Geometric Methods in Physics. XXXII Workshop 2013 Trends in Mathematics, 49–56 -c 2014 Springer International Publishing Switzerland

Berezin Transform and a Deformation Decomposition

Vladimir F. Molchanov

Abstract. We present a new form for a deformation decomposition of the Berezin transform in polynomial quantization on para-Hermitian symmetric spaces. For rank one spaces, we write a full deformation decomposition explicitly

Mathematics Subject Classification (2010). Primary 22E46; Secondary 47L15. **Keywords.** Semisimple Lie groups, representations, para-Hermitian symmetric spaces, quantization, symbol calculi.

In construction of quantizations in the spirit of Berezin on symplectic spaces G/H the main role belongs to the Berezin transform. Program for such a construction is the following: (a) to express it in terms of Laplace operators on G/H , in fact it is the same as to determine the Plancherel formula for a canonical representation on G/H ; (b) to write its asymptotic decomposition when $h \to 0$ (h being the Planck constant). Two first terms of the decomposition give the corresponding principle. Berezin carried out it for Hermitian symmetric spaces G/K , see [1, 2]. We succeeded in solving these problems for para-Hermitian symmetric spaces of rank one. Moreover, for *polynomial quantization* we can write a *full* asymptotic decomposition explicitly.

1. Para-Hermitian symmetric spaces

Let G/H be a *semisimple symmetric space*. Here G is a connected semisimple Lie group with an involutive automorphism $\sigma \neq 1$, and H is an open subgroup of G^{σ} , the subgroup of fixed points of σ .

We consider that groups act on their homogeneous spaces *from the right*, so that G/H consists of right cosets Hg .

Supported by grants of Minobrnauki: 1.3445.2011 and of the Russian Foundation for Basic Research (RFBR): 13-01-00952-a.

Let g and h be the Lie algebras of G and of H respectively. Let $B_{\mathfrak{a}}$ be the Killing form of G. There is a decomposition of $\mathfrak g$ into direct sum of $+1$, -1 eigenspaces of σ :

$$
\mathfrak{g} = \mathfrak{h} + \mathfrak{q}.
$$

The subspace q is invariant with respect to H in the adjoint representation Ad. It
can be identified with the tangent space to G/H at the point $x^0 = He$ can be identified with the tangent space to G/H at the point $x^0 = He$.

The dimension of Cartan subspaces of q (maximal Abelian subalgebras in q consisting of semisimple elements) is called the rank of G/H .

Now let G/H be a *symplectic* manifold. Then $\mathfrak h$ has a non-trivial center $Z(\mathfrak h)$. For simplicity we assume that G/H is an orbit $\text{Ad}G \cdot Z_0$ of an element $Z_0 \in \mathfrak{g}$. In particular, then $Z_0 \in Z(\mathfrak{h})$.

Further, we can also assume that G is *simple*. Such spaces G/H are divided into 4 classes (see $[3, 4]$):

- (a) Hermitian symmetric spaces;
- (b) semi-Kählerian symmetric spaces;
- (c) para-Hermitian symmetric spaces;
- (d) complexifications of spaces of class (a).

Dimensions of $Z(\mathfrak{h})$ are 1,1,1,2, respectively. Spaces of class (a) are Riemannian, of other three classes are pseudo-Riemannian (not Riemannian).

We focus on spaces of class (c). Here the center $Z(\mathfrak{h})$ is one-dimensional, so that $Z(\mathfrak{h}) = \mathbb{R}Z_0$, and Z_0 can be normalized so that the operator $I = (adZ_0)_{\mathfrak{q}}$ on q has eigenvalues ± 1 . A symplectic structure on G/H is defined by the bilinear form $\omega(X, Y) = B_{\mathfrak{a}}(X, IY)$ on q.

The ± 1 -eigenspaces $\mathfrak{q}^{\pm} \subset \mathfrak{q}$ of I are Lagrangian, H-invariant, and irreducible. They are Abelian subalgebras of g. So g becomes a graded Lie algebra:

$$
\mathfrak{g} = \mathfrak{q}^- + \mathfrak{h} + \mathfrak{q}^+,
$$

with commutation relations $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}, [\mathfrak{h}, \mathfrak{q}^-] \subset \mathfrak{q}^-$, $[\mathfrak{h}, \mathfrak{q}^+] \subset \mathfrak{q}^+$.

The pair (q^+, q^-) is a Jordan pair [5] with multiplication

$$
\{XYZ\} = (1/2) [[X, Y], Z].
$$

Let r and \varkappa be the rank and the genus of this Jordan pair. This rank r coincides with the rank of G/H .

Set $Q^{\pm} = \exp \mathfrak{q}^{\pm}$. The subgroups $P^{\pm} = HQ^{\pm} = Q^{\pm}H$ are maximal parabolic subgroups of G . One has the following decompositions:

$$
G = \overline{Q^+ H Q^-} \tag{1}
$$

$$
=\overline{Q^{-}HQ^{+}},\tag{2}
$$

where bar means closure and the sets under the bar are open and dense in G. Let us call (1) and (2) the *Gauss decomposition* and (allowing some slang) the *anti-Gauss decomposition* respectively. For an element in G all three factors in (1) and (2) are defined uniquely.

These decompositions generate actions of G on \mathfrak{q}^{\pm} , namely, $\xi \mapsto \xi = \xi \bullet g$ on

and $n \mapsto \hat{n} = n \circ g$ on \mathfrak{q}^{\pm} by (1) and (2) respectively: \mathfrak{q}^- and $\eta \mapsto \hat{\eta} = \eta \circ q$ on \mathfrak{q}^+ by (1) and (2) respectively:

$$
\exp\xi \cdot g = \exp Y \cdot \tilde{h} \cdot \exp \tilde{\xi},\tag{3}
$$

$$
\exp \eta \cdot g = \exp X \cdot \hat{h} \cdot \exp \hat{\eta},\tag{4}
$$

where $X \in \mathfrak{q}^-$, $Y \in \mathfrak{q}^+$. These actions are defined on open and dense sets depending on g. Therefore, G acts on $\mathfrak{q}^- \times \mathfrak{q}^+ : (\xi, \eta) \mapsto (\widetilde{\xi}, \widehat{\eta})$. The stabilizer of the point $(0, 0) \in \mathfrak{q}^- \times \mathfrak{q}^+$ is $P^+ \cap P^- = H$, so that we get an embedding

$$
\mathfrak{q}^- \times \mathfrak{q}^+ \hookrightarrow G/H. \tag{5}
$$

It is defined on an open and dense set, its image is also an open and dense set. Therefore, we can consider ξ, η as coordinates on G/H , let us call them *horospherical coordinates*.

Take $\xi \in \mathfrak{q}^-$, $\eta \in \mathfrak{q}^+$ and decompose $\exp(-\eta)$ (the "anti-Gauss") according to the "Gauss":

$$
\exp\xi \cdot \exp(-\eta) = \exp Y \cdot h \cdot \exp X,
$$

where $X \in \mathfrak{q}^-$, $Y \in \mathfrak{q}^+$. The obtained $h \in H$ depends on ξ and η only, denote it by $h(\xi,\eta)$.

The determinant of $\text{Ad}h(\xi,\eta)$ to power -1 is a polynomial in ξ,η . Moreover, it is the $\not\sim$ th power of an irreducible polynomial $N(\xi,\eta)$ of degree r in ξ and in η separately:

$$
\left\{\det\left(\mathrm{Ad}h(\xi,\eta)\right)|_{\mathfrak{q}^+}\right\}^{-1}=N(\xi,\eta)^{\varkappa}.
$$

The G-invariant measure on G/H is:

$$
dx = dx(\xi, \eta) = |N(\xi, \eta)|^{-\varkappa} d\xi d\eta
$$

where $d\xi$, $d\eta$ are Euclidean measures on \mathfrak{q}^- , \mathfrak{q}^+ , respectively.

2. Maximal degenerate series representations

For $\lambda \in \mathbb{C}$, we take the character of H:

$$
\omega_{\lambda}(h) = \left| \det(Ad\,h) \right|_{\mathfrak{q}^+} \right|^{-\lambda/\varkappa}
$$

and extend this character to the subgroups P^{\pm} , setting it equal to 1 on Q^{\pm} . We consider induced representations of G:

$$
\pi_{\lambda}^{\pm} = \operatorname{Ind}_{P^{\mp}}^{G} \omega_{\mp \lambda}.
$$

Let $\mathcal{D}^{\pm}_{\lambda}(G)$ be the space of functions $f \in C^{\infty}(G)$ satisfying the uniformity property

$$
f(pg) = \omega_{\mp\lambda}(p)f(g), \quad p \in P^{\mp}.
$$

The representation π_{λ}^{\pm} acts on it by translations from the right:

$$
\left(\pi_{\lambda}^{\pm}(g)f\right)(g_1) = f(g_1g).
$$

Realize them in the *noncompact picture*: we restrict functions from $\mathcal{D}^{\pm}_{\lambda}(G)$ to the subgroups Q^{\pm} and identify them (as manifolds) with \mathfrak{q}^{\pm} , we obtain

$$
\left(\pi_{\lambda}^{-}(g)f\right)(\xi) = \omega_{\lambda}(\widetilde{h})f(\widetilde{\xi}), \quad \left(\pi_{\lambda}^{+}(g)f\right)(\eta) = \omega_{\lambda}(\widehat{h}^{-1})f(\widehat{\eta}),
$$

where ξ , h , $\hat{\eta}$, h are taken from decompositions (3), (4).

Let us write intertwining operators. Introduce operators A_{λ} and B_{λ} by:

$$
(A_{\lambda}\varphi)(\eta) = \int_{\mathfrak{q}^-} |N(\xi,\eta)|^{-\lambda-\varkappa} \varphi(\xi) d\xi,
$$

$$
(B_{\lambda}\varphi)(\xi) = \int_{\mathfrak{q}^+} |N(\xi,\eta)|^{-\lambda-\varkappa} \varphi(\eta) d\eta.
$$

The operator A_{λ} intertwines π_{λ}^{-} with $\pi_{-\lambda-\kappa}^{+}$ and the operator B_{λ} intertwines π_{λ}^{+} with $\pi^-_{-\lambda-\varkappa}$.

Their composition is a scalar operator:

$$
B_{\lambda}A_{-\lambda-\varkappa} = c(\lambda)^{-1} \cdot \mathrm{id},\tag{6}
$$

where $c(\lambda)$ is a meromorphic function.

We can extend π_{λ}^{\pm} , A_{λ} and B_{λ} to distributions on \mathfrak{q}^- and \mathfrak{q}^- .

3. Symbols and transforms

In this section we give main constructions of a quantization in the spirit of Berezin on *para-Hermitian* symmetric spaces G/H , see [6]. We consider a variant of the quantization, which we call the *polynomial quantization*. We introduce two types of symbols of operators: covariant and contravariant ones, the Berezin transform etc.

As a (an analog of) supercomplete system we take the kernel of the intertwining operators from Section 2, i.e., the function

$$
\Phi(\xi,\eta) = \Phi(\xi,\eta)_{\lambda} = |N(\xi,\eta)|^{\lambda}.
$$

It has a reproducing property, which is formula (6) written in another form:

$$
\varphi(s) = c(\lambda) \int_{G/H} \frac{\Phi(\xi, \eta)}{\Phi(u, v)} \varphi(u) dx(u, v).
$$

The role of the Fock space is played by a space of functions $\varphi(\xi)$ depending on one of horospherical coordinates ξ , η .

For an initial algebra of operators we take the algebra $\pi_{\lambda}^{-}(\text{Env}(g))$, where Env(g) is the universal enveloping algebra of g. For an operator $D = \pi_{\lambda}^-(X)$,
 $X \in \text{Env}(\sigma)$ the function $X \in \text{Env}(\mathfrak{g})$, the function

$$
F(\xi, \eta) = \frac{1}{\Phi(\xi, \eta)} (\pi_{\lambda}^{-}(X) \otimes 1) \Phi(\xi, \eta)
$$

is called the *covariant symbol* of D. Since ξ , η are horospherical coordinates on G/H, covariant symbols becomes functions on G/H and, moreover, *polynomials* on

 $G/H \subset \mathfrak{g}$. It is why we call this variant of quantization by *polynomial* quantization. For generic λ , the space of covariant symbols is the space of all polynomials on G/H .

In particular, the covariant symbol of the identity operator is the function on G/H equal to 1 identically. For the operator $\pi_{\lambda}^{-}(X)$, corresponding to an element X of the Lie algebra g, its covariant symbol is a linear function $B_{\mathfrak{g}}(X,x)$ of $x \in$ $G/H \subset \mathfrak{g}$ with coordinates ξ , η , up to a factor depending on λ .

The operator D is recovered by its covariant symbol F :

$$
(D\varphi)(\xi) = c \int_{G/H} F(\xi, v) \frac{\Phi(\xi, v)}{\Phi(u, v)} \varphi(u) dx(u, v), \tag{7}
$$

where $c = c(\lambda)$ is taken from (6).

The multiplication of operators gives rise to the multiplication of covariant symbols. Namely, let F_1, F_2 be covariant symbols of operators D_1, D_2 , respectively. Then the covariant symbol $F_1 * F_2$ of the product $D_1 D_2$ is

$$
F(\xi, \eta) = \frac{1}{\Phi(\xi, \eta)} (D_1 \otimes 1)(\Phi(\xi, \eta) F_2(\xi, \eta)),
$$

or

$$
(F_1 * F_2)(\xi, \eta) = \int_{G/H} F_1(\xi, v) F_2(u, \eta) \mathcal{B}(\xi, \eta; u, v) dx(u, v),
$$

where

$$
\mathcal{B}(\xi,\eta;u,v) = c \frac{\Phi(\xi,v)\Phi(u,\eta)}{\Phi(\xi,\eta)\Phi(u,v)}.
$$

Let us call this function β the *Berezin kernel*. It can be regarded as a function $\mathcal{B}(x, y)$ on $G/H \times G/H$. It is invariant with respect to G:

 $\mathcal{B}(\text{Ad }q \cdot x, \text{Ad }q \cdot y) = \mathcal{B}(x, y).$

Now we define *contravariant symbols*. A function (a polynomial) $F(\xi, \eta)$ is the contravariant symbols for the following operator A (acting on functions $\varphi(\xi)$):

$$
(A\varphi)(\xi) = c \int_{G/H} F(u,v) \frac{\Phi(\xi,v)}{\Phi(u,v)} \varphi(u) dx(u,v)
$$
\n(8)

(notice that (8) differs from (7) by the first argument of F only). This operator is a Toeplitz type operator.

Thus, we have two maps: $D \mapsto F("co")$ and $F \mapsto A("contra")$, connecting polynomials on G/H and operators acting on functions $\varphi(\xi)$.

If a polynomial F on G/H is the covariant symbol of an operator $D = \pi_{\lambda}^-(X)$, $X \in \text{Env}(\mathfrak{g})$, and the contravariant symbol of an operator A simultaneously, then $A = \pi_{-\lambda-\varkappa}^{-}(X^{\vee})$, where $X \mapsto X^{\vee}$ is the transform of Env(g), generated by $g \mapsto$
 g^{-1} in the group C . Therefore, A is obtained from D by the conjugation with g^{-1} in the group G. Therefore, A is obtained from D by the conjugation with respect to the bilinear form

$$
(F, f) = \int_{\mathfrak{q}^-} F(\xi) f(\xi) d\xi.
$$

In terms of kernels, it means that the kernel $L(\xi, u)$ of the operator A is obtained from the kernel $K(\xi, u)$ of the operator D by the transposition of arguments and the change of λ by $-\lambda - \varkappa$. So, the composition $\mathcal{O}: D \mapsto A$ ("contra" \circ "co") is

$$
\mathcal{O}: \pi_{\lambda}^{-}(X) \longmapsto \pi_{-\lambda-\varkappa}^{-}(X^{\vee}).
$$

This map commutes with the adjoint representation. Such a map was absent in Berezin's theory for Hermitian symmetric spaces.

The composition \mathcal{B} ("co" \circ "contra") maps the contravariant symbol of an operator D to its covariant symbol. Let us call B the *Berezin transform*. The kernel of this transform is just the Berezin kernel.

Let us formulate unsolved problems for spaces of arbitrary rank (for $r > 1$):

- 1) to express the Berezin transform \mathcal{B} in terms of Laplacians Δ_1,\ldots,Δ_r (in fact, it is the same that to decompose a canonical representation into irreducible constituents);
- 2) to compute eigenvalues of β on irreducible constituents;
- 3) to find a full asymptotics of B when $\lambda \to -\infty$ (an analog of the Planck constant is $h = -1/\lambda$.

These problems are solved for spaces of rank one, see Section 4.

4. Polynomial quantization on rank one spaces

In this section we lean on [7]. We consider here the spaces G/H , where $G =$ $SL(n, \mathbb{R})$, $H = GL(n-1, \mathbb{R})$. They have dimension $2n-2$, rank $r = 1$ and genus $x = n$. These spaces G/H exhaust all para-Hermitian symmetric spaces of rank one up to the covering. Further we assume $n \geq 3$.

Let Mat (n, \mathbb{R}) denote the space of real $n \times n$ matrices x. The Lie algebra q of G consists of x with tr $x = 0$. By Section 1, the space G/H is a G-orbit in g.

But now it is more convenient for us to change a little the realization of G/H .

The group G acts on Mat (n, \mathbb{R}) by $x \mapsto q^{-1}xq$. Let us write matrices x in the block form according to the partition $n = (n - 1) + 1$:

$$
x = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right)
$$

where $\alpha \in \text{Mat}(n-1, \mathbb{R})$, β is a vector-column in \mathbb{R}^{n-1} , γ is a vector-row in \mathbb{R}^{n-1} and δ is a number.

Let x^0 be the following matrix:

$$
x^0 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)
$$

The G-orbit of x^0 is just G/H . This manifold is the set of matrices x whose trace and rank are equal to 1. The stabilizer H of x^0 consists of matrices diag{a, b}, where $a \in GL(n-1,\mathbb{R})$, $b = (\det a)^{-1}$, so that $H = GL(n-1,\mathbb{R})$.

Subalgebras \mathfrak{q}^- and \mathfrak{q}^+ consist respectively of matrices

$$
X = \left(\begin{array}{cc} 0 & 0 \\ \xi & 0 \end{array}\right), \quad Y = \left(\begin{array}{cc} 0 & \eta \\ 0 & 0 \end{array}\right),
$$

where ξ is a row (ξ_1,\ldots,ξ_{n-1}) , and η is a column $(\eta_1,\ldots,\eta_{n-1})$ in \mathbb{R}^{n-1} . Embedding (5) is

$$
x = \frac{1}{N(\xi, \eta)} \begin{pmatrix} -\eta \xi & -\eta \\ \xi & 1 \end{pmatrix},
$$

where $N(\xi, \eta) = 1 - \xi \eta = 1 - (\xi_1 \eta_1 + \cdots + \xi_{n-1} \eta_{n-1}).$

A G-invariant metric ds^2 on G/H up to a factor is tr (dx^2) . It generates the measure dx, the Laplace–Beltrami operator Δ , the symplectic form ω and the Poisson bracket $\{f, h\}$. In coordinates ξ, η we have:

$$
ds^{2} = -2N(\xi, \eta)^{-2} \Big\{ \sum \xi_{i} d\eta_{i} \sum \eta_{i} d\xi_{i} + N(\xi, \eta) \sum d\xi_{i} d\eta_{i} \Big\}.
$$

\n
$$
dx = |N(\xi, \eta)|^{-n} d\xi d\eta \quad (d\xi = d\xi_{1} ... d\xi_{n-1}),
$$

\n
$$
\Delta = N(\xi, \eta) \sum (\delta_{ij} - \xi_{i} \eta_{j}) \frac{\partial^{2}}{\partial \xi_{i} \partial \eta_{j}},
$$

\n
$$
\omega = \frac{1}{N(\xi, \eta)} \sum \left(\delta_{ij} + \frac{1}{N(\xi, \eta)} \eta_{i} \xi_{j} \right) d\xi_{i} \wedge d\eta_{j},
$$

\n
$$
\{f, h\} = N(\xi, \eta) \sum (\delta_{ij} - \xi_{i} \eta_{j}) \left(\frac{\partial f}{\partial \eta_{i}} \frac{\partial h}{\partial \xi_{j}} - \frac{\partial f}{\partial \xi_{i}} \frac{\partial h}{\partial \eta_{j}} \right).
$$

The Berezin kernel is

$$
\mathcal{B}(x,y) = c(\lambda) \frac{\Phi(\xi,v)\Phi(u,\eta)}{\Phi(\xi,\eta)\Phi(u,v)} = c(\lambda) |\text{tr}(xy)|^{\lambda},
$$

where

$$
c(\lambda) = \left\{ 2^{n+1} \pi^{n-2} \Gamma(-\lambda - n + 1) \Gamma(\lambda + 1) \left[\cos \left(\lambda + \frac{n}{2} \right) \pi - \cos \frac{n \pi}{2} \right] \right\}^{-1}.
$$

The Berezin transform is written in terms of the Laplace–Beltrami operator Δ as follows

$$
\mathcal{B} = \frac{\Gamma(-\lambda + \sigma)\Gamma(-\lambda - \sigma - n + 1)}{\Gamma(-\lambda)\Gamma(-\lambda - n + 1)},
$$
\n(9)

the right-hand side should be regarded as a function of $\Delta = \sigma(\sigma + n - 1)$.

Now let $\lambda \to -\infty$. Then (9) gives

$$
\mathcal{B} \sim 1 - \frac{1}{\lambda} \, \Delta.
$$

Hence we have

$$
F_1 * F_2 \sim F_1 F_2 - \frac{1}{\lambda} N^2 \frac{\partial F_1}{\partial \xi} \frac{\partial F_2}{\partial \eta},
$$

so that for $\lambda \to -\infty$ we have

$$
F_1 * F_2 \longrightarrow F_1 F_2,\tag{10}
$$

$$
-\lambda (F_1 * F_2 - F_2 * F_1) \longrightarrow \{F_1, F_2\},\tag{11}
$$

in the right-hand sides of (10) and (11) the pointwise multiplication and the Poisson bracket stand, respectively. Relations (10) and (11) show that for the family of algebras of covariant symbols the *correspondence principle* is true. As the Planck constant, one has to take $h = -1/\lambda$.

Moreover, we can write not only two terms of the asymptotics but also a full asymptotic decomposition (a deformation decomposition) of β explicitly. In order to have a transparent formula, one has to expand not in powers of $h = -1/\lambda$ but use "generalized powers" of $-\lambda - n$. Then decomposition turns out to be a series terminating on any irreducible subspace of polynomials on G/H .

Namely, we have the following decomposition of the Berezin transform:

$$
\mathcal{B} = \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \frac{\Delta [\Delta - 1 \cdot n] [\Delta - 2 \cdot (n+1)] \dots [\Delta - (k-1)(k-2+n)]}{(-\lambda - n)^{(k)}},
$$

where

$$
a^{(m)} = a(a-1)...(a-m+1).
$$

References

- [1] F.A. Berezin. Quantization on complex symmetric spaces, Izv. Akad. nauk SSSR, ser. mat., 1975, **39**, No. 2, 363–402. Engl. transl.: Math. USSR-Izv., 1975, **9**, 341–379.
- [2] F.A. Berezin. A connection between the co- and the contravariant symbols of operators on classical complex symmetric spaces, Dokl. Akad. Nauk SSSR, 1978, **19**, No. 1, 15–17. Engl. transl.: Soviet Math. Dokl., 1978, **19**, No. 4, 786–789.
- [3] S. Kaneyuki. On orbit structure of compactifications of parahermitian symmetric spaces Japan. J. Math., 1987, **13**, No. 2, 333–370.
- [4] S. Kaneyuki, M. Kozai. Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 1985, **8**, No. 1, 81–98.
- [5] O. Loos. Jordan Pairs, Lect. Notes in Math., 1975, **460**.
- [6] V.F. Molchanov. Quantization on para-Hermitian symmetric spaces, Amer. Math. Soc. Transl, Ser. 2, **175** (Adv. in the Math. Sci.–31), 1996, 81–95.
- [7] V.F. Molchanov, N.B. Volotova. Polynomial quantization on rank one para-Hermitian symmetric spaces, Acta Appl. Math., 2004, **81**, Nos. 1–3, 215–232.

Vladimir F. Molchanov Derzhavin Tambov State University Internatsionalnaya, 33 392000 Tambov, Russia e-mail: v.molchanov@bk.ru