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Abstract. We consider several tests to check whether a function defined on the
phase space of a system represents a quantum state. Our criteria have been
obtained from theorems holding for a density operator in the Hilbert space
formulation of quantum mechanics. The tests are based on a notion of trace
and follow from their Hilbert space counterparts through the Stratonovich–
Weyl correspondence.
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1. Introduction

Physics is an experimental science. Thus its mathematical structure has to respect
measurements, i.e., contain a class of physically important quantities – observables
and predict results of a single measurement as well as a mean value of a series of
observations.

There is no formal definition of an observable. We assume that in the phase
space formulation of quantum mechanics [1–3] measurable quantities are repre-
sented by smooth real functions on a symplectic manifold, but other functions and
even generalized functions can be considered. In the Hilbert space formulation
of quantum theory the observables are identified with linear self-adjoint opera-
tors [4, 5].

For a given observable the result of a single observation or the average of
a series of measurements depend on a state. Hence in the phase space quantum
mechanics information about the state is contained in a linear functional satisfying
some extra conditions. We will consider this problem in the next paragraph. In the
Hilbert space version of quantum physics normalizable pure states are represented
by vectors of the unit length from a Hilbert space H of the system. An arbitrary
state belongs to a convex set spanned by the pure states [6].
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The strict relationship between a set of observables and a space of states looks
as follows. We choose an algebraA with involution ∗. The algebraA contains some
subset of the set of observables. Quantum states are represented by positive linear
functionals f ∈ F over the ∗ -algebra A.

∀A ∈ A f(A+A) ≥ 0. (1)

Moreover, the states obey the normalization condition

f(1) = 1.

By 1 we denote the unity of the algebra A.
Thus the expected value of an observable A ∈ A in a state f ∈ F is equal to

〈A〉 := f(A).

Another approach to states is based on the following idea. We distinguish a
special class of linear normalized positive functionals called pure states and then
we build a convex set spanned by these special states.

Let us consider the Hilbert space formulation of quantum mechanics. The
∗ -algebra A in this case is the algebra B(H) of bounded linear operators whose
domain is the whole Hilbert space H. The functional is defined as

f(A) := Tr(�̂Â) ∀ Â ∈ A. (2)

The symbol �̂ denotes the density operator.
The positivity condition (1) is hardly testable. The same about convexity of

a set. Thus we propose several applicable criteria of checking if a given functional
really represents a physical state. These criteria are divided in two groups: tests
for density operators and for Wigner functions. Their complete list with proofs can
be found in our paper [7]. In this contribution only the tests based on the notion
of trace are presented.

A square matrix C of a dimension dimH × dimH is symbolized by

[〈ϕi|C|ϕj〉]dimH
1 while an element of this matrix is represented as 〈ϕi|C|ϕj〉.

2. Hilbert space version of quantum mechanics

Let us consider a quantum system modeled on a separable Hilbert space H. By
{
∣∣ϕj〉}dimH

j=1 we mean a complete set of orthonormal vectors in H. We do not know
the state vector of the system but only a probability of detecting the system in
each of the states

∣∣ϕj〉.
As it was postulated by von Neumann [8], in such cases the state of the

quantum system is characterized by a positive functional determined by a density
operator.

Definition 1. The operator given by

�̂ := u− lim
n→dimH

n∑
j=1

pj
∣∣ϕj〉〈ϕj

∣∣, ∀ j pj ≥ 0 ,

dimH∑
j=1

pj = 1
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is called a density operator. Each number pj , j = 1, 2, . . . , dimH is equal to the
probability of observing the system in the state represented by the ket |ϕj〉. If one
of these numbers is equal to 1 we say that the system is in a pure state. Otherwise
the system is in a mixed state.

The symbol u− denotes the uniform convergence of a sequence of operators.
An equivalent formulation of Definition 1 is the following.

Definition 2. An operator �̂ : H → H is a density operator if it is:

1. positive, i.e., 〈φ
∣∣�̂∣∣φ〉 ≥ 0 ∀

∣∣φ〉 ∈ H,

2. self-adjoint �̂+ = �̂,
3. Tr �̂ = 1.

As it was mentioned in the Introduction, the functional action is determined
by the formula (2). From Definitions 1 and 2 we can deduce several properties of
the density operator.

• Tr �̂2 ≤ 1. Thus the density operator is a Hilbert–Schmidt operator. Its
Hilbert–Schmidt norm, given by

||�̂||2 :=
√
Tr(�̂+�̂),

is not greater than 1. Moreover, ||�̂||2 = 1 if and only if the density operator
represents a pure state.

• As eigenvalues of the density operator �̂ are nonnegative, the density operator
is a trace class operator and its trace norm

||�̂||1 := Tr
√
�̂+�̂ = Tr |�̂| = Tr �̂ = 1.

For each trace class operator Â the following estimation holds

||Â|| ≤ ||Â||2 ≤ ||Â||1.
• The density operator is positive. Hence for every operator Â ∈ B(H) the

mean value of the product ÂÂ+ obeys

〈ÂÂ+〉 = Tr(�̂ÂÂ+) ≥ 0.

Assume that a matrix representation [〈ϕi|�̂|ϕj〉]dimH
1 of an operator �̂ is known.

We intend to settle whether this matrix represents a physical state of a quantum
system. We consider finite- and infinite-dimensional separable Hilbert spaces and
discuss mixed as well as pure states.

2.1. A finite-dimensional Hilbert space

At the beginning we consider a finite-dimensional Hilbert space. In this case the

matrix [〈ϕi|�̂|ϕj〉]dimH
1 completely determines the operator �̂, which is defined on

the whole space H.
Applying elementary linear algebra we propose the following algorithm.

1. First we test if the matrix is symmetric

∀ i, j 〈ϕi|�̂|ϕj〉 = 〈ϕj |�̂|ϕi〉.
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2. If the answer is positive, we calculate its trace
∑dimH

i=1 〈ϕi|�̂|ϕi〉.
3. If the trace is equal to 1 we go to the last step, in which we find the principal

minors and decide whether the matrix is positive.

A symmetric matrix of trace 1 with all the principal minors nonnegative is a
density matrix.

For a pure state this procedure becomes simpler. A matrix [〈ϕi|�̂|ϕj〉]dimH
1

represents a pure state if it is symmetric, its trace is equal to 1 and the square of
it is the same matrix

∀ i, j

dimH∑
k=1

〈ϕi|�̂|ϕk〉〈ϕk|�̂|ϕj〉 = 〈ϕi|�̂|ϕj〉.

2.2. An infinite-dimensional Hilbert space

The case of an infinite-dimensional space is more complicated. It may happen that
in a given orthonormal basis {|ϕj〉}∞j=1 the matrix

[
〈ϕi|Â|ϕj〉

]∞
1

of an operator Â
exists but does not uniquely characterize this operator.

Thus to know whether a matrix [〈ϕi|�̂|ϕj〉]∞1 can represent a density operator,
we propose to check first if �̂ is a Hilbert–Schmidt operator, i.e.,

∞∑
i,j=1

|〈ϕi|�̂|ϕj〉|2 < ∞.

Every Hilbert–Schmidt operator Â is bounded and is defined on the whole space
H. Moreover, the matrix

[
〈ϕi|Â|ϕj〉

]∞
1

completely characterizes the operator Â. In

addition, if the matrix
[
〈ϕi|Â|ϕj〉

]∞
1

is symmetric, we conclude that the operator Â
is self adjoint. Hence all of our criteria will start from checking, if a given operator
is of the Hilbert–Schmidt class and if it is symmetric.

In the next step we have to test if the matrix [〈ϕi|�̂|ϕj〉]∞1 represents a positive
operator. This operation is the most complicated and can be done in many ways.
Finally one calculates the trace of the matrix [〈ϕi|�̂|ϕj〉]∞1 .

Several realizations of tests are formulated below. We write down only hints
at which proofs of these statements are based. More detailed explanation can be
found in [7].

Theorem 1. A matrix [〈ϕi|�̂|ϕj〉]∞1 represents a quantum state iff:

1.
∑∞

i,j=1 |〈ϕi|�̂|ϕj〉|2 ≤ 1,

2. 〈ϕi|�̂|ϕj〉 = 〈ϕj |�̂|ϕi〉 ∀ 1 ≤ i, j < ∞,

3. 1
2

∑∞
i=1〈ϕi|�̂2|ϕi〉+

∑∞
l=2

(−1)l+1

l!
(2l−3)!!

2l

∑l−1
r=0(−1)r

(
l
r

)
×
∑∞

i=1〈ϕi|�̂2(l−r)|ϕi〉 = 1, (3)

4.
∑∞

i=1〈ϕi|�̂|ϕi〉 = 1.

Formula (3) comes from the observation that for a density operator the square

root
√
�̂2 defined by the series must be equal to the operator �̂. Thus Tr

√
ρ̂2 = 1.
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Theorem 2. A matrix [〈ϕi|�̂|ϕj〉]∞1 represents a quantum state iff:

1.
∑∞

i,j=1 |〈ϕi|�̂|ϕj〉|2 ≤ 1,

2. 〈ϕi|�̂|ϕj〉 = 〈ϕj |�̂|ϕi〉 ∀ 1 ≤ i, j < ∞,
3. for every natural number n the sum is nonnegative

n∑
k=0

(−1)k
(
n

k

) ∞∑
i=1

〈ϕi|�̂k+1|ϕi〉 ≥ 0, (4)

4.
∑∞

i=1〈ϕi|�̂|ϕi〉 = 1.

In the conditions 3 and 4 we check if all of eigenvalues of the matrix
[〈ϕi|�̂|ϕj〉]∞1 are nonnegative and they do not exceed 1.

Theorem 3. A matrix [〈ϕi|�̂|ϕj〉]∞1 represents a quantum state iff:

1.
∑∞

i,j=1 |〈ϕi|�̂|ϕj〉|2 ≤ 1,

2. 〈ϕi|�̂|ϕj〉 = 〈ϕj |�̂|ϕi〉 ∀ 1 ≤ i, j < ∞,
3. the limit

lim
n→∞

n∑
k=0

(−1)k
(
n

k

) ∞∑
i=1

〈ϕi|�̂k+1|ϕi〉 = 0,

4.
∑∞

i=1〈ϕi|�̂|ϕi〉 = 1.

In fact this theorem is a consequence of Theorem 2 because for nonnegative
eigenvalues e1, e2, . . . of the matrix [〈ϕi|�̂|ϕj〉]∞1 the sum

∑∞
i=1 ei(1− ei)

n tends to
0 as n → ∞.

For pure states the testing procedure can be simplified.

Theorem 4. A matrix [〈ϕi|�̂|ϕj〉]∞1 represents a pure quantum state iff:

1.
∑∞

i,j=1 |〈ϕi|�̂|ϕj〉|2 = 1,

2. 〈ϕi|�̂|ϕj〉 = 〈ϕj |�̂|ϕi〉 ∀ 1 ≤ i, j < ∞,
3.

∑∞
j=1〈ϕi|�̂|ϕj〉〈ϕj |�̂|ϕk〉 = 〈ϕi|�̂|ϕk〉,

4.
∑∞

i=1〈ϕi|�̂|ϕi〉 = 1.

This theorem states that the density operator of a pure state must be a
projective operator.

3. Phase space version of quantum mechanics

When the phase space formulation of quantum mechanics is considered, two fun-
damental elements: a phase space and a ∗-product must be taken into account. We
restrict ourselves to problems, in which phase spaces are differentiable symplectic
manifolds.

On every symplectic manifold (M, ω) there exists a nontrivial ∗-product. We
assume that the ∗-product is local and in its differential form is of the Weyl type.
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Definition 3. An observable on a phase space (M, ω) is any smooth real function
on M being a formal series in the Planck constant �

C∞(M)[[�]] � A(q1, . . . , q2n) =

∞∑
i=0

�iAi(q
1, . . . , q2n). (5)

As it was explained in the Introduction, construction of the space of states is
based on some algebra with an involution. This algebra contains a subset of the set
of observables. In deformation quantization the ∗-algebra A consists of all smooth
functions on (M, ω), which are formal series in � and have compact supports. The
involution ‘∗’ is realized by the complex conjugation. The product in the algebra
A is a Weyl type ∗-product.

According to the general definition, quantum states are positive linear func-
tionals over the algebraA satisfying the normalization condition. Every such func-
tional f can be written in the following form

f
(
A(q1, . . . , q2n)

)
=

∫
M

A(q1, . . . , q2n) ∗W (q1, . . . , q2n)t(q1, . . . , q2n)ωn (6)

=

∫
M

W (q1, . . . , q2n) ∗A(q1, . . . , q2n)t(q1, . . . , q2n)ωn, ∀ A(q1, . . . , q2n) ∈ A.

A real function

C∞(M)[[�]] � t(q1, . . . , q2n) =
∞∑
i=0

�iti(q
1, . . . , q2n)

is called a trace density. The trace density ensures that the integral (6) possesses
a trace property∫

M

A(q1, . . . , q2n) ∗B(q1, . . . , q2n)t(q1, . . . , q2n)ωn

=

∫
M

B(q1, . . . , q2n) ∗A(q1, . . . , q2n)t(q1, . . . , q2n)ωn,

∀ A(q1, . . . , q2n), B(q1, . . . , q2n) ∈ A.

The trace density is determined by a symplectic curvature tensor and its derivatives
[9, 10].

A function W (q1, . . . , q2n) contains information about the state and is called
aWigner function. We will restrict ourselves to the functions W (q1, . . . , q2n) which
are ∗- square integrable, i.e.,∫

M

W (q1, . . . , q2n) ∗W (q1, . . . , q2n)t(q1, . . . , q2n)ωn < ∞

for each fixed positive value of the deformation parameter �.
The integral

1

(2π�)n

∫
M

A(q1, . . . , q2n)t(q1, . . . , q2n)ωn (7)

is often called a trace as is a classical counterpart of the trace of operator.
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3.1. The Stratonovich–Weyl correspondence

Considerations from the current section are based on belief that the Hilbert space
formulation of quantum mechanics and its phase space version are equivalent. This
equivalence is expressed by the Stratonovich–Weyl correspondence SW : AH → A
between an algebra of operators AH and an algebra of functions A. Although a
general form of this relationship is not known, it should satisfy a few natural
requirements. First of all the SW mapping is one to one. The choice of the algebra
of operators AH determines the choice of the algebra of functions A. On the other
hand we know, that this choice is not unique and for different algebras AH or
equivalently A we obtain the same quantum mechanics.

Next, the SW correspondence is linear. Moreover, SW (Â+) = SW (Â). The

image SW (1̂) = 1, i.e., the constant function equal 1 on the whole symplectic

manifold M represents the identity operator. If an operator Â is self adjoint then

SW (Â) is a real function. Finally, the · -product of operators is represented by the
∗-multiplication of functions,

SW (Â · B̂) = SW (Â) ∗ SW (B̂)

and the trace of an operator is equal to

Tr Â =
1

(2π�)n

∫
M

SW
(
Â
)
(q1, . . . , q2n)t(q1, . . . , q2n)ωn.

3.2. Wigner function

The Stratonovich–Weyl correspondence establishes a correspondence between a
density operator �̂ and a Wigner function W (q1, . . . , q2n)

SW

(
1

(2π�)n
�̂

)
= W (q1, . . . , q2n).

Applying the Stratonovich–Weyl mapping to a density operator we find properties
of the Wigner function on an arbitrary symplectic manifold.

Integration of the Wigner function yields∫
M

W (q1, . . . , q2n)t(q1, . . . , q2n)ωn = 1.

This result is an immediate consequence of the fact that Tr �̂ = 1. Moreover, every
Wigner function, as a counterpart of the self-adjoint operator, is real. Since a
density operator is of a Hilbert–Schmidt type, the integral satisfies the estimation∫

M

W ∗2(q1, . . . , q2n) t(q1, . . . , q2n)ωn ≤ 1

(2π�)n
.

The equality holds only for pure states.
Applying the Stratonovich–Weyl correspondence we present criteria to test,

if a given function W (q1, . . . , q2n) on the phase space of a system represents a
physical state. It is easily to see that these criteria are phase space counterparts
of Theorems 1–4.
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Theorem 5. A function W (q1, . . . , q2n) defined on a symplectic manifold (M, ω)
is a Wigner function iff:

1.
∫
M

W ∗2(q1, . . . , q2n) t(q1, . . . , q2n)ωn ≤ 1
(2π�)n ,

2. the function is real,

3. 1
2

∫
M

W ∗2(q1, . . . , q2n) t(q1, . . . , q2n)ωn +
∑∞

l=2
(−1)l+1

l!
(2l−3)!!

2l

×
∑l−1

r=0(−1)r
(
l
r

)
(2π�)2n(l−r−1)

∫
M

W ∗2(l−r)(q1, . . . , q2n) t(q1, . . . , q2n)ωn

= 1
(2π�)n , (8)

4.
∫
M W (q1, . . . , q2n) t(q1, . . . , q2n)ωn = 1.

Theorem 6. A function W (q1, . . . , q2n) defined on a symplectic manifold (M, ω)
is a Wigner function of a quantum state iff:

1.
∫
M W ∗2(q1, . . . , q2n) t(q1, . . . , q2n)ωn ≤ 1

(2π�)n ,

2. the function is real,

3. for every natural number m the sum is nonnegative∑m
k=0(−1)k

(
m
k

)
(2π�)nk

∫
M

W ∗(k+1)(q1, . . . , q2n) t(q1, . . . , q2n)ωn ≥ 0, (9)

4.
∫
M

W (q1, . . . , q2n) t(q1, . . . , q2n)ωn = 1.

Theorem 7. A function W (q1, . . . , q2n) defined on a symplectic manifold (M, ω)
represents a quantum state iff:

1.
∫
M

W ∗2(q1, . . . , q2n) t(q1, . . . , q2n)ωn ≤ 1
(2π�)n ,

2. the function is real,

3. limm→∞
∑m

k=0(−1)k
(
m
k

)
(2π�)nk

∫
M

W ∗(k+1)(q1, . . . , q2n)

×t(q1, . . . , q2n)ωn = 0, (10)

4.
∫
M W (q1, . . . , q2n) t(q1, . . . , q2n)ωn = 1.

An identification method of pure states is based on the following statement.

Theorem 8. A function W (q1, . . . , q2n) defined on a symplectic manifold (M, ω)
represents a pure quantum state iff:

1.
∫
M W ∗2(q1, . . . , q2n) t(q1, . . . , q2n)ωn = 1

(2π�)n ,

2. the function is real,

3. W ∗2(q1, . . . , q2n) = 1
(2π�)nW (q1, . . . , q2n)

4.
∫
M

W (q1, . . . , q2n) t(q1, . . . , q2n)ωn = 1.

As an illustration of the presented criteria we examine a function considered
by Tatarskij [1].

The function

W (p, q) =
2

3
W0(p, q) +

2

3
W1(p, q)−

1

3
W2(p, q) (11)
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is defined on the phase space R2. By W0(p, q), W1(p, q) and W2(p, q) we denote
Wigner functions of mutually orthogonal states, i.e.,∫

R2

Wi(p, q) ∗Wj(p, q)dpdq =
1

2π�
δij .

As it can be seen from (11), the function W (p, q) is not a Wigner function, because
one of its eigenvalues is negative. The mth star power of this function is equal

W ∗m(p, q) =
1

(2π�)m−1

((
2

3

)m

W0(p, q) +

(
2

3

)m

W1(p, q)

+

(
−1

3

)m

W2(p, q)

)
.

The function W (p, q) is real and the integral
∫
R2 W (p, q)dpdq = 1. Moreover,∫

R2 W
∗2(p, q)dpdq = 1

2π� so the function W (p, q) satisfies the conditions (i), (ii)
and (iv) of Theorems 5–7.

However, for the function (11) the sum (8) is equal to 5
3 · 1

2π�

(

= 1

2π�

)
so

this function is not a Wigner function.
Applying Theorem 6 we see that the sum (9) is equal to 2π� for m = 0, 0

for m = 1 and − 4
9 · 2π� (< 0) for m = 2. Therefore after taking three steps we

conclude that W (p, q) does not represent any state.
The limit (10) is equal to −∞ (
= 0) so the tested function obviously cannot

be a Wigner function.

4. Conclusions

As criteria considered in our contribution require calculation of arbitrary powers
of density matrices or arbitrary ∗-powers of Wigner functions, there might be some
doubts about usefulness of this approach. However, it seems that at this moment
there is no other constructive method of recognition of physical states. Moreover,
tests of positivity are quite general so the presented results can be applied in
different problems requiring analysis of positivity.
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