On Complex Analytic 1|2- and 1|3-dimensional Supermanifolds Associated with \mathbb{CP}^1

E.G. Vishnyakova

Abstract. We obtain a classification up to isomorphism of complex analytic supermanifolds with underlying space \mathbb{CP}^1 of dimension 1|2 and of dimension 1|3 with retract (k, k, k), where $k \in \mathbb{Z}$. More precisely, we prove that classes of isomorphic complex analytic supermanifolds of dimension 1|3 with retract (k, k, k) are in one-to-one correspondence with points of the following set:

$$Gr_{4k-4,3} \cup Gr_{4k-4,2} \cup Gr_{4k-4,1} \cup Gr_{4k-4,0}$$

for $k \geq 2$. For k < 2 all such supermanifolds are isomorphic to their retract (k,k,k). In addition, we show that classes of isomorphic complex analytic supermanifolds of dimension 1|2 with retract (k_1,k_2) are in one-to-one correspondence with points of $\mathbb{CP}^{k_1+k_2-4}$ for $k_1+k_2\geq 5$. For $k_1+k_2<5$ all such supermanifolds are isomorphic to their retract (k_1,k_2) .

Mathematics Subject Classification (2010). 51P05, 53Z05, 32M10.

Keywords. Complex analytic supermanifold, projective line.

1. Introduction.

We can assign the holomorphic vector bundle, so-called retract, to each complex analytic supermanifold. If underlying space of a complex analytic supermanifold is \mathbb{CP}^1 , by the Birkhoff–Grothendieck Theorem the corresponding vector bundle is isomorphic to the direct sum of m line bundles: $\mathbf{E} \simeq \bigoplus_{i=1}^m L(k_i)$, where $k_i \in \mathbb{Z}$ and m is the odd dimension of the supermanifold. We obtain a classification up to isomorphism of complex analytic supermanifolds of dimension 1|3 with underlying space \mathbb{CP}^1 and with retract $L(k) \oplus L(k) \oplus L(k)$, where $k \in \mathbb{Z}$. In addition, we give a classification up to isomorphism of complex analytic supermanifolds of dimension 1|2 with underlying space \mathbb{CP}^1 .

This work was supported by Fonds National de la Recherche Luxembourg and by the Russian Foundation for Basic Research (grant no. 11-01-00465a).

The paper is structured as follows. In Section 2 we explain the idea of the classification. In Section 3 we do all necessary preparations. The classification up to isomorphism of complex analytic supermanifolds of dimension 1|3 with underlying space \mathbb{CP}^1 and with retract (k, k, k) is obtained in Section 4. The last section is devoted to the classification up to isomorphism of complex analytic supermanifolds of dimension 1|2 with underlying space \mathbb{CP}^1 .

The study of complex analytic supermanifolds with underlying space \mathbb{CP}^1 was started in [3]. There the classification of homogeneous complex analytic supermanifolds of dimension $1|m, m \leq 3$, up to isomorphism was given. It was proven that in the case m=2 there exists only one non-split homogeneous supermanifold constructed by P. Green [5] and V.P. Palamodov [1]. For m=3 it was shown that there exists a series of non-split homogeneous supermanifolds, parameterized by $k=0,2,3,\ldots$

In [7] we studied even-homogeneous supermanifold, i.e., supermanifolds which possess transitive actions of Lie groups. It was shown that there exists a series of non-split even-homogeneous supermanifolds, parameterized by elements in $\mathbb{Z} \times \mathbb{Z}$, three series of non-split even-homogeneous supermanifolds, parameterized by elements of \mathbb{Z} , and finite set of exceptional supermanifolds.

2. Classification of supermanifolds, main definitions

We will use the word "supermanifold" in the sense of Berezin–Leites [2, 6], see also [3]. All the time, we will be interested in the complex analytic version of the theory. We begin with main definitions.

Recall that a complex superdomain of dimension n|m is a \mathbb{Z}_2 -graded ringed space of the form $(U, \mathcal{F}_U \otimes \bigwedge(m))$, where \mathcal{F}_U is the sheaf of holomorphic functions on an open set $U \subset \mathbb{C}^n$ and $\bigwedge(m)$ is the exterior (or Grassmann) algebra with m generators.

Definition 2.1. A complex analytic supermanifold of dimension n|m is a \mathbb{Z}_2 -graded locally ringed space that is locally isomorphic to a complex superdomain of dimension n|m.

Let
$$\mathcal{M} = (\mathcal{M}_0, \mathcal{O}_{\mathcal{M}})$$
 be a supermanifold and

$$\mathcal{J}_{\mathcal{M}} = (\mathcal{O}_{\mathcal{M}})_{\bar{1}} + ((\mathcal{O}_{\mathcal{M}})_{\bar{1}})^2$$

be the subsheaf of ideals in $\mathcal{O}_{\mathcal{M}}$ generated by the subsheaf $(\mathcal{O}_{\mathcal{M}})_{\bar{1}}$ of odd elements. We put $\mathcal{F}_{\mathcal{M}} := \mathcal{O}_{\mathcal{M}}/\mathcal{J}_{\mathcal{M}}$. Then $(\mathcal{M}_0, \mathcal{F}_{\mathcal{M}})$ is a usual complex analytic manifold, it is called the *reduction* or *underlying space* of \mathcal{M} . Usually we will write \mathcal{M}_0 instead of $(\mathcal{M}_0, \mathcal{F}_{\mathcal{M}})$. Denote by $\mathcal{T}_{\mathcal{M}}$ the *tangent sheaf* or the *sheaf of vector fields* of \mathcal{M} . In other words, $\mathcal{T}_{\mathcal{M}}$ is the sheaf of derivations of the structure sheaf $\mathcal{O}_{\mathcal{M}}$. Since the sheaf $\mathcal{O}_{\mathcal{M}}$ is \mathbb{Z}_2 -graded, the tangent sheaf $\mathcal{T}_{\mathcal{M}}$ also possesses the induced \mathbb{Z}_2 -grading, i.e., there is the natural decomposition $\mathcal{T}_{\mathcal{M}} = (\mathcal{T}_{\mathcal{M}})_{\bar{0}} \oplus (\mathcal{T}_{\mathcal{M}})_{\bar{1}}$.

Let \mathcal{M}_0 be a complex analytic manifold and let \mathbf{E} be a holomorphic vector bundle over \mathcal{M}_0 . Denote by \mathcal{E} the sheaf of holomorphic sections of \mathbf{E} . Then the

ringed space $(\mathcal{M}_0, \bigwedge \mathcal{E})$ is a supermanifold. In this case dim $\mathcal{M} = n|m$, where $n = \dim \mathcal{M}_0$ and m is the rank of \mathbf{E} .

Definition 2.2. A supermanifold $(\mathcal{M}_0, \mathcal{O}_{\mathcal{M}})$ is called *split* if $\mathcal{O}_{\mathcal{M}} \simeq \bigwedge \mathcal{E}$ (as supermanifolds) for a locally free sheaf \mathcal{E} .

It is known that any real (smooth or real analytic) supermanifold is split. The structure sheaf $\mathcal{O}_{\mathcal{M}}$ of a split supermanifold possesses a \mathbb{Z} -grading, since $\mathcal{O}_{\mathcal{M}} \simeq \bigwedge \mathcal{E}$ and $\bigwedge \mathcal{E} = \bigoplus_{p} \bigwedge^{p} \mathcal{E}$ is naturally \mathbb{Z} -graded. In other words, we have the decomposition $\mathcal{O}_{\mathcal{M}} = \bigoplus_{p} (\mathcal{O}_{\mathcal{M}})_{p}$. This \mathbb{Z} -grading induces the \mathbb{Z} -grading in $\mathcal{T}_{\mathcal{M}}$ in the following way:

$$(\mathcal{T}_{\mathcal{M}})_p := \{ v \in \mathcal{T}_{\mathcal{M}} \mid v((\mathcal{O}_{\mathcal{M}})_q) \subset (\mathcal{O}_{\mathcal{M}})_{p+q} \text{ for all } q \in \mathbb{Z} \}.$$
 (1)

We have the decomposition:

$$\mathcal{T}_{\mathcal{M}} = \bigoplus_{p=-1}^m (\mathcal{T}_{\mathcal{M}})_p.$$

Therefore the superspace $H^0(\mathcal{M}_0, \mathcal{T}_{\mathcal{M}})$ is also \mathbb{Z} -graded. Consider the subspace

End
$$\mathbf{E} \subset H^0(\mathcal{M}_0, (\mathcal{T}_{\mathcal{M}})_0)$$
.

It consists of all endomorphisms of the vector bundle \mathbf{E} inducing the identity morphism on \mathcal{M}_0 . Denote by $\operatorname{Aut} \mathbf{E} \subset \operatorname{End} \mathbf{E}$ the group of automorphisms of \mathbf{E} , i.e., the group of all invertible endomorphisms. We define the action Int of $\operatorname{Aut} \mathbf{E}$ on $\mathcal{T}_{\mathcal{M}}$ by

$$\operatorname{Int} A: v \mapsto AvA^{-1}.$$

Clearly, the action Int preserves the \mathbb{Z} -grading (1), therefore, we have the action of Aut **E** on $H^1(\mathcal{M}_0, (\mathcal{T}_M)_2)$.

There is a functor denoting by gr from the category of supermanifolds to the category of split supermanifolds. Let us describe this construction. Let \mathcal{M} be a supermanifold and let as above $\mathcal{J}_M \subset \mathcal{O}_{\mathcal{M}}$ be the subsheaf of ideals generated by odd elements of $\mathcal{O}_{\mathcal{M}}$. Then by definition $\operatorname{gr}(\mathcal{M}) = (\mathcal{M}_0, \operatorname{gr} \mathcal{O}_{\mathcal{M}})$, where

$$\operatorname{gr} \mathcal{O}_{\mathcal{M}} = \bigoplus_{p>0} (\operatorname{gr} \mathcal{O}_{\mathcal{M}})_p, \quad (\operatorname{gr} \mathcal{O}_{\mathcal{M}})_p = \mathcal{J}_{\mathcal{M}}^p / \mathcal{J}_{\mathcal{M}}^{p+1}, \quad \mathcal{J}_{\mathcal{M}}^0 := \mathcal{O}_{\mathcal{M}}.$$

In this case $(\operatorname{gr} \mathcal{O}_{\mathcal{M}})_1$ is a locally free sheaf and there is a natural isomorphism of $\operatorname{gr} \mathcal{O}_{\mathcal{M}}$ onto $\bigwedge(\operatorname{gr} \mathcal{O}_{\mathcal{M}})_1$. If $\psi = (\psi_{\operatorname{red}}, \psi^*) : (M, \mathcal{O}_{\mathcal{M}}) \to (N, \mathcal{O}_{\mathcal{N}})$ is a morphism of supermanifolds, then $\operatorname{gr}(\psi) = (\psi_{\operatorname{red}}, \operatorname{gr}(\psi^*))$, where $\operatorname{gr}(\psi^*) : \operatorname{gr} \mathcal{O}_{\mathcal{N}} \to \operatorname{gr} \mathcal{O}_{\mathcal{M}}$ is defined by

$$\operatorname{gr}(\psi^*)(f+\mathcal{J}_{\mathcal{N}}^p) := \psi^*(f) + \mathcal{J}_{\mathcal{M}}^p \text{ for } f \in (\mathcal{J}_{\mathcal{N}})^{p-1}.$$

Recall that by definition every morphism ψ of supermanifolds is even and as consequence sends $\mathcal{J}^p_{\mathcal{N}}$ into $\mathcal{J}^p_{\mathcal{M}}$.

Definition 2.3. The supermanifold $gr(\mathcal{M})$ is called the *retract* of \mathcal{M} .

To classify supermanifolds, we use the following corollary of the well-known Green Theorem (see [3, 5] or [4] for more details):

Theorem 2.4 (Green). Let $\mathcal{N} = (\mathcal{N}_0, \bigwedge \mathcal{E})$ be a split supermanfold of dimension n|m, where $m \leq 3$. The classes of isomorphic supermanifolds \mathcal{M} such that $\operatorname{gr} \mathcal{M} = \mathcal{N}$ are in bijection with orbits of the action Int of the group $\operatorname{Aut} \mathbf{E}$ on $H^1(\mathcal{M}_0, (\mathcal{T}_{\mathcal{N}})_2)$.

Remark 2.5. This theorem allows to classify supermanifolds \mathcal{M} such that gr \mathcal{M} is fixed up to isomorphisms that induce the identity morphism on gr \mathcal{M} .

3. Supermanifolds associated with \mathbb{CP}^1

In what follows we will consider supermanifolds with the underlying space \mathbb{CP}^1 .

3.1. Supermanifolds with underlying space \mathbb{CP}^1

Let \mathcal{M} be a supermanifold of dimension 1|m. Denote by U_0 and U_1 the standard charts on \mathbb{CP}^1 with coordinates x and $y = \frac{1}{x}$ respectively. By the Birkhoff–Grothendieck Theorem we can cover gr \mathcal{M} by two charts

$$(U_0, \mathcal{O}_{\operatorname{gr} \mathcal{M}}|_{U_0})$$
 and $(U_1, \mathcal{O}_{\operatorname{gr} \mathcal{M}}|_{U_1})$

with local coordinates x, ξ_1, \ldots, ξ_m and $y, \eta_1, \ldots, \eta_m$, respectively, such that in $U_0 \cap U_1$ we have

$$y = x^{-1}, \quad \eta_i = x^{-k_i} \xi_i, \ i = 1, \dots, m,$$

where k_i are integers. Note that a permutation of k_i induces the automorphism of gr \mathcal{M} .

We will identify $\operatorname{gr} \mathcal{M}$ with the set (k_1, \ldots, k_m) , so we will say that a supermanifold has the retract (k_1, \ldots, k_m) . In this paper we study two cases m = 2 and m = 3 for $k_1 = k_2 = k_3 =: k$. From now on we use the notation $\mathcal{T} = \bigoplus \mathcal{T}_p$ for the tangent sheaf of $\operatorname{gr} \mathcal{M}$.

3.2. A basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$.

Assume that m=3 and that $\mathcal{M}=(k_1,k_2,k_3)$ is a split supermanifold with the underlying space $\mathcal{M}_0=\mathbb{CP}^1$. Let \mathcal{T} be its tangent sheaf. In [3] the following decomposition

$$\mathcal{T}_2 = \sum_{i < j} \mathcal{T}_2^{ij} \tag{2}$$

was obtained. The sheaf \mathcal{T}_2^{ij} is a locally free sheaf of rank 2; its basis sections over $(U_0, \mathcal{O}_{\mathcal{M}}|_{U_0})$ are:

$$\xi_i \xi_j \frac{\partial}{\partial x}, \quad \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l};$$
 (3)

where $l \neq i, j$. In $U_0 \cap U_1$ we have

$$\xi_{i}\xi_{j}\frac{\partial}{\partial x} = -y^{2-k_{i}-k_{j}}\eta_{i}\eta_{j}\frac{\partial}{\partial y} - k_{l}y^{1-k_{i}-k_{j}}\eta_{i}\eta_{j}\eta_{l}\frac{\partial}{\partial \eta_{l}},$$

$$\xi_{i}\xi_{j}\xi_{l}\frac{\partial}{\partial \xi_{l}} = y^{-k_{i}-k_{j}}\eta_{i}\eta_{j}\eta_{l}\frac{\partial}{\partial \eta_{l}}.$$
(4)

The following theorem was proven in [7]. For completeness we reproduce it here.

Theorem 3.1. Assume that i < j and $l \neq i, j$.

1. For $k_i + k_j > 3$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is:

$$x^{-n}\xi_{i}\xi_{j}\frac{\partial}{\partial x}, \qquad n = 1, \dots, k_{i} + k_{j} - 3,$$

$$x^{-n}\xi_{i}\xi_{j}\xi_{l}\frac{\partial}{\partial \xi_{l}}, \quad n = 1, \dots, k_{i} + k_{j} - 1;$$
(5)

2. for $k_i + k_j = 3$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is:

$$x^{-1}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l}, \quad x^{-2}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l};$$

3. for $k_i + k_j = 2$ and $k_l = 0$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is:

$$x^{-1}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l};$$

4. if
$$k_i + k_j = 2$$
 and $k_l \neq 0$ or $k_i + k_j < 2$, we have $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij}) = \{0\}$.

Proof. We use the Čech cochain complex of the cover $\mathfrak{U} = \{U_0, U_1\}$, hence, 1-cocycle with values in the sheaf \mathcal{T}_2^{ij} is a section v of \mathcal{T}_2^{ij} over $U_0 \cap U_1$. We are looking for basis cocycles, i.e., cocycles such that their cohomology classes form a basis of $H^1(\mathfrak{U}, \mathcal{T}_2^{ij}) \simeq H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$. Note that if $v \in Z^1(\mathfrak{U}, \mathcal{T}_2^{ij})$ is holomorphic in U_0 or U_1 then the cohomology class of v is equal to 0. Obviously, any $v \in Z^1(\mathfrak{U}, \mathcal{T}_2^{ij})$ is a linear combination of vector fields (3) with holomorphic in $U_0 \cap U_1$ coefficients. Further, we expand these coefficients in a Laurent series in x and drop the summands x^n , $n \geq 0$, because they are holomorphic in U_0 . We see that v can be replaced by

$$v = \sum_{n=1}^{\infty} a_{ij}^n x^{-n} \xi_i \xi_j \frac{\partial}{\partial x} + \sum_{n=1}^{\infty} b_{ij}^n x^{-n} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}, \tag{6}$$

where $a_{ij}^n, b_{ij}^n \in \mathbb{C}$. Using (4), we see that the summands corresponding to $n \geq k_i + k_j - 1$ in the first sum of (6) and the summands corresponding to $n \geq k_i + k_j$ in the second sum of (6) are holomorphic in U_1 . Further, it follows from (4) that

$$x^{2-k_i-k_j}\xi_i\xi_j\frac{\partial}{\partial x}\sim -k_lx^{1-k_i-k_j}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l}.$$

Hence the cohomology classes of the following cocycles

$$x^{-n}\xi_i\xi_j\frac{\partial}{\partial x}, \quad n=1,...,k_i+k_j-3,$$

 $x^{-n}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l}, \quad n=1,...,k_i+k_j-1,$

generate $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$. If we examine linear combination of these cocycles which are cohomological trivial, we get the result.

Remark 3.2. Note that a similar method can be used for computation of a basis of $H^1(\mathbb{CP}^1, \mathcal{T}_q)$ for any odd dimension m and any q.

In the case $k_1 = k_2 = k_3 = k$, from Theorem 3.1, it follows:

Corollary 3.3. Assume that i < j and $l \neq i, j$.

1. For $k \geq 2$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is

$$x^{-n}\xi_{i}\xi_{j}\frac{\partial}{\partial x}, \quad n = 1, ..., 2k - 3,$$

$$x^{-n}\xi_{i}\xi_{j}\xi_{l}\frac{\partial}{\partial \xi_{l}}, \quad n = 1, ..., 2k - 1.$$
 (7)

2. If k < 2, we have $H^1(\mathbb{CP}^1, \mathcal{T}_2) = \{0\}$.

3.3. The group Aut E

This section is devoted to the calculation of the group of automorphisms Aut **E** of the vector bundle **E** in the case (k, k, k). Here **E** is the vector bundle corresponding to the split supermanifold (k, k, k).

Let (ξ_i) be a local basis of **E** over U_0 and A be an automorphism of **E**. Assume that $A(\xi_j) = \sum a_{ij}(x)\xi_i$. In U_1 we have

$$A(\eta_j) = A(y^{k_j}\xi_j) = \sum y^{k_j - k_i} a_{ij}(y^{-1})\eta_i.$$

Therefore, $a_{ij}(x)$ is a polynomial in x of degree $\leq k_j - k_i$, if $k_j - k_i \geq 0$ and is 0, if $k_j - k_i < 0$. We denote by b_{ij} the entries of the matrix $B = A^{-1}$. The entries are also polynomials in x of degree $\leq k_j - k_i$. We need the following formulas:

$$A(\xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_k}) A^{-1} = \det(A) \sum_s b_{ks} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_s};$$

$$A(\xi_i \xi_j \frac{\partial}{\partial x}) A^{-1} = \det(A) \sum_{k < s} (-1)^{l+r} b_{lr} \xi_k \xi_s \frac{\partial}{\partial x} + \det(A) \sum_s b'_{ls} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_s},$$
(8)

where i < j, $l \neq i, j$ and $r \neq k, s$. Here we use the notation $b'_{ls} = \frac{\partial}{\partial x}(b_{ls})$. By (8), in the case $k_1 = k_2 = k_3 = k$, we have:

Proposition 3.4. Assume that $k_1 = k_2 = k_3 = k$.

1. We have

Aut
$$\mathbf{E} \simeq \mathrm{GL}_3(\mathbb{C})$$
.

In other words

Aut
$$\mathbf{E} = \{(a_{ij}) \mid a_{ij} \in \mathbb{C}, \det(a_{ij}) \neq 0\}.$$

2. The action of Aut **E** on \mathcal{T}_2 is given in U_0 by the following formulas:

$$A(\xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_k}) A^{-1} = \det(A) \xi_1 \xi_2 \xi_3 \sum_s b_{ks} \frac{\partial}{\partial \xi_s};$$

$$A(\xi_i \xi_j \frac{\partial}{\partial x}) A^{-1} = \det(A) \sum_{k < s} (-1)^{l+r} b_{lr} \xi_k \xi_s \frac{\partial}{\partial x},$$
(9)

where $i < j, l \neq i, j$ and $r \neq k, s$. Here $B = (b_{ij}) = A^{-1}$

4. Classification of supermanifolds with retract (k, k, k)

In this section we give a classification up to isomorphism of complex analytic supermanifolds with underlying space \mathbb{CP}^1 and with retract (k, k, k) using Theorem 2.4. In previous section we have calculated the vector space $H^1(\mathbb{CP}^1, \mathcal{T}_2)$, the group Aut **E** and the action Int of Aut **E** on $H^1(\mathbb{CP}^1, \mathcal{T}_2)$, see Theorem 3.3 and Proposition 3.4. Our objective in this section is to calculate the orbit space corresponding to the action Int:

$$H^1(\mathbb{CP}^1, \mathcal{T}_2) / \operatorname{Aut} \mathbf{E}.$$
 (10)

By Theorem 2.4 classes of isomorphic supermanifolds are in one-to-one correspondence with points of the set (10).

Let us fix the following basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$:

$$v_{11} = x^{-1}\xi_2\xi_3\frac{\partial}{\partial x}, \quad v_{12} = -x^{-1}\xi_1\xi_3\frac{\partial}{\partial x}, \quad v_{13} = x^{-1}\xi_1\xi_2\frac{\partial}{\partial x},$$

$$\cdots \qquad \cdots \qquad \cdots$$

$$v_{p1} = x^{-p}\xi_2\xi_3\frac{\partial}{\partial x}, \quad v_{p1} = -x^{-p}\xi_1\xi_3\frac{\partial}{\partial x}, \quad v_{p3} = x^{-p}\xi_1\xi_2\frac{\partial}{\partial x},$$

$$(11)$$

$$v_{p+1,1} = x^{-1}\xi_1\xi_2\xi_3\frac{\partial}{\partial\xi_1}, \quad \cdots \quad v_{p+1,3} = x^{-1}\xi_1\xi_2\xi_3\frac{\partial}{\partial\xi_3},$$

$$\cdots \quad \cdots \quad \cdots$$

$$v_{q1} = x^{-a}\xi_1\xi_2\xi_3\frac{\partial}{\partial\xi_1}, \quad \cdots \quad v_{q3} = x^{-a}\xi_1\xi_2\xi_3\frac{\partial}{\partial\xi_3},$$

$$(12)$$

where p = 2k - 3, a = 2k - 1 and q = p + a = 4k - 4. (Compare with Theorem 3.3.) Let us take $A \in \text{Aut } \mathbf{E} \simeq \text{GL}_3(\mathbb{C})$, see Proposition 3.4. We get that in the basis (11)–(12) the automorphism Int A is given by

Int
$$A(v_{is}) = \frac{1}{\det B} \sum_{i} b_{sj} v_{ij}$$
.

Note that for any matrix $C \in GL_3(\mathbb{C})$ there exists a matrix B such that

$$C = \frac{1}{\det B}B.$$

Indeed, we can put $B = \frac{1}{\sqrt{\det C}}C$. We summarize these observations in the following proposition:

Proposition 4.1. Assume that $k_1 = k_2 = k_3 = k$. Then

$$H^1(\mathbb{CP}^1, \mathcal{T}_2) \simeq \mathrm{Mat}_{3 \times (4k-4)}(\mathbb{C})$$

and the action Int of Aut \mathbf{E} on $H^1(\mathbb{CP}^1, \mathcal{T}_2)$ is equivalent to the standard action of $GL_3(\mathbb{C})$ on $Mat_{3\times (4k-4)}(\mathbb{C})$. More precisely, Int is equivalent to the following action:

$$D \longmapsto (W \longmapsto DW),$$
 (13)

where $D \in \mathrm{GL}_3(\mathbb{C})$, $W \in \mathrm{Mat}_{3 \times (4k-4)}(\mathbb{C})$ and DW is the usual matrix multiplication.

Now we prove our first main result.

Theorem 4.2. Let $k \geq 2$. Complex analytic supermanifolds with underlying space \mathbb{CP}^1 and retract (k, k, k) are in one-to-one correspondence with points of the following set:

$$\bigcup_{r=0}^{3} \mathbf{Gr}_{4k-4,r},$$

where $\mathbf{Gr}_{4k-4,r}$ is the Grassmannian of type (4k-4,r), i.e., it is the set of all r-dimensional subspaces in \mathbb{C}^{4k-4} .

In the case k < 2 all supermanifolds with underlying space \mathbb{CP}^1 and retract (k, k, k) are split and isomorphic to their retract (k, k, k).

Proof. Assume that $k \geq 2$. Clearly, the action (13) preserves the rank r of matrices from $\operatorname{Mat}_{3\times(4k-4)}(\mathbb{C})$ and $r \leq 3$. Therefore, matrices with different rank belong to different orbits of this action. Furthermore, let us fix $r \in \{0, 1, 2, 3\}$. Denote by $\operatorname{Mat}_{3\times(4k-4)}^r(\mathbb{C})$ all matrices with rank r. Clearly, we have

$$\operatorname{Mat}_{3\times(4k-4)}(\mathbb{C}) = \bigcup_{r=0}^{3} \operatorname{Mat}_{3\times(4k-4)}^{r}(\mathbb{C}).$$

A matrix $W \in \operatorname{Mat}_{3\times(4k-4)}^r(\mathbb{C})$ defines the r-dimensional subspace V_W in \mathbb{C}^{4k-4} . This subspace is the linear combination of lines of W. (We consider lines of a matrix $X \in \operatorname{Mat}_{3\times(4k-4)}(\mathbb{C})$ as vectors from \mathbb{C}^{4k-4} .) Therefore, we have defined the map F_r :

$$W \longmapsto F_r(W) = V_W \in \mathbf{Gr}_{4k-4,r}.$$

The map F_r is surjective. Indeed, in any r-dimensional subspace $V \in \mathbf{Gr}_{4k-4,r}$ we can take 3 vectors generating V and form the matrix $W_V \in \mathrm{Mat}_{3\times(4k-4)}^r(\mathbb{C})$. In this case the matrix W_V is of rank r and $F_r(W_V) = V$. Clearly, $F_r(W) = F_r(DW)$, where $D \in \mathrm{GL}_3(\mathbb{C})$. Conversely, if W and $W' \in F_r^{-1}(V_W)$, then there exists a matrix $D \in \mathrm{GL}_3(\mathbb{C})$ such that DW = W'. It follows that orbits of $\mathrm{GL}_3(\mathbb{C})$ on $\mathrm{Mat}_{3\times(4k-4)}^r(\mathbb{C})$ are in one to one correspondence with points of $\mathrm{Gr}_{4k-4,r}$. Therefore, orbits of $\mathrm{GL}_3(\mathbb{C})$ on

$$\operatorname{Mat}_{3\times (4k-4)}(\mathbb{C}) = \bigcup\nolimits_{r=0}^{3} \operatorname{Mat}_{3\times (4k-4)}^{r}(\mathbb{C})$$

are in one-to-one correspondence with points of $\bigcup_{r=0}^{3} \mathbf{Gr}_{4k-4,r}$. The proof is complete.

5. Classification of supermanifolds with underlying space \mathbb{CP}^1 of odd dimension 2

In this section we study the case m=2 and $\operatorname{gr} \mathcal{M}=(k_1,k_2)$, where k_1, k_2 are any integers. Let us compute the 1-cohomology with values in the tangent sheaf \mathcal{T}_2 . The sheaf \mathcal{T}_2 is a locally free sheaf of rank 1. Its basis section over $(U_0, \mathcal{O}_{\mathcal{M}}|_{U_0})$ is $\xi_1 \xi_2 \frac{\partial}{\partial x}$. The transition functions in $U_0 \cap U_1$ are given by the following formula:

$$\xi_1 \xi_2 \frac{\partial}{\partial x} = -y^{2-k_1-k_2} \eta_1 \eta_2 \frac{\partial}{\partial y}.$$

Therefore, a basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$ is

$$x^{-n}\xi_1\xi_2\frac{\partial}{\partial x}, \ n=1,\ldots,k_1+k_2-3.$$

Let (ξ_i) be a local basis of **E** over U_0 and A be an automorphism of **E**. As in the case m=3, we have that $a_{ij}(x)$ is a polynomial in x of degree $\leq k_j - k_i$, if $k_j - k_i \geq 0$ and is 0, if $k_j - k_i < 0$. We need the following formulas:

$$A(x^{-n}\xi_1\xi_2\frac{\partial}{\partial x})A^{-1} = (\det A)x^{-n}\xi_1\xi_2\frac{\partial}{\partial x}.$$

Denote

$$v_n = x^{-n}\xi_1 \xi_2 \frac{\partial}{\partial x}.$$

We see that the action Int is equivalent to the action of \mathbb{C}^* on $\mathbb{C}^{k_1+k_2-3}$, therefore, the quotient space is $\mathbb{CP}^{k_1+k_2-4}$. We have proven the following theorem:

Theorem 5.1. Assume that $k_1 + k_2 \geq 5$. Complex analytic supermanifolds with underlying space \mathbb{CP}^1 and retract (k_1, k_2) are in one-to-one correspondence with points of

$$\mathbb{CP}^{k_1+k_2-4} \cup \{ \text{pt} \}.$$

In the case $k_1 + k_2 < 5$ all supermanifolds with underlying space \mathbb{CP}^1 and retract (k_1, k_2) are split and isomorphic to their retract (k_1, k_2) .

Acknowledgment

The author is grateful to A.L. Onishchik for useful discussions.

References

- Berezin F.A., Introduction to superanalysis, edited and with a foreword by A.A. Kirillov. With an appendix by V.I. Ogievetsky. Mathematical Physics and Applied Mathematics, 9. D. Reidel Publishing Co., Dordrecht, 1987.
- [2] Berezin F.A., Leites D.A., Supermanifolds, Soviet Math. Dokl. 16, 1975, 1218–1222.
- [3] Bunegina V.A. and Onishchik A.L., Homogeneous supermanifolds associated with the complex projective line. Algebraic geometry, 1, J. Math. Sci. 82 (1996), no. 4, 3503–3527.

- [4] Donagi R. and Witten E., Supermoduli space is not projected, arXiv:1304.7798, 2013.
- [5] Green P., On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), no. 4, 587–590.
- [6] Leites D.A., Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1–64.
- [7] Vishnyakova E.G., Even-homogeneous supermanifolds on the complex projective line, Differential Geometry and its Applications 31 (2013) 698–706.

E.G. VishnyakovaUniversity of Luxembourgf. rue Richard Coudenhove-KalergiL-1359 Luxembourg

e-mail: vishnyakovae@googlemail.com elizaveta.vishnyakova@uni.lu