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Abstract. We present a multidimensional optimization problem that is
formulated and solved in the tropical mathematics setting. The problem
consists of minimizing a nonlinear objective function defined on vectors
over an idempotent semifield by means of a conjugate transposition op-
erator, subject to constraints in the form of linear vector inequalities. A
complete direct solution to the problem under fairly general assumptions
is given in a compact vector form suitable for both further analysis and
practical implementation. We apply the result to solve a multidimen-
sional minimax single facility location problem with Chebyshev distance
and with inequality constraints imposed on the feasible location area.
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1 Introduction

Tropical (idempotent) mathematics encompasses various aspects of the theory
and applications of semirings with idempotent addition and has its origin in
a few pioneering works by Pandit [Pan61], Cuninghame-Green [CG62], Giffler
[Gif63], Vorob’ev [Vor63] and Romanovskĭı [Rom64]. At the present time, the
literature on the topic contains several monographs, including those by Carré
[Car79], Cuninghame-Green [CG79], U. Zimmermann [Zim81], Baccelli et al.
[BCOQ93], Kolokoltsov and Maslov [KM97], Golan [Gol03], Heidergott, Olsder
and van der Woude [HOvdW06], Gondran and Minoux [GM08], and Butkovič
[But10]; as well as a rich variety of contributed papers.

Optimization problems that are formulated and solved in the tropical math-
ematics setting come from various application fields and form a noteworthy re-
search domain within the research area. Certain optimization problems have
appeared in the early paper [CG62], and then the problems were investigated in
many works, including [CG79, Zim81, GM08, But10].
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Tropical mathematics provides a useful framework for solving optimization
problems in location analysis. Specifically, a solution in terms of tropical math-
ematics has been proposed by Cuninghame-Green [CG91, CG94] to solve single
facility location problems defined on graphs. A different but related approach to
location problems on graphs and networks has been developed by K. Zimmer-
mann [Zim92], Hudec and K. Zimmermann [HZ93, HZ99], Tharwat and K. Zim-
mermann [TZ10] on the basis of the concept of max-separable functions.

Multidimensional minimax location problems with Chebyshev distance arise
in various applications, including the location of emergency service facility in
urban planning and the location of a component on a chip in electronic circuit
manufacturing (see, e.g., Hansen, Peeters and Thisse [HPT80, HPT81]). The
two-dimensional problems on the plane without constraints can be solved directly
on the basis of geometric arguments, as demonstrated by Sule [Sul01] and Moradi
and Bidkhori [MB09]. The solution of the multidimensional constrained problems
is less trivial and requires different approaches. These problems can be solved,
for instance, by using standard linear programming techniques which, however,
generally offer iterative procedures and do not guarantee direct solutions.

A strict tropical mathematics approach to solve both unconstrained and con-
strained minimax location problems with Chebyshev distance was developed by
Krivulin [Kri11, Kri12], and Krivulin and K. Zimmermann [KZ13]. The main
result of [Kri11] is a direct solution to the unconstrained problem obtained by
using the spectral properties of matrices in idempotent algebra. The application
of another technique in [Kri12, KZ13], which is based on the derivation of sharp
bounds on the objective function, shows that the solution in [Kri11] is complete.

In this paper, a new minimax Chebyshev location problem with an extended
set of constraints is taken to both motivate and illustrate the development of the
solution to a new general tropical optimization problem. The problem is to mini-
mize a nonlinear objective function defined on vectors over a general idempotent
semifield by means of a conjugate transposition operator. The problem involves
constraints imposed on the solution set in the form of linear vector inequalities
given by a matrix, and two-sided boundary constraints.

To solve the problem, we use the approach, which is proposed in [Kri13, Kri14]
and combines the derivation of a sharp bound on the objective function with
the solution of linear inequalities. The approach is based on the introduction
of an auxiliary variable as a parameter, and the reduction of the optimization
problem to the solution of a parametrized system of linear inequalities. Under
fairly general assumptions, we obtain a complete direct solution to the problem
and represent the solution in a compact vector form. The obtained result is then
applied to solve the Chebyshev location problem, which motivated this study.

The paper is organized as follows. In Section 2, we offer an introduction to
idempotent algebra to provide a formal framework for the study in the rest of
the paper. Section 3 offers the preliminary results on the solution of linear in-
equalities, which form a basis for later proofs. The main result is included in
Section 4, which starts with a discussion of previously solved problems. Further-
more, we describe the problem under study, present a complete direct solution to
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the problem, consider particular cases, and give illustrative examples. Finally,
application of the results to location analysis is discussed in Section 5.

2 Preliminary Definitions and Notation

We start with a short, concise introduction to the key definitions, notation,
and preliminary results in idempotent algebra, which is to provide a proper
context for solving tropical optimization problems in the subsequent sections.
The introduction is mainly based on the notation and results suggested in [Kri06,
Kri09b, Kri12, Kri13], which offer strong possibilities for deriving direct solutions
in a compact form. Further details on both introductory and advanced levels are
available in various works published on the topic, including [CG79, Car79, Zim81,
BCOQ93, KM97, Gol03, HOvdW06, ABG07, GM08, But10].

2.1 Idempotent Semifield

An idempotent semifield is an algebraic system (�,⊕,⊗, �, �), where � is a non-
empty carrier set, ⊕ and ⊗ are binary operations, called addition and multipli-
cation, � and � are distinct elements, called zero and one; such that (�,⊕, �) is
a commutative idempotent monoid, (�,⊗, �) is an abelian group, multiplication
distributes over addition, and � is absorbing for multiplication.

In the semifield, addition is idempotent, which means the equality x⊕ x = x
is valid for each x ∈ �. The addition induces a partial order relation such that
x ≤ y if and only if x ⊕ y = y for x, y ∈ �. Note that � is the least element in
terms of this order, and so the inequality x �= � implies x > �.

Furthermore, with respect to this partial order, addition exhibits an extremal
property in the form of the inequalities x ⊕ y ≥ x and x ⊕ y ≥ y. Both ad-
dition and multiplication are monotone in each argument, which implies that
the inequalities x ≤ y and u ≤ v result in the inequalities x ⊕ u ≤ y ⊕ v and
x ⊗ u ≤ y ⊗ v. These properties lead, in particular, to the equivalence of the
inequality x⊕ y ≤ z with the two simultaneous inequalities x ≤ z and y ≤ z.

Multiplication is invertible to allow every non-zero x ∈ � to have an inverse
x−1 such that x−1 ⊗ x = �. The multiplicative inversion is antitone in the sense
that if x ≤ y then x−1 ≥ y−1 for all non-zero x and y.

The integer power indicates iterated product defined, for each non-zero x �= �

and integer p ≥ 1, as xp = xp−1 ⊗ x, x−p = (x−1)p, x0 = � and �
p = �. We

suppose the rational exponents can be defined as well, and take the semifield to
be algebraically closed (radicable).

In what follows, the multiplication sign ⊗ will be omitted to save writing.
Typical examples of the idempotent semifield under consideration include

�max,+ = (� ∪ {−∞},max,+,−∞, 0), �min,+ = (� ∪ {+∞},min,+,+∞, 0),
�max,× = (�+ ∪ {0},max,×, 0, 1), and �min,× = (�+ ∪ {+∞},min,×,+∞, 1),
where � denotes the set of real numbers and �+ = {x ∈ �|x > 0}.

Specifically, the semifield �max,+ is equipped with the maximum operator in
the role of addition, and arithmetic addition as multiplication. Zero and one are
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defined as −∞ and 0, respectively. For each x ∈ �, there exists the inverse x−1,
which is equal to −x in ordinary notation. The power xy can be defined for all
x, y ∈ � (and thus for rational y) to coincide with the arithmetic product xy.
The partial order induced by addition agrees with the usual linear order on �.

2.2 Matrix and Vector Algebra

Consider matrices over the idempotent semifield and denote the set of matrices
with m rows and n columns by �m×n. A matrix with all zero entries is the zero
matrix. A matrix is column- (row-) regular if it has no zero columns (rows).

Addition, multiplication, and scalar multiplication of matrices follow the usual
rules. For any matrices A = (aij) ∈ �

m×n, B = (bij) ∈ �
m×n and C = (cij) ∈

�
n×l, and a scalar x ∈ �, these operations are performed according to the entry-

wise formulas

{A⊕B}ij = aij ⊕ bij , {AC}ij =
n⊕

k=1

aikckj , {xA}ij = xaij .

The extremal property of the scalar addition extends to the matrix addition,
which implies the entry-wise inequalities A ⊕ B ≥ A and A ⊕ B ≥ B. All
matrix operations are entry-wise monotone in each argument. The inequality
A⊕B ≤ C is equivalent to the two inequalities A ≤ C and B ≤ C.

Furthermore, we concentrate on square matrices of order n in the set �n×n.
A matrix that has the diagonal entries set to �, and the off-diagonal entries to
� is the identity matrix, which is denoted by I.

The integer power of a square matrix A is routinely defined as A0 = I and
Ap = Ap−1A = AAp−1 for all p ≥ 1.

The trace of a matrix A = (aij) is given by

trA = a11 ⊕ · · · ⊕ ann.

A matrix that consists of one column (row) is a column (row) vector. In the
following, all vectors are regarded as column vectors, unless otherwise specified.
The set of column vectors of length n is denoted by �

n. A vector with all zero
elements is the zero vector. A vector is called regular if it has no zero components.

Let x = (xi) be a non-zero vector. The multiplicative conjugate transpose of
x is a row vector x− = (x−

i ), where x−
i = x−1

i if xi > �, and x−
i = � otherwise.

It follows from the antitone property of the inverse operation that, for regular
vectors x and y, the inequality x ≤ y implies that x− ≥ y− and vice versa.

The conjugate transposition exhibits the following properties, which are easy
to verify. First, note that x−x = � for each non-zero vector x.

Suppose that x,y ∈ �
n are regular vectors. Then, the matrix inequality

xy− ≥ (x−y)−1I holds entry-wise, and becomes xx− ≥ I if y = x.
Finally, for any regular vector x ∈ �

n, if a matrix A ∈ �
n×n is row-regular,

then Ax is a regular vector. If A is column-regular, then x−A is regular.
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3 Solutions to Linear Inequalities

We now present solutions to linear vector inequalities, which form the basis
for later investigation of constrained optimization problems. These solutions are
often obtained as consequences to the solution of the corresponding equations,
and are known under diverse assumptions, at different levels of generality, and
in various forms (see, e.g., [Car79, CG79, Zim81, BCOQ93, ABG07, But10]).

In this section we follow the results in [Kri06, Kri09b, Kri09a, Kri13, KZ13],
which offer a framework to represent the solutions in a compact vector form.

Suppose that, given a matrix A ∈ �
m×n and a regular vector d ∈ �

m, the
problem is to find all regular vectors x ∈ �

n that satisfy the inequality

Ax ≤ d. (1)

The next result offers a solution obtained as a consequence of the solution to
the corresponding equation [Kri09b, Kri09a], and by independent proof [KZ13].

Lemma 3.1. For every column-regular matrix A and regular vector d, all reg-
ular solutions to inequality (1) are given by

x ≤ (d−A)−.

Furthermore, we consider the following problem: given a matrix A ∈ �
n×n

and a vector b ∈ �
n, find all regular vectors x ∈ �

n that satisfy the inequality

Ax⊕ b ≤ x. (2)

To describe a complete solution to the problem, we define a function that
maps every matrix A ∈ �

n×n to a scalar given by

Tr(A) = trA⊕ · · · ⊕ trAn.

We also employ the asterate operator (also known as the Kleene star), which
takes A to the matrix

A∗ = I ⊕A⊕ · · · ⊕An−1.

Note that the asterate possesses a useful property established by Carré [Car71].
The property states that each matrix A with Tr(A) ≤ � satisfies the entry-wise
inequality Ak ≤ A∗ for all integer k ≥ 0. Specifically, this property makes the
equality A∗A∗ = A∗ valid provided that Tr(A) ≤ �.

A direct solution to inequality (2) is given as follows [Kri06, Kri09b, Kri13].

Theorem 3.2. For every matrix A and vector b, the following statements hold:

1. If Tr(A) ≤ �, then all regular solutions to (2) are given by x = A∗u, where
u is any regular vector such that u ≥ b.

2. If Tr(A) > �, then there is no regular solution.
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4 Optimization Problems

This section is concerned with deriving complete direct solutions to multidimen-
sional constrained optimization problems. The problems consist in minimizing
a nonlinear objective function subject to both linear inequality constraints with
a matrix and simple boundary constraints. We start with a short overview of
the previous results, which provide solutions to problems with reduced sets of
constraints. Furthermore, a complete solution to a general problem that involves
both constraints is obtained under fairly general assumptions. Two special cases
of the solution are discussed which improve the previous results. Finally, we
present illustrative examples of two-dimensional optimization problems.

4.1 Previous Results

We start with an unconstrained problem that is examined in [Kri11] by applying
extremal properties of tropical eigenvalues. Given vectors p, q ∈ �

n, the problem
is to find regular vectors x ∈ �

n that

minimize x−p⊕ q−x. (3)

The problem is reduced to the solving of the eigenvalue-eigenvector problem
for a certain matrix. The solution is given by the next statement.

Lemma 4.1. Let p and q be regular vectors, and

θ = (q−p)1/2.

Then, the minimum value in problem (3) is equal to θ and attained at each
vector x such that

θ−1p ≤ x ≤ θq.

A different approach based on the solutions to linear inequalities is used in
[Kri12, KZ13] to show that the above solution of problem (3) is complete. More-
over, the approach is applied to solve constrained versions of the problem. Specif-
ically, the following problem is considered: given a matrix B ∈ �

n×n, find regular
vectors x that

minimize x−p⊕ q−x,
subject to Bx ≤ x.

(4)

The solution, which is given in [Kri12] under some restrictive assumptions on
the matrix B, can readily be extended to arbitrary matrices by using the result
of Theorem 3.2, and then written in the following form.

Theorem 4.2. Let B be a matrix with Tr(B) ≤ �, p and q regular vectors, and

θ = ((B∗(q−B∗)−)−p)1/2. (5)

Then, the minimum value in problem (4) is equal to θ and attained at

x = θB∗(q−B∗)−.
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Note that the theorem offers a particular solution to the problem rather than
provides a complete solution.

Furthermore, given vectors g,h ∈ �
n, consider a problem with two-sided

boundary constraints to find regular vectors x that

minimize x−p⊕ q−x,
subject to g ≤ x ≤ h.

(6)

The complete solution obtained in [KZ13] is as follows.

Theorem 4.3. Let p, q, g, and h be regular vectors such that g ≤ h, and

θ = (q−p)1/2 ⊕ h−p⊕ q−g.

Then, the minimum in problem (6) is equal to θ and all regular solutions of
the problem are given by the condition

g ⊕ θ−1p ≤ x ≤ (h− ⊕ θ−1q−)−.

Below, we examine a new general problem, which combines the constraints in
problems (4) and (6), and includes both these problems as special cases.

4.2 New Optimization Problem with Combined Constraints

We now are in a position to formulate and solve a new constrained optimization
problem. The solution follows the approach developed in [Kri13, Kri14], which
is based on the introduction of an auxiliary variable and the reduction of the
problem to the solution of a parametrized system of linear inequalities, where
the new variable plays the role of a parameter. The existence condition for the
solution of the system is used to evaluate the parameter, whereas the complete
solution to the system is taken as the solution to the optimization problem.

Given vectors p, q, g,h ∈ �
n, and a matrix B ∈ �

n×n, consider the problem
to find all regular vectors x ∈ �

n that

minimize x−p⊕ q−x,
subject to Bx⊕ g ≤ x,

x ≤ h.

(7)

The constraints in the problem can also be written in the equivalent form

Bx ≤ x,

g ≤ x ≤ h.

The next statement gives a complete direct solution to the problem.

Theorem 4.4. Let B be a matrix with Tr(B) ≤ �, p be a non-zero vector, q
and h regular vectors, and g a vector such that h−B∗g ≤ �. Define a scalar

θ = (q−B∗p)1/2 ⊕ h−B∗p⊕ q−B∗g. (8)
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Then, the minimum value in problem (7) is equal to θ and all regular solutions
of the problem are given by

x = B∗u,

where u is any regular vector such that

g ⊕ θ−1p ≤ u ≤ ((h− ⊕ θ−1q−)B∗)−. (9)

Proof. Suppose that θ is the minimum of the objective function in problem (7)
over all regular x, and note that θ ≥ (q−B∗p)1/2 ≥ (q−p)1/2 > �. Then, all
solutions to the problem are given by the system

x−p⊕ q−x = θ,

Bx⊕ g ≤ x,

x ≤ h.

Since θ is the minimum of the objective function, the solution set remains
unchanged if we replace the first equation by the inequality x−p⊕q−x ≤ θ and
then substitute this inequality with equivalent two inequalities as follows

x−p ≤ θ,

q−x ≤ θ,

Bx⊕ g ≤ x,

x ≤ h.

After the application of Lemma 3.1 to the first two inequalities, the system
becomes

θ−1p ≤ x,

x ≤ θq,

Bx⊕ g ≤ x,

x ≤ h.

We now combine the inequalities in the system as follows. The first and third
inequalities are equivalent to the inequality Bx⊕ g ⊕ θ−1p ≤ x.

The other two inequalities are replaced by x− ≥ θ−1q− and x− ≥ h−, which
are equivalent to x− ≥ h− ⊕ θ−1q−, and thus to x ≤ (h− ⊕ θ−1q−)−.

After the rearrangement of the system, we arrive at the double inequality

Bx⊕ g ⊕ θ−1p ≤ x ≤ (h− ⊕ θ−1q−)−.

The solution of the left inequality by using Theorem 3.2 gives the result

x = B∗u, u ≥ g ⊕ θ−1p.

Substitution of this solution into the right inequality yields the inequality

B∗u ≤ (h− ⊕ θ−1q−)−,
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which, by Lemma 3.1, has the solution

u ≤ ((h− ⊕ θ−1q−)B∗)−.

By coupling both lower and upper bounds on u, we arrive at the solution in
the form of (9). The solution set defined by (9) is non-empty if and only if

g ⊕ θ−1p ≤ ((h− ⊕ θ−1q−)B∗)−.

The left multiplication of this inequality by (h− ⊕ θ−1q−)B∗ and application
of one property of conjugate transposition lead to

(h− ⊕ θ−1q−)B∗(g ⊕ θ−1p) ≤ (h− ⊕ θ−1q−)B∗((h− ⊕ θ−1q−)B∗)− = �,

which results in the new inequality

(h− ⊕ θ−1q−)B∗(g ⊕ θ−1p) ≤ �.

Since the left multiplication of the latter inequality by ((h−⊕θ−1q−)B∗)− and
the other property of conjugate transposition give the former inequality, both
inequalities are equivalent. The obtained inequality can further be rewritten as

θ−2q−B∗p⊕ θ−1(h−B∗p⊕ q−B∗g)⊕ h−B∗g ≤ �,

and then represented by the equivalent system

θ−2q−B∗p ≤ �,

θ−1(h−B∗p⊕ q−B∗g) ≤ �,

h−B∗g ≤ �.

Note that the third inequality in the system is valid by the condition of the
theorem. After rearrangement of terms, the first two inequalities become

θ ≥ (q−B∗p)1/2,

θ ≥ h−B∗p⊕ q−B∗g,

and then finally lead to one inequality

θ ≥ (q−B∗p)1/2 ⊕ h−B∗p⊕ q−B∗g.

Since θ is assumed to be the minimum value of the objective function, the
last inequality has to be satisfied as an equality, which gives (8). 
�

4.3 Particular Cases

We now examine particular cases, in which the feasible solution set is defined
either by a linear inequality with a matrix or by two-sided boundary constraints.

First, we offer a new complete solution to problem (4), which does not have
the boundary constraints. A slight modification to the proof of Theorem 4.4
yields the solution in the following form.
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Corollary 4.5. Let B be a matrix with Tr(B) ≤ �, p be a non-zero vector, and
q a regular vector. Define a scalar

θ = (q−B∗p)1/2. (10)

Then, the minimum in (4) is θ and all regular solutions are given by

x = B∗u, θ−1p ≤ u ≤ θ(q−B∗)−.

Although the expression at (10) offers the minimum in a different and more
compact form than that at (5), both representations prove to be equivalent.

To verify that these representations coincide, we first note that B∗B∗ = B∗

and then apply the properties of conjugate transposition to write

B∗(q−B∗)− = B∗(q−B∗B∗)− ≤ (q−B∗)−q−B∗B∗(q−B∗B∗)− = (q−B∗)−,

which implies that the inequality B∗(q−B∗)− ≤ (q−B∗)− holds.
Since B∗ ≥ I, the opposite inequality B∗(q−B∗)− ≥ (q−B∗)− is valid as

well. Both inequalities result in the equality B∗(q−B∗)− = (q−B∗)−, and thus
in the equality (B∗(q−B∗)−)− = q−B∗. Finally, the right multiplication by p
and extraction of square roots lead to the desired result.

Furthermore, we put B to be the zero matrix in (7) and so arrive at problem
(6), which can be completely solved through a direct consequence of Theorem 4.4.
Clearly, the new solution of (6) coincides with that given by Theorem 4.3, and
even involves somewhat less assumptions on the vectors under consideration.

4.4 Numerical Examples and Graphical Illustration

To illustrate the results obtained above, we present examples of two-dimensional
problems in the setting of the idempotent semifield �max,+ and provide geometric
interpretation on the plane with a Cartesian coordinate system.

Consider problem (7) formulated in terms of �max,+ under the assumptions
that

p =

(
3
14

)
, q =

(−12
−4

)
, g =

(
2

−8

)
, h =

(
6
8

)
, B =

(
0 −4

−8 −6

)
.

Prior to solving the general problem, we examine several special cases.
We start with problem (3) without constraints, which has a complete solution

given by a consequence of Theorem 4.4 (see also Lemma 4.1). According to this
result, the minimum in the unconstrained problem is given by

θ1 = (q−p)1/2 = 9,

and attained if and only if the vector x satisfies the conditions

x′
1 ≤ x ≤ x′′

1 , x′
1 = θ−1

1 p =

(−6
5

)
, x′′

1 = θ1q =

(−3
5

)
.
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Fig. 1. Solutions to problems without constraints (left) and with two-sided boundary
constraints (right)

A graphical illustration of the result is given in Fig. 1 (left), where the solutions
form a horizontal segment between the ends of the vectors x′

1 and x′′
1 .

Furthermore, we consider the problem in the form (6) with two-sided bound-
ary constraints g ≤ x ≤ h. It follows from Theorem 4.3 (or as another conse-
quence of Theorem 4.4) that the minimum in the problem is calculated as

θ2 = (q−p)1/2 ⊕ h−p⊕ q−g = 14.

The solution set consists of those vectors x that satisfy the double inequality

x′
2 ≤ x ≤ x′′

2 , x′
2 = g ⊕ θ−1

2 p =

(
2
0

)
, x′′

2 = (h− ⊕ θ−1
2 q−)− =

(
2
8

)
.

The solutions of the problem are indicated on Fig. 1 (right) by a thick vertical
segment on the left side of the rectangle that represents the feasible set.

We now examine problem (4) with the linear inequality constraints Bx ≤ x.
We calculate

B∗ = I ⊕B =

(
0 −4

−8 0

)
, q−B∗ =

(
12 8

)
.

The application of Corollary 4.5 gives the minimum value

θ3 = (q−B∗p)1/2 = 11,

which is attained if and only if x = B∗u for all u such that

u′
3 ≤ u ≤ u′′

3 , u′
3 = θ−1p =

(−8
3

)
, u′′

3 = θ(q−B∗)− =

(−1
3

)
.
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After multiplication ofB∗ by both bounds on u, we conclude that the problem
has the unique solution

x3 = B∗u′
3 = B∗u′′

3 =

(−1
3

)
.

Figure 2 (left) shows the solution point located on the upper side of the strip,
which represents the solution of the inequality Bx ≤ x. The columns of the
matrices B = (b1, b2) and B∗ = (b∗1, b

∗
2) are also included.
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Fig. 2. Solutions to problems with linear inequality constraints (left) and with both
linear inequality and two-sided boundary constraints (right)

Finally, we consider general problem (7). To solve the problem, we calculate

B∗p =

(
10
14

)
, h−B∗p = 6, q−B∗g = 14.

It follows from Theorem 4.4 that the minimum in the problem is given by

θ = (q−B∗p)1/2 ⊕ h−B∗p⊕ q−B∗g = 14.

This minimum is attained only at x = B∗u, where u is any vector such that

u′ ≤ u ≤ u′′, u′ = g⊕ θ−1p =

(
2
0

)
, u′′ = ((h− ⊕ θ−1q−)B∗)− =

(
2
6

)
.

Turning to the solution of the problem, we arrive at the set of vectors x that
satisfy the conditions

x′ ≤ x ≤ x′′, x′ = B∗u′ =
(
2
0

)
, x′′ = B∗u′′ =

(
2
6

)
.

The solution is shown on Fig. 2 (right) by the thick vertical segment on the
left side of the polygon which describes the feasible set.
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5 Application to Location Analysis

In this section, we apply the above results to solve minimax single facility location
problems, which are often called the Rawls problems [HPT80, HPT81], but also
known as Messenger Boy problems [EH72] and 1-center problems [Dre11]. We
consider a new constrained problem on a multidimensional space with Chebyshev
distance. A complete direct solution is obtained which extends the results in
[Kri11, Kri12, KZ13] by taking into account a more general system of constraints.

Let r = (ri) and s = (si) be vectors in �
n. The Chebyshev distance (L∞,

maximum, dominance, lattice, king-move, or chessboard metric) between the
vectors is calculated as

ρ(r, s) = max
1≤i≤n

|ri − si|. (11)

Consider the following Chebyshev single facility location problem. Given m
vectors rj = (rij) ∈ �

n and constants wj ∈ � for each j = 1, . . . ,m, a matrix
B = (bij) ∈ �

n×n, and vectors g = (gi) ∈ �
n, h = (hi) ∈ �

n, the problem is to
find the vectors x = (xi) ∈ �

n that

minimize max
1≤j≤m

(
max
1≤i≤n

|rij − xi|+ wi

)
,

subject to xj + bij ≤ xi,

gi ≤ xi ≤ hi, j = 1, . . . , n, i = 1, . . . , n.

(12)

Note that the feasible location area is formed in �
n by the intersection of

the hyper-rectangle defined by the boundary constraints with closed half-spaces
given by the other inequalities.

To solve the problem, we represent it in terms of the semifield �max,+. First,
we put (11) in the equivalent form

ρ(r, s) =

n⊕

i=1

(s−1
i ri ⊕ r−1

i si) = s−r ⊕ r−s.

Furthermore, we define the vectors

p = w1r1 ⊕ · · · ⊕ wmrm, q− = w1r
−
1 ⊕ · · · ⊕ wmr−

m.

The objective function in problem (12) becomes

m⊕

i=1

wiρ(ri,x) =
m⊕

i=1

wi(x
−ri ⊕ r−

i x) = x−p⊕ q−x.

We now combine the constraints xj + bij ≤ xi for all j = 1, . . . , n into one
inequality for each i, and write the obtained inequalities in terms of �max,+ as

bi1x1 ⊕ · · · ⊕ binxn ≤ xi, i = 1, . . . , n.

After rewriting the above inequalities and the boundary constraints in matrix-
vector form, we obtain the problem in the form (7), where all given vectors have
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real components. Since these vectors are clearly regular in the sense of �max,+,
they satisfy the conditions of Theorem 4.4, which completely solves the problem.

As an illustration, consider the two-dimensional problem with given points

r1 =

(−7
12

)
, r2 =

(
2
10

)
, r3 =

(−10
3

)
, r4 =

(−4
4

)
, r5 =

(−4
−3

)
,

and constants w1 = w3 = 2, w2 = w4 = w5 = 1. For the sake of simplicity, we
take the same matrix B and vectors g,h as in the examples considered above.

To reduce the location problem to problem (7), we first calculate the vectors

p =

(
3
14

)
, q =

(−12
−4

)
.

These vectors define two opposite corners of the minimum rectangle which
encloses all points wiri and w−1

i ri. The rectangle is depicted in Fig. 3 (left).
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Fig. 3. Minimum enclosing rectangle (left) and solution of location problem (right)

Note that the reduced problem coincides with that examined as an example
in the previous section, and thus admits the same solution. We show the solution
as a thick vertical segment and the given points as black dots in Fig. 3 (right).

To conclude this section, we write the solution given by Theorem 4.4 to prob-
lem (12) in the usual form.

We first represent the entries of the matrix B∗ = (b∗ij) in terms of ordinary
operations. It follows from the definition of the asterate operator that

b∗ij =

{
βij , if i �= j;

max(βij , 0), if i = j;

where the numbers βij are calculated as

βij = max
1≤k≤n−1

max
1≤i1,...,ik−1≤n

i0=i,ik=j

(bi0i1 + · · ·+ bik−1ik).
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Furthermore, we replace the operations of tropical mathematics by arithmetic
operations in the rest of the statement of Theorem 4.4. By adding definitions for
the vectors p and q, we obtain the following statement.

Theorem 5.1. Let B be a matrix, and g and h be vectors such that

max
1≤i,k≤n

max
1≤i1,...,ik−1≤n

i0=ik=i

(bi0i1 + · · ·+ bik−1ik) ≤ 0,

max
1≤i,j≤n

(b∗ij − hi + gj) ≤ 0.

Define vectors p = (pi) and q = (qi) with elements

pi = max
1≤j≤m

(rij + wj), qi = min
1≤j≤m

(rij − wj), i = 1, . . . , n;

and a scalar

θ = max
1≤i,j≤n

(
(b∗ij − qi + pj)/2, b

∗
ij − hi + pj , b

∗
ij − qi + gj

)
.

Then, the minimum in (12) is θ and all solutions x = (xi) are given by

xi = max
1≤j≤n

(b∗ij + uj), i = 1, . . . , n;

where the numbers uj for each j = 1, . . . , n satisfy the condition

max(gj , pj − θ) ≤ uj ≤ min

(
− max

1≤i≤n
(b∗ij − hi), θ − max

1≤i≤n
(b∗ij − qi)

)
.

6 Conclusions

The paper was concerned with a new multidimensional tropical optimization
problem with a nonlinear objective function and inequality constraints. A com-
plete solution was obtained based on the technique, which reduces the problem
to the solution of a linear inequality with a parametrized matrix. The solution
is given in a closed form in terms of simple vector operations, which offers low
computational complexity and provides for efficient software implementation.

Possible directions of future research include the further extension of the prob-
lem to account for new types of objective functions and constraints. The devel-
opment of new real-world applications of the results is also of interest.

Acknowledgments. The author is very grateful to the three reviewers for their
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