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Poisson Reduction

Chiara Esposito

Abstract. In this paper we develop a theory of reduction for classical systems
with Poisson Lie groups symmetries using the notion of momentum map in-
troduced by Lu. The local description of Poisson manifolds and Poisson Lie
groups and the properties of Lu’s momentum map allow us to define a Poisson
reduced space.
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1. Introduction

In this paper we prove a generalization of the Marsden–Weinstein reduction to
the general case of an arbitrary Poisson Lie group action on a Poisson manifold.
Reduction procedures are known in many different settings. In particular, a re-
duction theory is known in the case of Poisson Lie groups acting on symplectic
manifolds [10] and in the case of Lie groups acting on Poisson manifolds [14, 18].
An important generalization to the Dirac setting has been studied in [2].

The theory of symplectic reduction plays a key role in classical mechanics.
The phase space of a system of n particles is described by a symplectic or more
generally Poisson manifold. Given a symmetry group of dimension k acting on
a mechanical system, the dimension of the phase space can be reduced by 2k.
Marsden–Weinstein reduction formalizes this feature. Recall roughly the notion of
Hamiltonian actions in this setting. Given a Poisson manifold M there are natural
Hamiltonian vector fields {f, ·} on M . Let G be a Lie group acting on M by Φ;
the action is Hamiltonian if the vector fields defined by the infinitesimal generator
of Φ are Hamiltonian. More precisely, let G be a Lie group acting on a Poisson
manifold (M,π). The action Φ : G × M → M is canonical if it preserves the
Poisson structure π. Suppose that there exists a linear map H : g → C∞(M) such
that the infinitesimal generator ΦX for X ∈ g of the canonical action is induced
by H by

ΦX = {HX , ·}.
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A canonical action induced by H is said Hamiltonian if H is a Lie algebra ho-
momorphism. We can define a map μ : M → g∗, called momentum map, by
HX(m) = 〈μ(m), X〉 for m ∈ M . It is equivariant if the corresponding H is a
Lie algebra homomorphism. Given an Hamiltonian action, under certain assump-
tions, the reduced space has been defined as M//G := μ−1(u)/Gu and it has been
proved that it is a Poisson manifold [15].

In this paper we are interested in analyzing the case in which one has an
extra structure on the Lie group, a Poisson structure making it a Poisson Lie
group. Poisson Lie groups are very interesting objects in mathematical physics.
They may be regarded as classical limit of quantum groups [5] and they have
been studied as carrier spaces of dynamical systems [9]. It is believed that actions
of Poisson Lie groups on Poisson manifolds should be used to understand the
“hidden symmetries” of certain integrable systems [19]. Moreover, the study of
classical systems with Poisson Lie group symmetries may give information about
the corresponding quantum group invariant system (an attempt can be found
in [6, 7]).

The purpose of this paper is to prove that, given a Poisson manifold acted
by a Poisson Lie group, under certain conditions, we can also reduce this phase
space to another Poisson manifold.

The paper is organized as follows. In Section 2 we recall some basic elements
of Poisson geometry: Poisson manifolds and their local description, Lie bialgebras
and Poisson Lie groups. A nice review of these results can be found in [20] and [17].
Section 3 is devoted to Poisson actions and associated momentum maps and we
discuss dressing actions and their properties. In Section 4 we present the main
result of this paper, the Poisson reduction, and we discuss an example.

2. Poisson manifolds, Poisson Lie groups and Lie bialgebras

In this section we introduce the notion of Poisson manifolds and their local descrip-
tion, we give some background about Poisson Lie groups and Lie bialgebras which
will be used in the paper. For more details on this subject, see [5, 10, 17, 20, 21].

2.1. Poisson manifolds and symplectic foliation

A Poisson structure on a smooth manifold M is a Lie bracket {·, ·} on the space
C∞(M) of smooth functions on M which satisfies the Leibniz rule. This bracket
is called Poisson bracket and a manifold M equipped with such a bracket is called
Poisson manifold. Therefore, a bivector field π on M such that the bracket

{f, g} := 〈π, df ∧ dg〉

is a Poisson bracket is called Poisson tensor or Poisson bivector field. A Poisson
tensor can be regarded as a bundle map π� : T ∗M → TM :

〈α, π�(β)〉 = π(α, β)
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Definition 1. A mapping φ : (M1, π1) → (M2, π2) between two Poisson manifolds
is called a Poisson mapping if ∀f, g ∈ C∞(M2) one has

{f ◦ φ, g ◦ φ}1 = {f, g}2 ◦ φ (1)

The structure of a Poisson manifold is described by the splitting theorem
of Alan Weinstein [21], which shows that locally a Poisson manifold is a direct
product of a symplectic manifold with another Poisson manifold whose Poisson
tensor vanishes at a point.

Theorem 1 (Weinstein). On a Poisson manifold (M,π), any point m ∈ M has a
coordinate neighborhood with coordinates (q1, . . . , qk, p1, . . . , pk, y1, . . . , yl) centered
at m, such that

π =
∑
i

∂

∂qi
∧ ∂

∂pi
+

1

2

∑
i,j

φij(y)
∂

∂yi
∧ ∂

∂yj
φij(0) = 0. (2)

The rank of π at m is 2k. Since φ depends only on the yi’s, this theorem gives
a decomposition of the neighborhood of m as a product of two Poisson manifolds:
one with rank 2k, and the other with rank 0 at m.

The term
1

2

∑
i,j

φij(y)
∂

∂yi
∧ ∂

∂yj
(3)

is called transverse Poisson structure and it is evident that the equations yi = 0
determine the symplectic leaf through m.

2.2. Lie bialgebras and Poisson Lie groups

Definition 2. A Poisson Lie group (G, πG) is a Lie group equipped with a multi-
plicative Poisson structure πG, i.e., such that the multiplication map G×G → G
is a Poisson map.

Let G be a Lie group with Lie algebra g. The linearization δ := deπG : g →
g ∧ g of πG at e defines a Lie algebra structure on the dual g∗ of g and, for this
reason, it is called cobracket. The pair (g, g∗) is called Lie bialgebra. The relation
between Poisson Lie groups and Lie bialgebras has been proved by Drinfeld [5]:

Theorem 2. If (G, πG) is a Poisson Lie group, then the linearization of πG at e
defines a Lie algebra structure on g∗ such that (g, g∗) form a Lie bialgebra over g,
called the tangent Lie bialgebra to (G, πG). Conversely, if G is connected and simply
connected, then every Lie bialgebra (g, g∗) over g defines a unique multiplicative
Poisson structure πG on G such that (g, g∗) is the tangent Lie bialgebra to the
Poisson Lie group (G, πG).

From this theorem it follows that there is a unique connected and simply
connected Poisson Lie group (G∗, πG∗), called the dual of (G, πG), associated to
the Lie bialgebra (g∗, δ). If G is connected and simply connected, then the dual of
G∗ is G.
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Example 1 (g = ax + b). Consider the Lie algebra g spanned by X and Y with
commutator

[X,Y ] = Y (4)

and cobracket given by

δ(X) = 0 δ(Y ) = X ∧ Y. (5)

The Lie bracket on g∗ is given by

[X∗, Y ∗] = Y ∗.

A matrix representation of g is the Lie algebra gl(2,R) via

X =

(
1 0
0 0

)
Y =

(
0 1
0 0

)
and

X∗ =

(
0 0
0 1

)
Y ∗ =

(
0 0
1 0

)
with the metric γ(a, b) = tr(aJbJ) and J = ( 0 1

1 0 ).
The corresponding Poisson Lie group G and dual G∗ are subgroups of

GL(2,R) of matrices with positive determinant are given by

G =

{(
1 0
ξ η

)
: η > 0

}
G∗ =

{(
s t
0 1

)
: s > 0

}
(6)

3. Poisson actions and momentum maps

In this section we first introduce the concept of Poisson action of a Poisson Lie
group on a Poisson manifold, which generalizes the canonical action of a Lie group
on a symplectic manifold. We define momentum maps associated to such actions
and finally we consider the particular case of a Poisson Lie group G acting on its
dual G∗ by dressing transformations. This allows us to study the symplectic leaves
of G that are exactly the orbits of the dressing action. These topics can be found,
e.g., in [10, 11, 19].

From now on we assume that G is connected and simply connected.

Definition 3. The action Φ : G × M → M of a Poisson Lie group (G, πG) on
a Poisson manifold (M,π) is called Poisson action if Φ is a Poisson map, where
G×M is a Poisson manifold with structure πG ⊕ π.

This definition generalizes the notion of canonical action; indeed, if G carries
the trivial Poisson structure πG = 0, the action Φ is Poisson if and only if it
preserves π, i.e., if it is canonical. In general, the structure π is not invariant with
respect to the action Φ. The easiest examples of Poisson actions are given by the
left and right actions of G on itself.

For an action Φ : G×M → M we use Φ : g → V ectM : X 	→ ΦX to denote
the Lie algebra anti-homomorphism which defines the infinitesimal generators of
this action. The proof of the following theorem can be found in [12].



Poisson Reduction 135

Theorem 3. The action Φ : G×M → M is a Poisson action if and only if

LΦX (π) = (Φ ∧ Φ)δ(X) (7)

for any X ∈ g, where L denotes the Lie derivative and δ is the derivative of
πG at e.

Let Φ : G × M → M be a Poisson action of (G, πG) on (M,π). Let G∗

be the dual Poisson Lie group of G and let ΦX be the vector field on M which
generates the action Φ. In this formalism the definition of momentum map reads
(Lu [10, 11]):

Definition 4. A momentum map for the Poisson action Φ : G×M → M is a map
μ : M → G∗ such that

ΦX = π�(μ∗(θX)) (8)

where θX is the left invariant 1-form onG∗ defined by the elementX ∈ g = (TeG
∗)∗

and μ∗ is the cotangent lift T ∗G∗ → T ∗M .

In other words, the momentum map generates the vector field ΦX via the
construction

X ∈ g → θX ∈ T ∗G∗ → αX = μ∗(θX) ∈ T ∗M → π�(αX) ∈ TM

It is important to remark that Noether’s theorem still holds in this general context.

Theorem 4. Let Φ : G×M → M a Poisson action with momentum map μ : M →
G∗. If H ∈ C∞(M) is G-invariant, then μ is an integral of the Hamiltonian vector
field associated to H.

It is important to point out that in this setting the vector field ΦX is not
Hamiltonian, unless the Poisson structure on G is trivial. In this case G∗ = g∗,
the differential 1-form θX is the constant 1-form X on g∗, and

μ∗(θX) = d(HX), where HX(m) = 〈μ(m), X〉. (9)

This implies that the momentum map is the canonical one and

ΦX = π�(dHX) = {HX , ·}. (10)

In other words, ΦX is the Hamiltonian vector field with Hamiltonian HX ∈
C∞(M). We observe that, when πG is not trivial, θX is a Maurer–Cartan form,
hence μ∗(θX) can not be written as a differential of a Hamiltonian function. In the
following we give an example for the infinitesimal generator in this general case.

3.1. Dressing transformations

One of the most important example of Poisson action is the dressing action of G
on G∗. The name “dressing” comes from the theory of integrable systems and was
introduced in this context in [19]. Interesting examples can be found in [1]. We
remark that, given a Poisson Lie group (G, πG), the left (right) invariant 1-forms
on G∗ form a Lie algebra with respect to the bracket:

[α, β] = Lπ	(α)β − Lπ	(β)α− d(π(α, β)).
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For X ∈ g, let θX be the left invariant 1-form on G∗ with value X at e. Let
us define the vector field on G∗

l(X) = π�
G∗(θX). (11)

The map l : g → TG∗ : X 	→ l(X) is a Lie algebra anti-homomorphism. We
call l the left infinitesimal dressing action of g on G∗; its linearization at e is the
coadjoint action of g on g∗. Similarly we can define the right infinitesimal dressing
action.

Let l(X) (resp. r(X)) a left (resp. right) dressing vector field on G∗. If all the
dressing vector fields are complete, we can integrate the g-action into an action of
G on G∗ called the dressing action and we say that the dressing actions consist of
dressing transformations.

Definition 5. A multiplicative Poisson tensor πG on G is complete if each left
(equiv. right) dressing vector field is complete on G.

From the definition of dressing action follows (the proof can be found in [19])
that the orbits of the right or left dressing action of G∗ (resp. G) are the symplectic
leaves of G (resp. G∗).

It can be proved (see [10]) that if πG is complete, both left and right dressing
actions are Poisson actions with momentum map given by the identity.

Assume that G is a complete Poisson Lie group. We denote respectively the
left (resp. right) dressing action of G on its dual G∗ by g 	→ lg (resp. g 	→ rg).

Definition 6. A momentum map μ : M → G∗ for a left (resp. right) Poisson action
Φ is called G-equivariant if it is such with respect to the left dressing action of G
on G∗, that is, μ ◦ Φg = λg ◦ μ (resp. μ ◦ Φg = ρg ◦ μ)

It is important to remark that a momentum map is G-equivariant if and only
if it is a Poisson map, i.e., μ∗π = πG∗ .

Definition 7. An action Φ : G × M → M of a Poisson Lie group (G, πG) on a
Poisson manifold (M,π) is said Hamiltonian if it is a Poisson action generated by
an equivariant momentum map.

4. Poisson reduction

In this section we present the main result of this paper. We show that, given
a Hamiltonian action Φ, as defined above, we can define a reduced manifold in
terms of momentum map and prove that it is a Poisson manifold. The approach
used is a generalization of the orbit reduction [13] in symplectic geometry. Recall
that, under certain conditions, the orbit space of Φ is a smooth manifold and it
carries a Poisson structure. First, we give an alternate proof of this claim. Then,
we consider a generic orbit Ou of the dressing action of G on G∗, for u ∈ G∗,
and we prove that the set μ−1(Ou)/G is a regular quotient manifold with Poisson
structure induced by the Poisson structure on M . Similarly to the symplectic case,
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this reduced space is isomorphic to the space μ−1(u)/Gu which will be regarded
as the Poisson reduced space.

4.1. Poisson structure on M/G

Consider a Hamiltonian action of a connected and simply connected Poisson Lie
group (G, πG) on a Poisson manifold (M,π). It is known that, if the action is
proper and free, the orbit space M/G is a smooth manifold, it carries a Poisson
structure such that the natural projection M → M/G is a Poisson map (a proof
of this result can be found in [19]). In this section we give an alternate proof of
this result, by introducing an explicit formulation for the infinitesimal generator
of the Hamiltonian action, in terms of local coordinates.

As discussed in the previous section, a Hamiltonian action is a Poisson action
induced by an equivariant momentum map μ : M → G∗ by formula (8). In other
words, the map

α : g → Ω1(M) : X 	→ αX = μ∗(θX)

is a Lie algebra homomorphism such that

ΦX = π�(αX)

The dual map of α defines a g∗-valued 1-form on M , still denoted by α, satisfying
Maurer–Cartan equation (as proved in [10])

dα+
1

2
[α, α]g∗ = 0.

In particular,

{αX : X ∈ g}
defines a foliation F on M .

Lemma 1. The space of G-invariant functions on M is closed under Poisson
bracket. Hence π defines a Poisson structure on M/G.

Proof. Let Hi, i = 1, . . . , n be local coordinates on M such that

F = Ker{dH1, . . . , dHn}.

Then

αX =
∑
i

ci(X)dHi (12)

and

ΦX [f ] = π�(αX) =
∑
i

ci(X){Hj, f}M . (13)

This implies that a function f ∈ C∞(M) is G-invariant (ΦX [f ] = 0) if and only if
{Hi, f} = 0 for any i. If f, g are G-invariant functions on M , we have {Hi, f} =
{Hi, g} = 0 for any i. Then, using the Jacobi identity we get {Hi, {f, g}} = 0.
Since G is connected, the result follows. �
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4.2. Poisson reduced space

Assume that G is connected, simply connected and complete. In order to define
a reduced space and to prove that it is a Poisson manifold we consider a generic
orbit Ou of the dressing orbit of G on G∗ passing through u ∈ G∗. First, we prove
the following:

Lemma 2. Let Φ : G × M → M be a free and Hamiltonian action of a compact
Poisson Lie group (G, πG) on a Poisson manifold (M,π). Then:

(i) Ou is closed and the Poisson structure πG∗ does not depend on the transversal
coordinates on Ou.

(ii) μ−1(Ou)/G is a smooth manifold.

Proof. (i) If G is compact, any G-action is automatically proper. This implies that,
given u ∈ G∗ the generic orbit Ou of the dressing action is closed. From section 3.1
we know that Ou is the symplectic leaf through u. Using the local description of
Poisson manifolds introduced in Theorem 1 it is evident that πG∗ restricted to Ou

does not depend on the transversal coordinates yi.
(ii) If the action Φ is free, the momentum map μ : M → G∗ is a submersion

onto some open subset of G∗. This implies that μ−1(u) is a closed submanifold
of M . As μ is equivariant, it follows that μ−1(u) is G-invariant. Free and proper
actions of G on M restrict to free and proper G-actions on G-invariant submani-
folds. In particular, the action of G on μ−1(u) is still proper, then G · μ−1(u) is
closed. Using the equivariance we have that G · μ−1(u) = μ−1(Ou), which is still
G-invariant. The action of G on μ−1(Ou) is proper and free, so we can conclude
that the orbit space μ−1(Ou)/G is a smooth manifold. �

We aim to prove that the manifold N/G := μ−1(Ou)/G carries a Poisson
structure. In the previous Lemma we stated that πG∗ restricted to Ou does not
depend on the transversal coordinates yi’s; if xi are local coordinates along N =
μ−1(Ou) and Hi are pullback of the transversal coordinates yi’s by

Hi := yi ◦ μ (14)

we can easily deduce that the Poisson structure π on M involves derivatives in Hi

only in the combination
∂xi ∧ ∂Hi

This is evident because the differential dμ between TM |N/TN and TG∗/TOu is a
bijective map. Moreover, since {yi, yj} vanishes on the orbit Ou, {Hi, Hj} vanishes
on the preimage N and dHi’s are in the span of {αX : X ∈ g}.

Now we introduce the ideal I generated by Hi and prove some properties.

Lemma 3. Let I = {f ∈ C∞(M) : f |N = 0}.
(i) I is defined in an open G-invariant neighborhood U of N .
(ii) I is closed under Poisson bracket.

Proof. (i) The coordinatesHi are locally defined but we can show that I is globally
defined. Considering a different neighborhood on the orbit of G∗ we have transver-
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sal coordinates y′i and their pullback to M will be H ′
i = y′i ◦ μ. The coordinates

H ′
i are defined in a different open neighborhood V of N , but we can see that the

ideal I generated by Hi coincides with I ′ generated by H ′
i on the intersection of

U and V , then it is globally defined.
(ii) Since μ is a Poisson map we have:

{Hi, Hj}M = {yi ◦ μ, yj ◦ μ}M = {yi, yj}G∗ ◦ μ.
Hence the ideal I is closed under Poisson brackets. �

Motivated by this lemma we use the following identification

C∞(N/G) � (C∞(U)/I)G.
Lemma 4. Suppose that N/G is an embedded submanifold of the smooth manifold
M/G, then

(C∞(U)/I)G � (C∞(U)G + I)/I. (15)

Proof. Let f be a smooth function on U satisfying [f ] ∈ (C∞(U)/I)G. As the
equivalence class [f ] is G-invariant, we have

f(G ·m) = f(m) + i(m), (16)

where i ∈ I and G · m is a generic orbit of the Hamiltonian action of G on
M . It is clear that f |N is G-invariant and hence it defines a smooth function
f̄ ∈ C∞(N/G). Since N/G is a k-dimensional embedded submanifold of the n-
dimensional smooth manifold M/G, the inclusion map ι : N/G → M/G has local
coordinates representation:

(x1, . . . , xk) 	→ (x1, . . . , xk, ck+1, . . . , cn) (17)

where ci are constants. Hence we can extend f̄ to a smooth function φ on M/G by

setting f̄(x1, . . . , xk) = φ(x1, . . . , xk, 0, . . . , 0). The pullback f̃ of φ by pr : M →
M/G is G-invariant and satisfies

f̃ − f |N = 0, (18)

hence f̃ − f ∈ I. �
Using these results we can prove the following:

Theorem 5. Let Φ : G × M → M be a free Hamiltonian action of a compact
Poisson Lie group (G, πG) on a Poisson manifold (M,π) with momentum map
μ : M → G∗. The orbit space N/G has a Poisson structure induced by π.

Proof. First we prove that the Poisson bracket ofM induces a well-defined Poisson
bracket on (C∞(U)G + I)/I. In fact, for any f + i ∈ C∞(U)G/I and j ∈ I the
Poisson bracket {f + i, j} still belongs to the ideal I. Since the ideal I is closed
under Poisson brackets, {i, j} belongs to I. The function j, by definition on the
ideal I, can be written as a linear combination of Hi, so {f, j} =

∑
i ai{f,Hi}. By

Lemma 1, we have {f,Hi} = 0, hence {f + i, j} ∈ I as stated. Finally, using the
isomorphism proved in Lemma 4 and the identification C∞(N/G) � (C∞(U)/I)G,
the claim is proved. �
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Finally, we observe that there is a natural isomorphism

μ−1(u)/Gu � μ−1(Ou)/G. (19)

We refer to μ−1(u)/Gu as the Poisson reduced space.

5. An example

In this section we discuss a concrete example of Poisson reduction. Consider the
Lie bialgebra g = ax+ b discussed in Example 1. The Poisson tensor on the dual
Poisson Lie group G∗ is given, in the coordinates (s, t) introduced in the matrix
representation, by

πG∗ = st∂s ∧ ∂t. (20)

It is clear that (s, t) are global coordinates on G∗. First, we need to study the
orbits of the dressing action. Remember that the dressing orbits Ou through a
point u ∈ G∗ are the same as the symplectic leaves, hence it is clear that they are
determined by the equation t = 0. The symplectic foliation of the manifold G∗

in this case is given by two open orbits, determined by the conditions t > 0 and
t < 0, respectively, and a closed orbit given by t = 0 and a ∈ R+.

Consider a Hamiltonian action Φ : G ×M → M of G on a generic Poisson
manifold M induced by the equivariant momentum map μ : M → G∗. Its pullback

μ∗ : C∞(G∗) −→ C∞(M) (21)

maps the coordinates s and t on G∗ to

x(u) = s(μ(u)) y(u) = t(μ(u)).

It is important to underline that we have no information on the dimension of M ,
so x and y are just a pair of the possible coordinates. Nevertheless, since μ is a
Poisson map, we have

{x, y} = xy (22)

on M . The infinitesimal generators of the action Φ can be written in terms of these
coordinates (x, y) as

Φ(X) = x{y, ·} Φ(Y ) = x{x−1, ·}. (23)

In the following, we discuss the Poisson reduction case by case, by considering
the different dressing orbits studied above.

Case 1: (t > 0). Consider the dressing orbit Ou determined by the condition
t > 0. Since s and t are both positive, we can put

x = ep, y = eq. (24)

Since {x, y} = xy we have

{p, q} = 1. (25)

For this reason the preimage of the dressing orbit can be split as N = R2 × M1

and C∞(N) is given explicitly by the set of functions generated by y−1. The
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infinitesimal generators are given by

Φ(X) = ep{eq, ·} Φ(Y ) = ep{e−p, ·} (26)

which is the action of G on the plane. Hence the Poisson reduction in this case is
given by

(C∞(M)[y−1])G. (27)

Case 2: (t < 0). This case is similar, with the only difference that y = −eq.

Case 3: (t = 0). The orbit Ou is given by fixed points on the line t = 0, then we
choose the point s = 1. Consider the ideal I = 〈x− 1, y〉 of functions vanishing on
N . It is easy to check that it is G-invariant, hence the Poisson reduction in this
case is simply given by

(C∞(M)/I)G. (28)

6. Questions and future directions

The theory of Poisson reduction can be further developed, as it has been obtained
under the assumption that the orbit space M/G is a smooth manifold. This result
could be proved under weaker hypothesis, for instance requiring that M/G is an
orbifold.

As stated in the introduction, the idea of momentum map and Poisson re-
duction can be also used for the study of symmetries in quantum mechanics. In
particular, the approach of deformation quantization would provide a relation be-
tween classical and quantum symmetries. A notion of quantum momentum map
has been defined in [6, 7] and it can be used to define the quantization of the
Poisson reduction.

At classical level, Poisson reduction could be generalized to actions of Dirac
Lie groups [16] on Dirac manifolds [3]. Finally, a possible development of this
theory is its integration to symplectic groupoids by means of the theories on the
integrability of Poisson brackets [4] and Poisson Lie group actions [8].
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