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Abstract. Nominal sets, introduced to Computer Science by Gabbay
and Pitts, are useful for modeling computation on data structures built
of atoms that can only be compared for equality. In certain contexts it
is useful to consider atoms equipped with some nontrivial structure that
can be tested in computation. Here, we study nominal sets over atoms
equipped with both relational and algebraic structure. Our main result
is a representation theorem for orbit-finite nominal sets over such atoms,
a generalization of a previously known result for atoms equipped with
relational structure only.

1 Introduction

Nominal sets [Pit13] are sets whose elements depend on atoms – elements of a
fixed countably infinite set A. Examples include:

• the set A itself,
• the set An of n-tuples of atoms,
• the set A(n) of n-tuples of distinct atoms,

• the set A∗ of finite words over A,
• the set of graphs edge-labeled with atoms, etc.

Any such set is acted upon by permutations of the atoms in a natural way,
by renaming all atoms that appear in it. We require the result of applying a
permutation of atoms to each element of a nominal set to be determined by a
finite set of atoms, called a support of this element. Sets A, An and A

(n) are
nominal, since each tuple of atoms is supported by the finite set of atoms that
appear in it. Another example of a nominal set is A∗, where a word is supported
by the set of its letters. The set of all cofinite subsets of atoms is also nominal:
one of the supports of a cofinite set is simply its complement.

Nominal sets were introduced in 1922 by Fraenkel as an alternative model
of set theory. In this context they were further studied by Mostowski, which is
why they are sometimes called Fraenkel-Mostowski sets. Rediscovered for the
computer science community in the 90s by Gabbay and Pitts [GP02], nominal
sets gained a lot of interest in semantics. In this application area atoms, whose
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only structure is equality, are used to describe variable names in programs or
logical formulas. Permutations of atoms correspond to renaming of variables.

In parallel, nominal sets were studied in automata theory [Pis99], under the
name of named sets with symmetries1, and used to model computation over
infinite alphabets that can only be accessed in a limited way.

An example of such a model that predates nominal sets are Francez-Kaminski
register automata [KF94] that, over the alphabet of atoms A, recognize languages
such as ”the first letter does not appear any more”:

L = {a1 . . . an : a1 �= ai for all i > 1}.

To this end, after reading the first letter the automaton stores it in its register.
Then it reads the rest of the input word and rejects if any letter equals the one
in the register. The automaton has one register and three states: 0, 1,�, where
0 is initial and � is rejecting. Alternatively, in the framework of nominal sets,
this may be modelled as an automaton with an infinite state space {0,�} ∪ A

and the transition relation defined by the graph:
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In [BKL11] and [BKL] Bojańczyk, Klin and Lasota showed that automata
over infinite alphabets whose letters are built of atoms that can only be tested

1 The equivalence between named sets and nominal sets was proven in [FS06]
and [GMM06].
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for equality, are essentially automata in the category of nominal sets. As a contin-
uation of this line of research, Turing machines that operate over such alphabets
were studied in [BKLT13].

The key notion in the above constructions is orbit-finiteness – a more relaxed
notion of finiteness provided by nominal sets. A nominal set is considered orbit-
finite if it has finitely many elements, up to permutations of atoms. The set
A of atoms is orbit-finite: in fact, it has only one orbit. This single orbit can
be represented by any atom a, because a can be mapped to every other atom
by a suitable permutation. Another example of an orbit-finite set is the set of
configurations of any register automaton. The automaton described above has
infinitely many configurations. However, there are only three of them up to
permutations: the initial state 0 with an empty register, state 1 with an atom
stored in the register and the rejecting state � with an empty register.

Atoms turn out to be a good framework to speak of data that can be accessed
only in a limited way. Nominal sets, as defined in [Pit13], intuitively correspond
to data with no structure except for equality. To model a device with more
access to its alphabet one may use atoms with additional structure. An example
here are atoms with total order. A typical language recognized by a nominal
automaton over such atoms is the language of all monotonic words:

L = {a1 . . . an : ai < aj for all i < j}.

In [BKL] atoms are modelled as countable relational structures. In this setting
the definition of a nominal set remains essentially the same. The only change
is that we consider only those permutations of atoms that preserve and reflect
the relational structure, i.e., we talk about automorphisms of atoms. A choice
of such automorphisms is called an atom symmetry.

Since interesting orbit-finite nominal sets are usually infinite (for example, the
transition relation of the automaton above), to manipulate them effectively we
need to represent them in a finite way. In [BKL] Bojańczyk et al. provide such
a concrete, finite representation of orbit-finite nominal sets for atoms that are
homogeneous relational structures over finite vocabularies (the corresponding
atom symmetries are called Fräıssé symmetries). Each element of a nominal
set is represented as a finite substructure of atoms modulo some group of local
automorphisms. There are two technical assumptions needed for the theorem
to hold: existence of least supports and so-called fungibility (meaning roughly
that one can always find an automorphism that fixes a concrete substructure of
atoms without fixing other atoms).

In some contexts, a relational structure of atoms is not enough. In [BL12]
Bojańczyk and Lasota use the theory of nominal sets to obtain a machine-
independent characterization of the languages recognized by deterministic timed
automata. To do so they introduce atoms with a total order and a function sym-
bol +1 and they relate deterministic timed automata to automata over these
timed atoms. An example of a language recognized by such a nominal automaton
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is the set of all monotonic words where the distance between any two consecutive
letters is smaller than 1:

L = {a1 . . . an : ai−1 + 1 > ai > ai−1 for all i > 1}.
One could easily think of other types of potentially useful functional dependen-
cies on atoms, such as composing two atoms to get another atom. It is therefore
natural to ask if the representation theorem can be generalized to cover atoms
with algebraic as well as relational structure. This paper gives a positive answer
to this question.

The proof of the representation theorem for atoms with both relational and
function symbols follows the same pattern as the proof for relational structures
given in [BKL]. There are, however, some subtleties, since instead of finite sup-
ports one has to consider finitely generated supports (which can be infinite) and,
as a result, the notion of fungibility becomes less clear.

The structure of this paper is as follows. In Section 2 we define atom symme-
tries and introduce the category of G-sets. In Section 3, following [BKL11,BKL],
we focus on the theory of nominal sets for Fräıssé symmetries, introduce the cat-
egory of nominal sets, and explain the notion of the least finitely generated
support. In Section 4 we define the property of fungibility and finally prove the
representation theorem for fungible Fräıssé symmetries that admit least finitely
generated supports.

2 Atom Symmetries

A (right) group action of a groupG on a set X is a binary operator · : X×G → X
that satisfies following conditions:

for all x ∈ X x · e = x, where e is the neutral element of G,

for all x ∈ X and π, σ ∈ G x · (πσ) = (x · π) · σ.
The set X equipped with such an action is called a G-set.

Example 2.1. For a set X let Sym(X) denote the symmetric group on X , i.e.,
the group of all bijections of X . Take any subgroup G of the symmetric group
Sym(X). There is a natural action of the group G on the set X defined by
x · π = π(x).

Definition 2.2. An atom symmetry (A, G) is a set A of atoms, together with a
subgroup G ≤ Sym(A) of the symmetric group on A.

Example 2.3. Examples of atom symmetries include:

– the equality symmetry, where A is a countably infinite set, say the natural
numbers, and G = Sym(A) contains all bijections of A,

– the total order symmetry, where A = Q is the set of rational numbers, and
G is the group of all monotone permutations,
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– the timed symmetry, where A = Q is the set of rational numbers, and G is
the group of all permutations of rational numbers that preserve the order
relation ≤ and the successor function x �→ x+ 12.

For any element x of a G-set X the set

x ·G = {x · π | π ∈ G} ⊆ X

is called the orbit of x. Orbits form a partition of X . The set X is called orbit-
finite if the partition has finitely many parts. Each of the orbits can be perceived
as a separate G-set. Therefore we can treat any G-set X as a disjoint union of
its orbits.

Example 2.4. For any atom symmetry (A, G) the action of G on A extends
pointwise to an action of G on the set of tuples A

n. In the equality symmetry,
the set A2 has two orbits:

{(a, a) | a ∈ A} {(a, b) | a �= b ∈ A}.
In the timed symmetry, the set A2 is not orbit-finite. Notice that for any a ∈ Q

each of the elements (a, a+ 1), (a, a+ 2), . . . is in a different orbit.

Let X be a G-set. A subset Y ⊆ X is equivariant if Y · π = Y for every
π ∈ G, i.e., it is preserved under group action. Considering a pointwise action
of a group G on the Cartesian product X × Y of two G-sets X,Y we can define
an equivariant relation R ⊆ X × Y . In the special case when the relation is a
function f : X → Y we obtain a following definition of an equivariant function

f(x · π) = f(x) · π for any x ∈ X, π ∈ G.

The identity function on any G-set is equivariant, and the composition of two
equivariant functions is again equivariant, therefore for any group G, G-sets and
equivariant functions form a category, called G-Set.

Definition 2.5. For any x in a G-set X , the group

Gx = {π ∈ G | x · π = x} ≤ G

is called the stabilizer of x.

Lemma 2.6. If Gx ≤ G is the stabilizer of an element x of a G-set X then
Gx·π = π−1Gxπ for each π ∈ G.

Proof. Obviously π−1Gxπ ⊆ Gx·π. On the other hand, x · (πσπ−1) = x for any
σ ∈ Gx·π. Hence πGx·ππ−1 ⊆ Gx, which means that Gx·π ⊆ π−1Gxπ. As a result
Gx·π = π−1Gxπ, as required.

2 The timed symmetry was originally defined in [BL12] for A = R. Considering the
rational numbers instead of the reals makes little difference but is essential for our
purposes. To fit the Fräıssé theory we need the set of atoms to be countable.
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Proposition 2.7. Let x be an element of a single-orbit G-set X. For any G-set
Y equivariant functions from X to Y are in bijective correspondence with those
elements y ∈ Y for which Gx ≤ Gy.

Proof. Given an equivariant function f : X → Y , let y = f(x). If π ∈ Gx then

y · π = f(x) · π = f(x · π) = f(x) = y,

hence Gx ≤ Gy. On the other hand, given y ∈ Y such that Gx ≤ Gy, define a
function f : X → Y by f(x · π) = y · π. Function f is well-defined. Indeed, if
x · π = x · σ then πσ−1 ∈ Gx ⊆ Gy, hence y · π = y · σ.

It is easy to check that the two above constructions are mutually inverse.

3 Fräıssé Symmetries

In the following, we shall consider atom symmetries that arise as automorphism
groups of algebraic structures. Such symmetries behave particularly well if those
structures arise as so-called Fräıssé limits, which we introduce in this sections.

3.1 Fräıssé Limits

An algebraic signature is a set of relation and function names together with
(finite) arities. We will consider structures over a fixed finite algebraic signature.
For two structures A and B, an embedding f : A → B is an injective function
from the carrier of A to the carrier of B that preserves and reflects all relations
and functions in the signature.

Definition 3.1. A class K of finitely generated structures over some fixed alge-
braic signature is called a Fräıssé class if it:

– is closed under isomorphisms as well as finitely generated substructures and
has countably many members up to isomorphism,

– has joint embedding property: if A,B ∈ K then there is a structure C in K
such that both A and B are embeddable in C,

– has amalgamation: if A,B,C ∈ K and fB : A → B, fC : A → C are em-
beddings then there is a structure D in K together with two embeddings
gB : B → D and gC : C → D such that gB ◦ fB = gC ◦ fC.

Examples of Fräıssé classes include:

– all finite structures over an empty signature, i.e., finite sets,
– finite total orders,
– all finite structures over a signature with a single binary relation symbol,

i.e., directed graphs,
– finite Boolean algebras,
– finite groups,
– finite fields of characteristic p.
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Classes that are not Fräıssé include:

– total orders of size at most 7 – due to lack of amalgamation,
– all finite fields – due to lack of joint embedding property.

Some Fräıssé classes admit a stronger version of amalgamation property. We
say that a class K has strong amalgamation if it has amalgamation and more-
over, gB ◦ fB(A) = gC ◦ fC(A) = gB(B) ∩ gC(C). It means that we can make
amalgamation without identifying any more points than absolutely necessary.

Example 3.2. All the Fräıssé classes listed above, except for the class of finite
fields of characteristic p, have the strong amalgamation property.

The age of a structure U is the class K of all structures isomorphic to finitely
generated substructures of U. A structure U is homogeneous if any isomorphism
between finitely generated substructures of U extends to an automorphism of
U. The following theorem says that for a Fräıssé class K there exists a so-called
universal homogeneous structure of age K. We shall refer to it also as the Fräıssé
limit of the class K (see e.g. [Hod93]).

Theorem 3.3. For any Fräıssé class K there exists a unique, up to isomor-
phism, countable (finite or infinite) structure UK such that K is the age of UK
and UK is homogeneous.

Example 3.4. The Fräıssé limit of the class of finite total orders is 〈Q,≤〉. For
finite Boolean algebras it is the countable atomless Boolean algebra.

A structure U is called weakly homogeneous if for any two finitely generated
substructures A,B of U, such that A ⊆ B, any embedding fA : A → U extends
to an embedding fB : B → U. It turns out that a countable structure U is
homogeneous if and only if it is weakly homogeneous (see [Hod93]). Hence, one
way to obtain a Fräıssé class K is to take a weakly homogeneous, countable
structure U and simply consider its age.

Fact 3.5. Every countable, weakly homogeneous structure U is a Fräıssé limit
of its age.

Example 3.6. Consider an algebraic signature with a single binary relation
symbol ≤, and two unary function symbols +1 and −1. It is not difficult to see
that the structure 〈Q,≤,+1,−1〉 is countable and weakly homogeneous. There-
fore it is the Fräıssé limit of its age. Observe that its automorphism group con-
tains precisely those permutations of rational numbers which are monotone and
preserve the successor funtion x �→ x+ 1.

From a Fräıssé class K we obtain an atom symmetry (AK, GK), where AK is
the carrier of UK and GK = Aut(UK) is its group of automorphisms. Such an
atom symmetry is called a Fräıssé symmetry.

For simplicity we frequently identify the elements of age K with finitely gen-
erated substructures of UK.
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Example 3.7. All symmetries in Example 2.3 are Fräıssé symmetries. The
equality symmetry arises from the class of all finite sets, the total order symme-
try – from the class of finite total orders and the timed symmetry – from the
class of all finitely generated substructures of 〈Q,≤,+1,−1〉 (see Example 3.6).

The timed symmetry was originally defined based on a structure without the
unary function −1. In the context of [BL12] adding −1 to the signature does not
make any difference since the automorphism groups of both structures are the
same. As we will show, thanks to this slight modification the timed symmetry
satisfies all the conditions of our representation theorem.

3.2 Least Supports

From now on, we focus on G-sets for groups arising from Fräıssé symmetries.
Consider such a symmetry (AK, GK) and a GK-set X . By π|C we denote the
restriction of a permutation π to a subset C of its domain.

Definition 3.8. A set C ⊆ AK supports an element x ∈ X if x · π = x for all
π ∈ GK such that π|C = id|C . A GK-set is nominal in the symmetry (AK, GK)
if every element in the set is supported by the carrier of a finitely generated
substructure A of UK. We call A a finitely generated support of x.

Nominal GK-sets and equivariant functions between them form a category
GK-Nom which is a full subcategory of GK-Set. When the symmetry (AK, GK)
under consideration is the equality symmetry, the category GK-Nom coincides
with the category Nom defined in [Pit13].

Example 3.9. For any Fräıssé symmetry (AK, GK) the sets AK and A
n
K are

nominal. A tuple (d1, ..., dn) is supported by the structure generated by its ele-
ments.

Lemma 3.10. The following conditions are equivalent:
(1) C supports an element x ∈ X;
(2) for any π, σ ∈ GK if π|C = σ|C then x · π = x · σ.

Proof. For the implication (1) =⇒ (2), notice that if π|C = σ|C , then πσ−1 acts
as identity on C, hence x · πσ−1 = x and x · π = x · σ, as required. The opposite
implication follows immediately from the definition if we take σ = id.

It is easy to see that if an element x ∈ X has a finitely generated support
A then it is also supported by the finite set C of its generators. Thus we can
equivalently require x to be finitely supported.

Fact 3.11. A GK-set is nominal if and only if its every element has a finite
support.
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Example 3.12. Consider the structure 〈Q,≤,+1〉. It is countable and weakly
homogeneous, and therefore gives rise to a Fräıssé symmetry. This symmetry is
almost the same as the timed symmetry (the carriers and automorphim groups of
both 〈Q,≤,+1〉 and 〈Q,≤,+1,−1〉 are the same). It has, though, some unwanted
properties. Notice that an automorphism π of 〈Q,≤,+1〉 which preserves an
atom a ∈ Q necessarily preserves also a + i for any integer i. Therefore, if
an element x of a nominal set is supported by a substructure generated e.g.
by {1, 30 1

2 , 100
5
7} it is also supported by its proper substructure generated by

{1000, 300 1
2 , 105

5
7}. Hence, in this case for any finitely generated support A of

an element x one can find a finitely generated substructure B, which is properly
contained in A and still supports x.

An element of a nominal set has many supports. In particular, supports are
closed under adding atoms. If every element of a nominal set X has a unique
least finitely generated support, we say that X is supportable. As shown in Ex-
ample 3.12 it is not always the case. It turns out that to check if a single-orbit
nominal set is supportable, one just needs to find out if any element of the set
has the least finitely generated support.

Lemma 3.13. If A ⊆ UK is the least finitely generated support of an element
x ∈ X, then A · π is the least finitely generated support of x · π for any π ∈ GK.

Proof. First we prove that A · π supports x ·π. Indeed, if an arbitrary ρ ∈ GK is
an identity on A · π, then πρπ−1 is an identity on A, hence x · (πρπ−1) = x. As
a result (x · π) · ρ = x · π, as required.

Now let B ⊆ UK be any finitely generated support of x · π. We need to show
that A ·π ⊆ B. A reasoning similar to the one above shows that B ·π−1 supports
x, from which we obtain A ⊆ B ·π−1. Therefore, since π is a bijection, A ·π ⊆ B.

Definition 3.14. A Fräıssé symmetry (AK, GK) is supportable if every nominal
GK-set is supportable.

We call a structure U locally finite if all its finitely generated substructures
are finite. Notice that if the universal structure UK is locally finite then being
supportable is equivalent to finitely generated supports being closed under finite
intersections. The same holds under the weaker assumption that any finitely
generated structure has only finitely many finitely generated substructures.

Example 3.15. If we have only relation symbols in the signature it is obvious
that any finitely generated structure is finite. One can prove that in the equality
symmetry the intersection of two supports is a support itself. Hence the equality
symmetry is supportable. The same holds for the total order symmetry. Both
facts are proved e.g. in [BKL].

From Example 3.12 we learned that the symmetry arising from the structure
〈Q,≤,+1〉 is not supportable (even though the finitely generated supports are
closed under finite intersections). In the structure 〈Q,≤,+1,−1〉 all the elements
a+ i are bound together and, as a result, we obtain a Fräıssé symmetry that is
supportable.
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Proposition 3.16. The timed symmetry is supportable.

Proof. Notice that any finitely generated substructure of 〈Q,≤,+1,−1〉 has only
finitely many substructures. Hence it is enough to show that finitely generated
supports are closed under finite intersections.

Take any two finitely generated substructures A, B of 〈Q,≤,+1,−1〉. Let A
and B be the sets of elements of A and B that are contained in the interval [0, 1).
These are (finite) sets of generators. Moreover, the structure A∩B is generated
by A∩B. Hence, it is enough to show that if an automorphism π acts as identity
on A ∩B, then π can be decomposed as

π = σ1τ1σ2τ2...σnτn,

where σi acts as identity on A and τi acts as identity on B. Indeed, since each
σi, τi acts as identity on A and B respectively, we have x ·σi = x and x · τi = x.
As a result x · π = x.

Let l be the smallest and h the biggest element of the set A ∪B. Notice that
h − l < 1. Take two different open intervals (lA, hA), (lB, hB) of length 1 such
that

[l, h] ⊆ (lA, hA) and [l, h] ⊆ (lB, hB).

Now, consider sets A′ = A∪{lA, hA}, B′ = B∪{lB, hB}. Take an automorphism
π that acts as identity on A∩B = A′ ∩B′. Obviously π is a monotone bijection
of the set of rational numbers. Therefore, since the total order symmetry is
supportable,

π = σ′
1τ

′
1σ

′
2τ

′
2...σ

′
nτ

′
n,

where σ′
i, τ

′
i are monotone bijections of Q and σ′

i act as identity on A′, τ ′i act as
identity on B′. For each of the permutations σ′

i, τ
′
i take an automorphism σi, τi

of the universal structure 〈Q,≤,+1,−1〉, such that

σ′
i|(lA,hA) = σi|(lA,hA), τ ′i |(lB ,hB) = τi|(lB ,hB).

Then σi act as identity on A and τi act as identity on B. Moreover π =
σ1τ1σ2τ2...σnτn, as required.

4 Structure Representation

For any C ⊆ A and G ≤ Sym(A), the restriction of G to C is defined by

G|C = {π|C | π ∈ G, C · π = C} ≤ Sym(C).

Lemma 4.1. Let A ∈ K be a finitely generated structure. The set of embeddings
u : A → UK with the GK-action defined by composition:

u · π = uπ

is a single-orbit nominal set.
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Proof. First notice that any embedding u : A → UK is supported by its image
u(A). Indeed, if an automorphism π ∈ GK is an identity on u(A) then obviously
u · π = u. Hence the set of embeddings is a nominal set. Now take any two
embeddings u and v. The images u(A), v(A) are finitely generated isomorphic
substructures of UK. By extending any isomorphism between u(A) and v(A), we
obtain an automorphism π ∈ GK such that u · π = v.

As we shall show now, in a supportable symmetry (AK, GK) every single-
orbit nominal set is isomorphic to one of the above form, quotiented by some
equivariant equivalence relation.

Notice that the quotient of a G-set by an equivariant equivalence relation R
has a natural structure of a G-set, with the action defined as follows:

[x]R · π = [x · π]R.

It is easy to see that if X has one orbit, then so does the quotientX/R. Moreover,
any support C of an element x ∈ X supports the equivalence class [x]R, hence
if X is nominal then X/R is also nominal.

Definition 4.2. A structure representation is a finitely generated structure A ∈
K together with a group of automorphisms S ≤ Aut(A) (the local symmetry).
Its semantics [A, S] is the set of embeddings of u : A → UK , quotiented by the
equivalence relation:

u ≡S v ⇔ ∃τ ∈ S τu = v.

A GK-action on [A, S] is defined by composition:

[u]S · π = [uπ]S .

Proposition 4.3. (1) [A, S] is a single-orbit nominal GK-set. (2) If a Fräıssé
symmetry (AK, GK) is supportable then every single-orbit nominal GK-set X is
isomorphic to some [A, S].

Proof. For (1), use Lemma 4.1. The set of embeddings u : A → UK is a single-
orbit nominal GK-set, and so is the quotient [A, S].

For (2), take a single-orbit nominal set X and let H ≤ GK be the stabilizer of
some element x ∈ X . Put S = H |A where A ∈ K is the least finitely generated
support of x. Define f : X → [A, S] by f(x · π) = [π|A]S . The function f is
well defined: if x · π = x · σ then πσ−1 ∈ H . As A · πσ−1 is the least finitely
generated support of x · πσ−1 = x, we obtain A · πσ−1 = A. Therefore for
τ = (πσ−1)|A ∈ S we have τσ|A = π|A, hence [π|A]S = [σ|A]S . It is easy to
check that f is equivariant.

It remains to show that f is bijective. For injectivity, assume f(x·π) = f(x·σ).
This means that there exists τ ∈ S such that τσ|A = π|A, then (πσ−1)|A ∈ S,
hence (πσ−1)|A = ρ|A for some ρ ∈ H . Therefore x·πσ−1 = x·ρ = x, from which
we obtain x · π = x · σ. For surjectivity of f , note that by universality of the
structure UK any embedding u : A → UK can be extended to an automorphism
π of UK , for which we have f(x · π) = [u]S.
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Structures over signatures with no function symbols are called relational struc-
tures. Structure representation was defined by Bojańczyk et al. in the special case
of UK being a relational structure. The proposition above generalizes Proposi-
tion 11.7 of [BKL].

Example 4.4. Consider the universal structure 〈Q,≤,+1,−1〉 and its substruc-
ture A generated by { 1

3 ,
1
2 ,

3
4}. Notice that mapping one of the generators, say 1

2 ,
to any element of A, say 1

2 �→ 3 3
4 , uniquely determines an automorphism π of

A. The automorphism can be seen as a shift. It maps 1
3 to 3 1

2 and 3
4 to 4 1

3 .
This observation leads to the conclusion that Aut(A) = Z. Any subgroup S of
Aut(A) is therefore isomorphic to Z and generated by a single automorphism
π of the form described above. The same holds for any finitely generated sub-
structure A. In the case of timed symmetry Proposition 4.3 provides a very nice
finite representation of single-orbit nominal sets.

4.1 Fungibility

Even if the symmetry is supportable it may happen that some finitely generated
structure is not the least finitely generated support of anything. Now we will
introduce a condition which ensures that any finitely generated structure is the
least finitely generated support of some element of some nominal set.

Definition 4.5. A finitely generated substructure A of UK is fungible if for every
finitely generated substructure B � A, there exists π ∈ GK such that:

– π|B = id|B,
– π(A) �= A.

A Fräıssé symmetry (AK, GK) is fungible if every finitely generated substructure
A of UK is fungible.

Example 4.6. The equality, total order and timed symmetries are all fungible.
The symmetry obtained from the universal structure 〈Q,≤,+1〉 is not fungible.
Take a structure A generated by {0} and its substructure B generated by {1}.
Obviously if an automorphism π acts as identity on B then it acts as identity
also on A.

In general, being supportable and being fungible are independent properties
of symmetries. Examples are given in [BKL]. The following result generalizes
Lemma 10.8. of [BKL].

Lemma 4.7. (1) If (AK, GK) is supportable then every finitely generated fungi-
ble A ⊆ UK is the least finitely generated support of [id|A]S, for any S ≤ Aut(A).

(2) If (AK, GK) is fungible then every finitely generated A ⊆ UK is the least
finitely generated support of [id|A]S, for any S ≤ Aut(A).
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Proof. For (1), recall from Lemma 4.1 that an embedding u : A → UK is sup-
ported by its image. Therefore A supports id |A and hence also [id |A]S . Now
consider any finitely generated structure B properly contained in A. Since A is
fungible there exists an automorphism π from the Definition 4.5. The automor-
phism π acts as identity on B, but [id |A]S · π = [π|A]S �= [id |A]S as the image
of π is not A.

For (2), we first show that A supports [id |A]S as in (1) above. Then let B be
another support of [id |A]S and assume A is not contained in B, i.e., there exists
some a ∈ A\B. Since the structure C generated by A∪B is fungible, there exists
an automorphism π such that π|B = id |B and π(C) �= C, which means that also
π(A) �= A. Hence [id |A]S · π = [π|A]S �= [id |A]S and we obtain a contradiction
as it turns out that B does not support [id |A]S .

Let us focus for a moment on relational structures. In this case to obtain a
fungible symmetry it is enough to require an existence of π that is not an identity
on A.

Definition 4.8. A finitely generated substructure A of UK is weakly fungible if
for every finitely generated substructure B � A, there exists π ∈ GK such that:

– π|B = id|B,
– π|A �= id|A.

A Fräıssé symmetry (AK, GK) is weakly fungible if every finitely generated sub-
structure A of UK is weakly fungible.

On the other hand, if we restrict ourselves to relational structures, we can
also equivalently require an existence of automorphisms π that satisfy a stronger
condition.

Definition 4.9. A finitely generated substructure A of UK is strongly fungible
if for every finitely generated substructure B � A, there exists π ∈ GK such
that:

– π|B = id|B,
– π(A) ∩ A = B.

A Fräıssé symmetry (AK, GK) is strongly fungible if every finitely generated
substructure A of UK is strongly fungible.

Fact 4.10. Let (AK, GK) be a Fräıssé symmetry over a signature containing
only relation symbols. The following conditions are equivalent:

(1) (AK, GK) is weakly fungible,
(2) (AK, GK) is fungible,
(3) (AK, GK) is strongly fungible.

The general picture is more complicated. When we introduce function sym-
bols, the notions of weak fungibility, fungibility and strong fungibility differ from
each other. Before showing this let us notice that the condition of strong fungi-
bility is in fact equivalent to the strong amalgamation property.
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Proposition 4.11. A Fräıssé symmetry (AK, GK) is strongly fungible if and
only if the age K of the universal structure UK has the strong amalgamation
property.

Proof. The if part is easily proved using homogeneity. For the only if part take
any finitely generated substructures A, B, C of UK and embeddings fB : A → B,
fC : A → C. Thanks to amalgamation there exists a finitely generated substruc-
ture D of UK together with two embeddings gB : B → D and gC : C → D such
that gB ◦ fB(A) = gC ◦ fC(A) = A′. Take π ∈ GK for which π|A′ = id|A′ and
π(D)∩D = A′. Let D′ be a substructure generated byD∪π(D). The embeddings
gB and g′C = π ◦ gC into D′ are as needed:

gB ◦ fB(A) = g′C ◦ fC(A) = gB(B) ∩ g′C(C).

Corollary 4.12. A Fräıssé symmetry (AK, GK) over a signature containing
only relation symbols is fungible if and only if the age K of the universal structure
UK has the strong amalgamation property.

Example 4.13. Consider an algebraic signature with unary function symbols
F and G. For any integer i let Ai be the set of all infinite, binary sequences 〈an〉
defined for n ≥ i and equal 0 almost everywhere. Take A =

⋃
Ai and define a

structure U with a carrier A, where

F (〈ai, ai+1, ai+2, ...〉) = 〈ai+1, ai+2, ...〉, G(0w) = 1w, G(1w) = 0w.

Since the structure is weakly homogeneous, we obtain a Fräıssé symmetry. The
symmetry is weakly fungible, but it is not fungible, as the structure generated
by {0w, 1w} is not fungible for any w ∈ A.

Example 4.14. Consider an algebraic signature with a single unary function
symbol F . For any integer i let Ai be the set of all infinite sequences 〈an〉 of
natural numbers defined for n ≥ i and equal 0 almost everywhere. Take A =

⋃
Ai

and define a structure U with a carrier A, where

F (〈ai, ai+1, ai+2, ...〉) = 〈ai+1, ai+2, ...〉.
Notice that the age of U is the class K of all finitely generated structures that
satisfy the following axioms

– for any a, b there exist m,n ∈ N such that Fm(a) = Fn(b),
– there are no loops, i.e., Fn(a) �= a for all n ∈ N.

Since the structure is weakly homogeneous, we obtain a Fräıssé symmetry
(AK, GK). It is easy to check that the symmetry is fungible.

Now, take any nonempty finitely generated substructure A of U and the empty
substructure ∅ ⊆ A. For any automorphism π of U and a ∈ A there existm,n ∈ N

for which Fm(a) = Fn(a · π). Hence there is no π for which π(A) ∩ A = ∅ and
the structure A is not strongly fungible. Therefore the symmetry (AK, GK) is
not strongly fungible.
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4.2 Representation of Functions

For any finitely generated substructure A of UK and any S ≤ Aut(A), the GK-
extension of S is

extGK(S) = {π ∈ GK | π|A ∈ S} ≤ GK.

Notice that extGK(S) is exactly the stabilizer of [id |A]S in GK.

Lemma 4.15. For each embedding u : A → UK the group extGK(u
−1Su), where

u−1Su ≤ Aut(u(A)), is the stabilizer of an element [u]S ∈ [A, S].

Proof. For any π ∈ GK that extends u we have [u]S = [id |A]S · π. Hence, by
Lemma 2.6, the stabilizer of [u]S is π−1extGK(S)π. It is easy to check that

π−1extGK(S)π = extGK(u
−1Su).

Lemma 4.16. For any supportable and fungible Fräıssé symmetry (AK, GK) let
A,B be finitely generated substructures of UK and let S ≤ Aut(A), T ≤ Aut(B),
then extGK(S) ≤ extGK(T ) if and only if B ⊆ A and S|B ≤ T .

Proof. The if part is obvious. For the only if part, we first prove that B ⊆ A.
Notice that if π|A = id |A then π ∈ extGK(S) and hence π ∈ extGK(T ), which is
the stabilizer of [id |B]T . Therefore A supports [id |B]T . By Lemma 4.7 (2) the
least support of [id |B]T is B. Hence B ⊆ A. Then we have

extGK(S) ≤ extGK(T )

�

∀π ∈ GK π|A ∈ S =⇒ π|B ∈ T

�

∀π ∈ GK π|A ∈ S =⇒ (π|A)|B ∈ T

�

∀τ ∈ S τ |B ∈ T.

Similar facts about finite substructures of a universal relational structure UK
were proven in [BKL]. The following proposition generalizes Proposition 11.8.

Proposition 4.17. For any supportable and fungible Fräıssé symmetry (AK, GK)
let X = [A, S] and Y = [B, T ] be single-orbit nominal sets. The set of equivariant
functions from X to Y is in one to one correspondence with the set of embeddings
u : B → A, for which uS ⊆ Tu, quotiented by ≡T .
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Proof. By Proposition 2.7 and Lemma 4.15 equivariant functions from [A, S]
to [B, T ] are in bijective correspondence with those elements [u]T ∈ [B, T ] for
which

extGK(S) ≤ extGK(u
−1Tu).

Hence, by Lemma 4.16, equivariant functions from [A, S] to [B, T ] correspond
to those elements [u]T ∈ [B, T ] for which

u(B) ⊆ A and S|u(B) ≤ u−1Tu,

which means that u is an embedding from B to A and uS ⊆ Tu, as required.

Let GK-Nom1 denote the category of single-orbit nominal sets and equiv-
ariant functions. Propositions 4.3 and 4.17 can be phrased in the language of
category theory:

Proposition 4.18. In a supportable and fungible Fräıssé symmetry, the cate-
gory GK-Nom1 is equivalent to the category with:

– as objects, pairs (A, S) where A ∈ K and S ≤ Aut(A),
– as morphisms from (A, S) to (B, T ), those embeddings u : B → A for which

uS ⊆ Tu, quotiented by ≡T .

Since a nominal set is a disjoint union of single-orbit sets, this representation
extends to orbit-finite sets in an obvious way:

Theorem 4.19. In a supportable and fungible Fräıssé symmetry, the category
GK-Nom is equivalent to the category with:

– as objects, finite sets of pairs (Ai, Si) where Ai ∈ K and Si ≤ Aut(Ai),
– as morphisms from {(A1, S1), . . . , (An, Sn)} to {(B1, Tm), . . . , (Bm, Tm)},

pairs (f, {[ui]Tf(i)
}i=1,...,n), where f : {1, . . . , n} → {1, . . . ,m} is a function

and each ui is an embedding ui : Bf(i) → Ai such that uiSi ⊆ Tf(i)ui.

In the special case of relational structures the above theorem was formulated
and proved in [BKL].

5 Conclusions and Future Work

Orbit-finite nominal sets can be used to model devices, such as automata or
Turing machines, which operate over infinite alphabets. This approach makes
sense only if one can treat objects with atoms as data structures and manipulate
them using algorithms. To do so the existence of a finite representation of orbit-
finite nominal sets is crucial.

In this paper we have generalized the representation theorem due to Bojańczyk
et al. to cover atoms with algebraic structure. The result is however not entirely
satisfying. Our representation uses automorphism groups of finitely generated
substructures of the atoms. If such groups are finitely presentable Theorem 4.19
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indeed provides a concrete, finite representation of orbit-finite nominal sets (the
timed symmetry being an example). But is it always the case? So far we do not
know and we regard it as a field for a further research effort.

Another thing left to be done is a characterization of “well-behaved” atom
symmetries in terms of Fräıssé classes that induce them. One might think of
algebraic atoms that could be potentially interesting from the point of view
of computation theory: strings with the concatenation operator, binary vectors
with addition, etc. Yet checking the technical conditions, such as supportability
and fungibility, needed for the representation theorem to hold requires each time
a lot of effort. This is because these conditions are formulated in terms of Fräıssé
limits, and these are not always easy to construct. It would be desirable to have
more natural criteria that would be easier to verify.
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