Geometric Methods in Physics. XXXII Workshop 2013 Trends in Mathematics, 163–172 -c 2014 Springer International Publishing Switzerland

On Complex Analytic 1*|***2- and 1***|***3-dimensional Supermanifolds Associated with** \mathbb{CP}^1

E.G. Vishnyakova

Abstract. We obtain a classification up to isomorphism of complex analytic supermanifolds with underlying space \mathbb{CP}^1 of dimension 1|2 and of dimension 1|3 with retract (k, k, k) , where $k \in \mathbb{Z}$. More precisely, we prove that classes of isomorphic complex analytic supermanifolds of dimension 1|3 with retract (k, k, k) are in one-to-one correspondence with points of the following set:

$$
\mathbf{Gr}_{4k-4,3}\cup\mathbf{Gr}_{4k-4,2}\cup\mathbf{Gr}_{4k-4,1}\cup\mathbf{Gr}_{4k-4,0}
$$

for $k > 2$. For $k < 2$ all such supermanifolds are isomorphic to their retract (k, k, k) . In addition, we show that classes of isomorphic complex analytic supermanifolds of dimension $1/2$ with retract (k_1, k_2) are in one-to-one correspondence with points of $\mathbb{CP}^{k_1+k_2-4}$ for $k_1 + k_2 \geq 5$. For $k_1 + k_2 < 5$ all such supermanifolds are isomorphic to their retract (k_1, k_2) .

Mathematics Subject Classification (2010). 51P05, 53Z05, 32M10. **Keywords.** Complex analytic supermanifold, projective line.

1. Introduction.

We can assign the holomorphic vector bundle, so-called retract, to each complex analytic supermanifold. If underlying space of a complex analytic supermanifold is \mathbb{CP}^1 , by the Birkhoff–Grothendieck Theorem the corresponding vector bundle is isomorphic to the direct sum of m line bundles: $\mathbf{E} \simeq \bigoplus_{i=1}^{m} L(k_i)$, where $k_i \in \mathbb{Z}$ and m is the odd dimension of the supermanifold. We obtain a classification up to isomorphism of complex analytic supermanifolds of dimension 1|3 with underlying space \mathbb{CP}^1 and with retract $L(k)\oplus L(k)\oplus L(k)$, where $k \in \mathbb{Z}$. In addition, we give a classification up to isomorphism of complex analytic supermanifolds of dimension 1|2 with underlying space \mathbb{CP}^1 .

This work was supported by Fonds National de la Recherche Luxembourg and by the Russian Foundation for Basic Research (grant no. 11-01-00465a).

The paper is structured as follows. In Section 2 we explain the idea of the classification. In Section 3 we do all necessary preparations. The classification up to isomorphism of complex analytic supermanifolds of dimension 1|3 with underlying space \mathbb{CP}^1 and with retract (k, k, k) is obtained in Section 4. The last section is devoted to the classification up to isomorphism of complex analytic supermanifolds of dimension 1|2 with underlying space \mathbb{CP}^1 .

The study of complex analytic supermanifolds with underlying space \mathbb{CP}^1 was started in [3]. There the classification of homogeneous complex analytic supermanifolds of dimension $1/m$, $m \leq 3$, up to isomorphism was given. It was proven that in the case $m = 2$ there exists only one non-split homogeneous supermanifold constructed by P. Green [5] and V.P. Palamodov [1]. For $m = 3$ it was shown that there exists a series of non-split homogeneous supermanifolds, parameterized by $k = 0, 2, 3, \ldots$

In [7] we studied even-homogeneous supermanifold, i.e., supermanifolds which possess transitive actions of Lie groups. It was shown that there exists a series of non-split even-homogeneous supermanifolds, parameterized by elements in $\mathbb{Z} \times$ Z, three series of non-split even-homogeneous supermanifolds, parameterized by elements of Z, and finite set of exceptional supermanifolds.

2. Classification of supermanifolds, main definitions

We will use the word "supermanifold" in the sense of Berezin–Leites [2, 6], see also [3]. All the time, we will be interested in the complex analytic version of the theory. We begin with main definitions.

Recall that a *complex superdomain of dimension* $n|m$ is a \mathbb{Z}_2 -graded ringed space of the form $(U, \mathcal{F}_U \otimes \wedge(m))$, where \mathcal{F}_U is the sheaf of holomorphic functions on an open set $U \subset \mathbb{C}^n$ and $\Lambda(m)$ is the exterior (or Grassmann) algebra with m generators.

Definition 2.1. A *complex analytic supermanifold* of dimension $n|m$ is a \mathbb{Z}_2 -graded locally ringed space that is locally isomorphic to a complex superdomain of dimension $n|m$.

Let $\mathcal{M} = (\mathcal{M}_0, \mathcal{O}_\mathcal{M})$ be a supermanifold and

$$
\mathcal{J}_{\mathcal{M}} = (\mathcal{O}_{\mathcal{M}})_{\bar{1}} + ((\mathcal{O}_{\mathcal{M}})_{\bar{1}})^2
$$

be the subsheaf of ideals in $\mathcal{O}_\mathcal{M}$ generated by the subsheaf $(\mathcal{O}_\mathcal{M})$ ¹ of odd elements. We put $\mathcal{F}_{\mathcal{M}} := \mathcal{O}_{\mathcal{M}}/\mathcal{J}_{\mathcal{M}}$. Then $(\mathcal{M}_0, \mathcal{F}_{\mathcal{M}})$ is a usual complex analytic manifold, it is called the *reduction* or *underlying space* of M . Usually we will write M_0 instead of $(\mathcal{M}_0, \mathcal{F}_\mathcal{M})$. Denote by $\mathcal{T}_\mathcal{M}$ the *tangent sheaf* or the *sheaf of vector fields* of M. In other words, $\mathcal{T}_{\mathcal{M}}$ is the sheaf of derivations of the structure sheaf $\mathcal{O}_{\mathcal{M}}$. Since the sheaf $\mathcal{O}_{\mathcal{M}}$ is Z₂-graded, the tangent sheaf $\mathcal{T}_{\mathcal{M}}$ also possesses the induced \mathbb{Z}_2 -grading, i.e., there is the natural decomposition $\mathcal{T}_\mathcal{M} = (\mathcal{T}_\mathcal{M})_{\bar{0}} \oplus (\mathcal{T}_\mathcal{M})_{\bar{1}}$.

Let \mathcal{M}_0 be a complex analytic manifold and let **E** be a holomorphic vector bundle over \mathcal{M}_0 . Denote by $\mathcal E$ the sheaf of holomorphic sections of **E**. Then the

ringed space $(M_0, \Lambda \mathcal{E})$ is a supermanifold. In this case dim $\mathcal{M} = n|m$, where $n = \dim \mathcal{M}_0$ and m is the rank of **E**.

Definition 2.2. A supermanifold $(\mathcal{M}_0, \mathcal{O}_M)$ is called *split* if $\mathcal{O}_M \simeq \Lambda \mathcal{E}$ (as supermanifolds) for a locally free sheaf \mathcal{E} .

It is known that any real (smooth or real analytic) supermanifold is split. The structure sheaf \mathcal{O}_M of a split supermanifold possesses a Z-grading, since $\mathcal{O}_\mathcal{M} \simeq \bigwedge \mathcal{E}$ and $\bigwedge \mathcal{E} = \bigoplus_{\alpha \in \mathcal{E}} \bigwedge^p \mathcal{E}$ is naturally Z-graded. In other words, we have the decomposition $\mathcal{O}_\mathcal{M} = \bigoplus_p^p (\mathcal{O}_\mathcal{M})_p$. This Z-grading induces the Z-grading in $\mathcal{T}_\mathcal{M}$ in the following way:

$$
(\mathcal{T}_{\mathcal{M}})_p := \{ v \in \mathcal{T}_{\mathcal{M}} \mid v((\mathcal{O}_{\mathcal{M}})_q) \subset (\mathcal{O}_{\mathcal{M}})_{p+q} \text{ for all } q \in \mathbb{Z} \}. \tag{1}
$$

We have the decomposition:

$$
\mathcal{T}_{\mathcal{M}} = \bigoplus_{p=-1}^{m} (\mathcal{T}_{\mathcal{M}})_{p}.
$$

Therefore the superspace $H^0(\mathcal{M}_0, \mathcal{T}_M)$ is also Z-graded. Consider the subspace

End $\mathbf{E} \subset H^0(\mathcal{M}_0, (\mathcal{T}_\mathcal{M})_0).$

It consists of all endomorphisms of the vector bundle **E** inducing the identity morphism on \mathcal{M}_0 . Denote by Aut $\mathbf{E} \subset \text{End } \mathbf{E}$ the group of automorphisms of **E**, i.e., the group of all invertible endomorphisms. We define the action Int of Aut **E** on $\mathcal{T}_{\mathcal{M}}$ by

$$
Int A: v \mapsto Av A^{-1}.
$$

Clearly, the action Int preserves the \mathbb{Z} -grading (1) , therefore, we have the action of Aut **E** on $H^1(\mathcal{M}_0, (\mathcal{T}_M)_2)$.

There is a functor denoting by gr from the category of supermanifolds to the category of split supermanifolds. Let us describe this construction. Let $\mathcal M$ be a supermanifold and let as above $\mathcal{J}_M \subset \mathcal{O}_\mathcal{M}$ be the subsheaf of ideals generated by odd elements of $\mathcal{O}_{\mathcal{M}}$. Then by definition $gr(\mathcal{M})=(\mathcal{M}_0, gr \mathcal{O}_{\mathcal{M}})$, where

$$
\text{gr}\,\mathcal{O}_{\mathcal{M}}=\bigoplus_{p\geq 0}(\text{gr}\,\mathcal{O}_{\mathcal{M}})_p,\quad (\text{gr}\,\mathcal{O}_{\mathcal{M}})_p=\mathcal{J}_{\mathcal{M}}^p/\mathcal{J}_{\mathcal{M}}^{p+1},\quad \mathcal{J}_{\mathcal{M}}^0:=\mathcal{O}_{\mathcal{M}}.
$$

In this case $(\text{gr }\mathcal{O}_\mathcal{M})_1$ is a locally free sheaf and there is a natural isomorphism of gr $\mathcal{O}_{\mathcal{M}}$ onto $\Lambda(\text{gr } \mathcal{O}_{\mathcal{M}})_1$. If $\psi = (\psi_{\text{red}}, \psi^*) : (M, \mathcal{O}_{\mathcal{M}}) \to (N, \mathcal{O}_{\mathcal{N}})$ is a morphism of supermanifolds, then $gr(\psi)=(\psi_{red}, gr(\psi^*))$, where $gr(\psi^*)$: $gr\mathcal{O}_{\mathcal{N}}\to gr\mathcal{O}_{\mathcal{M}}$ is defined by

$$
\mathrm{gr}(\psi^*)(f+\mathcal{J}_{\mathcal{N}}^p):=\psi^*(f)+\mathcal{J}_{\mathcal{M}}^p\text{ for }f\in(\mathcal{J}_{\mathcal{N}})^{p-1}.
$$

Recall that by definition every morphism ψ of supermanifolds is even and as consequence sends $\mathcal{J}_{\mathcal{N}}^p$ into $\mathcal{J}_{\mathcal{M}}^p$.

Definition 2.3. The supermanifold $gr(\mathcal{M})$ is called the *retract* of M.

To classify supermanifolds, we use the following corollary of the well-known Green Theorem (see [3, 5] or [4] for more details):

Theorem 2.4 (Green). Let $\mathcal{N} = (\mathcal{N}_0, \bigwedge \mathcal{E})$ be a split supermanfold of dimen*sion* $n|m$ *, where* $m \leq 3$ *. The classes of isomorphic supermanifolds* M *such that* γ gr $\mathcal{M} = \mathcal{N}$ are in bijection with orbits of the action Int of the group Aut **E** on $H^1(\mathcal{M}_0,(\mathcal{T}_{\mathcal{N}})_2).$

Remark 2.5. This theorem allows to classify supermanifolds $\mathcal M$ such that gr $\mathcal M$ is fixed up to isomorphisms that induce the identity morphism on $gr\mathcal{M}$.

3. Supermanifolds associated with \mathbb{CP}^1

In what follows we will consider supermanifolds with the underlying space \mathbb{CP}^1 .

3.1. Supermanifolds with underlying space \mathbb{CP}^1

Let M be a supermanifold of dimension $1/m$. Denote by U_0 and U_1 the standard charts on \mathbb{CP}^1 with coordinates x and $y = \frac{1}{x}$ respectively. By the Birkhoff-Grothendieck Theorem we can cover $gr\mathcal{M}$ by two charts

$$
(U_0, \mathcal{O}_{\text{gr}\,\mathcal{M}}|_{U_0})
$$
 and $(U_1, \mathcal{O}_{\text{gr}\,\mathcal{M}}|_{U_1})$

with local coordinates x, ξ_1, \ldots, ξ_m and $y, \eta_1, \ldots, \eta_m$, respectively, such that in $U_0 \cap U_1$ we have

$$
y = x^{-1}
$$
, $\eta_i = x^{-k_i} \xi_i$, $i = 1, ..., m$,

where k_i are integers. Note that a permutation of k_i induces the automorphism of $gr\mathcal{M}.$

We will identify gr M with the set (k_1,\ldots,k_m) , so we will say that a supermanifold has the retract (k_1,\ldots,k_m) . In this paper we study two cases $m=2$ and $m = 3$ for $k_1 = k_2 = k_3 = k$. From now on we use the notation $\mathcal{T} = \bigoplus \mathcal{T}_p$ for the tangent sheaf of $gr\mathcal{M}$.

3.2. A basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$.

Assume that $m = 3$ and that $\mathcal{M} = (k_1, k_2, k_3)$ is a split supermanifold with the underlying space $\mathcal{M}_0 = \mathbb{CP}^1$. Let $\mathcal T$ be its tangent sheaf. In [3] the following decomposition

$$
\mathcal{T}_2 = \sum_{i < j} \mathcal{T}_2^{ij} \tag{2}
$$

was obtained. The sheaf \mathcal{T}_2^{ij} is a locally free sheaf of rank 2; its basis sections over $(U_0, \mathcal{O}_\mathcal{M}|_{U_0})$ are:

$$
\xi_i \xi_j \frac{\partial}{\partial x}, \quad \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l};\tag{3}
$$

where $l \neq i, j$. In $U_0 \cap U_1$ we have

$$
\xi_i \xi_j \frac{\partial}{\partial x} = -y^{2-k_i - k_j} \eta_i \eta_j \frac{\partial}{\partial y} - k_l y^{1-k_i - k_j} \eta_i \eta_j \eta_l \frac{\partial}{\partial \eta_l},
$$

$$
\xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l} = y^{-k_i - k_j} \eta_i \eta_j \eta_l \frac{\partial}{\partial \eta_l}.
$$
 (4)

The following theorem was proven in [7]. For completeness we reproduce it here.

Theorem 3.1. *Assume that* $i < j$ *and* $l \neq i, j$. **1**. For $k_i + k_j > 3$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is:

$$
x^{-n}\xi_i\xi_j\frac{\partial}{\partial x}, \qquad n = 1, \dots, k_i + k_j - 3,
$$

$$
x^{-n}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l}, \quad n = 1, \dots, k_i + k_j - 1;
$$
 (5)

2. *for* $k_i + k_j = 3$ *the basis of* $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ *is:*

$$
x^{-1}\xi_i\xi_j\xi_l\frac{\partial}{\partial\xi_l}, \quad x^{-2}\xi_i\xi_j\xi_l\frac{\partial}{\partial\xi_l};
$$

3. *for* $k_i + k_j = 2$ *and* $k_l = 0$ *the basis of* $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ *is:*

$$
x^{-1}\xi_i\xi_j\xi_l\frac{\partial}{\partial\xi_l};
$$

4. *if* $k_i + k_j = 2$ *and* $k_l \neq 0$ *or* $k_i + k_j < 2$ *, we have* $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij}) = \{0\}.$

Proof. We use the Cech cochain complex of the cover $\mathfrak{U} = \{U_0, U_1\}$, hence, 1cocycle with values in the sheaf \mathcal{T}_2^{ij} is a section v of \mathcal{T}_2^{ij} over $U_0 \cap U_1$. We are looking for *basis cocycles*, i.e., cocycles such that their cohomology classes form a basis of $H^1(\mathfrak{U}, \mathcal{T}_2^{ij}) \simeq H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$. Note that if $v \in Z^1(\mathfrak{U}, \mathcal{T}_2^{ij})$ is holomorphic
in U_2 or U_1 , then the cohomology class of *n* is equal to 0. Obviously any $v \in$ in U_0 or U_1 then the cohomology class of v is equal to 0. Obviously, any $v \in$ $Z^1(\mathfrak{U}, \mathcal{T}_2^{ij})$ is a linear combination of vector fields (3) with holomorphic in $U_0 \cap U_1$
coefficients. Further, we expand these coefficients in a Laurent series in x and drop coefficients. Further, we expand these coefficients in a Laurent series in x and drop the summands x^n , $n \geq 0$, because they are holomorphic in U_0 . We see that v can be replaced by

$$
v = \sum_{n=1}^{\infty} a_{ij}^n x^{-n} \xi_i \xi_j \frac{\partial}{\partial x} + \sum_{n=1}^{\infty} b_{ij}^n x^{-n} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l},
$$
(6)

where $a_{ij}^n, b_{ij}^n \in \mathbb{C}$. Using (4), we see that the summands corresponding to $n \geq$ $k_i + k_j - 1$ in the first sum of (6) and the summands corresponding to $n \geq k_i + k_j$ in the second sum of (6) are holomorphic in U_1 . Further, it follows from (4) that

$$
x^{2-k_i-k_j}\xi_i\xi_j\frac{\partial}{\partial x} \sim -k_l x^{1-k_i-k_j}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l}.
$$

Hence the cohomology classes of the following cocycles

$$
x^{-n}\xi_i\xi_j\frac{\partial}{\partial x}, \quad n = 1, \dots, k_i + k_j - 3,
$$

$$
x^{-n}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l}, \quad n = 1, \dots, k_i + k_j - 1,
$$

generate $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$. If we examine linear combination of these cocycles which are cohomological trivial, we get the result.

Remark 3.2*.* Note that a similar method can be used for computation of a basis of $H^1(\mathbb{CP}^1, \mathcal{T}_q)$ for any odd dimension m and any q.

In the case $k_1 = k_2 = k_3 = k$, from Theorem 3.1, it follows:

Corollary 3.3. *Assume that* $i < j$ *and* $l \neq i, j$. **1**. For $k \geq 2$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is

$$
x^{-n}\xi_i\xi_j\frac{\partial}{\partial x}, \qquad n = 1, \dots, 2k - 3,
$$

$$
x^{-n}\xi_i\xi_j\xi_l\frac{\partial}{\partial \xi_l}, \quad n = 1, \dots, 2k - 1.
$$
 (7)

2. If $k < 2$, we have $H^1(\mathbb{CP}^1, \mathcal{T}_2) = \{0\}.$

3.3. The group Aut E

This section is devoted to the calculation of the group of automorphisms Aut **E** of the vector bundle **E** in the case (k, k, k) . Here **E** is the vector bundle corresponding to the split supermanifold (k, k, k) .

Let (ξ_i) be a local basis of **E** over U_0 and A be an automorphism of **E**. Assume that $A(\xi_i) = \sum a_{ij}(x)\xi_i$. In U_1 we have

$$
A(\eta_j) = A(y^{k_j} \xi_j) = \sum y^{k_j - k_i} a_{ij} (y^{-1}) \eta_i.
$$

Therefore, $a_{ij}(x)$ is a polynomial in x of degree $\leq k_j - k_i$, if $k_j - k_i \geq 0$ and is 0, if $k_j - k_i < 0$. We denote by b_{ij} the entries of the matrix $B = A^{-1}$. The entries are also polynomials in x of degree $\leq k_i - k_i$. We need the following formulas:

$$
A(\xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_k}) A^{-1} = \det(A) \sum_s b_{ks} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_s};
$$

$$
A(\xi_i \xi_j \frac{\partial}{\partial x}) A^{-1} = \det(A) \sum_{k < s} (-1)^{l+r} b_{lr} \xi_k \xi_s \frac{\partial}{\partial x} + \det(A) \sum_s b'_{ls} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_s},
$$

$$
(8)
$$

where $i < j$, $l \neq i$, j and $r \neq k$, s. Here we use the notation $b'_{ls} = \frac{\partial}{\partial x}(b_{ls})$. By (8), in the case $k_1 = k_2 = k_3 = k$, we have:

Proposition 3.4. *Assume that* $k_1 = k_2 = k_3 = k$.

1. *We have*

$$
Aut E \simeq GL_3(\mathbb{C}).
$$

In other words

$$
Aut \mathbf{E} = \{ (a_{ij}) \mid a_{ij} \in \mathbb{C}, \, \det(a_{ij}) \neq 0 \}.
$$

2. The action of Aut **E** on \mathcal{T}_2 is given in U_0 by the following formulas:

$$
A(\xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_k}) A^{-1} = \det(A) \xi_1 \xi_2 \xi_3 \sum_s b_{ks} \frac{\partial}{\partial \xi_s};
$$

$$
A(\xi_i \xi_j \frac{\partial}{\partial x}) A^{-1} = \det(A) \sum_{k < s} (-1)^{l+r} b_{lr} \xi_k \xi_s \frac{\partial}{\partial x},
$$

$$
(9)
$$

where $i < j$, $l \neq i$, j and $r \neq k$, s . Here $B = (b_{ij}) = A^{-1}$

4. Classification of supermanifolds with retract (k, k, k)

In this section we give a classification up to isomorphism of complex analytic supermanifolds with underlying space \mathbb{CP}^1 and with retract (k, k, k) using Theorem 2.4. In previous section we have calculated the vector space $H^1(\mathbb{CP}^1, \mathcal{T}_2)$, the group Aut **E** and the action Int of Aut **E** on $H^1(\mathbb{CP}^1, \mathcal{T}_2)$, see Theorem 3.3 and Proposition 3.4. Our objective in this section is to calculate the orbit space corresponding to the action Int:

$$
H^1(\mathbb{CP}^1, \mathcal{T}_2) / \operatorname{Aut} \mathbf{E}.\tag{10}
$$

By Theorem 2.4 classes of isomorphic supermanifolds are in one-to-one correspondence with points of the set (10).

Let us fix the following basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$:

$$
v_{11} = x^{-1} \xi_2 \xi_3 \frac{\partial}{\partial x}, \quad v_{12} = -x^{-1} \xi_1 \xi_3 \frac{\partial}{\partial x}, \quad v_{13} = x^{-1} \xi_1 \xi_2 \frac{\partial}{\partial x},
$$

\n...
\n
$$
v_{p1} = x^{-p} \xi_2 \xi_3 \frac{\partial}{\partial x}, \quad v_{p1} = -x^{-p} \xi_1 \xi_3 \frac{\partial}{\partial x}, \quad v_{p3} = x^{-p} \xi_1 \xi_2 \frac{\partial}{\partial x},
$$

\n
$$
v_{p+1,1} = x^{-1} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_1}, \quad \cdots \quad v_{p+1,3} = x^{-1} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_3},
$$

\n...
\n
$$
v_{q1} = x^{-a} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_1}, \quad \cdots \quad v_{q3} = x^{-a} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_3},
$$

\n(12)

where $p = 2k - 3$, $a = 2k - 1$ and $q = p + a = 4k - 4$. (Compare with Theorem 3.3.) Let us take $A \in \text{Aut } \mathbf{E} \simeq GL_3(\mathbb{C})$, see Proposition 3.4. We get that in the basis $(11)–(12)$ the automorphism Int A is given by

$$
\text{Int}\,A(v_{is}) = \frac{1}{\det B} \sum_{j} b_{sj} v_{ij}.
$$

Note that for any matrix $C \in GL_3(\mathbb{C})$ there exists a matrix B such that

$$
C = \frac{1}{\det B} B.
$$

Indeed, we can put $B = \frac{1}{\sqrt{\det C}}C$. We summarize these observations in the following proposition:

Proposition 4.1. *Assume that* $k_1 = k_2 = k_3 = k$. *Then*

$$
H^1(\mathbb{CP}^1, \mathcal{T}_2) \simeq \mathrm{Mat}_{3 \times (4k-4)}(\mathbb{C})
$$

and the action Int of Aut **E** on $H^1(\mathbb{CP}^1, \mathcal{T}_2)$ is equivalent to the standard action *of* GL₃(\mathbb{C}) *on* Mat_{3×(4k−4)}(\mathbb{C})*. More precisely,* Int *is equivalent to the following action:*

$$
D \longmapsto (W \longmapsto DW), \tag{13}
$$

 $where D ∈ GL_3(\mathbb{C}), W ∈ Mat_{3×(4k-4)}(\mathbb{C}) and DW is the usual matrix multiplication.$ *cation.*

Now we prove our first main result.

Theorem 4.2. Let $k \geq 2$. Complex analytic supermanifolds with underlying space \mathbb{CP}^1 and retract (k, k, k) are in one-to-one correspondence with points of the fol*lowing set:*

$$
\bigcup\nolimits_{r=0}^{3}\mathbf{Gr}_{4k-4,r},
$$

where $\mathbf{Gr}_{4k-4,r}$ *is the Grassmannian of type* $(4k-4,r)$ *, i.e., it is the set of all* r*-dimensional subspaces in* C⁴k−⁴*.*

In the case $k < 2$ *all supermanifolds with underlying space* \mathbb{CP}^1 *and retract* (k, k, k) *are split and isomorphic to their retract* (k, k, k) *.*

Proof. Assume that $k \geq 2$. Clearly, the action (13) preserves the rank r of matrices from $\text{Mat}_{3\times(4k-4)}(\mathbb{C})$ and $r \leq 3$. Therefore, matrices with different rank belong to different orbits of this action. Furthermore, let us fix $r \in \{0, 1, 2, 3\}$. Denote by $\operatorname{Mat}_{3\times (4k-4)}^{r}(\mathbb{C})$ all matrices with rank r. Clearly, we have

$$
\operatorname{Mat}_{3\times(4k-4)}(\mathbb{C})=\bigcup_{r=0}^3 \operatorname{Mat}_{3\times(4k-4)}^r(\mathbb{C}).
$$

A matrix $W \in Mat_{3 \times (4k-4)}^r(\mathbb{C})$ defines the r-dimensional subspace V_W in \mathbb{C}^{4k-4} . This subspace is the linear combination of lines of W . (We consider lines of a matrix $X \in Mat_{3 \times (4k-4)}(\mathbb{C})$ as vectors from \mathbb{C}^{4k-4} .) Therefore, we have defined the map F_r :

$$
W \longmapsto F_r(W) = V_W \in \mathbf{Gr}_{4k-4,r}.
$$

The map F_r is surjective. Indeed, in any r-dimensional subspace $V \in \mathbf{Gr}_{4k-4,r}$ we can take 3 vectors generating V and form the matrix $W_V \in Mat_{3\times(4k-4)}^r(\mathbb{C})$. In this case the matrix W_V is of rank r and $F_r(W_V) = V$. Clearly, $F_r(W) = F_r(DW)$, where $D \in GL_3(\mathbb{C})$. Conversely, if W and $W' \in F_r^{-1}(V_W)$, then there exists a matrix $D \in GL_3(\mathbb{C})$ such that $DW = W'$. It follows that orbits of $GL_3(\mathbb{C})$ on Mat^r_{3×(4k-4)}(C) are in one to one correspondence with points of $\mathbf{Gr}_{4k-4,r}$. Therefore, orbits of $GL_3(\mathbb{C})$ on

$$
\operatorname{Mat}_{3\times(4k-4)}(\mathbb{C})=\bigcup_{r=0}^3 \operatorname{Mat}_{3\times(4k-4)}^r(\mathbb{C})
$$

are in one-to-one correspondence with points of $\bigcup_{r=0}^{3} \mathbf{Gr}_{4k-4,r}$. The proof is com- \Box

5. Classification of supermanifolds with underlying space CP**¹ of odd dimension 2**

In this section we study the case $m = 2$ and $gr \mathcal{M} = (k_1, k_2)$, where k_1, k_2 are any integers. Let us compute the 1-cohomology with values in the tangent sheaf \mathcal{T}_2 . The sheaf \mathcal{T}_2 is a locally free sheaf of rank 1. Its basis section over $(U_0, \mathcal{O}_\mathcal{M}|_{U_0})$ is $\xi_1 \xi_2 \frac{\partial}{\partial x}$. The transition functions in $U_0 \cap U_1$ are given by the following formula:

$$
\xi_1 \xi_2 \frac{\partial}{\partial x} = -y^{2-k_1-k_2} \eta_1 \eta_2 \frac{\partial}{\partial y}.
$$

Therefore, a basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$ is

$$
x^{-n}\xi_1\xi_2\frac{\partial}{\partial x},\ n=1,\ldots,k_1+k_2-3.
$$

Let (ξ_i) be a local basis of **E** over U_0 and A be an automorphism of **E**. As in the case $m = 3$, we have that $a_{ij}(x)$ is a polynomial in x of degree $\leq k_j - k_i$, if $k_j - k_i \geq 0$ and is 0, if $k_j - k_i < 0$. We need the following formulas:

$$
A(x^{-n}\xi_1\xi_2\frac{\partial}{\partial x})A^{-1} = (\det A)x^{-n}\xi_1\xi_2\frac{\partial}{\partial x}.
$$

Denote

$$
v_n = x^{-n} \xi_1 \xi_2 \frac{\partial}{\partial x}.
$$

We see that the action Int is equivalent to the action of \mathbb{C}^* on $\mathbb{C}^{k_1+k_2-3}$, therefore, the quotient space is $\mathbb{CP}^{k_1+k_2-4}$. We have proven the following theorem:

Theorem 5.1. Assume that $k_1 + k_2 \geq 5$. Complex analytic supermanifolds with *underlying space* \mathbb{CP}^1 *and retract* (k_1, k_2) *are in one-to-one correspondence with points of*

$$
\mathbb{CP}^{k_1+k_2-4}\cup\{\text{pt}\}.
$$

In the case $k_1 + k_2 < 5$ *all supermanifolds with underlying space* \mathbb{CP}^1 *and retract* (k_1, k_2) *are split and isomorphic to their retract* (k_1, k_2) *.*

Acknowledgment

The author is grateful to A.L. Onishchik for useful discussions.

References

- [1] Berezin F.A., Introduction to superanalysis, edited and with a foreword by A.A. Kirillov. With an appendix by V.I. Ogievetsky. Mathematical Physics and Applied Mathematics, **9**. D. Reidel Publishing Co., Dordrecht, 1987.
- [2] Berezin F.A., Leites D.A., Supermanifolds, Soviet Math. Dokl. **16**, 1975, 1218–1222.
- [3] Bunegina V.A. and Onishchik A.L., Homogeneous supermanifolds associated with the complex projective line. Algebraic geometry, 1, J. Math. Sci. **82** (1996), no. 4, 3503–3527.
- [4] Donagi R. and Witten E., Supermoduli space is not projected, $arXiv:1304.7798$, 2013.
- [5] Green P., On holomorphic graded manifolds, Proc. Amer. Math. Soc. **85** (1982), no. 4, 587–590.
- [6] Leites D.A., Introduction to the theory of supermanifolds, Russian Math. Surveys **35** (1980), 1–64.
- [7] Vishnyakova E.G., Even-homogeneous supermanifolds on the complex projective line, Differential Geometry and its Applications **31** (2013) 698–706.
- E.G. Vishnyakova
- University of Luxembourg 6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg e-mail: vishnyakovae@googlemail.com elizaveta.vishnyakova@uni.lu