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Toeplitz Quantization without
Measure or Inner Product

Stephen Bruce Sontz

Abstract. This note is a follow-up to a recent paper by the author. Most of
that theory is now realized in a new setting where the vector space of symbols
is not necessarily an algebra nor is it equipped with an inner product, although
it does have a conjugation. As in the previous paper one does not need to put
a measure on this vector space. A Toeplitz quantization is defined and shown
to have most of the properties as in the previous paper, including creation and
annihilation operators. As in the previous paper this theory is implemented
by densely defined Toeplitz operators which act in a Hilbert space, where
there is an inner product, of course. Planck’s constant also plays a role in the
canonical commutation relations of this theory. Proofs are given in order to
provide a self-contained paper.
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1. Introduction

In a recent paper [6] of mine I developed a theory of a Toeplitz quantization whose
symbols lie in a possibly non-commutative algebra which has an inner product.
At that time I was motivated by previous papers ([4] and [5]) of mine that had
symbols in a non-commutative algebra. In those cases there was also an inner
product available which served more than anything as a part of a formula defining
a projection operator. And that projection operator was used in the standard way
to define Toeplitz operators in that setting. But now I have realized that there
is another way to arrive at most of the results of [6] without supposing that the
complex vector space (no longer assumed to be an algebra) of symbols has an inner
product, though I still require that it have a conjugation to get more interesting
results.
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While the paper [6] presented a viable quantization scheme that did not
involve a measure, the objection could be made that an inner product is some sort
of mild generalization of a measure, that it is a ‘measure in disguise’ or some such
criticism. However, in this note there is neither measure nor inner product on the
‘classical’ space of symbols. Of necessity there is an inner product in the quantum
Hilbert space.

The references for this short note are deliberately kept to just a very few.
For further background and motivation on this topic see [6], consult the references
found there and continue recursively.

2. The new setting

We have a new setting that has some things in common with that in [6]. So, to
facilitate this presentation I will use the same notation as in [6]. Here are the
exact structures to be considered in this note together with their notations. They
involve three vectors spaces (denoted by A, H and P) over the field C of complex
numbers. These spaces are required to satisfy these eight conditions:

1. H is a Hilbert space.
2. A has a conjugation denoted by g∗ for all g ∈ A. A conjugation is by definition

an anti-linear, involutive mapping of a vector space to itself.
3. P is a dense subspace of H.
4. P is a vector subspace of A.
5. P is an associative algebra with unit 1 satisfying 1∗ = 1. Note that P is not

necessarily commutative.
6. There is a left action of P on A. This means that there is a unital algebra

morphism P → End(A), since End(A) acts by convention on the left of
A. In particular we assume that this action (thought of as a bilinear map
P × A → A) restricts to the multiplication map P × P → P of the algebra
P . The notation is (φ, g) 	→ φg for (φ, g) ∈ P ×A.

7. There is a linear map P : A → P ⊂ A which satisfies P 2 = P and with range
RanP = P . (The co-domain of P is taken to be either P or A, as convenience
dictates.) One immediately has that the restriction of P to P is the identity
map on P .

8. 〈Tgφ1, φ2〉H = 〈φ1, Tg∗φ2〉H for all φ1, φ2 ∈ P and g ∈ A where Tg, the
Toeplitz operator with symbol g, will be defined below. This condition means
Tg∗ ⊂ (Tg)

∗, the adjoint of Tg.

I do not assume that there is an inner product on A, but of course we do have
an inner product, denoted by 〈·, ·〉H, on the Hilbert space H. And this restricts
to an inner product on P thereby making it a pre-Hilbert space. In [6] the vector
space A of symbols was assumed to be an algebra. We retain the notation, but not
that hypothesis, for this space. The conjugation on A typically will not leave P
invariant. All that we can say in general is that P∗ ⊂ A. A natural way to define



Toeplitz Quantization 59

an inner product on P∗ is

〈ψ1, ψ2〉P∗ := 〈ψ∗
2 , ψ

∗
1〉H

for all ψ1, ψ2 ∈ P∗. With this inner product P∗ becomes a pre-Hilbert space, which
is anti-unitarily equivalent to P via the map φ → φ∗ for all φ ∈ P∗. The completion
of P∗ is denoted by H∗. Bearing in mind typical examples from classical analysis,
one sees that H corresponds to a Hilbert space of holomorphic functions while P
corresponds to its subspace of holomorphic polynomials. Similarly, H∗ and P∗ are
their anti-holomorphic counterparts. Given this intuition behind these structures,
one sees that the requirement P ∩ P∗ = C1 is quite natural. However, it is not
needed for the present theory, nor was it used in [6]. So, we will not make any
assumption on P ∩ P∗.

The main differences from the setting in [6] are that A no longer need be an
algebra nor need it have an inner product defined on it. However, its subspace P
has the restriction of the inner product of H. Condition 6 is new in its details, but
preserves the idea of the assumption as given in [6] that P is a subalgebra of the
algebra A. Condition 7 was a consequence of other assumptions given in [6] about
the existence of a certain subset Φ of P . Here it is simply taken as an additional
assumption that replaces the assumptions about that subset Φ.

In Condition 8 we require the consistency of the conjugation in A and the
adjoint operation of operators. In [6] this was a consequence of an identity that
itself was assumed as a hypothesis. (See Theorem 3.3, Part 4.) Here we take this
property itself itself as a hypothesis. Of course, Toeplitz operators will be defined
presently without using Condition 8.

The theory in [6] satisfies these eight conditions. So, the theory in this new
setting generalizes the theory in [6]. But we see no way to define an inner product
on A nor to extract the set Φ in this new setting. Also, A in this note need not be
an algebra. So it seems safe to say that this note has a strict generalization of the
theory presented in [6]. Nonetheless, most of the results in [6] remain true in this
new setting.

3. Definitions and basic results

We now present and prove all those results in [6] which are still valid in this new
setting. First, here are some definitions almost identical to those in [6]. These are
simply the natural definitions of Toeplitz operator and Toeplitz quantization in
this new setting.

Definition 1. For any g ∈ A define Mg : P → A by Mgφ := φg for all φ ∈ P .
(Recall φg is the left action of φ ∈ P on g ∈ A.) Then define the Toeplitz operator
Tg : P → P associated to the symbol g ∈ A by Tg := PMg.

We let End(P) denote the vector space of all linear maps P → P . The linear
map T : A → End(P) defined by T : g 	→ Tg is called the Toeplitz quantization.
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We also consider Tg as a densely defined linear operator defined in (but not
on) the Hilbert space H as follows:

P Tg−→ P ⊂ H.

Viewed this way the domain of Tg is given by Dom(Tg) = P .

So each Toeplitz operator in this setting is defined in the same dense subspace
P , which is invariant under the action of Tg. Consequently the composition of
the Toeplitz operators Tg and Th is an operator in End(P) though it need not
be itself a Toeplitz operator. Whether a Toeplitz operator is bounded depends
on more specific information about the symbol. Some light is already cast on
these considerations by the next theorem, which is a standard, expected result for
Toeplitz operators.

Theorem 1. The Toeplitz quantization has the following properties:

1. T1 = IP , the identity map of P.
2. g ∈ P implies that Tg = Mg.
3. If g ∈ A and ψ ∈ P, then TgTψ = Tψg.

Proof. We let φ ∈ P be arbitrary throughout the proof.
For Part 1 we calculate T1φ = PM1φ = P (φ1) = P (φ) = φ, since P acts as

the identity on P .
For Part 2 we have Tgφ = PMgφ = P (φg) = φg = Mgφ, where we used that

φg ∈ P , which follows from φ, g ∈ P .
For Part 3 we let g ∈ A and ψ ∈ P . Then we calculate

TgTψφ = PMgPMψφ = PMg(P (φψ)) = PMg(φψ)

= P (φψg) = PMψgφ = Tψgφ.

Here we used P (φψ) = φψ, since P is an algebra and so φψ ∈ P �
Part 1 shows that a Toeplitz operator can be bounded yet not compact.

And Part 3 shows that the composition of two Toeplitz operators can itself be a
Toeplitz operator, in which case the symbol of the composition is given by a simple
formula involving the symbols of the factors, that is, the symbol calculus is rather
straightforward in this case.

As promised Condition 8 was not used in the definition of a Toeplitz operator.
Also Condition 8 implies that Tg is a symmetric operator if g is a self-adjoint
element of A, namely g = g∗. Whether this symmetric operator has any self-
adjoint extensions and, in particular, whether it is essentially self-adjoint, are in
general delicate questions that can be addressed with functional analysis. However,
T1 = IP trivially has a self-adjoint extension, namely IH.

Theorem 2. Each Toeplitz operator Tg is closable and its closure, denoted by Tg,
satisfies

Tg = (Tg)
∗∗ ⊂ (Tg∗)∗

for every g ∈ P.
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Proof. By functional analysis an operator R is closable if and only if DomR∗ is
dense. However Dom(Tg)

∗ ⊃ DomTg∗ = P and P is dense in H. So, Dom(Tg)
∗ is

itself a dense subspace and therefore Tg is closable. Then by functional analysis

Tg = (Tg)
∗∗. Finally, (Tg)

∗∗ ⊂ (Tg∗)∗ follows by taking the adjoint of Tg∗ ⊂ (Tg)
∗.

(See [3] for the functional analysis results.) �

Because this is a rather specific setting, one could expect a more explicit
description of the closure of a Toeplitz operator. However, we leave this as a
consideration for future research.

Theorem 3.2 in [6] that identifies the kernel of T does not go over to this
setting; neither do its consequences. However, we can see that g ∈ kerT if g ∈ P
and Mg = 0, the zero operator. Also, Condition 8 implies that the subspace ker T
is closed under conjugation. We do have the following direct consequence of the
definitions, although a more computable result clearly would be desirable.

Proposition 1. g ∈ kerT if and only if RanMg ⊂ ker P .

4. Creation and annihilation operators

We have creation and annihilation operators in this setting.

Definition 2. Let g ∈ P be given. Then the creation operator associated to g is
defined to be

A∗(g) := Tg

and the annihilation operator associated to g is defined to be

A(g) := Tg∗ .

These are reasonable definitions since they agree with the usual formulas for
these operators as found, for example, in [5]. Notice that g 	→ A∗(g) is linear while
g 	→ A(g) is anti-linear. Also A∗(g) = Tg = Mg holds, because g ∈ P . Since
A∗(1) = A(1) = T1 = IP , we see that IP is both a creation and an annihilation
operator. More generally, for any g ∈ P ∩P∗, one has Tg = A∗(g) = A(g∗) and so
Tg is both a creation and an annihilation operator.

One of the important contributions of Bargmann’s seminal paper [1] is that
it realizes the creation and annihilation operators introduced by Fock as adjoints
of each other with respect to the inner product on the Hilbert space which is
nowadays called the Segal–Bargmann space. In the present setting the creation
operator A∗(g) and the annihilation operator A(g) also have this relation, modulo
domain considerations, as we have already seen in Condition 8. Whether each is
exactly the adjoint of the other is an open question if P has infinite dimension,
but is true for finite-dimensional P .

In this setting, unlike that in [6], there is only one definition possible for an
anti-Wick quantization.
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Definition 3. We say that T is an anti-Wick quantization if

Thg∗ = Tg∗Th

for all g, h ∈ P . Notice that hg∗ makes sense since it is the left action of h ∈ P on
an element of A.

Notice that on the right side of this definition we have the product of an
annihilation operator Tg∗ to the left of a creation operator Th. And so the right
side is in what is known as anti-Wick order.

In [6] we defined T an alternative anti-Wick quantization if the equation
Tg∗h = Tg∗Th is satisfied for all g, h ∈ P . But in this setting the expression g∗h
has not even been defined. So this concept does not apply here.

Theorem 3. The Toeplitz quantization T is an anti-Wick quantization.

Proof. Take g, h ∈ P . Then Thg∗ = Tg∗Th, where we have used Part 3 in Theo-
rem 1. �

This proof replaces the rather lengthy proofs by explicit calculations given
in [4] and [5].

Corollary 1. If A = PP∗, then one can write any Toeplitz operator as a finite sum
of terms in anti-Wick order.

Proof. Let f ∈ A be a symbol. The hypothesis means that we can write f as a
finite sum, f =

∑
k hkg

∗
k with gk, hk ∈ P , where hkg

∗
k is the left action of hk ∈ P

on an element of A. So, Tf =
∑

k Tg∗
k
Thk

. �

To show more clearly that our definition of anti-Wick ordering compares well
with the discussion of this topic in Theorem 8.2 in [2] we prove the next result.
But first we need a definition that is a modification for this setting of a definition
given in [6].

Definition 4. We say that P is ∗-friendly if P∗ is an algebra and if its multiplication
satisfies (p1 · · · pn)∗ = p∗n · · · p∗1 for all p1, . . . , pn ∈ P .

One point of this definition is that we do not require (p1 · · · pn)∗ to be an
element in P . If A is a ∗-algebra, then P is ∗-friendly where the multiplication on
P∗ is the restriction of that on A.

The Toeplitz quantization is a linear map whose co-domain is an algebra
and whose domain contains an algebra, namely P . And in the ∗-friendly case its
domain also contains the algebra P∗.

Theorem 4. Suppose that g1, . . . , gn, h1, . . . hm ∈ P. Then

1. Tg1···gn = Tgn · · ·Tg1 .
2. Th∗

1···h∗
m
= Th∗

m
· · ·Th∗

1
if P is a ∗-friendly.

3. T(g1···gn)(h∗
1 ···h∗

m) = Th∗
m
· · ·Th∗

1
Tgn · · ·Tg1 if P is ∗-friendly.
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Proof. For Part 1 we use induction. The case n = 1 is trivial, while the case n = 2
follows from Part 3 in Theorem 1. For n ≥ 3 we have that

Tg1g2···gn = Tg1(g2···gn) = Tg2···gnTg1 = Tgn · · ·Tg2Tg1 ,

where we used Part 3 in Theorem 1 for the second equality and the induction
hypothesis for n− 1 for the third equality.

For the proof of Part 2 we take the notation T ∗
f for any f ∈ A to mean the

restriction of the adjoint (Tf )
∗ of Tf to the algebra P . So, T ∗

f = Tf∗ follows form
Condition 8. We then note that

Th∗
m
· · ·Th∗

1
= T ∗

hm
· · ·T ∗

h1
= (Th1· · ·Thm)∗ = (Thm···h1)

∗ = T(hm···h1)∗ = Th∗
1···h∗

m

where we used Part 1 in the third equality and that P is a ∗-friendly in the last
equality.

For Part 3 we first remark that (g1 · · · gn)(h∗
1 · · ·h∗

m) exists since it is the left
action of the element g1 · · · gn ∈ P on the element h∗

1 · · ·h∗
m ∈ P∗ ⊂ A. Then we

have that

Th∗
m
· · ·Th∗

1
Tgn · · ·Tg1 = Th∗

1···h∗
m
Tg1···gn = T(g1···gn)(h∗

1···h∗
m)

by applying Parts 1 and 2 in the first equality and Part 3 of Theorem 1 in the
second equality, using g1 · · · gn ∈ P . �

5. Canonical commutation relations

We now consider the canonical commutation relations which are satisfied by the
creation and annihilation operators. However, our approach here is the opposite
of the usual approach in which one starts with some deformation of the standard
canonical commutation relations, and then one looks for representations of those
relations by operators in some Hilbert space. Here we ask what are the appropriate
canonical commutation relations that are associated with a given Toeplitz quan-
tization. So, the operators acting in a Hilbert space are given first. This section
only contains definitions and a discussion of them. It is basically the framework of
a program for future research.

Definition 5. The subalgebra of End(P) generated by all the creation and anni-
hilation operators is defined to be the algebra of canonical commutation relations
and is denoted by CCR(P ).

We define F = C{P ∪P∗} to be the free algebra over C generated by the set
P ∪ P∗. Notice that C1 ⊂ P ∩ P∗. To avoid confusion, we will write the algebra
generators of F as Gf for f ∈ P ∪ P∗. So F is the complex vector space with a
basis given by the monomials Gf1Gf2 · · ·Gfn of degree n, where fj ∈ P ∪ P∗ for
each j. We define the algebra morphism π : F → CCR(P ) by π(Gf ) := Tf for all
f ∈ P ∪ P∗. Since the algebra F is free on the Gf ’s, this defines π uniquely. Also
since the elements Tf for f ∈ P∪P∗ are algebra generators for the algebra CCR(P ),
we see that π is an epimorphism. We define the ideal of canonical commutation



64 S.B. Sontz

relations in F to be R := kerπ. Any minimal set of algebra generators of R is
called a set of canonical commutation relations. Notice that such a set will not be
unique in general.

The standard canonical quantum mechanical commutation relations, when
written as ideal generators given by aja

∗
k − a∗kaj − �δj,k1, have the property that

for j 
= k they are homogeneous in the variables aj and a∗k and do not include any
quantum effect due to Planck’s constant �. In this case they correspond to the
commutativity of classical mechanical variables. However, for j = k they are not
homogeneous in the variables, and they do include �. Moreover, in this case the
classical relation is obtained by dropping the lower-order ‘quantum correction’.
These remarks motivate the following definition.

Definition 6. We say that a homogeneous element in R ⊂ F is a classical relation
and that a non-homogeneous element in R is a quantum relation.

Suppose R ∈ R is a non-zero relation. Then we can write R uniquely as
R = R0 +R1 + · · ·+Rn, where each Rj is homogeneous with deg Rj = j for each
j = 0, 1, . . . , n and Rn 
= 0. Then we say that Rn is the classical relation associated
to R.

Of course, Rn is actually a classical relation. Both of the cases Rn ∈ R
and Rn /∈ R can occur as the example before this definition shows. What we are
doing intuitively to get the classical relation Rn from R is to discard the ‘quantum
corrections’ R0, R1, . . . , Rn−1 in R. We next define

Rcl := 〈Rn |Rn is the classical relation associated to some R ∈ R〉,
where the brackets 〈·〉 indicate that we are taking the two-sided ideal in F gener-
ated by the elements inside the brackets.

Definition 7. The dequantized algebra associated to A is defined to be

DQ := F/Rcl.

Note that DQ need not be commutative. We can realize DQ as the case � = 0
of a family of algebras parameterized by � ∈ C and with � = 1 corresponding to
CCR(P ). Based on this we can now define the associated �-deformed relations
to be

R� := 〈�n/2R0 + �(n−1)/2R1 + · · ·+ �1/2Rn−1 +Rn |R ∈ R〉 (1)

= 〈R0 + �−1/2R1 + · · ·+ �−(n−1)/2Rn−1 + �−n/2Rn |R ∈ R〉, (2)

using the notation R = R0 +R1 + · · ·+Rn as given above. Next we define

CCR�(P ) := F/R�.

The second expression (2) has the virtue that the powers of �−1/2 are the degrees
of homogeneity of the terms. On the other hand, in the first expression (1) each
of the homogeneous terms has a coefficient giving its intuitively correct degree
of ‘quantumness’. The expression (1) also indicates formally what happens when
one takes the limit � → 0. For � 
= 0 the two expressions (1) and (2) are clearly
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equivalent, but for � = 0 only the definition (1) makes sense. In physics one
considers � > 0 to be Planck’s constant, but here we can take � ∈ C to be
arbitrary.

We have included � in part to emphasize that this theory has semi-classical
behavior (more precisely, what happens to CCR�(P ) when � tends to zero) as
well as a classical counterpart DQ (that is, what happens when we put � equal
to zero). However, the developments of the semi-classical theory and the classical
counterpart theory remain for future research.

Also, it is important to remark that this theory includes both Planck’s con-
stant as well as a Hilbert space where creation and annihilation operators are
defined. These are some of the important characteristics of a quantization relevant
to physics.

The Toeplitz algebra, defined as the subalgebra of End(P) generated by the
Toeplitz operators, is also a quantum algebra of interest in itself.

6. Concluding remarks

The point of this note is to develop much of the theory in [6] by starting from a
different set of assumptions. The inference is that this theory is quite general and
probably even more general than has been worked out so far. While non-trivial
examples exist in [4] and [5], there remains more work to find other applications
of this theory. Again, the absence of a measure in this approach distinguishes
it sharply from other approaches, such as the coherent state quantization, and
so one expects to find examples of this sort of Toeplitz quantization in settings
where other approaches do not give results. I hope that this is not only useful
in such mathematical physics contexts, but that applications of these ideas from
mathematical physics will be useful in the study of the non-commutative ‘spaces’
of non-commutative geometry (such as quantum groups, among others) as well as
of ‘spaces’ that are even more general. Also, several open problems were raised
during the course of this short note. So this is very much a report of work in
process.
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