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Libor Běhounek and Zuzana Haniková

2010 Mathematics Subject Classification: 03E72, 03H15

4.1 Introduction

One of Petr Hájek’s great endeavours in logic was the development of first-order
fuzzy logic BL∀ (1998): this work unified some earlier conceptions of many-valued
semantics and their calculi, but it also technically prepared the ground for a natural
next step, that being an attempt at employing BL∀ or its extensions as background
logics for non-classical axiomatic theories of fuzzy mathematics. Hájek initiated this
study in the late nineties, in parallel with a continued investigation of the proper-
ties of BL∀ itself. Considering his previous engagements in set theory and arith-
metic, and also the key rôles these disciplines play in logic, it seems natural that
he focused primarily on these theories, from both mathematical and metamathe-
matical points of view. With time passing, other authors have contributed to the
area; other parts of axiomatic fuzzy mathematics based on fuzzy logic have been ex-
plored; and thework of several predecessors turned out to be important. Nevertheless,
Hájek’s (and his co-authors’) elegant results stand out as fundamental contributions
to the aforementioned axiomatic theories of fuzzy mathematics, and for a large part
coincide with the state of the art in these fields of research.
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In this chapter we survey Hájek’s contributions to arithmetic and set theory over
fuzzy logic, in some cases slightly generalizing the results. Our generalizations
always concern the underlying fuzzy logic: Hájek, as the designer of the logic
BL∀, naturally worked in this logic or in one of its three prominent extensions—
Łukasiewicz, Gödel, or product logic. However, Esteva and Godo’s similar, but
weaker fuzzy logic MTL of left-continuous t-norms can be, from many points of
view, seen as an even more fundamental fuzzy logic; therefore, where meaningful
and easy enough, we discuss or present the generalization of Hájek’s results to MTL.

The chapter is organized as follows: after the necessary preliminaries given in
Sect. 4.2, we address three areas of axiomatic fuzzy mathematics—a ZF-style fuzzy
set theory (Sect. 4.3), arithmetic with a fuzzy truth predicate (Sect. 4.4), and naïve
Cantor-style fuzzy set theory (Sect. 4.5). The motivation and historical background
are presented at the beginning of each section. Owing to the survey character of this
chapter, for details and proofs (except for those which are new) we refer the readers
to the original works indicated within the text.

4.2 Preliminaries

This chapter deals with some formal theories axiomatized in several first-order fuzzy
logics:MTL∀, BL∀, and its three salient extensions—Łukasiewicz logic (Ł∀), Gödel
logic (G∀), and product fuzzy logic (�∀), with or without the connective �. We
assume the reader’s familiarity with the basic apparatus of these fuzzy logics; all
standard definitions can be found in the introductory chapter by Běhounek, Cintula,
and Hájek (2011), which is freely available online. In this section we only focus on
the definitions and theorems needed further on which cannot be found in the chapter.

Of the first-order variants of a fuzzy logic L (see Běhounek et al. 2011, Def. 5.1.2),
throughout the chapter we employ exclusively that first-order variant L∀ which in-
cludes the axiom (∀x)(χ ∨ ϕ) → χ ∨ (∀x)ϕ (for x not free in χ ) ensuring strong
completeness with respect to (safe) models over linearly ordered L-algebras.

Convention 4.1 Let us fix the following notational conventions:

• The conjunction ϕ & . . . & ϕ of n identical conjuncts ϕ will be denoted by ϕn.
• The exponents ϕn take the highest precedence in formulae, followed by prefix unary

connectives. The connectives → and ↔ take the lowest precedence.
• The chain of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn can be written as

ϕ1 −→ ϕ2 −→ . . . −→ ϕn, and similarly for ←→.
• We use the abbreviations (∀x Pt)ϕ and (∃x Pt)ϕ, respectively, for (∀x)(x Pt → ϕ)

and (∃x)(x Pt & ϕ), for any infix binary predicate P, term t, formula ϕ, and
variable x.

• Negation of an atomic formula can alternatively be expressed by crossing its
(usually infix) predicate: x /∈ y =df ¬(x ∈ y), and similarly for 
=, 
⊆, 
≈, etc.
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As usual, by an extension of a logic L we mean a logic which is at least as strong
as L and has the same logical symbols as L. (Thus, e.g., BL is an extension of MTL,
but BL� is not.)

Definition 4.1 Let L be a logic extending MTL∀ or MTL∀�. Let T be a theory
over L, M a model of T , and ϕ a formula in the language of T .

We say that ϕ is crisp in M if M |= ϕ ∨ ¬ϕ, and that ϕ is crisp in T if it is crisp
in all models of T .

Taking into account the semantics of L, one can observe that ϕ is crisp in M iff
it only takes the values 0 and 1 in M ; the linear completeness theorem for L yields
that ϕ is crisp in T iff T 
L ϕ ∨ ¬ϕ. By convention we will also say that an n-ary
predicate P is crisp in M or T if the formula P(x1, . . . , xn) is crisp in M or T .

Definition 4.2 Let L extend MTL∀ or MTL∀�. By L= we shall denote the logic
L with the identity predicate = that satisfies the reflexivity axiom x = x and the
intersubstitutivity schema x = y → (ϕ(x) ↔ ϕ(y)).

Remark 4.1 It can be observed that the identity predicate = is symmetric and tran-
sitive, using suitable intersubstitutivity axioms. The crispness of = can be enforced
by the additional axiom x = y ∨ x 
= y. However, the latter axiom is superfluous in
all extensions of MTL∀�=, and also in those extensions of MTL∀= that validate the
schema (ϕ → ϕ2) → (ϕ ∨ ¬ϕ), e.g., in Ł∀=and �∀=, since over all these logics
the predicate = comes out crisp anyway (the proof is analogous to that due to Hájek
2005, Cor. 1).

Later on we will need the following lemmata, formulated here just for the variants
of MTL, but valid as well for any stronger logic (as they only assert some provability
claims).

Lemma 4.1 The following are theorems of propositional MTL:

1. (ϕ → ϕ & ϕ) & (ϕ → ψ) → (ϕ ∧ ψ → ϕ & ψ)

2. (ϕ → ϕ & ϕ) & (ψ → ψ & ψ) → (ϕ ∧ ψ → ϕ & ψ)

Proof 1. ϕ ∧ ψ −→ ϕ −→ ϕ & ϕ −→ ϕ & ψ (the antecedents of the theorem are
used in the second and third implication).

2. By prelinearity, we can take the cases ϕ → ψ and ψ → ϕ. The former
case follows by weakening from Lemma 4.1(1); the latter is proved analogously:
ϕ ∧ ψ −→ ψ −→ ψ & ψ −→ ϕ & ψ . ��
Lemma 4.2 (cf. Haniková 2004) MTL∀� proves:

1. (∃x)�ϕ → �(∃x)ϕ

2. (∀x)�ϕ ↔ �(∀x)ϕ

3. (∀x)�(ϕ & ψ) → (∀x)�ϕ & (∀x)�ψ

4. �(ϕ ∨ ¬ϕ) ↔ �(ϕ → �ϕ)

Proof By inspection of the BL∀�-proofs (Haniková 2004) we can observe that the
theorems are valid in MTL∀�, too. ��
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Lemma 4.3 Let ϕ(x, y, . . . ) be a formula of MTL∀ and ψ(x, . . . ) a formula of
MTL∀=, and t be a term substitutable for both x and y in ϕ and for x in ψ . Then:

1. MTL∀ proves: ϕ(t, t) → (∃x)ϕ(x, t)
2. MTL∀= proves: (∀x = t)(ψ(x)) ↔ ψ(t)
3. MTL∀= proves: (∃x = t)(ψ(x)) ↔ ψ(t)

Proof 1. Immediate by the MTL∀-axiom of dual specification.
2. Left to right: (∀x)(x = t → ψ(x)) −→ (t = t → ψ(t)) ←→ ψ(t), by

specification and the reflexivity of =. Right to left: ψ(t) → (x = t → ψ(x))

by the intersubstitutivity of equals; generalize on x and shift the quantifier to the
consequent.

3. Left to right: x = t & ψ(x) → ψ(t) by the intersubstitutivity of equals;
generalize on x and shift the quantifier (as∃) to the antecedent. Right to left:ψ(t) −→
(t = t & ψ(t)) −→ (∃x)(x = t & ψ(t)), by the reflexivity of=, dual specification,
and Lemma 4.3(1). ��
Lemma 4.4 In MTL∀=, any formula is equivalent to a formula in which function
symbols are applied only to variables and occur only in atomic subformulae of the
form y = F(x1, . . . , xk).

Proof Using Lemma 4.3, we can inductively decompose nested terms s(t) by
ϕ(s(t)) ↔ (∃x = t)ϕ(s(x)) and finally by

ϕ(F(x1, . . . , xk)) ↔ (∃y = F(x1, . . . , xk))ϕ(y)

for all function symbols F . ��
We now give a few results on the conservativity of introducing predicate and

function symbols.

Definition 4.3 For L a logic, T1 a theory in a language Γ1 and T2 ⊇ T1 a theory in
a language Γ2 ⊇ Γ1, we say that T2 is a conservative extension of T1 if T2 
L ϕ

implies T1 
L ϕ for each Γ1-formula ϕ.

The proofs of the following theorems are easy adaptations of the proofs due
to Hájek (2000). Note that Theorem 4.3 covers introducing constants, too, for n = 0
(in which case the congruence axiom becomes trivially provable and need not be
explicitly added to the theory).

Theorem 4.2 (Adding predicate symbols; cf.Hájek 2000) Let L extend MTL∀ or
MTL∀� and T be a theory over L in a language Γ . Let P 
∈ Γ be an n-ary predicate
symbol and ϕ(x1, . . . , xn) a Γ -formula. If T ′ results from T by adding P and the
axiom

P(x1, . . . , xn) ↔ ϕ(x1, . . . , xn)

then T ′ is a conservative extension of T .
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Theorem 4.3 (Adding function symbols; cf.Hájek 2000) Let L extend MTL∀= or
MTL∀�= and T be a theory over L in a language Γ . Let F /∈ Γ be an n-ary
function symbol and ϕ a Γ -formula with n + 1 free variables. Let T ′ result from
T by adding the axiom ϕ(x1, . . . , xn, F(x1, . . . , xn)) and the congruence axiom
x1 = z1 & . . . & xn = zn → F(x1, . . . , xn) = F(z1, . . . , zn).

1. If L extends MTL∀= and T 
L (∃y)ϕ(x1, . . . , xn, y), then T ′ is a conservative
extension of T .

2. If L extends MTL∀�= and T 
L (∃y)�ϕ(x1, . . . , xn, y), then T ′ is a conserv-
ative extension of T .

If, in addition, T 
L (∃y)(ϕ(x1, . . . , xn, y) & (∀y′)(ϕ(x1, . . . , xn, y′) → y = y′)),
then each T ′-formula is T ′-equivalent to a T -formula.

4.3 ZF-Style Set Theories in Fuzzy Logic

This section intends to give an overview of results on axiomatic set theory developed
in fuzzy logic in the style of classical Zermelo–Fraenkel set theory. It draws primarily
on Hájek and Haniková’s paper (2003), where a ZF-like set theory is developed over
BL∀�. The theory introduced by Hájek and Haniková was called ‘fuzzy set theory’
for simplicity, and the acronym FST was used; this was not meant to suggest that
FST was the set theory in fuzzy logic, since clearly there are many possible ways to
develop a set theory in fuzzy logic. It was shown that FST theory admitted many-
valued models, and that at the same time it faithfully interpreted classical Zermelo–
Fraenkel set theory ZF. Moreover, some of its mathematics was developed.

Here, for the sake of precision, we shall use FSTBL for the above theory of Hájek
and Haniková (2003) over BL∀�, and alongside, we shall consider a theory FSTMTL
developed over MTL∀�. The focus will be on the theory FSTBL.

We start with a short overview of related ZF-style set theories in non-classical
logics. A more comprehensive treatment of the history of the subject can be found
in Gottwald’s survey (2006); see also Haniková (2004); these take into account also
the interesting story of the full comprehension schema (discussed in Sect. 4.5).

An early attempt is presented in the works of Klaua (1965, 1966, 1967), who does
not develop axiomatic theory but constructs cumulative hierarchies of sets, defining
many-valued truth functions of =, ⊆, and ∈ over a set of truth values that is an
MV-algebra. Interestingly, Klaua (1967) constructs a cumulative universe similar to
ours in definition of its elements and the value of the membership function, but with
a non-crisp equality; his universe then validates extensionality and comprehension,
but fails to validate the congruence axioms. Klaua’s works have been continued and
made more accessible in the works of Gottwald (1976a, b, 1977).

It is instructive to study a selection of chapters on ZF-style set theory in the intu-
itionistic logic. Powell (1975) defines a ZF-like theory with an additional axiom of
double complement (similar in effect to our support), develops some technicalmeans,
such as ordinals and ranks, and defines a class of stabilized sets, which it proves to be
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an inner model of classical ZF. Grayson (1979) omits double complement but uses
collection instead of replacement, and constructs, within the theory, aHeyting-valued
universe over a complete Heyting algebra. Using a particular Boolean algebra which
it constructs, it shows relative consistency with respect to ZF. This paper also offers
examples of how (variants of) axioms of classical ZF can strengthen the underlying
logic to the classical one. For example, the axiom of foundation, together with a
very weak fragment of ZF, implies the law of the excluded middle, which yields the
full classical logic (both in intuitionistic logic and in the logics we use here), and
thus the theory becomes classical. It also shows—by using ∈-induction instead of
foundation—that some classically equivalent principles are no longer equivalent in
a weaker logical setting.

Inspired by the intuitionistic set theory results, Takeuti and Titani (1984) wrote a
paper on ZF-style set theory over Gödel logic, giving an axiomatization and present-
ing some nice mathematics. Later (1992), the authors enhanced their approach to a
logical system that combines Łukasiewicz connectives with the product conjunction,
the strict negation and a constant denoting 1

2 on [0, 1] (thus defining the well-known
logic of Takeuti and Titani, a predecessor of the logics Ł� and Ł� 1

2—see Hájek
1998, Sect. 9.1). This logic contains Gödel logic, and it is Gödel logic that is used
in the set-theoretic axioms. Equality in this system is many-valued. Within their
set-theoretic universe, Takeuti and Titani are then able to reconstruct the algebra of
truth values determining the logic, and they also prove a completeness theorem. In
her paper (1999), Titani gives analogous constructions, including completeness, for
a set theory in lattice-valued logic. This theory was interpreted in FSTBL by Hájek
and Haniková (2013).

We will now start developing our theories FSTBL and FSTMTL. We will not
give proofs for statements that were proved elsewhere, for FSTBL; as for a possible
generalization for FSTMTL, proofs can be obtained by inspection of the FSTBL case.
For both theories, we assume the logic contains a (crisp) equality. The only non-
logical symbol in the language is a binary predicate symbol ∈.
Definition 4.4 In both FSTBL and FSTMTL we define:

• Crispness: Cr(x) ≡df (∀u)�(u ∈ x ∨ u /∈ x)

• Inclusion: x ⊆ y ≡df (∀z ∈ x)(z ∈ y)

Semantically, crisp sets only take the classical membership values. Using Lemma
4.2 one gets:

Cr(x) ←→ (∀u)�(u ∈ x → �(u ∈ x)) ←→
�(∀u)(u ∈ x → �(u ∈ x)) ←→ ��(∀u)(u ∈ x → �(u ∈ x)),

so crispness itself is a crisp property: one has 
MTL∀� Cr(x) ↔ �Cr(x). Thus also
Cr(x) ←→ �Cr(x) ←→ (�Cr(x))2 ←→ (Cr(x))2.
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Definition 4.5 FSTBL is a theory over BL∀�=, with a basic predicate symbol ∈.
(FSTMTL is defined analogously over MTL∀�=.) The axioms of the theory are as
follows:

1. Extensionality: x = y ↔ �(x ⊆ y) & �(y ⊆ x); the condition on the right is
MTL∀�-equivalent to (∀z)�(z ∈ x ↔ z ∈ y)

2. Empty set: (∃x)�(∀y)(y /∈ x); we introduce1 a new constant ∅
3. Pair: (∃z)�(∀u)(u ∈ z ↔ (u = x ∨ u = y)); we introduce the pairing {x, y}

and singleton {x} function symbols
4. Union: (∃z)�(∀u)(u ∈ z ↔ (∃y)(u ∈ y & y ∈ x)); we introduce a unary

function symbol
⋃

x , and we use x ∪ y for
⋃{x, y}

5. Weak power: (∃z)�(∀u)(u ∈ z ↔ �(u ⊆ x)); we introduce a unary function
symbol WP(x)

6. Infinity: (∃z)�(∅ ∈ z & (∀x ∈ z)(x ∪ {x} ∈ z))
7. Separation: (∃z)�(∀u)(u ∈ z ↔ (u ∈ x & ϕ(u, x))), if z is not free in ϕ;

we introduce a function symbol {u ∈ z | ϕ(u, x)}, and we use x ∩ y for
{u ∈ x | u ∈ y}

8. Collection: (∃z)�((∀u ∈ x)(∃v)ϕ(u, v) → (∀u ∈ x)(∃v ∈ z)ϕ(u, v)), if z is
not free in ϕ

9. ∈-Induction: �(∀x)(�(∀y ∈ x)ϕ(y) → ϕ(x)) → �(∀x)ϕ(x)

10. Support: (∃z)(Cr(z) & �(x ⊆ z))

Let us remark that making = a crisp predicate is not an altogether arbitrary deci-
sion. Indeed, in particular logics, such as Łukasiewicz logic or product logic,2 even
much weaker assumptions on equality than those of Definition 4.2 entail its crisp-
ness; this was pointed out by Petr Hájek in an unpublished note. This, together with
the fact that a crisp equality is much easier to handle (while it does not prevent a
development of a very rich fuzzy set theory), makes the crispness of = a universal
choice in our theory.

We consistently use � after existential quantifiers3 in axioms in order to be able
to define some of the standard set-theoretic operations like the empty set, a pair, a
union, the set ω, etc., as the Skolem functions of these axioms (i.e., by Theorem 4.3).
Notice that if FSTBL and FSTMTL were defined with the function symbols for these
set-theoretic operations in the primitive language, the corresponding Skolem axioms
(i.e., y /∈ ∅, u ∈ {x, y} ↔ u = x ∨ u = y, etc.) would not contain these �’s.

In the weak power set axiom, the second � weakens the statement.
Further, similarly as in set theory over the intuitionistic logic (Grayson 1979), the

axiom of foundation in a very weak setting implies the law of excluded middle for all
formulae. Therefore, ∈-induction is used instead. For a reader familiar with Hájek
and Haniková’s paper (2003), we point out that here we employ a different spelling

1 At the same time, we add the axiom y /∈ ∅ to the theory; see Theorem 4.3. Henceforth, whenever
we add new constants and function symbols, we also add the corresponding axioms implicitly.
2 In fact, in any logic that proves the schema (ϕ → ϕ2) → (ϕ ∨ ¬ϕ); cf. Remark 4.1.
3 Note the semantics of the existential quantifier: mere validity of a formula (∃x)ϕ(x) in a model
M does not guarantee that there is an object m for which ‖ϕ(m)‖M = 1.
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of the ∈-induction schema: originally, the schema read �(∀x)((∀y ∈ x)ϕ(y) →
ϕ(x)) → �(∀x)ϕ(x). The current form of induction axiom was inspired by Titani’s
paper (1999). As pointed out by Hájek and Haniková (2013), it is an open problem
whether the original ∈-induction implies the current one (the converse is obviously
the case).

Given the above sample of possible problems, the first thing one might like to
vouchsafe is that the presented theory really is fuzzy, i.e., that it admits many-valued
models. Hájek andHaniková (2003) showed this for FSTBL, in the followingmanner.

Take a complete BL∀�-chain A = 〈A, ∗A,→A,∧A,∨A, 0A, 1A,�A〉 and de-
fine a universe V A by transfinite induction. Take Fnc(x) for a unary predicate stating
that x is a function, and Dom(x) and Rng(x) for unary functions assigning to x its
domain and range, respectively. Set:

V A
0 = {∅}

V A
α+1 = { f : Fnc( f ) &Dom( f ) = V A

α & Rng( f ) ⊆ A} for any ordinal α

V A
λ =

⋃

α<λ

V A
α for a limit ordinal λ

V A =
⋃

α∈Ord
V A

α

Observe that α ≤ β ∈ Ord implies V A
α ⊆ V A

β . Define two binary functions from

V A into A, assigning to any u, v ∈ V A the values ‖u ∈ v‖ and ‖u = v‖ in A:

‖u ∈ v‖ = v(u) if u ∈ Dom(v), otherwise 0A

‖u = v‖ = 1A if u = v, otherwise 0A

and use induction on the complexity of formulae to define for any formula ϕ(x1, . . . ,
xn) a corresponding n-ary function from (V A)n into A, assigning to an n-tuple
u1, . . . , un the value ‖ϕ(u1, . . . , un)‖:

‖0‖ = 0A

‖ψ & χ‖ = ‖ψ‖ ∗A ‖χ‖, and similarly for →,∧ and ∨
‖�ψ‖ = �A‖ψ‖

‖(∀x)ψ‖ = ∧
u∈V A ‖ψ(x/u)‖

‖(∃x)ψ‖ = ∨
u∈V A ‖ψ(x/u)‖

For a sentence ϕ, one says that ϕ is valid in V A iff ‖ϕ‖ = 1A is provable in ZF.
We are able to demonstrate the following soundness result:

Theorem 4.4 Let ϕ be a closed formula provable in FSTBL. Let A be a complete
BL∀�-chain. Then ϕ is valid in V A.
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We remark that an analogous construction of an A-valued universe can be per-
formed for a complete MTL∀�-algebra; based on that, the above result can be stated
for FSTMTL w.r.t. the universe defined over such algebra. In either case, the given
construction provides an interpretation of the fuzzy set theory in classical ZF. Cur-
rently, there is no completeness theorem available.

Within FSTBL, one can define a class of hereditarily crisp sets and prove it to be
an inner model of ZF in FSTBL.

Definition 4.6 In FSTBL we define the following predicates:

• HCT(x) ≡df Cr(x)& (∀u ∈ x)(Cr(u) & u ⊆ x); we write x ∈ HCT for HCT(x)

• H(x) ≡df Cr(x) & (∃x ′ ∈ HCT)(x ⊆ x ′); we write x ∈ H for H(x)

Lemma 4.5 FSTBL proves that HCT and H are crisp classes, and moreover, that
H is transitive.

It was further shown (Hájek and Haniková 2003) that FSTBL proves H to be an
inner model of ZF. In more detail, for ϕ a formula in the language of ZF (where the
language of classical logic is considered with connectives &,→, 0, and the universal
quantifier ∀) one defines a translation ϕH inductively as follows:

ϕH = ϕ for ϕ atomic

0H = 0

(ψ & χ)H = ψH & χH

(ψ → χ)H = ψH → χH

((∀x)ψ)H = (∀x ∈ H)(ψH)

(Then also (¬ψ)H = ¬(ψH), (ψ ∨ χ)H = ψH ∨ χH, and ((∃x)ψ)H = (∃x ∈ H)

(ψH)).
One can show that the law of the excluded middle holds in H:

Lemma 4.6 Let ϕ(x1, . . . , xn) be a ZF-formula whose free variables are among
x1, . . . , xn. Then FSTBL proves

(∀x1 ∈ H) . . . (∀xn ∈ H)(ϕH(x1, . . . , xn) ∨ ¬ϕH(x1, . . . , xn)).

Considering classical ZF with the axioms of empty set, pair, union, power set,
infinity, separation, collection, extensionality, and ∈-induction, one can prove their
translations in FSTBL:

Lemma 4.7 For ϕ being the universal closure of any of the abovementioned axioms
of ZF, FSTBL proves ϕH.

This provides an interpretation of ZF in FSTBL (in particular, H is an inner model
of ZF in FSTBL):



72 L. Běhounek and Z. Haniková

Theorem 4.5 Let a closed formula ϕ be a theorem of ZF. Then FSTBL 
 ϕH.

Moreover, the interpretation is faithful: if FSTBL 
 ϕH, then ZF 
 ϕH (since it is
formally stronger), but then ZF 
 ϕ.

Again, by inspection of the proof, one arrives at the conclusion that exactly the
same result can be obtained for FSTMTL. This poses the question of a formal dif-
ference between FSTBL and FSTMTL: it would be interesting to determine to what
degree the two theories, built in one fashion over two distinct logics, differ.

We now discuss ordinal numbers in FSTBL (Hájek and Haniková 2013). In order
to obtain a suitable definition of ordinal numbers in FSTBL, we rely on Theorem 4.5.
Recall the classical definition of an ordinal number by a predicate symbol Ord0:

Ord0(x) ≡df (∀y ∈ x)(y ⊆ x) &

(∀y, z ∈ x)(y ∈ z ∨ y = z ∨ z ∈ y) &

(∀q ⊆ x)(q 
= ∅ → (∃y ∈ q)(y ∩ q = ∅))

If x ∈ H, then Ord0(x) ↔ OrdH0 (x), and Ord0(x) is crisp. We define ordinal
numbers to be those sets in H for which OrdH0 is satisfied:

Definition 4.7 In FSTBL we define: Ord(x) ≡df x ∈ H & Ord0(x).

Furthermore, we define in FSTBL:

CrispFn( f ) ≡df Rel( f )&Cr( f )&(∀x ∈ Dom( f ))(〈x, y〉 ∈ f & 〈x, z〉 ∈ f → y = z)

where the property of being a relation, and the operations of ordered pair, domain, and
range are defined as in classical ZF.

The iterated weak power property is as follows:

ItWP( f ) ≡df CrispFn( f ) & Dom( f ) ∈ Ord & f (∅) = ∅ &

(∀α ∈ Ord)(α 
= ∅ & α ∈ Dom( f ) → f (α) =
⋃

β∈α

WP( f (β)))

The notion is crisp: ItWP( f ) ↔ �ItWP( f ). Moreover, ItWP( f ) & ItWP(g) &
Dom( f ) ≤ Dom(g) → �( f ⊆ g).

Lemma 4.8 FSTBL proves: (∀α ∈ Ord)(∃ f )(ItWP( f ) & Dom( f ) = α).

Definition 4.8 For each α ∈ Ord, let V̂α be the unique (crisp) set z such that:

(∃ f )(ItWP( f ) & α ∈ Dom( f ) & f (α) = z)

Then one can show some classical results about ordinal induction and ranks, as:

Theorem 4.6 FSTBL proves: (∀x)(∃α ∈ Ord)(x ∈ V̂α).
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4.4 Arithmetic and the Truth Predicate

In this section we focus on theories of arithmetic over fuzzy logic. We recall the results
obtained by Hájek, Paris, and Shepherdson (2000), taking into account also Restall’s
results (1995); these papers muse on the degree to which considering a logical system
formally weaker than the classical one eradicates the paradoxes one obtains when adding
a truth predicate to a theory of arithmetic. Then we briefly visit the method which Petr
Hájek used in order to show that the first-order satisfiability problem in a standard product
algebra is non-arithmetical (Hájek 2001). Interestingly, in all these works, the theory of
arithmetic is a crisp one—enriched, in the respective cases, by new language elements
that admit a many-valued interpretation.

4.4.1 Classical Arithmetic and the Truth Predicate

We start with a tiny review of theories of arithmetic in classical first-order logic. The
language of arithmetic has a unary function symbol s for successors, binary function
symbols + for addition and · for multiplication, an object constant 0, and its predicate
symbols are = for equality and ≤ for ordering.4 An arithmetical formula (sentence) is a
formula (sentence) in this language.

We assume = is a logical symbol and the usual axioms for it are implicitly present.
Robinson arithmetic Q has the following axioms:

(Q1) s(x) = s(y) → x = y
(Q2) s(x) 
= 0
(Q3) x 
= 0 → (∃y)(x = s(y))

(Q4) x + 0 = x
(Q5) x + s(y) = s(x + y)

(Q6) x · 0 = 0
(Q7) x · s(y) = x · y + x
(Q8) x ≤ y ↔ (∃z)(z + x = y)

Peano arithmetic PA adds induction, usually as an axiom schema. Here we will need a
(classically equivalent) rule: for each arithmetical formulaϕ, fromϕ(0) and (∀x)(ϕ(x) →
ϕ(s(x))) derive (∀x)ϕ(x).

The standard model of arithmetic is the structure N = 〈N , 0, s,+, ·,≤〉, where N
is the set of natural numbers and 0, s, +, ·, ≤ are the familiar operations and ordering of
natural numbers (by an abuse that is quite common, the same notation is maintained for
the symbols of the language and for their interpretations on N ).

An arithmetization of syntax, first introduced by Gödel, is feasible in theories of
arithmetic such as Q or PA; thereby, in particular, each arithmetical formula ϕ is assigned
a Gödel number, denoted ϕ. Then one obtains a classical diagonal result: for T a theory

4 One can also take ≤ to be a defined symbol, relying on axiom (Q8).
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containing PA,5 and for each formula ψ in the language of T with exactly one free
variable, there is a sentence ϕ in the language of T such that T 
 ϕ ↔ ψ(ϕ).

A theoryT such as above (i.e.,with aGödel encodingof formulae), has a truth predicate
iff its language contains a unary predicate symbol Tr such that T 
 ϕ ↔ Tr(ϕ) for each
sentence ϕ of the language. This is what Petr Hájek likes to call the (full) dequotation
scheme,with the following example for its import: the sentence ‘It’s snowing’ is true if and
only if it’s snowing. Hence another term in usage ‘It’s snowing–“It’s snowing” lemma’.
On the margin, we remark that a per-partes dequotation is native to PA (or indeed, I�1):
one can define partial truth predicates for fixed levels of the arithmetical hierarchy and
fixed number of free variables (Hájek and Pudlák 1993). However, here it is required of
Tr that it do the same job uniformly for all formulae.

The juxtaposition of the diagonal result with the requirements posed on a truth predi-
cate reveals that consistent arithmetical theories (over classical logic) cannot define their
own truth (a result due to Tarski): taking ¬Tr(x) for ψ(x), diagonalization yields a sen-
tence ϕ such that T 
 ϕ ↔ ¬Tr(ϕ), so T 
 ϕ ↔ ¬ϕ, a contradiction.

4.4.2 Arithmetic with a Fuzzy Truth Predicate

Hájek et al. (2000) noted that a (crisp) Peano arithmetic might be combined with a
(many-valued) truth predicate over Łukasiewicz logic (where the existence of a ϕ such
that ϕ ↔ ¬ϕ is not contradictory); it then proceeds to develop the theory. We shall
reproduce its main results, in combination with those by Restall (1995).

Definition 4.9 PAŁ stands for a Peano arithmetic in Łukasiewicz logic, i.e., a theory
with the axioms and rules of first-order Łukasiewicz logic Ł∀, the congruence axioms
of equality w.r.t. the primitive symbols of the language of arithmetic, the above axioms
(Q1)–(Q8), and the induction rule.

Making PAŁ crisp is easy: one postulates a crispness axiom for the predicate symbol
= as the only basic predicate symbol of the theory (≤ is definable). In other words,
x = y∨x 
= y is adopted as a newaxiom.Then one can prove crispness for all arithmetical
formulae, propagating it over connectives and quantifiers.

However, Restall (1995, actually earlier than Hájek et al. 2000) shows that PAŁ is
provably crisp evenwithout a crispness axiom.6 The proof is a neat example ofweakening
operating hand in hand with the induction rule, showing that:

1. PAŁ 
 x = 0 ∨ x 
= 0
2. If PAŁ 
 ϕ(0, y) and PAŁ 
 ϕ(x, 0) and PAŁ 
 ϕ(x, y) → ϕ(s(x), s(y)), then

PAŁ 
 ϕ(x, y).
3. PAŁ 
 (∃x)(x = 0 ↔ y = z)
4. PAŁ 
 y = z ∨ y 
= z

and consequently:

5 An analogous statement can be formed for weaker theories, including Q.
6 In fact, Restall does not prove the crispness axiom in PAŁ but rather verifies it as a semantic
consequence of the theory PAŁ in the standard MV-algebra; note that this is a weaker statement
since Ł∀ is not complete w.r.t. the standardMV-algebra. Still, each of the steps can be reconstructed
syntactically in PAŁ.
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Theorem 4.7 (Restall 1995) Let ϕ(x1, . . . , xn) be an arithmetical formula. Then

PAŁ 
 ϕ(x1, . . . , xn) ∨ ¬ϕ(x1, . . . , xn).

Crispness pertaining to PAŁ as the theory of numbers, as Restall goes on to remark,
need not concern additional concepts that one may wish to add to it, such as the truth
predicate; these may be governed by the laws of Łukasiewicz logic Ł∀.
Definition 4.10 (Hájek et al. 2000) PAŁTr is the theory obtained fromPAŁby expanding
its language with a new unary predicate symbol Tr (extending the congruence axioms of
= to include Tr, while only arithmetical formulae are considered in the induction rule)
and adding the axiom schema ϕ ↔ Tr(ϕ) for each formula ϕ of the expanded language.

Theorem 4.8 (Hájek et al. 2000) PAŁTr is consistent.7

Hence any theory obtained by replacing Ł∀ with a weaker logic is consistent too. In
choosing a weaker logic, one might want to retain weakening in order to be able to prove
crispness of the arithmetical part.

The paper then proceeds to show that one cannot go further and demand that Tr as
formalized truth commute with the connectives: such a theory is contradictory.

Theorem 4.9 (Hájek et al. 2000) The standard model N cannot be expanded to a model
of PAŁTr. Thus PAŁTr has no standard model.

Actually, Restall (1995) shows that PAŁ as such is ω-inconsistent over the standard
MV-algebra [0, 1]Ł. It is yet to be investigated whether Peano arithmetic with a truth
predicate developed in a suitable weaker logic than Ł∀ might have standard models.

4.4.3 Non-arithmeticity of Product Logic

Now we turn to a different topic, though with the same arithmetic flavour. We recall
a result of Hájek (2001), where a particular expansion of a crisp, finitely axiomatizable
arithmetic over first-order product logic�∀ is considered, in order to show that first-order
satisfiability in standard product algebra [0, 1]� is non-arithmetical.

Definition 4.11 (Hájek 2001)

1. Q� stands for a crisp theory extending Robinson arithmetic in product logic with
finitely many axioms (such as the theory PA− of Kaye 1991).

2. Q�U expands Q� with a new unary predicate U and adds the following axioms:

¬(∀x)U x

¬(∃x)¬U x

y = s(x) → (U y ↔ (U x)2)

x ≤ y → (U y → U x)

7 In fact, Hájek et al. (2000) proved a stronger statement, for a variant of PAŁTr allowing the
predicate symbol Tr to occur in formulae the induction rule is applied to.
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Informally speaking, the axioms enforce the truth value of U x to decrease monotoni-
cally (and exponentially) towards 0, but never reaching it, as x is iteratively incremented
by the successor function s. Hájek has shown that, among all (classical) structures for
the language of arithmetic, exactly those that are isomorphic to the standard model of
arithmetic (N ) can be expanded to a [0, 1]�-model of Q�U. Hence, one can decide
truth in the standard model of arithmetic in the manner indicated in the next theorem.
Take

∧
Q�U to be the ∧-conjunction of all axioms of Q�U.

Theorem 4.10 (Hájek 2001) An arithmetical sentence ϕ is true in N iff the formula

∧
Q�U ∧ ϕ

is satisfiable in [0, 1]�.

Hence, first-order satisfiability in [0, 1]� is a non-arithmetical decision problem. This
technique inspired Franco Montagna to prove that also first-order tautologousness in
the standard product algebra [0, 1]�, as well as in all standard BL-algebras, are non-
arithmetical; these results are to be found in Montagna’s paper (2001), actually in the
volume containing also Hájek’s paper (2001).

4.5 Cantor–Łukasiewicz Set Theory

Another first-order mathematical theory to which Hájek has significantly contributed
is naïve set theory over Łukasiewicz logic. As is well known, the rule of contraction
(or equivalently the validity of ϕ → ϕ & ϕ in sufficiently strong logics) is needed to
obtain a contradiction from the existence of Russell’s set by the usual proof. Indeed, the
consistency of the unrestricted comprehension schema has been established over several
contraction-free logics, including the logic BCK (Petersen 2000) and variants of linear
logic (Grishin 1982; Terui 2004). Łukasiewicz logic, which is closely related to the latter
logics and like them disvalidates the contraction rule, is thus a natural candidate for the
investigation of whether or not it can support a consistent and viable naïve set theory.

The consistency of the unrestricted comprehension schema over Łukasiewicz logic
was first conjectured by Skolem (1957). In the 1960s, Skolem (1960), Chang (1963),
and Fenstad (1964) obtained various partial consistency results for the comprehension
schema restricted to certain syntactic classes of formulae. A proof of the full consistency
theorem was eventually published by White (1979). Unlike its predecessors, White’s
proof was based strictly on proof-theoretical methods and did not attempt at constructing
a model for the theory.

White’s proof of the consistency of unrestricted comprehension over Łukasiewicz
logic prompted Hájek to elaborate the theory, for which he coined the name Cantor–
Łukasiewicz set theory. With the consistency of Cantor–Łukasiewicz set theory sup-
posedly established, its non-triviality was questioned: i.e., whether the theory is strong
enough to reconstruct reasonably large parts of mathematics (as conjectured already by
Skolem). Hájek’s contributions (2005, 2013a, 2013b), dealingmainly with arithmetic and
decidability in Cantor–Łukasiewicz set theory, gave a partially negative answer to this
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question. Naïve comprehension over (standard) Łukasiewicz logic has also been devel-
oped by Restall (1995), some of whose earlier results Hájek independently rediscovered
(2005), and by Yatabe (2007, 2009) who extended some of Hájek’s results. We survey
the results on Cantor–Łukasiewicz set theory in Sects. 4.5.1–4.5.2.

In 2010 Terui (pers. comm.) found what appears to be a serious gap in White’s con-
sistency proof. Consequently, the consistency status of Cantor–Łukasiewicz set theory
remains unknown. It is therefore worth asking which of Hájek’s and Yatabe’s results
survive in weaker fuzzy logics, such as IMTL or MTL.8 This problem is addressed in
Sect. 4.5.3 below, giving some initial positive results and indicating the main problems
that such enterprize has to face.

4.5.1 Basic Notions of Cantor–Łukasiewicz Set Theory

Definition 4.12 (Hájek 2005) Cantor–Łukasiewicz set theory, denoted here by CŁ,9 is a
theory in first-order Łukasiewicz logic. The language of CŁ is the smallest language L
such that it contains the binary membership predicate ∈ and for each formula ϕ ofL and
each variable x contains the comprehension term {x | ϕ}. (Thus, comprehension terms
in CŁ can be nested.) The theory CŁ is axiomatized by the unrestricted comprehension
schema:

y ∈ {x | ϕ(x)} ↔ ϕ(y),

for each formula ϕ of CŁ and any variables x, y.

Remark 4.2 An alternative way of axiomatizing naïve set theory is to use the compre-
hension schema of the form:

(∃z)(∀x)(x ∈ z ↔ ϕ) (4.1)

for any formula ϕ in the language containing just the binary membership predicate ∈
and not containing free occurrences of the variable z. The latter restriction is partly
alleviated by the fixed-point theorem (see Theorem 4.13), which makes it possible to
introduce sets by self-referential formulae (though not uniquely). The comprehension
terms of Definition 4.12 are then the Skolem functions of the comprehension axioms
(4.1), conservatively introduceable, eliminable, and nestable by Theorems 4.11 and 4.3
and Lemma 4.4.

Remark 4.3 Clearly, no bivalent or even finitely-valued propositional operator can be
admitted in the propositional language of naïve set theories over fuzzy logics on pain of

8 The consistency status of naïve comprehension over these logics is not known, either. Still, being
weaker, they have better odds of consistency even if naïve comprehension turns out to be inconsistent
over Łukasiewicz logic.
9 Hájek (2005 and subsequent papers) denoted the theory by CŁ0, whereas by CŁ he denoted an
inconsistent extension of CŁ0. In this paper we shall use a systematic symbol CL for naïve set
theory over the logic L . The corresponding theory over standard [0, 1]Ł-valued Łukasiewicz logic
is called H by White (1979) and Yatabe (2007).
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contradiction, as Russell’s paradox could easily be reconstructed by means of such an
operator. Unrestricted comprehension is thus inconsistent in any fuzzy logic with� (incl.
Ł�) as well as in any fuzzy logic with strict negation (e.g., Gödel logic, product logic,
and the logics SBL and SMTL). For further restrictions on the fuzzy logic underlying
naïve comprehension see Corollary 4.4.

Cantor–Łukasiewicz set theory is in many respects similar to other naïve set theo-
ries over various logics, esp. substructural. In particular, the shared features include the
distinction between intensional and extensional equality, the fixed-point theorem, the ex-
istence of the universal and Russell’s set, non-well-foundedness of the universe, etc. The
reason for these resemblances is the fact that the proofs of these theorems are mainly
based on instances of the comprehension schema and involve just a few logical steps, all
of which are available in most usual non-classical logics. Moreover, the comprehension
schema ensures the availability of the constructions provided by the axioms of ZF-style
set theories, such as pairing, unions, power sets, and infinity.We shall give a brief account
of these features of CŁ. Unless a reference is given, the proofs are easy or can be found
in papers by Hájek (2005) and Cantini (2003).

First observe that by the comprehension schema, the usual elementary fuzzy set
operations are available in CŁ:

Definition 4.13 In CŁ, we define:10

∅ =df {q | ⊥} �x =df {q | q /∈ x}
x ∩ y =df {q | q ∈ x & q ∈ y} x ∪ y =df {q | q ∈ x ⊕ q ∈ y}
x � y =df {q | q ∈ x ∧ q ∈ y} x � y =df {q | q ∈ x ∨ q ∈ y}

The usual properties of these fuzzy set operations are provable in CŁ.11 Notice, how-
ever, that the notions of kernel and support of a fuzzy set are undefinable in CŁ, as they
would make the connective � definable (by setting �ϕ(y) ≡ y ∈ Ker{x | ϕ(x)}). Thus
unlike ZF-style fuzzy set theories (such as FST of Sect. 4.3), naïve fuzzy set theories can
hardly serve as axiomatizations of Zadeh’s fuzzy sets, as some of the basic concepts of
fuzzy set theory cannot be defined in theories with unrestricted comprehension.12

10 SeeTheorems4.2–4.3 for the conservativeness of these (and subsequent similar) definitions inCŁ.
The symbol ⊕ denotes the ‘strong’ disjunction of Łukasiewicz logic, defined in Ł as ϕ ⊕ ψ ≡df
¬(¬ϕ & ¬ψ).
11 The schematic translation of propositional tautologies into theorems of elementary fuzzy set
theory (Běhounek and Cintula, 2005) only relies on certain distributions laws for quantifiers, and
so works for CŁ (as well as CMTL introduced in Sect. 4.5.3). The converse direction (disproving
theorems not supported by propositional tautologies), however, cannot be demonstrated as in ele-
mentary fuzzy set theory (namely, by constructing a model from the counterexample propositional
evaluation), since no method of constructing models of CŁ or CMTL is known. In fact, it is well
possible (esp. for CMTL) that the comprehension schema does strengthen the logic of the theory (as
it does exclude some algebras of semantic truth values, see comments following Theorem 4.21 and
preceding Corollary 4.4 in Sect. 4.5.3).
12 In order to become a full-fledged theory of fuzzy sets, some kind of (preferably, conservative)
extension of naïve fuzzy set theories would be needed (cf. Běhounek 2010; Hájek 2013b, Sect. 3).
Such extensions, however, make the comprehension axioms restricted to the formulae in the original
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Definition 4.14 In CŁ, we define the following binary predicates:

• Inclusion: x ⊆ y ≡df (∀u)(u ∈ x → u ∈ y).
• Extensional equality (or co-extensionality):13 x ≈ y ≡df (∀u)(u ∈ x ↔ u ∈ y).
• Leibniz equality: x = y ≡df (∀u)(x ∈ u ↔ y ∈ u).

We will use x 
= y, x 
≈ y, x /∈ y, etc., respectively for ¬(x = y), ¬(x ≈ y), ¬(x ∈ y),
etc.

As there is a direct correspondence between sets and properties in CŁ, the definition of
Leibniz equality effectively says that the sets which have the same properties (expressible
in the language of CŁ) are equal (cf. Leibniz’s principle of identity of indiscernibles).
Since moreover a concept’s intension is often identified with the set of its properties,
Leibniz equality can also be understood as co-intensionality, or intensional equality.
Unlike in first-order fuzzy logics with identity (see Sect. 4.2), the predicates = and ≈ are
defined predicates of CŁ. It turns out that the properties required of the identity predicate
(in particular, the intersubstitutivity of identicals) are satisfied by Leibniz equality, but
not by extensional equality. Since moreover Leibniz equality turns out to be crisp in CŁ,
it can be understood as the crisp identity of the objects of CŁ (i.e., each model of CŁ can
be factorized by = salva veritate of all formulae).

The following theorem lists basic provable properties of both equalities.

Theorem 4.11 CŁ proves:

1. Both = and ≈ are fuzzy equivalence relations; i.e.:

x = x, x = y → y = x, x = y & y = z → x = z,

and analogously for ≈. Moreover, ⊆ is a fuzzy preorder whose min-symmetrization
is ≈:

x ⊆ x, x ⊆ y & y ⊆ z → x ⊆ z, x ≈ y ↔ x ⊆ y ∧ y ⊆ x .

2. Leibniz equality is crisp, i.e., x = y ∨ x 
= y.
3. Leibniz equality ensures intersubstitutivity: x = y → (ϕ(x) ↔ ϕ(y)), for any CŁ-

formula ϕ.
4. Leibniz equality implies co-extensionality: x = y → x ≈ y. The converse (i.e., the

extensionality of CŁ-sets), however, is inconsistent with CŁ (Hájek 2005).14

By means of the crisp identity, (crisp) singletons, pairs, and ordered pairs can be
defined in CŁ:

language, and so lose the intuitive appeal of the unrestricted comprehension schema. Cf. Remark 4.4
below.
13 Cantini (2003) as well as Hájek (2005 and subsequent papers) denote extensional equality by
the symbol =e.
14 In fact, as proved by Hájek (2013a), if CŁ 
 t /∈ t for a term t , then there is a term t ′ such that
CŁ 
 t ≈ t ′ & t 
= t ′. Moreover, he also proved that if CŁ 
 (∀u)(u ≈ t → u /∈ t) for a term t ,
then there are infinitely many terms ti such that CŁ proves t ≈ ti and ti 
= t j , for each i, j ∈ N.
(Thus, for instance, there are infinitely many Leibniz-different empty sets.) The above terms t ′, ti
are defined by the fixed-point theorem (i.e., Theorem 4.13).
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Definition 4.15 In CŁ, we define (for all k ≥ 1):

{x} =df {q | q = x} {x, y} =df {q | q = x ∨ q = y}
〈x, y〉 =df {{x}, {x, y}} 〈x1, . . . , xk, xk+1〉 =df 〈〈x1, . . . , xk〉, xk+1〉

The behavior of these crisp sets is as expected (cf. Theorem 4.20 below). In particular,
CŁ proves 〈x, y〉 = 〈u, v〉 ↔ x = u ∧ y = v. This makes it possible to employ the
following notation:

Convention 4.12 By {〈x, y〉 | ϕ} we abbreviate the comprehension term {q | (∃x)(∃y)

(q = 〈x, y〉 ∧ ϕ)}, and similarly for tuples of higher arities.

Like many other naïve set theories, CŁ enjoys the fixed-point theorem that makes
self-referential definitions possible:

Theorem 4.13 (The Fixed-Point Theorem) For each formula ϕ(x, . . . , z) of CŁ there
is a comprehension term ζϕ such that CŁ proves ζϕ ≈ {x | ϕ(x, . . . , ζϕ)}.

Hájek’s proof of the Fixed Point Theorem (2005) is just a reformulation of Cantini’s
proof (2003), which works well in CŁ. The proof is constructive, i.e., yields effectively
and explicitly a particular fixed-point comprehension term ζϕ for each formula ϕ.

Convention 4.14 Let us denote the particular fixed-point comprehension term ζ con-
structed in the proof of Theorem 4.13 by FPz{x | ϕ(x, . . . , z)}. In definitions using
the fixed-point theorem, instead of u =df FPz{x | ϕ(x, . . . , z)} we shall write just
u ≈df {x | ϕ(x, . . . , u)}.

Thus if we define a fixed point u ≈df {x | ϕ(x, . . . , u)}, then by Theorem 4.13, CŁ

proves q ∈ u ↔ ϕ(q, . . . , u). The fixed-point theorem thus ensures that the “equation”
CŁ 
 q ∈ z ↔ ϕ(q, . . . , z) has a solution in z for any formulaϕ(q, . . . , z). Consequently,
as usual in non-classical naïve set theories enjoying the fixed-point theorem,CŁ proves the
(non-unique) existence of a “Quine atom” u ≈ {u}, a set comprised of its own properties
u ≈ {p | u ∈ p}, etc.

4.5.2 Arithmetic in Cantor–Łukasiewicz Set Theory

In naïve set theories that enjoy the fixed-point theorem, the set ω of natural numbers can
be defined in a more elegant way than in ZF-like set theories, straightforwardly applying
the idea that a natural number is either 0 or the successor of another natural number.
Identifying 0 with the empty set ∅ and the successor s(x) of x with {x}, we define by the
fixed-point theorem:

ω ≈df {n | n = 0 ∨ (∃m ∈ ω)(n = s(m))}. (4.2)
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The definition is not unique w.r.t. Leibniz identity: Hájek (2013a) showed that there are
infinitely many terms ωi such that ω ≈ ωi (so ωi satisfies the co-extensionality (4.2) as
well), but ωi 
= ω j , for each (metamathematical) natural numbers i, j ∈ N.15

CŁ expanded by the constant ω satisfying (4.2) proves some basic arithmetical prop-
erties of ω (cf. Sect. 4.4.1), e.g.:

Theorem 4.15 (Hájek 2005) CŁ proves:

1. s(x) 
= 0
2. s(x) = s(y) → x = y
3. x ∈ ω ↔ s(x) ∈ ω

With suitable definitions of addition and multiplication (as given in Hájek (2013a),
namely as ternary predicates, adapting the usual inductive definitions toŁukasiewicz logic
by means of min-conjunction ∧), further arithmetical properties, amounting in effect to
a CŁ-analogue of Grzegorczyk’s weakening Q− of Robinson arithmetic, can be proved.
The proof of essential undecidability of the latter weak classical arithmetic can then
be adapted for CŁ, yielding its essential undecidability and incompleteness. The proof
proceeds along the usual lines of Gödel numbering and self-reference (Hájek 2013a).

Theorem 4.16 (Hájek 2013a) The theory CŁ is essentially undecidable and essentially
incomplete; i.e., each consistent recursively axiomatizable extension of CŁ is undecidable
and incomplete.

Recall, though, that a theory T over first-order Łukasiewicz logic is considered com-
plete if for each pair ϕ,ψ of sentences in the language of T , either ϕ → ψ or ψ → ϕ is
provable in T (Hájek 1998); such theories are also called linear (e.g., Hájek and Cintula
2006). Incompleteness thus means that for some pair ϕ,ψ of sentences, neither ϕ → ψ

nor ψ → ϕ is provable in T . The self-referential lemma thus refers to pairs of formulae
as well:

Lemma 4.9 (Hájek 2013a) For each pair ψ1(x1, x2), ψ2(x1, x2) of CŁ-formulae there
is a pair ϕ1, ϕ2 of CŁ-sentences such that CŁ proves ϕ1 ↔ ψ1(ϕ1, ϕ2) and ϕ2 ↔
ψ2(ϕ1, ϕ2).

Regarding induction, the situation is tricky:

Theorem 4.17 (Hájek 2005) If CŁ is consistent, then CŁ extended by the rule

ϕ(0), (∀x)(ϕ(x) ↔ ϕ(s(x)))

(∀x ∈ ω)ϕ(x)
,

for any ϕ not containing ω, is consistent as well. However, CŁ extended by the same rule
for any ϕ (including those containing the constant ω), is inconsistent.

Hájek (2005) demonstrated the latter inconsistency claim by developing arithmetic in
the extended theory, constructing a truth predicate (cf. Sect. 4.4.2), and showing that it
commutes with connectives, which yields inconsistency (Hájek et al. 2000).

15 This is a corollary of the theorem given in footnote 14, as ω satisfies its conditions.
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In the variant of CŁ over standard [0, 1]-valued Łukasiewicz logic (called H, see
footnote 9), the arithmetic of ω can be shown to be ω-inconsistent (Yatabe 2007; cf.
Restall 1995); i.e., H 
 ϕ(n) for each numeral n, but also H 
 (∃n ∈ ω)¬ϕ(n) for some
formula ϕ. It is unclear, though, whether the result can be extended to CŁ (Hájek 2013b).

It can be shown that in everymodel of CŁ, the setω contains a crisp initial segment iso-
morphic to the standard model of natural numbers (Hájek 2013a). However, this segment
need not represent a set of the model (cf. the ω-inconsistency of H).

Remark 4.4 In order to be able to handle such collections of elements that neednot be sets,
but are nevertheless present in models of CŁ, extending CŁ with classes (which cannot
enter the comprehension schema) has been proposed (Hájek 2013b; Běhounek 2010).
Although thismovemaybe technically advantageous and can possibly yield an interesting
theory, admittedly it destroys the appeal of unrestricted comprehension by restricting it
to class-free formulae. It should be kept in mind, though, that the tentative consistency of
unrestricted comprehension in CŁ itself is only admitted by a restriction of its language
(seeRemark 4.3), and therefore does not apply the comprehension principle unrestrictedly
anyway. As this is a common feature of substructural naïve set theories, it suggests that
the consistency of naïve comprehension in certain contraction-free substructural logics
(and so the necessity of contraction for Russell’s paradox) is in a sense “accidental”, and
that a truly unrestricted comprehension principle would require other logical frameworks
(such as paraconsistent or inconsistency-adaptive ones).

4.5.3 Naïve Comprehension over MTL

In this section we shall discuss which of Hájek’s results in CŁ can survive the weakening
of the underlying logic to the logic MTL. We will only give an initial study, hinting at
the main problems of this transition.

Naïve set theory over the first-order logic MTL axiomatized in the same way as in
Definition 4.12 will be denoted by CMTL. The basic set operations as well as inclusion
and the two equalities can be conservatively introduced in CMTL in the same way as in
Definitions 4.13–4.14. Cantini’s proof (2003) of the fixed-point theorem (Theorem 4.13;
cf. Hájek 2005) works well in CMTL; consequently, the set ω of natural numbers can be
introduced in CMTL in the same self-referential way as in CŁ (see Sect. 4.5.2).

It can be easily observed that similarly as in CŁ (cf. Theorem 4.11), both equali-
ties =,≈ are fuzzy equivalence relations, inclusion ⊆ is a fuzzy preorder whose min-
symmetrization is ≈, and Leibniz equality implies intersubstitutivity (and therefore also
co-extensionality). It will also be seen later that ≈ is provably fuzzy and differs from
= (so the extensionality of all sets is inconsistent with CMTL, too), although these facts
need be proved in a manner different from that of Hájek (2005).

In Hájek’s paper (2005), the crispness of =, or the provability of (x = y) ∨ (x 
= y),
is inferred from the fact that CŁ proves contraction (or &-idempotence) for the Leib-
niz equality, i.e., (x = y) → (x = y)2. Hájek’s proof of the latter fact works well in
CMTL, too. However, since MTL-algebras (unlike MV-algebras for Łukasiewicz logic)
can have non-trivial &-idempotents, crispness in MTL does not generally follow from
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&-idempotence. Consequently, in CMTL Hájek’s proof only ensures the &-idempotence
of the Leibniz identity.

Whether the crispness of = can be proved in CMTL by some additional arguments
appears to be an open problem. Below we give some partial results which further restrict
the possible truth values of Leibniz identity; the complete solution is, however, as yet
unknown. The question is especially pressing since so many proofs of Hájek’s advanced
results (2005, 2013a) utilize the crispness of = in CŁ. In some cases, the results can
be reconstructed in CMTL by more cautious proofs; examples of such theorems (though
mostly simple ones) are given below. However, it is currently unclear which part of
Hájek’s results on CŁ described in Sects. 4.5.1–4.5.2 can still be recovered in CMTL.

For reference in further proofs, let us first summarize the properties of ⊆, =, and ≈
that translate readily into CMTL:

Theorem 4.18 (cf. Hájek 2005) CMTL proves:

1. x = x, x = y → y = x, x = y & y = z → x = z, and analogously for ≈
2. x ⊆ x, x ⊆ y & y ⊆ z → x ⊆ z, x ≈ y ↔ x ⊆ y ∧ y ⊆ x
3. x = y → (ϕ(x) ↔ ϕ(y)), for any CMTL-formula ϕ.
4. x = y → x ≈ y
5. x = y → (x = y)2

Now let us reconstruct in CMTL some basic theorems of CŁ, without relying on the
crispness of Leibniz equality. First it can be observed that the &-idempotence of=makes
it irrelevant which of the two conjunctions is used between equalities. Consequently, =
is not only &-transitive (see Theorem 4.18(1)), but also ∧-transitive, so the notation
x = y = z can be used without ambiguity.

Theorem 4.19 CMTL proves:

1. a = b ∧ c = d ↔ a = b & c = d
2. x = y ∧ y = z → x = z

Proof The claims follow directly from Theorem 4.18(5) and Lemma 4.1. ��
Even without assuming the crispness of =, singletons and pairs (defined as in Def-

inition 4.15) behave as expected. Unlike CŁ, where crisp cases can be taken due to the
crispness of= and the proofs are thus essentially classical, CMTL requires more laborious
proofs of these facts.

Theorem 4.20 CMTL proves:

1. {a} = {b} ↔ a = b
2. {a, b} = {c, d} ↔ (a = c ∧ b = d) ∨ (a = d ∧ b = c)
3. {a, b} ⊆ {c} ↔ a = b = c; in particular, {a, b} ≈ {a} ↔ a = b
4. 〈a, b〉 = 〈c, d〉 ↔ a = c ∧ b = d
5. 〈x ′, y′〉 ∈ {〈x, y〉 | ϕ(x, y, . . . )} ↔ ϕ(x ′, y′, . . . )
6. y ≈ y ∪ {x} ↔ x ∈ y
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Proof 1. Right to left: by intersubstitutivity. Left to right: {a} = {b} −→ {a} ≈ {b} ←→
(∀x)(x ∈ {a} ↔ x ∈ {b}) ←→ (∀x)(x = a ↔ x = b) −→ a = a ↔ a = b ←→ a =
b.

2. Right to left: Both disjuncts imply the consequent by intersubstitutivity. Left to
right:

{a, b} = {c, d} −→ {a, b} ≈ {c, d} ←→ (∀x)(x = a ∨ x = b ↔ x = c ∨ x = d) ←→
(∀x)(x = a ∨ x = b → x = c ∨ x = d) ∧ (∀x)(x = c ∨ x = d → x = a ∨ x = b) ←→
(∀x)(x = a → x = c ∨ x = d) ∧ (∀x)(x = b → x = c ∨ x = d) ∧

(∀x)(x = c → x = a ∨ x = b) ∧ (∀x)(x = d → x = a ∨ x = b) −→
(a = c ∨ a = d) ∧ (b = c ∨ b = d) ∧ (c = a ∨ c = b) ∧ (d = a ∨ d = b)

Distributivity then yields max-disjunction of 16min-conjunctions, of which 14 are equiv-
alent to a = b = c = d , one to a = c ∧ b = d , and one to a = d ∧ b = c.

3. Right to left: x ∈ {a, b} −→ x = a ∨ x = b ←→ x = c ∨ x = c ←→ x =
c ←→ x ∈ {c}; intersubstitutivity is used in the second step. Left to right:

{a, b} ⊆ {c} ←→ (∀x)(x = a ∨ x = b → x = c) ←→
(∀x)(x = a → x = c) ∧ (∀x)(x = b → x = c) −→ a = c ∧ b = c.

4. Right to left: by Theorems 4.20(1)–(2). Left to right: By Theorem 4.20(2),

〈a, b〉 = 〈c, d〉 ↔ ({a} = {c} ∧ {a, b} = {c, d}) ∨ ({a} = {c, d} ∧ {a, b} = {c}).

Thus it is sufficient to show the following two implications:

{a} = {c} ∧ {a, b} = {c, d} ←→ by Theorem 4.20(1)–(2)
a = c ∧ ((a = c ∧ b = d) ∨ (a = d ∧ b = c)) ←→ by distributivity
(a = c ∧ a = c ∧ b = d) ∨ (a = d ∧ b = c ∧ a = c) −→ by ∧ -transitivity of =
a = c ∧ b = d, and
{a} = {c, d} ∧ {a, b} = {c} −→ by Theorem 4.18(2)
{c, d} ⊆ {a} ∧ {a, b} ⊆ {c} −→ by Theorem 4.20(3)
a = b = c = d −→ a = c ∧ b = d.

5. The claim is proved by the following chain of equivalences:

(∃x)(∃y)(〈x ′, y′〉 = 〈x, y〉 & ϕ(x, y, . . . )) ←→ by Theorems 4.20(4) and 4.19
(∃x)(∃y)(x = x ′ & y = y′ & ϕ(x, y, . . . )) ←→ in first-orderMTL
(∃x = x ′)(∃y = y′)(ϕ(x, y, . . . )) ←→ by Lemma 4.3(3)
ϕ(x ′, y′, . . . )

6. The claim is proved by the following chain of equivalences (where the last one follows
from Lemma 4.3(2)):
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y ≈ y ∪ {x} ←→ (∀q)(q ∈ y ↔ q ∈ y ∨ q = x) ←→
(∀q)(q ∈ y → q ∈ y ∨ q = x) ∧ (∀q)(q ∈ y → q ∈ y) ∧ (∀q)(q = x → q ∈ y) ←→
(∀q)(q = x → q ∈ y) ←→ x ∈ y.

��
Several useful facts about the Leibniz equality can be derived from considering Rus-

sell’s set, r =df {x | x /∈ x}. The following observation is instrumental for these consid-
erations:

Theorem 4.21 CMTL proves: (r ∈ r)2 ↔ ⊥.

Proof By comprehension, r ∈ r ↔ r /∈ r; thus r ∈ r & r ∈ r ←→ r ∈ r & r /∈ r ←→ ⊥.
��

Since r ∈ r ↔ r /∈ r, the truth value of the formula r ∈ r is the fixed point ρ of negation
in the MTL-algebra of semantic truth values in any model of CMTL. Consequently, CMTL

has models only over MTL-algebras possessing the fixed point (e.g., there is no model of
CMTL over Chang’s MV-algebra). Moreover, Theorem 4.21 makes it possible to establish
the inconsistency of extensionality in CMTL without the assumption of the crispness of
Leibniz equality:

Corollary 4.1 CMTL plus the extensionality axiom x ≈ y → x = y is inconsistent.

Proof Since x = y → x ≈ y is a theorem (Theorem 4.18(4)), under extensionality the
equality relations = and ≈ would coincide. Thus by Theorems 4.18(5) and 4.20(6), the
relation ∈ would have to yield idempotent values. However, by Theorem 4.21, r ∈ r is
not idempotent. ��

Theorem 4.21 shows that the fixed point ρ of negation is nilpotent; consequently, there
are no non-trivial idempotents smaller than ρ. As a corollary, the truth value of Leibniz
identity cannot lie between 0 and ρ:

Corollary 4.2 CMTL proves: x 
= y ∨ (r ∈ r → x = y).

Proof By Theorems 4.18(5) and 4.21, and the strong linear completeness of MTL.
A direct proof in CMTL can easily be given as well: By prelinearity we can prove that

(x = y → r ∈ r)2 ∨ (r ∈ r → x = y).

Thus to prove Cor. 4.2 it is sufficient to prove (x = y → r ∈ r)2 → (x = y → ⊥).
Now, x = y ←→ (x = y)2 −→ (r ∈ r)2 ←→ ⊥, respectively by Theorem 4.18(5), the
assumption (x = y → r ∈ r)2, and Theorem 4.21. ��

Thus, only sufficiently large truth values (namely, those larger than the truth value ρ of
r ∈ r) can be non-trivial idempotents in any model of CMTL. This result can be extended
by considering the following sets:
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Definition 4.16 For each n ≥ 1, we define rn =df {x | (x /∈ x)n}
By definition, rn ∈ rn ↔ (rn /∈ rn)n . Consequently, the semantic truth value ρn of

rn ∈ rn satisfies ρn = (¬ρn)n . Clearly, ρn > 0 for each n, since otherwise 0 = ρn =
(¬ρn)n = (¬0)n = 1n = 1 
= 0, a contradiction. The values ρn form a non-increasing
chain:

Theorem 4.22 For each n ≥ 1, CMTL proves: rn+1 ∈ rn+1 → rn ∈ rn.

Proof We shall prove that (rn ∈ rn → rn+1 ∈ rn+1)
n → (rn+1 ∈ rn+1 → rn ∈ rn),

whence the theorem follows by prelinearity.
First, by (rn ∈ rn → rn+1 ∈ rn+1)

n we have (rn+1 /∈ rn+1 → rn /∈ rn)n . Then we
obtain:

rn+1 ∈ rn+1 ←→ (rn+1 /∈ rn+1)
n+1 by definition

−→ (rn+1 /∈ rn+1)
n by weakening

−→ (rn /∈ rn)n by (rn+1 /∈ rn+1 → rn /∈ rn)n

←→ rn ∈ rn by definition.

��
As a corollary to Theorems 4.21 and 4.22, the truth values ρn are nilpotent for each n:

Corollary 4.3 (rn ∈ rn)2 ↔ ⊥
Proof By Theorems 4.21 and 4.22, (rn ∈ rn)2 −→ (r1 ∈ r1)2 ←→ ⊥. ��

The sequence of truth values ρn is in fact strictly decreasing, and the sequence of ¬ρn

strictly increasing:

Theorem 4.23 In any model of CMTL, the truth values ρn of rn ∈ rn form a strictly
decreasing chain and the truth values ¬ρn of rn /∈ rn form a strictly increasing chain.

Proof By Theorem 4.22 we know that ρn+1 ≤ ρn , so ¬ρn ≤ ¬ρn+1. Suppose ¬ρn =
¬ρn+1. Then ρn+1 = (¬ρn+1)

n+1 = (¬ρn)n+1 = ((¬ρn)n & ¬ρn) = (ρn & ¬ρn) = 0,
but we have already observed that ρn+1 > 0 for all n—a contradiction. Thus ¬ρn+1 
=
¬ρn , so ¬ρn+1 > ¬ρn and ρn+1 < ρn . ��

As a corollary we obtain that the theory CMTL is infinite-valued, as each model’s
MTL-algebra contains an infinite decreasing chain of truth values below the fixed point
of¬ and an infinite increasing chain of truth values above the fixed point of¬. Moreover,
since (¬ρn)n = ρn , which by Corollary 4.3 is not idempotent,¬ρn is not n-contractive.16

Consequently, there are no models of CMTL over n-contractive MTL-algebras, for any
n ≥ 1:

16 Recall that an element x of an MTL-algebra is called n-contractive if xn−1 = xn . Equivalently,
x is n-contractive if xn−1 is idempotent. An MTL-algebra is called n-contractive if all its elements
are n-contractive.
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Corollary 4.4 Naïve comprehension is inconsistent in all logicsCnMTL of n-contractive
MTL-algebras (i.e., in MTL plus the axiom ϕn−1 → ϕn), for any n ≥ 1. Consequently,
it is also inconsistent in any extension of any CnMTL, which class includes all logics
SnMTL of n-nilpotent MTL-algebras (i.e., MTL plus the axiom ϕn−1 ∨ ¬ϕ) as well as
the logics NM and WNM of (weak) nilpotent minima.17

By Theorem 4.23, the truth values ¬ρn of rn /∈ rn form an increasing sequence. By
Corollary 4.3, each ¬ρn is nilpotent, since (¬ρn)2n = ((¬ρn)n)2 = ρ2

n = 0. Non-trivial
idempotents can thus only occur among truth values larger than all ¬ρn :

Corollary 4.5 In any model of CMTL, all non-trivial idempotents are larger than all truth
values ¬ρn of rn /∈ rn. (In particular, they are larger than the fixed point ρ1 of negation).

This fact is internalized in the theory by the following strengthening of Corollary 4.2:

Corollary 4.6 For all n ≥ 1, CMTL proves: x 
= y ∨ (rn /∈ rn → x = y).

Proof The proof is analogous to that of Corollary 4.2: by prelinearity, it is sufficient to
prove (x = y → rn /∈ rn)2n → x 
= y, which obtains by x = y ←→ (x = y)2n −→
(rn /∈ rn)2n ←→ (rn ∈ rn)2 ←→ ⊥, using the previous observations. ��

By Corollary 4.5, the truth values of the Leibniz equality can only be 0 or sufficiently
large (namely, larger than all ρn). At present it is, however, unclear whether they have
to be crisp or not. As we have seen in Theorems 4.18–4.20, some basic properties of
Leibniz equality known from CŁ can be proved in CMTL by more laborious proofs even
without the assumption of the crispness of =. However, since most of Hájek’s results on
arithmetic in CŁ rely heavily on the crispness of identity, it is unclear whether they can
be reconstructed in CMTL or not.

4.6 Conclusions

In this chapter we have surveyed (and on a few occasions slightly generalized) the work
in axiomatic fuzzy mathematics connected with Petr Hájek. A recurring pattern could
be observed in Hájek’s work in this area: even in a non-classical setting of mathematical
fuzzy logic, he made a point of employing the knowledge and methods he mastered
during earlier stages of his career, for example, in comparing axiomatic theories using
syntactic interpretations, or in relying on strong independence results in arithmetic.

Even thoughHájek’s results remain a landmark of these investigations, it could also be
seen from our exposition of them that the theories in question (as well as their metamath-
ematics) are still at initial stages of their development, and many interesting questions
remain still open. Hájek’s investigation into these theories opened the way for interesting
research and demonstrated that some intriguing results can be achieved. One of the aims

17 Owing to the existence of a fixed point ρ1 of negation, naïve comprehension is furthermore
inconsistent in logics with strict negation, i.e., in SMTL and any of its extensions, which include
�MTL, SBL, �, and G.
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of this chapter was to gather the results in this field of research scattered in several papers
and present them in a synoptic perspective, in order to promote further research in this
area of axiomatic non-classical mathematics. We therefore conclude it with a list of open
problems mentioned or alluded to in this chapter:

• Can a completeness theorem be proved for the ZF-style fuzzy set theory FST over
MTL?

• What is the difference between FSTBL and FSTMTL?
• Can Peano arithmetic with a truth predicate over MTL (or some intermediate logic
between MTL and Ł) have standard models?

• Is CŁ (or CMTL) consistent (relative to a well-established classical theory)?
• Is the Leibniz equality = crisp in CMTL?
• Is ω crisp in CŁ (CMTL)?
• Is CMTL (essentially) undecidable and incomplete?
• Is there a method of constructing models of CŁ or CMTL, so that the models would
satisfy some required properties?
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