Geometric Methods in Physics. XXXII Workshop 2013 Trends in Mathematics, 143–151 -c 2014 Springer International Publishing Switzerland

Complex Manifold Structure and Algebroid of the Partially Invertible Elements Groupoid of a *W∗***-algebra**

Anatol Odzijewicz, Aneta Sliżewska and Grzegorz Jakimowicz

Abstract. The goal of the present note based on [4] is a description of complex manifold structure of the groupoid $\mathcal{G}(\mathfrak{M})$ of partially invertible elements of W^{*}-algebra \mathfrak{M} . We also describe Banach–Lie algebroid $\mathcal{A}(\mathfrak{M})$ of the groupoid $G(\mathfrak{M}).$

Mathematics Subject Classification (2010). 47C15; 58H05.

Keywords. Groupoid, W∗-algebra, algebroid.

1. Introduction

During the last few decades one can observe a progress in the study of Lie groupoids and algebroids which play a significant role in differential geometry. As a consequence their impact in mathematical physics is also increasing, see, e.g., [3, 8] and references therein. Similar situation occurs in the operator algebras theory where the convolution C∗-algebras of functions on locally compact groupoids equipped with a left Haar system are considered, see [6].

In this note, following [4] and [5], we describe Banach–Lie groupoids and algebroids related in the canonical way to the structure of a W^* -algebra (von Neumann algebra).

The most detailed description of the subject and motivation for this kind of investigations one can find in [4] and [5].

2. Groupoid of partially invertible elements of *W∗***-algebra**

Let us begin with recalling the basic definitions.

A *groupoid* over base set B (see, e.g., [3, 8]) is a set G equipped with maps:

(i) a *source* map $\mathbf{s} : \mathcal{G} \to B$ and a *target map* $\mathbf{t} : \mathcal{G} \to B$

(ii) a *product* $m: \mathcal{G}^{(2)} \to \mathcal{G}$

$$
m(g, h) =: gh,
$$

defined on *the set of composable pairs*

$$
\mathcal{G}^{(2)} := \{ (g, h) \in \mathcal{G} \times \mathcal{G} : \ \mathbf{s}(g) = \mathbf{t}(h) \},
$$

- (iii) an injective *identity section* $\varepsilon : B \to \mathcal{G}$,
- (iv) an *inverse map* $\iota : \mathcal{G} \to \mathcal{G}$, which are subject to the following compatibility conditions:

$$
\mathbf{s}(gh) = \mathbf{s}(h), \quad \mathbf{t}(gh) = \mathbf{t}(g), \tag{1}
$$

$$
k(gh) = (kg)h,\t\t(2)
$$

$$
\varepsilon(\mathbf{t}(g))g = g = g\varepsilon(\mathbf{s}(g)),\tag{3}
$$

$$
\iota(g)g = \varepsilon(\mathbf{s}(g)), \qquad g\iota(g) = \varepsilon(\mathbf{t}(g)), \tag{4}
$$

where $a, k, h \in \mathcal{G}$.

For a groupoid G over a base B we will use the notation $\mathcal{G} \rightrightarrows B$.

Remark 1. Equivalently one can define a groupoid $\mathcal{G} \rightrightarrows B$ as a small category in which all morphisms are invertible, see for example [2].

Let us recall that ^C∗-algebra ^M is called ^W∗*-algebra* (or *von Neumann algebra*) if there exists a Banach space \mathfrak{M}_* such that

$$
(\mathfrak{M}_*)^* = \mathfrak{M},
$$

i.e., M possesses a predual Banach space \mathfrak{M}_* . If \mathfrak{M}_* exists it is defined in a unique way by the structure of W^* -algebra \mathfrak{M} , see [7].

Element $p \in \mathfrak{M}$ is called a *(orthogonal) projection* if $p^* = p = p^2$. We will denote the lattice of projections of the W[∗]-algebra \mathfrak{M} by $\mathcal{L}(\mathfrak{M})$. Element $u \in \mathfrak{M}$ is called a *partial isometry* if uu^* (or equivalently u^*u) is a projection. We will denote the set of partial isometries of the W^{*}-algebra \mathfrak{M} by $\mathcal{U}(\mathfrak{M})$.

The least projection $l(x) \in \mathcal{L}(\mathfrak{M})$ in \mathfrak{M} , such that

$$
l(x)x = x \qquad \text{(respectively } x \ r(x) = x)
$$
\n⁽⁵⁾

is called the *left support* (respectively *right support*) of $x \in \mathfrak{M}$.

If $x \in \mathfrak{M}$ is self adjoint, then *support* of x is a projection

$$
s(x) := l(x) = r(x).
$$

The *polar decomposition* of $x \in \mathfrak{M}$ is a representation

$$
x = u|x|,\t\t(6)
$$

where $u \in \mathfrak{M}$ is partial isometry and $|x| := \sqrt{x^*x} \in \mathfrak{M}^+$ such that

$$
l(x) = s(|x^*|) = uu^*,
$$
 $r(x) = s(|x|) = u^*u.$

We define the set $\mathcal{G}(\mathfrak{M})$ of *partially invertible* elements of \mathfrak{M} as follows

$$
\mathcal{G}(\mathfrak{M}) := \{ x \in \mathfrak{M}; \ \ |x| \in G(p\mathfrak{M}p), \ \text{where } p = s(|x|) \},
$$

where $G(p\mathfrak{M}p)$ is the group of all invertible elements of W^* -subalgebra $p\mathfrak{M}p \subset \mathfrak{M}$.

$$
144 \\
$$

Remark 2. $\mathcal{G}(\mathfrak{M}) \subset \mathfrak{M}$.

We can define the groupoid structure $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$ with $\mathcal{G}(\mathfrak{M})$ being the set of invertible morphisms and $\mathcal{L}(\mathfrak{M})$ as the base set. The groupoid maps for $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$ are defined as follows:

(i) the source and target maps $\mathbf{s}, \mathbf{t} : \mathcal{G}(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ are

$$
\mathbf{s}(x) := r(x), \qquad \mathbf{t}(x) := l(x),
$$

(ii) the product is the product in \mathfrak{M} restricted to

$$
\mathcal{G}(\mathfrak{M})^{(2)} := \{ (x, y) \in \mathcal{G}(\mathfrak{M}) \times \mathcal{G}(\mathfrak{M}); \ \mathbf{s}(x) = \mathbf{t}(y) \},
$$

- (iii) the identity section $\varepsilon : \mathcal{L}(\mathfrak{M}) \hookrightarrow \mathcal{G}(\mathfrak{M})$ as the embedding,
- (iv) the inverse map $\iota : \mathcal{G}(\mathfrak{M}) \to \mathcal{G}(\mathfrak{M})$ is

$$
\iota(x) := |x|^{-1}u^*.
$$

The subset of partial isometries $\mathcal{U}(\mathfrak{M}) \subset \mathcal{G}(\mathfrak{M})$ inherits the groupoid structure $\mathcal{U}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$ from $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$. Let us note here that for $\mathcal{U}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$ the source and target maps $\mathbf{s}, \mathbf{t} : \mathcal{G}(\mathfrak{M}) \to \mathcal{L}(\mathfrak{M})$ are:

$$
\mathbf{s}(u) = u^*u, \qquad \mathbf{t}(u) = uu^*,
$$

and inverse map $\iota : \mathcal{U}(\mathfrak{M}) \to \mathcal{U}(\mathfrak{M})$ is expressed by the involution:

$$
\iota(u)=u^*.
$$

Remark 3. The groupoid $\mathcal{U}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$ is a wide subgroupoid of $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$.

For details we address to [4].

3. Banach–Lie groupoid structure of $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$

One properly defines the complex Banach manifold structure on the groupoid $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$ and shows that the groupoid maps are consistent with the structure, i.e., the groupoid of partially invertible elements is a Banach–Lie groupoid, see $|4|$.

For any projection $p \in \mathcal{L}(\mathfrak{M})$ we define (following [4]) the subset $\Pi_p \subset \mathcal{L}(\mathfrak{M})$ by

$$
q \in \Pi_p \quad \text{iff} \quad \mathfrak{M} = q\mathfrak{M} \oplus (1-p)\mathfrak{M} \tag{7}
$$

and maps $\sigma_p : \Pi_p \to \mathfrak{M}p$, $\varphi_p : \Pi_p \to (\mathbb{1} - p)\mathfrak{M}p$ by

$$
\sigma_p(q) := x, \qquad \varphi_p(q) := y,\tag{8}
$$

where $p = x - y$ is consistent with the splitting (7). Note that $l \circ \sigma_p = id_{\Pi_p}$ and φ_p defines a bijections between Π_p and the Banach space $(1-p)\mathfrak{M}p$.

In order to construct transitions maps

$$
\varphi_p \circ \varphi_{p'}^{-1} : \varphi_{p'}(\Pi_p \cap \Pi_{p'}) \to \varphi_p(\Pi_p \cap \Pi_{p'})
$$

in the case $\Pi_p \cap \Pi_{p'} \neq \emptyset$, let us take for $q \in \Pi_p \cap \Pi_{p'}$ the following splittings

$$
\mathfrak{M} = q\mathfrak{M} \oplus (1-p)\mathfrak{M} = p\mathfrak{M} \oplus (1-p)\mathfrak{M},
$$

$$
\mathfrak{M} = q\mathfrak{M} \oplus (1-p')\mathfrak{M} = p'\mathfrak{M} \oplus (1-p')\mathfrak{M}.
$$

(9)

Splittings (9) lead to the corresponding decompositions of p and p'

$$
p = x - y
$$

\n
$$
p' = x' - y'
$$

\n
$$
p = a + b
$$

\n
$$
p' = x' - y'
$$

\n
$$
1 - p = c + d
$$
\n(10)

where $x \in q\mathfrak{M}p$, $y \in (1-p)\mathfrak{M}p$, $x' \in q\mathfrak{M}p'$, $y' \in (1-p')\mathfrak{M}p'$, $a \in p'\mathfrak{M}p$,
 $b \in (1-p')\mathfrak{M}p$, $c \in p'\mathfrak{M}(1-p)$ and $d \in (1-p')\mathfrak{M}(1-p)$. Using (10) we get the $y' \in (1-p')\mathfrak{M}p'$, $a \in p'$ formula

$$
y' = (\varphi_{p'} \circ \varphi_p^{-1})(y) = (b + dy)\iota(a + cy).
$$

Theorem 4. *The family of charts*

$$
(\Pi_p, \varphi_p) \quad p \in \mathcal{L}(\mathfrak{M})
$$

defines a complex analytic atlas on $\mathcal{L}(\mathfrak{M})$. This atlas is modeled on the family of Banach spaces $(1 - n)\mathfrak{M}n$, where $n \in \mathcal{L}(\mathfrak{M})$. *Banach spaces* $(1-p)\mathfrak{M}_p$, where $p \in \mathcal{L}(\mathfrak{M})$.

Remark 5. For equivalent projections $p \sim p'$ there exists a partial isometry $u \in$ $\mathcal{U}(\mathfrak{M})$ such that $uu^* = p$ and $u^*u = p'$, so that one has $(1 - p)\mathfrak{M}p \cong (1 - p')\mathfrak{M}p'$.

In order to introduce the complex analytic structure on $\mathcal{G}(\mathfrak{M})$ we define for any $\tilde{p}, p \in \mathcal{L}(\mathfrak{M})$ the set

$$
\Omega_{\tilde{p}p}:=\mathbf{t}^{-1}(\Pi_{\tilde{p}})\cap\mathbf{s}^{-1}(\Pi_p).
$$

If $\Omega_{\tilde{p}p} \neq \emptyset$ we define the map

$$
\psi_{\tilde{p}p}: \Omega_{\tilde{p}p} \to (1-\tilde{p})\mathfrak{M}\tilde{p} \oplus \tilde{p}\mathfrak{M}p \oplus (1-p)\mathfrak{M}p
$$

by

$$
\psi_{\tilde{p}p}(x) := (\varphi_{\tilde{p}}(\mathbf{t}(x)), \iota(\sigma_{\tilde{p}}(\mathbf{t}(x)))x\sigma_{p}(\mathbf{s}(x)), \varphi_{p}(\mathbf{s}(x)))\,,\tag{11}
$$

which is a bijection of $\Omega_{\tilde{p}p}$ onto an open subset of the direct sum of the Banach subspaces $(1 - \tilde{p})\mathfrak{M}\tilde{p} \oplus \tilde{p}\mathfrak{M}p \oplus (1 - p)\mathfrak{M}p$ of the W^{*}-algebra \mathfrak{M} . The inverse map $\psi_{\tilde{p}p}^{-1} : \psi_{\tilde{p}p}(\Omega_{\tilde{p}p}) \to \Omega_{\tilde{p}p}$ has the form

$$
\psi_{\tilde{p}p}^{-1}(\tilde{y}, z, y) := \sigma_{\tilde{p}}(\tilde{q}) z \iota(\sigma_p(q)) = (\tilde{p} + \tilde{y}) z \iota(p + y)
$$
\n(12)

where $\tilde{q} = l(\tilde{p}+\tilde{y})$ and $q = l(p+y)$ are left supports of $\tilde{p}+\tilde{y}$ and $p+y$ respectively. The transition maps

$$
\psi_{\tilde{p}'p'} \circ \psi_{\tilde{p}p}^{-1} : \psi_{\tilde{p}p}(\Omega_{\tilde{p}'p'} \cap \Omega_{\tilde{p}p}) \to \psi_{\tilde{p}'p'}(\Omega_{\tilde{p}'p'} \cap \Omega_{\tilde{p}p})
$$

for $(\tilde{y}, z, y) \in \psi_{\tilde{p}p}(\Omega_{\tilde{p}'p'} \cap \Omega_{\tilde{p}p})$ are given by

$$
(\psi_{\tilde{p}'p'} \circ \psi_{\tilde{p}p}^{-1})(\tilde{y}, z, y) := (\tilde{y}', z', y'), \qquad (13)
$$

where

$$
\tilde{y'} = (\varphi_{\tilde{p'}} \circ \varphi_{\tilde{p}}^{-1})(\tilde{y}) = (\tilde{b} + \tilde{d}\tilde{y})\iota(\tilde{a} + \tilde{c}\tilde{y})
$$
(14)

$$
y' = (\varphi_{p'} \circ \varphi_p^{-1})(y) = (b + dy)\iota(a + cy)
$$
\n(15)

and

$$
z' = \iota(\tilde{p'} + \tilde{y'})(\tilde{p} + \tilde{y})z\iota(p + y)(p' + y').
$$
 (16)

We note that all maps in (14), (15) and (16) are complex analytic.

Thus we derive

Theorem 6.

(i) *The family of charts*

 $(\Omega_{\tilde{p}p}, \psi_{\tilde{p}p})$,

where $(p, \tilde{p}) \in \mathcal{L}(\mathfrak{M}) \times \mathcal{L}(\mathfrak{M})$ *are pairs of equivalent projections, defines a complex analytic atlas on the groupoid* ^G(M) (*in the sense of* [1])*. This atlas is modeled on the family of Banach spaces* $(1 - \tilde{p})\mathfrak{M}\tilde{p} \oplus \tilde{p}\mathfrak{M}p \oplus (1 - p)\mathfrak{M}p$ *indexed by the pair of equivalent projections* $p, \tilde{p} \in \mathcal{L}(\mathfrak{M})$.

(ii) *All groupoid structure maps and the groupoid product are complex analytic with respect to the above Banach manifold structure.*

Following [5] we present now an example of the subgroupoid of the groupoid $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$. By $\mathcal{G}_{p_0}(\mathfrak{M}) \rightrightarrows \mathcal{L}_{p_0}(\mathfrak{M})$ we denote the transitive subgroupoid of $\mathcal{G}(\mathfrak{M}) \rightrightarrows \mathcal{L}(\mathfrak{M})$, where

$$
\mathcal{L}_{p_0}(\mathfrak{M}) := \{ l(x) : x \in \mathcal{G}(\mathfrak{M}), r(x) = p_0 \}
$$
\n
$$
(17)
$$

and

$$
\mathcal{G}_{p_0}(\mathfrak{M}) := l^{-1}(\mathcal{L}_{p_0}(\mathfrak{M})) \cap r^{-1}(\mathcal{L}_{p_0}(\mathfrak{M})). \tag{18}
$$

Let G_0 be the group of invertible elements of W^{*}-subalgebra $p_0 \mathfrak{M} p_0 \subset \mathfrak{M}$. By P_0 we denote the intersection $\mathcal{G}_{p_0}(\mathfrak{M}) \cap \mathfrak{M}p_0$ of $\mathcal{G}_{p_0}(\mathfrak{M})$ with the left W^* -ideal $\mathfrak{M}p_0$. From the subsequent (see [5])

Proposition 7.

- (i) *Group* G_0 *is an open subset of the Banach space* $p_0 \mathfrak{M} p_0$ *. So,* G_0 *is a Banach Lie group whose Lie algebra is* $p_0 \mathfrak{M} p_0$.
- (ii) The subset $P_0 \,\subset \,\mathfrak{M}p_0$ is open in the Banach space $\mathfrak{M}p_0$. Thus the tangent *bundle* TP_0 *can be identified with the trivial bundle* $P_0 \times \mathfrak{M}p_0$ *.*
- (iii) *One has a free right action of* G_0 *on* $P_0 \times P_0$ *defined by*

$$
P_0 \times P_0 \times G_0 \ni (\eta, \xi, g) \mapsto (\eta g, \xi g) \in P_0 \times P_0.
$$
\n
$$
(19)
$$

It follows that $P_0(\mathcal{L}_{p_0}(\mathfrak{M}), G_0, l)$ is a principal bundle with P_0 as the total space, $\mathcal{L}_{p_0}(\mathfrak{M})$ as the bundle base, and the left support $l : P_0 \to \mathcal{L}_{p_0}(\mathfrak{M})$ as the canonical projection. Thus we obtain the gauge groupoid $\frac{P_0 \times P_0}{G_0} \Rightarrow P_0/G_0$ of the above principal bundle. For the definition of the gauge groupoid see for example [3].

In [5] we show that Banach–Lie groupoids $\frac{P_0 \times P_0}{G_0} \Rightarrow P_0/G_0$ and $\mathcal{G}_{p_0}(\mathfrak{M}) \Rightarrow$ $\mathcal{L}_{p_0}(\mathfrak{M})$ are isomorphic.

4. Algebroid of the groupoid $\mathcal{G}_{p_0}(\mathfrak{M}) \rightrightarrows \mathcal{L}_{p_0}(\mathfrak{M})$

The Atiyah sequence of the principal bundle $P_0(\mathcal{L}_{p_0}(\mathfrak{M}), G_0, l)$ is the following one

$$
0 \to p_0 \mathfrak{M} p_0 \times_{Ad_{G_0}} P_0 \stackrel{\iota}{\hookrightarrow} TP_0/G_0 \stackrel{a}{\to} T(P_0/G_0) \to 0,
$$
 (20)

where $p_0 \mathfrak{M} p_0$ is the Lie algebra of the group G_0 . The vector bundle morphisms ι and a are defined by the sequence

$$
0 \to T^V P_0 / G_0 \xrightarrow{\iota} TP_0 / G_0 \xrightarrow{\pi} TP_0 / TG_0 \to 0 \tag{21}
$$

and isomorphisms

$$
TP_0/TG_0 \cong T(P_0/G_0),\tag{22}
$$

$$
p_0 \mathfrak{M} p_0 \times_{AdG_0} P_0 \cong T^V P_0 / G_0,
$$
\n
$$
(23)
$$

where $T^V P_0$ is the vertical bundle of $P_0(L_{p_0}(\mathfrak{M}), G_0, l)$. We can see from (20) that $TP_0/G_0 \rightarrow P_0/G_0$ is the algebroid of the gauge groupoid $\frac{P_0 \times P_0}{G_0} \Rightarrow P_0/G_0$ which as we have shown above is isomorphic to $\mathcal{G}_{p_0}(\mathfrak{M}) \Rightarrow \mathcal{L}_{p_0}(\mathfrak{M})$. Hence we conclude that the gauge algebroid $\frac{TP_0}{G_0} \to \frac{P_0}{G_0}$ is isomorphic to the algebroid $A_0(\mathfrak{M}) \to C_0(\mathfrak{M})$ of the groupoid $G_0(\mathfrak{M}) \to C_0(\mathfrak{M})$. Using this isomorphism $\mathcal{A}_{p_0}(\mathfrak{M}) \to \mathcal{L}_{p_0}(\mathfrak{M})$ of the groupoid $\mathcal{G}_{p_0}(\mathfrak{M}) \rightrightarrows \mathcal{L}_{p_0}(\mathfrak{M})$. Using this isomorphism
we find that the Lie bracket of $\mathfrak{X} \rightrightarrows \subset \Gamma(T^V P_0/G_0) \cong \Gamma A$ (M) is given by the we find that the Lie bracket of $\mathfrak{X}_1, \mathfrak{X}_2 \in \Gamma(T^V P_0/G_0) \cong \Gamma \mathcal{A}_{p_0}(\mathfrak{M})$ is given by the following expression

$$
[\mathfrak{X}_1, \mathfrak{X}_2](\eta) = \left(\left\langle \frac{\partial \vartheta_2}{\partial \eta}(\eta), \vartheta_1(\eta) \right\rangle - \left\langle \frac{\partial \vartheta_1}{\partial \eta}(\eta), \vartheta_2(\eta) \right\rangle \right) \frac{\partial}{\partial \eta},\tag{24}
$$

where

$$
\mathfrak{X}(\eta) = \vartheta(\eta) \frac{\partial}{\partial \eta} \tag{25}
$$

is G_0 -invariant vector field on P_0 , i.e., $\vartheta: P_0 \to \mathfrak{M}p_0$ satisfies

$$
\vartheta(\eta g) = \vartheta(\eta)g,\tag{26}
$$

where $\eta \in P_0$, $g \in G_0$. The notation (25) means that

$$
(\mathfrak{X}f)(\eta) = \left\langle \frac{\partial f}{\partial \eta}(\eta), \vartheta(\eta) \right\rangle
$$

for any $f \in C^{\infty}(P_0)$.

The anchor map $a : A_{p_0}(\mathfrak{M}) \to T\mathcal{L}_{p_0}(\mathfrak{M})$ for $\mathcal{A}_{p_0}(\mathfrak{M})$ is given by

$$
a := Tl,\tag{27}
$$

where $l : \mathcal{G}_{p_0}(\mathfrak{M}) \to \mathcal{L}_{p_0}(\mathfrak{M})$ is the left support map.

5. An example

We conclude our note presenting an example. Let us take $\mathfrak{M} = L^{\infty}(\mathcal{H})$, where H is a separable complex Hilbert space with a fixed orthonormal basis $\{|e_k\rangle\}_{k=0}^{\infty}$. Setting $p_0 = |e_0\rangle\langle e_0|$ (we use the Dirac notation) we find that

$$
\mathcal{L}_{p_0}(L^{\infty}(\mathcal{H})) = \left\{ \frac{|\eta\rangle\langle\eta|}{\langle\eta|\eta\rangle} : \quad \eta \in \mathcal{H} \setminus \{0\} \right\} \cong \mathbb{CP}(\mathcal{H}) \tag{28}
$$

and

$$
\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) = \left\{ \frac{|\eta\rangle\langle\xi|}{\langle\xi|\xi\rangle} : \quad \eta, \xi \in \mathcal{H} \setminus \{0\} \right\}.
$$
 (29)

5.1. The groupoid $\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \rightrightarrows \mathcal{L}_{p_0}(L^{\infty}(\mathcal{H}))$

The structure maps in this case are as follows:

(i) the source and target maps $s, t : \mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \to \mathcal{L}_{p_0}(L^{\infty}(\mathcal{H}))$ are of the form:

$$
\mathbf{s}\left(\frac{|\eta\rangle\langle\xi|}{\langle\xi|\xi\rangle}\right) = \frac{|\xi\rangle\langle\xi|}{\langle\xi|\xi\rangle}, \qquad \mathbf{t}\left(\frac{|\eta\rangle\langle\xi|}{\langle\xi|\xi\rangle}\right) = \frac{|\eta\rangle\langle\eta|}{\langle\eta|\eta\rangle},\tag{30}
$$

(ii) the product of elements $\frac{|\eta\rangle\langle\xi|}{\langle\xi|\xi\rangle}, \frac{|\xi\rangle\langle\lambda|}{\langle\lambda|\lambda\rangle} \in \mathcal{G}_{p_0}(L^{\infty}(\mathcal{H}))$ is:

$$
\frac{|\eta\rangle\langle\xi|}{\langle\xi|\xi\rangle}\frac{|\xi\rangle\langle\lambda|}{\langle\lambda|\lambda\rangle} = \frac{|\eta\rangle\langle\lambda|}{\langle\lambda|\lambda\rangle},\tag{31}
$$

- (iii) the identity section ε : $\mathcal{L}_{p_0}(L^{\infty}(\mathcal{H})) \to \mathcal{G}_{p_0}(L^{\infty}(\mathcal{H}))$ is the embedding,
- (iv) the inverse map $\iota : \mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \to \mathcal{G}_{p_0}(L^{\infty}(\mathcal{H}))$ is given by

$$
\iota\left(\frac{|\eta\rangle\langle\xi|}{\langle\xi|\xi\rangle}\right) = \frac{|\xi\rangle\langle\eta|}{\langle\eta|\eta\rangle}.\tag{32}
$$

We note that for $p_0 = |e_0\rangle\langle e_0|$ one has

$$
(L^{\infty}(\mathcal{H}))p_0 = \{ |\vartheta\rangle \langle e_0| : \vartheta \in \mathcal{H} \} \cong \mathcal{H}, \tag{33}
$$

$$
P_0 = \{ |\eta\rangle \langle e_0| : \quad \eta \in \mathcal{H} \setminus \{0\} \} \cong \mathcal{H} \setminus \{0\},\tag{34}
$$

and

$$
G_0 = G\left(p_0(L^{\infty}(\mathcal{H}))p_0\right) \cong \mathbb{C} \setminus \{0\}.
$$
\n
$$
(35)
$$

So, the groupoid $\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \rightrightarrows \mathcal{L}_{p_0}(L^{\infty}(\mathcal{H}))$ is isomorphic to the gauge groupoid of the complex Hopf bundle

$$
\mathbb{C} \setminus \{0\} \longrightarrow \mathcal{H} \setminus \{0\}
$$

$$
\downarrow l
$$

$$
\mathbb{CP}(\mathcal{H}). \tag{36}
$$

5.2. The complex manifold structure of $\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \rightrightarrows \mathcal{L}_{p_0}(L^{\infty}(\mathcal{H}))$

In order to introduce the differential structure of the groupoid $\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \rightrightarrows$ $\mathcal{L}_{p_0}(L^{\infty}(\mathcal{H}))$ we should notice that for the orthonormal projections $p_k := |e_k\rangle\langle e_k|$, $k \in \mathbb{N} \cup \{0\}$, the sets $\Pi_k := \Pi_{p_k}$ defined in (7) are the following

$$
\Pi_k = \left\{ q = \frac{|\xi\rangle\langle\xi|}{\langle\xi|\xi\rangle}; \quad \xi_k \neq 0, \text{where } \xi = \sum_{k=o}^{\infty} \xi_k |e_k\rangle \right\}.
$$
 (37)

The maps $\sigma_k : \Pi_k \to (L^{\infty}(\mathcal{H}))p_k$ and $\varphi_k : \Pi_k \to (1 - p_k)(L^{\infty}(\mathcal{H}))p_k$, see (8), are given by

$$
\sigma_k(q) = \frac{1}{\xi_k} |\xi\rangle \langle e_k| \,,\tag{38}
$$

and

$$
\varphi_k(q) = \frac{1}{\xi_k} |\xi\rangle \langle e_k| - |e_k\rangle \langle e_k| = \mathbf{y}_k,\tag{39}
$$

respectively. Let us note here that we can write $\mathbf{y}_k \in (1 - p_k)(L^{\infty}(\mathcal{H}))p_k$ in the form

$$
\mathbf{y}_k = \sum_{l \neq k} \frac{\xi_l}{\xi_k} |e_l\rangle\langle e_k|.
$$
 (40)

So, $\frac{\xi_l}{\xi_k} =: y_k^l$, where $k \neq l \in \mathbb{N} \cup \{0\}$, are the homogeneous coordinates of $q \in \Pi_k$. The charts

$$
\psi_{km}: l^{-1}(\Pi_k) \cap r^{-1}(\Pi_m) \n\to (1-p_k)(L^{\infty}(\mathcal{H}))p_k \oplus p_k(L^{\infty}(\mathcal{H}))p_m \oplus (1-p_m)(L^{\infty}(\mathcal{H}))p_m
$$

of the atlas (11) for $\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \rightrightarrows \mathcal{L}_{p_0}(L^{\infty}(\mathcal{H}))$ are given by

$$
\psi_{km}(g) = (\varphi_k(l(g)), (\sigma_k(l(g)))^{-1} g \sigma_m(r(g)), \varphi_m(r(g))) = (\mathbf{y}_k, \mathbf{z}_{km}, \mathbf{y}_m). \tag{41}
$$

The coordinates y_k and y_m in (41) are defined in (39) and the coordinate z_{km} is given by

$$
\mathbf{z}_{km} = z_{km} |e_k\rangle \langle e_m| \,, \tag{42}
$$

where $z_{km} := \frac{\eta_k}{\xi_m}$.

So, as one can expect, the complex analytic manifold structure of $\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H}))$ is consistent with the complex analytic structure of the complex Hopf bundle (36).

5.3. The algebroid $\mathcal{A}_{p_0}(L^{\infty}(\mathcal{H}))$ of $\mathcal{G}_{p_0}(L^{\infty}(\mathcal{H})) \rightrightarrows \mathcal{L}_{p_0}(L^{\infty}(\mathcal{H}))$

Using the algebroid isomorphism $\mathcal{A}_{p_0}(\mathfrak{M}) \cong \frac{TP_0}{G_0}$ for the case $\mathfrak{M} = L^{\infty}(\mathcal{H})$ and $p_0 = |e_0|/|e_1|$ by virtue of $(33)-(35)$ we obtain the isomorphism $p_0 = |e_0\rangle\langle e_0|$ by virtue of (33)–(35) we obtain the isomorphism

$$
\mathcal{A}_{|e_0\rangle\langle e_0|}(L^{\infty}(\mathcal{H})) \cong \frac{\mathcal{H} \times (\mathcal{H} \setminus \{0\})}{\mathbb{C} \setminus \{0\}}.
$$
\n(43)

Hence the sections of the algebroid $\mathcal{A}_{p_0}(L^{\infty}(\mathcal{H}))$ in the coordinates $(\mathbf{y}_k, \mathbf{z}_{km})$ have the following form

$$
\mathfrak{X}(\mathbf{y}_k, \mathbf{z}_{km}) = \sum_{l \neq k} a^l(\mathbf{y}_k) \frac{\partial}{\partial y_k^l} + b(\mathbf{y}_k) z_{km} \frac{\partial}{\partial z_{km}}
$$
(44)

and the algebroid Lie bracket (24) of sections $\mathfrak{X}_1, \mathfrak{X}_2 \in \Gamma \mathcal{A}_{\mid e_0 \setminus \{e_0\}}(L^{\infty}(\mathcal{H}))$ is

$$
[\mathfrak{X}_1, \mathfrak{X}_2](\mathbf{y}_k, \mathbf{z}_{km}) = \sum_{s \neq k} \sum_{l \neq k} \left(a_1^l(\mathbf{y}_k) \frac{\partial a_1^s}{\partial y_k^l} - a_2^l(\mathbf{y}_k) \frac{\partial a_1^s}{\partial y_k^l} \right) \frac{\partial}{\partial y_k^s} + \left(\sum_{l \neq k} a_1^l(\mathbf{y}_k) \frac{\partial b_2}{\partial y_k^l} - \sum_{l \neq k} a_2^l(\mathbf{y}_k) \frac{\partial b_1}{\partial y_k^l} \right) z_{km} \frac{\partial}{\partial z_{km}}. \tag{45}
$$

The anchor $a: \mathcal{A}_{|e_0\rangle\langle e_0|}(L^{\infty}(\mathcal{H})) \to T\mathbb{CP}(\mathcal{H})$ acts on the section

$$
\mathfrak{X}\in \Gamma \mathcal{A}_{|e_0\rangle\langle e_0|}(L^{\infty}(\mathcal{H}))
$$

according to the formula

$$
a(\mathfrak{X}) = \sum_{l \neq k} a^l(\mathbf{y}_k) \frac{\partial}{\partial y_k^l}.
$$
 (46)

Finally let us note that $b(\mathbf{y}_k)z_{km}\frac{\partial}{\partial z_{km}}$ proves to be the vertical vector field of the complex Hopf bundle.

References

- [1] N. Bourbaki, Variétés différentielles et analytiques. Fascicule de résultats, Hermann, 1967
- [2] R. Brown, *Topology and Groupoids*, BookSurgeLLC, 2006.
- [3] K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, 2005.
- [4] A. Odzijewicz, A. Slizewska, Groupoids and inverse semigroups associated to W∗ algebra, arXiv:1110.6305.
- [5] A. Odzijewicz, G Jakimowicz, A. Slizewska, Algebroids related to groupoid of partially invertible elements of W^* -algebra, (to appear).
- [6] J. Renault, A groupoid approach to C^{*}-algebras, Springer, 1980.
- [7] S. Sakai, C∗-Algebras and W∗-Algebras, Springer-Verlag, 1971.
- [8] A. Cannas da Silva, A. Weinstein, Geometric Models for Noncommutative Algebras, 1999.

Anatol Odzijewicz, Aneta Sliżewska and Grzegorz Jakimowicz Institute of Mathematics, University of Białystok Akademicka 2 15-267 Białystok, Poland e-mail: aodzijew@uwb.edu.pl anetasl@uwb.edu.pl gjakim@alpha.uwb.edu.pl