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Abstract. Relational lattices are obtained by interpreting lattice con-
nectives as natural join and inner union between database relations.
Our study of their equational theory reveals that the variety generated
by relational lattices has not been discussed in the existing literature.
Furthermore, we show that addition of just the header constant to the
lattice signature leads to undecidability of the quasiequational theory.
Nevertheless, we also demonstrate that relational lattices are not as in-
tangible as one may fear: for example, they do form a pseudoelementary
class. We also apply the tools of Formal Concept Analysis and investigate
the structure of relational lattices via their standard contexts.
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1 Introduction

We study a class of lattices with a natural database interpretation [Tro, ST06,
Tro05]. It does not seem to have attracted the attention of algebraists, even those
investigating the connections between algebraic logic and relational databases
(see, e.g., [IL84] or [DM01]).

The connective natural join (which we will interpret as lattice meet!) is one
of the basic operations of Codd’s (named) relational algebra [AHV95, Cod70].
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Incidentally, it is also one of its few genuine algebraic operations—i.e., defined
for all arguments. Codd’s “algebra”, from a mathematical point of view, is only a
partial algebra: some operations are defined only between relations with suitable
headers, e.g., the (set) union or the difference operator. Apart from the issues of
mathematical elegance and generality, this partial nature of operations has also
unpleasant practical consequences. For example, queries which do not observe
constraints on headers can crash [VdBVGV07].

It turns out, however, that it is possible to generalize the union operation to
inner union defined on all elements of the algebra and lattice-dual to natural join.
This approach appears more natural and has several advantages over the em-
bedding of relational “algebras” in cylindric algebras proposed in [IL84]. For ex-
ample, we avoid an artificial uniformization of headers and hence queries formed
with the use of proposed connectives enjoy the domain independence property
(see, e.g., [AHV95, Ch. 5] for a discussion of its importance in databases).

We focus here on the (quasi)equational theory of natural join and inner union.
Apart from an obvious mathematical interest, Birkhoff-style equational inference
is the basis for certain query optimization techniques where algebraic expressions
represent query evaluation plans and are rewritten by the optimizer into equiv-
alent but more efficient expressions. As for quasiequations, i.e., definite Horn
clauses over equalities, reasoning over many database constraints such as key
constraints and foreign keys can be reduced to quasiequational reasoning. Note
that an optimizer can consider more equivalent alternatives for the original ex-
pression if it can take the specified database constraints into account.

Strikingly, it turned out that relational lattices does not seem to fit any-
where into the rather well-investigated landscape of equational theories of lat-
tices [JR92, JR98]. Nevertheless, there were some indications that the consid-
ered choice of connectives may lead to positive results concerning decidabil-
ity/axiomatizability even for quasiequational theories. There is an elegant pro-
cedure known as the chase [AHV95, Ch. 8] applicable for certain classes of queries
and database constraints similar to those that can be expressed with the natural
join and inner union.

To our surprise, however, it turned out that when it comes to decidability,
relational lattices seem to have a lot in common with other “untamed” structures
from algebraic logic such as Tarski’s relation algebras or cylindric algebras. As
soon as an additional header constant H is added to the language, one can
encode the word problem for semigroups in the quasiequational theory using a
technique introduced by Maddux [Mad80]. This means that decidability of query
equivalence under constraints for restricted positive database languages does not
translate into decidability of corresponding quasiequational theories. However,
our Theorem 4.7 and Corollary 4.8 do not rule out possible finite axiomatization
results (except for quasiequational theory of finite structures) or decidability of
equational theory.1 And with H removed, i.e., in the pure lattice signature, the
picture is completely open. Of course, such a language would be rather weak
from a database point of view, but natural for an algebraist.

1 Note, however, that an extension of our signature to a language with EDPC or a
discriminator term would result in an undecidable equational theory.
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We also obtained a number of positive results. First of all, concrete rela-
tional lattices are pseudoelementary and hence their closure under subalge-
bras and products is a quasivariety—Theorem 4.1 and Corollary 4.3. The proof
yields an encoding into a sufficiently rich (many-sorted) first-order theory with
finitely many axioms. This opens up the possibility of using generic proof as-
sistants like Isabelle or Coq in future investigations—so far, we have only used
Prover9/Mace4 to study interderivability of interesting (quasi)equations.2 We
have also used the tools of Formal Concept Analysis (Theorem 5.3) to inves-
tigate the dual structure of full concrete relational lattices and establish, e.g.,
their subdirect irreducibility (Corollary 5.4). Theorem 5.3 is likely to have fur-
ther applications—see the discussion of Problem 6.1.

The structure of the paper is as follows. In Section 2, we provide basic defi-
nitions, establish that relational lattices are indeed lattices and note in passing
a potential connection with category theory in Section 2.1. Section 3 reports
our findings about the (quasi)equational theory of relational lattices: the fail-
ure of most standard properties such as weakening of distributivity (Theorem
3.2), those surprising equations and properties that still hold (Theorem 3.4) and
dependencies between them (Theorem 3.5). In Section 4, we focus on quasiequa-
tions and prove some of most interesting results discussed above, both posi-
tive (Theorem 4.1 and Corollaries 4.2–4.4) and negative ones (Theorem 4.7 and
Corollaries 4.8–4.9). Section 5 analyzes standard contexts, incidence and arrow
relations [GW96] of relational lattices. Section 6 concludes and discusses future
work, in particular possible extensions of the signature in Section 6.1.

2 Basic Definitions

Let A be a set of attribute names and D be a set of domain values. For H ⊆ A,
a H-sequence from D or an H-tuple over D is a function x : H → D, i.e., an
element of HD. H is called the header of x and denoted as h(x). The restriction
of x to H ′ is denoted as x[H ′] and defined as x[H ′] := {(a, v) ∈ x | a ∈ H ′},
in particular x[H ′] = ∅ if H ′ ∩ h(x) = ∅. We generalize this to the projection of
a set of H-sequences X to a header H ′ which is X [H ′] := {x[H ′] | x ∈ X}. A
relation is a pair r = (Hr, Br), where Hr ⊆ A is the header of r and Br ⊆ HrD
the body of r. The collections of all relations over D whose headers are contained
in A will be denoted as R(D,A). For the relations r, s, we define the natural join
r��s, and inner union r⊕s:

r��s := (Hr ∪Hs, {x ∈ Hr∪HsD | x[Hr] ∈ Br and x[Hs] ∈ Bs})
r⊕s := (Hr ∩Hs, {x ∈ Hr∩HsD | x ∈ Br[Hs] or x ∈ Bs[Hr]})

In our notation, �� always binds stronger than ⊕ . The header constant H := (∅, ∅)
plays a special role: for any r, (Hr, Br)��H = (Hr, ∅) and hence r1 and r2 have
the same headers iff H��r1 = H��r2. Note also that the projection of r1 to Hr2

can be defined as r1 ⊕ (H��r2). In fact, we can identify H��r and Hr. We denote
(R(D,A), ��, ⊕ ,H) as RH(D,A), with LH denoting the corresponding algebraic
signature. R(D,A) is its reduct to the signature L := {��, ⊕}.
2 It is worth mentioning that the database inventor of relational lattices has in the
meantime developed a dedicated tool [Tro].
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Fig. 1. Natural join and inner union. In this example, A = {a, b, c}, D = {1, 2, 3, 4}.

Lemma 2.1. For any D and A, R(D,A) is a lattice.

Proof. This result is due to Tropashko [Tro, ST06, Tro05], but let us provide an
alternative proof. Define Dom := A ∪ AD and for any X ⊆ Dom set

Cl(X) := X ∪ {x ∈ AD | ∃y ∈ (X ∩ AD). x[A −X ] = y[A−X ]}.

In other words, Cl(X) is the sum of X∩A (the set of attributes contained in X)
with the cylindrification of X∩AD along the axes in X∩A. It is straightforward
to verify Cl is a closure operator and hence Cl-closed sets form a lattice, with
the order being obviously ⊆ inherited from the powerset of Dom. It remains to
observe R(D,A) is isomorphic to this lattice and the isomorphism is given by

(H,B) 	→ (A−H) ∪ {x ∈ AD | x[H ] ∈ B}. 
�

We call R(D,A) the (full) relational lattice over (D,A). We also use the al-
ternative name Tropashko lattices to honor the inventor of these structures. The
lattice order given by �� and ⊕ is

(Hr, Br) � (Hs, Bs) iff Hs ⊆ Hr and Br[Hs] ⊆ Bs.

For classes of algebras, we use H, S,P to denote closures under, respectively,
homomorphisms, (isomorphic copies of) subalgebras and products. Let

RH
fin := S{RH(D,A) | D,A finite}, RH

unr := S{RH(D,A) | D,A unrestricted}

and let Rfin and Runr denote the lattice reducts of respective classes.

2.1 Relational Lattice as the Grothendieck Construction

Given D and A, a category theorist may note that

FA
D : P⊇(A) 
 H −→ P(HD) ∈ Cat

FA
D (H ⊇ H ′) := (HD ⊇ B 	→ B[H ′] ⊆ H′D)

defines a quasifunctor assigning to an element of the powerset P⊇(A) (considered
as a poset with reverse inclusion order) the poset P(HD) considered as a small
category. Then one readily notes that R(D,A) is an instance of what is known as
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the (covariant) Grothendieck construction/completion3 of FA
D [Jac99, Definition

1.10.1] denoted as
∫ P⊇(A)

FA
D . As such considerations are irrelevant for the rest

of our paper, for the time being we just note this category-theoretical connection
as a curiosity, but it might lead to an interesting future study.

3 Towards the Equational Theory of Relational Lattices

Let us begin the section with an open

Problem 3.1. Are SP(RH
unr) = HSP(RH

unr) and SP(Runr) = HSP(Runr)?

If the answer is “no”, it would mean that relational lattices should be con-
sidered a quasiequational rather than equational class (cf. Corollary 4.3 below).
Note also that the decidability of equational theories seems of less importance
from a database point of view than decidability of quasiequational theories. Nev-
ertheless, relating to already investigated varieties of lattices seems a good first
step. It turns out that weak forms of distributivity and similar properties (see
[JR92, JR98, Ste99]) tend to fail dramatically:

Theorem 3.2. Rfin (and hence Runr) does not have any of the following prop-
erties (see the above references or the proof below for definitions):

1. upper- and lower-semidistributivity,
2. almost distributivity and neardistributivity,
3. upper- or lower-semimodularity (and hence also modularity),
4. local distributivity/local modularity,
5. the Jordan–Dedekind chain condition,
6. supersolvability.

Proof. For most clauses, it is enough to observe thatR({0, 1}, {0})) is isomorphic
to L4, one of the covers of the non-modular lattice N5 in [McK72] (see also
[JR98]): a routine counterexample in such cases. In more detail:
Clause 1: Recall that semidistributivity is the property:

a⊕ b = a⊕ c implies a⊕ b = a⊕ (b��c).
Now take a to be H and b and c to be the atoms with the header {0}.

Clause 2: This is a corollary of Clause 1, see [JR92, Th 4.2 and Sec 4.3].
Clause 3: Recall that semimodularity is the property:

if a��b covers a and b, then a⊕ b is covered by a and b.
Again, take a to be H and b to be either of the atoms with the header {0}.

Clause 4: This is a corollary of Clause 3, see [Mae74].
Clause 5: Recall that the Jordan-Dedekind chain condition is the property that
the cardinalities of two maximal chains between common end points are equal.
This obviously fails in N5.

3 Note that to preserve the lattice structure of R(D,A) we cannot consider FA
D as a

functor into Set, which would yield a special case of the Grothendieck construction
known as the category of elements. Note also that we chose the covariant definition
on P⊇(A) rather than the contravariant definition on P(A) to ensure the order �
does not get reversed inside each slice P(HD).
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Clause 6: Recall that for finite lattices, supersolvability [Sta72] boils down to
the existence of a maximal chain generating a distributive lattice with any other
chain. Again, this fails in N5. 
�
Remark 3.3. Theorem 3.2 has an additional consequence regarding the notion
called rather misleadingly boundedness in some references (see e.g., [JR92, p.
27]): being an image of a freely generated lattice by a bounded morphism. We
use the term McKenzie-bounded, as McKenzie showed that for finite subdirectly
irreducible lattices, this property amounts to splitting the lattice of varieties
of lattices [JR92, Theorem 2.25]. Finite Tropashko lattices are subdirectly irre-
ducible (Corollary 5.4 below) but Clause 1 of Theorem 3.2 entails they are not
McKenzie-bounded by [JR92, Lemma 2.30].

Nevertheless, Tropashko lattices do not generate the variety of all lattices. The
results of our investigations so far on valid (quasi)equations are summarized by
the following theorems:

Theorem 3.4. Axioms of RH in Table 1 are valid in RH
unr (and consequently in

RH
fin). Similarly, axioms of R are valid in Runr (and consequently Rfin).

Table 1. (Quasi)equations Valid in Tropashko Lattices

Class RH in the signature LH:

all lattice axioms

AxRH1 H��x��(y⊕ z)⊕y��z = (H��x��y⊕ z)��(H��x��z⊕y)
AxRH2 x��(y⊕z) = x��(z⊕H��y)⊕x��(y⊕H��z)
AxRL1 x��y⊕x��z = x��(y��(x⊕z)⊕z��(x⊕y))

Class R in the signature L (without H):

all lattice axioms together with AxRL1 and

AxRL2 t��((x⊕y)��(x⊕z)⊕ (u⊕w)��(u⊕v)) =
= t��((x⊕y)��(x⊕z)⊕u⊕w��v)⊕ t��((u⊕w)��(u⊕v)⊕x⊕y��z)

(in LH, AxRL2 is derivable from AxRH1 and AxRH2 above)

Additional (quasi)equations derivable in RH and R:

Qu1 x⊕y = x⊕z ⇒ x��(y⊕ z) = x��y⊕x��z.
Qu2 H��(x⊕y) = H��(x⊕z) ⇒ x��(y⊕ z) = x��y⊕x��z.
Eq1 H��x��(y⊕ z) = H��x��y⊕H��x��z
Der1 H��x⊕x��y = x��(y⊕H��x)

Theorem 3.5. Assuming all lattice axioms, the following statements hold:

1. Axioms of R are mutually independent.
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2. Each of the axioms of RH is independent from the remaining ones, with a
possible exceptions of AxRL1.

3. [PMV07] AxRL1 forces Qu1.
4. Qu2 together with Eq1 imply AxRL2.
5. Eq1 is implied by AxRH1. The converse implication does not hold even in

presence of AxRL1.
6. AxRH1 and AxRH2 jointly imply Qu2, although each of the two equations

separately is too weak to entail Qu2. In the converse direction, Qu2 implies
AxRH2 but not AxRH1.

7. AxRH1 implies Der1.

Proof. Clause 1: The example showing that the validity of AxRL2 does not
imply the validity of AxRL1 is the non-distributive diamond lattice M3, while
the reverse implication can be disproved with an eight-element model:

Clause 2: Counterexamples can be obtained by appropriate choices of the
interpretation of H in the pentagon lattice.
Clause 4: Direct computation.
Clause 5: The first part has been proved with the help of Prover9 (66 lines
of proof). The counterexample for the converse is obtained by choosing H to be
the top element of the pentagon lattice.
Clause 6: Prover9 was able to prove the first statement both in presence and
in absence of AxRL1, although there was a significant difference in the length
of both proofs (38 lines vs. 195 lines). The implication from Qu2 to AxRH2 is
straightforward. All the necessary counterexamples can be found by appropriate
choices of the interpretation of H in the pentagon lattice.
Clause 7: Substitue x for z and use the absorption law. 
�

AxRL1 comes from [PMV07] as an example of an equation which forces the
Huntington property (distributivity under unique complementation). Qu1 is a
form of weak distributivity, denoted as CD∨ in [PMV07] and WD∧ in [JR98].

Problem 3.6. Are the equational theories of RH
unr and RH

fin equal?

Problem 3.7. Is the equational theory of RH
unr (Runr) equal to RH (R, respec-

tively)? If not, is it finitely axiomatizable at all?

If the answer to the last question is in the negative, one can perhaps attempt
a rainbow-style argument from algebraic logic [HH02].

4 Relational Lattices as a Quasiequational Class

In the introduction, we discussed why an axiomatization of valid quasiequations
is desirable from a DB point of view. There is also an algebraic reason: the class
of representable Tropashko lattices (i.e., the SP-closure of concrete ones) is a
quasivariety. This is a corollary of a more powerful result:
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Theorem 4.1. RH
unr and Runr are pseudoelementary classes.

Proof. (sketch) Assume a language with sorts A, F , D and R. The connectives
of LH live in R, we also have a relation symbol inR : (F ∪ A) × R and a
function symbol assign : (F × A) 	→ D. The interpretation is suggested by
the closure system used in the proof of Lemma 2.1. That is, A denotes A, F
denotes AD, D denotes D and R denotes the family of Cl-closed subsets of
Dom. Moreover, assign(f, a) denotes the value of the A-sequence denoted by f
on the attribute a and inR(x, r)—the membership of an attribute/sequence in
the closed subset of Dom denoted by r. One needs to postulate the following
axioms: “F and R are extensional” (the first via injectivity of assign, the second
via axioms on inR); “each element of R is Cl-closed”; “�� and ⊕ are genuine
infimum/supremum on R”. For RH

unr, we add an axiom “inR assigns no elements
of F and all elements of A (the latter means all attributes are irrelevant for the
element under consideration!) to H”. 
�

Corollary 4.2. RH
unr and Runr are closed under ultraproducts.

Corollary 4.3. The SP-closures of RH
unr and Runr are quasiequational classes.

Corollary 4.4. The quasiequational, universal and elementary theories of RH
unr

and Runr are recursively enumerable.

Proof. The proof of Theorem 4.1 uses finitely many axioms. 
�

Note that postulating that headers are finite subsets of A would break the
proof of Theorem 4.1: such conditions are not first-order. However, concrete
database instances always belong to RH

fin and we will show now that the de-
cidability status of the quasiequational theory of RH

unr and RH
fin is the same.

Moreover, an undecidability result also obtains for the corresponding abstract
class, much like for relation algebras and cylindric algebras—in fact, we build on
a proof of Maddux [Mad80] for CA3—and we do not even need all the axioms

of RH to show this! Let RH1 be the variety of LH-algebras axiomatized by the
lattice axioms and AxRH1. Let us list some basic observations:

Proposition 4.5.

1. RH
fin ⊂ RH

unr ⊂ SP(RH
unr) ⊆ RH ⊂ RH1.

2. Der1 holds in RH1.
3. AxRH1 holds whenever H is interpreted as the bottom of a bounded lattice.
4. AxRH1 holds for an arbitrary choice of H in a distributive lattice.

Proof. Clause 2 holds by clause 7 of Theorem 3.5. The remaining ones are
straightforward to verify. 
�

Note, e.g., that interpreting H as ⊥ in AxRH2 would only work if the lattice
is distributive, so Clause 3 would not hold in general for AxRH2. In order to
state our undecidability result, we need first
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Definition 4.6. Let e = (u0, u1, u2, e0, e1) be an arbitrary 5-tuple of variables.
We abbreviate u0��u1��u2 as u. For arbitrary L-terms s, t define

ce0 〈t〉 := u��(H��u1��u2 ⊕u��t),

ce1 〈t〉 := u��(H��u0��u2 ⊕u��t),

ce2 〈t〉 := u��(H��u0��u1 ⊕u��t),

s ◦e t := ce2
〈
ce1

〈
e0��ce2 〈s〉

〉
��ce0

〈
e1��ce2 〈s〉

〉〉
.

Let Tn(x1, . . . , xn) be the collection of all semigroup terms in n variables. When-
ever e = (xn+1, . . . , xn+5) define the translation τe of semigroup terms as fol-
lows: τe(xi) := xi for i ≤ n and τe(s ◦ t) := s ◦e t for any s, t ∈ Tn(x1, . . . , xn).

Whenever e is clear from the context, we will drop it to ensure readability.
Now we can formulate

Theorem 4.7. For any p0, . . . , pm, r0, . . . , rm, s, t ∈ Tn(x1, . . . , xn), the follow-
ing conditions are equivalent :

(I) The quasiequation

(Qu3) ∀x1, . . . , xn. (p0 = r0 & . . . & pm = rm ⇒ s = t)

holds in all semigroups (finite semigroups).
(II) For e = (xn+1, . . . , xn+5) as in Definition 4.6, the quasiequation

(Qu4)

∀x0, x1, . . . , xn+5. (τ
e(p0) = τe(r0)& . . . τe(pm) = τe(rm)&

& xn+4 = ce0 〈xn+4〉 & xn+5 = ce1 〈xn+5〉) ⇒
⇒ τe(s) ◦e ce1 〈x0〉 = τe(t) ◦e ce1 〈x0〉))

holds in every member of RH
unr (every member of RH

fin).
(III) Qu4 above holds in every member of RH1 (finite member of RH1).

Proof. (I) ⇒ (III). By contraposition:
Take any A ∈ RH1 and arbitrarily chosen elements u0, u1, u2 ∈ A. In order

to use Maddux’s technique, we have to prove that for any a, b ∈ A and k, l < 3

(b) ck 〈ck 〈a〉〉 = ck 〈a〉,
(c) ck 〈a��ck 〈b〉〉 = ck 〈a〉 ��ck 〈b〉,
(d) ck 〈cl 〈a〉〉 = cl 〈ck 〈a〉〉
(we deliberately keep the same labels as in the quoted paper), where ck 〈a〉 is
defined in the same way as in Definition 4.6 above. We will denote by uk̂ the
product of ui’s such that i ∈ {0, 1, 2} − {k}. For example, u0̂ = u1��u2.

For (b):

L = u��(H��uk̂ ⊕u��(H��uk̂ ⊕u��a))

= u��(H��uk̂
��(u⊕H��uk̂ ⊕u��a)⊕u��(H��uk̂ ⊕u��a)) by lattice laws

= u��(H��uk̂
��u⊕H��uk̂ ⊕u��a)��(H��uk̂

��(H��uk̂ ⊕u��a)⊕u) by AxRH1

= u��(H��uk̂ ⊕u��a)��(H��uk̂ ⊕u) by lattice laws

= u��(H��uk̂ ⊕u��a) by lattice laws

= R.



336 T. Litak, S. Mikulás, and J. Hidders

(c) is proved using a similar trick:

L = u��(H��uk̂ ⊕u��a��(H��uk̂ ⊕u��b))

= u��(H��uk̂
��(u��a⊕H��uk̂ ⊕u��b)⊕u��a��(H��uk̂ ⊕u��b)) by lattice laws

= u��(H��uk̂
��u��a⊕H��uk̂ ⊕u��b)��(H��uk̂

��(H��uk̂ ⊕u��b)⊕u��a) by AxRH1

= u��(H��uk̂ ⊕u��b)��(H��uk̂ ⊕u��a) by lattice laws

= R.

(d) is obviously true for k = l, hence we can restrict attention to k �= l. Let j
be the remaining element of {0, 1, 2}. Thus,

L = u��(H��ul��uj ⊕u��(H��uk��uj ⊕u��a))

= u��(H��ul��uj ⊕ul��(H��uk��uj ⊕u��a)) by Der1

= u��(H��ul��uj��(ul ⊕H��uk��uj ⊕u��a)⊕ul��(H��uk��uj ⊕u��a)) by lattice laws

= u��(H��ul��uj ⊕H��uk��uj ⊕u��a)��(H��ul��uj��(H��uk��uj ⊕u��a)⊕ul) by AxRH1

= u��(H��ul��uj ⊕H��uk��uj ⊕u��a)��ul by lattice laws

= u��(H��ul��uj ⊕H��uk��uj ⊕u��a) by lattice laws

and in the last term, ul and uk may be permuted by commutativity. We then
obtain the right side of the equation via an analogous sequence of transformations
in the reverse direction, with the roles of uk and ul replaced.

The rest of the proof mimics the one in [Mad80]. In some detail: assume there
is e = (u0, u1, u2, e0, e1) ∈ A such that

(a) ce0 〈e0〉 = e0, c
e
1 〈e1〉 = e1

holds. Using (a)–(d) we prove that for every a, b ∈ A the following hold:

(i) ce1
〈
a ◦e b〉 = a ◦e ce1 〈b〉,

(ii) a ◦e ce1 〈b〉 = ce1
〈
ce2 〈a〉 ��ce0

〈
ce2

〈
e0��e1��ce2

〈
ce1 〈b〉

〉〉〉〉
,

(iii) (a ◦e b) ◦e ce1 〈c〉 = a ◦e (b ◦e ce1 〈c〉),
(iv) ((a ◦e b) ◦e c) ◦e ce1 〈d〉 = (a ◦e (b ◦e c)) ◦e ce1 〈d〉.

Now pick A witnessing the failure of Qu4 together with e = (u0, u1, u2, e0, e1)
such that elements of e interpret variables (xn+1, . . . , xn+5) in Qu4. This means
(a) is satisfied, hence (i)–(iv) hold for every element of A. We define an equiva-
lence relation ≡ on A:

a ≡ b iff for all c ∈ A, a ◦e ce1 〈c〉 = b ◦e ce1 〈c〉.
We take ◦e to be the semigroup operation on A/ ≡. Following [Mad80], we
use (i)–(iv) to prove that this operation is well-defined (i.e., independent of the
choice of representatives) and satisfies semigroup axioms. It follows from the
assumptions that the semigroup thus defined fails Qu3.
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(III) ⇒ (II). Immediate.
(II) ⇒ (I). In analogy to [Mad80], given a semigroup B = (B, ◦, u) failing

Qu3 and a valuation v witnessing this failure, consider R(B, {0, 1, 2}) with a
valuation w defined as follows:

w(x0) := ({0, 1, 2}, {{(0, v(r)), (1, a), (2, b)} | a, b ∈ B}),
w(xi) := ({0, 1, 2}, {{(0, a), (1, a ◦ v(xi)), (2, b)} | a, b ∈ B}), i ≤ n,

w(xn+i) := ({i}, {{(i, b)} | b ∈ B}), (0 < i ≤ 3),

w(xn+4) := ({0, 1, 2}, {{(0, a), (1, b), (2, b)} | a, b ∈ B}),
w(xn+5) := ({0, 1, 2}, {{(0, b), (1, a), (2, b)} | a, b ∈ B}).

It is proved by induction that

w(τe(t)) = ({0, 1, 2}, {{(0, a), (1, a ◦ v(t)), (2, b)} | a, b ∈ B})
(where e = (xn+1, . . . , xn+5)) for every t ∈ T (x1, . . . xn) and also

w(τ e(s) ◦e ce1 〈x0〉) =({0, 1, 2}, {{(0, a), (1, b), (2, c)} | a, b, c ∈ B, v(r) ◦ a = v(s)}),
w(τ e(r) ◦e ce1 〈x0〉) =({0, 1, 2}, {{(0, a), (1, b), (2, c)} | a, b, c ∈ B, v(r) ◦ a = v(r)}).

Any tuple whose value for attribute 0 is u belongs to the first relation, but not
to the second. Thus w is a valuation refuting Qu4. 
�
Corollary 4.8. The quasiequational theory of any class of algebras between RH

fin
and RH1 is undecidable.

Proof. Follows from Theorem 4.7 and theorems of Gurevič [Gur66, GL84] and
Post [Pos47] (for finite and arbitrary semigroups, respectively). 
�
Corollary 4.9. The quasiequational theory of RH

fin is not finitely axiomatizable.

Proof. Follows from Theorem 4.7 and the Harrop criterion [Har58]. 
�
Problem 4.10. Are the quasiequational theories of Runr and Rfin (i.e., of lattice
reducts) decidable?

5 The Concept Structure of Tropashko Lattices

Given a finite lattice L with J(L) and M(L) being the sets of its, respectively,
join- and meet-irreducibles, let us follow Formal Concept Analysis [GW96] and
investigate the structure ofL via its standard context con(L) := (J(L),M(L), I≤ ),
where I≤ :=≤ ∩ (J(L) ×M(L)). Set

g ↙ m : g is ≤-minimal in {h ∈ J(L) | not h I≤ m},
g ↗ m : m is ≤-maximal in {n ∈ M(L) | not g I≤ n},
g ↗↙ m : g ↙ m& g ↗ m.

Let also ↙↙ be the smallest relation containing ↙ and satisfying the condition
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g ↙↙ m, h ↗ m and h ↙ n imply g ↙↙ n;

in a more compact notation, ↙↙ ◦ ↗ ◦ ↙⊆↙↙. We have the following

Proposition 5.1. [GW96, Theorem 17] A finite lattice is

– subdirectly irreducible iff there is m ∈ M(L) such that ↙↙⊇ J(L)× {m},
– simple iff ↙↙= J(L)×M(L).
Let us describe J(R(D,A)) and M(R(D,A)) for finite D and A. Set

ADomD,A := {adom(x) | x ∈ AD} where adom(x) := (A, {x}),
AAttD,A := {aatt(a) | a ∈ A} where aatt(a) := (A− {a}, ∅),
CoDomD,H := {codomH(x) | x ∈ HD} where codomH(x) := (H,HD − {x}),
CoAttD,A := {coatt(a) | a ∈ A} where coatt(a) := ({a}, {a}D),

JD,A := ADomD,A ∪ AAttD,A,
MD,A := CoAttD,A ∪ ⋃

H⊆A
CoDomD,H .

It is worth noting that R(D,A) naturally divides into what we may call
boolean H-slices—i.e., the powerset algebras of HD for each H ⊆ A. Further-
more, the projection mapping from H-slice to H ′-slice where H ′ ⊆ H is a join-
homomorphism. Lastly, note that the bottom elements ofH-slices—i.e., elements
of the form (H, ∅)—and top elements of the form (H,HD) form two additional
boolean slices, which we may call the lower attribute slice and the upper attribute
slice, respectively. Both are obviously isomorphic copies of the powerset algebra
of A. The intention of our definition should be clear then:

– The join-irreducibles are only the atoms of the A-slice (i.e., the slice with
the longest tuples) plus the atoms of the lower attribute slice.

– The meet-irreducibles are much richer: they consists of the coatoms of all
H-slices (note MD,A includes H as the sole element of CoDomD,∅) plus all
coatoms of the upper attribute slice.

Let us formalize these two itemized points as

Theorem 5.2. For any finite A and D such that |D| ≥ 2, we have

JD,A = J(R(D,A)), (join-irreducibles)

MD,A = M(R(D,A)). (meet-irreducibles)

Proof. (join-irreducibles): To prove the ⊆-direction, simply observe that the
elements of JD,A are exactly the atoms of R(D,A). For the converse, note that

– every element in a H-slice is a join of the atoms of this slice, as each H-slice
has a boolean structure and in the boolean case atomic = atomistic,

– the header elements (H, ∅) are joins of elements of AAttD,A,
– the atoms of H-slices are joins of header elements with elements of AAttD,A.

Hence, no element of R(D,A) outside AAttD,A can be join-irreducible.

(meet-irreducibles): This time, the ⊇-direction is easier to show: MD,A in-
cludes the coatoms of the H-slices and the upper attribute slices. Hence, the
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basic properties of finite boolean algebras imply all meet-irreducibles must
be contained in MD,A: every element of R(D,A) can be obtained as an in-
tersection of elements of MD,A. For the ⊆-direction, it is clear that elements
of CoAttD,A are meet-irreducible, as they are coatoms of the whole R(D,A).

This also applies to H ∈ CoDomD,∅. Now take codomH(x) = (H,HD − {x})
for a non-empty H = {1, . . . , h} and x = (x1, . . . xh) ∈ HD and assume

codomH(x) = r��s for r, s �= codomH(x). That is, H = Hr ∪Hs and

HD − {x} = {y ∈ Hr∪HsD | y[Hr] ∈ Br and y[Hs] ∈ Bs}.
Note that wlog Hr � H and r ⊆ codomHr (z) for some z ∈ HrD; otherwise,
if both r and s were top elements of their respective slices, their meet would
be (H,HD). Thus HD − {x} ⊆ {y ∈ HD | y[Hr] �= z} and by contraposition

{y ∈ HD | y[Hr] = z} ⊆ {x}. (1)

This means that z = x[Hr]. But now take any i ∈ H −Hr, pick any d �= xi

(here is where we use the assumption that |D| ≥ 2) and set

x′ := (x1, . . . , xi−1, d, xi+1, . . . , xh).

Clearly, x′[Hr] = x[Hr] = z, contradicting (1). 
�
Theorem 5.3. Assume D,A are finite sets such that |D| ≥ 2 and A �= ∅. Then
I≤ , ↙, ↗ and ↙↙ look for R(D,A) as follows:

r = adom(x) aatt(a) adom(x) aatt(a)

s = coatt(a) coatt(b) codomH(y) codomH(y)

r I≤ s always a �= b x[H ] �= y a �∈ H

r ↙ s never a = b x[H ] = y a ∈ H

r ↗ s never a = b x[H ] = y never

r ↙↙ s never a = b always always

Proof (Sketch).
For the I≤ -row: this is just spelling out the definition of ≤ on R(D,A) as

restricted to JD,A ×MD,A.
For the ↙-row: the set of join-irreducibles consists of only of the atoms of the

whole lattice, hence ↙ is just the complement of ≤.
This observation already yields ↗⊆↙ and ↗↙=↗. The last missing piece

of information to define ↗ is provided by the analysis of restriction of ≤ to
MD,A ×MD,A:

for

r = coatt(a), s = coatt(b),

r ≤ s iff

never,

r = coatt(a), s = codomH(x), never,

r = codomH(x), s = coatt(a), a ∈ H,

r = codomH(x), s = codomH(y), never.
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Finally, for ↙↙ we need to observe that composing ↙ with ↗ ◦ ↙ does not
allow to reach any new elements of CoAttD,A. As for elements of MD,A of the

form codomH(y), note that

∃h.(h ↗ coatt(a)& h ↙ codomH(y)) if a ∈ H, (2)

∃h.(h ↗ codomHx(x)& h ↙ codomHy (y)) if x[Hx ∩Hy] = y[Hx ∩Hy]. (3)

Furthermore, we have that

– for any x ∈ AD and any H ⊆ A, adom(x) ↙ codomH(x[H ]),
– for any a ∈ A and any x ∈ AD, aatt(a) ↙ codomD(x).

Using (3), we obtain then that JD,A × {H} ⊆↙↙ and using (3) again—that

JD,A × {codomH(y)} ⊆↙↙ for any y ∈ AD and any H ⊆ A. 
�
Corollary 5.4. If D,A are finite sets such that |D| ≥ 2 and A �= ∅, then
R(D,A) is subdirectly irreducible but not simple.

Proof. Follows immediately from Proposition 5.1 and Theorem 5.3. 
�

6 Conclusions and Future Work

6.1 Possible Extensions of the Signature

Clearly, it is possible to define more operations on RH
unr than those present in

LH. Thus, our first proposal for future study, regardless of the negative result in
Corollary 4.8, is a systematic investigation of extensions of the signature. Let us
discuss several natural ones; see also [ST06, Tro].

The top element �� := (∅, {∅}). Its inclusion in the signature would be harmless,
but at the same time does not appear to improve expressivity a lot.

The bottom element ⊥⊥ := (A, ∅). Whenever A is infinite, including ⊥⊥ in the
signature would exclude subalgebras consisting of relations with finite headers—
i.e., exactly those arising from concrete database instances. Another undesirable
feature is that the interpretation of ⊥⊥ depends on A, i.e., the collection of all
possible attributes, which is not explicitly supplied by a query expression.

The full relation U := (A,AD) [Tro, ST06]. Its inclusion would destroy the
domain independence property (d.i.p.) [AHV95, Ch. 5] mentioned above. Note
that for non-empty A and D, U is a complement of H.

Attribute constants a := ({a}, ∅}), for a ∈ A. We touch upon an important dif-
ference between our setting and that of both named SPJR algebra and unnamed
SPC algebra in [AHV95, Ch. 4], which are typed : expressions come with an ex-
plicit information about their headers (arities in the unnamed case). Our expres-
sions are untyped query schemes. On the one hand, LH allows, e.g., projection of
r to the header of s: r⊕ (s��H), which does not correspond to any single SPJR ex-
pression. On the other hand, only with attribute constants we can write the SPJR
projection of r to a concrete header {a1, . . . , an}: πa1,...,an(r) := r⊕a1�� . . . ��an.
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Unary singleton constants (a : d) := ({a}, {(a : d)}), for a ∈ A, d ∈ D. These are
among the base SPJR queries [AHV95, p. 58]. Note they add more expressivity
than attribute constants: whenever the signature includes (a : d) for some d ∈ D,
we have a = (a : d)��H. They also allow to define �� as �� = (a : d)⊕H and, more
importantly, the SPJR constant-based selection queries σa=d(r) := r��(a : d).

The equality constant Δ := (A, {x ∈ AD | ∀a, a′. x(a) = x(a′)}). With it, we
can express the equality-based selection queries : σa=b(r) := r��(Δ⊕ a��b). But the
interpretation of Δ violates d.i.p., hence we prefer the inner equality operator :

r := (Hr, {x ∈ HrD | ∃x′ ∈ r. ∃a′ ∈ Hr.∀a ∈ Hr. x(a) = x′(a′)}),

which also allows to define σa=b(r) as r��(r⊕a��b).

The header-narrowing operator r � s := (Hr−Hs, {x[Hr−Hs] | x ∈ Hr}). This
one is perhaps more surprising, but now we can define the attribute renaming

operators [AHV95, p. 58] as ρa �→b(r) := (r��(r⊕ a)��(b : d)) � a, where d ∈ D
is arbitrary. Instead of using �, one could add constants for elements aatt(a)
introduced in Section 5, but this would lead to the same criticism as ⊥⊥ above:
indeed, such constants would make ⊥⊥ definable as ⊥⊥ = aatt(a)��a.

Overall, one notices that just to express the operators discussed in [AHV95,
Ch. 4], it would be sufficient to add special constants, but more care is needed
in order to preserve the d.i.p. and similar relativization/finiteness properties.

The difference operator r− s := (Hr, {x ∈ Br | x /∈ Bs}). This is a very natural
extension from the DB point of view [AHV95, Ch. 5], which leads us beyond the
SPJRU setting towards the question of relational completeness [Cod70]. Here
again we break with the partial character of Codd’s original operator. Another
option would be (Hr∩s, {x ∈ Br[Hs] | x /∈ Bs[Hr]}), but this one can be defined
with the difference operator proposed here as (r⊕ s)− (s⊕ (r��H)).

6.2 Summary and Other Directions for Future Research

We have seen that relational lattices form an interesting class with rather sur-
prising properties. Unlike Codd’s relational algebra, all operations are total and
in contrast to the encoding of relational algebras in cylindric algebras, the do-
main independence property obtains automatically. We believe that with the
extensions of the language proposed in Section 6.1, one can ultimately obtain
most natural algebraic treatment of SPRJ(U) operators and relational query
languages. Besides, given how well investigated the lattice of varieties of lattices
is in general [JR92], it is intriguing to discover a class of lattices with a natural
CS motivation which does not seem to fit anywhere in the existing picture.

To save space and reader’s patience, we are not going to recall again all the
conjectures and open questions posed above, but without settling them we can-
not claim to have grasped how relational lattices behave as an algebraic class.
None of them seems trivial, even with the rich supply of algebraic logic tools
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available in existing literature. A reference not mentioned so far and yet poten-
tially relevant is [Cra74]. An interesting feature of Craig’s setting from our point
of view is that it allows tuples of varying arity.

We would also like to mention the natural question of representability:

Problem 6.1 (Hirsch). Given a finite algebra in the signature LH (L), is it de-
cidable whether it belongs to SP(RH

unr), SP(RH
fin) (SP(Runr), SP(Rfin))?

We believe that the analysis of the concept structure of finite relational lattices
in Section 5 may lead to an algorithm recognizing whether the concept lattice
of a given context belongs to SP(RH

fin) (or SP(Rfin)). It also opens the door to a
systematic investigation of a research problem suggested by Yde Venema: duality
theory of relational lattices. See also Section 2.1 above for another category-
theoretical connection.
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