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Quantum Resonances: Theory and Models

Manuel Gadella

Abstract. Along this paper, we give a short review of some interesting aspects
of a formulation of quantum resonances. In particular how and why to char-
acterize quantum resonances through Gamow state vectors as functionals of
spaces constructed using Hardy functions on a half-plane. In addition, we give
a couple of quite distinct interesting examples of resonance models. Here, we
limit ourselves to the non-relativistic case.
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1. Introduction

This article contains a brief review in some interesting aspects of quantum reso-
nances and their relation with some lines of research in modern quantum theory
like time asymmetric quantum mechanics (TAQM) [1]. In the present summary,
our discussion will be preferentially focused on non relativistic resonances. Explicit
examples of resonance models will be also discussed.

It is reasonable to begin our discussion with a presentation of the different
definitions of quantum resonances. Although, they are not equivalent in all cases,
there exists an account in the literature of some sufficient conditions among them.
This account is far to be complete and a research on this direction is probably
worthy to carry out. For this purpose, we address the interested reader to the
standard literature on the subject [2–8].

There are some techniques to obtain the parameters of resonances in given
models. Rigorous mathematical methods like complex scaling and the use of Krein
formula are of order here. Nevertheless, in the case of the very illustrative one-
dimensional models, these methods are usually too sophisticated. Instead, the
use of the so-called purely outgoing boundary conditions gives resonances in one-
dimensional models, as solutions of a transcendental algebraic equation. This can
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usually be solved numerically, to give the parameters of a finite number of res-
onances, with a reasonable level of accuracy. We can also study the behavior of
a limited number of resonances as well as bound and antibound states with the
variation of some given parameters, using this method. An example of such a
procedure will be given in the last section.

Resonances in quantum mechanics describe unstable quantum states. When
considered as pure quantum states, they are described by a vector state. Resonance
vector states split into a sum of two contributions, one that decays exponentially
with time and other that produces deviations of this exponential decay for very
short and very long values of time. The range of observation usually covers this
exponential decay being the other modes not easily observable. This characteristic
and the fact that the vector state for the exponentially decay mode can be often
constructed explicitly, permits the identification of it with the resonance state.
This vector state is usually called the Gamow vector. It has, however, a basic
difficulty as it cannot be given by a normalizable vector in the usual Hilbert space.
Then, the use of extensions of the Hilbert space to rigged Hilbert spaces (RHS)
is necessary for this description of quantum resonances. In this context, Gamow
vectors are realized as objects in a space of functionals that admit the Hilbert
space as a subspace.

It is often convenient to describe resonances as produced in resonance scatter-
ing. By an appropriate choice of the RHS based on the use of Hardy functions on
a half-plane, we can split this scattering into a preparation and a registration pro-
cesses. This is used as a basis for the formulation of a Time Asymmetric Quantum
Mechanics, which requires a simple refinement of the concept of pure state [1].

In the study of resonances, textbooks often propose an identification between
the width of a bump in the cross section, which is characteristic of resonance
phenomena and the inverse of the mean life. However, this identification suffers
some structural problems like measuring difficulties [9]. This identification can
be better understood in the context of our formalism based in RHS of Hardy
functions.

The Friedrichs model and its refinements and generalizations [10] give a good
laboratory to investigate basic properties of resonances, Gamow vectors, etc, hav-
ing applications to a wide set of realistic physical systems. Also, one-dimensional
models can be proposed for the study of resonance as well as bound and antibound
states behavior, which can be somehow unexpected.

Finally, we are summarizing here a formalism of non-relativistic resonance
and have included two models that we consider as interesting. The extension of
this formalism to relativistic resonances as well as unstable interaction of quantum
fields has been discussed elsewhere. See [11] and references therein.
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2. Definitions and characterizations of quantum resonances

A quantum resonance may be caused by the action of an interaction on an oth-
erwise free particle. As the interaction is usually produced by a potential, it is
customary to consider two Hamiltonians in the production of resonance phenom-
ena, a so-called “free” Hamiltonian H0 under which the particle is supposed to
move freely and a total or interaction Hamiltonian H = H0 + V , where V is the
potential. The physical effect of V is the creation of a metastable state in which V
retains the studied particle in a bounded region a time which is much larger than
the time the particle would stay in this region should the interaction not exist.
Then, for resonances to be produced, we need a Hamiltonian pair {H0, H}.

This situation can be better understood in the context of resonance scatter-
ing, which is a scattering process that produces resonances. Let us assume that
the potential V is of compact support just to give a better intuitive image of the
process. In the remote past, a state ψin is prepared in a preparation apparatus and
evolves under the action of the free Hamiltonian H0. This state is captured inside
the interacting region (the support of the potential) and stays for a long delay
time, i.e., it forms a resonance. In the far future it becomes ψout and again its
time evolution is governed by H0. Both “in” and “out” state vectors are related
through the S-matrix, ψout = Sψin.

The definitions of quantum resonances resonances most popular in the stan-
dard literature are discussed below.

2.1. Definitions of resonances from the mathematical point of view

Assume that bothH0 andH are defined on a separable infinite-dimensional Hilbert
space H and have an absolutely continuous spectrum R+ := [0,∞), which is the
same for both operators. This is a very common situation. Then, the first definition
of a resonance produced by the Hamiltonian pair {H0, H} is the following [7]:

Definition 1. Assume that there is a dense set of vectors D in H such that for
ψ ∈ D, both

R0ψ(λ) = 〈ψ|(H0 − λ)−1ψ〉 , Rψ(λ) = 〈ψ|(H − λ)−1ψ〉 (1)

have analytic continuation through the positive real axis. Assume that R0ψ(λ) is
analytic at zR = ER − iΓ/2 for any ψ, but there exists a ψ ∈ D for which Rψ(λ)
shows a pole. Then, we say that zR is a resonance of the Hamiltonian pair {H0, H}.

We should stress that both R0ψ(λ) and Rψ(λ) are analytic functions on the
complex plane of λ with a branch cut on the positive semiaxis R+. Their possible
isolated singularities lie on their analytic continuations through the cut. In the
language of Riemann surfaces, these poles appear on the second sheet. Resonance
poles may not be unique and in fact, in most realistic models they appear in an
infinite number. Also resonance poles appear in complex conjugate pairs of the
same multiplicity, each pair of resonance poles represent the same resonance.

A second definition of quantum resonance is the celebrated pair of complex
conjugate poles of the analytic continuation of the S-matrix:
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Definition 2. Let S(k) and S(E) the S-matrix in the momentum and energy rep-
resentations, respectively (E = �2k2/2m). Assume that S(k) can be analytically
continued to a meromorphic function on the whole complex plane C. Then, a
resonance is defined as one of these equivalent forms:

i) Pairs of poles of the analytic continuation of S(k) located symmetrically with
respect to the negative imaginary axis;

ii) Pairs of complex conjugate poles of the analytic continuation of S(E) across
the positive real axis.

In the language of Riemann surfaces, these poles lie on the second sheet of the
Riemann surface corresponding to the transformation k =

√
E. These pairs are

located at: zR = ER − iΓ/2 and z∗R = ER + iΓ/2, ER,Γ > 0. Each of these pairs
of resonance poles may have a multiplicity bigger than one, which is the same for
each member of the pair. This multiplicity is preserved when we change from the
momentum representation S(k) to the energy representation S(E) and vice-versa.

The existence of these analytic continuations is usually related to the verifi-
cation of certain causality conditions [3].

2.2. Definition of resonances from the physicists point of view

We here mention a few definitions that come from the resonance scattering. From
this point of view, we can define resonances by one of these usually equivalent
choices [3, 5]:

i) Large delay times. This is the difference of times that an incident particle
would stay in the interacting region with or without interaction. Delay times
are measurable [5].

ii) Sudden bump in the cross section around a given energy ER and with width
Γ. The bump’s width is associated to the mean life τ = 1/Γ.

iii) Sudden change of the phase shift δ�(E), around ER, in the energy represen-
tation.

iv) The scattering amplitude ψ(E) for the decaying state has a Lorentzian shape:

|ψ(E)|2 ≈ N
Γ

(E − ER)2 + Γ2/4
. (2)

Physics determines the meaning of the constants ER and Γ, respectively, the real
and imaginary parts of the resonance poles of the definitions in the previous sub-
section. ER means the energy at which the resonance is produced and Γ is the
width of the bump in the cross section that detects the resonance.

Concerning the physical meaning of the imaginary part Γ/2. The usual iden-
tification between the width Γ and the inverse of the mean life τ [5] is far from
being trivial. First of all, the width is often quite difficult to be measured with
precision. Sometimes it is not possible to measure both for a decaying process.
Thus, this identification is often ambiguous [9].

Probably the best characterization of a resonance state is that it should have
a scattering amplitude (proportional to the square of the modulus of the wave
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function in the energy representation) of Breit–Wigner type as in (2). This unifies
both meanings of Γ as the width and as the inverse of the mean life. In fact, Γ is
the width of (2) and its Fourier transform, that gives the decay mode, an exact
decaying exponential [12]. On the other hand, no vector in Hilbert space may have
an energy distribution of Breit–Wigner type. It can be the case of a Gamow vector
constructed, as explained below, with the help of spaces of Hardy functions.

2.3. On the decay of a quantum state

Let us consider a vector state φ in the absolutely continuous Hilbert space for the
total HamiltonianH and consider the decay amplitude given by |〈φ|e−itHφ〉|2, with
t > 0. As a consequence of the Riemann–Lebesgue lemma for integrable functions,
one has that limt�→∞ |〈φ|e−itHφ〉| = 0. The state φ can be considered as a vector
state describing a resonance if for a large range of values of time, neither close
to zero nor very large, the function |〈φ|e−itHφ〉|2 is approximately proportional
to e−Γt with Γ > 0, i.e., φ decays exponentially for this time range. However,
as a consequence of the semiboundedness of the Hamiltonian H , no vector state
may decay exponentially for all positive values of time [6]. In fact, due to the
properties of the Fourier transform, the amplitude of such a state in the energy
representation must be proportional to (1), which is only possible if the spectrum
of H is the whole real line. Deviations of the exponential law decay are attributed
to the interaction of the resonance with the external media (background) or other
effects like re-scattering [6].

A possible cure is the split of the decaying state into a term that decays
exponentially for all values of time t > 0, plus another term that justifies the
deviations (background term), φ = ψD + ψB. But then, neither ψD nor ψB can
be Hilbert space normalizable vector states. However, such a cure is possible and
it is quite reasonable, as we shall discuss in the sequel.

2.4. Determination of resonances

The purpose of this paragraph is to present a very brief review on the most usual
methods for the determination of the resonances.

These methods are based in different definitions of resonances. The com-
plex scaling method and the use of the Krein formula start from the definition of
resonances as singularities of the analytic extensions of the resolvent. The Krein
formula relates different self-adjoint extensions of symmetric operators with finite
equal deficiency indices.

The second type of methods comes from the consideration of resonances as
poles of the analytic continuation of the S-matrix. In general, it is not easy to
find the explicit form of the S-matrix, and therefore, we have to resort to indirect
methods. This is quite feasible for one-dimensional systems as we shall discuss
later.

Also, resonances poles are often looked as generalized complex eigenvalues of
the total Hamiltonian HψD = zRψ

D, with zR = ER − iΓ/2. The self-adjointness
of H shows that the corresponding eigenvector ψD cannot belong to the Hilbert
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space H of the states of the system, but instead it is a functional which belongs
to an extension of H, as shall discussed later. The problem here is that in these
extensions, the discrete spectrum of H may be even a whole complex half-plane.
The point is how to isolate the eigenvalues of H , which are resonance poles. This
problem has been solved by H. Baumgärtel [13]. The vector ψD is then the decaying
Gamow vector. Along HψD = zRψ

D, we also have the solution to the eigenvalue
problem HψG = z∗Rψ

G and ψG is called the growing Gamow vector, which is
nothing else that the time reversal of ψD.

2.4.1. The Complex Scaling Method and the Krein formula. Here, we include a
few comments on the methods that derive from the consideration of resonances as
poles of the analytic continuation of the resolvent.

The Complex Scaling Method [7, 14] requires potentials belonging to the
so-called class of dilation analytic potentials (DAP) [7, 14]. One starts with the
transformation U(θ)ψ(x) = e3θ/2ψ(eθ x). When V (x) is a DAP, then, H(θ) :=
U(θ)[H0 + V ]U−1(θ) = e−2θ H0 + V (θ) admits an analytic continuation for com-
plex values of θ in a strip of the complex plane. The spectrum σ(H(θ)) of H(θ),
only depends on the imaginary part of θ and has two components: i.) a complex
continuous spectrum, which is the semiaxis e−2θ λ, with λ ∈ [0,∞) and ii.) a
discrete spectrum of complex eigenvalues having zero as the only possible limit
point. These eigenvalues are the resonance poles (in the sense of the above defini-
tion making use of the resolvents) [7, 14] and do not depend on θ (although the
number eigenvectors of H(θ) does depend on θ). Each of the resonances, say zn,
satisfies an eigenvalue equation of the type H(θ)ψn(θ) = znψ(θ).

This method is quite suggesting. In fact is like a curtain with a rail (the
continuous spectrum for H(θ)) with the origin as a fixed point were being moved
downwards with angle θ, disclosing the resonance poles. In addition the eigenvec-
tors ψn(θ) are normalizable, i.e., vectors in the Hilbert space H. However, they
depend on the value of θ and therefore cannot be used as Gamow vectors, i.e.,
vector states for resonances.

The Krein formula as stated before, gives us the relations between the re-
solvents of two different self-adjoint extensions of a symmetric operator [15]. This
can be useful to obtain resonances produced by point potentials, since these po-
tentials are often defined by this type of self-adjoint extensions, as is the case of
a delta type perturbation. In such a case, H0 and H = H0 + V may be two dif-
ferent self-adjoint extensions of the same symmetric operators and therefore their
resolvents be easily comparable through the Krein formula. This formula is easily
computable when the deficiency indices are (1, 1), becomes computationally more
involved when they are (2, 2) and difficult or even intractable in most cases for
higher deficiency indices.

2.4.2. One-dimensional resonance scattering. The one-dimensional resonance scat-
tering is a laboratory friendly to user for the study of resonance behavior. A partic-
ularly common situation arises when both H0 (usually H0 = p2/(2m)) and V (x)
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are spherically symmetric. When � = 0, where � is the orbital angular momentum,
the Schrödinger equation is an ordinary differential equation in the radial variable
r ≥ 0. Let us denote by χ(r;E) an arbitrary solution withe energy E > 0. The
asymptotic form of χ(r;E) far from the region in which the potential acts has the
following form [2]:

χ(r;E) = F1(k) e
ikr + F2(k) e

−ikr , k =
√

2mE/�2 . (3)

Observe that e−ikr denotes a free incoming wave and eikr a free outgoing wave,
so that the S-matrix has the form

S(k) = −F1(k)

F2(k)
. (4)

Thus, the search for resonances as poles of the S-matrix is equivalent to the search
of complex zeros of F2(k). This gives in general a transcendental function that
should be solved numerically. Resonances exist for many known models and its
number is often infinite. If for a complex value kR, we have that F2(kR) = 0, write
zR := k2R�

2/(2m), then, for large values of r, the wave function has the form:

χ(r; zR) ≈ F1(kR) e
ikRr . (5)

We see that there is only an outgoing wave function without incoming wave func-
tion. This situation is a consequence of imposing the condition F2(k) = 0, the
purely outgoing boundary condition. Since χ(r;E) is a solution of the Schrödinger
equation Hχ(r;E) = Eχ(r;E), we must have Hχ(r;zR)=zRχ(r;zR), i.e., χ(r; zR)
is the decaying Gamow vector (or Gamow function). Since the imaginary part
of kR is negative [3], the decaying Gamow function grows exponentially for large
values of r. Note that this Gamow vector (or Gamow function) should fulfill the
boundary condition χ(0; zR) = 0.

However, the interesting range of one-dimensional models covers more situa-
tions in which resonances play an interesting role. Examples are the finite square
well potential and the semi oscillator with or without point potentials. This model
has resonances with sometimes unexpected behavior and we shall describe it briefly
later. In such case, resonances are found by imposing again purely outgoing bound-
ary conditions, as we shall do in the proposed example.

2.5. Resonance scattering

Here, we are considering a resonance scattering situation as described in the begin-
ning of Section 2, with the Hamiltonian pair {H0, H}. Assume that the incoming
free state is ψin and the outgoing free state is ψout. However, after the scattering
we cannot detect the whole state ψout but instead its projection into the region oc-
cupied by a registration apparatus. The projection of ψout into this region is a state
vector here denoted as φout. The main object in our formalism is the transition
amplitude between the scattered state and the registered state.

〈φout|ψout〉 = 〈φout|Sψin〉 =
∫ ∞

0

[φout(E)]∗ S(E)ψin(E) dE . (6)
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For simplicity, we are assuming that H0 has a simple absolutely continuous spec-
trum which is R+ = [0,∞). Then, it is unitarily equivalent to the multiplication
operator by E on L2(R+). This variable E is the energy. On the other hand, since
the S-matrix commutes with H0, on L2(R+) is represented by a function S(E)
of the energy. We have already seen that S(E) is often analytically continuable
and its analytic continuation admits as support the Riemann surface associated
the square root. If we choose [φout(E)]∗ and ψin(E) to be analytically continuable
functions from above to below on the lower half-plane, we can find an interesting
decomposition for the integral in (6):∫

γ

[φout(z∗)]∗ SII(z)ψ
in(z) dz − 2πi

∑
Residues [[φout(z∗)]∗ SII(z)ψ

in(z)] . (7)

Here, SII(z) is the analytic continuation of S(E) beyond its cut R+ = [0,∞),
supported on the second sheet of the Riemann surface. The functions [φout(E)]∗

and ψin(E) should be defined on the upper rim of the cut, so that the analytic
continuation is supported on the lower half-plane in the second sheet. The contour
γ lies on this half-plane, although under some conditions it can be moved to the
negative semiaxis of the second sheet [16]. This integral is the background integral.

When sufficient conditions for the existence and asymptotic completeness of
the Møller wave operators are fulfilled [27, 28, 30], the S-matrix can be written as

the product S = Ω†
OUTΩIN, where ΩIN and ΩOUT are these Møller wave operators.

Let us write φ+ := ΩOUTφ
out and ψ− := ΩINψ

in. From (6)–(7), one finds that
〈φout|Sψin〉 is equal to

〈φ+|ψ−〉 = background− 2πi
∑

Residues [[φout(z∗)]∗ SII(z)ψ
in(z)] . (8)

The vectors φ+, ψ− belong to the locally convex spaces Φ+ and Φ−, respectively, to
be defined in the next section. Now, for arbitrary vectors φ+ ∈ Φ+ and ψ− ∈ Φ−,
let us define the following maps:

φ+ −→ [φout(z∗R)]
∗ = 〈φ+|ψD〉 and ψ− −→ [ψin(z∗R)]

∗ = 〈ψ−|ψG〉 . (9)

These maps define functionals |ψD〉 and |ψG〉 on the spaces Φ+ and Φ−, respec-
tively (we use the notations ψD and the Dirac version |ψD〉 indistinctly). These
maps are anti-linear and continuous [12] and therefore, elements of the respective
duals of these spaces. Then, for the case of having one unique resonance, or in-
clude one unique resonance between the contour γ and the positive semi-axis, (9)
becomes

〈φ+|ψ−〉 = background− 2πi〈φ+|ψD〉s1〈ψG|ψ−〉 . (10)

We can write the background term in the form 〈φ+|bgk〉, where |bgk〉 is a con-
tinuous antilinear functional on Φ+ [12]. The extension of this formula to more
resonance poles is straightforward. Then, if we omit the arbitrary φ+ ∈ Φ+, we
have:

ψ− = |bgk〉 − 2πi |ψD〉s1〈ψG|ψ−〉 = |bgk〉+ c|ψD〉 . (11)
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This equation is an identity in the dual space of Φ+. Now assume that the resonance
pole is at zR = ER − iΓ/2. Then the functional |ψD〉 has the following properties:

H |ψD〉 = zR|ψD〉 , e−itH |ψD〉 = e−izRt|ψD〉 = e−iERt eΓt/2 |ψD〉 . (12)

According to the previous definitions and discussion on the Gamow vectors,
|ψD〉 is the decaying Gamow vector. The formalism thus far summarized manages
to separate the exponential decay of an unstable quantum state from the back-
ground, supposedly responsible of the deviations of the exponential decay and their
consequences [12, 16].

3. Mathematical interlude

Gamow vectors are generalized eigenvectors of the total Hamiltonian with given
complex eigenvalues. Since the Hamiltonian is self adjoint, no solution of this
eigenvalue equation is given by a Hilbert space. To give meaning to them, we need
to extend the action of the Hamiltonian beyond the Hilbert space vector, for which
we need rigged Hilbert spaces (RHS). As is well known, a RHS is a triplet of spaces

Φ ⊂ H ⊂ Φ× , (13)

where: i.) H is an infinite-dimensional separable Hilbert space that contains all
the pure states of a given physical system. In the case of a scattering process with
two Hamiltonians {H0, H}, both must be defined and be self adjoint on H; ii.) Φ
is a subspace dense in H endowed with a locally convex topology finer that the
topology on H. Although not strictly necessary, Φ is often chosen to be a nuclear
space [17]. Finally, iii.) Φ× is the antidual space of Φ, the space of continuous
antilinear functionals on Φ. It is endowed with any topology compatible with the
dual pair (Φ,Φ×) [18].

We need to find a RHS such that H can be extended into an operator to
Φ×. One possible form is to choose Φ such that for any ϕ ∈ Φ, Hϕ ∈ Φ, so that
Φ is stable under the action of H . If H is self adjoint, we can always find Φ with
this property and also being continuous on Φ [19–22]. In this case, we can extend
uniquely H to Φ× using the so-called duality formula. If the action of F ∈ Φ× on
ϕ ∈ Φ is represented by 〈ϕ|F 〉, then, the extension is defined with the property:

〈Hϕ|F 〉 = 〈ϕ|HF 〉 , (14)

where the extension is also denoted by the same letter H . If H is continuous on
Φ, with its local convex topology, then its extension is continuous on Φ× endowed
with the weak topology of the dual pair (Φ,Φ×).

A Hardy function H2
+ on the upper complex half-plane is a complex analytic

function on C+ := {z ∈ C , Im z > 0}, which is square integrable along every line
parallel to the real axis and such that there exists a positive constant K such that
(z = x+ iy) ∫ ∞

−∞
|f(x+ iy)|2 dy < K . (15)
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As a consequence the function f(x) formed by the boundary values of f(z) on the
real line is well defined, i.e., it is a square integrable function. The values of f(x)
on the whole real line and on the positive semiaxis [0,∞) reproduce the values
of f(z) for all C+. Similarly, we define the space of Hardy functions on the lower
half-plane, H2

−. Properties of these functions are summarized in [12, 16]. For a
systematic study, see [29].

Now, take the Hamiltonian pair {H0, H} fulfilling the following conditions:
i.) Their absolutely continuous spectra are simple and given by R+ ≡ [0,∞). The
condition of being simple is not necessary, but simplifies discussion and notation.
ii.) The Møller wave operators ΩIN and ΩOUT exist and are asymptotically com-
plete. iii.) The realization of the S-matrix as a function in terms of the energy,
S(E), is analytic and can analytically be continued through the branch cut [0,∞).
This continuation has pairs of conjugate poles that are identified with resonances.

As a consequence of i.) and the spectral theorem for self-adjoint operators
[23], there exists a unitary operator U : Hac 	−→ L2(R+) such that for any ψ in the
domain of H0 and ψ(E) := Uψ, U−1H0Uψ = Eψ(E), where Hac is the absolutely
continuous subspace of H0 [23].

Now, let H2
+ ∩ S and H2

− ∩ S be the intersections of these spaces with the
Schwartz space S of infinitely differentiable functions such that they and their
derivatives go to zero at the infinity faster than the inverse of any polynomial. The

spaces of the restrictions of these functions to R+ are called Ψ+ := (H2
+ ∩ S)

∣∣∣
R+

and Ψ− := (H2
− ∩ S)

∣∣∣
R+

, respectively.

A Hardy function on either the upper or the lower half-plane is uniquely
determined by its boundary values on the positive semiaxis R+ [24]. Then, the
mappings j± : H2

± ∩ S −→ Ψ± that associate a function in H2
± to its restriction

to R+ are one to one and onto (bijection). If we consider the topology induced by
the topology of the Schwartz space on H2

±∩S and then, transport it by the action
of j±, we obtain as a consequence that

Ψ± ⊂ L2(R+) ⊂ (Ψ±)× (16)

are a new pair of RHS. If we anew define Φ+ := ΩOUTU
−1Ψ+ and Φ− :=

ΩINU
−1Ψ− and again endow these spaces with the topology transported by the

bijections ΩOUTU
−1 and ΩINU

−1, we have a new RHS:

Φ± ⊂ Hac(H) ⊂ (Φ±)× , (17)

where Hac(H) is the absolutely continuous subspace of H .

By construction, Hn Φ± ⊂ Φ±, n = 1, 2, . . . and Hn is continuous on Φ±.
Note that the duality formula (14) extends H into both antiduals (Φ±)×:

〈Hφ±|F±〉 = 〈φ±|H F±〉 , ∀φ± ∈ Φ± , ∀F± ∈ (Φ±)× . (18)
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This formula (18) permits the definition of Gamow vectors. The above spaces
and their relations can be summarized in the following diagram:

Φ+ i−−−−→ Hac(H)
i−−−−→ (Φ+)×⏐⏐%Ω−1

OUT

⏐⏐%Ω−1
OUT

⏐⏐%(Ω−1
OUT)×

Ω−1
OUTΦ

+ i−−−−→ Hac(H0)
i−−−−→

(
Ω−1

OUTΦ
+
)×⏐⏐%U

⏐⏐%U

⏐⏐%(U)×

Ψ+ i−−−−→ L2(R+)
i−−−−→ (Ψ+)×⏐⏐%j−1

+

⏐⏐%j−1
+

⏐⏐%(j−1
+ )×

H2
+ ∩ S

i−−−−→ H2
+

i−−−−→ (H2
+ ∩ S)×

Here, i denotes canonical injection. Note that i is continuous in each case. There
is an analogous diagram for Φ−, etc and ΩIN [12]. From the previous diagram, one
concludes that [j−1

+ U Ω−1
OUT]Φ

+ = H2
+ ∩ S. Therefore, the mapping j−1

+ U Ω−1
OUT

transforms φ+ ∈ Φ into an analytic function φ+(E) on the upper half-plane. For
any z in the open lower half-plane, the mapping

φ+ −→ [φ+(z∗)]∗ (19)

defines a continuous antilinear functional on Φ− that we shall denote as |z〉. Note
that the complex conjugate of a function in H2

± is a function in H2
∓.

If we have a resonance pole located at the point zR = ER − iΓ/2, its corre-
sponding decaying Gamow vector is given by

φ+ −→ [φ−(z∗R)]
∗ = 〈Φ+|ψD〉 , (20)

with the following properties:

H |ψD〉 = zR|ψD〉 , e−itH |ψD〉 = e−itER e−Γt/2 |ψD〉 . (21)

Along the decaying Gamow vector, we also have the growing Gamow vector:
Let φ−(E) := [j−1

− U ΩIN]φ
− for all φ− ∈ Φ−. Then, we define the following

continuous antilinear functional |ψG〉 on Φ−:

φ− −→ [φ+(z∗R)]
∗ = 〈Φ+|ψG〉 . (22)

The growing Gamow vector |ψG〉 has the following properties: i.) H |ψG〉 = z∗R|ψG〉
and ii.) e−itH |ψG〉 = e−ERteΓt|ψG〉 for t < 0 [12, 16].

It is important to remark that, since |ψD〉 ∈ (Φ+)×, the above diagram gives
[12, 16]:

(j−1
+ )×U×(Ω−1

OUT)
−1|ψD〉 = N

(E − ER)2 + Γ2/4
∈ (H2

+ ∩ S)× , (23)

where N is a normalization constant. In this sense, the Gamow vector |ψD〉 has a
Breit–Wigner energy distribution [16].
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4. Time asymmetric quantum mechanics

Here, we just want to call the attention to an application of the above mathe-
matical model to a very important attempt to understand the asymmetric nature
of quantum mechanics, which may have an important consequence in order to
understand the existence of a time arrow at the microscopical level. It is not the
objective of this section to discuss the important physical as well as philosophical
implications of this asymmetry in quantum mechanics, but just give a brief no-
tion of its existence. Then, the interested reader can go to the original sources for
further information [1, 25, 26].

The notion of time asymmetric quantum mechanics (TAQM) comes from
the idea according to which the process of creation of a resonance in resonance
scattering is not just the time reversal of the process of decay.

According to this idea, one divides a scattering process into two parts:

1. Preparation: States are prepared by the preparation apparatus. Thus, in a scat-
tering experiment a state is identified with an incoming state ψin. A resonance is
produced.

2. Registration: Observables are detected in the registration apparatus, which reg-
isters and measures the result of the decay of the resonance. Detected outgoing
states |φout(t)〉〈φout(t)| are indeed observables, according to this principle.

The detected outgoing state |φout(t)〉〈φout(t)| cannot be registered before the
incoming state has been completely prepared (causality principle). If this prepa-
ration is complete at a time t0, this is taken as origin of times, t0 = 0. The Born
probability of measuring |φout(t)〉〈φout(t)| in the state ρ(t) = |ψin(t)〉〈ψin(t)| is
given by (t > 0)

Pρ(t)(|φout〉〈φout|) = |〈φout| ψin(t)〉|2

= Tr{ |φout〉〈φout|[e−iHt|ψin〉〈ψin|eiHt]

= Tr{ [eiHt|φout〉〈φout|e−iHt] |ψin〉〈ψin|]
= |〈φout(t)| ψin〉| = Pρ(|φout(t)〉〈φout(t)|) .

(24)

This somehow justifies the idea of being |φout〉〈φout| an observable, since it would
evolve following the Heisenberg evolution. Whenever we use the realization of wave
functions in the energy representation by Hardy functions as explained before, time
evolution of observables follows a semigroup law.

The fundamentals of TAQM are based on a new axiom to be added to quan-
tum mechanics, which is relevant in the scattering processes. This new axiom refers
to the choice of the relevant wave functions in the processes of preparation and
registration. At this point it should be remarked that, the procedure of taking the
wave functions from a dense subspace in Hilbert space is indistinguishable itself
from functions in the Hilbert space, as the error in any measurement can be made
arbitrarily small.
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This new axiom can be formulated as follows:

Preparation: For t = 0 states are prepared and given in the energy representation

by functions in H2
− ∩ S

∣∣∣
R+

. Note that H2
− ∩ S

∣∣∣
R+

is dense in L2(R+), so that any

ϕ(E) ∈ L2(R+) can be approximated by a φ(E) ∈ H2
− ∩ S

∣∣∣
R+

.

Registration: Observables are |ψ〉〈ψ|, where the ψ are approximated by functions
in H2

+ ∩ S
∣∣
R+ .

The time arrow goes from the preparation apparatus to the registration ap-
paratus [25].

5. Models of resonances

5.1. The Friedrichs model

The basic Friedrichs model has just one resonance. Nevertheless, it contains all
features of resonance scattering and provides a framework for understanding res-
onance phenomena in realistic systems. Here, the Hamiltonian pair {H0, H} is
given by

H0 = ω0 |1〉〈1|+
∫ ∞

0

ω |ω〉〈ω| dω , (25)

where |1〉 is an eigenvector of H0 with eigenvalue ω0, H0|1〉 = ω0|1〉 and |ω〉
are generalized eigenvectors of H with eigenvalues ω in the absolutely continuous
spectrum of H0, which is the positive semi-axis [0,∞), H0|ω〉 = ω|ω〉. The total
Hamiltonian is H = H0 + λV , where λ is a real coupling constant and V is

V =

∫ ∞

0

f(ω) [|ω〉〈1|+ |1〉〈ω|] dω . (26)

Here f(ω) is a function, usually taken square integrable [31], called the form factor.

Resonances are here obtained using Definition 1 in 2.1. The conclusion is that
they are poles of the analytic continuation of the following function (sometimes
called the reduced resolvent):

1

η(z)
:= 〈1| 1

H − zI
|1〉 , (27)

with

η(z) = z − ω0 − λ2

∫ ∞

0

|f(ω)|2
z − ω

dω . (28)

The function η(z) is analytic on the complex plane except for a branch cut on
the positive semiaxis [0,∞), with no zeroes. It admits an analytic continuation
through the cut, both from above to below or from below to above, that can
be supported by the two sheeted Riemann surface generated by the square root.
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The analytic continuation has a pair of complex conjugate zeroes located at the
following points:

zR = ω0 + λ2

∫ ∞

0

|f(ω)|2
zR − ω + i0

dω = ω0 + λ2

∫ ∞

0

|f(ω)|2
ω0 − ω + i0

dω + o(λ4) , (29)

z∗R = ω0 + λ2

∫ ∞

0

|f(ω)|2
zR − ω − i0

dω = ω0 + λ2

∫ ∞

0

|f(ω)|2
ω0 − ω − i0

dω + o(λ4) . (30)

The meaning of ±i0 in the denominator is the usual in the theory of distributions
[32]. These zeroes are poles of η−1(z) and consequently show the existence of a
resonance. Note on the dependence on the coupling constant λ of the resonance
poles of the reduced resolvent. If λ 	−→ 0, then, both resonance poles go to ω0

the eigenvalue of H0. The usual interpretation says that as the consequence of
the interaction, the bound state of H0 becomes unstable and as a result it is a
resonance with resonance poles as in (29)–(30).

On the spaces Φ+ and Φ− as in (17), respectively, the growing and decaying
Gamow vectors are functionals that can be written explicitly as

|ψD〉 = |1〉+
∫ ∞

0

λ f(ω)

zR − ω + i0
|ω〉 dω , (31)

|ψG〉 = |1〉+
∫ ∞

0

λ f(ω)

z∗R − ω − i0
|ω〉 dω . (32)

In addition, the Hamiltonian admits respective diagonalizations as operators
on L{Φ−, (Φ+)×} and L{Φ+, (Φ−)×}, where L{Φ,Ψ} is the space of continuous
operators from the locally convex space Φ into the locally convex space Ψ, of the
following form (on the duals (Φ±)× we consider the weak topology):

H = zR|ψD〉〈ψG|+ background , (33)

H = z∗R|ψG〉〈ψD|+ background . (34)

The word background here denotes an integral term, which physically would cor-
respond to the existence of the background part.

Finally, we remark that objects like Møller wave operators and the S-matrix
exist for the Friedrichs model. See [31]. Poles of the S-matrix coincide with the
resonance poles obtained by the method of the resolvent.

5.1.1. Double resonances. Causality conditions do not forbid the existence of res-
onance poles with multiplicity bigger than one. Assume for instance the existence
of a resonance represented by a pair of complex conjugate poles of the analytic
extension of the S-matrix S(E). In this case, the decaying state as in (11) should
be written as [33]

ψ− = |bgk〉+
N−1∑
k=0

ck|ψD
k 〉 . (35)

The first term of the sum in (35) (excluding |bgk〉) is nothing else than the pre-
viously defined Gamow vector |ψD

0 〉 = |ψD〉. Thus, the vectors in the sum in (35)
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are functionals on Φ− and satisfy the condition

H |ψD
k 〉 = zR|ψD

k 〉+ k|ψD
k−1〉 , k = 0, 1, . . . , N − 1 . (36)

Vectors |ψD
k 〉 are the Gamow vectors for multiple pole (degenerated) resonances,

also called Jordan–Gamow vectors [5]. We can project the extension to (Φ−)× of
H to the Nth-dimensional subspace of (Φ−)× spanned by these vectors. In the
basis given by the Jordan–Gamow vectors the restriction of the Hamiltonian has
a typical Jordan block form:

H =

⎛⎜⎜⎝
zR 1 0 . . . 0
0 zR 1 . . . 0
. . . . . . . . . . . . 1
0 0 0 . . . zR

⎞⎟⎟⎠ (37)

and the time evolution e−itH is the corresponding exponentiation of −itH with H
as in (37).

In the Friedrichs model, we can produce a resonance characterized by a pair
of double poles. To do it, we need a clever choice of the form factor. This is [33]:

f(ω) :=

√
ω

P (ω)
, P (ω) = (ω − α)(ω − α∗) . (38)

In this case, the Gamow–Jordan vectors are given by: |ψD〉 as in (31) and

|ψD
1 〉 = −

∫ ∞

0

f(ω)

(zR − ω + i0)2
|ω〉 dω . (39)

Other models showing a resonance with a double pole are the following:

1. The following Hamiltonian on L2(R) [34]:

H = − d2

dx2
+

π

α
δ(x− a) +

π

β
δ(x − b) . (40)

2. The following Hamiltonian on L2(R+), i.e., the potential is infinite for x ≤ 0
[35]:

H = − d2

dx2
+ α δ(x− a) + β δ(x− b) , α , β , a , b > 0 . (41)

The double pole of the analytic continuation of S(E) can be found for some values
of the constants a, b, α and β only [34, 35].

5.2. A one-dimensional model

An interesting one-dimensional model with resonances having a great richness of
features is the half oscillator with a point potential at the origin and possibly
a mass jump at the same point. In principle, the interest of this model was es-
sentially pedagogical with the presence of an infinite number of resonances that
under certain limit process (the coefficient of a delta perturbation at the origin
going to the infinity) become the odd bound states of the harmonic oscillator [36].
In addition, this model has well-defined S-matrix, scattering operators, transmis-
sion and reflections coefficients, etc. However, its particular interest lies on the
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presence of some unexpected features [37], which opens the interest for the search
for resonance models with unusual behavior.

The Hamiltonian for the model under consideration is the following:

H = − �2

2m

d2

dx2
+ V1(x) + V2(x) (42)

with

V1(x) :=

⎧⎨⎩
1
2 mω2x2 if x < 0

0 if x > 0
, V2(x) = aδ(x) + bδ′(x) . (43)

In order that Hamiltonian (42) be well defined and self adjoint, we need to resort to
the theory of self-adjoint extensions of symmetric operators with equal deficiency
indices [15], according to which we need to construct the domain of the operator. In
our case, this construction should include functions that have a jump at the origin.
This mass jump cannot be arbitrary, but in any case, we should give a prescription
that define the products of δ(x) and δ′(x) with functions showing a discontinuity
at the origin. Let us write the solutions of the corresponding Schrödinger equation
as ψ(x) = ψ1(x)H(−x) + ψ2(x)H(x), where H(x) is the Heaviside step function.
Then, this prescription for an arbitrary function ψ(x) is

δ(x)ψ(x) =
ψ1(0) + ψ2(0)

2
δ(x) , (44)

δ′(x)ψ(x) =
ψ1(0) + ψ2(0)

2
δ′(x) − ψ′

1(0) + ψ′
2(0)

2
δ(x) . (45)

Note that these products coincide with the usual ones when both ψ(x) and its
derivative ψ′(x) are continuous at the origin. The resulting Schrödinger equation
is then an equation for distributions.

The domain of self-adjointness of the Hamiltonian (42) is the space of func-
tions ψ(x) = ψ1(x)H(−x) +ψ2(x)H(x) in the Sobolev space W 2

2 (R\{0}) with the
additional condition (� = 1)(

ψ2(0)

ψ′
2(0)

)
=

(
1+mb
1−mb 0
2ma

1−m2b2
1−mb
1+mb

)(
ψ1(0)

ψ′
1(0)

)
(46)

Although these matching conditions do not apply in the case b = ±1/m, self-
adjoint extensions can be defined for this particular case [37].

In order to obtain the resonances, we use the earlier mentioned method of
the purely outgoing boundary conditions, according to which there is no incoming
wave, so that it must be equal to zero. This gives a transcendental equation for
which the solutions not only give the resonances, but also bound and antibound
states. This transcendental equation can be numerically solved, after some algebra,
with the aid of a package like Mathematica.

A thorough description of the results obtained is reported in [37]. Let us
mention here some of the most relevant in order to understand the interest of the
model.
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In absence of a mass jump at the origin:

1. There are a countably infinite number of resonances even in the absence of
any point potential at the origin (in this case V2(x) ≡ 0). When we switch
on V2(x) = aδ(x), all resonances save for one, have a smaller imaginary part
(higher mean life) no matter if a is either positive or negative. For a > 0, it
appears an extra resonance (which did not exist for V2(x) ≡ 0) which does
not follow the general pattern. When a is very small and goes to zero, its real
and imaginary parts go to +∞ and −∞ respectively to disappear in the limit
a = 0. For higher values of a, this resonance has the smaller real part and
otherwise behaves like the others. Because of the unusual behavior of this
resonance, we have named it as the maverick resonance. It does not exist for
a < 0.

2. There exists one and only one bound state for a < 0 and below a certain
threshold. Between zero and this threshold, we do not have bound states but
instead one and only one antibound state.

3. When we switch on the term bδ′(x), we obtain analogous results except for
the limit values b = ±1/m where each resonance collapse into a bound state.

In presence of a mass jump at the origin.

1. Assume that the mass is m1 if x < 0 and m2 if x > 0. Then, the relevant
parameter is r = m2/m1. The maverick resonance still exists, but its presence
is only observable near r = 1, i.e., the limit of equal masses. All other features
remain essentially equal except one:

2. There are two critical points for b, which are b = −1/r and b = −(1 + r)/2.
When the value of b lies on one of these two critical points, all resonances
collapse into bound states. If a = 0, the energy of these bound states coincide
for both critical points and is given by the even energy levels of the oscillator.
If a 
= 0, the energy levels corresponding to both critical points are slightly
different, but all them have the form A + Bn, where n = 0, 1, 2, . . . , B is
always close to 2 and A depends on a and r.

In general, it is possible to plot the eigenfunctions of the Hamiltonian with complex
eigenvalues which are resonance poles, i.e., Gamow vectors. One sees that for large
values of x > 0, these eigenfunctions have an approximate exponential grow.

One final remark: Formula (45) shows that the contribution to the potential
given by aδ′(x) behaves like the derivative of the delta. This delta prime perturba-
tion has been given by the particular self-adjoint choice of the Hamiltonian given
by the matching conditions (45). It may be surprising to say that the determi-
nation of a delta prime type perturbation is not unique. In fact, there are other
possible matching conditions determining other self-adjoint determinations of the
Hamiltonian that also give a delta prime term. In all cases, the operational behav-
ior of the term aδ′(x) is the same for functions with continuous derivative at the
origin, but the self-adjoint extension that determines this perturbation is different
[38, 39].
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