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Abstract. The goal of the present note based on [4] is a description of complex
manifold structure of the groupoid G(M) of partially invertible elements of
W ∗-algebra M. We also describe Banach–Lie algebroid A(M) of the groupoid
G(M).
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1. Introduction

During the last few decades one can observe a progress in the study of Lie groupoids
and algebroids which play a significant role in differential geometry. As a conse-
quence their impact in mathematical physics is also increasing, see, e.g., [3, 8] and
references therein. Similar situation occurs in the operator algebras theory where
the convolution C∗-algebras of functions on locally compact groupoids equipped
with a left Haar system are considered, see [6].

In this note, following [4] and [5], we describe Banach–Lie groupoids and
algebroids related in the canonical way to the structure of a W ∗-algebra (von
Neumann algebra).

The most detailed description of the subject and motivation for this kind of
investigations one can find in [4] and [5].

2. Groupoid of partially invertible elements of W ∗-algebra

Let us begin with recalling the basic definitions.
A groupoid over base set B (see, e.g., [3, 8]) is a set G equipped with maps:

(i) a source map s : G → B and a target map t : G → B
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(ii) a product m : G(2) → G
m(g, h) =: gh,

defined on the set of composable pairs

G(2) := {(g, h) ∈ G × G : s(g) = t(h)},
(iii) an injective identity section ε : B → G,
(iv) an inverse map ι : G → G, which are subject to the following compatibility

conditions:
s(gh) = s(h), t(gh) = t(g), (1)

k(gh) = (kg)h, (2)

ε(t(g))g = g = gε(s(g)), (3)

ι(g)g = ε(s(g)), gι(g) = ε(t(g)), (4)

where g, k, h ∈ G.
For a groupoid G over a base B we will use the notation G ⇒ B.

Remark 1. Equivalently one can define a groupoid G ⇒ B as a small category in
which all morphisms are invertible, see for example [2].

Let us recall that C∗-algebra M is called W ∗-algebra (or von Neumann alge-
bra) if there exists a Banach space M∗ such that

(M∗)
∗ = M,

i.e., M possesses a predual Banach space M∗. If M∗ exists it is defined in a unique
way by the structure of W ∗-algebra M, see [7].

Element p ∈ M is called a (orthogonal) projection if p∗ = p = p2. We will
denote the lattice of projections of the W ∗-algebra M by L(M). Element u ∈ M
is called a partial isometry if uu∗ (or equivalently u∗u) is a projection. We will
denote the set of partial isometries of the W ∗-algebra M by U(M).

The least projection l(x) ∈ L(M)) in M, such that

l(x)x = x (respectively x r(x) = x) (5)

is called the left support (respectively right support) of x ∈ M.
If x ∈ M is self adjoint, then support of x is a projection

s(x) := l(x) = r(x).

The polar decomposition of x ∈ M is a representation

x = u|x|, (6)

where u ∈ M is partial isometry and |x| :=
√
x∗x ∈ M+ such that

l(x) = s(|x∗|) = uu∗, r(x) = s(|x|) = u∗u.

We define the set G(M) of partially invertible elements of M as follows

G(M) := {x ∈ M; |x| ∈ G(pMp), where p = s(|x|)},
where G(pMp) is the group of all invertible elements of W ∗-subalgebra pMp ⊂ M.
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Remark 2. G(M) � M.

We can define the groupoid structure G(M) ⇒ L(M) with G(M) being the
set of invertible morphisms and L(M) as the base set. The groupoid maps for
G(M) ⇒ L(M) are defined as follows:

(i) the source and target maps s, t : G(M) → L(M) are

s(x) := r(x), t(x) := l(x),

(ii) the product is the product in M restricted to

G(M)(2) := {(x, y) ∈ G(M)× G(M); s(x) = t(y)},
(iii) the identity section ε : L(M) ↪→ G(M) as the embedding,
(iv) the inverse map ι : G(M) → G(M) is

ι(x) := |x|−1u∗.

The subset of partial isometries U(M) ⊂ G(M) inherits the groupoid struc-
ture U(M) ⇒ L(M) from G(M) ⇒ L(M). Let us note here that for U(M) ⇒ L(M)
the source and target maps s, t : G(M) → L(M) are:

s(u) = u∗u, t(u) = uu∗,

and inverse map ι : U(M) → U(M) is expressed by the involution:

ι(u) = u∗.

Remark 3. The groupoid U(M) ⇒ L(M) is a wide subgroupoid of G(M) ⇒ L(M).

For details we address to [4].

3. Banach–Lie groupoid structure of G(M) ⇒ L(M)

One properly defines the complex Banach manifold structure on the groupoid
G(M) ⇒ L(M) and shows that the groupoid maps are consistent with the struc-
ture, i.e., the groupoid of partially invertible elements is a Banach–Lie groupoid,
see [4].

For any projection p ∈ L(M) we define (following [4]) the subset Πp ⊂ L(M)
by

q ∈ Πp iff M = qM⊕ (1 − p)M (7)

and maps σp : Πp → Mp, ϕp : Πp →̃ (1 − p)Mp by

σp(q) := x, ϕp(q) := y, (8)

where p = x − y is consistent with the splitting (7). Note that l ◦ σp = idΠp and
ϕp defines a bijections between Πp and the Banach space (1 − p)Mp.

In order to construct transitions maps

ϕp ◦ ϕ−1
p′ : ϕp′(Πp ∩ Πp′) → ϕp(Πp ∩ Πp′)
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in the case Πp ∩Πp′ 
= ∅, let us take for q ∈ Πp ∩Πp′ the following splittings

M = qM⊕ (1− p)M = pM⊕ (1− p)M,

M = qM⊕ (1− p′)M = p′M⊕ (1− p′)M.
(9)

Splittings (9) lead to the corresponding decompositions of p and p′

p = x− y p = a+ b

p′ = x′ − y′ 1− p = c+ d
(10)

where x ∈ qMp, y ∈ (1 − p)Mp, x′ ∈ qMp′, y′ ∈ (1 − p′)Mp′, a ∈ p′Mp,
b ∈ (1− p′)Mp, c ∈ p′M(1− p) and d ∈ (1− p′)M(1− p). Using (10) we get the
formula

y′ = (ϕp′ ◦ ϕ−1
p )(y) = (b + dy)ι(a+ cy).

Theorem 4. The family of charts

(Πp, ϕp) p ∈ L(M)

defines a complex analytic atlas on L(M). This atlas is modeled on the family of
Banach spaces (1− p)Mp, where p ∈ L(M).

Remark 5. For equivalent projections p ∼ p′ there exists a partial isometry u ∈
U(M) such that uu∗ = p and u∗u = p′, so that one has (1− p)Mp ∼= (1− p′)Mp′.

In order to introduce the complex analytic structure on G(M) we define for
any p̃, p ∈ L(M) the set

Ωp̃p := t−1(Πp̃) ∩ s−1(Πp).

If Ωp̃p 
= ∅ we define the map

ψp̃p : Ωp̃p → (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp

by
ψp̃p(x) := (ϕp̃(t(x)), ι(σp̃(t(x)))xσp(s(x)), ϕp(s(x))) , (11)

which is a bijection of Ωp̃p onto an open subset of the direct sum of the Banach
subspaces (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp of the W ∗-algebra M. The inverse map
ψ−1
p̃p : ψp̃p(Ωp̃p) → Ωp̃p has the form

ψ−1
p̃p (ỹ, z, y) := σp̃(q̃)zι(σp(q)) = (p̃+ ỹ)zι(p+ y) (12)

where q̃ = l(p̃+ ỹ) and q = l(p+y) are left supports of p̃+ ỹ and p+y respectively.
The transition maps

ψp̃′p′ ◦ ψ−1
p̃p : ψp̃p(Ωp̃′p′ ∩ Ωp̃p) → ψp̃′p′(Ωp̃′p′ ∩ Ωp̃p)

for (ỹ, z, y) ∈ ψp̃p(Ωp̃′p′ ∩ Ωp̃p) are given by

(ψp̃′p′ ◦ ψ−1
p̃p )(ỹ, z, y) := (ỹ′, z′, y′), (13)

where
ỹ′ = (ϕp̃′ ◦ ϕ−1

p̃ )(ỹ) = (b̃+ d̃ỹ)ι(ã+ c̃ỹ) (14)

y′ = (ϕp′ ◦ ϕ−1
p )(y) = (b+ dy)ι(a+ cy) (15)
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and

z′ = ι(p̃′ + ỹ′)(p̃+ ỹ)zι(p+ y)(p′ + y′). (16)

We note that all maps in (14), (15) and (16) are complex analytic.

Thus we derive

Theorem 6.

(i) The family of charts

(Ωp̃p, ψp̃p) ,

where (p, p̃) ∈ L(M) × L(M) are pairs of equivalent projections, defines a
complex analytic atlas on the groupoid G(M) (in the sense of [1]). This atlas
is modeled on the family of Banach spaces (1 − p̃)Mp̃ ⊕ p̃Mp ⊕ (1− p)Mp
indexed by the pair of equivalent projections p, p̃ ∈ L(M).

(ii) All groupoid structure maps and the groupoid product are complex analytic
with respect to the above Banach manifold structure.

Following [5] we present now an example of the subgroupoid of the groupoid
G(M) ⇒ L(M). By Gp0(M) ⇒ Lp0(M) we denote the transitive subgroupoid of
G(M) ⇒ L(M), where

Lp0(M) := {l(x) : x ∈ G(M), r(x) = p0} (17)

and

Gp0 (M) := l−1(Lp0(M)) ∩ r−1(Lp0(M)). (18)

Let G0 be the group of invertible elements of W ∗-subalgebra p0Mp0 ⊂ M. By P0

we denote the intersection Gp0(M) ∩Mp0 of Gp0(M) with the left W ∗-ideal Mp0.
From the subsequent (see [5])

Proposition 7.

(i) Group G0 is an open subset of the Banach space p0Mp0. So, G0 is a Banach–
Lie group whose Lie algebra is p0Mp0.

(ii) The subset P0 ⊂ Mp0 is open in the Banach space Mp0. Thus the tangent
bundle TP0 can be identified with the trivial bundle P0 ×Mp0.

(iii) One has a free right action of G0 on P0 × P0 defined by

P0 × P0 ×G0 � (η, ξ, g) 	→ (ηg, ξg) ∈ P0 × P0. (19)

It follows that P0 (Lp0(M), G0, l) is a principal bundle with P0 as the total
space, Lp0(M) as the bundle base, and the left support l : P0 → Lp0(M) as the

canonical projection. Thus we obtain the gauge groupoid P0×P0

G0
⇒ P0/G0 of the

above principal bundle. For the definition of the gauge groupoid see for example [3].

In [5] we show that Banach–Lie groupoids P0×P0

G0
⇒ P0/G0 and Gp0 (M) ⇒

Lp0(M) are isomorphic.
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4. Algebroid of the groupoid Gp0(M) ⇒ Lp0(M)

The Atiyah sequence of the principal bundle P0 (Lp0(M), G0, l) is the following
one

0 → p0Mp0 ×AdG0
P0

ι
↪→ TP0/G0

a→ T (P0/G0) → 0, (20)

where p0Mp0 is the Lie algebra of the group G0. The vector bundle morphisms ι
and a are defined by the sequence

0 → T V P0/G0
ι→ TP0/G0

π→ TP0/TG0 → 0 (21)

and isomorphisms

TP0/TG0
∼= T (P0/G0) , (22)

p0Mp0 ×AdG0 P0
∼= T V P0/G0, (23)

where T V P0 is the vertical bundle of P0 (Lp0(M), G0, l). We can see from (20)

that TP0/G0 → P0/G0 is the algebroid of the gauge groupoid P0×P0

G0
⇒ P0/G0

which as we have shown above is isomorphic to Gp0(M) ⇒ Lp0(M). Hence we

conclude that the gauge algebroid TP0

G0
→ P0

G0
is isomorphic to the algebroid

Ap0(M) → Lp0(M) of the groupoid Gp0(M) ⇒ Lp0(M). Using this isomorphism
we find that the Lie bracket of X1,X2 ∈ Γ(T V P0/G0) ∼= ΓAp0(M) is given by the
following expression

[X1,X2](η) =

(〈
∂ϑ2

∂η
(η), ϑ1(η)

〉
−
〈
∂ϑ1

∂η
(η), ϑ2(η)

〉)
∂

∂η
, (24)

where

X(η) = ϑ(η)
∂

∂η
(25)

is G0-invariant vector field on P0, i.e., ϑ : P0 → Mp0 satisfies

ϑ(ηg) = ϑ(η)g, (26)

where η ∈ P0, g ∈ G0. The notation (25) means that

(Xf)(η) =

〈
∂f

∂η
(η), ϑ(η)

〉
for any f ∈ C∞(P0).

The anchor map a : Ap0(M) → TLp0(M) for Ap0(M) is given by

a := T l, (27)

where l : Gp0(M) → Lp0(M) is the left support map.
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5. An example

We conclude our note presenting an example. Let us take M = L∞(H), where
H is a separable complex Hilbert space with a fixed orthonormal basis {|ek〉}∞k=0.
Setting p0 = |e0〉〈e0| (we use the Dirac notation) we find that

Lp0 (L
∞(H)) =

{
|η〉〈η|
〈η|η〉 : η ∈ H \ {0}

}
∼= CP(H) (28)

and

Gp0 (L
∞(H)) =

{
|η〉〈ξ|
〈ξ|ξ〉 : η, ξ ∈ H \ {0}

}
. (29)

5.1. The groupoid Gp0(L
∞(H)) ⇒ Lp0(L

∞(H))

The structure maps in this case are as follows:

(i) the source and target maps s, t : Gp0(L
∞(H)) → Lp0(L

∞(H)) are of the
form:

s

(
|η〉〈ξ|
〈ξ|ξ〉

)
=

|ξ〉〈ξ|
〈ξ|ξ〉 , t

(
|η〉〈ξ|
〈ξ|ξ〉

)
=

|η〉〈η|
〈η|η〉 , (30)

(ii) the product of elements |η〉〈ξ|
〈ξ|ξ〉 ,

|ξ〉〈λ|
〈λ|λ〉 ∈ Gp0(L

∞(H)) is:

|η〉〈ξ|
〈ξ|ξ〉

|ξ〉〈λ|
〈λ|λ〉 =

|η〉〈λ|
〈λ|λ〉 , (31)

(iii) the identity section ε : Lp0(L
∞(H)) → Gp0(L

∞(H)) is the embedding,
(iv) the inverse map ι : Gp0(L

∞(H)) → Gp0 (L
∞(H)) is given by

ι

(
|η〉〈ξ|
〈ξ|ξ〉

)
=

|ξ〉〈η|
〈η|η〉 . (32)

We note that for p0 = |e0〉〈e0| one has

(L∞(H))p0 = {|ϑ〉 〈e0| : ϑ ∈ H} ∼= H, (33)

P0 = {|η〉 〈e0| : η ∈ H \ {0}} ∼= H \ {0}, (34)

and

G0 = G (p0(L
∞(H))p0) ∼= C \ {0}. (35)

So, the groupoid Gp0 (L
∞(H)) ⇒ Lp0(L

∞(H)) is isomorphic to the gauge groupoid
of the complex Hopf bundle

C \ {0} H \ {0}

CP(H) .

�

�

l

(36)
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5.2. The complex manifold structure of Gp0(L
∞(H)) ⇒ Lp0(L

∞(H))

In order to introduce the differential structure of the groupoid Gp0(L
∞(H)) ⇒

Lp0(L
∞(H)) we should notice that for the orthonormal projections pk := |ek〉〈ek|,

k ∈ N ∪ {0}, the sets Πk := Πpk
defined in (7) are the following

Πk =

{
q =

|ξ〉 〈ξ|
〈ξ|ξ〉 ; ξk 
= 0,where ξ =

∞∑
k=o

ξk |ek〉
}
. (37)

The maps σk : Πk → (L∞(H))pk and ϕk : Πk → (1 − pk)(L
∞(H))pk, see (8), are

given by

σk(q) =
1

ξk
|ξ〉 〈ek| , (38)

and

ϕk(q) =
1

ξk
|ξ〉 〈ek| − |ek〉 〈ek| = yk, (39)

respectively. Let us note here that we can write yk ∈ (1 − pk)(L
∞(H))pk in the

form

yk =
∑
l �=k

ξl
ξk

|el〉〈ek|. (40)

So, ξl
ξk

=: ylk, where k 
= l ∈ N ∪ {0}, are the homogeneous coordinates of q ∈ Πk.

The charts

ψkm : l−1(Πk) ∩ r−1(Πm)

→ (1− pk)(L
∞(H))pk ⊕ pk(L

∞(H))pm ⊕ (1− pm)(L∞(H))pm

of the atlas (11) for Gp0(L
∞(H)) ⇒ Lp0(L

∞(H)) are given by

ψkm(g) =
(
ϕk(l(g)), (σk(l(g)))

−1gσm(r(g)), ϕm(r(g))
)
= (yk, zkm,ym) . (41)

The coordinates yk and ym in (41) are defined in (39) and the coordinate zkm is
given by

zkm = zkm |ek〉 〈em| , (42)

where zkm := ηk

ξm
.

So, as one can expect, the complex analytic manifold structure of Gp0(L
∞(H))

is consistent with the complex analytic structure of the complex Hopf bundle (36).

5.3. The algebroid Ap0(L
∞(H)) of Gp0(L

∞(H)) ⇒ Lp0(L
∞(H))

Using the algebroid isomorphism Ap0(M) ∼= TP0

G0
for the case M = L∞(H) and

p0 = |e0〉〈e0| by virtue of (33)–(35) we obtain the isomorphism

A|e0〉〈e0|(L
∞(H)) ∼=

H× (H \ {0})
C \ {0} . (43)
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Hence the sections of the algebroid Ap0(L
∞(H)) in the coordinates (yk, zkm) have

the following form

X(yk, zkm) =
∑
l�=k

al(yk)
∂

∂ylk
+ b(yk)zkm

∂

∂zkm
(44)

and the algebroid Lie bracket (24) of sections X1,X2 ∈ ΓA|e0〉〈e0|(L
∞(H)) is

[X1,X2](yk, zkm) =
∑
s�=k

∑
l�=k

(
al1(yk)

∂as1
∂ylk

− al2(yk)
∂as1
∂ylk

)
∂

∂ysk

+

(∑
l�=k

al1(yk)
∂b2

∂ylk
−
∑
l�=k

al2(yk)
∂b1

∂ylk

)
zkm

∂

∂zkm
. (45)

The anchor a : A|e0〉〈e0|(L
∞(H)) → TCP(H) acts on the section

X ∈ ΓA|e0〉〈e0|(L
∞(H))

according to the formula

a(X) =
∑
l�=k

al(yk)
∂

∂ylk
. (46)

Finally let us note that b(yk)zkm
∂

∂zkm
proves to be the vertical vector field of the

complex Hopf bundle.
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