on integrating the data and process perspective in the
field of entity-relation modeling in connection to data-centric process modeling.
This paper uses UML activity diagrams with object flows as data-centric process
modeling notation.

More related to this paper are approaches that distinguish between process
and data models and bridge the gap by deriving a process model that is coherent
with a predefined data model [18,19] or object behavior model [20–22]. This



Synthesizing Object-Centric Models from Business Process Models 165

paper takes the opposite route: it considers a process model with data (object)
flow and derives object behavior models that realize the process model.

Wahler and Küster [16] define an approach that resembles this paper most
closely, and we therefore discuss this work in more detail. They too consider
process models that manipulate stateful business objects, where each step in
a process model can lead to a change in one or more business objects. The
setting is a static set of predefined business objects that need to be “wired”
together, where the process model is used to derive the wiring relation. They
study how to design the wiring in such a way, by changing the process model,
that the resulting wired object design has a low coupling. In contrast, this paper
studies the problem of deriving an object-centric design from a process model
with object flows. The problem is then defining the set of business objects and
their behavior, which are both given in the approach of Wahler and Küster.

7 Conclusion

We have presented a semi-automated approach that synthesizes an object-centric
system design from a business process model that references multiple objects.
The approach distinguishes between coordination patterns that realize object-
flow constraints and execution patterns for control-flow constraints. The patterns
heavily use the state hierarchy for the object life cycles to establish a clear link
with the process model constructs. The resulting object-centric design can be
used to perform the process in a flexible way [22].

The approach is defined in the context of UML [7], but we plan to define a
similar approach for BPMN [8], which supports a similar object flow notation as
UML activity diagrams, though the BPMN semantics appears to be different.

We are currently implementing the patterns in a graph-transformation tool
[23]. We plan to apply the prototype to different examples from the literature [16]
and from student projects.

References

1. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428–445 (2003)

2. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware
process management. J. Softw. Maintenance 23(4), 205–244 (2011)

3. Swenson, K.D.: Mastering the Unpredictable: How Adaptive Case Management
Will Revolutionize the Way That Knowledge Workers Get Things Done. Meghan-
Kiffer Press, Tampa (2010)

4. Kumaran, S., Liu, R., Wu, F.Y.: On the duality of information-centric and activity-
centric models of business processes. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE
2008. LNCS, vol. 5074, pp. 32–47. Springer, Heidelberg (2008)

5. Yongchareon, S., Liu, C., Zhao, X.: An artifact-centric view-based approach to
modeling inter-organizational business processes. In: Bouguettaya, A., Hauswirth,
M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp. 273–281. Springer, Heidelberg
(2011)



166 R. Eshuis and P. van Gorp

6. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Inf. Syst.
38(4), 561–584 (2013)

7. UML Revision Taskforce: UML 2.3 Superstructure Specification. Object Manage-
ment Group, OMG Document Number formal/2010-05-05 (2010)

8. White, S., et al.: Business Process Modeling Notation (BPMN) Specification, Ver-
sion 1.1. Object Management Group. http://www.bpmn.org (2008)

9. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible, object-
centric approach for business process modelling. SOCA 4(3), 191–201 (2010)

10. Eshuis, R., Van Gorp, P.: Synthesizing object life cycles from business process
models. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012.
LNCS, vol. 7532, pp. 307–320. Springer, Heidelberg (2012)

11. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol.
5332, pp. 1152–1163. Springer, Heidelberg (2008)

12. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

13. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007)

14. Meyer, A., Weske, M.: Data support in process model abstraction. In: Atzeni, P.,
Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp.
292–306. Springer, Heidelberg (2012)

15. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the data-flow
perspective for business process management. Inf. Syst. Res. 17(4), 374–391 (2006)

16. Wahler, K., Küster, J.M.: Predicting coupling of object-centric business process
implementations. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 148–163. Springer, Heidelberg (2008)

17. Sanz, J.L.C.: Entity-centric operations modeling for business process management
- a multidisciplinary review of the state-of-the-art. In: Gao, J.Z., Lu, X., Younas,
M., Zhu, H. (eds.): SOSE, pp. 152–163. IEEE (2011)

18. van Hee, K.M., Hidders, J., Houben, G.J., Paredaens, J., Thiran, P.: On the rela-
tionship between workflow models and document types. Inf. Syst. 34(1), 178–208
(2009)

19. Reijers, H.A., Limam, S., van der Aalst, W.M.P.: Product-based workflow design.
J. Manag. Inf. Syst. 20(1), 229–262 (2003)

20. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business
processes. In: Fagin, R. (ed.): ICDT, ACM International Conference Proceeding
Series, vol. 361, pp. 225–238. ACM (2009)

21. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for
object life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

22. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Generating busi-
ness process models from object behavior models. IS Manag. 25(4), 319–331 (2008)

23. Van Gorp, P., Eshuis, R.: Transforming process models: executable rewrite rules
versus a formalized Java program. In: Petriu, D.C., Rouquette, N., Haugen, Ø.
(eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 258–272. Springer, Heidelberg
(2010)

http://www.bpmn.org

	Synthesizing Object-Centric Models from Business Process Models
	1 Introduction
	2 Preliminaries
	2.1 Synthesizing Statecharts from Activity Diagrams
	2.2 Terminology

	3 Coordination Patterns
	3.1 Roles
	3.2 Creation
	3.3 Finalization
	3.4 Read-Access
	3.5 Update-Access

	4 Execution Patterns
	4.1 Task
	4.2 Decision
	4.3 Merge
	4.4 Fork
	4.5 Join

	5 Discussion
	6 Related Work
	7 Conclusion
	References


