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Orbifold Diffeomorphism Groups

Alexander Schmeding

Abstract. Orbifolds are a generalization of manifolds. They arise naturally in
different areas of mathematics and physics, e.g.:

– Spaces of symplectic reduction are orbifolds,
– Orbifolds may be used to construct a conformal field theory model.

In [10], we considered the diffeomorphism group of a paracompact, non-
compact smooth reduced orbifold. Our main result is the construction of
an infinite-dimensional Lie-group structure on the diffeomorphism group and
several interesting subgroups. The aim of these notes is to sketch the main
ingredients of the proof. Furthermore, we will consider the special case of an
orbifold with a global chart.
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1. Orbifolds in local charts

We recall the notion of an orbifold defined via local charts and their morphisms.
Our exposition of orbifolds follows [4]:

Definition 1. Let Q be a paracompact Hausdorff topological space with d ∈ N0.
1. A (reduced) orbifold chart of dimension d on Q is a triple (V,G, ϕ) where

V is a connected paracompact n-dimensional manifold without boundary, G
is a finite subgroup of Diff(V ), and ϕ : V → Q is a map with open image
ϕ(V ) inducing a homeomorphism from the orbit space V/G to ϕ(V ). Here
the orbit space V/G is the set of all G-orbits with respect to the natural
G-action on V . We endow V/G with the quotient topology with respect to
the map sending x ∈ V to its orbit G.x.

2. Two orbifold charts (V,G, ϕ), (W,H,ψ) on Q are called compatible if for each
pair (x, y) ∈ V × W with ϕ(x) = ψ(y) there are open connected neighbor-
hoods Vx of x and Wy of y together with a C∞-diffeomorphism h : Vx → Wy

with ψ ◦ h = ϕ|Vx . The map h is called a change of charts.
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3. A reduced orbifold atlas of dimension d on Q is a set of pairwise compatible
reduced orbifold charts V = {(Vi, Gi, ϕi) | i ∈ I} of dimension d on Q such
that

⋃
i∈I ϕi(Vi) = Q. Two reduced orbifold atlases are equivalent if their

union is a reduced orbifold atlas.
4. A reduced orbifold of dimension d is a pair (Q,U) where U is an equivalence

class of orbifold atlases of dimension d on Q.
5. For an orbifold (Q,U), a point x ∈ Q will be called singular if there is an

orbifold chart (V,G, ψ), such that for any y ∈ ψ−1(x) the isotropy subgroup
Gy := {g ∈ G | g.y = y} is non-trivial. Otherwise x is called regular. This
property is independent of choice of charts (see [7, p. 39]).

The term reduced refers to the fact that the finite group G is required to be
a subgroup of Diff(V ). Hence, each group G acts effectively on V . Every orbifold
in these notes will be reduced, whence we drop the word “reduced” for the rest
of this paper. We consider a class of orbifolds with global chart, which will serve
as our main example. Notice that in general an orbifold will not admit a global
orbifold chart.

Example 1. Let d be in N and G 
= {idRd} be a finite subgroup of the orthogonal
group O(d) ⊆ Diff(Rd) such that:

(IS) The group G satisfies Gx = {idRd} for all x ∈ Rd \ {0}, i.e., 0 is the only
singularity fixed jointly by all elements of G.

We remark the following:

1. For odd d only G = {idRd ,− idRd} is possible. For d = 1 we denote the
reflection generating G by r : R → R, x 	→ −x.

2. If d = 2, then the group G may not contain reflections by condition (IS). In
this case, G contains at least one rotation of R2 fixing the origin.

Let π : Rd → Rd/G be the quotient map onto the orbit space and Q := Rd/G.
Then

{
(Rd, G, π)

}
is an atlas for Q, turning the orbit space into an orbifold with a

global chart. We identify for d ∈ {1, 2} the orbit spaces with [0,∞[ and respectively

Figure 1. Cone shaped orbifolds. The element γ is a rotation which
generates G for d = 2.
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a cone: Each finite subgroup of O(2) – which is not a dihedral group – is cyclic by
[2, Ch. 5, Theorem 3.4]. Hence Figure 1 exhibits the general case for d = 2.

Notice that the chart mappings of an orbifold will in general be non-invertible.
To define a “smooth morphism of orbifolds” we have to provide smooth lifts in
charts. However, these lifts should be “smoothly related” to obtain a well-behaved
notion of orbifold morphism. In this note we understand orbifold morphisms as
maps in the sense of Pohl [9]:

Definition 2. A representative of an orbifold map from (Q,U) to (Q′,U ′) is a tuple

f̂ = (f, {fi}i∈I , [P, ν]) where
R1 f : Q → Q′ is a continuous map,
R2 ∀i ∈ I, fi is a smooth local lift of f with respect to (Vi, Gi, πi) ∈ U ,

(V ′
i , G

′
i, π

′
i) ∈ U ′ such that the (Vi, Gi, πi) cover Q

R3 the lifts are smoothly related to each other, i.e., for certain change of charts
λ : Vi ⊇ U → Vj , i, j ∈ I (contained in the set P ), there is a change of charts
ν(λ), such that fj ◦ λ = ν(λ) ◦ fi|domλ holds. This compatibility condition is
encoded by the pair (P, ν).

We will not give details in these notes concerning the pair (P, ν) and the axioms
they satisfy (cf. [9, Definition 4.4]). It turns out that these data are naturally fixed
for most types of mappings considered in these notes.

An orbifold map (or morphism of orbifolds) [f̂ ] is an equivalence class of represen-
tatives. The equivalence relation is obtained by identifying representatives which
arise by refinements of orbifold atlases. Again, we omit the details here (which are
recorded in [9]) and remark only:
Orbifolds and orbifold morphisms form a category denoted by Orb.

Definition 3. A morphism of orbifolds [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) is called an
orbifold diffeomorphism if it is an isomorphism in Orb. Define the orbifold dif-
feomorphism group DiffOrb (Q,U) to be the subset of all orbifold diffeomorphisms
contained in Orb((Q,U), (Q,U)).

The following result shows that we may forget the compatibility condition
R3 mentioned in Definition 2 for orbifold diffeomorphisms:

Proposition 1 ([10, Corollary 2.1.12]). For an orbifold map [f̂ ] the following are
equivalent:

1. [f̂ ] is an orbifold diffeomorphism,

2. there is a representative f̂ = (f, {fj}j∈J , [P, ν]) of [f̂ ] such that f is a home-

omorphism and each fj is a diffeomorphism.
In particular, an orbifold diffeomorphism is uniquely determined by its lifts.

Example 2. Consider an orbifold with global chart as in Example 1. Let h̃ : Rd →
Rd be a homeomorphism. If there is a group automorphism α : G → G with h̃◦γ =
α(γ).h̃ for all γ ∈ G, we call h̃ a weak equivalence. For a weak equivalence h̃ the

map h : Rd/G → Rd/G, x 	→ π ◦ h̃ ◦ π−1(x) makes sense and is a homeomorphism.
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Following Proposition 1, each diffeomorphism h̃ : Rd → Rd which is a weak equiv-

alence induces an orbifold diffeomorphism [ĥ] ∈ DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
. A

representative ĥ of [ĥ] is uniquely determined by the smooth lift h̃.

Before we state the main result on the diffeomorphism group of an orbifold,
we need to introduce mappings associated to the tangent orbifold. Analogous to
the construction of a tangent manifold for a smooth manifold, one can construct a
tangent orbifold (T Q, T U) for an orbifold (Q,U) (see [1, Section 1.3] or [10, Section
3.1]). The orbifold tangent space TxQ for a singular point x ∈ Q will not support a
natural vector space structure, but it contains a unique zero-element 0x. Moreover,
there is a well-defined orbifold morphism πT (Q,U) : (T Q, T U) → (Q,U), the so-
called “bundle projection“. Right inverses of the projection are sections to the
tangent orbifold:

Definition 4.
1. A map of orbifolds [σ̂] ∈ Orb ((Q,U), T (Q,U)) is called orbisection if it

satisfies πT (Q,U) ◦ [σ̂] = id(Q,U). Here id(Q,U) is the identity morphism of
(Q,U). Denote the set of all orbisections for (Q,U) by XOrb (Q).

2. For [σ̂] ∈ XOrb (Q) the support supp[σ̂] of [σ̂] is the closure of the set
{x ∈ Q |σ(x) 
= 0x} ⊆ Q. If supp[σ̂] ⊆ K holds for some compact subset
K ⊆ Q, then [σ̂] ∈ XOrb (Q) is called compactly supported (in K). Let
XOrb (Q)c be the set of all compactly supported orbisections in XOrb (Q).

It turns out that orbisections are uniquely determined by their lifts. Even
more, an orbisection possesses a unique lift in each chart, which we call a canon-
ical lift. Notice that in general orbifold morphisms need not posses lifts in a pre-
scribed orbifold chart. We obtain the following characterization for the compactly
supported orbisections:

Theorem 2 ([10, Proposition 3.2.9 and Section 3.3]). Let {(Ui, Gi, ϕi) | i ∈ I} be
any orbifold atlas for (Q,U). Denote by X (Ui) the space of all smooth vector fields
on the manifold Ui. The set XOrb (Q)c is in bijection with all families of vector
fields (σi)i∈I ∈

⊕
i∈I X (Ui) which satisfy the compatibility condition:

Tλ ◦ σi|domλ = σj ◦ λ, ∀λ : Vi ⊇ U → Vj change of charts, i, j ∈ I

The embedding XOrb (Q)c ↪→
⊕

i∈I X (Ui) turns the compactly supported orbisec-
tions into a locally convex space.

Example 3. Consider an orbifold as in Example 1. By Theorem 2, the space of com-
pactly supported orbisections XOrb

(
Rd/G

)
c
corresponds to the compactly sup-

ported vector fields in X
(
Rd

)
which satisfy X ◦ λ = Tλ ◦ X |domλ for all change

of charts λ. Then [7, Lemma 2.11] implies that this condition is equivalent to
X ◦ γ = Tγ ◦X for all γ ∈ G. In particular the space XOrb

(
Rd/G

)
c
is isomorphic

to the subset of all compactly supported and equivariant vector fields

X
(
Rd

)G
c
:=

{
X ∈ X

(
Rd

) ∣∣ suppX is compact, X ◦ γ = Tγ ◦X, ∀γ ∈ G
}
.
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The space of compactly supported orbisections will be the modeling space for
the Lie group structure on DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
. To construct a chart, we

use results from Riemannian geometry on orbifolds. The leading idea is to construct
objects from Riemannian geometry on charts and to glue them via change of
charts. It is well known that one can construct a Riemannian orbifold metric for an
orbifold (see [7, Proposition 2.20]). Moreover, one can construct for each element
in T Q a unique maximal orbifold geodesic (cf. [10, Section 4.1]). Let Ω be the
subset of elements in T Q whose associated maximal geodesic exists at least up to
time 1. Then the map expOrb : T Q ⊇ Ω → Q sending an element to its associated
orbifold geodesic evaluated at time 1 induces a morphism of orbifolds [expOrb] (cf.
[10, Section 4.2]). This morphism is called Riemannian orbifold exponential map.

Theorem 3 ([10, Theorem 5.2.4]). The group DiffOrb (Q,U) can be made into an
infinite-dimensional Lie group (in the sense of [8]) such that:

For some Riemannian orbifold metric ρ, let [expOrb] be the Riemannian orb-
ifold exponential map with domain Ω. There exists an open zero-neighborhood in
XOrb (Q)c such that

[σ̂] 	→ [expOrb] ◦ [σ̂]|Ω

is a C∞-diffeomorphism onto an open submanifold of DiffOrb (Q,U). The condition
is then satisfied for every Riemannian orbifold metric on (Q,U).
Proposition 4 ([10, Theorem 5.3.1]). The Lie algebra of DiffOrb (Q,U) is given
by (XOrb (Q)c , [ ·, · ]). The Lie bracket of two orbisections [σ̂], [τ̂ ] is the orbisection
whose canonical lift on a chart (U,G, ϕ) is

[σU , τU ] (Lie bracket in X (U)).

Here σU and τU are the canonical lifts of [σ̂] and [τ̂ ], respectively.

In the rest of this note, we will apply the results to the orbifolds considered in
Example 1. We will see that for these orbifolds, Theorem 3 induces Lie group struc-
tures for certain subgroups of Diff(Rd). In particular, these Lie group structures
will coincide with closed Lie subgroups of Diff(Rd) (see [5] for the construction of
the Lie group Diff(Rd)).

2. Application to equivariant diffeomorphism groups

For this section, we use the notation introduced in Examples 1 and 2.

5. Denote by DiffG(Rd) the subset of all weak equivalences in Diff(Rd). As in

Example 2, we let [ĥ] be the orbifold diffeomorphism associated to h̃ ∈ DiffG(Rd).
Consider the map

D : DiffG(Rd) → DiffOrb

(
Rd/G,

{
Rd, G, π

})
, f̃ 	→ [f̂ ].

Each orbifold diffeomorphisms in the image of D is induced by a lift in the global
chart. Since orbifold diffeomorphisms are uniquely determined by their lifts, the
composition of these lifts induces the composition of orbifold diffeomorphisms.
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Thus D(h̃−1) coincides with D(h̃)−1 (the inverse in DiffOrb (Q,U)) by [10, Corol-
lary 2.1.12]. Summing up, D is a group homomorphism.

The map D is not injective, as elements of DiffG(U) which differ only up
to composition with an element of G are mapped to the same diffeomorphism of
orbifolds. From [7, Lemma 2.11] we deduce that the kernel of D coincides with G.
Hence D induces an injective group homomorphism:

Δ: DiffG(Rd)/G → DiffOrb

(
Rd/G,

{
Rd, G, π

})
We will show in the next proposition that Δ is surjective, i.e., each orbifold dif-
feomorphisms of the orbifold (Rd/G,

{
Rd, G, π

}
) corresponds to diffeomorphism

of Rd, which is a weak equivalence with respect to the G-action.

Proposition 6. Consider [ĥ] ∈ DiffOrb

(
Rd/G,

{
Rd, G, π

})
with representative

(h, {hi}i∈I , (P, ν)) ∈ [ĥ]. The map h lifts to a diffeomorphism h̃ of Rd which
is a weak equivalence, with respect to the G-action.

Proof. We shall construct at first a lift on the set of non-singular points. By condi-
tion (IS) of Example 1, there is only one singular point. The origin in Rd is jointly
fixed by all elements of G. Hence Rd \ {0} corresponds to the set of non-singular

points and we set Qreg := Q\ {0}. It is easy to see that q := π|Qreg

Rd\{0} is a covering.

Diffeomorphisms of orbifolds preserve singular points by [10, Proposition
2.1.5] and thus the homeomorphism h : Q → Q satisfies fπ(0) = π(0). The re-

striction h|Qreg

Qreg
yields a homeomorphism.

If d = 1 holds, then the space R \ {0} is disconnected. Then the mapping q|]0,∞[ :
]0,∞[→ Qreg is a homeomorphism and we obtain a well-defined homeomorphism
h+ := (q|]0,∞[)

−1hq|]0,∞[, mapping ]0,∞[ to itself. This mapping extends to a
homeomorphism via

hreg : R \ {0} → R \ {0} , x 	→
{
h+(x) x > 0

r ◦ h+ ◦ r(x) = −h+(−x) x < 0.

By construction, hreg and also its inverse are equivariant maps with respect to

G = 〈r〉. Thus hreg extends to an equivariant homeomorphism h̃ : R → R by

setting h̃(0) = 0.

If d ≥ 2 holds, then the space Rd \ {0} is (path-)connected. We have to construct
a lift freg : Rd \ {0} → Rd \ {0}.
For d ≥ 3, the space Rd\{0} is simply connected, path-connected and locally path-
connected. Choose x0 ∈ Rd\{0} and y0 ∈ q−1hq(x0). Then by [6, Proposition 1.33],
there is a unique lift hreg : Rd \ {0} → Rd \ {0} of h|Qreg ◦ q which maps x0 to y0.

For d = 2, the space R2\{0} is not simply connected. However, it is path-connected
and locally path-connected. We may still apply [6, Proposition 1.33] if the funda-
mental group π1(R2 \ {0} , x0) satisfies:

(h|Qreg ◦ q)∗(π1(R
2 \ {0} , x0)) ⊆ q∗(π1(R

2 \ {0} , y0)) (1)
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Recall that the fundamental group π1(R2 \ {0} , x0) can be identified with Z (cf.
[6, Example 1.15]). Moreover, as G ⊆ SO(2) holds, the subgroup G ⊆ O(2) must
be a cyclic group, generated by a rotation γ of order m ∈ N. As we have already
seen, Q is homeomorphic to a cone and Qreg may be identified with a cone whose
tip has been removed. In particular, the space Qreg is homeomorphic to R2 \ {0}.

Consider a generator [e] of the fundamental group π1(R2\{0} , x0), where e is
chosen as a circle around the origin passing through x0. If γ is a rotation of order
m, then we have q∗[e] = [q ◦ e] is a loop in Qreg, which passes m times through
π(y0). The next picture illustrates this behavior:

Figure 2. Image of a loop generating π1(R2 \ {0} , x0) with respect to
q∗. The loop displayed in Qreg is a curve homotopic to the image of the
closed loop for m = 3.

Note that π1(Qreg, q(y0)) is isomorphic to Z and let [f ] be the generator
of π1(Qreg, q(x0)). By abuse of notation we let [f ] be the generator of each
fundamental group for points in Qreg. From the arguments above, we deduce
q∗(π1(R2 \ {0} , x0)) = 〈m[f ]〉 and thus

(h|Qreg ◦ q)∗([e]) = (h|Qreg

Qreg
)∗(m[f ]) = m([h ◦ f ]) ∈ 〈m[f ]〉 = Im q∗.

Therefore property (1) is satisfied and we obtain a unique lift

hreg : R
2 \ {0} → R2 \ {0}

of h|Qreg

Qreg
mapping x0 to y0.

Analogous arguments allow the construction of a unique lift (h−1)reg for

h−1|Q\{0} ◦ q and d ≥ 2, which maps y0 to x0. We claim that (h−1)reg is the
inverse of hreg. If this is true, then hreg is a homeomorphism. To prove the claim,
consider the map f := hreg ◦ (h−1)reg and compute

q ◦ f = q ◦ hreg ◦ (h−1)reg = h ◦ q ◦ (h−1)reg = q.

Hence f is a lift of idQreg taking y0 to y0, and so is the map idRd\{0}. By the unique-

ness of lifts between pointed spaces (see [6, Proposition 1.34]), hreg ◦ (h−1)reg =
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f = idRd\{0}. Likewise, (h
−1)reg ◦ hreg = idRd\{0}. Summing up, hreg is a homeo-

morphism with inverse (h−1)reg.
We show that the homeomorphism hreg commutes with the G-action via an

automorphism of G. To prove this, consider g ∈ G and x ∈ Rd \ {0}. We have

q ◦ hreg ◦ g ◦ h−1
reg(x)) = hh−1q(x) = q(x).

Hence hreg ◦ g ◦h−1
reg is a lift of idRd\{0} and so there is an unique element α(g) ∈ G

such that hreg ◦g ◦h−1
reg(x0) = α(g)(x0). By uniqueness of lifts, hreg ◦g ◦h−1

reg = α(g)

on Rd \ {0}. Repeat this construction for each g ∈ G to obtain a map α : G → G
with hreg ◦ g = α(g) ◦ hreg on Rd \ {0} for each g ∈ G. Since α(gk) ◦ hreg =
hreg ◦ (gk) = α(g).hreg ◦ k = α(g).α(k).hreg holds and hreg is a homeomorphism,
the map α is an injective group homomorphism. As G is finite, α is thus a group
automorphism with hreg ◦ g = α(g).hreg for each g ∈ G. We extend this map hreg

to a homeomorphism h̃ : Rd → Rd via h̃(0) = 0. This map satisfies h̃ ◦ g = α(g).h̃.

We conclude that h̃ is indeed a weak equivalence. Using the definition of orbifold
morphisms, one can show that h̃ is a smooth diffeomorphism (see [10, Proposition
6.0.5]). �

Corollary 7. For an orbifold (Q,U) as in 1, the mapping D is surjective. In partic-

ular, the induced map Δ: DiffG(Rd)/G → DiffOrb (Q,U) is a group isomorphism.

8. Endow DiffG(Rd)/G with the Lie group structure making Δ an isomorphism of

Lie groups. Now we consider the subgroup of DiffG(Rd) whose elements coincide
with the identity off some compact subset:

DiffG
c (R

d) :=
{
f ∈ DiffG(Rd)

∣∣∣∃K ⊆ Rd compact, f |Rd\K = idRd\K

}
On the level of orbifold diffeomorphisms, we may also consider diffeomorphisms
which coincide off some compact set with the identity. These diffeomorphisms
form an open Lie subgroup DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
c
of all orbifold diffeomor-

phisms (cf. [10, Remark 5.2.7]). By construction, D maps DiffG
c (R

d) into the open

Lie subgroup DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
c
. Recall that G ∩ DiffG

c (U) = {idRd}.
Thus for the orbifolds in Example 1, the map D restricts to an injective group
homomorphism.

Δc : DiffG
c (U) → DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
c

Lemma 9. The map Δc : DiffG
c (R

d) → DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
c
introduced

in 8 is an isomorphism of groups.

Proof. Consider [ĥ] ∈ DiffOrb (Q,U)c with a representative (h,
{
h̃
}
, [P, ν]). Here

the lift h̃ : Rd → Rd has been chosen with h̃ ∈ D−1([ĥ]) (which is possible by
Proposition 7). Let K ⊆ Q be a compact set with h|Q\K ≡ idQ\K . As π : Rd → Q

is a proper map, the set π−1(K) is compact. Choose a compact set L ⊆ Rd with
π−1(K) ⊆ L and Rd \ L being connected if d ≥ 2. If d = 1, we may assume that
0 ∈ L and R\L contains exactly two connected components. Recall from the proof
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of Proposition 6 that the lift h̃ has been constructed with respect to an arbitrary
pair x0 ∈ Rd \ {0} and y0 ∈ π−1hπ(x0) such that h̃(x0) = y0 (if d ≥ 2). Without
loss of generality, choose x0 ∈ Rd \ L. Since h|Q\π(L) ≡ idQ\π(L) holds, one can

set y0 = x0. We claim that the lift h̃ with respect to these choices is contained

in DiffG
c (R

d). If this is true, then Δc(h̃) = D(h̃) = [ĥ] follows and Δc is a group
isomorphism.

To prove the claim, it suffices to prove that h̃ coincides with idRd outside
the compact set L. We distinguish two cases: If d ≥ 2, then h̃ is a lift of the
identity on the connected set Rd \ L which takes x0 to x0 and so is idRd\L.

Hence, h̃|Rd\L = idRd\L by uniqueness of lifts (cf. [6, Proposition 1.34]). Hence

h̃ ∈ DiffG
c (R

d) follows.
If d = 1, by choice of L the space R \ L contains two connected components

C1, C2. Now [7, Lemma 2.11] yields h̃|Ci = gi|Ci for some gi ∈ G and i ∈ {1, 2}. By
construction of h̃, we have h̃(]0,∞[) ⊆ ]0,∞[ and h̃(]−∞, 0[) ⊆ ]−∞, 0[, whence

g1 = g2 = idR and thus h̃ ∈ DiffG
c (R). �

We can thus endow the group DiffG
c (R

d) with the unique topology turning
Δc into an isomorphism of Lie groups. In this section, we have seen that for the
class of orbifolds introduced in Example 1, the following holds:

• The Lie group of orbifold diffeomorphisms

DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
is isomorphic to DiffG(Rd)/G. In particular, all orbifold diffeomorphisms are
induced by diffeomorphisms of Rd which are weak equivalences with respect
to the G-action.

• The Lie group of all compactly supported orbifold diffeomorphisms

DiffOrb

(
Rd/G,

{
(Rd, G, π)

})
c

is isomorphic to DiffG
c (R

d).

Thus compactly supported orbifold diffeomorphisms correspond bijectively
to compactly supported weak equivalences of Rd.

Finally, we would like to clarify how the Lie group structures obtained in this
section relate to Lie group structures already constructed on these groups. In
[5, Theorem 6.5] a Lie group structure for Diff(Rd) has been constructed. This Lie

group contains DiffG(Rd) as a closed subgroup modeled on the space X
(
Rd

)G
c
. By

a general construction principle for Lie groups (see [3, III. §1 9. Proposition 18]),

the Lie group DiffG
c (R

d) also induces a Lie group structure on DiffG(Rd). This Lie

group then contains DiffG
c (R

d) as an open subgroup. Furthermore, notice that this

structure turns G into a discrete normal subgroup of DiffG(Rd). We have shown
in [10, Remark 6.0.8] that both Lie group structures coincide. Thus the Lie group
structures constructed in this section coincide with the structures obtained by the
traditional construction.
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