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12.1 Introduction

The present work intends to be both a survey and a position paper, conceived as
a homage to Petr Hájek and his absolutely crucial contributions to Mathematical
Fuzzy Logic (MFL). Our aim is to present some of the main developments in the
area, starting with Hájek’s seminal works and continuing with the contributions of
many others, and we want to do it by taking the search of the basic fuzzy logic as the
leitmotif. Indeed, as it will be apparent in the short historical account given later in
this introduction, this search has been one of the main reasons for the development
of new weaker systems of fuzzy logics and the necessary mathematical apparatus
to deal with them. Hájek started the quest when he proposed his basic fuzzy logic
BL, complete with respect to the semantics given by all continuous t-norms. Later
weaker systems, such as MTL, UL or psMTLr , complete with respect to broader
(but still meaningful for fuzzy logics) semantics, have been introduced and disputed
the throne of the basic fuzzy logic. We survey the development of these systems with
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a stress on how they have yielded systematical approaches to MFL. The chapter is
also a position paper because we contribute to the quest with our own proposal of a
basic fuzzy logic. Indeed, we put forth a very weak logic called SL�, introduced and
studied by Cintula and Noguera (2011), Cintula et al. (2013), and propose it as a base
of a new framework which allows to work in a uniform way with both propositional
and first-order fuzzy logics. We present a wealth of results to illustrate the power
and usefulness of this framework, which support our thesis that, from a well-defined
point of view, SL� can indeed be seen as the basic fuzzy logic.1

12.1.1 T-Norm Based Fuzzy Logics

Mathematical Fuzzy Logic (MFL) started as the study of logics based on particu-
lar continuous t-norms,2 most prominently Łukasiewicz logic Ł, Gödel–Dummett
logic G and Product logic �. These logics are rendered in a language with the truth-
constant 0 (falsum) and binary connectives → (implication) and & (fusion, residu-
ated/strong conjunction). They are complete with respect to the standard semantics,
which has the real-unit interval [0, 1] as the set of truth degrees and interprets fal-
sum ⊥ by 0, fusion & by the corresponding t-norm, and the implication → by its
residuum,3 which always exists for continuous t-norms. On the other hand, these sys-
tems are also complete with respect to an algebraic semantics (MV-algebras, Gödel
algebras, and product algebras, respectively) and with respect to the subclass of their
linearly ordered members, also known as (MV-/Gödel/product) chains. These three
algebraic semantics are mutually incomparable superclasses of Boolean algebras,
which amounts to say that Ł, G and � are mutually incomparable subclassical log-
ics. In fact, classical logic can be retrieved as axiomatic extension of any of these
three systems obtained by adding the excluded middle axiom.

In this context, Petr Hájek introduced a natural question: is it possible to see Ł, G
and � (and, in general, any fuzzy logic with a continuous t-norm-based semantics)
as extensions of the same fuzzy logic? In other words: is there a basic fuzzy logic
underlying all (by then) known fuzzy logic systems? As an answer to this question,
he introduced in his monograph (Hájek 1998b) a system, weaker than Ł, G and �,
which he named BL (for basic logic). This logic was given by means of a Hilbert-
style calculus in the language L = {&,→, 0} of type 〈2, 2, 0〉, with the deduction
rule ofmodus ponens (MP)—from ϕ and ϕ → ψ inferψ—and the following axioms
(taking → as the least binding connective):

1 The chapter is presented (almost) without proofs because (almost) all the claims follow from
results proved in previous works. When necessary, we explain how the particular formulations used
in this chapter follow from previous results in the literature.
2 T-norms are commutative, associative, and monotone binary operations on the real unit interval
with 1 as the neutral element; seeKlement et al. (2000) for a reference book on t-norm andBěhounek
et al. (2011) for a detailed survey and historical account on the role of t-norms in mathematical
fuzzy logic.
3 If ∗ is a t-norm, its residuum is defined as the binary function x ⇒ y = sup{z ∈ [0, 1] | x ∗ z � y}.
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(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

(A2) ϕ & ψ → ϕ

(A3) ϕ & ψ → ψ & ϕ

(A4) ϕ & (ϕ → ψ) → ψ & (ψ → ϕ)

(A5a) (ϕ → (ψ → χ)) → (ϕ & ψ → χ)

(A5b) (ϕ & ψ → χ) → (ϕ → (ψ → χ))

(A6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(A7) 0 → ϕ

Other connectives are introduced as follows:

ϕ ∧ ψ = ϕ & (ϕ → ψ) ¬ϕ = ϕ → 0
ϕ ∨ ψ = ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) 1 = ¬0
ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ)

Petr Hájek also introduced the corresponding algebraic semantics for his logic. A
BL-algebra is an algebra A = 〈A,∧,∨, ·,→, 0, 1〉 such that

• 〈A,∧,∨, 0, 1〉 is a bounded lattice
• 〈A, ·, 1〉 is a commutative monoid
• for each a, b, c ∈ A we have

a · b � c iff b � a → c (residuation)
(a → b) ∨ (b → a) = 1 (prelinearity)
a · (a → b) = b · (b → a) (divisibility)

We say that a BL-algebra is:

• Linearly ordered (or BL-chain) if its lattice order is total.
• Standard if its lattice reduct is the real unit interval [0, 1] ordered in the usual way.

Note that in a standard BL-algebra & is interpreted by a continuous t-norm and
→ by its residuum; and vice versa: each continuous t-norm fully determines its
corresponding standard BL-algebra.

Hájek proved completeness of BL with respect to BL-algebras and BL-chains
and conjectured that BL should be also complete with respect to the standard BL-
algebras (i.e., the semantics given by all continuous t-norms). The conjecture was
later proved true: Hájek himself showed the completeness by adding two additional
axioms (Hájek 1998a) which later were shown to be derivable in BL (Cignoli et
al. 2000). Therefore, BL could really be seen, at that time, as a basic fuzzy logic.
Indeed, it was a genuine fuzzy logic because it retained what was then seen as the
defining property of fuzzy logics: completeness with respect to a semantics based on
continuous t-norms. And it was also basic in the following two senses:

1. it could not be made weaker without losing essential properties and
2. it provided a base for the study of all fuzzy logics.
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The first item followed from the completeness of BL w.r.t. the semantics given by
all continuous t-norms; thus, in a context of continuous t-normbased logics one could
not possibly take a weaker system. The second meaning relied on the fact that the
three main fuzzy logics (Ł, G, and�) are all axiomatic extensions of BL and, in fact,
the methods used by Hájek to introduce, algebraize, and study BL could be utilized
for any other logic based on continuous t-norms. Actually, already Hájek (1998b)
developed a uniform mathematical theory for MFL. He considered all axiomatic
extensions of BL (not just the three prominent ones) as fuzzy logics (he called them
schematic extensions) and systematically studied their first-order extensions (inspired
by Rasiowa (1974)), extensions with modalities, complexity issues, etc.

Moreover, mainly thanks to the availability of good mathematical characteriza-
tions for continuous t-norms and BL-chains, BL has turned out to be a crucial logical
system giving rise to an intense research with lots of nice results obtained by many
authors (for an up-to-date survey see Busaniche and Montagna (2011)). For these
reasons, we want to take on the occasion of the present tribute volume to Petr Hájek
to propose that both BL logic and BL-algebras should rightfully be renamed after
their creator as Hájek logic and Hájek algebras (HL and HL-algebras, for short).

Another strong reason supporting abandoning the name ‘Basic Logic’ is that the
development of MFL has shown that HL was actually not basic enough. That is, HL
was indeed a good basic logic for the initial framework in which it was formulated,
but the active research area that Hájek helped creating with his monograph and his
weakest logical system soon expanded its horizons to broader frameworks which
demanded a revision of the basic logic. Therefore, Hájek had not settled but only
initiated the quest for the basic fuzzy logic.

The first step towards a broader point of view was taken by Esteva and Godo, who
noticed that the necessary and sufficient condition for a t-norm to have a residuum
is not continuity, but left-continuity. Inspired by this fact they introduced by Esteva
and Godo (2001) the logic MTL (shorthand for Monoidal t-norm based Logic) as an
attempt to axiomatize the standard semantics given by all residuated t-norms. It was
introduced by means of a Hilbert-style calculus in the language L = {&,→,∧, 0}
of type 〈2, 2, 2, 0〉, (∧ is no longer a derived connective and has to be considered as
primitive). This calculus is the same as the one for HL only axiom (A4) is replaced
by the following three axioms:

(A4a) ϕ ∧ ψ → ϕ

(A4b) ϕ ∧ ψ → ψ ∧ ϕ

(A4c) ϕ & (ϕ → ψ) → ϕ ∧ ψ

Similarly to the previous cases, Esteva and Godo introduced a broader class of
algebraic structures, MTL-algebras (defined analogously to HL-algebras but without
requiring the fulfilment of the divisibility condition) and proved thatMTL is complete
bothw.r.t. the semantics given by allMTL-algebras andw.r.t.MTL-chains.Moreover,
Jenei and Montagna (2002) indeed proved MTL to be complete with respect to the
semantics given by all left-continuous (i.e. residuated) t-norms. Thus it was a better
candidate than HL for a basic fuzzy logic, which could be retrieved as the axiomatic
extension of MTLby axiom (A4).
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12.1.2 Core Fuzzy Logics

In the broader framework for MFL promoted by Esteva and Godo, i.e. that of logics
based on residuated t-norms, the system MTL indeed fulfilled our requirements for
a basic fuzzy logic, as expressed in the previous subsection. It was a genuine fuzzy
logic enjoying a standard completeness theorem w.r.t. a semantics based on left-
continuous t-norms, it could not be made weaker without losing this property and all
known fuzzy logics could be obtained as extensions of MTL, thus providing a good
base for a new systematical study ofMFL. In fact, Petr Hájek salutedMTL as the new
basic fuzzy logic and defined (Hájek and Cintula 2006) a precise general framework
taking MTL as the basic system and not restricting to its axiomatic extensions (i.e.
logics in the same language as MTL) but rather to its axiomatic expansions (by
allowing new additional connectives). In particular they introduced two classes of
logics which, though not very broad from the general perspective of the whole logical
landscape, are still large enough to cover the most studied fuzzy logics. These two
classes have provided a useful framework for a general study of these logics and
have been utilized in particular in the study of completeness of (propositional and
first-order) fuzzy logics w.r.t. distinguished semantics (Cintula et al. 2009) and the
arithmetical complexity of first-order fuzzy logics (Montagna and Noguera 2010).
The rough idea was to capture, by simple syntactic means, a class of logics which
share many desirable properties with MTL.

Definition 12.1 A logic L in a language L is a core fuzzy logic if:

1. L expands MTL.
2. For all L -formulae ϕ,ψ, χ the following holds:4

ϕ ↔ ψ �L χ ↔ χ ′, (Cong)

where χ ′ is a formula resulting from χ by replacing some occurrences of its
subformula ϕ by the formula ψ .

3. L has an axiomatic system with modus ponens as the only deduction rule.

Therefore, core fuzzy logics are essentially well-behaved axiomatic expansions
of MTL.5 Observe, that since MTL is a finitary logic6 and we are only considering
adding axioms, not rules, all core fuzzy logics remain finitary. Table 12.1 collects
prominent members of the family of core fuzzy logics together with the axioms one
needs to add to MTL to obtain them (see the definition of axioms in Table 12.2).
An important logic, which does not fall under the scope of the previous definition,

4 By �L we denote the provability relation in L, see Sect. 12.2.1 for the formal definition.
5 The original definition of core fuzzy logics (Hájek and Cintula 2006, Convention 1) required the
validity of a variant of deduction theorem (see Theorem 12.1), but is shown equivalent with our
definition (Hájek and Cintula 2006, Proposition 3); analogously for�-core fuzzy logics introduced
in the next definition.
6 This means that whenever Γ �MTL ϕ, there is a finite Γ ′ ⊆ Γ such that Γ ′ �MTL ϕ.
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Table 12.1 Some axiomatic
extensions of MTL obtained
by adding the corresponding
additional axiom schemata

Logic Additional axiom
schemata

References

SMTL (PC) Hájek (2002)
�MTL (Can) Hájek (2002)
WCMTL (WCan) Montagna et al. (2006)
IMTL (Inv) Esteva and Godo (2001)
WNM (WNM) Esteva and Godo (2001)
NM (Inv) and (WNM) Esteva and Godo (2001)
CnMTL (Cn) Ciabattoni et al. (2002)
CnIMTL (Inv) and (Cn) Ciabattoni et al. (2002)
HL (BL) (Div) Hájek (1998b)
SHL (SBL) (Div) and (PC) Esteva et al. (2000)
Ł (Div) and (Inv) Hájek (1998b); Łukasiewicz

(1920)
� (Div) and (Can) Hájek et al. (1996)
G (C) Hájek (1998b); Dummett

(1959); Gödel (1932)
CPC (EM)

Table 12.2 Some usual
axiom schemata in fuzzy
logics

Axiom schema Name

¬¬ϕ → ϕ Involution (Inv)
¬ϕ ∨ ((ϕ → ϕ & ψ) → ψ) Cancellation (Can)
¬(ϕ & ψ) ∨ ((ψ → ϕ & ψ) → ϕ) Weak Cancellation

(WCan)
ϕ → ϕ & ϕ Contraction (C)
ϕn−1 → ϕn n-Contraction (Cn)
ϕ ∧ ¬ϕ → 0 Pseudocomplementa-

tion (PC)
ϕ ∧ ψ → ϕ & (ϕ → ψ) Divisibility (Div)
(ϕ & ψ → 0) ∨ (ϕ ∧ ψ → ϕ & ψ) Weak Nilpotent

Minimum (WNM)
ϕ ∨ ¬ϕ Excluded Middle

(EM)

is the expansion of MTL with the Monteiro–Baaz projection connective � (Baaz
1996; Monteiro 1980). This logic, denoted as MTL�, is obtained by adding the
unary connective � to the language, the rule of �-Necessitation (Nec�)—from ϕ

infer �ϕ—and the following axioms:

(�1) �ϕ ∨ ¬�ϕ

(�2) �(ϕ ∨ ψ) → �ϕ ∨ �ψ

(�3) �ϕ → ϕ

(�4) �ϕ → ��ϕ

(�5) �(ϕ → ψ) → (�ϕ → �ψ)
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Taking MTL� as an alternative basic logic, Hájek and Cintula defined another
class of fuzzy logics, now with the � connective:

Definition 12.2 A logic L in a language L is a �-core fuzzy logic if:

1. L expands MTL�.
2. For all L -formulae ϕ,ψ, χ the following holds:

ϕ ↔ ψ �L χ ↔ χ ′, (Cong)

where χ ′ is a formula resulting from χ by replacing some occurrences of its
subformula ϕ by the formula ψ .

3. L has an axiomatic system with modus ponens and (Nec�) as the only deduction
rules.

Expansions of fuzzy logics with � were already systematically studied by Petr
Hájek already in his seminal monograph (Hájek 1998b) and have since then been
considered for most fuzzy logics, making the class of �-core fuzzy logics another
largely populated useful class.

Other well-known fuzzy logics in expanded languages fall under the scope of the
two classes we have introduced, such as logics with truth-constants for intermediate
truth-values (a Petr Hájek’s variant of the Pavelka’s extension of Łukasiewicz logic
(Hájek 1998b; Pavelka 1979; Novák 1990) later studied in many works by other
authors (Savický et al. 2006; Esteva et al. 2009; Esteva et al. 2011, Sect. 2)), logics
L∼ expanded with an extra involutive negation (again initiated by Petr Hájek and
followed by others (Esteva et al. 2000;Cintula et al. 2006; Esteva et al. 2000; Flaminio
and Marchioni 2006; Haniková and Savický 2008; Esteva et al. 2011, Sect. 4)), or
logics combining conjunctions and implications corresponding to different t-norms
(Cintula 2003; Horčík and Cintula 2004; Montagna and Panti 2001; Esteva et al.
2001; Esteva et al. 2011, Sect. 5). On the other hand there are logics expanding
MTL studied in the literature which are neither core nor �-core because they need
some additional deduction rules, the prominent examples being the logic PL′ (the
extension of Łukasiewicz logic with an additional product-like conjunction which
has no zero-divisors (Horčík and Cintula 2004)) or logics with truth-hedges (Esteva
et al. 2013).

Core and�-core fuzzy logics are all finitary and well-behaved from several points
of view. In particular, for every such logic L one can define in a natural way a
corresponding class of algebraic structures, L-algebras, which provide a complete
semantics as in the case of MTL or the previously mentioned logics and, more
importantly, the completeness theorem is preserved if we restrict ourselves to linearly
ordered L-algebras.Moreover, these classes of algebras are always varieties, i.e. they
can be presented in terms of equations or, equivalently, are closed under formation
of homomorphic images, subalgebras and direct products.

Another interesting property shared by the logics in these classes is the deduction
theorem. Petr Hájek (1998b) already proved deduction theorems for several fuzzy
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logics, including his basic logic, and also for his expansions with �. One can anal-
ogously obtain deduction theorems for all the logics in the classes just defined (in a
local form for core fuzzy logics, global for �-core):7

Theorem 12.1

1. Let L be a core fuzzy logic in a language L . For every Γ ∪ {ϕ,ψ} ⊆ FmL ,
Γ, ϕ �L ψ iff there is n � 0 such that Γ �L ϕn → ψ .

2. Let L be a core �-fuzzy logic in a language L . For every Γ ∪ {ϕ,ψ} ⊆ FmL ,
Γ, ϕ �L ψ iff Γ �L �ϕ → ψ .

We will give more precise details both about algebraization of logics and about
deduction theorems in Sect. 12.2.

12.1.3 Substructural Logics as a Framework for Fuzzy Logics

The quest for the basic fuzzy logic did not end with MTL (or MTL�). Indeed, MTL
has been further weakened in two different directions beyond the framework of core
fuzzy logics:

• by dropping commutativity of conjunction Hájek (2003b) obtained the logic
psMTLr which Jenei and Montagna (2003) proved to be complete with respect to
the semantics on non-commutative residuated t-norms,

• by removing integrality (i.e. not requiring the neutral element of conjunction to
be maximum of the order) Metcalfe and Montagna (2007) proposed the logic UL
which is, in turn, complete with respect to left-continuous uninorms.

Petr Hájek liked to describe this process of successive weakening of fuzzy logics
by telling the joke of the crazy scientist that studied fleas by removing their legs one
by one and checking whether they could still jump (Hájek 2005b).8 Namely, if HL
was the original flea, it lost the ‘divisibility leg’ when it was substituted byMTL, and
then psMTLr and UL respectively lost the ‘commutativity and the integrality leg’
while retaining the ability to ‘jump’ (i.e., the completeness w.r.t. intended semantics
based on reals).

7 We need to recall the following inductively defined notation: ϕ0 = 1, ϕ1 = ϕ, and ϕn = ϕn−1&ϕ.
8 A prominent biologist conducted a very important experiment. He trained a flea to jump upon
giving her a verbal command (“Jump!”). In a first stage of the experiment he removed a flea’s leg,
told her to jump, and the flea jumped. So he wrote in his scientific notebook: “Upon removing
one leg all flea organs function properly”. So, he removed the second leg, asked the flea to jump,
she obeyed, so he wrote again: “Upon removing the second leg all flea organs function properly”.
Thereafter he removed all the legs but one, the flea jumped when ordered, so he wrote again: “Upon
removing the one but last leg all flea organs function properly”. Then he removed the last leg. Told
flea to jump, and nothing happened. He did not want to take a chance, so he repeated the experiment
several times, and the legless flea never jumped. So he wrote the conclusion: “Upon removing the
last leg the flea loses sense of hearing”.
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These weaker fuzzy logics (and evenMTL itself (Esteva et al. 2003)) can be fruit-
fully studied in the context of substructural logics. Recall the bounded full Lambek
logic FL,9 a basic substructural logic which does not satisfy any of the usual three
structural rules: exchange, weakening, and contraction. Although firstly presented by
means of a Gentzen calculus, it can be given a Hilbert-style presentation and shown
to be an algebraizable logic in the sense of Blok and Pigozzi (1989) whose equiva-
lent algebraic semantics is the variety of bounded pointed lattice-ordered residuated
monoids (usually referred to as bounded pointed residuated lattices or FL-algebras).
Intuitionistic logic together with logics FLe, FLw, and FLew are among the most
prominent extensions of FL. These logics are obtained by adding some of the struc-
tural rules and correspond to subvarieties of residuated lattices satisfying correspond-
ing extra algebraic properties (Galatos et al. 2007). Actually, many fuzzy logics have
been shown to be axiomatic extensions of some of these prominent substructural log-
ics by adding some axioms that enforce completeness with respect to some class of
linearly ordered residuated lattices (or chains). For instance, Gödel–Dummett logic
is the logic of linearly ordered Heyting algebras (FLewc-chains), MTL is the logic
FL�

ew of FLew-chains,
10 UL is the logic FL�

e of FLe-chains, and psMTLr is the logic
FL�

w of FLw-chains.
This common feature, completeness with respect to their corresponding linearly

ordered algebraic structures, has motivated the methodological paper (Běhounek and
Cintula 2006) where the authors postulate that fuzzy logics are the logics of chains, in
the sense that they are logics completewith respect to a semantics of chains.However,
all the fuzzy logics mentioned so far do enjoy a stronger property: the standard com-
pleteness theorem, i.e. completeness with respect to a semantics of algebras defined
on the real unit interval [0, 1] which Petr Hájek and many others have considered
to be the intended semantics for fuzzy logics. Following Hájek’s flea joke, we could
say that those fleas are fuzzy logics that jump well provided that they satisfy standard
completeness. Actually, many authors implicitly (and sometimes even explicitly, e.g.
Metcalfe andMontagna (2007)) regard standard completeness as an essential require-
ment for fuzzy logics. It is, thus, reasonable to expect any candidate for the basic
fuzzy logic to satisfy this stronger requirement. But, although they fulfill that, neither
FL�

e nor FL
�
w can be taken as basic because they are not comparable and hence do not

satisfy our second meaning of basic. A reasonable candidate could be the logic FL�

of FL-chains (a common generalization of FL�
e and FL

�
w). But, interestingly enough,

this logic does not enjoy the standard completeness (as proved by Wang and Zhao
(2009)) and, therefore, we must discard it. Moreover, one can also argue that FL� is
still not basic enough (in the first meaning) because it satisfies a remaining structural
rule: associativity. Hence, in the context of substructural logics, it could still be made
weaker by removing associativity.

9 We use this notation for simplicity in this introduction, even though in the literature the symbol FL
is usually used for the unbounded full Lambek logic whereas the bounded FL is denoted as FL⊥.
10 As notation convention (later precisely introduced in Definition 12.11) given a logic L, we denote
by L� the logic of L-chains.
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Table 12.3 Axiomatic system of SL

(R) ϕ → ϕ (R′) 1 → (ϕ → ϕ)

(MP) ϕ, ϕ → ψ � ψ (Push) ϕ → (1 → ϕ)

(Sf) ϕ → ψ � (ψ → χ) → (ϕ → χ) (1) 1
(Pf) ψ → χ � (ϕ → ψ) → (ϕ → χ) (Bot) ⊥ → ϕ

(As) ϕ � (ϕ → ψ) → ψ (∧1) ϕ ∧ ψ → ϕ

(As��) ϕ → ((ϕ � ψ) → ψ) (∧2) ϕ ∧ ψ → ψ

(Symm1) ϕ � ψ � ϕ → ψ (∧3) (χ → ϕ) ∧ (χ → ψ) → (χ → ϕ ∧ ψ)

(E�1) ϕ → (ψ → χ) � ψ → (ϕ � χ) (∨1) ϕ → ϕ ∨ ψ

(Res1) ψ → (ϕ → χ) � ϕ & ψ → χ (∨2) ψ → ϕ ∨ ψ

(Adj&) ϕ → (ψ → ψ & ϕ) (∨3) (ϕ → χ) ∧ (ψ → χ) → (ϕ ∨ ψ → χ)

(Adj) ϕ, ψ � ϕ ∧ ψ (∨3� ) (ϕ � χ) ∧ (ψ � χ) → (ϕ ∨ ψ � χ)

There have actually been several studies on non-associative substructural logics,
starting with the original Lambek non-associative calculus (Lambek 1961) (without
lattice connectives), and followed (in the full language) e.g. by Buszkowski and
Farulewski (2009). Recently, a general algebraic framework to study fuzzy logics
considered as a subfamily of (not necessarily associative) substructural logics has
been developed by Cintula and Noguera (2011). It is based on the logic SL, a non-
associative version of the bounded Full Lambek calculus, introduced by Galatos and
Ono (2010).11 SL is formulated in the language LSL = {∧,∨,&,→,�, 0, 1,⊥}
(we also make use of the defined connectives ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ) and
� = ⊥ → ⊥)12 and axiomatized by means of the Hilbert-style calculus (Galatos
and Ono 2010, Fig. 5) presented in Table 12.3.

Moreover, Galatos and Ono proved that SL is an algebraizable logic whose equiv-
alent algebraic semantics is the variety of bounded lattice-ordered residuated unital
groupoids, where the monoidal structure of the previous logics has become just
a groupoid on account of the lack of associativity (we will see more details in
Sect. 12.2). Therefore, if we are looking for a logic complete with respect to standard
chains in the non-associative context, it makes sense to consider, in a similar fashion
as with FL and its extensions, the logic SL� as the logic of bounded linearly ordered
residuated unital groupoids.

12.1.4 Goals and Outline of the Chapter

The main goal of this chapter is to propose SL� as a new basic fuzzy logic. The cur-
rent stage of development in MFL requires a broader framework than that provided

11 Technically speaking,Galatos andOno introduced an unbounded version of this logic and actually
never named it. The name SL, standing for ‘substructural logic’, was proposed by Cintula and
Noguera (2011).
12 When writing formulae in this language we will assume that the increasing binding order of
connectives is: first &, then {∧,∨}, and finally {→, �,↔}.
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by core and �-core fuzzy logics. This is witnessed by several works (some already
mentioned) dealing with fuzzy logics which either need some additional deduction
rule or are weaker than MTL, e.g. Botur (2011), Esteva et al. (2013), Gabbay and
Metcalfe (2007), Hájek (2003a, b, c), Hájek and Ševčík (2004), Horčík and Cintula
(2004), Jenei and Montagna (2003), Marchioni and Montagna (2008), Metcalfe and
Montagna (2007), Wang and Zhao (2009). For this reason fuzzy logics have started
being systematically studied in the context of (not necessarily associative) substruc-
tural logics by Cintula and Noguera (2011). However, this work did not offer a basic
fuzzy logic in its framework.

On the other hand, SL� has been introduced and studied as an axiomatic extension
of SL in the recent paper (Cintula et al. 2013) where, among others, it has been shown
to enjoy standard completeness. Based on these results we will defend here the thesis
that SL� can serve as a basic fuzzy logic, good enough for the current needs of MFL.
We will argue that is genuinely fuzzy and basic in both senses mentioned earlier in
this introduction. To this end, we introduce a new class of logics containing core and
�-core fuzzy logics and much more: core semilinear logics. The adjective ‘semilin-
ear’ in the name of this class refers to a notion introduced by Cintula and Noguera
(2010) in order to capture the idea of fuzzy logics as logics of chains proposed
by Běhounek and Cintula (2006). The idea is the following: if a logic has a reason-
able implication → (which is the case of SL and many of its expansions like core
and �-core fuzzy logics) then its corresponding algebraic structures can be ordered
in terms of the implication (a � b iff a → b � 1); the logic is said to be semilinear
iff it is complete w.r.t. the class of algebras where the order just defined is total.
Moreover, the class of core semilinear logics contains both core and �-core fuzzy
logics and is defined in formally analogousway. Actually, the class of core semilinear
logics provides a convenient intermediate level of generality, between that of core
and �-core fuzzy logics and that of weakly implicative semilinear logics of Cintula
and Noguera (2011), by fixing SL� (and, therefore, its language) as a common base
and allowing for non-axiomatic extensions.

Outline of the chapter After this introduction that has presented the topic (histor-
ically and conceptually), the main logical systems, the classes of (�-)core fuzzy
logics, and the motivation for the forthcoming class of core semilinear logics,13

Section 12.2 presents, in mathematical details, the necessary logical and algebraic
framework for our approach, which mainly restricts to substructural logics under-
stood as well-behaved expansions of the non-associative logic SL. Section 12.2.1
gives the basic notions, Sect. 12.2.2 presents the useful syntactical notion of almost
(MP)-based logics, and Sect. 12.2.3 is devoted to generation of filters, algebraiza-
tion, and completeness w.r.t. (finitely) subdirectly irreducible algebras. Section 12.3,
as the central part of the chapter, focuses on propositional core semilinear logics.
After defining them, Sect. 12.3.1 shows several useful characterizations of semilinear

13 Although we have tried to make this chapter reasonably self-contained, the obvious space limita-
tions do not allow for an extensive presentation of all mentioned logical systems. For an up-to-date
encyclopedical account of Mathematical Fuzzy Logic see Cintula et al. (2011).
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logics and their axiomatizations, including a presentation of SL� as axiomatic exten-
sion of SL; Section 12.3.2 is a survey on completeness properties of core semilin-
ear logics w.r.t. significant algebraic semantics, in particular we stress the standard
completeness of SL�. Finally, Sect. 12.4 is devoted to first-order predicate coun-
terparts of core semilinear logics, including SL�∀, the first-order extension of SL�.
Section 12.4.1 shows the axiomatization of these logics, Sect. 12.4.2 presents their
semantics based on general and witnessed models, and Sect. 12.4.3 focuses again on
distinguished semantics, in particular stressing that SL�∀ enjoys standard complete-
ness too.

12.2 Logical Framework

In order to dealwith the classes of logicsmentioned above,weneed someflexibility as
regards both propositional languages and logics. Therefore, for the sake of reference
and in order to fix terminology in a convenient way for this chapter, we shall start
with some standard general definitions and conventions.14

12.2.1 Basic Syntax and Semantics

In this chapter we consider logics as given by finitary Hilbert-style proof systems
expanding that of SL (see Table 12.3 in the introduction). FollowingHájek’s method-
ology, we restrict to finitary systems as he did when proposing schematic extensions
of HL as a systematical approach to MFL. This does not undermine the suitability
of our proposed basic logic SL� (or its first-order counterpart) because the infinitary
systems of fuzzy logic can still be retrieved as its extensions; we disregard them here
for simplicity of presentation only.

A propositional language L is a countable type, i.e. a function ar : CL → N,
where CL is a countable set of symbols called connectives, giving for each one
its arity. Nullary connectives are also called truth-constants. We write 〈c, n〉 ∈ L
whenever c ∈ CL and ar(c) = n. The basic language in this chapter is LSL with
binary connectives ∧,∨,&,→,� and truth-constants 0, 1,⊥ (we also make use
of the defined connectives � = ⊥ → ⊥ and ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ)).
Let Var be a fixed infinite countable set of symbols called variables. The set FmL
of formulae in a propositional languageL is the least set containingVar and closed
under connectives of L , i.e. for each 〈c, n〉 ∈ L and every ϕ1, . . . , ϕn ∈ FmL ,
c(ϕ1, . . . , ϕn) is a formula. FmL can be seen as the domain of the absolutely

14 The interested reader can complement the upcoming short presentation by consulting reference
works on (Abstract) Algebraic Logic such as Blok and Pigozzi (1989), Burris and Sankappanavar
(1981), Cintula et al. (2011). We deviate slightly from the standard treatment of some basic notions
because we are tailoring them to the particular purposes of the present chapter.
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free algebra FmL of type L and generators Var. An L -substitution is an endo-
morphism on the algebra FmL , i.e. a mapping σ : FmL → FmL , such that
σ(c(ϕ1, . . . , ϕn)) = c(σ (ϕ1), . . . , σ (ϕn)) holds for each 〈c, n〉 ∈ L and every
ϕ1, . . . , ϕn ∈ FmL . Since an L -substitution is a mapping whose domain is a
free L -algebra, it is fully determined by its values on the generators (propositional
variables).

An axiomatic system AS in a propositional language L is a pair 〈Ax, R〉 where
Ax is set of formulae (the axioms) and R is a set of pairs 〈Γ, ϕ〉 (the rules) where Γ

is a finite non-empty set of formulae and ϕ is a formula.15 Moreover, both Ax and
R are closed under arbitrary substitutions. Given Γ ∪ {ϕ} ⊆ FmL , we say that ϕ is
provable from Γ in AS , in symbols Γ �AS ϕ, if there exists a finite sequence of
formulae 〈ϕ0, . . . , ϕn〉 (a proof) such that:

• ϕn = ϕ, and
• for every i � n, either ϕi ∈ Γ ∪ Ax or there is some rule 〈	,ϕi〉 ∈ R such that

	 ⊆ {ϕ0, . . . , ϕi−1}.
Observe that the provability relation �AS is finitary, i.e., if Γ �AS ϕ, then there

is a finite Γ ′ ⊆ Γ such that Γ ′ �AS ϕ.
Let L1 ⊆ L2 be propositional languages and ASi an axiomatic system in Li.

We say that AS2 is an expansion of AS1 by axioms Ax and rules R if all its axioms
(rules) are L2-substitutional instances of axioms (rules) of AS1 or formulae from
Ax (rules from R).

Now we are ready to give our formal convention restricting logics to finitary
expansions of SL with well-behaved connectives.

Convention 12.2 A logic L in a language L ⊇ LSL is the provability relation
given by an axiomatic system AS in L which is an expansion of that of SL (see
Table 12.3) and for all L -formulae ϕ,ψ, χ the following holds:

ϕ ↔ ψ �AS χ ↔ χ ′, (Cong)

where χ ′ is a formula resulting from χ by replacing some occurrences of its subfor-
mula ϕ by a formula ψ . In this case we say that AS is a presentation of L (or that L
is axiomatized by AS ) and write Γ �L ϕ instead of Γ �AS ϕ.

Remark 12.1 One can equivalently replace the condition (Cong) by the following:

ϕ ↔ ψ �AS c(χ1, . . . , χi, ϕ, . . . , χn) ↔ c(χ1, . . . , χi, ψ, . . . , χn) (Congi
c)

for each 〈c, n〉 ∈ L and each 0 � i < n. Therefore, since this condition is already
satisfied in SL for all its connectives, in order to checkwhether a particular expansion

15 Sometimes, especially when listing rules, we use the denotation Γ � ϕ rather than 〈Γ, ϕ〉. Also
note that axioms could be seen as nullary rules; while this identification would simplify some of
the upcoming formulations we have opted for a more conceptually illuminating separation of these
two notions.
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Table 12.4 Axioms for
structural rules

a1 ϕ & (ψ & χ) → (ϕ & ψ) & χ Re-associate to the left
a2 (ϕ & ψ) & χ → ϕ & (ψ & χ) Re-associate to the right
e ϕ & ψ → ψ & ϕ Exchange
c ϕ → ϕ & ϕ Contraction
i ψ → (ϕ → ψ) Left weakening
o 0 → ϕ Right weakening

of SL is a logic in the sense just defined, it is enough to check (Congi
c) for all new

connectives (this statement remains true if we replace SL by any other logic).

The notion of expansion can naturally be formulated for logics. LetL1 ⊆ L2 be
propositional languages and Li a logic inLi. We say that

• L2 is the expansion of L1 by axioms Ax and rules R if it is axiomatized by expanding
some presentation of L1 with axioms Ax and rules R.

• L2 is an (axiomatic) expansion of L1 if it is the expansion of L1 by some axioms
and rules (or just axioms respectively).

If L1 = L2, we use the term ‘extension’ instead of ‘expansion’. Let S be a
collection of extensions of a given logic L. We define the following two axiomatic
systems and two logics:

⋂
S = {〈Γ, ϕ〉 | Γ �L ϕ for each L ∈ S } ∧

S = �⋂
S

⋃
S = {〈Γ, ϕ〉 | Γ �L ϕ for some L ∈ S } ∨

S = �⋃
S

It is clear that
∧
S and

∨
S are respectively the infimum and the supremum ofS in

the set of extensions of L ordered by inclusion. Therefore, the set of extensions of a
given logic L always forms a complete lattice. Note that

∨
S can be axiomatized by

taking theunionof arbitrary axiomatic systems for the logics inS . Thus, in particular,
if all logics inS are axiomatic extensions of L, then so is

∨
S . Therefore, the class

of axiomatic extensions of L is a sub-join-semilattice of the lattice of all extensions
of L. The axiomatization of meets is not so straightforward; at the end of Sect. 12.3.1
we will see how to deal with this problem in the restricted setting of core semilinear
logics.

Some important axiomatic extensions of SL are obtained by adding the axioms
a1, a2, e, c, i, o corresponding to structural rules (see Table 12.4).

Given any S ⊆ {a1, a2, e, c, i, o}, by SLS we denote the axiomatic extension of
SL by S. If {a1, a2} ⊆ S, then instead of them we write the symbol ‘a’. Analogously
if {i, o} ⊆ S, instead of them we write the symbol ‘w’. Equivalent ways to formulate
these axioms are known (Cintula and Noguera 2011, Theorem 2.5.7.). SLa is, in fact,
the bounded full Lambek logic. Next, we introduce the basic algebraic notions that
will allow to provide a semantics for our logics.

Definition 12.3 A bounded pointed lattice-ordered residuated unital groupoid, or
shortly just SL-algebra, is an algebra A = 〈A,∧,∨, ·, \, /, 0, 1,⊥,�〉 such that
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Table 12.5 Equations
defining important classes of
SL-algebras

a1 x · (y · z) � (x · y) · z Re-associate to the left
a2 (x · y) · z � x · (y · z) Re-associate to the right
e x · y = y · x Commutativity
c x � x · x Square-increasingness
i x � 1 Integrality
o 0 � x Boundedness

• 〈A,∧,∨,⊥,�〉 is a bounded lattice
• 1 is the unit of ·
• for each a, b, c ∈ A we have

a · b � c iff b � a\c iff a � c/b .

The class of all SL-algebras is a variety and it is denoted as SL. Observe that the
residuation condition together with the fact that 1 is a neutral element implies that
for every SL-algebra A and each a, b ∈ A we have

a � b iff 1 � a\b iff 1 � b/a .

Given an SL-algebra A = 〈A,∧,∨, ·, \, /, 0, 1,⊥,�〉, an A-evaluation is a
homomorphism from the algebra of formulae to A such that the connectives
∧,∨,&,→,�, 0, 1,⊥,� are respectively interpreted by the functions∧,∨, ·, \, /,
0, 1,⊥,�, i.e., a mapping from FmL to A such that e(∗) = ∗ for ∗ ∈ {0, 1,⊥,�}
and e(ϕ ◦ ψ) = e(ϕ) ◦′ e(ψ), where ◦ ∈ {∧,∨,&,→,�} and ◦′ is the correspond-
ing operation from {∧,∨, ·, \, /}.16 By means of this notion, we can give, more
generally, the following definition for the algebraic counterpart of any logic.

Definition 12.4 Let L be a logic in language L which is the expansion of SL by
axioms Ax and rules R. An L -algebra A is an L-algebra if

• its reduct ASL = 〈A,∧,∨, ·, \, /, 0, 1,⊥,�〉 is an SL-algebra,
• for every ϕ ∈ Ax and every A-evaluation e, e(ϕ) � 1,
• for each 〈Γ, ϕ〉 ∈ R and each A-evaluation e, if e(ψ) � 1 for all ψ ∈ Γ , then

e(ϕ) � 1.

A is a linearly ordered (or L-chain) if its lattice order is total. The class of all (linearly
ordered) L-algebras is denoted by L (or Llin respectively).

Table 12.5 shows what equations have to be added to SL-algebras, to obtain, for
arbitrary S ⊆ {a1, a2, e, c, i, o}, the class of SLS-algebras.

16 Here we opted for a rather nonstandard (in the context of algebraic logic) notational distinction
between logical connectives and algebraic operations. The reason is that, in this case, the notational
traditions on both sides, algebraic and logical, are so strong that any unification would not be
advisable.
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The following completeness theorem follows from more general results (see
Sect. 12.2.3 where we show more on the connection between logics and algebras)
but can also be directly proved by means of the usual Lindenbaum–Tarski process. It
shows how L-algebras really give an algebraic semantics for SL and its expansions.

Theorem 12.3 Let L be a logic. Then for every set of formulae Γ and every formula
ϕ the following are equivalent:

1. Γ �L ϕ,
2. for every A ∈ L and every A-evaluation e, if e(ψ) � 1 for every ψ ∈ Γ , then

e(ϕ) � 1.

12.2.2 Almost (MP)-Based Logics and Deduction Theorems

In the introduction we have formulated the usual deduction theorems for core and
�-core fuzzy logics (Theorem 12.1). In this section we show how this can be gen-
eralized to all logics in the present framework (expansions of SL) provided that the
additional rules they satisfy are of a suitable form. Technically, this corresponds to
the notion of almost (MP)-based logic that, as shown by Cintula et al. (2013), essen-
tially allows to repeat Hájek’s original proof of deduction theorem now in this wide
context. To this end, we introduce a few more syntactical notions. Let 
 be a new
propositional variable not occurring in Var, which acts as placeholder for a special
kind of substitutions. The notions of formula and substitution are augmented by the
prefix 
- whenever they are construed over the set of variablesVar∪{
} and are left
as they are if construed in the original set of variablesVar. If ϕ and δ are 
-formulae,
by δ(ϕ) we denote the formula obtained from δ when one replaces the occurrences
of 
 by ϕ; note that if ϕ is a formula, then so is δ(ϕ) (i.e., 
 does not occur in δ(ϕ)).

Definition 12.5 Given a set of 
-formulae Γ , we define the sets Γ ∗ and �(Γ )

of 
-formulae:

• Γ ∗ is the smallest set containing 
 and δ(γ ) ∈ Γ ∗ for each δ ∈ Γ and each
γ ∈ Γ ∗.

• �(Γ ) is the smallest set of 
-formulae containing Γ ∪ {1} and closed under &.

We are now ready to give the formal definition of almost (MP)-based logic.

Definition 12.6 Let bDT be a set of 
-formulae closed under all 
-substitutions σ

such that σ(
) = 
. A logic L is almost (MP)-based w.r.t. the set of basic deduction
terms bDT if:

• L has a presentation where the only deduction rules are modus ponens and those
of the form 〈ϕ, γ (ϕ)〉 for γ ∈ bDT, and
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Table 12.6 New axiomatic system for SL

(Adj&) ϕ → (ψ → ψ & ϕ) (Bot) ⊥ → ϕ

(Adj&� ) ϕ → (ψ � ϕ & ψ) (Push) ϕ → (1 → ϕ)

(Res′) ψ & (ϕ & (ϕ → (ψ → χ))) → χ (Pop) (1 → ϕ) → ϕ

(Res′� ) (ϕ & (ϕ → (ψ � χ))) & ψ → χ (&∧) (ϕ∧1)&(ψ∧1) → ϕ∧ψ

(T′) (ϕ → (ϕ & (ϕ → ψ)) & (ψ → χ)) → (ϕ → χ)

(T′
� ) (ϕ � ((ϕ � ψ) & ϕ) & (ψ → χ)) → (ϕ � χ)

(∧1) ϕ ∧ ψ → ϕ (∨1) ϕ → ϕ ∨ ψ

(∧2) ϕ ∧ ψ → ψ (∨2) ψ → ϕ ∨ ψ

(∧3) (χ → ϕ) ∧ (χ → ψ) → (χ → ϕ ∧ ψ) (∨3) (ϕ →χ) ∧ (ψ → χ)

→ (ϕ ∨ ψ → χ)

(MP) ϕ, ϕ → ψ � ψ (Adju) ϕ � ϕ ∧ 1
(α) ϕ � δ & ε → δ & (ε & ϕ) (β) ϕ � δ → (ε →

(ε & δ) & ϕ)

(α′) ϕ � δ & ε → (δ & ϕ) & ε (β ′) ϕ � δ → (ε �
(δ & ε) & ϕ)

• for each β ∈ bDT and each formulae ϕ,ψ , there exist β1, β2 ∈ bDT∗ such that:17

�L β1(ϕ → ψ) → (β2(ϕ) → β(ψ)).

L is called (MP)-based if it admits the empty set as a set of basic deduction terms.

SL can be shown to be indeed an almost (MP)-based logic. For this, of course, one
needs to endow it with a convenient alternative presentation. Consider the axiomatic
system from Table 12.6 and let us introduce a convenient notation for the terms
appearing on the right-hand side of the rules (α), (α′), (β), and (β ′). Given arbitrary
formulae δ, ε, we define the following 
-formulae:

αδ,ε = δ & ε → δ & (ε & 
) βδ,ε = δ → (ε → (ε & δ) & 
)

α′
δ,ε = δ & ε → (δ & 
) & ε β ′

δ,ε = δ → (ε � (δ & ε) & 
)

Note that the terms in the second line generalize the well-known notions of left
and right conjugates used in associative logics:18

λε = ε → 
 & ε ρε = ε � ε & 


17 We deviate slightly from the original definition from Cintula and Noguera (2011), where β1, β2
were required to be in bDT, and follow that from Cintula et al. (2013) which has some technical
advantages.
18 It is usual in the literature on algebraic study of substructural logics to find these terms defined in
a slightly more complicated way: λε = (ε → 
& ε)∧ 1 and ρε = (ε � ε& 
)∧ 1, although in the
usual Hilbert-style axiomatizations of Full Lambek logic the simplified terms without ∧1 are used
for the product normality rules. The reason for this more complicated form is to give algebraic terms
which simultaneously cope with product normality rules and adjunction, whereas our formalism
allows for a clearer distinction of their respective rôles.
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Table 12.7 bDTs of
prominent substructural
logics

Logic L bDTL

SL {αδ,ε, α
′
δ,ε, βδ,ε, β

′
δ,ε, 
 ∧ 1 | δ, ε formulae}

SLw {αδ,ε, α
′
δ,ε, βδ,ε, β

′
δ,ε | δ, ε formulae}

SLe {αδ,ε, βδ,ε, 
 ∧ 1 | δ, ε formulae}
SLew {αδ,ε, βδ,ε | δ, ε formulae}
SLa {λε, ρε, 
 ∧ 1 | ε a formula}
SLaw {λε, ρε | ε a formula}
SLae {
 ∧ 1}
SLaew {
}

Cintula et al. (2013) proved that the axiomatic system from Table 12.6 is indeed a
presentation of SL, therefore we can obtain the following result for SL and some of
its notable axiomatic extension (it also shows how the sets of basic deduction terms,
and so posteriorly the axioms systems, of these extensions can be simplified).

Theorem 12.4 (Cintula et al. 2013, Sect. 3.1) Let S ⊆ {a, e,w}. Then any axiomatic
extension of the logic SLS is almost (MP)-based with respect to the corresponding
set of basic deduction terms listed in Table 12.7.

Theorem 12.5 (Local deduction theorem (Cintula et al. 2013,Corollary 3.12))Let L
be an almost (MP)-based logic with a set of basic deduction terms bDT. Then for
each set Γ of formulae and each formulae ϕ and ψ the following holds:

Γ, ϕ �L ψ iff Γ �L γ (ϕ) → ψ for some γ ∈ �(bDT∗).

Therefore, we obtain a (parameterized or non-parameterized, depending on the pres-
ence of variables other than 
 in the set bDT) local deduction theorem for SL and its
axiomatic extensions (sometimes with a simplified set bDT; see Table 12.7).

12.2.3 Consequences of Algebraization

Given a logic L in a language L and an L -algebra A, a set F ⊆ A is an L-filter
if for every set of formulae Γ ∪ {ϕ} such that Γ �L ϕ and every A-evaluation e it
holds: if e[Γ ] ⊆ F, then e(ϕ) ∈ F. By F iL(A) we denote the set of all L-filters
over A. Since F iL(A) is a closure system (it clearly contains A and is closed under
arbitrary intersections), one can define a notion of generated filter. Given X ⊆ A, the
L-filter generated by X, denoted as FiAL(X) is the least L-filter containing X (we omit
the indexes when clear from the context). With this terminology one can also prove
a semantical (or transferred) version of (parameterized) local deduction theorem;
Theorem 12.5 is the particular case in which A is the algebra of formulae (observe
that in this case ϕ ∈ Fi(Γ ) iff Γ �L ϕ). First we introduce two technical notions:
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Definition 12.7 Given a set of 
-formulae Γ , an SL-algebra A, and a set X ⊆ A, we
define

• Γ A as thesetofunarypolynomialsbuilt using terms fromΓ withcoefficients fromA
and variable 
, i.e., {δ(
, a1, . . . , an) | δ(
, p1, . . . , pn) ∈ Γ and a1, . . . , an ∈ A}.

• Γ A(X) as the set {δA(x) | δ(
) ∈ Γ A and x ∈ X}.
Theorem 12.6 (Cintula et al. 2013, Theorem 3.11) Let L be an almost (MP)-based
logic in a language L with a set of basic deduction terms bDT. Let A be an L -
algebra and X ∪ {x} ⊆ A. Then

y ∈ FiAL(X, x) iff γ A(x)\y ∈ FiAL(X) for some γ ∈ (�(bDT∗))A.

On the other hand, Theorem 12.6 can be used to obtain a general form of the usual
algebraic description of the filter generated by a set.

Corollary 12.1 (Cintula et al. 2013, Corollary 3.13) Let L be an almost (MP)-based
logic with a set of basic deduction terms bDT. Let A be an L-algebra and X ⊆ A.
Then

FiAL(X) = {a ∈ A | a � x for some x ∈ (�(bDT∗))A(X)} .

The algebraic completeness result we have seen above (Theorem 12.3) can be
strengthened obtaining that SL is actually an algebraizable logic in the sense of Blok
and Pigozzi (1989) and SL is its equivalent algebraic semantics with translations
ρ(p ≈ q) = p ↔ q and τ(p) = p ∧ 1 ≈ 1. Indeed, if we consider formal equations
in the language LSL as expressions of the form ϕ ≈ ψ where ϕ,ψ ∈ FmLSL and
if �SL denotes the equational consequence with respect to the class SL, it is easy to
prove that:

1. � �SL ϕ ≈ ψ iff ρ[�] �SL ρ(ϕ ≈ ψ)

2. p �SL ρ[τ(p)] and ρ[τ(p)] �SL p

Actually, this result can be extended to every logic L and its corresponding class
of algebras L. If L is a logic in a language L which is the expansion of SL by
axioms Ax and rules R, then L-algebras can also be described as the expansions of
SL-algebras satisfying:

• the equation τ(ϕ) for each ϕ ∈ Ax
• the quasiequation τ(ϕ1) and . . . and τ(ϕn) ⇒ τ(ϕ) for each 〈{ϕ1, . . . , ϕn}, ϕ〉
from R.

Therefore, the class L is always a quasivariety and it is a variety if R = ∅, i.e.
if L is an axiomatic expansion of SL (note that this condition is not necessary as
demonstrated e.g. by the logic MTL�). Conversely, given a quasivariety L of L -
algebras, one can always find a quasiequational base obtained by adding a set of
equations E and a set of quasiequations Q to an equational base of SL. Then L is the
equivalent algebraic semantics of the logic obtained as the expansion of SL by

• the axiom ρ(ϕ,ψ) for each equation ϕ ≈ ψ ∈ E
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• the rule 〈{ρ(ϕ1, ψ1), . . . , ρ(ϕn, ψn)}, ρ(ϕ,ψ)〉 for each quasiequation
(ϕ1 ≈ ψ1) and . . . and (ϕn ≈ ψn) ⇒ ϕ ≈ ψ ∈ Q.

Moreover, if we fix a language L ⊇ LSL and a logic L in L , the translations
τ and ρ between formulae and equations give a bijective correspondence between
extensions of L and quasivarieties of L-algebras, and a bijective correspondence (its
restriction) between axiomatic extensions of L and varieties of L-algebras. These
bijections are, actually, dual lattice isomorphisms.

A logic is called strongly algebraizable if its corresponding quasivariety is actually
a variety. Obviously, strongly algebraizable logics in LSL coincide with axiomatic
extensions of SL.

Algebraizability also gives a strong correspondence between filters and (relative)
congruences in L-algebras, which can be made explicit using the particular forms of
the translations. Let ConL(A) denote the lattice of congruences of A relative toL, i.e.
those giving a quotient in L. If L is a variety, then ConL(A) is precisely the lattice of
all congruences of A. The Leibniz operator ΩA is defined, for any F ∈ F iL(A), as
ΩA(F) = {〈a, b〉 ∈ A2 | a\b ∈ F and b\a ∈ F}. Now we can state a specific variant
of a well-known theorem of abstract algebraic logic (Czelakowski 2001), narrowed
down to our setting.

Proposition 12.1 Let L be a logic and A an L-algebra. The Leibniz operator ΩA
is a lattice isomorphism from F iL(A) to ConL(A). Its inverse is the function that
maps any θ ∈ ConL(A) to the filter {a ∈ A | 〈a ∧ 1, 1〉 ∈ θ}.

Observe that the minimum filter is the one generated by the emptyset, Fi(∅), and
it must correspond to the identity congruence IdA. Therefore, using the previous
proposition, we obtain that, on any L-algebra A, Fi(∅) = {a ∈ A | a � 1}. This set
is, of course, contained in any other filter. It is also worth noting that Proposition 12.1
and Corollary 12.1 give a description of the relative principal congruence generated
by a pair of elements of a given algebra of an almost (MP)-based logic.

Finally, we focus on a restriction of the completeness theorem (Theorem 12.3)
to a couple of subclasses of algebraic models that will play an important rôle when
characterizing semilinearity in the next section: relatively (finitely) subdirectly irre-
ducible algebras. Given a class of algebras K an algebra A is (finitely) subdirectly
irreducible relative to K if for every (finite non-empty) subdirect representation α

of A with a family {Ai | i ∈ I} ⊆ K there is i ∈ I such that πi ◦ α is an isomorphism.
The class of all (finitely) subdirectly irreducible algebras relative to K is denoted as
KR(F)SI. Of courseKRSI ⊆ KRFSI. Observe that the trivial algebra is by definition in
KRFSI but not inKRSI. Again, the next theorem is a specific variant of a well-known
fact of abstract algebraic logic.

Theorem 12.7 Let L be a logic. Then for every set of formulae Γ and every formula
ϕ the following are equivalent:

1. Γ �L ϕ,
2. for every countable A ∈ LRSI and every A-evaluation e, if e(ψ) � 1 for every

ψ ∈ Γ , then e(ϕ) � 1.
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12.3 Core Semilinear Logics

Let us start by recalling two notions mentioned in the introduction: first we give a
formal semantical definition of the logic SL� (later in Theorem 12.12 we present
some of its natural axiomatizations).

Definition 12.8 The logic SL� is defined as follows for every set Γ of formulae and
every formula ϕ:

1. Γ �SL� ϕ if and only if
2. e(ϕ) � 1 for each SL-chain A and each A-evaluation e such that e(ψ) � 1 for

all ψ ∈ Γ .

Remark 12.2 Clearly SL� extends SL and so (Cintula and Noguera 2011, Proposi-
tions 3.1.15 and 3.1.16) it follows that SL� is a logic in the sense of Convention 12.2
and that the classes of SL�-chains and SL-chains coincide.

The second notion is that of core fuzzy logics formally defined in Definition 12.1.
Let us reformulate this definition using the terminology introduced in the previous
section (especially Convention 12.2 which stipulates that all the logics considered in
this chapter satisfy the condition (Cong)):

Definition 12.9 A logic L is a core fuzzy logic if it expands MTL by some set of
axioms Ax.

Let us now generalize this class in two aspects: first, we replace MTL by the
(much) weaker logic SL� and, second, we include logics axiomatized by using extra
rules provided that they satisfy a certain stability condition involving disjunction. As
we shall soon see (in Theorem 12.8), these conditions are sufficient and necessary
for an expansion of SL� to remain complete w.r.t. chains.

Definition 12.10 A logic L is a core semilinear logic if it expands SL� by some sets
of axioms Ax and rules R such that for each 〈Γ, ϕ〉 ∈ R and every formula ψ we
have:

Γ ∨ ψ �L ϕ ∨ ψ,

where by Γ ∨ ψ we denote the set {χ ∨ ψ | χ ∈ Γ }.
Observe that if L is an expansion of a core semilinear logic by axioms Ax and

rules R, then L is itself a core semilinear logic iff for each 〈Γ, ϕ〉 ∈ R we have
Γ ∨ ψ �L ϕ ∨ ψ. Thus in particular:

• Any axiomatic expansion of a core semilinear logic is a core semilinear logic.
• Any axiomatic expansion of SL is a core semilinear logic iff it expands SL�.

The first item justifies why Hájek considered all axiomatic extensions (schematic
extensions) of HL in his framework for fuzzy logics, since they were all complete
with respect to chains. Moreover, one can check that MTL is an extension of SL�;
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therefore MTL and all core fuzzy logics are core semilinear logics. Similarly, it is
easy to show that �-core fuzzy logics are core semilinear (note that we are adding
only one rule 〈ϕ,�ϕ〉 and we can easily prove that ϕ ∨ ψ �L �ϕ ∨ ψ using axioms
of MTL�).

By restricting and re-elaborating results from the general theory presented by
Cintula and Noguera (2011) (and by using some new results by Cintula et al. (2013)
and by Cintula and Noguera (2013)), in this section we present several characteri-
zations of core semilinear logics, some general methods to obtain their Hilbert-style
axiomatizations, and a survey of their completeness results.

12.3.1 Characterizations and Properties
of Core Semilinear Logics

The first characterization justifies the usage of the adjective ‘semilinear’. This termi-
nology comes from the theory of residuated lattices (Olson and Raftery 2007) where
it denotes classes of algebras such that in all (relatively) subdirectly irreducible mem-
bers the lattice order is linear.19 Such property characterizes core semilinear logics
as shown by conditions 3 and 4 of the following theorem. Moreover, as stated in
condition 2, this is also equivalent with what we consider the main property of our
logics: completeness with respect to the semantics given by chains.

Theorem 12.8 (Semilinearity) Let L be a logic. Then the following are equivalent:

1. L is a core semilinear logic.
2. L is complete w.r.t. L-chains, i.e. the following are equivalent for any set of

formulae Γ ∪ {ϕ}:
a. Γ �L ϕ

b. e(ϕ) � 1 for each L-chain A and each A-evaluation e such that e(ψ) � 1
for all ψ ∈ Γ .

3. LRFSI = Llin.
4. LRSI ⊆ Llin.

Proof Logics satisfying condition 2 are, in particular, weakly implicative semilinear
logics in the sense of Cintula and Noguera (2011); thus we can use a result by
Cintula and Noguera (2011, Corollary 3.2.14.) to prove the equivalence of the first
two properties (for L1 being SL� and L2 being L; we need to check the validity of
three premises of that corollary: (a) SL� is a weakly implicative semilinear logic:
directly from Definition 12.8 and its following remark, (b) ∨ is a protodisjunction:
trivially satisfied, and (c) L proves (MP∨): established by Cintula and Noguera
(2011), Proposition 3.2.2.

19 This follows the tradition of Universal Algebra of calling a class of algebras ‘semiX’ whenever
its subdirectly irreducible members have the property X; e.g. as in ‘semisimple’.
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The equivalence of the latter three claims was established by Cintula and Noguera
(2011, Theorem 3.1.8). ��

Thus, as established in the proof of the theorem above, core semilinear logic are
weakly implicative semilinear logics in the sense of Cintula and Noguera (2010,
2011). In fact, in the terminology of those papers, they are exactly algebraically
implicative semilinear finitary expansions of SL�.

In order to formulate the syntactic characterization theorem for core semilinear
logics (in terms of syntactic properties) we need to make use of special kinds of
theories. Recall that a theory is a deductively closed set of formulae, i.e., T � ϕ

implies that ϕ ∈ T ). We say that a theory T is

• maximally consistent w.r.t. a formula ϕ if ϕ /∈ T and for every ψ /∈ T we have
T , ψ � ϕ

• saturated if it is maximally consistent w.r.t. some formula ϕ

• linear20 if for each formulae ϕ and ψ we have ϕ → ψ ∈ T or ψ → ϕ ∈ T
• prime if for each formulae ϕ andψ we have ϕ ∈ T orψ ∈ T whenever ϕ∨ψ ∈ T .

We also need a special formula (ϕ → ψ) ∨ (ψ → ϕ), called prelinearity and
usually denoted by (P∨), which could be equivalently replaced in the formulation of
the syntactic characterization theorem by any of the following two theorems of SL�

(as shown by Cintula and Noguera (2011, Lemma 3.2.8)):

(lin∧) (ϕ ∧ ψ → χ) → (ϕ → χ) ∨ (ψ → χ)

(lin∨) (χ → ϕ ∨ ψ) → (χ → ϕ) ∨ (χ → ψ).

Theorem 12.9 (Syntactic characterization theorem) Let L be a logic. Then the fol-
lowing are equivalent:

1. L is a core semilinear logic.
2. L has theSemilinearity Property,SLP, i.e. for every set of formulae Γ ∪{ϕ,ψ, χ}

the following rule holds

Γ, ϕ → ψ �L χ Γ,ψ → ϕ �L χ

Γ �L χ
.

3. L has the Linear Extension Property, LEP, i.e. for every theory T and a formula
ϕ such that ϕ /∈ T, there is a linear theory T ′ ⊇ T such that ϕ /∈ T ′.

4. Saturated theories are linear.
5. L proves (P∨) and has the Proof by Cases Property, PCP, i.e. for every set of

formulae Γ ∪ {ϕ,ψ, χ} holds

Γ, ϕ �L χ Γ,ψ �L χ

Γ, ϕ ∨ ψ �L χ
.

20 Petr Hájek (1998b) called this kind of theories ‘complete’. However, after recent developments
(Cintula and Noguera 2011) we prefer the more descriptive terminology used here.
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6. L proves (P∨) and has an axiomatic system 〈Ax, R〉 such that for each 〈Γ, ϕ〉 ∈ R
we have:

Γ ∨ ψ �L ϕ ∨ ψ.

7. L proves (P∨) and has the Prime Extension Property, PEP, i.e. for every theory
T and a formula ϕ such that ϕ /∈ T, there is a prime theory T ′ ⊇ T such
that ϕ /∈ T ′.

8. L proves (P∨) and its saturated theories are prime.

Proof The equivalence of the first three claims was proved by Cintula and Noguera
(2011, Theorem 3.1.8). To prove 1 implies 4 observe that saturated theories are
finitely ∩-irreducible (ibid., Proposition 2.3.7) and so they are linear (ibid., Theorem
3.1.8). Conversely, if saturated theories are linear, then the Abstract Lindenbaum
Lemma (ibid., Lemma 2.3.8) clearly implies LEP (i.e. claim 3).

The equivalence of 1 and 5 is also established using results byCintula andNoguera
(2011) (use Theorem 3.2.4 after observing that any L proves (MP∨) as established in
Proposition 3.2.2); the equivalence of 5 and 6 follows from Theorem 2.7.15. We use
Theorem 2.7.23 to directly prove that 5 is equivalent with 7 and 7 implies 8. Finally,
by using a similar reasoning as in the proof of 4 implies 3, we complete the whole
proof by showing that 8 implies 7. ��
Remark 12.3 Most of these characterizations are inspired by the original ideas
behind the proof of completeness of HL and its schematic extensions by Hájek
(1998b): actually in Lemma 2.3.15. he gives a direct proof of transferred PEP (the
third line of the following theorem) and in Lemma 2.4.2 he proves LEP by proving
SLP first (without giving names to any of these properties).

Observe that while claim 6 is a just minor reformulation of Definition 12.10 of
core semilinear logics, it provides an easy way to check whether a logic is core
semilinear without having to prove that it extends SL�.

Note that theories are exactly the filters on the term algebra FmL . Thus it makes
sense to generalize the classes of theories we introduced above to filters with ‘Γ � ϕ’
replaced by ‘x ∈ Fi(X)’, e.g. a filter F in an L-algebra A is maximally consistent
(algebraist would say ‘maximal non-trivial’) w.r.t. an element a ∈ A if a /∈ F and for
every b /∈ F we have a ∈ Fi(F ∪ {b}). This allows us not only to see the conditions
appearing in the syntactic characterization theorem as claims about filters on the term
algebra FmL , but mainly to formulate their transferred variants which speak about
all L-algebras. We collect these results in the next theorem together with some other
useful algebraic properties L-algebras.

Theorem 12.10 Let L be a core semilinear logic and A an L-algebra. Then:

1. For each set X ∪ {a, b} ⊆ A the following holds:

Fi(X, a) ∩ Fi(X, b) = Fi(X, a ∨ b) Fi(X, a → b) ∩ Fi(X, b → a) = Fi(X).

2. Linear and prime filters coincide and contain the set of saturated filters.



12 The Quest for the Basic Fuzzy Logic 269

3. For each filter F ∈ F iL(A) and each a ∈ A such that a �∈ F, there is a
linear/prime filter F ′ ⊇ F such that a /∈ F ′.

4. The lattice of L-filters is distributive.
5. The lattice of relative L-congruences is distributive.
6. The {∨,∧}-reduct of A is a distributive lattice.

Proof We will freely use all equivalent characterizations of core semilinear logics
established before.

1. (Cintula and Noguera 2011, Theorems 2.7.18 and 3.1.8).
2. (ibid., Theorems 2.7.23, Theorem 3.1.8, and Proposition 2.3.7).
3. (ibid., Theorem 2.7.23) and claim 2.
4. (ibid., Theorem 2.7.20).
5. Claim 4 and Proposition 12.1.
6. (ibid., Theorem 3.2.12).

The following proposition is, among others, important to establish the soundness
of the upcoming crucial definition of L�.

Proposition 12.2 The intersection of a family of core semilinear logics in the same
language is a core semilinear logic.

Proof First we need to observe that the intersection is a logic in the sense of Con-
vention 12.2. This is established by Cintula and Noguera (2011, Proposition 3.1.16).
Then, the fact that it is core semilinear is a simple corollary of the syntactic charac-
terization theorem (e.g. of the Semilinearity Property). ��
Definition 12.11 For a logic L we define the logic L� as the least core semilinear
logic extending L.

The following two theorems give useful, semantical and syntactical, descriptions
of L�. The first one is very general and, besides providing a semantical characteriza-
tion of L� as the logic of L-chains, it shows how to extend any axiomatization of L
into an axiomatization of L�. Roughly speaking, it adds prelinearity and the ∨-form
of all rules (cf. the syntactic characterization theorem 12.9). Note that Petr Hájek
also obtained some logics in these ways: e.g. he showed that G was in fact the logic
of linearly ordered Heyting algebras or defined psMTLr as the logic psMTL-chains.

Theorem 12.11 Let L be a logic. Then:

• L�-chains coincide with L-chains and the class L� of L�-algebras is exactly the
quasivariety generated by Llin.

• If L is axiomatized by axioms Ax and rules R, then L� is the extension of L by the
axiom (P∨) and the set of rules {〈Γ ∨ ψ, ϕ ∨ ψ〉 | 〈Γ, ϕ〉 ∈ R}.

• If L is obtained as the expansion of some core semilinear logic by axioms Ax and
rules R, then L� is the extension of L by the rules {〈Γ ∨ ψ, ϕ ∨ ψ〉 | 〈Γ, ϕ〉 ∈ R}.
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Table 12.8 Axiomatization of L� for prominent substructural logics

Logic L Additional axioms needed to axiomatize L�

SL ((ϕ → ψ) ∧ 1) ∨ γ ((ψ → ϕ) ∧ 1), for every γ ∈ {αδ,ε, α
′
δ,ε, βδ,ε, β

′
δ,ε}

SLw (ϕ → ψ) ∨ γ (ψ → ϕ), for every γ ∈ {αδ,ε, α
′
δ,ε, βδ,ε, β

′
δ,ε}

SLe αδ,ε((ϕ → ψ) ∧ 1) ∨ βδ′,ε′ ((ψ → ϕ) ∧ 1)
SLew αδ,ε(ϕ → ψ) ∨ βδ′,ε′ (ψ → ϕ)

SLa (λε(ϕ → ψ) ∧ 1) ∨ (ρε′ (ψ → ϕ) ∧ 1)
SLae ((ϕ → ψ) ∧ 1) ∨ ((ψ → ϕ) ∧ 1)
SLaew (ϕ → ψ) ∨ (ψ → ϕ)

Proof Again we use results by Cintula and Noguera (2011). The first claim follows
from Proposition 3.1.15; the second follows from Proposition 3.2.9 and Theorem
2.7.27. The third one is an obvious corollary of already established facts. ��

The problem of the axiomatizations provided by this theorem is that they require
additional new rules. We show that if L is almost (MP)-based we can do better: L�

is then actually an axiomatic extension of L by variations of the prelinearity axiom.
We present two variants, B and C, of this axiomatization because they generalize
two different usual formulations appearing in the literature; for comparison we also
add a presentation A resulting from the direct application of the previous theorem.
Note that this theorem can be used to axiomatize the two logics mentioned above
and studied by Petr Hájek: G and psMTLr .

Theorem 12.12 Let L be an almost (MP)-based logic with a set bDT of basic
deductive terms. Then L� is axiomatized by adding to L any of the following:

A (ϕ → ψ) ∨ (ψ → ϕ)

(ϕ → ψ) ∨ χ, ϕ ∨ χ � ψ ∨ χ

ϕ ∨ ψ � γ (ϕ) ∨ ψ , for every γ ∈ bDT
B ((ϕ → ψ) ∧ 1) ∨ γ ((ψ → ϕ) ∧ 1), for every γ ∈ bDT ∪ {
}
C (ϕ ∨ ψ → ψ) ∨ γ (ϕ ∨ ψ → ϕ), for every γ ∈ bDT ∪ {
 ∧ 1}.

Proof A weaker claim, for extensions of SL�, is proved by Cintula et al. (2013,
Theorem 4.29). One can easily see, by inspecting the proof, that the theorem remains
valid in our framework of expansions of SL�. ��

Table 12.8 collects axiomatizations of important semilinear substructural logics
obtained as axiomatization B from Theorem 12.2. We present them in the form of
axiom schemata, sometimes altered a little (in an equivalent way) for simplicity or
to obtain some form known from the literature (Cintula et al. 2013).

As mentioned in Sect. 12.2.2, finding nice Hilbert-style presentations for meets
in the lattice of extensions of a given logic (in particular, showing that the meet
of axiomatic extensions is itself an axiomatic extension of the base logic) is not
straightforward. The following theorem gives a presentation for meets of extensions
of a given core semilinear logic by capitalizing on the fact that ∨ enjoys PCP in all
core semilinear logics.



12 The Quest for the Basic Fuzzy Logic 271

Theorem 12.13 Let L1 and L2 be semilinear extensions of a core semilinear logic
L defined by the sets of axioms Axi and rules Ri. Then L1 ∩ L2 is the extension of L
obtained by adding

• the set of axioms {ϕ ∨ ψ | ϕ ∈ Ax1 and ψ ∈ Ax2} and
• the union of the following three sets of rules:

– 〈Γ ∨ χ, ϕ ∨ ψ ∨ χ〉 | 〈Γ, ϕ〉 ∈ R1, ψ ∈ Ax2, and χ a formula}
– 〈Γ ∨ χ, ϕ ∨ ψ ∨ χ〉 | 〈Γ, ϕ〉 ∈ R2, ψ ∈ Ax1, and χ a formula}
– 〈(Γ1 ∪ Γ2) ∨ χ, ϕ1 ∨ ϕ2 ∨ χ〉 | 〈Γ1, ϕ1〉 ∈ R1, 〈Γ2, ϕ2〉 ∈ R2,

and χ a formula}
Proof Established by Cintula and Noguera (2013, Theorem 5.10). ��

To close the subsection we clarify the position of core semilinear (axiomatic)
extensions of given logic in the lattice of all its (axiomatic) extensions.

Corollary 12.2 Let L be a logic. Then the class of core semilinear extensions of L
is a sublattice of the lattice of extensions of L�. Furthermore, the class of core
semilinear axiomatic extensions of L is a principal filter in the lattice of axiomatic
extensions of L�.

12.3.2 Completeness Results

We devote this subsection to completeness theorems for core semilinear logics. As
discussed in the introduction, a crucial guideline for Petr Hájek and others when
studying new fuzzy logics was to find logical systems complete with respect to a
semantics of algebras defined on the real unit interval [0, 1]. This kind of com-
pleteness results have been known as standard completeness theorems, although this
terminology is not univocally defined. Indeed, by standard semantics one means the
semantics that, due to some design choices, is considered to be the intended one for
the logic. In some cases it consists of all algebras defined over [0, 1] (e.g. for HL,
SHL,MTL, SMTL, or IMTL); in other cases it consists of algebras with a fixed inter-
pretation using particular operations (e.g. for Ł, G or � where one interprets & as
the corresponding t-norm (Hájek 1998b), or for logics with an additional involutive
negation ∼ where one interprets it as 1 − x (Esteva et al. 2000). In all the examples
taken from (�-)core fuzzy logics, the standard semantics is based on left-continuous
t-norms and their residua. Later on, the introduction of weaker systems brought forth
an analogous relaxation for the corresponding algebraic structures on [0, 1], such as
residuated uninorms (for UL) or residuated non-commutative t-norms (for psMTLr).
Recently, when considering a standard semantics for SL� (Cintula et al. 2013), even
associativity has been dropped giving rise to residuated unital groupoids on [0, 1].

Someotherworks have however focused on other kinds of semantics for fuzzy log-
ics, besides the real-valued one. It is the case of rational-chain semantics, hyperreal-
chain semantics or finite-chain semantics (e.g. Cintula et al. 2009; Esteva et al. 2010;
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Flaminio 2008;Montagna andNoguera 2010)where insteadof [0, 1] one respectively
takes the rational unit interval, any hyperreal interval or any finite linearly ordered
set as the domain for the intended models. A systematical study of the corresponding
completeness properties is better presented in the following general formulation.

Definition 12.12 Let L be a core semilinear logic and K ⊆ Llin. We say that L has
the Strong K-Completeness, SKC for short, when the following are equivalent for
every set of formulae Γ ∪ {ϕ}:
1. Γ �L ϕ,
2. for every A ∈ K and every A-evaluation e, if e(ψ) � 1 for every ψ ∈ Γ , then

e(ϕ) � 1.

If the equivalence above holds for finite Γ (or only for Γ = ∅) we speak about
Finite Strong K-Completeness (or just K-Completeness, respectively). The Finite
StrongK-Completeness is denoted byFSKCwhereas theK-Completeness is denoted
by KC.

It is easy to show that the failure of completeness properties is inherited by conser-
vative expansions (recall that a logic L2 in a languageL2 is a conservative expansion
of a logic L1 in a languageL1 ifL1 ⊆ L2 and for each set ofL1-formulae Γ ∪ {ϕ}
we have that Γ �L2 ϕ iff Γ �L1 ϕ).

Proposition 12.3 (Cintula and Noguera 2011, Proposition 3.4.14) Let L′ be a con-
servative expansion of L, K′ a class of L′-chains and K the class of their L-reducts.
If L′ enjoys the K

′C, then L enjoys the KC. The analogous claim holds for FSK′C
and SK′C.

We recall now several algebraic characterizations of completeness properties
by Cintula et al. (2009) and Cintula and Noguera (2011). In what follows we will
use the following operators on classes of algebras of the same type:

• S(K) is the class of subalgebras of members in K,
• I(K) is the class of algebras isomorphic to a member in K,
• H(K) is the class of homomorphic images of members in K,
• P(K) is the class of direct products of members in K,
• Pfin(K) is the class of finite direct products of members in K,
• PU(K) is the class of ultraproducts of members in K,
• Pσ -f (K) is the class of reduced products of members inK over countably complete
filters (i.e. filters closed under countable intersections),

• V(K) is the variety generated by K, i.e., V(K) = HSP(K),
• Q(K) is the quasivariety generated by K, i.e., Q(K) = ISPPU(K).

Let us fix a core semilinear logic L and a class of L-chainsK. We present several
characterizations of the general completeness properties. The first one relates them
respectively with generation of the class of algebras as a variety, a quasivariety and
a generalized quasivariety, respectively.
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Theorem 12.14 (Cintula and Noguera 2011, Theorem 3.4.3)

1. L has the KC if, and only if, H(L) = V(K).
2. L has the FSKC if, and only if, L = Q(K).
3. L has the SKC if, and only if, L = ISPσ -f (K).

The completeness properties of L can be also characterized in terms of (finitely)
subdirectly irreducible algebras relative to L. Recall that, by Theorem 12.8, finitely
subdirectly irreducible L-algebras relative to L coincide with the class of L-chains,
i.e., we have LRSI ⊆ LRFSI = Llin. Given a class of algebras M, the class of its
nontrivial members is denoted M

+. Similarly, Mσ stands for the class of countable
members ofM.

Theorem 12.15 We have the following chains of equivalences:

1. L has the KC iff Llin ⊆ HSPU(K) iff L
σ
RSI ⊆ HSPU(K).

2. L has the FSKC iff L
+
lin ⊆ ISPU(K) iff L

σ
RSI ⊆ ISPU(K).

3. L has the SKC iff L
σ+
lin ⊆ IS(K) iff L

σ
RSI ⊆ IS(K).

Proof To prove the first claim we use a result by Dziobiak (1989) showing that for
any congruence distributive quasivarietyQ and any subclass of algebrasM ⊆ Q we
have V(M) ∩ QRFSI ⊆ HSPU(M). Indeed from Theorem 12.10 we know that the
quasivariety L is congruence distributive and thus by settingQ = L andM = K we
obtain

V(K) ∩ Llin = V(K) ∩ LRFSI ⊆ HSPU(K).

Now assume that L has the KC. Then by Theorem 12.14 we have H(L) = V(K).
Consequently, Llin ⊆ HSPU(K) because Llin ⊆ H(L). Further, it is obvious that
Llin ⊆ HSPU(K) impliesLσ

RSI ⊆ HSPU(K) sinceLσ
RSI ⊆ Llin. Finally, suppose that

L
σ
RSI ⊆ HSPU(K). By Theorem 12.14 it is sufficient to show that H(L) = V(K).

Since V(L) = H(L) and K ⊆ L, we always have V(K) ⊆ H(L). Conversely, L
is strongly complete w.r.t. Lσ

RSI by Theorem 12.7. Thus by Theorem 12.14 we have
H(L) = V(Lσ

RSI). Consequently, by our assumption we obtain H(L) ⊆ V(K).
The first equivalence of the second claim is proved by Cintula and Noguera (2011,

Theorem 3.4.11). In order to prove the remaining one, one can argue similarly as
above. Indeed, since L

σ
RSI ⊆ L

+
lin, L

+
lin ⊆ ISPU(K) implies L

σ
RSI ⊆ ISPU(K).

Conversely, assume that Lσ
RSI ⊆ ISPU(K). Again using Theorems 12.7 and 12.14,

we obtain
L = Q(Lσ

RSI) ⊆ Q(ISPU(K)) = Q(K) ⊆ L .

Thus L enjoys FSKC by Theorem 12.14.
The last claim is proved by Cintula and Noguera (2011, Theorem 3.4.6). ��

Corollary 12.3 If L enjoys FSKC, then it enjoys the SPU(K)C as well.

Alternatively, for logicswith finitelymany propositional connectives, an algebraic
property equivalent to finite strong K-completeness is expressed in terms of partial
embeddings.Thiswas, in fact, the property usedbyHájek andothers to prove standard
completeness of HL.
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Definition 12.13 Given two algebras A and B of the same languageL , we say that
a finite subset X of A is partially embeddable into B if there is a one-to-one mapping
f : X → B such that for each 〈c, n〉 ∈ L and each a1, . . . , an ∈ X satisfying
cA(a1, . . . , an) ∈ X, f (cA(a1, . . . , an)) = cB(f (a1), . . . , f (an)).

A classK of algebras is partially embeddable into a classK′ if every finite subset
of every member of K is partially embeddable into a member of K′.

Theorem 12.16 If the language of L is finite, then the following are equivalent:

1. L has the FSKC.
2. The class Lσ

RSI is partially embeddable into K.
3. The class L+

lin is partially embeddable into K.
4. L is partially embeddable into Pfin(K).

Proof The equivalence of the first three claims is proved by Cintula and Noguera
(2011, Theorem 3.4.8).

(3)⇒(4): Let A ∈ L and X ⊆ A a finite subset. By a well-known fact from
universal algebra, every algebra C in a quasivariety Q is a subdirect product of
subdirectly irreducible algebras relative to Q. Since L is a quasivariety, it follows
that A can be viewed as a subdirect product of a family {Ai ∈ LRSI | i ∈ I}. Since X
is finite, it suffices to consider only finitely many Ai’s in order to separate elements
of X. Thus X is partially embeddable into a finite direct product of some subdirectly
irreducible algebras relative to L. Since LRSI ⊆ Llin by Theorem 12.8, X is partially
embeddable into Pfin(K) by (3).

(4)⇒(1): Assume that Γ ��L ϕ for a finite set Γ of formulae. By Theorem 12.7
there is a counter-modelA ∈ LRSI. By (4) we have also a counter-modelB ∈ Pfin(K).
Since B is a direct product of members from K, one of them actually has to be a
counter-model as well. ��
Remark 12.4 Notice that the implications from 2, 3, or 4 to 1 hold also for infinite
languages, whereas the converse ones do not (as shown by Cintula et al. (2009,
Example 3.10)).

Let us now deal with particular notable semantics. We consider first the class of
all finite L-chains, denoted by F .

Theorem 12.17 (Cintula and Noguera 2011, Theorem 3.4.16.) The following are
equivalent:

1. L enjoys the SFC.
2. All L-chains are finite.
3. There exists n ∈ N such each L-chain has at most n elements.
4. There exists n ∈ N such that �L

∨
i<n(xi → xi+1).

Corollary 12.4 For any core semilinear logic L and a natural number n, the
axiomatic extension L�n obtained by adding the schema

∨
i<n(xi → xi+1) is a

semilinear logic which is strongly complete with respect the L-chains of length less
than or equal to n.
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Next we show that the properties of FSFC and FC have purely algebraic char-
acterizations in terms of basic notions studied in universal algebra. We say that a
class of algebras M has:

• the finite embeddability property (FEP) ifM is partially embeddable into the class
of its finite members,

• the (strong) finite model property ((S)FMP) if every (quasi-)identity that fails to
hold inM can be refuted in a finite member of M.

The next theorem follows from Theorem 12.16 but can be also seen as an instance
of a purely universal-algebraic result by Blok and van Alten (2002) (after replacing
the first claim by an equivalent algebraic formulation using Theorem 12.14).

Theorem 12.18 The following are equivalent:

1. L enjoys the FSFC.
2. L enjoys the SFMP.
3. L enjoys the FEP.

Finally, the algebraic characterization ofFC is notmuchof use because it involves
free algebras whose structure is usually quite complex, but we include it for the sake
of completeness.

Theorem 12.19 The following are equivalent:

1. L enjoys the FC.
2. L enjoys the FMP.
3. The class of finitely generated L-free algebras is partially embeddable into the

class of finite members of L.

Proof (1)⇒(2): Since L is algebraizable, the first claim implies the second one.
(2)⇒(3): Assume thatL has the FMP. Let F be a finitely generatedL-free algebra

and X ⊆ F a finite subset. We will construct a partial embedding

f : X →
∏

x, y ∈ X
x �= y

Ax,y,

where Ax,y are going to be finite members of L. Let x, y ∈ X such that x �= y.
Since F is free, x, y can be viewed as equivalence classes of terms. Consider any
term tx belonging to x and similarly any term ty from y. Then the identity tx ≈ ty
does not hold in L because x �= y. By FMP there is a finite algebra Ax,y ∈ L

where tx ≈ ty can be refuted. Since F is free, we have a surjective homomorphism
fx,y : F → Ax,y such that fx,y(x) �= fx,y(y). The collection of homomorphisms fx,y
induces a homomorphism

g : F →
∏

x, y ∈ X
x �= y

Ax,y
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Table 12.9 Finite strong completeness w.r.t. F for some core semilinear logics

Logic SFC FSFC FC

SL�
S, for each S ⊆ {e, c, i, o} No Yes Yes

SL�
aw No Yes Yes

MTL, IMTL, SMTL No Yes Yes
UL, WCMTL, �MTL, � No No No
HL, SHL, Ł No Yes Yes
G, WNM, NM, CnMTL, CnIMTL No Yes Yes
CPC Yes Yes Yes

defined by g(z) = 〈fx,y(z)〉x,y∈X,x �=y whose restriction to X gives the desired partial
embedding f .

(3)⇒(1): Let ϕ be a formula which is not a theorem of L, i.e., ��L ϕ. By alge-
braizability the identity 1 ≈ 1∧ϕ does not hold in L. Consequently, 1 ≈ 1∧ϕ does
not hold in a finitely generated L-free algebra F. Since F is partially embeddable
into a finite member A ∈ L, 1 ≈ 1 ∧ ϕ does not hold in A. By a well-known fact
from universal algebra, every algebra C in a quasivarietyQ is a subdirect product of
subdirectly irreducible algebras relative to Q which are homomorphic images of C.
Since LRSI ⊆ Llin, A is a subdirect product of chains Bi, i ∈ I , which are homo-
morphic images of A. Thus Bi’s have to be finite as well. Consequently, 1 ≈ 1 ∧ ϕ

does not hold in
∏

i∈I Bi and therefore 1 ≈ 1 ∧ ϕ can be refuted in one of the
Bi’s. ��

The completeness properties w.r.t. the classF of finite L-chains are usually used
in order to showdecidability of theorems andfinite consequence of L.More precisely,
if L is finitely axiomatizable thenFC implies decidability of the set {ϕ | �L ϕ} and
FSFC implies decidability of {〈Γ, ϕ〉 | Γ �L ϕ, Γ finite}. Table 12.9 lists several
known results on completeness properties w.r.t.F (see Horčík (2011), Wang (2013)
and references thereof).

We now consider the semantics given by chains defined over the rational and
the real unit interval. We present both notions together because their completeness
properties are much related.21

Definition 12.14 The class R ⊆ Llin is defined as: A ∈ R if the domain of A is
the real unit interval [0, 1] and �A is the usual order on reals. The classQ ⊆ Llin is
analogously defined requiring the rational unit interval as domain.

Theorem 12.20 (Cintula and Noguera 2011, Theorem 3.4.19)

1. L has the FSQC iff it has the SQC.
2. If L has the RC, then it has the QC.
3. If L has the FSRC, then it has the SQC.

21 Another closely related semantics is that of hyperreal or non-standard reals proposed as a seman-
tics for fuzzy logics byFlaminio (2008). Cintula et al. (2009) provided some results linking hyperreal
completeness with real and rational completeness.
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Observe that the completeness properties with respect toQ are, in fact, equivalent
to completeness properties with respect to the whole class of densely ordered chains.
Indeed, when we have an evaluation over a densely ordered linear model providing a
counterexample to somederivation,we can apply the downwardLöwenheim–Skolem
Theorem to the (countable) subalgebra generated by the image of all formulae by
the evaluation and obtain a rational countermodel.

Strong rational completeness also admits a proof-theoretic characterization in
terms of the Density Property:22

Theorem 12.21 The following are equivalent:

1. L has the SQC.
2. L has the Density Property DP, i.e. if for any set of formulae Γ ∪ {ϕ,ψ, χ} and

any variable p not occurring in Γ ∪ {ϕ,ψ, χ} the following meta-rule holds:

Γ �L (ϕ → p) ∨ (p → ψ) ∨ χ

Γ �L (ϕ → ψ) ∨ χ
.

3. L is the intersection of all its extensions satisfying the DP.

Proof Again we use results by Cintula and Noguera (2011). The equivalence
of 1 and 2 follows Theorem 3.3.8. The equivalence with 3 follows from Theorem
3.3.13. ��

The last claimgives some insight into an approach used in the fuzzy logic literature
to prove completenessw.r.t. the semantics of densely ordered chains (e.g. byMetcalfe
and Montagna (2007) for the logic UL). Indeed, in this approach one starts from a
suitable proof-theoretic description of a logic L, which then is extended into a proof-
system for the intersection of all extensions of L satisfying the DP just by adding
DP as a rule (in the proof-theoretic sense, not as we understand rules here). This
rule is then shown to be eliminable (using analogs of the well-known cut-elimination
techniques), i.e., the condition 3 is met and hence the original logic is complete w.r.t.
its densely ordered chains (of course, our general theory is not helpful in this last
step, because here one needs to use specific properties of the logic in question).

Many works in the literature of MFL focus on the study of these completeness
properties. Besides the historical papers devoted to particular logical systems, there
are more systematic approaches dealing with the study of these properties by Cintula
et al. (2009) and Horčík (2011). Table 12.10 collects the results for some prominent
core semilinear logics. Unlike FL�, the weakest core semilinear logic SL� does enjoy
all these completeness properties, as proved by Cintula et al. (2013). In particular,
if one considers residuated groupoids defined over [0, 1] as its intended semantics,
then SL� enjoys standard completeness in the strong version, and hence, can be
regarded as a genuine fuzzy logic as much as HL, MTL or UL. On the other hand, it
can arguably be seen as a basic logic in the meanings described in the introduction.

22 This property was originally proposed by Takeuti and Titani (1984) in a much more specific
context, then was generalized to a wide class of fuzzy logics by Metcalfe and Montagna (2007).
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Table 12.10 Real and rational completeness for some core semilinear logics

Logic RC FSRC SRC QC FSQC = SQC

SL�
S, for each S ⊆ {e, c, i, o} Yes Yes Yes Yes Yes

SL�
a, SL

�
ac No No No No No

UL = SL�
ae, SL

�
aw Yes Yes Yes Yes Yes

MTL = SL�
aew, IMTL, SMTL Yes Yes Yes Yes Yes

WCMTL, �MTL Yes Yes No Yes Yes
HL, SHL, Ł, � Yes Yes No Yes Yes
G, WNM, NM, CnMTL, CnIMTL Yes Yes Yes Yes Yes
CPC No No No No No

Indeed, the class of core semilinear logics is based in this logic and provides a useful
framework covering virtually all the work done nowadays in MFL; moreover in the
context of substructural logics complete w.r.t. chains could not be made weaker. We
have therefore defended the role of SL� as basic fuzzy logic in the framework of
propositional logics. In the last part of the chapter we argue that this is also the case
at the first-order level.

12.4 First-Order Core Semilinear Logics

In this section we present the theory of first-order core semilinear logics. The pre-
sentation, definitions, and results of the first two subsections closely follow the work
of Cintula and Noguera (2011, Sect. 5) simplified to our setting of core semilinear
logics. The third subsection generalizes results of Cintula et al. (2009) (proved there
for core fuzzy logics) and shortly surveys the undecidability results treated in detail
by Hájek et al. (2011).

12.4.1 Syntax

In the following let L be a fixed core semilinear logic in a propositional languageL .
The language of a first-order extension of L is defined in the same way as in classical
first-order logic. In order to fix the notation and terminology we give an explicit
definition:

Definition 12.15 A predicate language is a triple 〈PredP , FuncP , ArP 〉, where
PredP is a non-empty set of predicate symbols, FuncP is a set (disjoint withPredP )
of function symbols, and ArP is the arity function, assigning to each predicate
or function symbol a natural number called the arity of the symbol. The function
symbolsF withArP (F) = 0 are calledobject or individual constants.Thepredicates
symbols P for which ArP (P) = 0 are called truth constants.23

23 The roles of nullary predicates of P and nullary connectives of L are analogous, even though
the values of the former are only fixed under a given interpretation of the predicate language, while
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P-terms and (atomic) P-formulae of a given predicate language are defined as
in classical logic (note that the notion of formula also depends on propositional con-
nectives inL ). AP-theory is a set ofP-formulae. The notions of free occurrence
of a variable, substitutability, open formula, and closed formula (or, synonymously,
sentence) are defined in the same way as in classical logic. Unlike in classical logic,
in fuzzy logics without involutive negation the quantifiers ∀ and ∃ are not mutually
definable, so the primitive language of L∀ has to contain both of them.

There are several variants of the first-order extension of a propositional fuzzy logic
L that can be defined. Following Hájek’s original approach and his developments
(Hájek 1998b, 2007a, b, 2010), here we restrict ourselves to logics of models over
linearly ordered algebras (see Sect. 12.4.2) and introduce the first-order logics L∀
and L∀w (respectively, complete w.r.t. all models or w.r.t. witnessed models). The
axiomatic systems of the logics L∀ and L∀w are defined as follows:

Definition 12.16 Let P be a predicate language. The logic L∀ in language P has
the following axioms:24

(P) The axioms of L
(∀1) (∀x)ϕ(x)→ϕ(t), where the P-term t is substitutable for x in ϕ

(∃1) ϕ(t)→(∃x)ϕ(x), where the P-term t is substitutable for x in ϕ

(∀2) (∀x)(χ→ϕ)→(χ→(∀x)ϕ), where x is not free in χ

(∃2) (∀x)(ϕ→χ )→((∃x)ϕ→χ ), where x is not free in χ

(∀3) (∀x)(χ∨ϕ)→χ∨(∀x)ϕ, where x is not free in χ .

The deduction rules of L∀ are those of L plus the rule of generalization:

(Gen) 〈ϕ, (∀x)ϕ〉.
The logic L∀w is the extension of L∀ by the axioms:

(C∀) (∃x)(ϕ(x)→(∀y)ϕ(y))
(C∃) (∃x)((∃y)ϕ(y)→ϕ(x)).

The notions of proof and provability are defined for first-order core semilinear
logics in the same way as in first-order classical logic. The fact that the formula ϕ

is provable in L∀ from a theory T will be denoted by T �L∀ ϕ, and analogously for
L∀w; in a fixed context we can write just T � ϕ.

Helena Rasiowa (1974) gave a first general theory of first-order non-classical log-
ics based on her notion of propositional implicative logic. The presentation of her
first-order logics, which we denote L∀m, omitted the axiom (∀3).25 The superscript

(Footnote 23 continued)
the values of the latter are fixed under all such interpretations. The ambiguity of the term truth
constant is thus a harmless abuse of language.
24 When we speak about axioms or deduction rules of a propositional logic, we actually consider
them with P-formulae substituted for propositional variables.
25 Actually her axiomatization omitted also the generalization rule, and the axioms (∀2) and (∃2)
were replaced by the corresponding rules. However it can be shown that in the context of core
semilinear logics her axiomatization and ours (without (∀3)) are equivalent.



280 P. Cintula et al.

‘m’ stands for ‘minimal’, because L∀m is, in a sense, theweakest first-order extension
of L. Indeed, L∀m is sound and complete w.r.t. first-order models built over arbi-
trary L-algebras. However, the axioms of L∀m are not strong enough to ensure the
completeness w.r.t. first-order models (see the next subsection for technical details)
over linearly ordered L-algebras—i.e., the usual chain completeness theorem, which
we have presented as an essential common trait of all core semilinear logics. That is
the reason why Hájek needed to add the axiom (∀3) in his presentation of first-order
fuzzy logics. This axiom is valid in all models over L-chains (though not generally
in models over arbitrary L-algebras) and ensures the chain completeness theorem for
the resulting logic L∀.26 This makes L∀ a natural choice for the first-order extension
of a given core semilinear logic L. Consequently, we denote this first-order logic
as L∀ with no superscript (though in some works the more systematic denotation
L∀� is used). Finally let us note that in the context of MFL, the logics L∀m were
rediscovered by Petr Hájek (2000), where he denoted them by L∀−.

Let us list some important theorems that are provable in all logics L∀. Their proofs
in MTL or HL are given e.g. by Esteva and Godo (2001) or Hájek (1998b); proofs
in a weaker setting are given by Cintula and Noguera (2011).

Theorem 12.22 (Cintula and Noguera 2011, Propositions 4.2.5 and 4.3.2) Let P
be a predicate language, ϕ, ψ , χ P-formulae, x a variable not free in χ , and x′ a
variable not occurring in ϕ. The following P-formulae are theorems of L∀:

(T∀1) χ ↔ (∀x)χ (T∀11) (∃x)(χ → ϕ) → (χ → (∃x)ϕ)

(T∀2) (∃x)χ ↔ χ (T∀12) (∃x)(ϕ → χ) → ((∀x)ϕ → χ)

(T∀3) (∀x)ϕ(x) ↔ (∀x′)ϕ(x′) (T∀13) (∀x)(ϕ ∧ ψ) ↔ (∀x)ϕ ∧ (∀x)ψ
(T∀4) (∃x)ϕ(x) ↔ (∃x′)ϕ(x′) (T∀14) (∃x)(ϕ ∨ ψ) ↔ (∃x)ϕ ∨ (∃x)ψ
(T∀5) (∀x)(∀y)ϕ ↔ (∀y)(∀x)ϕ (T∀15) (∀x)(ϕ ∨ χ) ↔ (∀x)ϕ ∨ χ

(T∀6) (∃x)(∃y)ϕ ↔ (∃y)(∃x)ϕ (T∀16) (∃x)(ϕ ∧ χ) ↔ (∃x)ϕ ∧ χ

(T∀7) (∀x)(ϕ → ψ) → ((∀x)ϕ → (∀x)ψ) (T∀17) (∃x)(ϕ & χ) ↔ (∃x)ϕ & χ

(T∀8) (∀x)(ϕ → ψ) → ((∃x)ϕ → (∃x)ψ) (T∀18) (∃x)(ϕn) ↔ ((∃x)ϕ)n

(T∀9) (χ → (∀x)ϕ) ↔ (∀x)(χ → ϕ) (T∀19) (∃x)ϕ → ¬(∀x)¬ϕ

(T∀10) ((∃x)ϕ → χ) ↔ (∀x)(ϕ → χ) (T∀20) ¬(∃x)ϕ ↔ (∀x)¬ϕ

Remark 12.5 The converse implication of (T∀19) is provable in Ł∀, IMTL∀, or
NM∀, i.e., in logicswhere¬ is involutive (i.e. proves¬¬ϕ → ϕ). Thus in such logics
the existential quantifier is definable and the axioms (∃1) and (∃2) become redundant.
Actually, for this claim to hold, the presence of an arbitrary unary connective ∼ such
that ϕ → ψ �L ∼ψ → ∼ϕ and �L ϕ ↔ ∼∼ϕ is sufficient (which could be either
the ‘natural’ logical negation given by implication, or a new primitive connective
added in logics L∼).

The provability of the converse implications of (T∀11) or (T∀12) is equivalent
to provability of (C∃) or (C∀) resp., i.e., if L∀ proves them, then L∀ = L∀w. This
is the case of Łukasiewicz logic; product logic proves (C∃) (and so the converse of

26 This fact was first observed for Gödel logic by Horn (1969).
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(T∀11)) but not (C∀), and Gödel logic proves neither. Finally it is worth noting that
the axiom (∀3) is redundant in the axiomatization of Ł∀ and thus Ł∀m = Ł∀ = Ł∀w.

Some syntactic metatheorems valid in propositional core semilinear logics hold
analogously for their first-order logics:

Theorem 12.23 (Cintula and Noguera 2011, Theorems 4.2.6, 4.2.8, and 4.3.9 and
Corollary 4.2.11)Let L be a core semilinear logic, � be either �L∀ or �L∀w , andP be
a predicate language. Then the following holds for each P-theory T, P-sentences
ϕ,ψ, and P-formula χ :

1. The intersubstitutability:
ϕ ↔ ψ � χ ↔ χ ′,

where χ ′ is obtained from χ by replacing some occurrences of ϕ by ψ .
2. The constants theorem:

T � χ(c) iff T � χ(x),

for any constant c not occurring in T ∪ {χ}.
3. The proof by cases property:

T , ϕ � χ T , ψ � χ

T , ϕ ∨ ψ � χ

4. The semilinearity property:

T , ϕ → ψ � χ T , ψ → ϕ � χ

T � χ

If, furthermore, L is almost (MP)-based with a set of basic deductive terms bDT,
we can add:

5. The local deduction theorem:

T , ϕ � χ iff T � δ(ϕ) → χ for some δ ∈ �(bDT∗)P ,

where by �(bDT∗)P we denote the set of formulae resulting from any 
-formula
from �(bDT∗) by replacing all its propositional variables other than 
 by arbi-
trary P-sentences.

Petr Hájek (1998b) (or later Hájek and Cintula 2006) used the local deduction
theorems for schematic extensions of HL (for (�-)core fuzzy logics resp.) to show
the semilinearity property (even though only in the latter it is formulated explicitly),
which in turn is a crucial prerequisite for proving the completeness theorem.
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12.4.2 General and Witnessed Semantics

In this subsection we shall introduce the (witnessed) semantics of predicate fuzzy
logics, corresponding to the axiomatic systems L∀ and L∀w respectively. To simplify
the formulation of upcoming definitions let us fix: a core semilinear logic L in a
propositional language L , a predicate language P = 〈Pred, Func, Ar〉, and an
L-chain B.

Definition 12.17 A B-structure M for the predicate language P has the form:
〈M, (PM)P∈Pred, (FM)F∈Func〉, whereM is a non-empty domain; for each n-ary pred-
icate symbol P ∈ Pred, PM is an n-ary fuzzy relation on M, i.e., a function Mn → B
(identified with an element of B if n = 0); for each n-ary function symbol F ∈ Func,
FM is a function Mn → M (identified with an element of M if n = 0).

Let M be a B-structure for P . An M-evaluation of the object variables is a
mapping v which assigns an element from M to each object variable. Let v be an
M-evaluation, x a variable, and a ∈ M. Then by v[x �→a]we denote theM-evaluation
such that v[x �→a](x) = a and v[x �→a](y) = v(y) for each object variable y different
from x.

Let M be a B-structure for P and v an M-evaluation. We define the values of
terms and the truth values of formulae inM for an evaluation v recursively as follows
noting that in the last two clauses, if the infimum or supremum does not exist, then
the corresponding value is taken to be undefined, and in all clauses, if one of the
arguments is undefined, then the result is undefined:

‖x‖B
M,v = v(x)

‖F(t1, . . . , tn)‖B
M,v = FM(‖t1‖B

M,v , . . . , ‖tn‖B
M,v) for F ∈ Func

‖P(t1, . . . , tn)‖B
M,v = PM(‖t1‖B

M,v , . . . , ‖tn‖B
M,v) for P ∈ Pred

‖c(ϕ1, . . . , ϕn)‖B
M,v = cB(‖ϕ1‖B

M,v , . . . , ‖ϕn‖B
M,v) for c ∈ L

‖(∀x)ϕ‖B
M,v = inf{‖ϕ‖B

M,v[x �→a] | a ∈ M}
‖(∃x)ϕ‖B

M,v = sup{‖ϕ‖B
M,v[x �→a] | a ∈ M}.

We say that the B-structure M is

• safe if ‖ϕ‖B
M,v is defined for each P-formula ϕ and each M-evaluation v,

• witnessed if for each P-formula ϕ we have:

‖(∀x)ϕ‖B
M,v = min{‖ϕ‖B

M,v[x �→a] | a ∈ M}
‖(∃x)ϕ‖B

M,v = max{‖ϕ‖B
M,v[x �→a] | a ∈ M}.

Note that each witnessed structure is safe. To simplify the upcoming definitions
and theorems we write 〈B, M〉 � ϕ if ‖ϕ‖B

M,v �B 1 for each M-evaluation v.
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Definition 12.18 Let M be a B-structure forP and T aP-theory. Then M is called
a B-model of T if it is safe and 〈B, M〉 � ϕ for each ϕ ∈ T .

Observe that models are safe structures by definition. Since, obviously, each safe
B-structure is a B-model of the empty theory, we shall use the term model for both
models and safe structures in the rest of the text.27 By a slight abuse of language we
use the term model also for the pair 〈B, M〉.

The following completeness theorems show that the syntactic presentations intro-
duced above succeed in capturing the intended general chain-semantics for first-order
fuzzy logics.28

Theorem 12.24 (Cintula and Noguera 2011, Theorems 4.3.5 and 4.4.10) Let L be a
core semilinear logic, P a predicate language, T a P-theory, and ϕ a P-formula.
Then the following are equivalent:

• T �L∀ ϕ.
• 〈B, M〉 � ϕ for each L-chain B and each model 〈B, M〉 of the theory T.

Theorem 12.25 (Cintula and Noguera 2011, Theorem 4.5.12 and Example 4.5.3)
Let L be an axiomatic expansion of SL�

ae, P a predicate language, T a P-theory,
and ϕ a P-formula. Then the following are equivalent:

• T �L∀w ϕ.
• 〈B, M〉 � ϕ for each L-chain B and each witnessed model 〈B, M〉 of the theory T.

12.4.3 Standard Semantics

Already in the pioneering works of Petr Hájek, as in the case of propositional fuzzy
logics, the general chain completeness we have just seen was not considered suf-
ficient and, in fact, a crucial item in his agenda was again the search for standard
completeness theorems with respect to distinguished classes of models. In order to
survey the corresponding results in our framework, in this section we restrict our-
selves to countable predicate languages.We shall say that 〈B, M〉 is aK-model (of T )
for some K ⊆ Llin if 〈B, M〉 is a model (of T ) and B ∈ K.

Definition 12.19 Let L be a core semilinear logic and K ⊆ Llin. We say that L∀
enjoys enjoys (finite) strongK-completeness SKC (FSKC resp.) if for each countable
predicate language P , P-formula ϕ, and (finite) P-theory T holds:

T �L∀ ϕ iff 〈B, M〉 � ϕ for each K-model 〈B, M〉 of the theory T

We say that L∀ enjoys K-completeness KC if the equivalence holds for T = ∅.

27 In the literature the term ‘�-model’ is sometimes used instead to stress that B is linearly ordered.
28 The proofs of Theorems 12.24 and 12.25 for core and �-core fuzzy logics are given by Hájek
and Cintula (2006). Instances of Theorem 12.24 for various core semilinear logics were originally
proved separately; usually for countable predicate languages only (Esteva and Godo 2001; Hájek
1998b).
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All these properties are stronger than their corresponding ones for propositional
logics:

Theorem 12.26 LetL be a core semilinear logic andKa class of L-chains. If L∀ has
theSKC(FSKCorKC respectively), thenL has theSKC(FSKCorKC respectively).

As in the propositional case (Theorem 12.15), strong K-completeness is related
to an embedding property, although it is a stronger one requiring preservation of
existing suprema and infima:

Definition 12.20 LetA andB be two algebras of the same type with (defined) lattice
operations. We say that an embedding f : A → B is a σ -embedding if f (supC) =
sup f [C] (whenever supC exists) and f (inf D) = inf f [D] (whenever inf D exists)
for each countable C, D ⊆ A.

Theorem 12.27 Let L be a core semilinear logic. If every countable L-chain A can
be σ -embedded into some L-chain B ∈ K, then L∀ enjoys SKC.

The proof of this theorem is almost straightforward. Unlike in the propositional
case, the existence ofσ -embeddings is not a necessary condition, as shown byCintula
et al. (2009, Theorem 5.38), but nevertheless it is the usual method for proving these
results. It also has an interesting corollary for completeness w.r.t. finite chains (recall
the characterizations of SFC in Theorem 12.17).

Corollary 12.5 Let L be a core semilinear logic. Then L enjoys the SFC iff L∀
enjoys the SFC.

It is obvious that every B-structure over a finite L-chain is necessarily witnessed.
Thus we have the following proposition which can be used in order to disprove the
FC for many logics.

Proposition 12.4 Let L be a core semilinear logic such that L∀ enjoys FC. Then
L∀ = L∀w.

For instance, the examples by Hájek (1998b, Lemma 5.3.6) can be used to show
that (C∃) is unprovable in G∀ and (C∀) is unprovable both in G∀ and in �∀. We can
also easily show that ��NM∀ (C∀). Thus these logics do not enjoy FC.

Table 12.11 collects results on real, rational and finite-chain completeness of
prominent core semilinear logics. Their proofs are scattered in the literature (e.g.
Hájek (1998b); Esteva andGodo (2001)). Cintula et al. (2009) givemore information
and detailed references. For logicsweaker thanMTL∀ the negative results are derived
from the corresponding failure of completeness at the propositional level, while the
positive ones are justified by observing that the embeddings built to prove complete-
ness for the underlying propositional logic are actually σ -embeddings. Observe that
the family of logics in the first row of the table include SL�∀, which enjoys both
strong rational and real (i.e. standard) completeness. This fact was not stated before
in the literature because the only paper dealing with SL� (Cintula et al. 2013) con-
centrated only on propositional logics, but it is not difficult to check that for SL� the
obtained embedding is also actually a σ -embedding, i.e., we obtain:
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Table 12.11 Completeness properties for some first-order core semilinear logics

Logic RC FSRC, SRC QC, FSQC, SQC FC, FSFC, SFC

SL�
S∀, for each S ⊆ {e, c, i, o} Yes Yes Yes No

SL�
a∀ No No No No

SL�
aw∀ Yes Yes Yes No

MTL∀, IMTL∀, SMTL∀ Yes Yes Yes No
WCMTL∀, �MTL∀ ? No ? No
HL∀, SHL∀ No No No No
Ł∀, �∀ No No Yes No
G∀, WNM∀, NM∀ Yes Yes Yes No
CnMTL∀, CnIMTL∀ Yes Yes Yes No
CPC∀ No No No Yes

Theorem 12.28 Let S ⊆ {e, c, i, o}. Then for each countable predicate language
P , P-formula ϕ, and P-theory T holds:

T �SL�
S∀ ϕ iff 〈B, M〉 � ϕ for each R-model 〈B, M〉 of the theory T .

It is worth adding that for all core fuzzy logics appearing in the table the same
results hold for their expansions with �; moreover G∼ behaves like G, while SHL∼
and Ł� behave like HL. Observe the rather surprising behavior of continuous t-norm
based logics regarding the rational-chain semantics: while Ł∀,�∀, and G∀ enjoy the
SQC, the logicsHL∀ andSHL∀ donot evenhaveQC(Cintula et al. 2009). PetrHájek
(1998b) already gave an important hint towards the failure of rational completeness
inHL∀ and SHL∀: he found a first-order formula,(∀x)(χ&ϕ) → (χ&(∀x)ϕ), which
holds in every model on a densely ordered HL-chain but, as shown later by Esteva
and Godo (2001), it is not a tautology of any of those two logics; therefore it makes
sense to extend them with this axiom and, by doing so, one obtains new first-order
logics complete with respect to all models over rational HL-chains or, respectively,
SHL-chains (Cintula et al. 2009).

Finding particular examples of formulae witnessing failure of RC of a given
logic is not an easy task. Even though some examples were found by Petr Hájek
(2004b) for some particular cases, a usual method of proving this is to show that the
set of standard tautologies (see next definition) is not recursively enumerable, and
therefore it cannot coincide with the set of its theorems. Determining the position
in the arithmetical hierarchy (e.g. Rogers 1967) of prominent sets of formulae (such
as the tautologies of a given logic) is an important field of study in mathematical
logic with major contributions done by Petr Hájek. Here we just briefly mention a
few results related to fuzzy logics: a full treatment of the arithmetical complexity of
first-order (�-)fuzzy logics was presented by Hájek et al. (2011). Other references
on the topic are Hájek (2001, 2004a, 2005a), Montagna (2001, 2005), Montagna and
Noguera (2010).
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Table 12.12 Arithmetical
complexity of standard
semantics

G∀ Ł∀ �∀ HL∀
stTAUT �1-c �2-c NA NA
stSAT �1-c �1-c NA NA

First let us introduce some prominent sets of first-order formulae given by a core
semilinear logic L:

Definition 12.21 We say that a sentence ϕ is

• A general (resp., standard) tautology of L∀ if 〈B, M〉 � ϕ for each (R-)model
〈B, M〉.

• Generally (resp., standardly) satisfiable in L∀ if 〈B, M〉 � ϕ for some (R-)model
〈B, M〉.
The sets of general and standard tautologies and generally and standardly sat-

isfiable sentences are denoted, respectively, by genTAUT, stTAUT, genSAT, and
stSAT.

For illustration, let us state the results for four predicate logics: HL∀, Ł∀, G∀,
and �∀. For each of them, the set of general tautologies is �1-complete (thus they
are recursively axiomatizable, but undecidable) and the set of generally satisfiable
formulae is�1-complete. For the arithmetical complexity of their standard semantics
seeTable 12.12 (where “-c” stands for “-complete” and “NA” for “non-arithmetical”).
It can be seen that as far as standard semantics is concerned, the four logics differ
drastically with respect to their degree of undecidability.

12.5 Conclusions

In this chapter we have presented a general approach to fuzzy logics based on the
logic SL�.We have introduced a broad class of, both propositional and predicate, core
semilinear logics and shown their axiomatizations and completeness with respect to
models over chains. Moreover, we have surveyed their completeness results with
respect to distinguished semantics and obtained, in particular, that the weakest pred-
icate fuzzy logic of our framework, SL�∀, enjoys the standard completeness theorem.
Therefore, our flea still jumps (and jumps very well, even in the first-order case!)
and we can arguably say that the quest for the basic fuzzy logic initiated by Petr
Hájek so far seems to culminate with SL�. Indeed, both for propositional and first-
order predicate logics, SL� provides a good ground level to build broad families of
logics containing all the important particular systems of fuzzy logic: propositional
fuzzy logics are captured inside the class of core semilinear logics, while first-order
fuzzy logics are obtained as extensions of the logic L∀ built over a core semilinear
logic L. Moreover, SL� is the weakest possible logic one could take in the context
of substructural logics in a language with lattice connectives, a conjunction which is
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not required to satisfy any property corresponding to the usual structural rules and
its left and right residua. We do not know whether Mathematical Fuzzy Logic will
require an even weaker system to serve as the basic fuzzy logic in the future. Only
time will tell. What we can say is that, at the moment, we do not see any remaining
legs to be pulled.
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