
Chapter 6
Consequence and Degrees of Truth
in Many-Valued Logic

Josep Maria Font

6.1 Introduction

Letme begin by calling your attention to one of themain pointsmade by Petr Hájek in
the introductory, vindicating section of his influential book (Hájek 1998) (the italics
are his):

Logic studies the notion(s) of consequence. It deals with propositions (sentences), sets of
propositions and the relation of consequence among them. [page 1]
[…]
Fuzzy logic is a logic. It has its syntax and semantics and notion of consequence. It is a study
of consequence. [page 5]

Petr’s book contains no discussion on how consequence in mathematical fuzzy logic
should be defined, or why. He simply defines his consequences either by a Hilbert-
style axiomatization or semantically by the truth-preserving paradigm, which takes
1 as the only designated truth value in the real interval [0, 1] or in other algebraic
structures which are ordered and have a maximum value 1. That is, if Γ is a set of
formulas and ϕ is a formula, then1

Γ � ϕ ⇐⇒ e(ϕ) = 1 whenever e(α) = 1 for all α ∈ Γ,

for any evaluation e in the model.
(6.1)

I would also like to call your attention to a result about propositional Gödel-
Dummett logic G, whose consequence �G is defined axiomatically on p. 97 of Hájek

1 In this chapter I will represent logics as consequences by the symbol �, independently of the
way they are defined, be it of semantical or syntactical origin, and will add sub- or superscripts
when needed. The symbol � will only be used for satisfaction of equations in (classes of)
algebras.
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(1998). G is proved in Theorem 4.2.17 to be strongly complete with respect to the
standardGödel algebra over [0, 1] taking theminimumas the t-normwhose residuum
interprets the implication. Then Theorem 4.2.18 reads:

Theorem 6.1 For each theory T over G, each formula ϕ and each rational r such
that 0 < r � 1, T �G ϕ iff each evaluation e such that e(α) � r for each axiom α

of T satisfies e(ϕ) � r .

The same holds if we take all reals in [0, 1] instead of the rationals (by the density
of Q inside R), but Petr establishes this only to give a relation with “partial truth”,
which has been previously discussed in the book in the framework of the Rational
Pavelka Logic.

This result, which inHájek (1998) appears to be an anecdotal result on the standard
semantics of G, has an alternative view when it is reformulated as the coincidence
of two consequences: if we define

Γ �� ϕ ⇐⇒ e(ϕ) � r whenever e(α) � r for all α ∈ Γ,

for any evaluation e and any value r in the model,
(6.2)

then Theorem 6.1 says that �G and �� coincide when the model at hand is the Gödel
algebra of rationals, or equivalently of the reals, in [0, 1]. This is a more interesting
perspective, and it is then natural to wonder whether it holds for other many-valued
logics, and why, and whether it is just a technical result or whether it hides some
deeper insights.

For future reference let me say now that when considering the definition (6.2) in
general, if the model has a complete lattice structure, then it can be equivalently put
in the form

Γ �� ϕ ⇐⇒ e(ϕ) �
∧{e(α) : α ∈ Γ } for all evaluations e. (6.3)

We will see that this setting has also been popular. When 1 is the maximum of the
ordered model set, either (6.1), (6.2) or (6.3) yield the same set of theorems:

∅ � ϕ ⇐⇒ ∅ �� ϕ ⇐⇒ e(ϕ) = 1 for all evaluations e. (6.4)

Note that, while this is clearly included in (6.1) and (6.2), for this to follow from (6.3)
the implicit assumption that the infimum of an empty set is the maximum of the order
is needed.

Investigating these and similar issues we discover a connection with the area of
logics preserving degrees of truth, which has been gaining momentum recently; see
Bou (2008, 2012), Bou et al. (2009), Font (2007, 2009), Font et al. (2006). So I
will begin by discussing this idea in general (Sect. 6.2); then I will review the results
obtained so far in the literature for the case of Łukasiewicz’s infinite-valued logic
(Sect. 6.3) and for a larger family ofsubstructural logics (Sect. 6.4). The resulting
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logics are particularly interesting for abstract algebraic logic (Sect. 6.5). I will briefly
review some results on theDeductionTheorem (Sect. 6.6) and on their axiomatization
(Sect. 6.7). The chapter ends with some research proposals.

6.2 Some Motivation and Some History

Speaking generally, logics defined like (6.1) are called truth-preserving, while logics
defined like (6.2) or (6.3) are called logics that preserve degrees of truth. Just a few
words to argue why I think that the latter reflects the semantical idea of many-valued
logic better than the former; for a lengthier discussion in a wider context, see Font
(2009).

The idea of logical consequence as a truth-preserving one, firmly established from
Bolzano to Tarski and beyond, is reasonably unproblematic when there is a single
notion of truth in the models, and even more when there is a single model. However,
it is at least surprising that it has not raised any significant debate in the context of
many-valued logic.

Phrases such as “Truth comes in degrees” (Cintula et al. 2011, p. v) or “Truth
of a fuzzy proposition is a matter of degree” (Hájek 1998, p. 2) appear as a starting
justification in many papers and books on fuzzy logic or many-valued logic. One
may discuss the meaning of these degrees of truth, their philosophical significance,
whether they adequately reflect the phenomenon of vagueness, and so on, and for
those wanting to do this Smith (2008) is a very enlightening exposition. But I think
that for the (mathematical) logician the important thing is not to discuss what they
are or should be, but how they are used (to define a logic).

Now, if logic dealt only with tautologies, then it would be natural to define them
as those propositions that are always true, that is, their truth value always attains the
maximumdegree, as in (6.4). However, if it is consequence that matters, then it seems
more natural to demand that consequence preserves truth not only in its maximum
degree, but in all the available degrees. Thus, the usage of (6.1) in many-valued
contexts raises some dissatisfaction: it seems as if, while all points in the model are
considered as truth values when the task is to determine the truth value of a complex
formula from the truth values of the atomic formulas,2 only 1 is really treated as a
truth bearer when the task is to establish consequence. Under this view, the other
points in the model seem to be treated rather as expressing degrees of falsity.3

Scheme (6.2) can even be considered as an alternative rendering of the same
idea of preservation of truth: not of absolute truth, but of that truth that comes in
degrees and characterizes the many-valued landscape. While individual points in a
model V may still be regarded as truth values in that they are the values assigned to
propositions by each of the evaluations, (6.2) suggests identifying degrees of truth
with the sets ↑r = {s ∈ V : r � s}, and then implements the idea that consequence

2 Inwhatevermechanism; one need not assume truth-functionality for this discussion tomake sense.
3 Scott in Scott (1974, p. 421) calls them “degrees of error”, see below. Gottwald (2001, Sect. 3.1)
seems to be sympathetic with this idea as well.
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is the relation that preserves all these sets; it is in this sense that it is called “preserving
degrees of truth”. Since the two schemes produce the same set of tautologies (6.4),
separate consideration of the logics obtained by the two paradigms is only of interest
when assigning the central rôle in logic to consequence. The second paradigm is
potentially as general as the first one; it can be applied to any semantics where truth
values are ordered and there is a maximum one, which is indeed a very reasonable
and common assumption.4 It may also be taken to justify interpreting generalized
matrices as the most general structures of degrees of truth, but this is another issue,
discussed in Font (2009).

Logics of the form �� appeared in the literature much earlier than Hájek (1998),
but were only thoroughly studiedmuchmore recently. The idea seems to have sprung
up independently, but sporadically, in several circles in the early 1970s.

The best motivated precedent is found in the well-known papers by Scott (1973,
1974). These papers contain a critical view on the interpretation of many-valued
logic in general, and particularly on the usage of schemes similar to (6.1), perhaps
with more than one element playing the rôle of 1, the “designated elements” in the
theory of logical matrices (the italics are his):

One quirk of many-valued logic that always puzzled me was the distribution of designated
elements. Theywere somehow “truer” than the others. […]On the one handwewere denying
bivalence by contemplating multivalued systems; but on the other, a return to bivalence was
provided by the scheme of designation. Scott (1973, p. 266)

Scott wants to find an interpretation of the non-classical truth values that justifies
both the truth tables and the rules of Łukasiewicz logic, and eventually proves com-
pleteness. He first interprets the truth values as “types of propositions” and later on as
“degrees of error in deviation from the truth”, see Scott (1973, p. 271, 1974, p. 421).
He then makes a proposal, summarized in the phrase “to replace many values by
many valuations”, which actually amounts to considering not just a single matrix but
a set of n matrices for each n-valued logic, the designated sets being the principal
filters of the n-element Łukasiewicz chain; therefore, this proposal turns out to be
essentially scheme (6.2). That such an idea leads to a definitely different “conditional
assertion” (i.e., consequence relation) is already observed by realizing that Modus
Ponens in its usual form would fail, but would still hold in the restricted form

if �� α → β then α �� β, (6.5)

which will re-appear in Theorems 6.12 and 6.13. What Scott does explicitly for
this consequence in Scott (1974) is to define a set of Gentzen-style rules (of the
“multiple conclusion” kind) and to prove its completeness, in the sense that the
derivable sequents of this calculus coincide with the entailments of the consequence
�� (extended to be of the “multiple conclusion” kind as well). Surprisingly, this cal-
culus does not contain the fusion connective, nor any rules expressing its residuated

4 That the truth degrees can be compared (i.e., ordered) seems to be another essential ingredient
motivating fuzzy logic: “We shall understand [fuzzy logic in the narrow sense] as a logic with a
comparative notion of truth” (Hájek 1998, p. 2).
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character with respect to implication. In any case, only the completeness part of Scott
(1974) seems to have had some impact on the evolution of research on many-valued
logic in the following years; the proposal of a different consequence relation seems
to have passed unnoticed.

Another mathematically clear though philosophically less motivated precedent
of the idea is found in the contemporary Cleave (1974), where the author studies
Körner’s reinterpretation of Kleene’s strong 3-valued logic as a logic (and an alge-
bra) of “inexact predicates”. He defines a first-order logic, in a language without
implication, as a consequence relation, and chooses to do so by explicitly using (6.3)
from Kleene’s truth tables, justifying this move only in that it is a generalization
of the classical case.5 The associated relation of logical equivalence, which here
coincides with interderivability, turns out to be the identity of truth functions, and so
the corresponding Lindenbaum-Tarski construction can be easily performed. Alge-
braic structures related to this logic are just presented as the De Morgan algebras,
but this is wrong; actually they should be the Kleene algebras (i.e., the De Mor-
gan algebras satisfying the inequality x ∧ ¬x � y ∨ ¬y), see Balbes and Dwinger
(1974, Sect.XI.3) and Font (1997, Sect. 5.1). The main goal of the paper, though, is
to present a Gentzen-style axiomatization and to prove its completeness by Schütte-
style methods.

At the end of the seventies Pavelka (1979) incorporates degrees of truth to the
landscape of many-valued logic in a novel way, but not in the sense of preservation
of degrees of truth as we are considering. Inspired by Goguen (1969), he intro-
duces fuzzy logics as fuzzy consequence relations between fuzzy sets of formulas
and formulas, with membership degrees coinciding with truth degrees. Moreover, he
represents each truth degree r ∈ [0, 1] as a constant r of the language.6 He considers
an axiomatic system where each inference rule is coupled with a rule to calculate
provability degrees (degrees of truth of statements saying that something follows
from something), and proves what has since been termed “Pavelka-style complete-
ness”, which is the coincidence of the degree of membership of a formula ϕ to the
consequences of a fuzzy set of formulas Γ̃ with the degree of provability of ϕ from
Γ̃ . Later on this proposal was reformulated in Hájek (1995) by taking only constants
for the rationals in [0, 1] (hence the name “Rational Pavelka Logic”) and considering
“graded formulas”, i.e., pairs (ϕ, r) intended to mean “proposition ϕ has truth degree
at least r”, so that the syntax is a calculus of these graded formulas. In Hájek (1998,
Sect. 3.3) these pairs are finally taken to be aliases for the formulas r → ϕ, because
in an evaluation e in the unit interval, e(r → ϕ) = 1 if and only if r � e(ϕ). In this
way, Pavelka’s idea can be studied in an expansion of the ordinary truth-preserving
logic of Łukasiewicz; however, while degrees of truth seem to play a more proper
rôle in it and in other more recent works in the same line (see Esteva et al. (2007)

5 As we now know, coincidence of this way of expressing semantical consequence with the truth-
preserving one also holds in other, non-classical cases, see Theorems 6.1, 6.2, 6.3 and 6.5.
6 Pavelka develops his proposal forL-valued fuzzy sets, whereL is an arbitrary complete residuated
lattice, but proves his completeness result for the cases whereL is [0, 1] and all its finite subalgebras.
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and references therein), the intended semantics is still truth-preserving, as there is
no quantification over all truth degrees when considering consequence.7

At the end of the eighties the first major paper where the expression “logics
preserving degrees of truth” was coined as having a technical, semantical meaning
was published; this was Nowak (1990), preceded by the shorter Nowak (1987). There
three schemes implementing the same idea are compared in an abstract algebraic
context; the onewhich amounts to (6.3) is given the samename, and twoother variants
are called “weakly preserving degrees of truth” and “strongly preserving degrees of
truth”. The “weakly preserving” and the standard cases are characterized in Nowak
(1990, Theorems 3.2 and 4.6) in terms of the abstract properties of selfextensionality
(see Sect. 6.5) and projective generation. In this paper the expression “structures
of degrees of truth” is proposed to denote any algebraic structure with an ordering
relation; finally Theorem 7.6 is obtained:

Theorem 6.2 Let � and �� be the logics defined according to schemes (6.1)
and (6.3) with respect to some algebra with a complete lattice reduct. If the algebra
is a complete linear Heyting algebra then � = �� .

This does not apply directly to Theorem 6.1, for [0, 1] ∩ Q is not a complete
lattice; however, the version of Theorem 6.1 for real numbers, which is also true,
is clearly equivalent to the particular case of Theorem 6.2 for the Heyting algebra
structure of [0, 1].

Some years later the implication of Theorem 6.2 was refined and shown to be an
equivalence: see Theorem 6.5 below.

Another, independent appearance of essentially the same property is found in the
conference paper Baaz and Zach (1998), contemporary to Hájek (1998), in a study of
Gödel-Dummett logic in the modern framework of fuzzy logics. Here the two logics
defined from the two schemes (6.1) and (6.3) are considered when evaluations are
restricted to a subset V ⊆ [0, 1], with Gödel’s operations; let us denote them as �V

and ��
V respectively. Then Proposition 2.2 of Baaz and Zach (1998) reads:

Theorem 6.3 For each closed V ⊆ [0, 1], �V = ��
V .

The same setting and result appear again in Baaz et al. (2007, Proposition 2.15),
and after it the authors remark that this is “a unique feature of Gödel logics”,
but support this claim only with an example showing that it does not hold in
Łukasiewicz logic, namely, the failure of Modus Ponens for the logic ��

V when
V is the Łukasiewicz algebra [0, 1] instead of the Gödel algebra on [0, 1]. This state-
ment of uniqueness can be considered correct if understood as referring to the basic
fuzzy logics, as has been extended and made precise later on: see Theorem 6.5 and
property 5 after Theorem 6.7.

While the discussion in Scott (1973, 1974) is obviously centred on the issue
of how to define entailment or consequence in many-valued logic, the discussion
in Nowak (1987, 1990) is related to a more general problem, considered by the first

7 For other approaches to graded consequence, even farther removed from preservation of degrees
of truth, see (Chakraborty and Dutta 2010; Gerla 2001).
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time in Suszko (1961, Sects. 10, 11) and dealt with in more depth in Wójcicki (1984,
Chap. III) and in Wójcicki (1988, Sects. 1.6, 2.10). The central, non-trivial issue is
the relation between logical truth and logical consequence, technically formulated
as the problem of whether and when there is a logic (i.e., a consequence relation)
�L having a given set of formulas L as the set of its theorems, and, if so, how it
should be defined in a natural way. Wójcicki’s proposal, slightly different in his two
studies, amounts to assuming that two binary connectives ∧ and → exist so that one
can define

α1, . . . , αn �L ϕ ⇐⇒ α1 ∧ · · · ∧ αn → ϕ ∈ L ,

∅ �L ϕ ⇐⇒ ϕ ∈ L .
(6.6)

Moreover, the consequence �L is assumed to be finitary. Of course these stipulations
will define a consequence only when L satisfies certain conditions relative to ∧ and
→, which Wójcicki determines. His motivation is clearly twofold, for he is aware
of the general problem, which he discusses at length, but also of the fact that in the
case of Łukasiewicz many-valued logics it is perfectly natural to consider several
consequences; actually in 1973 he already published one of the few early papers
on this topic, Wójcicki (1973), devoted to comparing the truth-preserving and the
Modus Ponens-based consequences8 based on several subalgebras of Łukasiewicz’s
algebra [0, 1]. This paper, however, does still not consider the consequences pre-
serving degrees of truth; these appear first in the lecture notes Wójcicki (1984), and
the quotations in Nowak (1987) make it clear that it was this particular case what
inspired Nowak’s general study.

6.3 The Łukasiewicz Case

Thus, in Wójcicki (1984, 1988) several consequences defined from each of the sets
of tautologies of Łukasiewicz ξ -valued logics are studied, for ξ � ℵ1

9; the two we
are interested in now are an axiomatically defined one (which I denote here by �ξ )
where the axioms are all these tautologies and the only rule is Modus Ponens, and
one defined by scheme (6.6), denoted in Wójcicki (1988) by L (��

ξ . Concerning

the latter, it is only shown that for each finite n the logic L (��
n coincides with the

consequence ��
n that preserves degrees of truth from the n-element subalgebra of

[0, 1] in the sense of (6.3), and that ��
n is strictly weaker than �n .

8 Among the main results, he proved that the two consequences coincide for the finite subalgebras
but not for the denumerable one or for the whole interval, in which cases the truth-preserving
consequences are not finitary. However, they do coincide on finite sets of assumptions; thus, if one
considers only the associated finitary consequences, then the two fully coincide.
9 For ξ � ℵ0, ξ is the cardinality of the subalgebra of [0, 1] taken as the model; in the ℵ0 case, it
is the rational subalgebra. ℵ1 is used to refer to the whole algebra [0, 1].
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Explicitly continuing the work in Wójcicki (1988), in the mid-1990s an algebraic
study of the logics ��

n was begun10 in Gil (1996, Sect. 5.5). The logics, which appear
here only marginally in the study of n-sided Gentzen systems, are shown not to be
algebraizable but to be finitely equivalential, and to satisfy a Deduction Theorem for
the formula (x → y)n ∨ y; the (unpublished) work does not go any further.

The totally general case of logics preserving degrees of truth from arbitrary subal-
gebras of [0, 1] appears only in the twenty-first century, namely in Font and Jansana
(2001, Sect.C),where two consequences�S and��

S , defined by (6.1) and (6.2) respec-
tively, are associated with each subalgebra S of [0, 1]. These logics, again, appear
only marginally in this paper, as examples for some points of abstract algebraic logic,
and only the following basic properties are of interest here:

1. For each S except the 2-element algebra, �S is a proper extension of ��
S , but the

two logics have the same theorems.
2. For all infinite S, all the logics �S and all the logics ��

S have the same theorems:
the tautologies of �[0,1], i.e., of ordinary Łukasiewicz logic.

3. If S1 �= S2 then �S1 �= �S2 and ��
S1

�= ��
S2
.

4. The logics �S and ��
S are finitary if and only if the algebra S is finite.

Point 1 extends the already mentioned remark of Baaz et al. (2007) about the failure
of Theorems 6.1 and 6.3: they fail in the Łukasiewicz case, not only for the whole
algebra on [0, 1] but for any subalgebra. Point 2 reinforces the idea that the logics
preserving degrees of truth are only interesting when considering the consequence
relation, as even for different (infinite) subalgebras of [0, 1] they yield the same
tautologies.

The result in point 4, which extends a result fromWójcicki (1973),11 suggests that
one move to create a more uniform setting admitting a smoother treatment inside the
framework of abstract algebraic logic might be to force all logics under discussion
to be finitary.12 This is done in Font (2003), where the schemes (6.1) and (6.2) are
used to define the consequences only of finite Γ ; the same symbols � and �� will
be used from now on. Moreover, since all models under consideration have a lattice
structure,13 (6.2) can be replaced by the conjunction of the two conditions

α1, . . . , αn �� ϕ ⇐⇒ e(ϕ) � e(α1) ∧ · · · ∧ e(αn) for all e,
∅ �� ϕ ⇐⇒ e(ϕ) = 1 for all e,

(6.7)

10 Later results, see Theorem 6.4 and the comments before Theorem 6.5, will make it clear that the
logics presented in Gil et al. (1993) also coincide with ��

n , but this was not explicit at the time of
its publication.
11 In Wójcicki (1973) only the “if” part is proved, and only for �S.
12 As a matter of fact, finitarity is part of the definition of a logic in most studies outside abstract
algebraic logic, and also in some inside it.
13 Clearly a meet-semilattice structure is enough; some recent, purely abstract studies of logics
defined by (6.7) in a context beyond fuzzy, many-valued or substructural logics, such as Font
(2011) or Jansana (2012), build on this fact.
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where e ranges over all evaluations in the universe of the algebra taken as the truth
structure defining the logic. Since order is equationally definable through the lattice
operations, it is clear that this definition only depends on the equations satisfied by
the model algebra. This is used in Font (2003) to observe that all the finitary logics so
defined from infinite subalgebras of [0, 1]will coincide, that is, that there is only one
finitary logic preserving an infinity of degrees of truth from Łukasiewicz algebra;
it will be denoted by ��∞. By contrast, the finitary logics defined from the same
subalgebras by (6.1) depend on the quasi-equations that hold in the subalgebra, and
using a result on quasi-varieties of MV-algebras from Gispert and Torrens (1998) it
was proved in Font (2003, Theorem 21) that these quasi-equations depend only on
the rationals contained in the subalgebra.

The paper Font et al. (2006) is devoted to amore systematic and complete study of
the unique finitary logic ��∞ that preserves an infinity of degrees of truth from [0, 1].
Themain results are several characterizations of its algebraic counterparts and its full
generalizedmodels, its classification in the hierarchies of abstract algebraic logic, the
presentation of a Gentzen system adequate for it, which is also related to the ordinary
truth-preserving logic of Łukasiewicz, and its characterization through Tarski-style
conditions (i.e., abstract conditions on its consequence operator). However, most of
the results in Font et al. (2006) were extended considerably in Bou et al. (2009), so
it is better to review this paper here.

6.4 Widening the Scope: Fuzzy and Substructural Logics

In the last two decades the study of mathematical fuzzy logic, and particularly its
algebraic study, has enormously widened its scope thanks to the work of many
people around the world, above all Petr and his collaborators. Hájek (1998) draws
a framework where all extensions of his basic logical system BL are encompassed.
This logic was later characterized as the logic of all continuous t-norms on [0, 1] and
their residua, and it was soon superseded as a ground foundation for the universe of
fuzzy logics by MTL, the logic of all left-continuous t-norms and their residua; in
turn, MTL was soon identified to be an axiomatic extension of FLew, the canonical
contractionless substructural logic, associated with the class of residuated lattices.
Thus, the algebraic study of many-valued logics found its natural environment in
the realm of substructural logics; this was to be expected, because the residuation
property had been recognized very early as one of the key properties characterizing
the behaviour of implication, as in Goguen (1969). It should be noted, however, that
when moving from extensions of MTL to substructural logics in general we drop
what is considered by some to be an essential ingredient of fuzzy logics, namely
their linearity. In any case, the dominant paradigm is still truth preservation; good,
encyclopaedic overviews of these trends are Chapters I and II of Cintula et al. (2011)
for fuzzy logics stricto sensu and Galatos et al. (2007) for the wider panorama of
substructural logics.
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The residuated lattices relevant to this discussion are always assumed to be com-
mutative and integral14; the latter property means that the unit 1 of the monoidal
structure is also the maximum of the order structure. Therefore each variety K of
residuated lattices gives rise to what can be considered a truth-preserving logic �K
defined by (6.1) applied to all algebras in K. In each case, the lattice structure nat-
urally induces a companion logic ��

K defined by applying (6.7) to all algebras in K.
As already observed, this definition depends only on the equations that hold in the
models, so in this case a convenient way of highlighting this is to define ��

K as the
finitary logic satisfying

α1, . . . , αn ��
K ϕ ⇐⇒ K � α1 ∧ · · · ∧ αn � ϕ ,

∅ ��
K ϕ ⇐⇒ K � ϕ ≈ 1 ,

(6.8)

where� and≈ are formal symbols for the ordering15 and the identity relations.When
the variety K is generated by a single algebra, then (6.8) can be stated equivalently
with this algebra as a unique model, which approaches it to (6.2), (6.3) and (6.4),
thus making the interpretation of ��

K as a logic that preserves degrees of truth from
a single model more natural.

The logics ��
K have been collectively studied in Bou (2008, 2012); and in Bou

et al. (2009)16 in some depth, touching on all aspects already listed at the end of
Sect. 6.3, and particularly considering the relations with their companion logics �K;
the previous results concerning the latter are systematized in Galatos et al. (2007).
It is not possible to summarize the contents of those papers in full, so I will just
highlight some points and especially those with some relation with previous work.
First, the basic properties and relations match those already found in the Łukasiewicz
case:

Theorem 6.4 For each variety K of residuated lattices the following hold:

1. The logic �K is the extension of ��
K with either the rule of Modus Ponens or the

rule of �-Adjunction (i.e., from ϕ and ψ to infer ϕ � ψ).
2. α1, . . . , αn ��

K ϕ ⇐⇒ ∅ �K α1 ∧ · · · ∧ αn → ϕ, and ∅ ��
K ϕ ⇐⇒ ∅ �K ϕ,

for all α1, . . . , αn, ϕ.

14 In accordance with most of the literature starting withWard and Dilworth (1939), here residuated
lattices are algebras of similarity type (∧,∨, �,→, 1, 0) such that ∧ ,∨ are lattice operations, � is
a commutative monoidal operation (usually called “fusion”, “intensional conjunction” or “multi-
plicative conjunction”) with unit 1 also being the maximum of the lattice, and → is its residuum. A
constant 0 is included in the type but in the general case there is no need to postulate anything about
it; so these residuated lattices coincide with the FLei -algebras of Galatos et al. (2007), where the
term “residuated lattice” denotes in turn a much larger class. The smaller class of FLew-algebras
is found when postulating that 0 is the minimum of the order, and includes the algebras of most
well-known substructural logics such as MTL, BL, Ł∞, G, 	, etc.
15 Observe that, in a lattice, an order relation α � β holds if and only if the equation α ∧ β ≈ α

holds; thus, using � is just a more intuitive way of writing identities of that particular form.
16 An important error in the proof of Theorem 4.4 in Bou et al. (2009) has been corrected in Bou
and Font (2012).
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3. The algebraic counterpart of both logics is the variety K, and for each A ∈ K
the filters of ��

K on A are its lattice filters, while the filters of �K on A are its
implicative filters, which are the lattice filters closed under �.

Point 2 tells us that the relation found by Wójcicki in (6.6) for the finite
Łukasiewicz logics extends to all varieties of residuated lattices; in terms ofWójcicki
(1984), this says that��

K is “the well-determined logic” associated with the theorems
(tautologies) of�K. This property is often viewed as justifying that it is not necessary
to consider the logics ��

K; it would say that the implication connective of �K already
reflects the notion of a consequence preserving degrees of truth. Admittedly, this is
a serious objection, but I think it actually rests on a more basic issue, that of whether
the implication connective adequately represents consequence or entailment. This is
usually made to depend on the kind of Deduction Theorem the logic satisfies, and
it will be shown in Theorem 6.9 that either of the two logics satisfies the ordinary
Deduction Theorem for the connective→ if and only if they actually coincide. Thus,
when put in this context, the objection appears to be much weaker.

For the first statement of point 3 tomake sense, the notion of algebraic counterpart
mentioned there has necessarily to be defined in a non-ad hoc way, in the context
of some general theory of the algebraization of logic, and this is indeed the case, as
will be explained after Theorem 6.6. In any event, a technical consequence of the
second part of point 3 is that the logic ��

K coincides with the logic defined by the
class of matrices

{〈A, F〉 : A ∈ K , F a lattice filter of A
}
. In the particular case of

the class MV of MV-algebras, this shows that the logic ��
MV coincides with the logic

studied in Gil et al. (1993), called there “lattice-like Łukasiewicz logic”; moreover,
since MV is the variety generated by the Łukasiewicz algebra [0, 1], the logic ��

MV
is actually the finitary logic ��∞ preserving an infinity of degrees of truth from the
Łukasiewicz algebra mentioned before, a fact probably known to the authors of Gil
et al. (1993) but not mentioned there. Thus, some of the results stated (without proof)
in this paper anticipate for this particular case the more general ones obtained in Bou
et al. (2009); some will be mentioned later on.

The issue of the precise formulation and the scope of Theorems 6.1, 6.2 and 6.3
is settled in Bou et al. (2009, Theorem 4.12) as follows.

Theorem 6.5 Let K be a variety of residuated lattices. Then the two logics ��
K and

�K coincide if and only if K is a variety of (generalized) Heyting algebras.

The qualifier “generalized” appears here to cover the casewhere 0 is not postulated
to be the minimum of the order17; when it is, that is, when K is actually a variety of
FLew-algebras, the “generalized” can be deleted. Thus, Theorems 6.1, 6.2 and 6.3
cover the case of all the intermediate logics (the axiomatic extensions of intuitionistic
logic). Moreover, the converse of the implication in Theorem 6.2 and the claim
in Baaz et al. (2007) that “the coincidence of the two entailment relations [i.e., the

17 Generalized Heyting algebras can be described informally as “Heyting algebras without mini-
mum”; a residuated lattice is a generalized Heyting algebra if and only if the fusion operation �

coincides with the lattice conjunction ∧.
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Fig. 6.1 The most important classes of logics in the Leibniz hierarchy; for a finer classification
see Cintula and Noguera (2010). “→” means “included in” or “implies”

property of Theorem 6.3] is a unique feature of Gödel’s logics” are seen to hold if
adequately formulated. The conclusion is that the fuzzy logics preserving degrees
of truth may have some interest only for logics that are not extensions of Gödel-
Dummett logic.

6.5 Abstract algebraic logic classification

In the last two decades, abstract algebraic logic has emerged as an elaborate frame-
work for the study of the algebraic semantics of propositional logics and the relations
between metalogical properties of the logics and purely algebraic or model-theoretic
properties of their classes of algebraic models; see (Czelakowski 2001; Font and
Jansana 2009; Font et al. 2009). The advances in abstract algebraic logic have been
partly motivated by advances in the study of many different non-classical logics, and
as explained in Cintula et al. (2011, p. 104), they in turn have provided tools for the
systematization of the landscape of mathematical fuzzy logic.

One of the main goals of abstract algebraic logic has been to develop methods to
classify logics according to some abstract criteria and to study the relations between a
logic and its algebraicmodels in each of the “levels” created by the classification. This
has originated two hierarchies of a very different character, each with its advantages
and its disadvantages.

TheLeibniz hierarchy (Fig. 6.1) is themore complicated and developed of the two,
and can be described in several ways; the one giving it its name is by the behaviour
of the so-called Leibniz operator on the theories of the logic, or on the lattices of its
filters on arbitrary algebras. As the diagram shows, almost all its members belong to
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the large class of protoalgebraic logics, which can be characterized in several ways:
the simplest one is probably by the existence of a set18 of binary formulas Δ(x , y)

satisfying the basic properties

Reflexivity : ∅ � δ(x , x) for every δ ∈ Δ

Modus Ponens : x ,Δ(x , y) � y .
(6.9)

The importance of belonging to this hierarchy is that for the logics in these classes
the machinery of the theory of matrices can be used in full strength, far beyond the
general completeness theorems that hold for all logics whatsoever; many techniques
adapted from universal algebra and lattice theory give important, profound results
relating a logic with its algebraic models, in particular with the lattices of its filters
on arbitrary algebras. The central part of the hierarchy comprises several variants
of algebraizable logics, all arising from the class introduced by Blok and Pigozzi
in their seminal monograph Blok and Pigozzi (1989); these logics enjoy the highest
degree of equivalence between a logic and the equational consequence relative to a
class of algebras, an equivalence expressible by a pair of mutually inverse definable
transformers, whose paradigm is the relation between classical logic and the variety
of Boolean algebras, or between intuitionistic logic and Heyting algebras. At the
top of this diagram lies the more restricted but still large class of implicative logics.
These logics slightly generalize those studied by Rasiowa in her highly influential
book Rasiowa (1974), and are algebraizable in a very simple and standard way; many
of the logics algebraically studied in the past belong to this class.

The Frege hierarchy (Fig. 6.2) is less complicated and has also been less studied.
Its classifying principle is based on several replacement properties that the logics
and some of their generalized models may have. Its weakest, largest level is the
class of selfextensional logics, originally defined byWójcicki (1988) as those whose
interderivability relation �� is a congruence of the formula algebra.

There are some important theorems connecting the two hierarchies; for instance,
every protoalgebraic andFregean logicwith theorems is regularly algebraizable (Font
and Jansana 2009, Theorem 3.18). But in general the two hierarchies are orthogonal
in the sense that there are logics in the topmost level of eachwhich do not belong even
to the lowest level of the other (Theorem 6.6 provides a proper class of examples).
As is to be expected, logics belonging to higher levels in both hierarchies enjoy a
very nice algebraic behaviour.

The general classification of the two logics associated with each variety K of
residuated lattices, determined in Bou et al. (2009, Corollary 4.2) and Galatos et al.
(2007, Theorem 2.29), is as follows. The logics �K have a very good location in the
Leibniz hierarchy but in general not in the Frege hierarchy, while the logics ��

K are
in a so-to-speak dual situation.

18 For a finitary logic this set can be taken finite; if moreover the logic has a conjunction, then the
set can be reduced to a single formula.
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Fig. 6.2 The classes in the Frege hierarchy. “→” means “included in” or “implies”

Theorem 6.6 Let K be any variety of residuated lattices. Then:

1. The logic �K is implicative, but need not be even selfextensional.
2. The logic ��

K is fully selfextensional, but need not be even protoalgebraic.

Abstract algebraic logic provides a canonical definition of the algebraic counter-
part, which applies to an arbitrary logic. The definition uses the notion of a general-
izedmodel of a logic, but for restricted classes in the hierarchies the general definition
may have a more workable equivalent characterization. In the case of algebraizable
logics, this is the notion of equivalent algebraic semantics. Thus from point 1 above,
point 3 in Theorem 6.4 for �K means that the equivalent algebraic semantics of �K
is exactly K; for a proof of these facts see Galatos et al. (2007). For selfextensional
logics with a conjunction, it is proved in Font and Jansana (2009) that the algebraic
counterpart coincides with the notion of the intrinsic variety of a logic, which in this
case is the variety defined by the set of equations {ϕ ≈ψ : ϕ �� ψ}. Since the logics
��

K have a conjunction and by point 2 above they are in particular selfextensional, this
can be applied to them; but (6.8) implies that ϕ ���

K ψ ⇐⇒ K � ϕ ≈ψ , and there-
fore the intrinsic variety of ��

K is exactly K, which justifies point 3 of Theorem 6.4
regarding ��

K; all this is proved in Bou et al. (2009).
In principle no better classification in the Leibniz hierarchy is possible for the

logics ��
K in general, because many of them fail to be protoalgebraic; for instance

��∞ has been known not to be protoalgebraic since 1993, seeGil et al. (1993) and Font
(2003) for a proof. Those that are protoalgebraic are characterized in several ways
in Bou et al. (2009, Theorem 4.6 and Corollary 4.11), and it happens that they are
not just protoalgebraic, but automatically finitely equivalential (here the standard
notation xn = x � . . .(n � x is used):

Theorem 6.7 Let K be any variety of residuated lattices. Then the following condi-
tions are equivalent:

(i) The logic ��
K is protoalgebraic.

(ii) The logic ��
K is equivalential.

(iii) The logic ��
K is finitely equivalential, with (x → y)n�(y → x)n as equivalence

formula, for some n ∈ ω.
(iv) K � x ∧ (

(x → y)n � (y → x)n
)
� y, for some n ∈ ω.
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This result somehow generalizes facts already known to hold for Łukasiewicz
logics. That the ��

n are finitely equivalential, with these equivalence formulas, is
already proved in Gil (1996); and the equivalence between the first three conditions
is already stated (without proof) in Gil et al. (1993) for logics that are extensions of
��∞.

The equivalence between (i) and (iv) suggests that the denumerable family of
varieties of residuated lattices defined by the equations in point (iv) may have both
an algebraic and a logical interest. This family turns out to be related to other denu-
merable families of varieties (some already known) which are studied in Bou et al.
(2009); here are some of the consequences of the relations found there:

1. If ��
K is protoalgebraic, then there is some n ∈ ω such that all algebras in K are

n-contractive.19

2. It follows from1. that for themajority of best-known fuzzy logics, their companion
preserving degrees of truth is not protoalgebraic. This concerns Łukasiewicz
logic, product logic, MTL, BL, FLew, etc. It is important for the general theory
of abstract algebraic logic that natural examples of non-protoalgebraic logics are
found, because at the time of their introduction in Blok and Pigozzi (1986) it was
believed that only pathological logics could fail to be protoalgebraic.

3. If K is a variety of MTL-algebras, then ��
K is protoalgebraic if and only if there

is some n ∈ ω such that all chains in K are ordinal sums of simple n-contractive
MTL-chains (Horčík et al. 2007). Observe that not all finite MTL-chains satisfy
this condition.

4. When K is a variety of BL-algebras, the implication in 1. is an equivalence. In
contrast with the MTL case, this implies that the logic preserving degrees of truth
with respect to any finite BL-chain is protoalgebraic. In particular, this confirms
that the finite-valued Łukasiewicz logics preserving degrees of truth (the ��

n of
Sect. 6.3) are protoalgebraic, hence finitely equivalential.

5. There is only one variety K generated by a family of continuous t-norms over
[0, 1] such that ��

K is protoalgebraic, namely the variety G of Gödel algebras.
Here what is new is the uniqueness, because by Theorems 6.3 and 6.5 we already
know that��

G = �G, and hence��
G is not just protoalgebraic but implicative. This

unique feature of Gödel-Dummett logic adds to the already mentioned statement
in Baaz et al. (2007) concerning Theorem 6.3.

Comparing with Theorem 6.6, which states the good classifications of the logics
�K and ��

K in the Leibniz and the Frege hierarchies respectively, it seems it is not
possible for each logic in the pair to go further in the hierarchy where the other one
is well placed without so-to-speak trivializing the situation, due to Bou et al. (2009,
Proposition 4.3 and Theorem 4.12):

19 A residuated lattice is n-contractive, also called “n-potent” in the literature, when it satisfies the
equation xn ≈ xn+1. The associated logics are also called “n-contractive”.
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Theorem 6.8 Let K be any variety of residuated lattices. Then the following condi-
tions are equivalent:

(i) The logic ��
K is weakly algebraizable.

(ii) The logic ��
K is Fregean.

(iii) The logic �K is selfextensional.
(iv) The logics �K and ��

K coincide.

Moreover, when these conditions hold, the (unique) logic is both implicative and
fully Fregean.

Together with Theorem 6.6, this implies that the logics preserving degrees of
truth, when they are properly so (i.e., when they are not truth-preserving) are fully
selfextensional but not Fregean.

Also, this gives another view on the possibility of extending Theorems 6.1, 6.2
and 6.3 to other logics: this is only possible for logics placed in the highest levels of
both hierarchies.

6.6 The Deduction Theorem

The research on different forms of the Deduction Theorem (ddt) and its algebraic
counterparts is at the core of abstract algebraic logic, and is one of its best developed
and best understood areas. However, its results hold only inside the Leibniz hierarchy
(because all logics with the ddt are protoalgebraic), and hence it may happen that its
investigation for the generality of the logics ��

K (some of which are protoalgebraic
while some aren’t) is more difficult and less standardized than that for the logics �K.

It is well known (Galatos et al. 2007, Corollary 2.15) that all the logics �K satisfy
the Local Deduction Theorem (lddt) for the family {xn → y : n ∈ ω}; that is, they
satisfy, for all Γ, α, β :

Γ, α �K β ⇐⇒ there is some n ∈ ω such that Γ �K αn → β. (6.10)

This extends the result for �∞, known at least since 1964, see Pogorzelski (1964,
Thesis T3.3) and also Wójcicki (1973, Lemma 2) for a detailed proof. It is shown
in Bou (2008), using Theorem 11.2 of Galatos et al. (2007) plus the well-known
equivalence (Font et al. 2009, Theorem 3.10) between the ddt for an algebraizable
logic and the property of having equationally definable principal congruences for its
equivalent algebraic semantics, that �K has the ddt for some implication20 δ(x , y),
that is, it satisfies, for all Γ, α, β ,

Γ, α �K β ⇐⇒ Γ �K δ
(
α, β

)
, (6.11)

20 In principle the general theorem concerns an arbitrary set of formulas acting collectively as an
implication, but since in the present case all logics are finitary and have a conjunction, one can
directly speak about a single formula.
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if and only if all algebras in K are n-contractive for some n, and moreover in such a
case the implication formula can be taken to be xn → y. This determines exactly the
scope of theDeduction Theorem for the logics preserving truth, and extends the result
for the finite-valued logics �n , also known from Pogorzelski (1964) and Wójcicki
(1973). In particular it follows from point 1 after Theorem 6.7 that whenever the
logic ��

K is protoalgebraic, the logic �K has this DDT.
Is the situation for the logics ��

K comparable? Is there an exact determination of
the scope of the ddt, or one of its variants, for this family of logics? The fact that in
general they are not even protoalgebraic means there are no general techniques and
makes this investigation more difficult. However, some partial results have already
been obtained. Concerning the “classical” ddt, that is, when the operation is the
“real” implication x → y itself, the results in Bou et al. (2009, Proposition 2.8 and
Theorem 4.12) remove the possibility that it may hold in any other case than those
already known and expected:

Theorem 6.9 Let K be any variety of residuated lattices. Then the following condi-
tions are equivalent:

(i) The logic ��
K satisfies the ddt (6.11) for δ(x , y) = x → y.

(ii) The logic �K satisfies the ddt (6.11) for δ(x , y) = x → y.
(iii) The logics �K and ��

K coincide.

Observe that one half of the ddt is the rule of Modus Ponens. Its failure for the
logics ��

n was already observed in Scott (1973, 1974), as recalled in Sect. 6.2; this
is also observed in the comments after Lemma 2.17 in Baaz et al. (2007), which
establishes necessary and sufficient conditions for a binary function on [0, 1] to be
the Gödel conditional; one of them is that the associated binary operation satisfies
the ddt. The conjunction of Theorems 6.5 and 6.9 adds some further explanation
for this: It is well-known that Gödel’s conditional is the residuum of the maximum
t-norm, which is the only t-norm turning a residuated lattice structure on [0, 1] into
a (generalized) Heyting algebra, and by Theorem 6.5 this is equivalent to point (iii)
of Theorem 6.9.

The proceedings paper Bou (2008) determines the cases where the ddt holds for
two large classes of cases:

Theorem 6.10 Let K be a variety of MTL-algebras. Then the logic ��
K satisfies the

ddt (6.11) for some implication δ(x , y) if and only if it is protoalgebraic, that is
(see point 3 above) if and only if there is some n ∈ ω such that all chains in K
are ordinal sums of simple n-contractive MTL-chains. In such a case, the formula
δ(x , y) = (x → y)n ∨ y can be taken as the implication satisfying the ddt.

The presence of protoalgebraicity in relation with the ddt is expected, because
the properties (6.9) follow easily from (6.11), so that every logic with the ddt is
protoalgebraic; the interesting part is the converse implication. The more restricted
case of the extensions of ��∞ had already been considered in Gil (1996), Gil
et al. (1993); in the first work it is proved that the logics ��

n satisfy the ddt for
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the same formula δ, and in the second it is stated (without proof) that one such exten-
sion satisfies the ddt for some δ if and only if there is some n ∈ ω such that the
associated algebras are n-contractive, and that the formula δ can be taken as above.

The other case studied in Bou (2008), with a not so neat but still useful conclusion,
is the following.

Theorem 6.11 Assume that A is a finite residuated lattice satisfying the same equa-
tions with at most 3 variables as the variety K. Then the logic ��

K satisfies the ddt
(6.11) for some implication δ if and only if the following conditions are satisfied:

1. The logic ��
K is protoalgebraic.

2. A is distributive as a lattice.
3. The lattice operation ∧ is residuated in A, and every subalgebra of A is closed

under the map 〈a, b〉 �−→ max{c ∈ A : a ∧ c � b}.
Observe that the second part of condition 3 is a weakened form of the property

that the residuum operation is term-definable; thus, these three conditions are close
to (but weaker than) saying that the algebra A is a (generalized) Heyting algebra.

The interest of this result is that its assumption covers in particular the simpler
case where the algebra A generates the variety K, a situation that may be common
in applications where one wants to consider the logic preserving degrees of truth
from a single truth structure. Observe also that, due to the general assumption on A,
condition 2 implies that all the members of K are distributive as lattices. In contrast
with Theorem 6.10, here a general form of the formula δ satisfying the ddt has not
been determined, but it is known that it cannot be the formula found in Theorem 6.10.
It is also known that neither of the three conditions is superfluous.

6.7 Axiomatizations

6.7.1 In the Gentzen style

As explained in Sect. 6.2, Scott (1974) presented amultiple-conclusionGentzen-style
calculus and used it to prove completeness for what is actually a multiple-conclusion
version of the logic ��

[0,1], which coincides with ��
MV, where MV is the variety of

MV-algebras. This calculus leaves little room for generalization to other logics of
the form ��

K, and anyway this idea has not been followed in the literature.
Consequence in the logics ��

K reflects the properties of order in K, and these
can be expressed by properties of the closure operator of lattice-filter-generation in
the algebras in K. These properties, in turn, can be expressed in an abstract form
yielding the so-called Tarski-style conditions, and in a syntactic form as Gentzen-
style rules. The case where K = RL, the variety of all residuated lattices, is treated in
Theorem 5.9 and Corollary 5.10 of Bou et al. (2009), where the following is proved
(we assume we deal with sequents of the form Γ � ϕ where Γ is a finite set of
formulas):
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Theorem 6.12 Let G be the Gentzen calculus that has the structural axiom, all the
structural rules, the following logical axioms

∅ � 1 ϕ ,ψ � ψ

∅ � ϕ → ϕ ϕ ∧ ψ � ϕ

ϕ → (ψ → ξ) � ψ → (ϕ → ξ) ϕ ∧ ψ � ψ

and the following logical rules

ϕ � ξ ψ � ξ

ϕ ∨ ψ � ξ
(r1)

∅ � ϕ → ψ

ϕ � ψ
(r2)

ϕ ∨ ψ � ξ

ϕ � ξ

ϕ � ψ � ξ

ϕ � ψ → ξ

ϕ ∨ ψ � ξ

ψ � ξ

ϕ � ψ → ξ

ϕ � ψ � ξ
.

Then the calculus G axiomatizes the logic ��
RL ψ in the following sense: For any

formulas ϕ1, . . . , ϕn, ψ , it holds that ϕ1, . . . , ϕn ��
RL ψ if and only if the sequent

ϕ1, . . . , ϕn � ψ is derivable in G.

If � is read as �, there are few surprises in the formulation of this calculus.
Notice rule (r2), which corresponds to the already mentioned weak form of Modus
Ponens (6.5), and rule (r1), which corresponds to the rule of Proof by Cases, but in
a weak form where no side assumptions appear; this reflects the fact that the lattices
in RL need not be distributive.

This base calculus can be extended to obtain a calculus for the logic ��
K when

an equational presentation of the variety K is known. In such a case, every equation
ϕ ≈ ψ is re-written as the pair of sequents ϕ � ψ and ψ � ϕ, and these are added
to the logical axioms of the calculus; it is straightforward that the resulting calculus
axiomatizes the logic ��

K in the same sense as in Theorem 6.12.
However, these Gentzen calculi seem not to have interesting properties from a

proof-theoretic point of view.

6.7.2 In the Hilbert style

The property in point 2 of Theorem 6.4 might suggest that any axiomatization of �K
provides one of ��

K just by looking at the theorems of the former logic having the
form α1 ∧ · · · ∧ αn → ϕ; but this is hardly satisfactory as an axiomatic presentation
of the real relation of consequence of��

K, for we cannot recognize neither the axioms
nor the rules of inference that it satisfies.
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A first result is found in Bou et al. (2009, Theorem 2.12):

Theorem 6.13 The logic ��
K can be presented by the axiomatic system having the

set Taut(K) = {ϕ : K � ϕ ≈ 1} as its set of axioms, and the rules21

Adjunction for ∧ : ϕ ,ψ � ϕ ∧ ψ

Restricted Modus Ponens : ϕ � ψ provided that ϕ → ψ ∈ Taut(K)

as its rules of inference. If an axiomatization of �K is known, with axioms Ax(K)

and Modus Ponens as the only rule, then the set Ax(K) can replace the set Taut(K)

in the list of axioms of ��
K.

It is interesting to notice how this restricted form of Modus Ponens corresponds to
the fact (6.5) already observed in 1973, and was also a derived rule in the axiomatiza-
tion of Scott (1974, Theorem3.2). This presentation, however, is not very satisfactory.
Both its axioms and one of its rules depend on determination of the set Taut(K), which
is in principle infinite; when it is decidable, then both the axioms and rules of this
system will be decidable, so that it can be more properly called “in the Hilbert style”.
This set is the set of theorems of the logic �K, which due to the lddt (6.10) can in
theory be axiomatized with Modus Ponens as its only rule; in the cases where such
an axiomatization is known, then the set of axioms can replace the set Taut(K) in
the list of axioms of the above presentation of ��

K, but it is still not possible to do
the same in the restricted rule of Modus Ponens, so in principle this never gives an
axiomatic presentation of ��

K by a finite set of rule schemes.
This last difficulty is solved in Bou (2012, Corollary 2.4):

Theorem 6.14 Assume Ax(K) is a set of axioms which, together with the only rule
of Modus Ponens, axiomatizes the logic �K. Then the logic ��

K can be presented by
the axiomatic system having the formula 1 as its only axiom, and the following sets
of schemes (α, ϕ,ψ are arbitrary formulas) as its inference rules:

K-specific rule : α � α � ϕ for every ϕ ∈ Ax(K)

Adjunction for ∧ : ϕ ,ψ � ϕ ∧ ψ

Modus Ponens for � : α �
(
ϕ � (ϕ → ψ)

)
� α � ψ

Weakening for � : ϕ � ψ � ϕ

Associativity for � : (ϕ � ψ) � α � ϕ � (ψ � α)

Commutativity for � : ϕ � ψ � ψ � ϕ

This is in principle applicable to all the logics��
K, for wemight take Taut(K) as the

set Ax(K); however this might result in a non-recursive axiomatization (some would
even refuse to call such a system a “Hilbert-style axiomatization”). The interesting
thing is that if some finite axiomatization of �K is known, then the above procedure

21 The symbol � is here just a neutral replacement for other symbols like � or ⇒, which might
lead to misunderstanding if used to describe sequents or rules in the present context.
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turns it into a finite axiomatization of ��
K, because for each axiom schema ϕ of �K

one can put a variable that does not appear in ϕ in the place of α in the K-specific
rule and one obtains a single rule (schema) for ��

K. The majority of the well-known
fuzzy logics fall under this assumption, so this provides finite axiomatizations of the
logics preserving degrees of truth with respect to the most common many-valued
truth structures.

6.8 Conclusions

Logics preserving degrees of truth, in the technical sense established in the Intro-
duction and in Sect. 6.2, seem to formalize a notion of consequence for many-valued
logics that treats all truth values on an equal footing, i.e., by considering that all
these values express a certain degree of truth without designating one of them (or
a subset) as “the truth”, and giving them the same rôle in a truth-preserving defini-
tion of consequence. This possibility has hardly been explored at all in the literature
on many-valued logic, save for a short proposal by Scott (1973) and a few other
scattered results. The recent systematic study of logics preserving degrees of truth
inside the large group of substructural logics has prompted amore technical approach
using the tools of abstract algebraic logic. The cases of the two logics �K and ��

K
associated with each variety K of (commutative, integral) residuated lattices, the first
one preserving truth as represented by 1 and the second one preserving degrees of
truth, have been reviewed, in particular their classification in the Leibniz and the
Frege hierarchies of abstract algebraic logic. It appears that, from the point of view
of abstract algebraic logic, the theory of the logics preserving degrees of truth is
much richer and diverse than that of the logics preserving truth; in particular some
properties of the former seem to depend heavily on those of the associated variety
K, while the latter seem to show a more uniform and predictable behaviour.

The survey in this chapter has been limited to published work. While arising from
motivations around many-valued and fuzzy logic, the study of logics preserving
degrees of truth has been progressively extended, as witnessed by the most recent
research reported on in Sects. 6.4–6.7. In hindsight it is now clear that some of the
restrictions adopted in the present study (in order to produce a reasonably smooth and
powerful development and results) are not essential to its motivations, and may seem
ad hoc to some readers. Actually, the basic idea (6.2) of a logic preserving degrees of
truth requires very little for its application. Thus one can see several naturaldirections
for future research in this area. Let me end the chapter by commenting on some of
them:

• The results in Sect. 6.5 about the classification of the logics under study in the
Leibniz hierarchy of abstract algebraic logic consider only the traditional classes
of protoalgebraic, equivalential and algebraizable logics. However, after Raftery
(2006) the new class of truth-equational logics has been added to this hierarchy
(since it is defined by conditions on the Leibniz operator) without being a subclass
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of protoalgebraic logics. The logics��
K are not protoalgebraic in general; therefore

investigating whether they are truth-equational or not makes sense, but as far as I
know this has not been done.

• As already noted in footnote 13, most of the theoretical background for the study
and classification of the logics ��

K is dependent upon only the connective of lattice
conjunction ∧, i.e., it can be developed for meet-semilattices rather than lattices.
Thus, the investigation of fragments still containing ∧ but perhaps not some of the
other connectives may produce interesting results.

• The pairs of companion logics
(�K , ��

K

)
have been studied when K is a vari-

ety of residuated lattices. However, it is well known that the natural algebraic
counterparts of finitary, finitely algebraizable logics are quasivarieties. One of the
reasons for the restriction to varieties may be that the logics �K, the algebraizable
members of the pairs, have been studied in Galatos et al. (2007) only in this case
(corresponding to axiomatic extensions of the basic substructural logic FL). But I
think the main reason is the fact that the companion logics ��

K defined as in (6.8)
are determined by varieties, i.e., if defined from an arbitrary class of algebras, the
resulting logic coincides with that defined by the variety it generates. However,
this is due to the presence of ameet-semilattice conjunction∧, while themore gen-
eral definition (6.2) makes sense in quasi-varieties and requires only an ordering
relation �. Hence, it would make sense to extend this research to other quasivari-
eties of algebras corresponding to special substructural logics with a more limited
language, such as BCK logic.

• Another restriction has been the assumption of integrality, that is, that the unit
1 of the monoidal structure is also the maximum of the lattice structure. Again,
there is nothing leading specifically to this choice in the basic idea of a logic
preserving degrees of truth. From (6.2) it follows that the theorems of such logics
will be the formulas that are always evaluated as the maximum of the order; hence
when the algebraic structures need not have a maximum the resulting logic will
have no theorems, and in particular will not have the same theorems as the logic
preserving truth. A case study of this situation, concerning relevance logic R,
is Font and Rodríguez (1994). Removing integrality in general, however, raises
several unexpected fundamental questions, both from the motivational side and
from the technical one, and has been discussed in Font (2007). To highlight only
two: It is not clear that in this case it makes sense to preserve all degrees of truth,
and it is not clear that the theoretical support of (Font 2011; Jansana 2012) on
selfextensional logics with conjunction can still be used.

The best conclusion is that there is still a great deal of room for research in this area.
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Horčík, R., Noguera, C., & Petrík, M. (2007). On n-contractive fuzzy logics. Mathematical Logic
Quarterly, 53, 268–288.

Jansana, R. (2012). Algebraizable logics with a strong conjunction and their semi-lattice based
companions. Archive for Mathematical Logic, 51, 831–861.

Nowak, M. (1987). A characterization of consequence operations preserving degrees of truth. Bul-
letin of the Section of Logic, 16, 159–166.

Nowak, M. (1990). Logics preserving degrees of truth. Studia Logica, 49, 483–499.
Pavelka, J. (1979). On fuzzy logic I, II, III. Zeitschrift für Mathematische Logik und Grundlagen

der Mathematik, 25, 45–52, 119–134, 447–464.
Pogorzelski,W. (1964). The deduction theorem for Łukasiewicz many-valued propositional calculi.

Studia Logica, 15, 7–19.
Raftery, J. (2006). The equational definability of truth predicates. Reports on Mathematical Logic

(Special issue in memory of Willem Blok), 41, 95–149.
Rasiowa, H. (1974). An algebraic approach to non-classical logics. Studies in logic and the foun-

dations of mathematics (Vol. 78). Amsterdam: North-Holland.
Scott, D. (1973). Background to formalisation. In H. Leblanc (Ed.), Truth, syntax and modality (pp.
244–273). Amsterdam: North-Holland.

Scott, D. (1974). Completeness and axiomatizability inmany-valued logic. In L.Henkin et al. (Eds.),
Proceedings of the Tarski symposium. Proceedings of Symposia in Pure Mathematics (Vol. 25,
pp. 411–436). Providence: American Mathematical Society.

Smith, N. J. (2008). Vagueness and degrees of truth. Oxford: Oxford University Press.
Suszko, R. (1961). Concerning the method of logical schemes, the notion of logical calculus and
the role of consequence relations. Studia Logica, 11, 185–216.

Ward,M.,&Dilworth, R. P. (1939). Residuated lattices.Transactions of the American Mathematical
Society, 45, 335–354.

http://projecteuclid.org/euclid.lnl/1235416965
http://projecteuclid.org/euclid.lnl/1235416965


6 Consequence and Degrees of Truth in Many-Valued Logic 141

Wójcicki, R. (1973). On matrix representation of consequence operations on Łukasiewicz’s senten-
tial calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 19, 239–247.

Wójcicki, R. (1984). Lectures on propositional calculi. Wrocław: Ossolineum.
Wójcicki, R. (1988). Theory of logical calculi. Basic theory of consequence operations. Synthèse

library (Vol. 199). Dordrecht: Reidel.


	6 Consequence and Degrees of Truth  in Many-Valued Logic
	6.1 Introduction
	6.2 Some Motivation and Some History
	6.3 The Łukasiewicz Case
	6.4 Widening the Scope: Fuzzy and Substructural Logics
	6.5 Abstract algebraic logic classification
	6.6 The Deduction Theorem
	6.7 Axiomatizations
	6.7.1 In the Gentzen style
	6.7.2 In the Hilbert style

	6.8 Conclusions
	References


