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Abstract. Fuzzy relations are mappings from pairs of elements into the
interval [0, 1]. As a replacement for the complement operation one can
use the mapping that sends x to 1 − x. Together with the concepts of
t-norm and t-conorm a weak form of Boolean algebra can be defined.
However, to our knowledge so far no notion of domain or codomain has
been investigated for fuzzy relations. These might, however, be useful,
since fuzzy relations can, e.g., be used to model flow problems and many
other things. We give a new axiomatisation of two variants of domain
and codomain in the more general setting of idempotent left semirings
that avoids complementation and hence is applicable to fuzzy relations.
Some applications are sketched as well.

Keywords: fuzzy relations, semirings, domain operator, modal
operator.

1 Introduction

The basic idea of the present paper is to bring together the concepts of fuzzy
semirings, say in the form of fuzzy relations or matrices, and modal semirings
that offer domain and codomain operators and, based on these, algebraic defi-
nitions of box and diamond. The latter have been thoroughly studied for more
than ten years now (see [DMS06] for an early survey) and applied to many dif-
ferent areas, such as program semantics, knowledge and belief logics [Möl13] or
preference queries in databases [MRE12], and many more.

Domain and codomain in a certain sense “measure” enabledness in transition
systems. This observation motivated an investigation whether modal semirings
might also be interesting for handling fuzzy systems. So the idea is not to invent
a new kind of algebraic “meta-system” for all kinds of fuzzy logics, but rather
to apply and hence re-use an existing and well established algebraic system to
the particular case of fuzzy systems.

Let us briefly recapitulate the theory of fuzzy relations. These are mappings
from pairs of elements into the interval [0, 1]. The values can be interpreted as
transition probabilities or as capacities and in various other ways. Hence the idea
was to take up the above idea of measuring and to enrich fuzzy relations semi-
rings with domain/codomain operators and applying the corresponding modal
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operators in the description and derivation of systems or algorithms in that
realm. To our knowledge this has not been done so far.

The classical relational operators are adapted as follows:

(R � S)(x, y) = max(R(x, y), S(x, y)) ,
(R � S)(x, y) = min(R(x, y), S(x, y)) ,
(R ; S)(x, y) = sup

z
min(R(x, z), S(z, y)) .

Under these operations, fuzzy relations form an idempotent semiring (see below
for the precise definition). One can also define a weak notion of complementation
by setting R(x, y) = 1 − R(x, y). This already shows the main problem one
encounters in transferring the concept of domain to fuzzy semirings: the original
axiomatisation of domain used a Boolean subring of the overall semiring as the
target set of the domain operator, and this generally is not present in the fuzzy
case.

However, using the above weak negation and the concepts of t-norm and t-
conorm (see again below for the details) a substitute for Boolean algebra can be
defined.

We give a new axiomatisation of two variants of domain and codomain in
the more general setting of idempotent left semirings that avoids complemen-
tation and hence is applicable to fuzzy relations. Such an axiomatisation has
been given in [DS11] for idempotent semirings. We study the more general case
of idempotent left semirings in which left distributivity of multiplication over
addition and right annihilation of zero are not required. At the same time we
weaken the domain axioms by requiring only isotony rather than distributivity
over addition. Surprisingly still a wealth of properties known from the semi-
ring case persist in the more general setting. However, it is no longer true that
complemented subidentities are domain elements. This is not really disturbing,
though, because the fuzzy world has its own view of complementation anyway.

In the main part of the paper we develop the theory, involving the new concept
of restrictors. It tuns out that the axiomatisation we come up with can be param-
eterised in certain ways to characterise a whole family of domain operators in a
uniform way. We then investigate how the domain operators extend to matrices,
since this is the application we are after. It turns out that the axioms apart
from the the so-called locality axiom extend well from the base left semiring
S to the matrix semiring over it, while locality extends only if S is actually a
semiring. Finally, some applications are sketched.

2 Preliminaries

We will frequently use the reasoning principle of indirect equality for partial
orders (M,≤). For a, b ∈ M we have a = b ⇔ (∀ c ∈ M : b ≤ c ⇔ a ≤ c). The
implication (⇒) is trivial. For (⇐), choosing c = a and c = b yields b ≤ a and
a ≤ b, respectively, so that antisymmetry of ≤ shows the claim.
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Definition 2.1. For elements a, b ∈ M , the interval [a, b] is

[a, b] =df {c | a ≤ c ∧ c ≤ b} .

This entails [a, b] = ∅ if a �≤ b.

Now we define our central algebraic structure.

Definition 2.2. A left (or lazy) semiring, briefly an L-semiring, is a quintuple
(S,+, 0, ·, 1) with the following properties:

1. (S,+, 0) is a commutative monoid.
2. (S, ·, 1) is a monoid.
3. The · operation is right-distributive over + and left-strict , i.e., (a+ b) · c =

a · c+ b · c and 0 · a = 0. As customary, · binds tighter than + .

A right semiring is defined symmetrically. A semiring [Van34] is a structure
which is both a left and right semiring. In particular, its multiplication is both
left and right distributive over its addition and its 0 is a left and right annihilator.

Definition 2.3. An idempotent left semiring [Möl07], briefly IL-semiring, is an
L-semiring (S,+, 0, ·, 1) with the following additional requirements.

– Addition is idempotent. Hence it induces an upper semilattice with the nat-
ural order ≤ given by a ≤ b ⇔df a + b = b, which means that b offers at
least all the choices of a, but possibly more.

– Multiplication is right-isotone w.r.t. the natural order. This can be axioma-
tised as super-disjunctivity a · b+ a · c ≤ a · (b+ c).

An I-semiring is an idempotent semiring. Finally, an IL-semiring is bounded if
it has a greatest element 
.

3 Predomain and Restrictors

As is well known, predicates on states can be modelled by tests, which are defined
involving the Boolean operation of negation. As mentioned in the introduction,
we want to avoid that and hence give the following new axiomatisation of a
(pre)domain operation whose range will replace the set of tests.

Definition 3.1. A prepredomain IL-semiring is a structure (S, �), where S is
an IL-semiring and the prepredomain operator � : S → S satisfies, for all a ∈ S,

�a ≤ 1 , (sub-id)

�0 ≤ 0 , (strict)

a ≤ �a · a . (d1)

By �S we denote the image of S under the prepredomain operation. The operator
� is called a predomain operator if additionally, for all a, b ∈ S and p ∈ �S,

�a ≤ �(a+ b) , (isot)

�(p · a) ≤ p . (d2)
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Finally, a predomain operator � is called a domain operator if additionally it
satisfies the locality axiom, i.e., for all a, b ∈ S,

�(a · �b) ≤ �(a · b) . (d3)

In the latter cases, (S, �) is called a predomain IL-semiring and a domain IL-
semiring, resp. An element of �S is called a ((pre)pre)domain element . We will
consistently write a, b, c . . . for arbitrary semiring elements and p, q, r, . . . for
elements of �S.

Since by definition �a ≤ 1, by isotony of · the reverse inequation to (d1) holds
as well, so that (d1) is equivalent to a = �a ·a. To simplify matters we will refer to
that equation as (d1), too. Using Mace4 it can be shown that the above axioms
are independent. They can be understood as follows. The equational form of
Ax. (d1) means that restriction to all starting states is no actual restriction,
whereas (d2) means that after restriction the remaining starting states satisfy
the restricting test. Ax. (isot) states, by the definition of ≤, that � is isotone,
i.e., monotonically increasing. Ax. (d3), which, as will be shown in Lemma 5.4.1,
again strengthens to an equality, states that the domain of a ·b is not determined
by the inner structure or the final states of b; information about �b in interaction
with a suffices.

The auxiliary notion of prepredomain already admits a few useful results.

Lemma 3.2. Assume a prepredomain IL-semiring (S, �). Then for all a ∈ S
and p ∈ �S we have the following properties.

1. If a ≤ 1 then a ≤ �a.
2. �1 = 1 and hence 1 ∈ �S.
3. (d1) ⇔ (�a ≤ p ⇒ a ≤ p · a).
Proof.

1. By (d1), the assumption, isotony of · and neutrality of 1, a ≤ �a·a ≤ �a·1 = �a.
2. We have 1 ≤ �1 by Part 1 and �1 ≤ 1 by (sub-id).
3. (⇒) Assume (d1) and suppose �a ≤ p. Then by isotony of ·, a = �a ·a ≤ p ·a.

(⇐) Set p = �a in the right hand side. ��
To reason more conveniently about predomain we introduce the following

auxiliary notion.

Definition 3.3. A restrictor in an IL-semiring is an element x ∈ [0, 1] such that
for all a, b ∈ S we have

a ≤ x · b ⇒ a ≤ x · a .

Note that by x ≤ 1 this is equivalent to

a ≤ x · b ⇒ a = x · a . (1)

The set of all restrictors of S is denoted by rest(S). In particular, 0, 1 ∈ rest(S).
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A central result is the following.

Lemma 3.4. In a predomain IL-semiring �S ⊆ rest(S).

Proof. Assume a ≤ �b·c. By (isot) and (d2) we infer �a ≤ �(�b·c) ≤ �b. Now by (d1)
and isotony of multiplication we obtain a = �a · a ≤ �b · a. Hence �b ∈ rest(S). ��

To allow comparison with previous approaches we recapitulate the following
notion.

Definition 3.5. An element r of an IL-semiring is a test if it has a relative
complement s ∈ S with r + s = 1 and r · s = 0 = s · r. The set of all tests of S
is denoted by test(S). In particular, 0, 1 ∈ test(S).

In an I-semiring, test(S) is a Boolean algebra with 0 and 1 as the least and
greatest elements and + as join and · as meet; moreover, the relative complements
are unique if they exist.

Lemma 3.6. test(S) ⊆ rest(S).

Proof. Consider an r ∈ test(S) with relative complement s. Assume that a ≤ r·b.
Then by isotony of multiplication, the definition of relative complement and left
annihilation of 0,

s · a ≤ s · r · b = 0 · b = 0 . (*)

Now, by neutrality of 1, the definition of relative complement, right distributivity,
(∗) and neutrality of 0,

a = 1 · a = (r + s) · a = r · a+ s · a = r · a+ 0 = r · a . ��

4 Properties of Restrictors

Next we show some fundamental properties of restrictors which will be useful in
proving the essential laws of predomain. In this section we will, for economy, use
p, q for restrictors, since domain elements are not mentioned here.

Lemma 4.1. Assume an IL-semiring S. Then for all a, b, c ∈ S and all p, q ∈
rest(S) the following properties hold.

1. p · p = p.
2. p · q ∈ rest(S).
3. p · q = q · p.
4. p · q is the infimum of p and q.
5. If the infimum a � b exists then p · (a � b) = p · a � b = p · a � p · b.
6. p · q · a = p · a � q · a.
7. p · q = 0 ⇒ p · a � q · a = 0.
8. If b ≤ a then p · b = b � p · a.
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Assume now that S is bounded.

9. p · b = b � p · 
. In particular, p = 1 � p · 
.
10. p ≤ q ⇔ p · 
 ≤ q · 
.

Proof.

1. Set x = a = p and b = 1 in (1).
2. Assume a ≤ p · q · b. Since p is a restrictor we obtain a = p · a. By p ≤ 1 we

also obtain a ≤ p · q · b ≤ q · b, and hence a = q · a since q is a restrictor, too.
Altogether, a = p · a = p · q · a.

3. By the previous part, Part 1 and p, q ≤ 1 we have

p · q = p · q · p · q ≤ q · p .

The reverse inequation is shown symmetrically.
4. By p, q ≤ 1 and isotony of multiplication we have p · q ≤ p, q. Let c be an

arbitrary lower bound of p and q. Then by Part 1, p being a restrictor and
isotony of multiplication,

c ≤ p ∧ c ≤ q ⇔ c ≤ p · p ∧ c ≤ q ⇒ c ≤ p · c ∧ c ≤ q ⇒ c ≤ p · q ,

which shows that p · q is the greatest lower bound of p and q.
5. We show the first equation. By isotony and p ≤ 1 we have p · (a � b) ≤ p · a

and p · (a � b) ≤ b, i.e., p · (a � b) is a lower bound of p · a and b. Let c be
an arbitrary lower bound of p · a and b. Since p is a restrictor, this implies
c = p·c. Moreover, p·a ≤ a implies that c is also a lower bound of a and b and
hence c ≤ a�b. Now by isotony of multiplication we have c = p ·c ≤ p ·(a�b).
This means that p · (a � b) is the greatest lower bound of p · a and b.
The second equation follows using idempotence of p (Part 1) and applying
the first equation twice:

p · (a � b) = p · p · (a � b) = p · (p · a � b)

= p · (b � p · a) = p · b � p · a = p · a � p · b .

6. Employ that a � a = a and use Part 5 with b = a:

p · q · a = p · q · (a � a) = p · (q · a � a) = p · (a � q · a) = p · a � q · a .

7. Immediate from Part 6.
8. Since b ≤ a the meet a � b exists and equals b. Now Part 5 shows the claim.
9. For the first claim substitute 
 for a in Part 8. For the second claim substi-

tute 1 for b in the first claim.
10. (⇒) Immediate from isotony of · .

(⇐) Assume p · 
 ≤ q · 
. Then by Part 9 and isotony we have

p = 1 � p · 
 ≤ 1 � q · 
 = q . ��
The restrictor laws will help to obtain smoother and shorter proofs of the

predomain properties in the next section. We will make some further observa-
tions about restrictors in the parameterised predomain axiomatisation in the
appendix.
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5 (Pre)domain Calculus

For a further explanation of (d1) and (d2) we show an equivalent characterisation
of their conjunction. For this we use the formula

�a ≤ p ⇔ a ≤ p · a . (llp)

One half of this bi-implication was already mentioned in Lemma 3.2.3.
Now we can deal with the second half.

Lemma 5.1.

1. ∀ a ∈ S, p ∈ �S : (sub-id) ∧ (d2) ⇒ (a ≤ p · a ⇒ �a ≤ p).
2. (∀ a ∈ S, p ∈ �S : a ≤ p · a ⇒ �a ≤ p) ⇒ (∀ a ∈ S, p ∈ �S : (d2)).

Proof.

1. Assume (sub-id) and (d2) and suppose a ≤ p · a. Since p ≤ 1 this implies
a = p · a and by (d2) we get �a = �(p · a) ≤ p.

2. Consider an arbitrary p ∈ �S. By Lemmas 3.4 and 4.1.1, p is multiplicatively
idempotent. Hence, substituting in the left hand side of the antecedent p · a
for a makes that true, so that the right hand side of the antecedent, which
is (d2) in that case, is true as well. ��

Corollary 5.2. All predomain elements satisfy (llp), which states that �a is the
least left preserver of a in �S. Hence, if �S is fixed then predomain is uniquely
characterised by the axioms if it exists.

Proof. The first part is immediate from Lemmas 3.2.3 and 5.1. The second part
holds, because least elements are unique in partial orders. ��

Now we can show a number of important laws for predomain.

Theorem 5.3. Assume a predomain IL-semiring (S, �) and let a, b range over
S and p, q over �S.

1. �p = p. (Stability)
2. The predomain operator is fully strict, i.e., �a = 0 ⇔ a = 0.
3. Predomain preserves arbitrary existing suprema. More precisely, if a subset

A ⊆ S has a supremum b in S then the image set of A under � has a
supremum in �S, namely �b. Note that neither completeness of S nor that of
�S is required.

4. �S forms an upper semilattice with supremum operator � given by p � q =
�(p+ q). Hence for r ∈ �S we have p ≤ r ∧ q ≤ r ⇔ p � q ≤ r.

5. �(a+ b) = �a � �b.
6. We have the absorption laws p · (p�q) = p and p� (p ·q) = p. Hence (�S, ·,�)

is a lattice.
7. �(a · b) ≤ �(a · �b).
8. �(a · b) ≤ �a.
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9. Predomain satisfies the partial import/export law �(p · a) ≤ p · �a.
10. p · q = �(p · q).
Assuming that S is bounded, the following additional properties hold.

11. We have the Galois connection �a ≤ p ⇔ a ≤ p · 
.
12. �(a · 
) = �a. Hence also �(p · 
) = p, in particular �
 = 1.

Proof.

1. By Lemma 3.2.1 it remains to show (≤). By neutrality of 1 and (d2) we
obtain �p = �(p · 1) ≤ p.

2. The direction (⇐) is Ax. (strict). (⇒) is immediate from (d1) and left strict-
ness of 0.

3. Let b = �{a | a ∈ A} exist for some set A ⊆ S. We show that �b is a
supremum of �A =df {�a | a ∈ A} in �S. First, by (isot), �b is an upper bound
of �A, since b is an upper bound of A.
Now let p be an arbitrary upper bound of �A in �S. Then for all a ∈ A we have
�a ≤ p, equivalently a ≤ p · a by (llp), and therefore a ≤ p · b by definition of
b and isotony of · . Hence p · b is an upper bound of A and therefore b ≤ p · b.
By (llp) this is equivalent to �b ≤ p, so that �b is indeed the least upper bound
of �A in �S.

4. Consider p, q ∈ �S. By Part 1 we know that �p = p and �q = q. Part 3 tells us
that �(p+ q) is the supremum of �p and �q and hence of p and q.

5. By Part 3, �(a+ b) is the supremum of �a and �b which, by Part 4 is �a � �b.
6. For the first claim, assume p = �a and q = �b. By Part 5, (isot) with

Lemma 3.4 and Lemma 4.1.4,

p · (p � q) = �a · �(a+ b) = �a = p .

The second claim follows by q ≤ 1 and the definition of supremum.
7. By (llp) and (d1) thrice we obtain

�(a · b) ≤ �(a · �b) ⇔ a · b ≤ �(a · �b) · a · b
⇔ a · b ≤ �(a · �b) · a · �b · b ⇔ TRUE .

8. By Part 7, �b ≤ 1, isotony of � and neutrality of 1 we have �(a · b) ≤ �(a · �b) ≤
�(a · 1) = �a.

9. By (d2) we know �(p · a) ≤ p. By p ≤ 1, isotony of · and � and neutrality
of 1 we obtain �(p · a) ≤ �(1 · a) = �a. Now the claim follows by isotony of · ,
Lemma 3.4 and idempotence of · on restrictors and hence domain elements.

10. (≤) follows from Lemma 3.2.1, since p, q ≤ 1 implies p · q ≤ 1. For (≥) we
obtain by Parts 9 and 1 that �(p · q) ≤ p · �q = p · q.

11. We calculate, employing (llp), greatestness of 
 and isotony of · , isotony of
�, and finally (d2),

�a ≤ p ⇔ a ≤ p · a ⇒ a ≤ p · 
 ⇒ �a ≤ �(p · 
) ⇒ �a ≤ p .
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12. By Part 8 we know �(a · 
) ≤ �a. The reverse inequation follows from a =
a · 1 ≤ a · 
 and isotony of domain. The remaining claims result by first
specialising a to p and using Part 1, and second by further specialising p
to 1. ��

We now show additional properties of a domain operation.

Lemma 5.4. Assume a domain IL-semiring (S, �) and let a, b range over S and
p, q over �S.

1. (d3) strengthens to an equality.
2. Domain satisfies the full import/export law �(p · a) = p · �a.
3. In an I-semiring, the lattice (�S, ·,�) is distributive.

Proof.

1. This is immediate from Lemma 5.3.7.
2. By Part 1 and Lemma 5.3.10 we obtain �(p · a) = �(p · �a) = p · �a.
3. We show one distributivity law; it is well known that the second one follows

from it. By Lemma 5.3.5, Part 2, distributivity of ·, Lemma 5.3.5 and Part 2
again,

�a · (�b � �c) = �a · �(b+ c) = �(�a · (b + c)) = �(�a · b+ �a · c)
= �(�a · b) � �(�a · c)) = �a · �b � �a · �c . ��

6 Fuzzy Domain Operators

We now present the application of our theory to the setting of fuzzy systems.
First we generalise the notion of t-norms (e.g. [EGn03, Haj98]) and pseudo-
complementation to general IL-semirings, in particular to semirings that do not
just consist of the interval [0, 1] (as, say, a subset of the real numbers) and where
that interval is not necessarily linearly ordered.

Definition 6.1. Consider an IL-semiring S with the interval [0, 1] as specified
in Def. 2.1. A t-norm is a binary operator � : [0, 1] × [0, 1] → [0, 1] that is
isotone in both arguments, associative and commutative and has 1 as unit.

The definition implies p � q ≤ p, q, since, e.g., p � q ≤ p � 1 = p. In an
IL-semiring, by the axioms the operator · restricted to [0, 1] is a t-norm.

Definition 6.2. A weak complement operator in an IL-semiring is a function
¬ : [0, 1] → [0, 1] that is an order-antiisomorphism, i.e., is bijective and satisfies
p ≤ q ⇔ ¬q ≤ ¬p, such that additionally ¬¬p = p. This implies ¬0 = 1 and
¬1 = 0.

Based on ¬ we can define the weak relative complement p− q =df p�¬q and
weak implication p → q =df ¬p+ q. We have 1− p = ¬p and 1 → p = p.
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Moreover, if the IL-semiring has a t-norm � the associated t-conorm � is
defined as the analogue of the De Morgan dual of the t-norm:

p � q =df ¬(¬p � ¬q) .

Lemma 6.3. Assume an IL-semiring with weak negation.

1. p ≤ p � q.
2. If p � q is the infimum of p and q then p � q = p � u.

Proof.

1. By definition of �, antitony of complement and ¬q ≤ 1,

p ≤ p � q ⇔ p ≤ ¬(¬p � ¬q) ⇔ ¬p � ¬q ≤ ¬p ⇔ TRUE .

2. By Part 1 p � q is an upper bound of p and q. Let r ∈ [0, 1] be an arbitrary
upper bound of p and q. Then by antitony of ¬ we have ¬r ≤ ¬p,¬q and
hence, by the assumption that � is the infimum operator, ¬r ≤ ¬p � ¬q.
Again by antitony of ¬ this entails ¬(¬p�¬q) ≤ ¬¬r = r, i.e., p� q ≤ r by
definition of �. Hence p � q is the supremum of p and q. ��

Next, we deal with a special t-norm and its associated t-conorm.

Lemma 6.4. Consider the sub-interval I =df [0, 1] of the real numbers with
x � y =df min(x, y) and x � y =df max(x, y). Then (I,�, 0,�, 1) is an I-
semiring and the identity function is a domain operator on I.

The proof is straightforward. Since this domain operator is quite boring, in
Sect. 8 we will turn to matrices over I, where the behaviour becomes non-trivial.

7 Modal Operators

Following [DMS06], in a predomain IL-semiring we can define a forward diamond
operator as

|a〉p =df �(a · p) .
By right-distributivity, diamond is homomorphic w.r.t. + :

|a+ b〉p = |a〉p � |b〉p .

Hence diamond is isotone in the first argument:

a ≤ b ⇒ |a〉p ≤ |b〉p .

Diamond is also isotone in its second argument:

p ≤ q ⇒ |a〉p ≤ |a〉q .
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For predomain elements p, q we obtain by Thm. 5.3.10 that |p〉q = p ·q. Hence,
|1〉 is the identity function on predomain elements. Moreover, |0〉p = 0. If the
underlying semiring is even a domain semiring, by the property (d3) we obtain
multiplicativity of diamond:

|a · b〉p = |a〉|b〉p .

If the semiring has a weak complement the diamond can be dualised to a
forward box operator by setting

|a]q =df ¬|a〉¬q .

This De Morgan duality gives the swapping rule

|a〉p ≤ |b]q ⇔ |b〉¬q ≤ |a]¬p .

We now study the case where · plays the role of a t-norm � on [0, 1]. By right-
distributivity, Thm. 5.3.5, Lemma 6.3 and duality then for predomain elements
p, q we have

|a+ b]p = (|a]p) · (|b]p) ,
i.e., box is anti-homomorphic w.r.t. + and hence antitone in its first argument:

a ≤ b ⇒ |a]p ≥ |b]p .

Box is also isotone in its second argument:

p ≤ q ⇒ |a]p ≤ |a]q .

For predomain elements p, q we get by Thm. 5.3.10 and the definition of → that

|p]q = p → q .

Hence, |1], too, is the identity function on tests. Moreover, |0]p = 1. If the
underlying semiring is even a domain semiring, by locality (d3) we obtain mul-
tiplicativity of box as well:

|a · b]p = |a]|b]p .

One may wonder about the relation of these operators to those in other sys-
tems of fuzzy modal logic (e.g [MvA13]). These approaches usually deal only
with algebras where the whole carrier set coincides with the interval [0, 1]. This
would, for instance, rule out the matrix semirings to be discussed in Section 8.
On the other hand, it would be interesting to see whether the use of residu-
ated lattices there could be carried over fruitfully to the interval [0, 1] of general
semirings. However, this is beyond the scope of the present paper.
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8 Predomain and Domain in Matrix Algebras

We can use the elements of an IL-semiring as entries in matrices. With pointwise
addition and the usual matrix product the set of n×n matrices for some n ∈ IN
becomes again an IL-semiring with the zero matrix as 0 and the diagonal unit
matrix as 1. The restrictors in the matrix IL-semiring are precisely the diagonal
matrices with restrictors in the diagonal.

Let us work out what the characteristic property (llp) of a predomain operator
means in the matrix world, assuming a predomain operator on the underlying
IL-semiring. We perform our calculations for 2 × 2 matrices to avoid tedious
index notation; they generalise immediately to general matrices.(

a b
c d

)
≤

(
p 0
0 q

)
·
(
a b
c d

)

⇔ {[ definition of matrix multiplication ]}(
a b
c d

)
≤

(
p · a p · b
q · c q · d

)

⇔ {[ pointwise order ]}
a ≤ p · a ∧ b ≤ p · b ∧ c ≤ q · c ∧ d ≤ q · d

⇔ {[ by (llp) ]}
�a ≤ p ∧ �b ≤ p ∧ �c ≤ q ∧ �d ≤ q

⇔ {[ by Th. 5.3.4 ]}
�a � �b ≤ p ∧ �c � �d ≤ q .

⇔ {[ pointwise order ]}(�a � �b 0
0 �c � �d

)
≤

(
p 0
0 q

)

Since (llp) characterises predomain uniquely for fixed �S, we conclude, by the
principle of indirect equality, that predomain in the matrix IL-semiring must be

�(a b
c d

)
=df

(�a � �b 0
0 �c � �d

)
.

Next we investigate the behaviour of domain in the matrix case.

Lemma 8.1. Let S be an I-semiring. If S has a domain operator, then so does
the set of n× n matrices over S.

Proof. We need to show that the above representation of predomain on matrices
satisfies (d3) provided the predomain operator on S does. Again we treat only
the case of 2× 2-matrices.

�((
a b
c d

)
·
�( e f

g h

))

= {[ above representation of predomain ]}
�((a b

c d

)
·
(�e � �f 0

0 �g � �h

))
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= {[ definition of matrix product and right annihilation ]}
�(a · (�e � �f) b · (�g � �h)

c · (�e � �f) d · (�g � �h)

)

= {[ by Lemma 5.3.5 ]}
�(a · �(e + f) b · �(g + h)

c · �(e + f) d · �(g + h)

)

= {[ above representation of predomain ]}(
�(a · �(e + f)) � �(b · �(g + h)) 0

0 �(c · �(e + f) � �(d · �(g + h))

)

= {[ by (d3) ]}(�(a · (e+ f)) � �(b · (g + h)) 0

0 �(c · (e+ f)) � �(d · (g + h))

)

= {[ left distributivity ]}(�(a · e+ a · f) � �(b · g + b · h) 0

0 �(c · e+ c · f) � �(d · g + d · h)
)

= {[ by Lemma 5.3.5 ]}(�(a · e+ a · f + b · g + b · h) 0

0 �(c · e+ c · f + d · g + d · h)
)

= {[ associativity and commutativity of + ]}(�(a · e+ b · g + a · f + b · h) 0

0 �(c · e+ d · g + c · f + d · h)
)

= {[ by Lemma 5.3.5 ]}(�(a · e+ b · g) � �(a · f + b · h) 0

0 �(c · e+ d · g) � �(c · f + d · h)
)

= {[ above representation of predomain ]}
�(a · e+ b · g a · f + b · h

c · e + d · g c · f + d · h
)

= {[ definition of matrix product ]}
�((a b

c d

)
·
(
e f
g h

))
.

��

Finally, we calculate the diamond operator in the matrix IL-semiring.
∣∣∣∣
(
a b
c d

)〉(
p 0
0 q

)

= {[ definition of diamond ]}
�((a b

c d

)
·
(
p 0
0 q

))

= {[ definition of matrix multiplication ]}
�(a · p b · q

c · p d · q
)

= {[ definition of matrix predomain ]}
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(�(a · p) � �(b · q) 0

0 �(c · p) � �(d · q)
)

= {[ definition of predomain ]}( |a〉p � |b〉q 0
0 |c〉p � |d〉q

)
.

9 Application to Fuzzy Matrices

Assume now that in [0, 1] we use the t-norm p � q = p · q and that there is a
weak complement operator ¬. Then by Lemma 6.3.2 the above formula for the
diamond transforms into

∣∣∣∣
(
a b
c d

)〉(
p 0
0 q

)
=

( |a〉p � |b〉q 0
0 |c〉p � |d〉q

)

and a straightforward calculation shows

∣∣∣∣
(
a b
c d

)](
p 0
0 q

)
=

( |a]p � |b]q 0
0 |c]p � |d]q

)
.

A potential application of this is the following. Using the approach of [Kaw06]
one can model a flow network as a matrix with the pipe capacities between the
nodes as entries, scaled down to the interval [0,1]. Note that the entries may be
arbitrary elements of [0, 1] and not just 0 or 1. By Lemma 6.4 the algebra with
� = min and � = max is an I-semiring with domain and hence, by Lemma 8.1
the set of fuzzy n × n matrices is, too. For such a matrix C the expressions �C
and ¬�C′, where C′ is the componentwise negation of C, give for each node the
maximum and minimum capacity emanating from that node.

To describe network shapes and restriction we can use crisp matrices, i.e.,
matrices with 0/1 entries only. Using crisp diagonal matrices P , we can express
pre-/post-restriction by matrix multiplication on the appropriate side. So if a
matrix C gives the pipe capacities in a network, P ·C and C ·P give the capacities
in the network in which all starting/ending points outside P are removed. Hence,
if we take again � = min and � = max, the expression |C〉P gives for each node
the maximum outgoing capacity in the output restricted network C · P . To
explain the significance of |C]P , we take a slightly different view of the fuzzy
matrix model for flow analysis. Scaling down the capacities to [0, 1] could be
done relative to a top capacity (not necessarily occurring in the network). Then
p ∈ [0, 1] would indicate how close the flow level is to the top flow. Then |C]P
would indicate the level of “non-leaking” outside of P . If for instance |C]P = 0,
then the maximal flow outside of P is 1, i.e., leaking is maximal.

Since on crisp matrices weak negation coincides with standard Boolean nega-
tion, we can, additionally, use these ideas to replay the algebraic derivation of
the Floyd/Warshall and Dijkstra algorithms in [HM12].

Elaborating on these examples will be the subject of further papers.
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10 Conclusion

Despite the weakness in assumptions, the generalised theory of predomain and
domain has turned out to be surprisingly rich in results. Concerning applications,
we certainly have just skimmed the surface and hope that others will join our
further investigations.

Acknowledgement. We are grateful for valuable comments by Han-Hing Dang
and the anonymous referees.
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Appendix: A Parametrised Axiomatisation of Predomain

Experiments have shown that the ((pre)pre)domain axioms of Sect. 3 can be
formulated in a more general way, leading to a whole family of ((pre)pre)domain
operators. The key is to factor out the set over which p is quantified in Ax. (d2)
and make that into a parameter. This leads to the following definition.
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Definition 10.1. By a parameterised prepredomain IL-semiring we mean a
structure (S, �) with an IL-semiring S and the prepredomain operator � : S → S
satisfying, for all a ∈ S,

a ≤ �a · a . (pd1)

A parameterised predomain IL-semiring is a structure (S, �, T ) with a subset
T ⊆ S such that (S, �) is a parameterised prepredomain IL-semiring and for all
a, p ∈ S,

p ∈ T ⇒ �(p · a) ≤ p , (pd2)

�a ≤ �(a+ b) . (p-isot)

We will impose varying conditions on the set T using the following formulas.

T ⊆ [0, 1] , (T-sub-id)

�S ⊆ T , (dom-in-T)

T is closed under +, (T-plus-closed)

T is closed under ·. (T-dot-closed)

Using Prover9/Mace4 it is now an easy albeit somewhat tedious task to in-
vestigate which of the properties in Sects. 3 and 5 follow from which subsets of
the parameterised axioms and the restrictions on T . We list the results below
in Table 1. All of the proofs and counterexamples are generated quite fast. The
table is to be understood as follows: “Proved with set A of axioms” means that
for all proper subsets of A Mace4 finds counterexamples to the formulas listed.

The strictness property �0 = 0 does not follow from any subset of the above
formulas; it would need to be an extra axiom.

Using Prover 9 one can also show that (T-sub-id), (dom-in-T), (pd1), (pd2)
and (p-isot) determine predomain uniquely: use two copies of these axiom sets
with two names for the predomain operator, say d1 and d2, and use the goal
d1(a) = d2(a).

There remains the question whether there are any interesting sets T that meet
a relevant subset of the restricting conditions. We can offer four candidates:

• T = [0, 1]. This trivially satisfies (T-sub-id), and also (T-plus-closed). More-
over, we have 0 ∈ T . So if we stipulate �a ≤ 1 as an additional axiom we
obtain the full set of properties in the table above, plus the full strictness
property �a = 0 ⇔ a = 0.

• T = �S. This choice trivially satisfies (dom-in-T), but to obtain (T-sub-id)
we need again the additional axiom �a ≤ 1. Since nothing else is known about
�S, we cannot assume (T-plus-closed), and so we only get the properties of
the table above the last row, which still is quite a rich set.

• T = rest(S). This choice trivially satisfies (T-sub-id). But as the table shows,
(dom-in-T) is needed in the proof of �S ⊆ T , so that things get circular here.
For that reason this choice does not lead as many results as the two before.

• T = test(S). This satisfies (T-sub-id), but not necessarily (dom-in-T); the
question is the subject of ongoing investigation.
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Table 1. Proof results

Properties Proved Interpretation

with (pd1)

�a = 0 ⇒ a = 0 strictness
a ≤ 1 ⇒ a ≤ �1 sub-Identity I
a ≤ 1 ⇒ a ≤ �a sub-Identity II
1 ≤ �1 sub-Identity III

with (pd2)

1 ∈ T ⇒ �a ≤ 1 1 dominates predomain

with (pd1), (pd2)

a ∈ T ⇒ �a ≤ a predomain is contracting

with (T-sub-id), (pd1), (pd2)

�a ≤ �b ⇒ a ≤ �b · a first half of (llp)
a ∈ T ⇒ (�a ≤ b ⇒ a ≤ b · a) analogue of first half of (llp)
a ∈ T ⇒ a = �a · a equational form of (pd1)
a ∈ T ⇒ a = �a stability
a ∈ T ⇒ (�a ≤ b ⇐ a ≤ b · a) analogue of second half of (llp)

with (T-sub-id), (pd1), (pd2), (p-isot)

b ∈ T ∧ a ≤ b · c ⇒ a ≤ b · a T ⊆ rest(S)

with (T-sub-id), (dom-in-T), (pd1), (pd2)

�a ≤ �b ⇐ a ≤ �b · a second half of (llp)

with (T-sub-id), (dom-in-T), (T-plus-closed), (pd1), (pd2), (p-isot)

�(a+ b) ≤ �a+ �b additivity
�a · (�b+ �c) = �a · �b+ �a · �c left distributivity
�a+ �b · �c = (�a+ �b) · (�a+ �c) distributivity II

with (T-sub-id), (dom-in-T), (pd1), (pd2), (p-isot)

a ≤ �b · c ⇒ a ≤ �b · a �S ⊆ rest(S)
a ≤ �b · c ⇒ �a ≤ �b analogue of second half of (llp)
�a+ �a · �b = �a absorption I
�a · (�a+ �b) = �a absorption II
(�a+ �b) · �a = �a absorption III
�a · �b = �b · �a predomain elements commute
�a · �a = �a predomain elements are idempotent
�a · 0 = 0 0 is a right annihilator on �S
�1 = 1
��a = �a stability
�(�a · �b) = �a · �b domain of product
r ∈ T ∧ (r ≤ �a ∧ r ≤ �b) ⇒ r ≤ �a · �b infimum I
(�c ≤ �a ∧ �c ≤ �b) ⇒ �c ≤ �a · �b infimum II
r ∈ T ∧ (�a ≤ r ∧ �b ≤ r) ⇒ �(a+ b) ≤ r supremum I
(�a ≤ �c ∧ �b ≤ �c) ⇒ �(a+ b) ≤ �c supremum II
(T-dot-closed) T closed under ·
0 ∈ T ⇒ �0 = 0 strictness (not valid without the

premise)
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