
A Mechanised Abstract Formalisation
of Concept Lattices

Wolfram Kahl⋆

McMaster University, Hamilton, Ontario, Canada
kahl@cas.mcmaster.ca

Abstract. Using the dependently-typed programming language Agda,
we formalise a category of algebraic contexts with relational homomor-
phisms presented by [Jip12, Mos13]. We do this in the abstract setting of
locally ordered categories with converse (OCCs) with residuals and direct
powers, without requiring meets (as in allegories) or joins (as in Kleene
categories). The abstract formalisation has the advantage that it can be
used both for theoretical reasoning, and for executable implementations,
by instantiating it with appropriate choices of concrete OCCs.

1 Introduction

Formal concept analysis (FCA) [Wil05] typically starts from a context (E,A,R)
consisting of a set E of entities (or “objects”), a set A of attributes, and an
incidence relation R from entities to attributes. In such a context, “concepts”
arise as “Galois-closed” subsets of E respectively A, and form complete “concept
lattices”.

In a recent development, M. A. Moshier [Mos13] defined a novel relational
context homomorphism concept that gives rise to a category of contexts that is
dual to the category of complete meet semilattices. This is in contrast with the
FCA literature, which typically derives the context homomorphism concept from
that used for the concept lattices, as for example in [HKZ06], with the notable
exception of Erné, who studied context homomorphisms consisting of pairs of
mappings [Ern05].

Jipsen [Jip12] published the central definitions of Moshier’s [Mos13] approach,
and developed it further to obtain categories of context representations of not
only complete lattices, but also different kinds of semirings.

We now set out to mechanise the basis of these developments, and for the sake
of reusability we abstract the sets and relations that constitute contexts to ob-
jects and morphisms of suitable categories and semigroupoids. Besides the mech-
anised formalisation itself, our main contribution is the insight that Moshier’s
relational context category can be formalised in categories of “abstract relations”
where neither meet (intersection) nor join (union) are available, and that a large
part of this development does not even require the presence of identity relations.

⋆ This research is supported by the National Science and Engineering Research Council
of Canada, NSERC.

P. Höfner et al. (Eds.): RAMiCS 2014, LNCS 8428, pp. 242–260, 2014.
© Springer International Publishing Switzerland 2014

A Mechanised Abstract Formalisation of Concept Lattices 243

Overview

We start with an introduction to essential features of the dependently-typed
programming language and proof checker Agda2 (in the following just referred
to as Agda) and an overview of our RATH-Agda formalisation of categoric
abstractions of functions and relations in Sect. 3.

Since formal concept analysis concentrates on subsets of the constituent sets
of the contexts we are interested in, we formalise an abstract version of element
relations corresponding to the direct powers of [BSZ86, BSZ89] or the power alle-
gories of [FS90], directly in the setting of locally ordered semigroupoids with con-
verse (OSGCs) in Sect. 4. Adding also residuals to that setting (Sect. 5) proves
sufficient for the formalisation of the “compatibility conditions” of Moshier’s
relational context homomorphisms, in Sect. 6. Defining composition of these ho-
momorphisms requires making identity relations available, that is, moving from
semigroupoids to categories; locally ordered categories with converse (OCCs)
and residuals and a power operator are sufficient to formalise the context cat-
egory, in Sect. 7. We conclude with additional discussion of the merits of our
abstract formalisation.

The Agda source code from this project, including the modules discussed in
this paper, are available on-line at http://relmics.mcmaster.ca/RATH-Agda/.

2 Agda Notation

This paper reports on a development in the dependently typed functional pro-
gramming language and proof assistant Agda [Nor07] based on Martin-Löf type
theory. Since Agda has been designed with a clear focus on both readability and
writability, we present all mathematical content (except some informal analogies)
in Agda notation, as an excerpt of the actual mechanically checked development.

Many Agda features will be explained when they are first used; here we only
summarise a few essential aspects to make our use of Agda as the mathematical
notation in the remainder of this paper more widely accessible.

Syntactically and “culturally”, Agda frequently seems quite close to Haskell.
However, the syntax of Agda is much more flexible: Almost any sequence of
non-space characters is a legal lexeme, permitting the habit of choosing variable
names for properties that abbreviate for example their left-hand sides, as for
example Λ�∈˘ ∶ ... → Λ0 R � ∈ ˘ ≈ R in Sect. 4 below, or names for proof
values that reflect their type, e.g., x≈y ∶ x ≈ y. Infix operators, and indeed mixfix
operators of arbitrary arity, have names that contain underscore characters “ ” in
the positions of the first explicit arguments; below we use a binary infix operator
≈ for morphism equality in semigroupoids and categories, and the “circumfix”
operator [] in Sect. 7.

Braces “{. . . }” in a function type “{name ∶ type1} → type2 → ...” declare the
first argument to be implicit ; a function (say, “f”) with this type can have this
implicit argument supplied in three ways:

http://relmics.mcmaster.ca/RATH-Agda/

244 W. Kahl

– “f v2” supplies the explicit second argument v2 explicitly, and thereby sup-
plies the name argument implicitly, which requires that the type checker can
determine its value uniquely;

– “f {v1} v2” supplies the name argument explicitly by position, since it is the
first implicit argument;

– “f {name = v1} v2” supplies the name argument explicitly by name, which is
useful when earlier implicit arguments can be inferred by the type checker.

Such implicit argument positions are usually declared for arguments that supply
the types to other arguments and can therefore be inferred from the latter; the
use of implicit arguments in Agda largely corresponds to general mathematical
practice.

Since Agda is strongly normalising and has no undefined values, the underly-
ing semantics is quite different from that of Haskell. In particular, since Agda is
dependently typed, it does not have Haskell’s distinction between terms, types,
and kinds (the “types of the types”). The Agda constant Set0 corresponds to the
Haskell kind *; it is the type of all “normal” datatypes and is at the bottom
of the hierarchy of type-theoretic universes in Agda. Universes Set � are distin-
guished by universe indices for which we use names like � �1 �a �i ∶ Level, where
Level is an opaque special-purpose variant of the natural numbers; we write its
maximum operator as _⊍_. This universe polymorphism is essential for being
able to talk about both “small” and “large” categories or relation algebras, and
we always choose our Level parameters so as to enable maximal reusability of
our definitions. (We include full Level information in all our types, although it
does not essentially contribute to our development.)

Since types in Agda may be uninhabited, predicates use Set � as result type.
For example, we define the predicate isIdentity ∶ {A ∶ Obj} →Mor A A→ Set �k
below so that the application “ isIdentity F” denotes the type of proofs that
F ∶ Mor A A is an identity morphism, which means that isIdentity F is an in-
habited type if and only if F is an identity morphism.

3 Semigroupoids, Categories, OSGCs, OCCs

In [Kah11b], we presented a relatively fine-grained modularisation of sub-theories
of division allegories, following our work on using semigroupoids to provide the
theory of finite relations between infinite types, as they frequently occur as data
structures in programming [Kah08], and on collagories [Kah11a] (“distributive
allegories without zero morphisms”). In this section, we present two monolithic
definitions that provide appropriate foundations for most of the discussion in
this paper. Each of these two definitions bundles a large number of theories of
the RATH-Agda libraries summarised in [Kah11b].

We show here a monolithic definition of semigroupoids (i.e., “categories with-
out identity morphisms”), which can be used as an alternative to the one within
the fine-grained theory hierarchy of [Kah11b]. We make no provisions for user-
defined equality on objects, so Obj is a Set. Morphisms have equality _≈_; for

A Mechanised Abstract Formalisation of Concept Lattices 245

any two objects A and B we have Hom A B ∶ Setoid j k, with the standard
library providing an implementation of the standard type-theoretic concept of
setoid as a carrier set together with an equivalence relation that is considered as
equality on the carrier, much like the equality test == provided by the class Eq
in Haskell.1 In [Kah11b] and in the Agda development [Kah14] underlying the
Agda theories for the later sections of this paper, only the Levels and Obj are
parameters of the Semigroupoid type; for making the presentation in this section
easier to follow, we choose to have also Hom as a parameter of the Semigroupoid′

type.

record Semigroupoid′ {�i �j �k ∶ Level} {Obj ∶ Set �i}
(Hom ∶ Obj→ Obj→ Setoid �j �k)
∶ Set (�i ⊍ �j ⊍ �k) where

Mor ∶ Obj→ Obj→ Set �j
Mor = λ A B→ Setoid.Carrier (Hom A B)
infix 4 _≈_; infixr 9 _�_
≈ = λ {A} {B} → Setoid._≈_ (Hom A B)
field _�_ ∶ {A B C ∶ Obj} →Mor A B→Mor B C →Mor A C

�-cong ∶ {A B C ∶ Obj} {f1 f2 ∶ Mor A B} {g1 g2 ∶ Mor B C}
→ f1 ≈ f2 → g1 ≈ g2 → f1 � g1 ≈ f2 � g2

�-assoc ∶ {A B C D ∶ Obj} {f ∶ Mor A B} {g ∶ Mor B C} {h ∶ Mor C D}
→ (f � g) � h ≈ f � (g � h)

Using the infix declarations above, we in particular make morphism composition
� have higher precedence than morphism equality, which allows us to mostly
follow mathematical parenthesisation conventions. Function application, written
as juxtaposition (here only occurring in Mor A B etc.) has higher precedence than
any infix/mixfix operator, and associates to the left: “Mor A B” is “(Mor A) B”,
while the infixr declaration above specifies that morphism composition associates
to the right: “f � g � h” is “f � (g � h)”.

In semigroupoids, we define the identity property as conjunction (implemented
as pair type _×_) of the two one-sided identity properties; the pair components
will later be extracted using the projections proj1 and proj2:

isLeftIdentity isRightIdentity isIdentity ∶ {A ∶ Obj}
→Mor A A→ Set (�i ⊍ �j ⊍ �k)

isLeftIdentity {A} I = {B ∶ Obj} {R ∶ Mor A B} → I � R ≈ R
isRightIdentity {A} I = {B ∶ Obj} {R ∶ Mor B A} → R � I ≈ R
isIdentity I = isLeftIdentity I × isRightIdentity I

1 We can write f ≈ g for two morphisms from carrier set Mor A B of the hom-setoid
Hom A B since the object arguments A and B of _≈_ are declared implicit and can
be derived from the type of f and g.

The type of congruence of composition, �-cong, is declared using a telescope in-
troducing the seven named arguments A, B, C, f1, f2, g1, and g2 (here all implicit),
which can be referred to in later parts of the type. The resulting dependent func-
tion type corresponds to “dependent products” frequently written using � in other
presentations of type theory.

246 W. Kahl

A Category has the following additional fields for identity morphisms and identity
properties:

field Id ∶ {A ∶ Obj} →Mor A A
leftId ∶ {A ∶ Obj} → isLeftIdentity (Id {A})
rightId ∶ {A ∶ Obj} → isRightIdentity (Id {A})

As context for the remaining sections, we now show a monolithic definition
of ordered semigroupoids with converse (OSGC). As argued in [Kah04], we
approach allegories and Kleene categories via common primitives providing a
local ordering on homsets. Restricting ourselves to this common core turns out
to be sufficient for the current paper, where we will not need to add meets or
joins in the local homsets orderings.

In locally ordered categories, “homsets” are partial orders, so an OSGC first
of all contains a semigroupoid that uses for its “homsets” the underlying setoids.
The local poset ordering relations are again collected into a global parameterised
relation, ⊑. We also add the involutory converse operator _˘ as a postfix oper-
ator, and give it higher precedence than all binary operators.

record OSGC′ {�i �j �k1 �k2 ∶ Level} {Obj ∶ Set �i}
(Hom ∶ Obj→ Obj→ Poset �j �k1 �k2)
∶ Set (�i ⊍ �suc (�j ⊍ �k1 ⊍ �k2)) where

field semigroupoid ∶ Semigroupoid′ (λ A B→ posetSetoid (Hom A B))
open Semigroupoid′ semigroupoid hiding (semigroupoid)
infix 4 _⊑_; infix 10 _˘
⊑ = λ {A} {B} → Poset._≤_ (Hom A B)
field

�-monotone ∶ {A B C ∶ Obj} {f f’ ∶ Mor A B} {g g’ ∶ Mor B C}
→ f ⊑ f’ → g ⊑ g’→ f � g ⊑ f’ � g’

_˘ ∶ {A B ∶ Obj} →Mor A B→Mor B A
˘˘ ∶ {A B ∶ Obj} {R ∶ Mor A B} → (R ˘) ˘ ≈ R
˘-involution ∶ {A B C ∶ Obj} {R ∶ Mor A B} {S ∶ Mor B C}

→ (R � S) ˘ ≈ S ˘ � R ˘
˘-monotone ∶ {A B ∶ Obj} {R S ∶ Mor A B} → R ⊑ S → R ˘ ⊑ S ˘

Without identities, we frequently need the (one- and two-sided) sub- and super-
identity properties, all of type {A ∶ Obj} → (p ∶ Mor A A) → Set (�i ⊍ �j ⊍ �k2):

isLeftSubidentity {A} p = {B ∶ Obj} {R ∶ Mor A B} → p � R ⊑ R
isRightSubidentity {A} p = {B ∶ Obj} {S ∶ Mor B A} → S � p ⊑ S
isSubidentity p = isLeftSubidentity p × isRightSubidentity p
isLeftSuperidentity {A} p = {B ∶ Obj} {R ∶ Mor A B} → R ⊑ p � R
isRightSuperidentity {A} p = {B ∶ Obj} {S ∶ Mor B A} → S ⊑ S � p
isSuperidentity p = isLeftSuperidentity p × isRightSuperidentity p

With these, we can define, already in OSGCs, the following standard relation-
algebraic properties, all of type {A B ∶ Obj} →Mor A B→ Set (�i ⊍ �j ⊍ �k2):

A Mechanised Abstract Formalisation of Concept Lattices 247

isUnivalent R = isSubidentity (R ˘ � R)
isTotal R = isSuperidentity (R � R ˘)
isMapping R = isUnivalent R × isTotal R
isInjective R = isSubidentity (R � R ˘)
isSurjective R = isSuperidentity (R ˘ � R)
isBijective R = isInjective R × isSurjective R

Total and univalent morphisms (in Rel, these are the total functions) are called
mappings ; for morphisms that are known to be mappings we define the depen-
dent sum type Mapping containing the morphism and a proof of its mapping
properties:

recordMapping (A B ∶ Obj) ∶ Set (�i ⊍ �j ⊍ �k2) where
field mor ∶ Mor A B

prf ∶ isMapping mor

The mappings of an OSGC S form a semigroupoid MapSG S where the mor-
phisms from A to B are the Mappings of S, that is, Mor (MapSG S) A B =
Mapping S A B.

Adding the identities of Category to an OSGC results in an ordered category
with converse (OCC); mappings of an OCC C form the category MapCat C,
and the OSGC versions of univalence, totality, . . . are equivalent to the more
habitual OCC versions R ˘ � R ⊑ Id etc.

In the remainder of this paper, and in the context of a given OSGS S or
OCC C, we append subscript “1” to material taken from MapSG S, respectively
MapCat C, in particular for equality _≈1_ and composition _�1_ of mappings.

4 Power Operators in Ordered Semigroupoids with
Converse

In the following, the minimal setting is a ordered semigroupoid with converse
(OSGC), with equality _≈_ and inclusion _⊑_ and composition _�_ of mor-
phisms. In an OSGC, morphisms are naturally considered as a generalisation of
relations, not just functions.

Total functions, called mappings, are a derived concept in OSGCs (see the end
of the previous section); the induced semigroupoid of mappings (base morphisms
together with univalence and totality proofs) has equality _≈1_ and composition
�1.

A power operator consists of the following items:

P ∶ Obj→ Obj -- power object operator
∈ ∶ {A ∶ Obj} →Mor A (P A) -- membership “relation”
Λ ∶ {A B ∶ Obj} →Mor A B→Mapping A (P B) -- “power transpose”

“Power transpose” maps a “relation” R ∶ Mor A B to a “set-valued function”
Mapping A (P B).

248 W. Kahl

The following axioms need to be satisfied; these are the two sides of one
logical equivalence used by Bird and de Moor [BdM97, Sect. 4.6] to axiomatize
the power allegories of Freyd and Scedrov [FS90, 2.4]:

Λ⇒∈ ∶ {A B ∶ Obj} {R ∶ Mor A B} {f ∶ Mapping A PB}
→ f ≈1 Λ R
→Mapping.mor f � ∈ ˘ ≈ R

∈⇒Λ ∶ {A B ∶ Obj} {R ∶ Mor A B} {f ∶ Mapping A PB}
→Mapping.mor f � ∈ ˘ ≈ R
→ f ≈1 Λ R

Throughout this paper, we will use the convention that subscript “0” abbreviates
an application of Mapping.mor, but we explicitly show only this first definition
following this pattern:

Λ0 ∶ Mor A B→Mor A PB
Λ0 R = Mapping.mor (Λ R)

From the power axioms, we derive the following laws (given objects A and B);
the first is used as axiom by Freyd and Scedrov [FS90, 2.4]:

Λ�∈˘ ∶ {R ∶ Mor A B} → Λ0 R � ∈ ˘ ≈ R
Λ-�∈˘ ∶ {f ∶ Mapping A (P B)} → Λ (Mapping.mor f � ∈ ˘) ≈1 f
Λ-cong ∶ {R1 R2 ∶ Mor A B} → R1 ≈ R2 → Λ R1 ≈1 Λ R2

˘�Λ ∶ {R ∶ Mor A B} → R ˘ � Λ0 R ⊑ ∈

We can define the function that returns, for each “set”, the set containing all its
“elements”:

IdP ∶ {A ∶ Obj} →Mapping (P A) (P A)
IdP = Λ (∈ ˘)

If there is an identity “relation” on P A, then IdP {A} is equal to that identity,
as one would expect. However, without assuming identities, we only succeeded
to show that IdP {A} is a right-identity for mappings.

For any two power operators, we obtain mappings between P1 A and P2 A that
compose to IdP1, respectively IdP2. Therefore, if the base OSGC has identities,
then that makes the two power operators isomorphic, and more generally, we
have that power operators in OCCs are unique up to natural isomorphisms.

In the context of a power operator, a “power order” is an indexed relation on
power objects satisfying conditions appropriate for a “subset relation”:

record IsPowerOrder (Ω ∶ {A ∶ Obj} →Mor (P A) (P A))
∶ Set (�i ⊍ �j ⊍ �k1 ⊍ �k2) where

field ∈�Ω ∶ {A ∶ Obj} → ∈ � Ω {A} ⊑ ∈
Ω-universal ∶ {A ∶ Obj} {R ∶ Mor (P A) (P A)} → ∈ � R ⊑ ∈ → R ⊑ Ω

(The first condition ∈ � Ω ⊑ ∈ could be replaced with the converse implication of
the second, namely R ⊑ Ω → ∈ � R ⊑ ∈.) A power operator together with a power
order gives rise to existence of all right residuals (which, with converse, in turn
implies existence of all left residuals), see Appendix A for the proof.

A Mechanised Abstract Formalisation of Concept Lattices 249

5 Power Orders via Residuals

The right-residual Q / S, “Q under S”, of two morphisms Q ∶ Mor A B and
S ∶ Mor A C is the largest solution in X of the inclusion Q � X ⊑ S; formally, it is
defined by:

/ ∶ {A B C ∶ Obj} →Mor A B→Mor A C →Mor B C
/-cancel-outer ∶ {A B C ∶ Obj} {S ∶ Mor A C} {Q ∶ Mor A B} → Q � (Q / S) ⊑ S
/-universal ∶ {A B C ∶ Obj} {S ∶ Mor A C} {Q ∶ Mor A B} {R ∶ Mor B C}

→ Q � R ⊑ S → R ⊑ Q / S

The last of these can be understood as an implication axiom /-universal, stating:
“If Q � R ⊑ S, then R ⊑ Q / S”. Technically, it is a function taking, after six
implicit arguments, one explicit argument, say “p”, of type Q � R ⊑ S, and then
the application /-universal p is of type (i.e., a proof for) R ⊑ Q / S. For concrete
relations, Q / S relates b with c if and only if for all a with aQb we have aSc.

In the presence of converse, right residuals produce left residuals (S / R, “S
over R”) and vice versa, so it does not matter whether we assume one or both.

Adding residuals to the base OSGC enables the standard definition of the “set”
inclusion relation [BSZ89, FS90] (for which we also easily show IsPowerOrder Ω):

Ω ∶ {A ∶ Obj} →Mor (P A) (P A)
Ω = ∈ / ∈

This is transitive, and “as reflexive as we can state” without identities:

Ω-trans ∶ {A ∶ Obj} → Ω � Ω ⊑ Ω {A}
Ω-trans = /-cancel-middle
IdP⊑Ω ∶ {A ∶ Obj} →Mapping.mor IdP ⊑ Ω {A}
IdP⊑Ω′ = /-universal (⊑-begin
∈ � IdP0

≈˘⟨ �-cong1 ˘˘ ⟩
(∈ ˘) ˘ � Λ0 (∈ ˘)
⊑⟨ ˘�Λ ⟩
∈�)

(Here the argument proof to /-universal is presented in calculational style, which
technically uses mixfix operators ⊑-begin_, _≈˘⟨_⟩_, _⊑⟨-⟩_, _� with carefully
arranged precedences to produce a fully formal “proof term with type annota-
tions”. This technique goes back to Augustsson and Norell [Aug99, Nor07], and
in its present form essentially comes from Danielsson’s Agda standard library
[D+13]. The first step above contains an application of ˘˘ ∶ (R ˘) ˘ ≈ R, applied
via �-cong1 at the first argument of the composition, but in backwards direction,
which is expressed by the ˘ in _≈˘⟨_⟩_. The expansion of the definition of
IdP0, that also happens in the first step, does not need to be mentioned, since
for Agda, both expressions are the same via normalisation.)

250 W. Kahl

The following property, shown using residual and power properties, will be
useful below:

Λ0�Ω˘ ∶ {A B ∶ Obj} {R ∶ Mor A B} → Λ0 R � Ω ˘ ≈ R / ∈ ˘
Λ0�Ω˘ {R = R} = ≈-begin
Λ0 R � (∈ / ∈) ˘
≈⟨ �-cong2 /-˘ ⟩
Λ0 R � (∈ ˘ / ∈ ˘)
≈⟨ /-outer-�-≈ Λ-mapping ⟩
(Λ0 R � ∈ ˘) / ∈ ˘
≈⟨ /-cong1 Λ�∈˘ ⟩
R / ∈ ˘ �

6 Contexts in OSGCs with Powers and Residuals

A context in our abstract setting consists of two objects together with a mor-
phism of the base “relation”-OSGC:

record AContext ∶ Set (�i ⊍ �j) where
field ent ∶ Obj -- “entities”

att ∶ Obj -- “attributes”
inc ∶ Mor ent att -- “incidence”

In such a context, the incidence “relation” inc induces “concepts” as sets inc ↑ p
of attributes shared by a set p ∶ P ent of entities, and sets inc ↓ q of entities
sharing all attributes in q ∶ P att, set-theoretically defined in the following way:

inc ↑ p = {a ∶ att ∣ ∀e ∈ p . e inca} and inc ↓ q = {e ∶ ent ∣ ∀a ∈ q . e inca} .

We define the general operators _↑ and _↓ as postfix operators, so they need to
be separated from their argument by a space:

_↑ ∶ {A B ∶ Obj} →Mor A B→Mapping (P A) (P B)
R ↑ = Λ (∈ / R)
_↓ ∶ {A B ∶ Obj} →Mor A B→Mapping (P B) (P A)
R ↓ = Λ (∈ / (R ˘))

The fact that these form a Galois connection, set-theoretically

p ⊆ R ↓ q ⇔ q ⊆ R ↑ p for all p ∶ P A and q ∶ P B,

can now be stated as a simple morphism equality and shown by algebraic calcu-
lation using residual and power properties:

Galois-↓-↑ ∶ {A B ∶ Obj} {R ∶ Mor A B} → Ω � (R ↓0) ˘ ≈ R ↑0 � Ω ˘
Galois-↓-↑ {A} {B} {R} = ≈-begin
Ω � Λ0 (∈ / R ˘) ˘

A Mechanised Abstract Formalisation of Concept Lattices 251

≈˘⟨ ˘-involutionRightConv ⟩
(Λ0 (∈ / R ˘) � Ω ˘) ˘
≈⟨ ˘-cong Λ0�Ω˘ ⟩
((∈ / R ˘) / ∈ ˘) ˘
≈⟨ /˘-˘ ⟩
∈ / (∈ / R ˘) ˘
≈⟨ /-cong2 /˘-˘ ⟩
∈ / (R / ∈ ˘)
≈⟨ //-≈ ⟩
(∈ / R) / ∈ ˘
≈˘⟨ Λ0�Ω˘ ⟩
Λ0 (∈ / R) � Ω ˘ �

For the composed operators _↑↓ and _↓↑, with R ↑↓ = R ↑ �1 R ↓ and R ↓↑ =
R ↓ �1 R ↑, the closure properties follow via further, partially lengthy calculations.

For a “set-valued relation” R ∶ Mor X (P A), the “set-valued function” Lub R
can be understood as mapping each “element” x of X to the union of all sets that
R relates with x; this union contains an “element” a of A if and only if R � ∈ ˘
relates x with a. From this “relation”, Lub R is obtained as its power transpose,
and similarly Glb for the intersection instead of union:

Lub Glb ∶ {X A ∶ Obj} (R ∶ Mor X (P A)) →Mapping X (P A)
Lub R = Λ (R � ∈ ˘)
Glb R = Λ (R ˘ / ∈ ˘)

The properties of “mapping unions to intersections” and vice versa can now be
defined as follows, for objects A and B, and f ∶ Mapping (P B) (P A):

Lub-cocontinuous f = ∀ {X ∶ Obj} (Q ∶ Mor X (P B))
→ Lub Q �1 f ≈1 Glb (Q � Mapping.mor f)

Glb-cocontinuous f = ∀ {X ∶ Obj} (Q ∶ Mor X (P B))
→ Glb Q �1 f ≈1 Lub (Q � Mapping.mor f)

Both of the operators _↑ and _↓ are Lub-cocontinuous, as can be shown in
somewhat lengthy calculations, of which we show only the first — this contains
three levels of nested calculations, indented precisely according to level, and uses
in the reasons several different infix transitivity combinators following a common
naming pattern, including _⟨≈˘⊑⟩_ ∶ {...} → y ≈ x→ y ⊑ z→ x ⊑ z:

↓-Lub-cocontinuous ∶ {A B ∶ Obj} (R ∶ Mor A B) → Lub-cocontinuous (R ↓)
↓-Lub-cocontinuous R {X} Q = ≈-begin
Λ0 (Q � ∈ ˘) � Λ0 (∈ / (R ˘))
≈⟨ ∈⇒Λ {f = Λ (Q � ∈ ˘) �1 Λ (∈ / (R ˘))} (≈-begin
(Λ0 (Q � ∈ ˘) � Λ0 (∈ / (R ˘))) � ∈ ˘
≈⟨ �-assoc ⟨≈≈⟩ �-cong2 Λ�∈˘ ⟩
Λ0 (Q � ∈ ˘) � (∈ / (R ˘))
≈⟨ /-inner-� Λ-mapping ⟩

252 W. Kahl

(∈ � Λ0 (Q � ∈ ˘) ˘) / (R ˘)
≈⟨ /-cong1 (˘-involutionRightConv ⟨≈˘≈⟩ ˘-cong Λ�∈˘) ⟨≈≈˘⟩ /-˘ ⟩
(R / (Q � ∈ ˘)) ˘
≈⟨ ˘-cong (⊑-antisym
(/-universal (⊑-begin
(R / (Q � ∈ ˘)) � Q � Λ0 (∈ / R ˘)
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 /-cancel-�-inner ⟩
(R / ∈ ˘) � Λ0 (∈ / R ˘)
⊑⟨ �-cong1 /˘-˘ ⟨≈˘⊑⟩ ˘�Λ ⟩
∈�))

(/-universal (⊑-begin
(∈ / (Q � Λ0 (∈ / R ˘))) � (Q � ∈ ˘)
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 /-cancel-�-inner ⟩
(∈ / Λ0 (∈ / R ˘)) � ∈ ˘
⊑⟨ �-monotone2 (proj1 Λ-total ⟨⊑≈⟩ �-assoc) ⟩
(∈ / Λ0 (∈ / R ˘)) � Λ0 (∈ / R ˘) � Λ0 (∈ / R ˘) ˘ � ∈ ˘
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 /-cancel-outer ⟩
∈ � Λ0 (∈ / R ˘) ˘ � ∈ ˘
≈⟨ �-assocL ⟨≈≈˘⟩ �-cong1 ˘-involutionRightConv ⟩
(Λ0 (∈ / R ˘) � ∈ ˘) ˘ � ∈ ˘
≈⟨ �-cong1 (˘-cong Λ�∈˘) ⟩
(∈ / R ˘) ˘ � ∈ ˘
⊑⟨ �-cong1 /˘-˘ ⟨≈⊑⟩ /-cancel-outer ⟩
R�))) ⟩

(∈ / (Q � Λ0 (∈ / R ˘))) ˘
≈⟨ /-˘ ⟩
(Q � Λ0 (∈ / (R ˘))) ˘ / ∈ ˘�) ⟩
Λ0 ((Q � Λ0 (∈ / (R ˘))) ˘ / ∈ ˘)�

However, the closest we can have to Glb-cocontinuous (R ↑) is the following
(where the final → has also been proven in the opposite direction):

↑-Glb-cocontinuous ∶ {A B X ∶ Obj} (R ∶ Mor A B) (Q ∶ Mor X (P A))
→ (∈ / Q) / R ≈ (Q � (∈ / R))
→ Glb Q �1 (R ↑) ≈1 Lub (Q � Mapping.mor (R ↑))

The reason for the general failure of Glb-cocontinuity is that if Q is not total,
the resulting empty intersections on the left-hand side may be mapped by R ↑ to
arbitrary sets, but on the right-hand side, the resulting empty unions are always
the empty set. In particular in the power-allegory induced by any topos, if we set
Q = � (the “empty relation”) and R = ⊺ (the “universal relation”), then we have:
(∈ / Q) / R ≈ (∈ / �) / ⊺ ≈ ⊺ /≈ � ≈ � � (∈ / ⊺) ≈ Q � (∈ / R)

A Mechanised Abstract Formalisation of Concept Lattices 253

For composition of context homomorphisms, we will require Lub-cocontinuity
of G ↓ �1 Y ↑ �1 F ↓ in the following situation:

A2 A3

�
�
��F �Y

�
�
��
G

E1 E2

Due to the fact that Y ↑ is not necessarily Glb-cocontinuous, context homo-
morphisms require additional “compatibility” conditions to enable the following
calculation, which closely follows [Mos13], to go through:

↓↑↓-Lub-cocontinuous ∶ {E1 E2 A2 A3 ∶ Obj}
→ (F ∶ Mor E1 A2) (Y ∶ Mor E2 A2) (G ∶ Mor E2 A3)

→ (F-trgCompat ∶ Y ↓↑ �1 F ↓ ≈1 F ↓)
→ (G-srcCompat ∶ G ↓ �1 Y ↑↓ ≈1 G ↓)
→ Lub-cocontinuous (G ↓ �1 Y ↑ �1 F ↓)

↓↑↓-Lub-cocontinuous F Y G F-trgCompat G-srcCompat Q = ≈1-begin
Lub Q �1 G ↓ �1 Y ↑ �1 F ↓
≈1⟨ �-assocL ⟨≈≈⟩ �-cong1 (↓-Lub-cocontinuous G Q) ⟩
Glb (Q � G ↓0) �1 Y ↑ �1 F ↓
≈1⟨ �-cong1 (Glb-cong (�-cong2 G-srcCompat ⟨≈˘≈⟩ �-assocL3+1)) ⟩
Glb ((Q � G ↓0 � Y ↑0) � Y ↓0) �1 Y ↑ �1 F ↓
≈1⟨ �-cong1 (↓-Lub-cocontinuous Y (Q � G ↓0 � Y ↑0)) ⟨≈˘≈⟩ �-assoc ⟩
Lub (Q � G ↓0 � Y ↑0) �1 Y ↓ �1 Y ↑ �1 F ↓
≈1⟨ �-cong2 (�-assocL ⟨≈≈⟩ F-trgCompat) ⟩
Lub (Q � G ↓0 � Y ↑0) �1 F ↓
≈1⟨ ↓-Lub-cocontinuous F (Q � G ↓0 � Y ↑0) ⟨≈≈⟩ Glb-cong �-assoc3+1 ⟩
Glb (Q � G ↓0 � Y ↑0 � F ↓0)�1

A context homomorphism, following Moshier [Mos13] and Jipsen [Jip12], in-
cludes the compatibility properties used above. In order to be able to refer to
the fields of the source and target contexts X and Y with qualified names like
X.ent instead of AContext.ent X, we need to use the “module nature” of records
in Agda and define local module names for X and Y. (In the following, we will
omit these local module definitions for the sake of brevity, and since there will
be no danger of confusion.)

record AContextHom (X Y ∶ AContext) ∶ Set (�i ⊍ �j ⊍ �k1 ⊍ �k2) where
private module X = AContext X

module Y = AContext Y
field mor ∶ Mor X.ent Y.att

srcCompat ∶ mor ↓ �1 X.inc ↑↓ ≈1 mor ↓
trgCompat ∶ Y.inc ↓↑ �1 mor ↓ ≈1 mor ↓

254 W. Kahl

If we now have three contexts X, Y, and Z connected by two context homomor-
phisms F ∶ AContextHom X Y and G ∶ AContextHom Y Z, then we define:

G↓�Y↑�F↓ ∶ Mapping (P Z.att) (P X.ent)
G↓�Y↑�F↓ = G.mor ↓ �1 Y.inc ↑ �1 F.mor ↓

X.att Y.att Z.att

X.inc
�

�
�
�
�
���

F.mor Y.inc
�

�
�
�
�
���

G.mor Z.inc
�

X.ent Y.ent Z.ent

Applying ↓↑↓-Lub-cocontinuous, we obtain that the mapping G↓�Y↑�F↓ is Lub-
cocontinuous just like F.mor ↓ ∶ Mapping (P Y.att) (P X.ent) and G.mor ↓ ∶
Mapping (P Z.att) (P Y.ent), but we are still missing a way to extract a _↓-pre-
image of type Mor X.ent Z.att.

7 Abstract Context Categories in OCCs with Powers and
Residuals

It turns out that adding identities is sufficient for obtaining a partial inverse to
the operator _↓. The key is that Λ Id ∶ Mapping A (P A) can be understood as
mapping each “element” a ∶ A to the singleton “set” {a} ∶ P A.

The “relation” singletons A relates a “subset of A” with all singletons contained
in it:

singletons ∶ {A ∶ Obj} →Mor (P A) (P A)
singletons = ∈ ˘ � Λ0 Id

Applying Lub to this produces the identity mapping on P A:

Lub-singletons ∶ {A ∶ Obj} → Lub (singletons {A}) ≈1 Id1 {P A}
Lub-singletons {A} = ≈1-begin
Λ ((∈ ˘ � Λ0 Id) � ∈ ˘)
≈1⟨ Λ-cong (�-assoc ⟨≈≈⟩ �-cong2 Λ�∈˘) ⟩
Λ (∈ ˘ � Id {A})
≈1⟨ Λ-cong (rightId ⟨≈≈˘⟩ leftId) ⟨≈≈⟩ Λ-�∈˘ {f = Id1 {P A}} ⟩
Id1 {P A} �1

The operator [] has the opposite type of _↓, and [f] relates a with b if and
only if a ∈ f{b}:

[] ∶ {A B ∶ Obj} →Mapping (P B) (P A) →Mor A B
[f] = (Λ0 Id � Mapping.mor f � ∈ ˘) ˘

A Mechanised Abstract Formalisation of Concept Lattices 255

We always have [R ↓] ≈ R:

[↓] ∶ {A B ∶ Obj} (R ∶ Mor A B) → [R ↓] ≈ R
[↓] R = ≈-begin
(Λ0 Id � Λ0 (∈ / (R ˘)) � ∈ ˘) ˘
≈⟨ ˘-cong (�-cong2 Λ�∈˘) ⟩
(Λ0 Id � (∈ / (R ˘))) ˘
≈⟨ ˘-cong (/-inner-� Λ-mapping) ⟩
((∈ � (Λ0 Id) ˘) / (R ˘)) ˘
≈⟨ /˘-˘ ⟩
R / ((∈ � (Λ0 Id) ˘) ˘)
≈⟨ /-cong2 ˘-involutionRightConv ⟩
R / (Λ0 Id � ∈ ˘)
≈⟨ /-cong2 Λ�∈˘ ⟨≈≈⟩ /-Id ⟩
R

�
For the opposite composition, [f] ↓ ≈1 f, we need Lub-cocontinuity of f:

[]↓ ∶ {A B ∶ Obj} (f ∶ Mapping (P B) (P A))
→ Lub-cocontinuous f → [f] ↓ ≈1 f

[]↓ f f-cocontinuous = ≈1-begin
[f] ↓
≈1⟨ ≈-refl ⟩
Λ (∈ / ([f] ˘))
≈1⟨ Λ-cong (/-cong2 (˘˘ ⟨≈≈⟩ �-assocL)) ⟩
Λ (∈ / (Mapping.mor (Λ Id �1 f) � ∈ ˘))
≈1˘⟨ Λ-cong (/-cong2 (�-cong1 ˘˘)) ⟩
Λ (∈ / ((Λ0 Id � Mapping.mor f) ˘ ˘ � ∈ ˘))

≈1˘⟨ Λ-cong (/-cong1 ˘-involutionLeftConv
⟨≈≈⟩ /-flip (˘-isBijective (Mapping.prf (Λ Id �1 f)))) ⟩

Λ ((∈ ˘ � Λ0 Id � Mapping.mor f) ˘ / ∈ ˘)
≈1˘⟨ Λ-cong (/-cong1 (˘-cong �-assoc)) ⟩
Glb (singletons � Mapping.mor f)
≈1˘⟨ f-cocontinuous singletons ⟩
Lub singletons �1 f
≈1⟨ �-cong1 Lub-singletons ⟨≈≈⟩ leftId ⟩
f

�1

The last two steps represent the argument of [Mos13] that “If f sends unions to
intersections, its behavior is determined by its behavior on singletons.”

256 W. Kahl

Using the instance

[��]↓ ∶ [G↓�Y↑�F↓] ↓ ≈1 G↓�Y↑�F↓
[��]↓ = []↓ G↓�Y↑�F↓
(↓↑↓-Lub-cocontinuous F.mor Y.inc G.mor F.trgCompat G.srcCompat)

for the morphism composition at the end of Sect. 6, we obtain well-definedness:

�� ∶ (F ∶ AContextHom X Y) (G ∶ AContextHom Y Z) → AContextHom X Z
F �� G = record
{mor = [G↓�Y↑�F↓]
; srcCompat = ≈1-begin
[G↓�Y↑�F↓] ↓ �1 X.inc ↑ �1 X.inc ↓
≈1⟨ �-cong1 ([��]↓ F G) ⟨≈≈⟩ �-assoc3+1 ⟩
G.mor ↓ �1 Y.inc ↑ �1 F.mor ↓ �1 X.inc ↑ �1 X.inc ↓
≈1⟨ �-cong22 F.srcCompat ⟩
G.mor ↓ �1 Y.inc ↑ �1 F.mor ↓
≈1˘⟨ [��]↓ F G ⟩
[G↓�Y↑�F↓] ↓�1

; trgCompat = ... -- analogously
}

Context homomorphism equality F ≋ G is defined as the underlying morphism
equality F.mor ≈ G.mor. The left- and right-identity properties of the composition
�� reduce, via [↓], to srcCompat respectively trgCompat due to the fact that
the identity context homomorphism on X has X.inc as mor, and the associativity
proof also turns into a surprisingly short calculation:

X1
F� X2

G� X3
H� X4

ACH-assoc ∶ ...→ (F �� G) �� H ≋ F �� (G �� H)
ACH-assoc {X1} {X2} {X3} {X4} {F} {G} {H} = [] -cong
{f1 = H.mor ↓ �1 X3.inc ↑ �1 FG.mor ↓}
{f2 = GH.mor ↓ �1 X2.inc ↑ �1 F.mor ↓}
(≈1-begin
H.mor ↓ �1 X3.inc ↑ �1 FG.mor ↓
≈1⟨ �-cong22 ([��]↓ F G) ⟩
H.mor ↓ �1 X3.inc ↑ �1 G.mor ↓ �1 X2.inc ↑ �1 F.mor ↓
≈1⟨ �-assocL3+1 ⟨≈≈˘⟩ �-cong1 ([��]↓ G H) ⟩
GH.mor ↓ �1 X2.inc ↑ �1 F.mor ↓�1)

where FG = F �� G ; GH = G �� H

With this, a Category of AContexts with AContextHoms as morphisms is easily
defined and checked by Agda.

A Mechanised Abstract Formalisation of Concept Lattices 257

8 Conclusion

A “natural”, more direct formalisation of contexts would allow arbitrary Sets
(or possibly Setoids) of entities and attributes, exactly as in the mathematical
definition:

record Context (�e �a �r ∶ Level) ∶ Set (�suc (�e ⊍ �a ⊍ �r)) where
field ent ∶ Set �e -- “entities”

att ∶ Set �a -- “attributes”
inc ∶ Re� �r ent att -- “incidence”

Although this has the advantage of additional universe polymorphism, it appears
that the compatibility conditions force all the sets and relations to the same
levels:

record Hom {�S �r ∶ Level} (A B ∶ Context �S �S �r) ∶ Set (�S ⊍ �suc �r) where
private module A = Context A

module B = Context B
field mor ∶ Re� �r A.ent B.att

srcCompat ∶ A.inc ↑↓ ○○ mor ↓ ≈⌊ P B.att �r � P A.ent ⌋ mor ↓
trgCompat ∶ mor ↓ ○○ B.inc ↓↑ ≈⌊ P B.att �r � P A.ent ⌋ mor ↓

An important disadvantage of this approach is that, for example, quotient con-
texts will have entity and attribute sets that lack many of the interfaces that
would be useful for programming, for example serialisation.

In contrast, using our abstract approach makes it possible to instantiate the
base OCC differently for different purposes:

– For theoretical investigations, using OCCs of setoids (or even of Sets) as defined
in Relation.Binary.Heterogeneous.Categoric.OCC of the RATH-Agda libraries
[Kah11b] provides all the flexibility of the general mathematical setting, but
without useful execution mechanisms.

– For data processing applications, that is, “for programming”, using implemen-
tation-oriented OCCs as for example that of SULists mentioned in [Kah12]
provides additional interfaces and correct-by-construction executable imple-
mentations.

Beyond the theoretically interesting fact that context categories can be for-
malised in OCCs with residuals and powers, this paper also demonstrated that
such an essentially theoretical development can be fully mechanised and still be
presented in readable calculational style, where writing is not significantly more
effort than a conventional calculational presentation in LATEX.

In comparison with similar developments in Isabelle/HOL [Kah03], the use
of Agda enables a completely natural mathematical treatment of categories,
nested calculational proofs, and direct use of theories as modules of executable
programs.

258 W. Kahl

Acknowledgements. I am grateful to the anonymous referees for their con-
structive comments, and to Musa Al-hassy for numerous useful suggestions for
improving readability.

References

[Aug99] Augustsson, L.: Equality proofs in Cayenne (1999),
http://tinyurl.com/Aug99eqproof (accessed January 3, 2014)

[BSZ86] Berghammer, R., Schmidt, G., Zierer, H.: Symmetric Quotients. Technical
Report TUM-INFO 8620, Technische Universität München, Fakultät für
Informatik, 18 p. (1986)

[BSZ89] Berghammer, R., Schmidt, G., Zierer, H.: Symmetric Quotients and Domain
Constructions. Inform. Process. Lett. 33, 163–168 (1989)

[BdM97] Bird, R.S., de Moor, O.: Algebra of Programming. International Series in
Computer Science, vol. 100. Prentice Hall (1997)

[D+13] Danielsson, N.A. et al.: Agda Standard Library, Version 0.7 (2013),
http://tinyurl.com/AgdaStdlib

[Ern05] Erné, M.: Categories of Contexts (2005) (preprint),
http://www.iazd.uni-hannover.de/~erne/preprints/CatConts.pdf

[FS90] Freyd, P.J., Scedrov, A.: Categories, Allegories. North-Holland Mathemat-
ical Library, vol. 39. North-Holland, Amsterdam (1990)

[HKZ06] Hitzler, P., Krötzsch, M., Zhang, G.-Q.: A Categorical View on Algebraic
Lattices in Formal Concept Analysis. Fund. Inform. 74, 301–328 (2006)

[Jip12] Jipsen, P.: Categories of Algebraic Contexts Equivalent to Idempotent
Semirings and Domain Semirings. In: [KG12], pp. 195–206

[Kah03] Kahl, W.: Calculational Relation-Algebraic Proofs in Isabelle/Isar. In:
Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2003. LNCS,
vol. 3051, pp. 178–190. Springer, Heidelberg (2004)

[Kah04] Kahl, W.: Refactoring Heterogeneous Relation Algebras around Ordered
Categories and Converse. J. Relational Methods in Comp. Sci. 1, 277–313
(2004)

[Kah08] Kahl, W.: Relational Semigroupoids: Abstract Relation-Algebraic Interfaces
for Finite Relations between Infinite Types. J. Logic and Algebraic Pro-
gramming 76, 60–89 (2008)

[Kah11a] Kahl, W.: Collagories: Relation-Algebraic Reasoning for Gluing Construc-
tions. J. Logic and Algebraic Programming 80, 297–338 (2011)

[Kah11b] Kahl, W.: Dependently-Typed Formalisation of Relation-Algebraic Abstrac-
tions. In: de Swart, H. (ed.) RAMiCS 2011. LNCS, vol. 6663, pp. 230–247.
Springer, Heidelberg (2011)

[Kah12] Kahl, W.: Towards Certifiable Implementation of Graph Transformation via
Relation Categories. In: [KG12], pp. 82–97

[KG12] Kahl, W., Griffin, T.G. (eds.): RAMiCS 2012. LNCS, vol. 7560. Springer,
Heidelberg (2012)

[Kah14] Kahl, W.: Relation-Algebraic Theories in Agda — RATH-Agda-2.0.0. Me-
chanically checked Agda theories available for download, with 456 pages lit-
erate document output (2014), http://RelMiCS.McMaster.ca/RATH-Agda/

http://tinyurl.com/Aug99eqproof
http://tinyurl.com/AgdaStdlib
http://www.iazd.uni-hannover.de/~erne/preprints/CatConts.pdf
http://RelMiCS.McMaster.ca/RATH-Agda/

A Mechanised Abstract Formalisation of Concept Lattices 259

[Mos13] Moshier, M.A.: A Relational Category of Polarities (2013) (unpublished
draft)

[Nor07] Norell, U.: Towards a Practical Programming Language Based on Depen-
dent Type Theory. PhD thesis, Department of Computer Science and En-
gineering, Chalmers University of Technology (2007)

[Wil05] Wille, R.: Formal Concept Analysis as Mathematical Theory of Concepts
and Concept Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.)
Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer,
Heidelberg (2005)

A Power Orders Give Rise to Right Residuals

In the context of an OSGC with a power operator, presence of a power implies that
all right residuals exist, with Q / S = �0 (Q ˘) � � � (�0 (S ˘)) ˘. We use the following
additional power operator lemmas:

∈��˘ ∶ {R ∶ Mor A B} → ∈ � (�0 R) ˘ ≈ R ˘
��-˘ ∶ {Q ∶ Mor B A} → Q � �0 (Q ˘) ⊑ ∈

module PowerRightRes (� ∶ {A ∶ Obj} →Mor (P A) (P A))
(isPowerOrder ∶ IsPowerOrder �) where
open IsPowerOrder isPowerOrder
rightResOp ∶ RightResOp orderedSemigroupoid
rightResOp = record
{_/_ = λ {A} {B} {C} Q S → �0 (Q ˘) � � � (�0 (S ˘)) ˘
; /-cancel-outer = λ {A} {B} {C} {S} {Q} → ⊑-begin

Q � �0 (Q ˘) � � � (�0 (S ˘)) ˘
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 ��-˘ ⟩
∈ � � � (�0 (S ˘)) ˘

⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 ∈�� ⟩
∈ � (�0 (S ˘)) ˘

≈⟨ ∈��˘ ⟨≈≈⟩ ˘˘ ⟩
S

�
; /-universal = λ {A} {B} {C} {S} {Q} {R} Q�R⊑S→ ⊑-begin

R
⊑⟨ proj1 �-total ⟨⊑≈⟩ �-assoc ⟩
�0 (Q ˘) � (�0 (Q ˘)) ˘ � R

⊑⟨ �-monotone22 (proj2 �-total) ⟩
�0 (Q ˘) � (�0 (Q ˘)) ˘ � R � �0 (S ˘) � (�0 (S ˘)) ˘

⊑⟨ �-monotone2 (�-assocL3+1 ⟨≈⊑⟩ �-monotone1 (�-universal (⊑-begin
∈ � (�0 (Q ˘)) ˘ � R � �0 (S ˘)

≈⟨ �-assocL ⟨≈≈⟩ �-cong1 (∈��˘ ⟨≈≈⟩ ˘˘) ⟩

260 W. Kahl

Q � R � �0 (S ˘)
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 Q�R⊑S ⟨⊑⊑⟩ ��-˘ ⟩
∈

�))) ⟩
�0 (Q ˘) � � � (�0 (S ˘)) ˘

�
}

The standard definition of the power order via this right residual also returns the given
power order: ∈ / ∈ ≈ �.

	A Mechanised Abstract Formalisation of Concept Lattices
	1 Introduction
	Overview

	2 Agda Notation
	3 Semigroupoids, Categories, OSGCs, OCCs
	4 Power Operators in Ordered Semigroupoids with Converse
	5 Power Orders via Residuals
	6 Contexts in OSGCs with Powers and Residuals
	7 Abstract Context Categories in OCCs with Powers and Residuals
	8 Conclusion
	References

