
Chapter 4
Big Data Storage

Abstract In this chapter, we focus on the storage of big data. We will review
important issues including massive storage systems, distributed storage systems,
and big data storage mechanisms. On one hand, the storage infrastructure need to
provide information storage service with reliable storage space; on the other hand,
it must provide a powerful access interface for query and analysis of large amount
of data. Such a storage infrastructure generally consists of hardware infrastructure
and storage mechanisms.

4.1 Storage System for Massive Data

Data storage refers to the storage and management of large-scale datasets, while
achieving reliability and availability. A data storage system consists of two parts:
infrastructure and data storage methods or mechanisms. The hardware infrastructure
includes massive shared Information Communication Technology (ICT) resources
utilized to feedback instant demands of tasks, and such ICT resources are organized
in an elastic manner. The hardware infrastructure shall feature elasticity and
dynamic reconfiguration, to be adaptive to different application environments. Data
storage methods are deployed on the top of hardware infrastructure to maintain
large-scale datasets. Storage systems shall be equipped with many interfaces, rapid
query, or other programming models for analysis of or interaction with stored data.

The big data paradigm brings about an explosive growth of data. The sharp
growth of data has stringent requirements on storage and management. Tradition-
ally, data storage equipment is only auxiliary equipment of servers, and most of
them store, manage, look up, and analyze data with structured RDBMSs. The
GB, TB, to PB sharp growth of big data makes traditional storage equipment and
management modes inadequate. Data storage equipment is becoming increasingly
more important, and storage cost becomes the main expense of many Internet
companies. Therefore, there is a compelling need for research on data storage.
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A large number of storage systems emerge to meet the demands of big data.
Existing storage technologies can be classified as DAS (Direct Attached Storage)
and network storage, while network storage can be further classified into NAS
(Network Attached Storage) and SAN (Storage Area Network).

In DAS, disc drives are directly connected with servers. Storage is a peripheral
equipment, while, data management servers and all kinds of application software are
matched with storage sub-systems (this way, I/O may stress system bandwidths).
DAS applies to a few server environments but, when the storage capacity is
increased, the efficiency of storage supply will be quite low and the upgradeability
and expandability will be greatly limited. In case of server abnormality, data could
not be acquired and stored resources and data could not be shared. DAS is mainly
used in personal computers and small-sized servers, which only support such
applications requiring low storage capacities and does not directly support multi-
computer shared storage. Tap drivers and RAID (redundant array of independent
disks) are classic DAS equipments.

Network storage is to utilize the original network or a specially designed storage
network to provide users with a uniform information access and sharing services of
information systems. Network storage equipment includes special data exchange
equipments, disk array, tap library, and other storage media, as well as special
storage software. It is characterized with mass data storage, limited data sharing, full
utilization of data mining and information, data reliability, data backup and safety,
as well as simplified and unified data management. In addition, network storage
features very strong expandability, so as to provide information transmission rates
suited for large data volume.

NAS is actually an auxiliary storage equipment of a network. It is directly
connected to a network through a hub or switch, communicating with the TCP/IP
protocol. NAS is geared to message passing, and transmits data in the form of files.
NAS has two prominent features. First, on physical connection, it directly connects
the storage equipment to a network and then hangs the storage at the rear end of
a server, thus avoiding the I/O burden at the server. Second, technically, it reduces
the movements of the disk actuator arm and thus reduces R/W delay. However,
the structure of NAS shows that it is still a traditional server storage equipment in
essence.

SAN focuses on data storage with a flexible network topology and high-speed
optical fiber connections. It allows multipath data switching among any internal
nodes. Data storage management is located in a relatively independent storage
local area network, so as to achieve a maximum degree of data sharing and data
management, as well as seamless extension of the system. From the organization of
a data storage system, DAS, NAS, and SAN can all be divided into three parts: (a)
disk array: it is the foundation of a storage system and the fundamental guarantee
for data storage; (b) connection and network sub-systems, which provide connection
among one or more disc arrays and servers; (c) storage management software, which
handles data sharing, disaster recovery, and other storage management tasks of
multiple servers.
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4.2 Distributed Storage System

The first challenge brought about by big data is how to develop a large scale
distributed storage system for strategic preservation of data and efficient data
processing and analysis. To use a distributed system to store massive data, the
following factors should be taken into consideration:

• Consistency: a distributed storage system requires multiple servers to coopera-
tively store data. As there are more servers, the probability of server failures will
be larger. Usually data is divided into multiple pieces to be stored at different
servers to ensure availability in case of server failure. However, server failures
and parallel storage may cause inconsistency among different copies of the same
data. Consistency refers to assuring that multiple copies of the same data are
identical.

• Availability: a distributed storage system operates in multiple sets of servers.
As more servers are used, server failures are inevitable. It would be desirable
if the entire system is not serious affected with respect to serving the reading and
writing requests from customer terminals. This property is called availability.

• Partition Tolerance: multiple servers in a distributed storage system are con-
nected by a network. The network could have link/node failures or temporary
congestion. The distributed system should have a certain level of tolerance to
problems caused by network failures. It would be desirable that the distributed
storage still works well when the network is partitioned.

Eric Brewer proposed a CAP [1, 2] theory in 2000, which indicated that a
distributed system could not simultaneously meet the requirements on consistency,
availability, and partition tolerance; at most two of the three requirements can
be satisfied simultaneously. Seth Gilbert and Nancy Lynch from MIT proved the
correctness of CAP theory in 2002. Since consistency, availability, and partition
tolerance could not be achieved simultaneously, we can have a CA system by
ignoring partition tolerance, a CP system by ignoring availability, and an AP system
that ignores consistency, according to different design goals. The three systems are
discussed in the following.

CA systems do not have partition tolerance, i.e, they could not handle network
failures. Therefore, CA systems are generally deemed as storage systems with a
single server, such as the traditional small-scale relational databases. Such systems
feature single copy of data, such that consistency is easily ensured. Availability
is guaranteed by the excellent design of relational databases. However, since CA
systems could not handle network failures, they could not be expanded to use
many servers. This is way most large-scale storage systems are CP systems and
AP systems.

Compared with CA systems, CP systems ensure partition tolerance. Therefore,
CP systems can be expanded to become distributed systems. CP systems generally
maintain several copies of the same data in order to ensure a level of fault tolerance.
CP systems also ensure data consistency, i.e., multiple copies of the same data
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are guaranteed to be completely identical. However, CP could not ensure sound
availability because of the high cost for consistency assurance. Therefore, CP sys-
tems are useful for the scenarios with moderate load but stringent requirements on
data accuracy (e.g., trading data). BigTable and Hbase are two popular CP systems.
BigTable is well-known since it was successful for managing the background data
of Google’s search engine. Because a lot of data in Google is structured data,
BigTable mainly stores data with tables. Nevertheless, when a lot of information
is put in a table, the table size will grow. Such information should be partitioned and
stored separately. The table is usually highly sparse. Therefore, BigTable divides
the columns into different Column Families, where every column family stores the
same type of information. This way, similar data is stored together and the same type
of information is processed in the same manner, making it easy for system users. In
the same column family, new columns can be arbitrarily inserted, thus reducing the
usage limit of BigTable to a great extent.

BigTable is designed in the way similar to GFS, a distributed file system of
Google, where one Master and several Tablet Servers constitute a star structure in
a system. The star structure has a single point of failure. The load of the Master
server should be reduced in order to minimize Master errors. In BigTable, data
transmission and data addressing do not involve the Master. Therefore the load of the
Master is not high. In order to solve the problem of a single point of failure, BigTable
adopts a Master election mechanism. In particular, it incorporates an asynchronous
and consistent locking mechanism to ensure that exact one Master is elected every
time based on the Paxos protocol [3].

Data in BigTable is sequenced in the lexicographic order of rows. During data
modification, we shall insert a record in a sequential table, find a position to be
inserted, and then move the original data to make room for the newly inserted
data. This operation is very time-consuming. BigTable utilizes batch processing to
solve this problem. Specifically, BigTable uses two tables to store data: it stores
historical data with a big table and stores recently modified data with a very small
table.when the recent data accumulates to a certain amount or after a certain amount
of time, BigTable merges the recent data into the historical data. This approach
greatly reduces the times that big tables are modified, since only small tables are
frequently modified. The cost of data modification is thus reduced to a great extent.
Therefore, this method mitigates the problem of high cost for data changes and
increases the look-up speed for recently modified data.

AP systems,also ensure partition tolerance. However, AP systems are different
from CP systems in that AP systems also ensure availability. However, AP systems
only ensure eventual consistency rather than strong consistency in the previous two
systems. Therefore, AP systems only apply to the scenarios with frequent requests
but not very high requirements on accuracy. For example, in online SNS (Social
Networking Services) systems, there are many concurrent visits to the data but
certain amount of data errors are tolerable. Furthermore, because AP systems ensure
eventual consistency, accurate data can still be obtained after a certain amount of
delay. Therefore, AP systems may also be used under the circumstances with no
stringent real-time requirements.
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Dynamo and Cassandra are two popular AP systems. Cassandra, with sound
expandability, is used for storing massive textual data by mainstream commercial
online SNS companies, such as Facebook and Twitter. Specifically, Cassandra
utilizes the Consistent Hash algorithm to randomly and evenly map Key spaces
of user identifier spaces of servers to the same value domain space, and enables
servers to manage user data corresponding to the Keys of adjacent mapped values.
This way, dynamic changes at any servers in the systems only affect the data
corresponding to a small segment of value domains undertaken by themselves.
Mainstream SNSs utilize such distributed Key-Value storage approach, so as to
better meet the demands of expandability of large-scale online SNS systems and
load balance for the servers, and be adaptive to dynamic changes of systems.

In order to support the storage of textual data of users, Cassandra inherits the
column family model of BigTable to aggregate data with similar features into a
column family. What is different from BigTable is that Cassandra may expand the
concept of column family to a super column family-the column family of column
families. On Cassandra nodes, every column family corresponds to a MemTable,
a resident memory. When nodes write data, it first writes data into MemTable. In
proper occasions, e.g., memory space occupied by MemTable reaches the upper
bound or after a fixed amount of time, MemTable is stored into a corresponding
SSTable of a disk. SSTable has a large operation throughput because of its sequential
writing approach. The system builds a local index for every block including every
piece of data written in the disk and then Cassandra stores the index in the internal
memory in the form of Bloom Filter compression [4]. Because the compressed index
excludes the relative position of the block in the file system, Cassandra does not
perform well with regard to random reading.

4.3 Storage Mechanism for Big Data

Considerable research on big data promotes the development of storage mechanisms
for big data. Existing storage mechanisms of big data may be classified into three
bottom-up levels: (a) file systems, (b) databases, and (c) programming models.

File systems are the foundation of the applications at upper levels. Google’s
GFS is an expandable distributed file system to support large-scale, distributed,
data-intensive applications [5]. GFS uses cheap commodity servers to achieve fault-
tolerance and provides customers with high-performance services. GFS supports
large-scale file applications with more frequent reading than writing. However, GFS
also has some limitations, such as a single point of failure and poor performances
for small files. Such limitations have been overcome by Colossus [6], the successor
of GFS.

In addition, other companies and researchers also have their solutions to meet
the different demands for storage of big data. For example, HDFS and Kosmosfs
are derivatives of open source codes of GFS. Microsoft developed Cosmos [7]
to support its search and advertisement business. Facebook utilizes Haystack [8]
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to store the large amount of small-sized photos. Taobao also developed TFS and
FastDFS. In conclusion, distributed file systems have been relatively mature after
years of development and business operation. Therefore, we will focus on the other
two levels in the rest of this section.

4.3.1 Database Technology

The database technology has been evolving for more than 30 years. Various database
systems are developed to handle datasets at different scales and support various
applications. It is apparent that traditional relational databases cannot meet the
challenges on categories and scales brought about by big data. NoSQL databases
(i.e., non traditional relational databases) are becoming more popular for big data
storage. NoSQL databases feature flexible modes, support for simple and easy
copy, simple API, eventual consistency, and support of large volume data. NoSQL
databases are becoming the core technology for of big data. We will examine
the following three main NoSQL databases in this section: Key-value databases,
column-oriented databases, and document-oriented databases, each based on certain
data models.

4.3.1.1 Key-Value Databases

Key-value Databases are constituted by a simple data model and data is stored
corresponding to key-values. Every key is unique and customers may input queried
values according to the keys. Such databases feature a simple structure and the
modern key-value databases are characterized with high expandability and smaller
query response time higher than those of relational databases. Over the past few
years, many key-value databases have appeared as motivated by Amazon’s Dynamo
system [9]. We will next introduce Dynamo and several other representative key-
value databases.

Dynamo

Dynamo is a highly available and expandable distributed key-value data storage
system. It is used to manage store status of some core services in the Amazon
e-Commerce Platform. Amazon e-Commerce Platform provides multiple services
and data storage that can be realized with key access. The public mode of relational
databases may generate invalid data and limit data scale and availability. Dynamo
can meet requirements of such applications with a simple key-object interface.
The Dynamo interface is constituted by simple reading and writing of data items.
Dynamo achieves elasticity and availability through the data partition, data copy,
and object edition mechanisms.
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The Dynamo partition plan relies on Consistent Hashing [10] to divide load for
multiple main storage machines. With this mechanism, the mapping scope of a hash
function is deemed as a fixed circular space or “ring” (i.e. the maximum hash value
is followed by the minimum hash value). Every node in the system is assigned with
a random value in the space and such random value represents its “position” in the
ring. The position of every data item identified with a key, can be computed through
the calculation of hash value of a keyword in the data item. Then, we get the first
node clockwise, with the position larger than that of the data item. This way, every
node shall be responsible for the region between the node and the previous node.
The Consistent Hash has a main advantage that node passing only affects directly
adjacent nodes and do not affect other nodes.

Dynamo copies data items to N sets of mainframe computers, in which N is
a configurable parameter in order to achieve high availability and durability. It
distributes every key word K into a coordinating node. The coordinating node is
responsible for the copy of data items within its scope. Apart from storing all key
words within its scope, the coordinating node shall copy N�1 successive nodes in
the ring clockwise. This way, every node in the system will be responsible for a
region between itself and the Nth former node.

Dynamo system also provides eventual consistency, so as to conduct asyn-
chronous update on all copies. Before the update is applied to all copies, the put()
call may return to the caller. Consequently, the data returned by the next get() call
may not be the recently updated data. If there is no failure, the propagation delay
of updating can be determined. However, in case of failure (e.g, server failures or
network partition), the update may not propagate to all the copies until a large delay.

Voldemort

Voldemort is also a key-value storage system, which was initially developed for
and is still used by LinkedIn. Key words and values in Voldemort are composite
objects constituted by tables and images. The voldemort interface includes three
simple operations: reading, writing, and deletion, all of which are confirmed
by key words. Voldemort provides asynchronous updating concurrent control of
multiple editions but does not ensure data consistency. However, Voldemort supports
optimistic locking for consistent multi-record updating: in case of conflict between
the updating and any other operations, the updating operation may exit. The vector
clock used in Dynamo provides various data editions with sequencing. The data
copy mechanism of Voldmort is the same as that of Dynamo. Voldemort may store
data in RAM but allows data be inserted into a storage engine. It is worth noting
that Voldemort supports two storage engines including Berkeley DB and Random
Access Files.

The key-value database emerged a few years ago. Deeply influenced by Amazon
DynamoDB, other key-value storage systems include Redis, Tokyo Canbinet and
Tokyo Tyrant, Memcached and MemcacheDB, Riak and Scalaris, all of which
provide expandability by distributing key words into nodes. Voldemort, Riak, Tokyo
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Cabinet, and Memecached can utilize attached storage devices to store data in RAM
or disks. Other storage systems store data at RAM and provide disc backup, or rely
on copies and copy recovery to avoid the need for backup.

4.3.1.2 Column-Oriented Databases

The column-oriented databases store and process data according to columns other
than rows. Columns and rows are segmented in multiple nodes to realize expand-
ability. The column-oriented databases are mainly inspired by Google’s BigTable.
In this section, we first discuss BigTable and then introduce several derivative tools.

BigTable

BigTable is a distributed, structured data storage system, which is designed to
process the large-scale (PB class) data among thousands commercial servers [3].
The basic data structure of BigTable is a multi-dimension sequenced mapping with
sparse, distributed, and persistent storage. Indexes of mapping are key words of
rows, key words of columns, and timestamps, and every value in mapping is an
unanalyzed byte array. The key words of rows in BigTable are 64KB character
strings, in which the rows are stored according to the lexicographical order and
are continually segmented into Tablets, i.e. units of distribution and load balance.
This way, read a short row of data can be highly effective, since it only involves
communication with a small portion of machines. The columns are grouped
according to the prefixes of key words, which are called column families. These
column families are the basic units for access control. The timestamps are 64-
bit integers to distinguish different editions of cell values. Clients may flexibly
determine the quantity of cell editions to be stored. These editions are sequenced
in the descending order of timestamps, so the latest edition will always be read.

The BigTable API features the creation and deletion of Tablets and column
families as well as modification of metadata of clusters, tables, and column families,
and access control rights. Client applications may write or delete values of BigTable,
look up values from columns, or browse sub-datasets in a table. BigTable also
supports some other characteristics, such as transaction processing in a single row.
Users may utilize such features to conduct more complex processing on data.

BigTable is based on many fundamental components of Google, including
GFS [5], cluster management system, SSTable file format, and Chubby [11]. GFS is
use to store data and log files. The cluster management system is responsible for task
scheduling, management of shared resources in machines, processing of machine
failures, and monitoring of machine statuses. SSTable file format is used to store
BigTable data internally. SStable provides mapping between persistent, sequenced,
and unchangeable key words and values, with key words and values of any byte
strings. BigTable utilizes Chubby for the following server tasks: (1) ensure there
is at most one active Master copy at any time; (2) store the bootstrap location of
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BigTable data; (3) look up Tablet server; (4) conduct error recovery in case of Table
server failures; (5) store BigTable schema information; (6) store the access control
table.

Every procedure executed by BigTable includes three main components: Master
server, Tablet server, and client library. BigTable only allows one set of Master
server be distributed to be responsible for distributing tablets for Tablet server,
detecting added or removed Tablet servers, and conducting load balance. In addition,
it can also modify the BigTable schema, e.g., creating tables and column families,
and collecting garbage saved in GFS as well as deleted or disabled files, and using
them in specific BigTable instances. Every tablet server manages a Tablet set and is
responsible for the processing of loaded Tablet reading and writing, and segmenting
Tablets when they are too big. The companying application client library is used to
communicate with BigTable instances.

Cassandra

Cassandra is a distributed storage system to manage the huge amount of structured
data distributed among multiple commercial servers [12]. The system was developed
by Facebook and became an open source tool in 2008. It adopts the ideas and
concepts of both Amazon Dynamo and Google BigTable, especially integrating the
distributed system technology of Dynamo with the BigTable data model. Tables
in Cassandra are in the form of distributed four-dimensional structured mapping,
where the four dimensions including row, column family, column, and super
column. A row is distinguished by a string-key with arbitrary length. No matter
what the amount of columns to be read or written is, the operation on rows is an
atomic operation. Columns may constitute clusters, which is called column families,
which are similar to the data model of BigTable. Cassandra provides two kinds of
column families: column families and super columns. The super column includes
any quantity of columns with names related to the super column. A column family
includes columns and super columns, which may be continuously added to the
column family during execution. The partition and copy mechanisms of Cassandra
are very similar to those of Dynamo, so as to achieve consistency.

Derivative Tools of BigTable

Since the BigTable code cannot be obtained through the open source license, some
open source projects compete to implement the BigTable concept to develop similar
systems, such as HBase and Hypertable.

HBase is a BigTable clone programmed with Java and is a part of Hadoop of
Apache’s MapReduce framework [13]. HBase replaces GFS with HDFS. It writes
updated contents into the RAM and regularly writes them into files in discs. The row
operations are atomic operations, equipped with row-level locking and transaction
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processing. Large-scope transaction processing is provided with optional support.
Partition and distribution are transparently operated, with client hash or a fixed
secret key space.

HyperTable was developed similar to BigTable to obtain a set of high-
performance, expandable, and distributed storage and processing systems for
structured and unstructured data [14]. HyperTable relies on distributed file systems,
e.g. HDFS, and distributed lock manager. Data representation, processing, and
partition mechanism are similar to that in BigTable. HyperTable has its own query
language, called HyperTable query language (HQL), and allows users to create,
modify, and query underlying tables.

Since the column-oriented storage databases mainly emulate BigTable, their
designs are all similar, except for the concurrency mechanism and several other
features. For example, Cassandra emphasizes weak concurrency of concurrent con-
trol of multiple editions, while HBase and HyperTable focus on strong consistency
through locks or log records.

4.3.1.3 Document Databases

Compared with key-value storage, document storage can support more complex data
forms. Since documents do not follow strict modes, there is no need to conduct mode
migration. In addition, key-value pairs can still be saved. We will examine three
important representatives of document storage systems, i.e., MongoDB, SimpleDB,
and CouchDB.

MongoDB

MongoDB is an open-source document-oriented database [15]. MongoDB stores
documents as Binary JSON (BSON) objects [16], which is similar to object. Every
document has an ID field as the main key word. Query in MongoDB is expressed
with syntax similar to JSON. A database driver sends the query as a BSON object to
MongoDB. The system allows query on all documents, including embedded objects
and arrays. Indexes may be created for queryable fields in documents to enable rapid
query.

The copy operation in MongoDB can be executed with log files in the main
nodes that support all the high-level operations conducted in the database. During
the copy operation, the machine queries all the writing operations since the last
synchronization of the machine and executing operations in log files in local
databases. MongoDB supports horizontal expansion with automatic sharing to
distribute data among thousands of nodes by automatically balancing load and keep
the system up and running in case of failure.
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SimpleDB

SimpleDB is a distributed database and a web service of Amazon [17]. Data
in SimpleDB is organized into various domains in which data may be stored,
acquired, and queried. Domains include different properties and name/value pair
sets of projects. Date is copied to different machines at different data centers
in order to ensure data safety and improve performance. This system does not
support automatic partition and thus could not be expanded with the change of
data volume. SimpleDB allows users to use SQL to run query, e.g., selecting
sentences nonconforming to a single domain. It is worth noting that SimpleDB can
assure eventual consistency but does not feature MVCC (Muti-Version Concurrency
Control). Therefore, conflicts therein could not be detected from the client side.

CouchDB

Apache CouchDB is a document-oriented database written in Erlang [18]. Data
in CouchDB is organized into documents that consist of fields named by key
words/names and values, and are stored and accessed as JSON objects. Every
document is provided with a unique identifier. CouchDB allows access to database
documents through the RESTful HTTP API. If a document needs to be modified,
the client can download the entire document, modify it, and then send it back to
the database. After a document is rewritten once, the identifier will be modified and
updated. CouchDB utilizes the optimal copying to acquire scalability but without
a sharing mechanism. Since various CouchDBs may be executed along with other
transactions simultaneously, any kinds of Replication Topology can be built. The
consistency type of CouchDB relies on the copy mechanism. If the server-server
configuration is utilized, CouchDB system can ensure eventual consistency; with
the master-slave configure, strong consistency can be assured. MVCC in CouchDB
is synchronously executed with the historical Hash records.

Except for properties, sets, and indexes defined in sets, all documents are stored
without a document schema. Generally, they do not provide explicit lock and,
compared with traditional relational databases, feature weaker concurrency and
atomic properties. Documents may be distributed to nodes of all systems to achieve
scalability at different levels.

4.3.1.4 Platform for Nimble Universal Table Storage

Platform for Nimble Universal Table Storage (PNUTS) is a large-scale parallel
geographically-distributed system for Yahoo!’s web applications [19]. It relies on
a simple relational data model in which data is organized into a property record
table. In addition to the classic data types, blob (binary large object or basic large
object) is also an effective data type that allows any structures within records (not
always large-scale binary objects such as images or audio frequency).
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In the physical layer, the system is divided into different regions, each of which
includes a set of complete system components and complete copies of tables. The
data table is horizontally segmented into record groups, which are called Tablets.
Tablets are distributed among many servers; every server may have tens of thousands
of Tablets but a Tablet may only be stored in a region of a server. The query language
of PNUTS supports the selection and projection of a signal table. To upgrade or
delete an existing record, the main key words must be specified. The consistency
mode provided by PNUTS has a feature between the general serializability and
eventual consistency.

4.3.2 Design Factors

Of the various database systems, there is not a single system that can achieve the
optimal performance under all workload circumstances. In each database system,
some performance goals have to be compromised to achieve optimized operation
for specific applications.

Cooper et al. in [20] discussed the trade-offs confronted by data management
systems based on cloud computing, including reading performance and writing
performance, delay and durability, synchronous and asynchronous copies, and data
segmentation, among others. Some researchers also differentiated and analyzed
other design factors [21–23]. In the following, we compare several prominent
features of the existing database systems (rather than analyzing the design goals
of a specific system).

• Data Model: this section examined three core data models, i.e. key-value,
column, and document models. In particular, PNUTS uses a row-oriented data
model.

• Data Storage: in some systems data are designed to be stored in RAM and their
snapshots or copies are stored in discs. Other systems store data in discs, with
the cache stored in RAM. A few systems have pluggable background programs
that are allowed to use different data storage media, or standardized underlying
document systems are required.

• Concurrency Control: there are three concurrency control mechanisms used
in the existing systems: lock, MVCC, and non-concurrency control. The lock
mechanism only allows a user to read or modify a real object (i.e., object,
document, or row) at any time. The MVCC mechanism ensures the reading
consistency. However, if several users modify a real object at the same time,
several conflicting editions of a real object may be created. Some systems do not
offer atomicity but allow different users to concurrently modify different parts
of the same object, and may not ensure which edition will be acquired during
reading.

• Consistency: according to the CAP theorem, strict consistency could not be
simultaneously achieved along with availability and partition tolerance. The
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weak consistency, eventual consistency, and time axis consistency of both types
should be generally compromised for each other. Eventual consistency means
that all the updating operations will finally be propagated through the system
and all the copies will be eventually consistent beyond a given period of time.
Time axis consistency means that all the copies of a given record will apply the
updating operations following the same order.

• CAP Option: The CAP theorem indicates that a shared data system may achieve
at most two properties, among consistency, availability, and partition tolerance.
Databases based on cloud computing needs to copy data from different servers
in order to handle system failure in some regions, which basically requires
consistency and availability. This way, the trade-off between consistency and
availability can be determined. At present, various weak consistency models [24]
have been proposed to achieve reasonable system availability.

4.3.3 Database Programming Model

The massive datasets of big data are generally stored in hundreds and even
thousands of commercial servers. Apparently, the traditional parallel models (e.g.,
Message Passing Interface (MPI) and Open Multi-Processing (OpenMP)) may not
be adequate to support such large-scale parallel programs.

Some parallel programming modes have been proposed for specific fields. These
models effectively improve the performance of NoSQL and reduce the performance
gap between relational databases. Therefore, these models have become the corner-
stone for the analysis of massive data.

4.3.3.1 MapReduce

MapReduce [25] is a simple but powerful programming model for large-scale
computing using a large number of clusters of commercial PCs to achieve automatic
parallel processing and distribution. In MapReduce, the computational workload
are caused by inputting key-value pair sets and generating key-value pair sets. The
computing model only has two functions, i.e., Map and Reduce, both of which are
programmed by users. The Map function processes input and generates intermediate
key-value pairs. Then, MapReduce will combine all the intermediate values related
to the same key and transmit them to the Reduce function. Next, the Reduce
function receives the intermediate key and its value set, merges them, and generates
a smaller value set. MapReduce has the advantage that it avoids the complicated
steps for developing parallel applications, e.g., data scheduling, fault-tolerance, and
inter-node communications. The user only needs to program the two functions to
develop a parallel application. The initial MapReduce framework did not support
multiple datasets in a task. This shortcoming has been mitigated by some recent
enhancements [26, 27].
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Over the past decades, people have widely utilized the traditional relational
databases to manage datasets. Consequently, programmers are familiar with the
advanced declarative language of SQL, a relational database, for task description
and dataset analysis. However, the succinct MapReduce framework only provides
two nontransparent functions without the common operations (e.g., projects and
filters). Therefore, programmers have to spend time on programming the basic
functions, which are generally hard to maintain and reuse. Incorporating the SQL
style in the MapReduce framework would be a promising solution. To this end,
some advanced language systems have been proposed, e.g., the Sawzall [28] of
Google, the Pig Latin [29] of Yahoo!, the Hive [30] of Facebook, and the Scope [3]
of Microsoft, so as to improve the programming efficiency and user friendliness.

4.3.3.2 Dryad

Dryad [31] is a general-purpose distributed execution engine for processing parallel
applications of coarse-grained data. The operational structure of Dryad is a directed
acyclic graph, in which vertexes represent programs and edges represent data
channels. Dryad executes operations on the vertexes in computer clusters and
transmits data via data channels, including documents, TCP connections, and
shared-memory FIFO. During operation, resources in a logic operation graph are
automatically map to physical resources.

The operation structure of Dryad is coordinated by a central program called job
manager, which can be executed in clusters or workstations of users. The user
workstations can access clusters through the network. A job manager includes
application codes and program library codes, in which application codes are used to
build a job communication graph and the program library codes are used to arrange
available resources. All kinds of data are directly transmitted between vertexes.
Therefore, the job manager is only responsible for decision-making, which does
not obstruct any data transmission.

In Dryad, application developers can flexibly choose any directed acyclic
graph to describe the communication modes of the application and express data
transmission mechanisms. In addition, Dryad allows vertexes to use any amount
of input and output data, while MapReduce supports limited computing, with only
one input set and generating only one output set. DryadLINQ [32] is the advanced
language of Dryad and is used to integrate the aforementioned SQL-like language
execution environment.

4.3.3.3 All-Pairs

All-Pairs [33] is a system specially designed for biometrics, bio-informatics, and
data mining applications. It focuses on comparing element pairs in two datasets by
a given function. The All-Pairs problem may be expressed as a three-tuples (Set A,
Set B, and Function F), in which Function F is utilized to compare all elements in



4.3 Storage Mechanism for Big Data 47

Set A and Set B. The comparison result is an output matrix M. It is also called the
Cartesian product or cross join of Set A and Set B.

All-Pairs is implemented in four phases: system modeling, input data distribu-
tion, batch job management, and result collection. In Phase I, an approximation
model of system performance will be built to assist in deciding how much CPU
is needed and how to conduct job partition. In Phase II, a spanning tree is built
for data transmission, which is completed within logarithmic time. This way, the
workload of every partition may effectively get input data. In Phase III, after the data
flow is delivered to proper nodes, the All-Pairs engine will build a batch-processing
submission for jobs in partitions, sequence them in the batch processing system, and
formulate a node running command to acquire data in nodes. The user-defined items
will be executed in proper partition jobs to generate results in batch, with the results
displayed in the output matrix. In the last phase, as the batch processing system
completes its jobs, the extraction engine will collect results and combine them in a
proper structure, which is generally a single file list. In the list, all results are put in
order. If the system hides the execution details from the user, the user may define
the data and calculation requirements using the given interfaces.

4.3.3.4 Pregel

The Pregel [34] system of Google facilitates the processing of large-sized graphs,
e.g., analysis of network graphs and social networking services. A computational
task is expressed by a directed graph constituted by vertexes and directed edges,
in which every vertex is related to a modifiable and user-defined value. Directed
edges are related to their source vertexes and every edge is constituted by a
modifiable and user-defined value and an identifier of a target vertex. After the
graph is built, the program conducts iterative calculations, which is called supersteps
among which global synchronization points are set until algorithm completion and
output completion. In every superstep, vertex computations are parallel and every
vertex executes the same user-defined function to express a given algorithm logic.
Every vertex may modify its status and the status of its output edges, receive a
message sent from the previous superstep, send the message to other vertexes, and
even modify the topological structure of the entire graph. Edges are not provided
with corresponding computations. Functions of every vertex may be removed by
suspension. When all vertexes are in an inactive status without any message to
transmit, the entire program execution is completed. The Pregel program output
is a set consisting of the values output from all the vertexes. Generally speaking, the
Pregel program output and input are an isomorphic directed graph.

Inspired by the aforementioned programming models, other researches have also
focused on programming modes for more complex computational tasks, e.g., iter-
ative computations [35, 36], fault-tolerant memory computations [37], incremental
computations [38], and flow control decision-making related to data [39].
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