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Preface

This volume is about Petr Hijek’s contribution to Mathematical Fuzzy Logic. Petr
Hijek is not only a great scientist, but also a wonderful human being, and hence it
is a great honor for me to take care of this volume. However, commenting on his
scientific work is not an easy job: although his scientific contribution is by no
means limited to Mathematical Fuzzy Logic, his production in this field is so wide
and so important that it is almost impossible to present a complete description of it.
Hence, when I began to work on the volume, I started doubting about its success.
After Petr’s monograph Metamathematics of Fuzzy Logic and after the various
books on Fuzzy Logic, including Gottwald’s A Treatise on Many-Valued Logics,
two more books, one about the work of Petr Héjek, entitled Witnessed Years, and
one devoted to Mathematical Fuzzy Logic, the Handbook of Mathematical Fuzzy
Logic, in which Petr is one of the Editors and one of the main authors, have been
written. Moreover, when I told Hajek that we were going to write another volume
for him, he replied: Too many honors! And although he added no comments to his
response, | had the feeling that what he would really need now is not another
volume in his honor, but rather some more health for himself and for his wife.

However, I am absolutely convinced that a new volume on Petr Hijek’s work
will be very useful, if not for himself, at least for the scientific community. Indeed,
Petr’s influence on the community of Mathematical Fuzzy Logic was simply great,
and the best way we have to celebrate him is to continue his work writing good
new papers, possibly developing his ideas. The invited authors of this volume are
all prominent scientists, and spent many energies to make their papers as good as
possible. Moreover, all papers in this volume discuss some problems that have
been previously discussed by Petr and offer original contributions to them. These
considerations make me optimistic about the success of the volume.

The volume begins with an Introduction, in which Esteva, Godo, Gottwald, and
myself present and comment on Hdijek’s contribution to Mathematical Fuzzy
Logic, and by a scientific biography by Hanikova. The remainder of the volume is
divided into five parts, with a final appendix containing a bibliography of Petr
Hajek.

The second part deals with foundations of many-valued logic, and contains three
papers, one by Béhounek and Hanikova on Arithmetic and Set Theory over many-
valued logic, another by Gottwald on theories of Fuzzy Sets, and yet another by
Fermiiller and Roschger about the connections between Fuzzy Logic and vagueness.
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viii Preface

The third part deals with semantics, and consists of three papers. The first one,
by Font, is about the semantics of preservation of truth degrees, which is alter-
native both to the algebraic semantics and to the standard semantics. With this new
semantics, validity remains unchanged, but the consequence relation changes in a
significant way. The second paper, by Mundici, proposes another alternative to the
standard semantics for which the author is able to prove strong standard com-
pleteness, a property which fails for the usual standard semantics. The third paper
on semantics, by Aguzzoli and Marra, discusses some general semantic principles
and characterizes the three main fuzzy logics, Lukasiewicz, Godel, and product
logics, in terms of them.

The fourth part deals with the algebraic aspects of many-valued logics. In this
chapter, algebraic tools are used. This part consists of two papers. The first paper,
by DvureCenskij, deals with the connections between many-valued logic and
{-groups, and the second paper, by Ledda, Paoli and Tsinakis, deals with another
important property of algebras for many-valued logic, namely, prelinearity, and
relates varieties of algebras for substructural logics to varieties of algebras for
fuzzy logic.

The fifth part contains two papers, one by Bou, Esteva and Godo, and another
by Cintula, Horéik and Noguera, and deals with some more recent developments,
namely modal fuzzy logics and weak fuzzy logics. Modal fuzzy logics are
discussed in one of the last chapters of Hajek’s book, Metamathematics of Fuzzy
Logic, but although the book presents many very interesting general ideas, it does
not contain a complete development of this subject, which seems to be left to the
future research. The second subject, weak many-valued logics, was begun already
in Héjek’s book, in which the author proposed BL as the basic fuzzy logic.
But after the publication of the book, several weaker fuzzy logics (for instance, the
monoidal t-norm-based logic MTL by Esteva and Godo), were investigated, and
hence it makes sense to look for the really basic fuzzy logic.

I conclude this Preface by thanking several researchers, without whom this
volume would have not existed. First of all, Petr Hijek, the scientist to whom the
volume is dedicated; then Daniele Mundici, who suggested the idea for the first
time; then, all the authors of the volume, who accepted to present their results here
and to devote them to Petr Héjek; finally, special thanks are due to (in alphabetical
order) Libor B€hounek, Petr Cintula, Francesc Esteva, Lluis Godo, Siegfried
Gottwald, Zuzana Hanikovd, and Vincenzo Marra, who helped me either to collect
the scientific material of Petr Hijek or to improve the format of the volume.
In particular, Lluis Godo’s assistance with the LaTex was extremely useful.

All these people deserve special mention, and credits for this volume should be
given to them more than to myself.

Siena, Italy Franco Montagna
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Chapter 1
Introduction

Francesc Esteva, Lluis Godo, Siegfried Gottwald and Franco Montagna

1.1 Mathematical Fuzzy Logic

Since Petr Héjek, the scientist we are going to celebrate, is the main contributor to
Mathematical Fuzzy Logic, we will first spend a few words about this subject.
Mathematical Fuzzy Logic is a mathematical study of logical systems whose alge-
braic semantics involve some notion of truth degree. The origins of the discipline
are both philosophical (modeling correct reasoning in some particular contexts like
the treatment of vague predicates, for which classical logic may appear not ade-
quate), as well as more technical: Zadeh’s Fuzzy Set Theory, which has been widely
applied, and many-valued logics, which are logics with intermediate truth degrees,
whose order is often assumed to be linear. Unlike Fuzzy Set Theory, which is mainly
devoted to concrete applications, Mathematical Fuzzy Logic is a subdiscipline of
Mathematical Logic, and hence it aims at a mathematical treatment of reasoning
with intermediate truth degrees. Hence, as all known logics, Mathematical Fuzzy
Logic deals with propositional and first-order formulas (and, in some cases, even
with second-order formulas), and it has several semantics, an algebraic semantics, a
semantics given by chains, a semantics based on [0, 1], and also a game-theoretical
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4 F. Esteva et al.

semantics. It also deals with such problems as (un)decidability and computational
complexity. Although it is questionable whether or not Mathematical Fuzzy Logic
can satisfactorily capture vague concepts (and we tend to believe that it is not the
case), for their treatment it seems at least more suitable than classical logic and than
other non-classical logics. Finally, although Fuzzy Logic is different from probabil-
ity, it is formally possible to treat probability (and hence, uncertainty) inside Fuzzy
Logic enriched with a modality representing Probably. Hence, Mathematical Fuzzy
Logic is a very beautiful mathematical theory with concrete applications. For more
information, one can consult the Handbook of Mathematical Fuzzy Logic (Cintula
etal. 2011).

1.2 The Beginning

When Petr Héjek begun his work on Mathematical Fuzzy Logic, he and his collab-
orators immediately realized that several important fuzzy logics, like Lukasiewicz
logic and Godel logic, were already present in the literature. At the same time, the
wide literature on t-norms suggested to him to associate to each continuous t-norm
a logic, in which conjunction and implication are interpreted as the t-norm and its
residuum, respectively. In particular, his attention was attracted by the logic of a very
natural continuous t-norm, namely, the product t-norm. With F. Esteva and L. Godo,
in the paper A complete many-valued logic with product-conjunction (Hajek et al.
1996), the authors offered an axiom system for this product logic and proved that
it is (sound and) complete with respect to the standard semantics on [0, 1]. To get
this completeness result they introduced an algebraic semantics based upon product
algebras in a way similar to the completeness proof which C. C. Chang gave for (the
infinite valued) Lukasiewicz logic via M V-algebras (Chang 1959).

The interest of product logic is also emphasized in the paper Embedding logics
into product logic (Baaz et al. 1998). In that paper, the authors construct a faithful
interpretation of Lukasiewicz’s logic in product logic (both propositional and pred-
icate), as well as a faithful interpretation of Godel logic into product logic with the
Monteiro-Baaz projection connective A. As a consequence, they prove that the set
of standard first-order product tautologies is not recursively axiomatizable, and that
the set of propositional formulas satisfiable in product logic (resp., in Godel logic),
is NP-complete.

A controversial problem in fuzzy logic is the notion of negation. Indeed, in the
theory of fuzzy sets negation is always involutive. But if one defines —¢p as ¢ — L,
as in intuitionistic logic, then the negation of several fuzzy logics like Godel and
product logic, is not involutive: over [0, 1] it is a function which exchanges 0 and
1 and sends to 0 any other value. Hence, in the paper Residuated fuzzy logics with
an involutive negation (Esteva et al. 2000) by Esteva, Godo, Hijek and Navara, the
authors describe the logic arising from a residuated fuzzy logic with such a kind
of negation by the addition of an involutive negation. In these logics, one has two
negations: a classical (involutive) negation and the (strict) negation arising from
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residuation. Interestingly, for the case of usual product logic, while one has standard
completeness with respect to the product usual connectives on [0, 1] and the class of
all involutive negations, we do not have standard completeness with respect to the
usual negation 1 — x alone.

1.3 The Monograph “Metamathematics of Fuzzy Logic”’

All the above mentioned logics are treated in Hajek’s monograph Metamathematics
of Fuzzy Logic (Hajek 1998). This book has played a fundamental role in the recent
development of Mathematical Fuzzy Logic.

It is impossible to summarize the whole content of this book without overlooking
something important. For example, the book contains an interesting preliminary
discussion about the motivations of fuzzy logic and about their general semantic
principles, which will not be reported here. However, in our opinion the main ideas
contained in the book are the following:

1. Fuzzy logics are presented as logics of continuous t-norms and their residuals.

2. Since every continuous t-norm is the ordinal sum of Lukasiewicz, Godel and prod-
uct t-norms, the corresponding logics (Lukasiewicz, Godel and product logics)
are of fundamental importance.

3. One can look for a common fragment of the three fundamental fuzzy logics, as
well as for the logic of all continuous t-norms. Then Héjek proposed a logic,
called Basic (Fuzzy) Logic (in symbols, BL), which later on turned out to be the
logic of all continuous t-norms and of their residuals.

4. Fuzzy logics are considered as logics of a comparatively graded notion of truth,
indeed a formula ¢ — 1 is 1-true whenever the degree of truth of v is greater or
equal to that of ¢. The ability of explicitly reasoning about truth-degrees motivates
the study of the so called Rational Pavelka Logic, which has constants for all
rational truth-values.

5. The general semantics of fuzzy logics is constituted by totally ordered commu-
tative, integral and divisible residuated lattices, BL-chains for short. As noted by
Baazin his article in the volume Witnessed years (Cintula et al. 2009), Hajek raised
the problem of the independence of the axiom (p& (¢ — V¥)) < (V& — ¢)),
corresponding to divisibility. This axiom turns out to be independent, but inter-
estingly, if we remove it, we get another interesting logic, namely, the Monoidal
T-norm-based Logic MTL of Esteva and Godo.

6. Every schematic extension L of BL has a first-order expansion LV, which is
strongly complete with respect to the class of all safe interpretations on L-chains.
The idea is that the existential quantifier and the universal quantifier are interpreted
by suprema and infima, and an interpretation on an L-chain is said to be safe
when all suprema and infima needed to interpret quantifiers exist in the L-chain.
Interestingly, Héjek didn’t require the L-chains to be complete. Indeed, with
the remarkable exception of Godel logic, for every continuous t-norm logic L,
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the set of first-order formulas which are valid in all complete L-chains is not
recursively axiomatizable, while the set of formulas which are valid in all safe
interpretation over arbitrary L-chains is axiomatizable over L by a finite set of
axiom schemata. Yet another interesting feature of this book is the discovery of
the axiom Vx(¢(x) V ¢¥) — ((Vx@(x)) Vv ¢), which in the case of intuitionistic
first-order logic characterizes Kripke models with constant domain. It turns out
that in the case of fuzzy logic, this axiom characterizes the semantics by chains.

7. The last part of the book deals with application aspects: e.g., fuzzy modal logics,
a logical understanding of fuzzy if-then rules and fuzzy quantifiers like many and
probably are discussed. Interestingly, although Héjek emphasizes the differences
between fuzzy logic and probability theory (the former is truth functional, the
latter is not, the former deals with vague concepts that may have an intermediate
truth degree, while the latter deals with events which are unknown now but will
be either completely true or completely false later), the author introduces an inter-
pretation of the logic of probability into fuzzy logic enriched with the modality
Probably. In this way, the probability of an event ¢ becomes the truth value of
the sentence Probably ¢.

Although the book is full of interesting results, it doesn’t exhaust Petr’s research in
Mathematical Fuzzy Logic. Here below, we list some problems which are somehow
addressed in the book and which have been further investigated by Petr and by his
coauthors:

1. First-order fuzzy logics, and in particular: supersound logics, complexity of stan-
dard tautologies or of standardly satisfiable formulas and witnessed models.
Computational complexity of propositional fuzzy logics.

Logics weaker than BL. (MTL, hoop logics, ps-BL, flea-logics).

Logics with truth constants for the rationals.

Logics of probability, of possibility and of belief.

Logics with truth-hedges.

Fuzzy modal logics.

Fuzzy description logic.

Mathematical theories (arithmetic, set theory) over fuzzy logic.

e il ol

1.4 First-Order Fuzzy Logics

As said before, an important contribution by Petr Hdjek to first-order fuzzy logic is the
discovery of the right semantics for it. Indeed, the first-order version of any schematic
extension L of BL (denoted in the sequel by LV) is strongly complete with respect
to the class of all safe interpretations on L-chains (totally ordered models of L), and
the same can be easily proved, essentially by the same proof, for extensions of first-
order MTL. In general, we do not have completeness with respect to interpretations
over completely ordered L-chains. That is, the class of all structures on completely
ordered L-chains is a too narrow class to get completeness. One may try to do the
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opposite way, that is, to enlarge the class of interpretations, and to define a formula
valid if it is true in all (possibly unsafe) interpretations in L-chains in which its truth
value is defined. But in this way we may lose correctness. A predicate fuzzy logic
LV is said to be supersound if every theorem ¢ of LV is valid in all (possibly unsafe)
interpretations on any L-chain in which its truth-value is defined.

In the paper A note on the notion of truth in fuzzy logic (Hajek and Shepherdson
2001), Hédjek and Shepherdson show that among the logics given by continuous
t-norms, Gddel logic is the only one that is supersound. All other continuous t-norm
logics are (sound but) not supersound. This supports the view that the usual restriction
of semantics to safe interpretations (in which the truth assignment is total) is very
natural.

Another semantics for first-order fuzzy logics for which completeness in general
fails is the standard semantics on [0, 1]. In some cases, the failure is obtained in a
very strong sense: for instance, for product logic, both the set of 1-tautologies and the
set of 1-satisfiable formulas are not arithmetical. The arithmetical complexity of the
standardly satisfiable formulas or of standard tautologies of the most prominent fuzzy
logics is summarized in P. Hajek’s paper Arithmetical complexity of fuzzy predicate
logics-a survey, Il (H4jek 2009).

Among all logics of continuous t-norms, Godel first-order logic is the only logic
which is complete with respect to the standard semantics on [0, 1]. However, Godel
first-order logic is no longer complete if instead of [0, 1] we take an arbitrary closed
subset of [0, 1] containing 0 and 1. Now in P. Hdjek’s paper A non-arithmetical
Godel logic (Hajek 2005¢), the following surprising result is proved: Let G|, denote
the first-order Godel logic with truth degree set V| = {0} U {% n=172, } Then
the sets of satisfiable formulas as well as of tautologies of G| are non-arithmetical.
This is in contrast with the similar system G71 with truth degree set V4= {1} U

{””ﬁ n=0,1, }, whose set of tautologies is shown to be IT,-complete.

Several new and original ideas about the semantics of first-order fuzzy logics are
presented in P. Hajek and P. Cintula’s paper On theories and models in fuzzy predicate
logics (Hajek and Cintula 2006b). There, a general model theory is presented for
predicate logics, and a more general version of the completeness theorem is proved,
using doubly Henkin theories. Moreover, the (very interesting) concept of witnessed
model is introduced. These are models in which suprema and infima used to interpret
existential and universal quantifiers are actually maxima and minima. The logic
of witnessed models is obtained by adding the axioms 3x(P(x) < VyP(y)) and
Ix(JyP(y) — P(x)). Interestingly, although these axioms are valid in classical
logic, they are not intuitively valid. For instance, the first axiom says that there is an
individual x such that if x gets drunk, then everybody gets drunk.

Although the paper by P. Hijek and F. Montagna, A note on the first-order logic
of complete BL-chains (Hajek and Montagna 2008), is probably not one of the most
important papers by Petr, we will mention it because it has a nice story. The paper
discusses an error in another paper by Sacchetti and Montagna. The error was based
on the wrong assumption that in a complete BL-chain, the fusion operator distributes
over arbitrary infima. This property clearly holds in any standard BL-algebra, but is
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not true in general (Felix Bou found a counterexample). As a consequence of that
error, Montagna and Sacchetti claimed that the predicate logics of all complete BL-
chains and of all standard BL-chains coincide. During a meeting, Petr told Montagna
that he was going to do the same error. Then Petr and Montagna discussed this
problem by e-mail, and arrived to the following result: acomplete BL-chain B satisfies
all standard BL-tautologies iff for any transfinite sequence (a; : i € I') of elements of
B, the condition VieI ai2 = (\/[61 a;)? holds in B. It is nice to observe that Montagna
was going to repeat the error in another paper, but fortunately he noticed it before
submitting the paper for publication.

1.5 Computational Complexity of Fuzzy Logics

Propositional logics may have quite different complexities. For instance, classi-
cal logic is coNP-complete, intuitionistic logic is PSPACE-complete, as well as
many modal logics, and linear logic is even undecidable. The most important many-
valued logics extending BL are coNP-complete, and Héjek greatly contributed to the
proof of this general claim. The book Metamathematics of Fuzzy Logic already con-
tains a proof of coNP-completeness of Lukasiewicz, Godel and product logics. The
first result has been proved by Mundici (1987), and then, by different techniques,
by (Hihnle 1994). The coNP-completeness of Godel logic is easy and the coNP-
completeness of product logic follows from the above mentioned paper (Baaz et al.
1998).

Another important result about computational complexity of fuzzy logis is the
coNP-completeness of BL, which was proved by M. Baaz, P. Hijek, F. Montagna
and H. Veith in the paper Complexity of t-tautologies (Baaz et al. 2002).

In P. Hijek’s paper Computational complexity of t-norm based propositional
fuzzy logics with rational truth constants (Hjek 2006a), the author discusses the
complexity of Godel logic, Lukasiewicz logic, and product logic added with con-
stants for the rational numbers in [0, 1] along with bookkeeping axioms. For these
logics the complexity remains the same as for their fragments without the constants.
However, there are t-norms such that the complexity when one adds the rational
constants may fall outside the arithmetical hierarchy.

Finally, in the paper Complexity issues in axiomatic extensions of Lukasiewicz
logic (Cintula and Hdjek 2009) P. Cintula and P. Hdjek show that all axiomatic
extensions of propositional Lukasiewicz logic are coNP-complete.

It is worth noticing that Zuzana Hanikova in the paper A note on the complexity
of propositional tautologies of individual t-algebras (Hanikova 2002) proved that all
logics of continuous t-norms on [0, 1] are coNP-complete.
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1.6 Logics Weaker than BL.

There are three types of fragments of BL, namely, the logics in a weaker language
which are extended by BL conservatively, the logics in the language of BL whose
axiom set is properly included in the axiom set of BL, and the logics which have a
weaker language than BL and are extended by BL, but not conservatively. Remarkable
examples of fragments in the first sense are the logic BH of basic hoops, which has
been investigated by F. Esteva, L. Godo, P. Hijek, and F. Montagna in the paper
Hoops and fuzzy logic (Esteva et al. 2003) and the logic BHBCK of basic hoop
BCK-algebras, investigated by Agliano, Ferreirim and Montagna in Agliano et al.
(2007). The first logic is the fragment of BL in the language {&, —, T}, while the
latter logic is the fragment of BL in the language {—, T}.

The most interesting fragment of the second type is probably the Monoidal t-norm
Logic MTL by Esteva and Godo (2001). These authors, having in mind that in t-norm
algebras the existence of the residual already yields the left continuity of the t-norm,
conjectured that deleting the essential part a A b < a *x(a — b) of the continuity
condition, but maintaining the prelinearity condition, should yield the logic of all
left continuous t-norms.! Although this interesting logic was not due to him, Hajek
showed interest in this logic and in his paper Observations on the monoidal t-norm
logic (Hajek 2002a), he investigates some extensions of MTL. The leading idea
was the following: BL has three well-known extensions: Lukasiewicz logic, Godel
logic, and product logic, which are axiomatized over BL by the axioms =—¢ — ¢,
¢ = (p&e) and =¥ V ((y — (&) — @), respectively. Then it is natural to
investigate the analogous extensions of MTL, namely MTL plus —=—¢ — ¢, denoted
by IMTL, MTL plus ¢ — (p&¢) and MTL plus ~¢ VvV (¥ — (p&y)) — @),
which is denoted by [IMTL. While MTL plus ¢ — (p&¢) is just Godel logic, IMTL
is weaker that Lukasiewicz logic, and MTL plus = VvV (¥ — (p&¥)) — @) is
weaker than product logic.

While MTL is obtained from BL by removing divisibility, one may wonder what
happens if one removes commutativity of the conjunction. BL deprived of commuta-
tivity has been investigated e.g. by Georgescu and Iorgulescu (2001) and by Flondor
et al. (2001), see also the book by S. Gottwald, A treatise on many-valued logics
(Gottwald 2001). In his paper Fuzzy logics with noncommutative conjunctions (Hajek
2003b), Hajek finds adequate axiomatizations for these logics and proves a complete-
ness theorem for them. Moreover in his paper Embedding standard BL-algebras
into non-commutative pseudo-BL-algebras (Hajek 2003a), Hajek proves that each
BL-algebra given by a continuous t-norm is a subalgebra of a non-commutative
pseudo-BL-algebra on a ‘non-standard’ interval [0, 1]*.

The logic BL was already an attempt to generalize the three main fuzzy logics, that
is, Lukasiewicz, Godel and product logics. Hence, probably Héjek didn’t imagine
such an amount of generalizations obtained by removing either connectives or the

I Deleting even the prelinearity condition had given the monoidal logic of Hohle (1994, 1995).
This logic is characterized by the class of all residuated lattices, but seems to be too general as a
logic for t-norms.
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divisibility axiom, or the commutativity axiom. In his paper Fleas and fuzzy logic
(H4jek 2005a), Hijek finds a common generalization of the logic of basic hoops
and the logic psMTL of noncommutative pseudo-t-norms. He presents a general
completeness theorem and he discusses the relations to the logic of pseudo-BCK
algebras. The reference to fleas in the title is due to the following story:

Some scientists make experiments on a flea: they remove one of its legs and tell it:
Jump!. The flea can still jump. Then they repeat the experiment over and over again,
and, although with some difficulty, the flea still jumps. But once all legs are removed,
the flea is no longer able to jump. Then the doctors come to the conclusion that a
flea without legs becomes deaf. Now the attitude of logicians who remove more and
more axioms and symbols and still expect to be able to derive interesting properties,
is compared to the attitude of the scientists of the story.

Another interesting paper about fragments is the one by P. Cintula, P. Hijek,
R. Hor¢ik, Formal systems of fuzzy logic and their fragments (Cintula et al. 2007).
There, the authors investigate expansions of the logic BCK with the axiom of prelin-
earity which come about by the addition of further connectives, which are chosen in
such a way that the resulting systems become fragments of well-known mathemat-
ical fuzzy logics. These logics are usually characterized by quasivarieties of lattice
based algebraic structures, and in some cases by varieties. The authors give adequate
axiomatizations for most of them.

1.7 Further Logics Related to BL

1.7.1 Rational Pavelka Logic

Besides the purely logical interest in mathematical fuzzy logics their consideration
is motivated by the problem to search for suitable logics for fuzzy sets.

In this context it is natural to ask whether it is possible to generalize the standard
entailment as well as provability considerations in logical systems to the case that
one starts from fuzzy sets of formulas, and that one gets from them as consequence
hulls again fuzzy sets of formulas. This problem was first treated by Jan Pavelka
in 1979 in his three papers On fuzzy logic I, II and III (Pavelka 1979). Accordingly
such approaches are sometimes called Pavelka-style, but they have also been coined
approaches with evaluated syntax.

Such an approach has to deal with fuzzy sets ¥~ of formulas, i.e. besides formulas
@ also their membership degrees X'~ (¢) in X¥~. And these membership degrees are
just the truth degrees of the corresponding logic. This is an easy matter as long
as the entailment relationship is considered. An evaluation e is a model of X" iff
X7 (¢) < e(p) holds for each formula ¢. Hence the semantic consequence hull of
X~ should be characterized by the membership degrees €™ (X ™) (v) = Afe(¥) |
e model of X7}
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For a syntactic characterization of this entailment relation it is necessary to treat
evaluated formulas, i.e. ordered pairs consisting of a truth degree symbol and a
formula in alogical calculus K. Also the rules of inference have to deal with evaluated
formulas. Each derivation of an evaluated formula (a, ¢) counts as a derivation of
@ to the degree a. The provability degree of ¢ from X~ in K is the supremum
over all these degrees. The syntactic consequence hull of X is the fuzzy set %szn

of formulas characterized by the membership function %sz”(): YY) = Via |
K derives (a, ¥) out of X7},

Already Pavelka proved soundness and completeness saying €°¢M(X~) =
%&Lsyn(Z’”), but only for the case that the many-valued logic under consideration
here is the (infinite valued) Lukasiewicz logic L. (This restriction comes from the
fact that the completeness proof needs the continuity of the residuation operation.)
Because the truth degree symbols have to be part of the derivations, here one needs to
refer to an uncountable language with constants for all the reals of the unit interval.

Petr Héjek realized the following important facts: (i) it is sufficient to have con-
stants for the rationals from the unit interval; (ii) instead of working with evaluated
formulas one can consider implications of the forms ¥ — ¢ and ¢ — 7; (iii) the
semantic degree €’S™ (X ™) () is the infimum of all rationals r such that 7 — v is
satisfiable in all the models of X~ and the provability degree CKLS yn(z () is the
supremum of all rationals r such that 7 — v is provable from X~ All together this
led him to an expanded version of L, expanded by truth degree constants for the ratio-
nals from the unit interval and by corresponding bookkeeping axioms to treat these
constants well, which he coined Rational Pavelka Logic. Hence, in a certain sense,
Rational Pavelka Logic is equally powerful as the original Pavelka style extension
of Lukasiewicz logic.

One may wonder what is the relationship between the Rational Pavelka Logic and
other mathematical fuzzy logics, and in particular, whether Rational Pavelka Logic
is conservative over Lukasiewicz logic. In the paper Rational Pavelka Logic is a
conservative extension of Lukasiewicz logic by Hajek et al. (2000), this last question
is solved affirmatively. Besides this result, it is shown that the provability degree of a
formula can also be defined within the framework of Lukasiewicz logic, i.e. without
truth-constants in the language.

1.7.2 Logics of Probability, of Possibility and of Belief

Already ina 1994, Hajek and Harmancova (1995) noticed that one can safely interpret
a probability degree on a Boolean proposition ¢ as a truth degree, not of ¢ itself but
of another (modal) formula P, read as “¢ is probable”. The point is that “being
probable” is actually a fuzzy predicate, which can be more or less true, depending
on how much probable is ¢. Hence, it is meaningful to take the truth-degree of
Py as the probability degree of ¢. The second important observation is the fact
that the standard L.ukasiewicz logic connectives provide a proper modelling of the



12 F. Esteva et al.

Kolmogorov axioms of finitely additive probabilities. For instance, the following
axiom

Plp Vi) < (P — Pl AY)) — PY)

faithfully captures the finite-additive property when — is interpreted by the standard
Lukasiewicz logic implication. Indeed, these were the key issues that are behind the
first probability logic defined as a theory over Rational Pavelka logic in the paper by
Héjek, Esteva and Godo, Fuzzy Logic and Probability (Hajek et al. 1995). This was
later described with an improved presentation in Héjek’s monograph (Hdjek 1998)
where P is introduced as a (fuzzy) modality. Exactly the same approach works to
capture uncertainty reasoning with necessity measures, replacing the above axiom
by No ANy — N(p AYr). More interesting was the generalization of the approach
to deal with Dempster-Shafer belief functions proposed in the paper by Godo, Hijek
and Esteva, A fuzzy modal logic for belief functions (Godo et al. 2003). There, to get
a complete axiomatization, the authors use one of possible definitions of Dempster-
Shafer belief functions in terms of probability of knowing (in the epistemic sense),
and hence they combine the above approach to probabilistic reasoning with the modal
logic S5 to introduce a modality B for belief such that By is defined as P[¢, where
O is a S5 modality and ¢ is a propositional modality-free formula. The complexity of
the fuzzy probability logics over Lukasiewicz and LIT logics was studied by Hajek
and Tulipani (2001).

This line of research has been followed in a number of papers where analogs
of these uncertainty logics have been extended over different fuzzy logics, mainly
Lukasiewicz and Godel logics, see e.g. Flaminio and Godo (2007),Flaminio
et al. (2011), Flaminio and Montagna (2011), Flaminio et al. (2013). Héjek himself
wrote another very interesting paper (H4jek 2007a), generalising H4jek and Tulipani
(2001), about the complexity of general fuzzy probability logics defined over what
he calls suitable fuzzy logics, i.e. logics whose standard set of truth values is the
real unit interval [0, 1] and the truth functions of its (finitely many) connectives are
definable by open formulas in the ordered field of reals.

1.7.3 Fuzzy Modal Logics

Another related field where Petr Hajek has made significant contributions is on the
study of modal extensions of fuzzy logics and where he has also paved the way for
further studies in this field. Inspired by the pioneer work of Fitting (1992a, b) on many-
valued modal logic valued on finite Heyting algebras, in a 1996 conference paper with
Dagmar Harmancovd (Hdjek and Harmancovd 1996) there is already a first study
of a generalization of the modal logic S5 over Lukasiewicz logic. This topic is
later developed in Hajek’s monograph (Hajek 1998), where he considers modal
logics S5(%’), where € stands for any recursively axiomatized fuzzy propositional
logic extending BL. The language of S5(%) is that of fuzzy propositional calculus
(the language of ¥’) extended by modalities [J and ¢. The semantics is given by
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Kripke models of the form K = (W, e, A) where W is a set of possible worlds, A
is a BL-chain and e(-, w) is an evaluation of propositional variables in A, for each
possible world w € W. As usual, e(-, w) extends to arbitrary formulas interpreting
propositional connectives by the corresponding operations in A, and to modal formu-
las as Oy and Q¢ as universal and existential quantifiers over possible worlds, that
is, e(0p, w) = infyew e(p, v), and e(Op, w) = sup,cw e(ep, v). This is clearly a
fuzzy variant of classical S5 modal semantics with total accessibility relations. In his
book Hajek (1998), Hajek proposes a set of axioms but leaves open the problem of
proving its completeness. This problem is positively solved in his 2010 paper (Hajek
2010) where he relates S5(%’) to the monadic fragment m%V with just one variable
(but with possibly countably-many constants) of the first order logic €V, and shows
that the monadic axioms of €V provide an axiomatization of m%éV that is strongly
complete with respect to the general semantics. In Hajek (1998) it is shown that, for
% being Lukasiewicz (L) or Godel (G) logics, S5(%) standard tautologies coincide
with the general tautologies. Therefore one gets as a direct consequence the stan-
dard completeness of the S5(L) and S5(G) logics (the problem is left open for other
choices of ¥). In this paper Petr Hajek also considers other kinds of Kripke models,
namely witnessed and interval-valued models, besides some complexity results.

Petr Héjek has also studied other systems of fuzzy (or many-valued) modal
logic (Hajek et al. 1994, 1995; Hajek 2002). In particular, in Hajek et al. (1994)
a logic called MVKDA45 is defined to provide a modal account of a certain notion
of necessity and possibility of fuzzy events. MVKDA45 is developed over a finitely-
valued Lukasiewicz logic L expanded with some unary operators to deal with truth-
constants and its semantics is given by Kripke models of the form K = (W, e, 7),
where W and e are as above (but evaluations are now over the (k + 1)-valued
Lukasiewicz chain Sk, and 7 : W — S is a possibility distribution on possible
worlds. This semantics can be thus considered as a many-valued variant of the clas-
sical KD45 modal semantics.

As it has happened in other areas, Hijek ideas have been the seed for further
investigations on fuzzy modal logics. Particular relevant are the papers by Caicedo
and Rodriguez (2010, 2012) and by Metcalfe and Olivetti (2011) on general modal
logics over Godel logics, the paper by Hansoul and Teheux (2013) on modal logics
over Lukasiewicz logic, and the paper by Bou et al. (2011) on minimal modal logics
over a finite residuated lattice.

1.7.4 Fuzzy Description Logic

Computer scientists in Artificial Intelligence are interested in weakened but tractable
versions of first-order logics. Description Logics (DLs) (Baader et al. 2003) are
knowledge representation languages particularly suited to specify formal ontolo-
gies. DLs are indeed a family of formalisms describing a domain through a knowl-
edge base (KB) where relevant concepts of the domain are defined (terminology,
TBox) and where these defined concepts can be used to specify properties of cer-
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tain elements of the domain (description of the world, ABox). The vocabulary of
DLs consists of concepts, which denote sets of individuals, and roles, which denote
binary relations among individuals and could be interpreted both in a multi-modal
system and in first order logic: concepts as formulas and roles as accessibility rela-
tions in the modal setting and concepts as unary predicates and roles as binary
predicates in the first order setting. A first approach toward fuzzified versions of
description logics (FDLs from now on), i.e. versions referring to fuzzy logics instead
of classical logic, was introduced in several papers, for instance in Yen (1991), Tresp
and Molitor (1998), Straccia (1998), Stoilos et al. (2006), Sanchez and Tettamanzi
(2006), L.ukasiewicz and Straccia 2008. However, the logic framework behind these
initial works is very limited. The fuzzy logic context consisted essentially only of
the min-conjunction, the max-disjunction, and the Lukasiewicz negation.

In his 2005 paper Making fuzzy description logic more general (Hjek 2005b),
Petr Hajek proposes to deal with FDLs taking as basis #-norm based fuzzy logics
with the aim of enriching their expressive possibilities (see also Hajek 2006a). This
change of view gives rise to a wide number of choices on which a FDL can be
based: for every particular problem we can consider the fuzzy logic that seems to
be more adequate. As an example, Hajek studies an .7 Z ¢ -style description logic
as a suitable fragment of BLY. He proves, e.g. that the satisfiability of a concept
when taking Lukasiewicz infinite-valued logic as background logic is decidable.
The proof makes use of the fact that Lukasiewicz infinite-valued logic is complete
w.r.t. witnessed models and it is based on a reduction of the satisfiability problem
of a concept in description logic (or modal formula) to a satisfiability problem of
a family of formulas of propositional logic, which is a decidable problem. In fact
the result is valid for any description logic over any axiomatic extension of BL that
satisfies the witnessed axioms, which is proved to be equivalent to the finite model
property. But the main interest of Hajek’s work was to bring a new view into Fuzzy
description logics that took advantage of the recent advances of Mathematical Fuzzy
logic, giving birth to a large family of FDLs.

From then, several papers on FDLs have followed Héjek ideas, for instance,
Garcia-Cerdaiia et al. (2010), Bobillo et al. (2009), Borgwardt and Pefialoza (2011),
Cerami et al. (2010), Garcia-Cerdafia et al. (2010),Cerami and Straccia (2013),
Borgwardt et al. (2012).

1.7.5 Logics with Truth Hedges

Truth hedges are clauses which directly refer to the truth of some sentence like it
is very true that, it is quite true that, it is more or less true that, it is slightly true
that, etc. In this formulation, after Zadeh, they have been represented in fuzzy logic
systems (in broad sense) as functions from the set of truth values (typically the real
unit interval) into itself, that modify the meaning of a proposition by applying them
over the membership function of the fuzzy set underlying the proposition. In the
setting of mathematical fuzzy logic, Petr Hijek proposes in a series of three papers
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Héjek (2001, 2002b),Hajek and Harmancova (2000) to understand them as truth
functions of new unary connectives called truth-stressing or truth-depressing hedges,
depending on whether they reinforce or weaken the meaning of the proposition they
apply over. The intuitive interpretation of a truth-stressing hedge on a chain of truth-
values is a subdiagonal non-decreasing function preserving 0 and 1.

In his paper On very true (Hajek 2001), Petr Hdjek axiomatizes the truth-stresser
very true as an expansion of BL logic (and of some of their prominent extensions
like Lukasiewicz or Godel logics) by a new unary connective vt satisfying the above
mentioned conditions together with the K-axiom vt (¢ — ) — (vt ¢ — vt ) and
the rule of necessitation for vz. The logics he defines are shown to be algebraizable and
to be complete with respect to the classes of chains of their corresponding varieties,
and in the case of the logic over Godel logic he proves standard completeness. This
approach was later followed by Vychodil (2006) in order to deal with truth depressers
as well. Finally Esteva, Godo and Noguera have given in Esteva et al. (2013) a more
general approach containing as particular cases those of Héjek and Vichodyl.

1.8 Mathematical Theories Over Fuzzy Logic

Two particular elementary theories have found the interest of Petr Hdjek: an axiomatic
set theory FST for fuzzy sets, and formalized arithmetic.

A ZF-like axiomatic theory FST, based upon the first-order logic BLV A, is dis-
cussed by Petr and Z. Hanikovd in the paper A development of set theory in fuzzy
logic (Hajek and Hanikova 2003). Its first-order language has the equality symbol =
as a logical symbol, and € as its only non-logical primitive predicate. The axioms are
suitable versions of the usual ZF-axioms together with an axiom stating the existence
of the support of each fuzzy set.

A kind of “standard” model V¥ = J,on Vi for this theory FST is formed,
w.r.t. some complete BL-chain L, completely similar to the construction of Boolean
valued models for ZF, i.e. with the crucial iteration step VaL+1 ={fe dom @)y, |
dom (u) € V).

For the primitive predicate € the truth degree [[x € y]| is defined as [x € y] =
y(x) for x € dom (y) and as O otherwise. And = has the truth degree [x = y] = 1
for x = y and O otherwise.

The main results are that the structure V% is a model of all of the authors’ axioms,
and that ZF is interpretable in FST.

Another generalized set theory Petr is interested in is Cantorian set theory CLg
over Lukasiewicz logic L. In the background there is an older approach toward
a consistency proof for naive set theory, i.e. set theory with comprehension and
extensionality only, via L, initiated by Skolem (1957). This approach resulted —
after a series of intermediate steps mentioned e.g. in Gottwald (2001)— in a proof
theoretic proof (in the realm of L) of the consistency of naive set theory with
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comprehension only by White (1979) (There are doubts whether this proof is fully
correct.).

In this context, Petr’s goal is to study the arithmetics of natural numbers. In his
paper On arithmetic in the Cantor-Lukasiewicz fuzzy set theory (Hajek 2005d), he
finds out that this is a rather delicate matter.

Two equality predicates come into consideration here—so called Leibniz equality
X = y =def V2(x € z <> y € z) and the usual extensional equality x =, y =gef
Vz(z € x <> z € y). Leibniz equality is shown to be a crisp predicate, but extensional
equality is not.

CLo becomes inconsistent adding the coincidence assumption x =; y <> x =, y.
A constant w can be introduced to denote a suitably defined crisp set of natural
numbers such that CLg(w) is a conservative extension of CL. Even a weak form of
induction might be added to CLy(w) saving consistency, viz. the rule

9(0) Vx(px)) < ¢(S(x))
(Vx € w)p(x)

for formulas ¢ which do not contain the constant .

This restriction on the induction formulas is crucial, however: deleting this restric-
tion makes the system inconsistent.

Yet another approach toward arithmetics within mathematical fuzzy logic is
offered in Petr Hajek’s papers Mathematical fuzzy logic and natural numbers (Hajek
2007b), and Towards metamathematics of weak arithmetics over fuzzy logic (Hajek
2010). The starting point is a slightly modified form Q™ of a weakened version Q™
of the Robinson arithmetic Q, designed by A. Grzegorczyk, and introducing addition
and multiplication as ternary relations. Seen as an elementary theory over BLV this
theory is denoted F Q™. The main results are that Q™ as a theory over Godel logic (or
also over intuitionistic logic) is essentially incomplete and essentially undecidable,
and that F Q" is essentially undecidable too.

1.9 Petr’s Failures

As noted by Matthias Baaz in the book Witnessed years (Cintula et al. 2009), Petr
Héjek had a special skill to obtain interesting results also from his failures. Here are
some examples. After he invented his logic BL, Petr tried to prove that it is standard
complete, that is, that BL is complete with respect to the class of continuous t-norms
and their residuals. He didn’t succeed (the result was proved by Cignoli, Esteva,
Godo and Torrens in the paper Basic fuzzy logic is the logic of continuous t-norms
and their residua (Cignoli et al. 2000), but he proved something which is very close
to the desired result. Namely, he proved that BL added with two axioms which are
sound in any continuous t-norm algebra is standard complete. Then Cignoli, Esteva,
Godo and Torrens proved that these axioms are redundant, i.e., they are provable in
BL, and got the result.
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Another example was Petr’s attempt to extend the Mostert and Shield’s
decomposition of a continuous t-norm as an ordinal sum of Lukasiewicz, Godel
and product t-norms. In his paper Basic fuzzy logic and BL-algebras (Hajek 1998),
Petr did not get the full result, but he proposed a method which was crucial in the
proof of Agliano-Montagna’s decomposition of a BL-chain as an ordinal sum of
MV-algebras and negative cones of abelian £-groups. That is, he suggested to take
a maximal decomposition, that is, a decomposition in which each component can
no longer be decomposed as an ordinal sum. To conclude the proof of the Agliano-
Montagna decomposition it is sufficient to prove that any indecomposable component
is either an M'V-algebra or a negative cone of an abelian £-group.

Finally, Petr failed to invent MTL-algebras, which are due to Esteva and Godo
(2001), but he conjectured the independence of the axiom (p&(p — ¥)) —
(Y& (¥ — ¢)), which separates BL from MTL, as an open problem. The indepen-
dence of this axiom from the other axioms of BL. may have suggested the investigation
of BL deprived of it (and with the obvious axioms for A), that is, of MTL.

Finally, Petr tried to prove the redundancy of the axiom Vx(¢(x) V ¢¥) —
((Vxe(x)) V ). It turned out that this axiom is not redundant, for a proof see
for instance Esteva et al. (2003). However, a first-order fuzzy logic with this axiom is
sound and complete with respect to its chains, while first-order fuzzy logic deprived
of this axiom is sound and complete with respect to the class of its (possibly not
linearly ordered) algebras.
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Chapter 2
Petr Hajek: A Scientific Biography

Zuzana Hanikova

2.1 Introduction

Petr Hajek is a renowned Czech logician, whose record in mathematical logic spans
half a century. His results leave a permanent imprint in all of his research areas, which
can be delimited roughly as set theory, arithmetic, fuzzy logic and reasoning under
uncertainty, and information retrieval; some of his results have enjoyed successful
applications. He has, throughout his career, worked at the Academy of Sciences of the
Czech Republic,' starting as a postgraduate student at the Institute of Mathematics
in 1962. At present, he is a senior researcher at the Institute of Computer Science.
Petr’s scientific career is well captured by the books he (co)authored:

e P. Vopénka, P. Hijek: The Theory of Semisets. Academia Praha/North Holland
Publishing Company, 1972.

e P. Hijek, T. Havranek: Mechanizing Hypothesis Formation: Mathematical Foun-
dations of a General Theory. Springer, Berlin, 1978.

e P. Hijek, T. Havranek, M. Chytil: Metoda GUHA: automaticka tvorba hypotéz,
Academia, Praha, 1983. (in Czech).

e P. Hijek, T. Havranek, R. JirouSek: Uncertain Information Processing in Expert
Systems. CRC Press, Boca Raton, 1992.

e P. Hijek, P. Pudldk. Metamathematics of First-Order Arithmetic. Springer Verlag,
1993.

e P. Hijek: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.

e P. Cintula, P. Hijek, C. Noguera (eds.): Handbook of Mathematical Fuzzy Logic.
College Publications, London, 2011.

1 Formerly, Czechoslovak Academy of Sciences.
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Apart from these books, Petr Hijek is the (co)author of more than 350 research
papers, textbooks and popular articles; his works are frequently cited with the number
of citations approaching 3,000. He taught logic at the Faculty of Mathematics and
Physics, Charles University in Prague, where he was appointed full professor in 1997,
and at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical
University. He also taught at the Vienna University of Technology, where he was
appointed honorary professor in 1994. For the timespan of four decades, he has been
running a weekly seminar of applied mathematical logic, and he co-founded another
seminar on mathematical logic that is still being run at the Institute of Mathematics.

He has served as a member of committees and editorial boards and has been a
long-time member of the Union of Czech Mathematicians and Physicists. Since 1993,
he has been a member of the Association for Symbolic Logic. During 1999-2003 he
was the President of Kurt Godel Society; he was reelected in 2009 and is currently
serving his second term. Since 1996 he has been a member of the Learned Society of
the Czech Republic. During 1993-2005 he was a member of the Scientific Council
of the Academy of Sciences of the Czech Republic. His awards include the Bolzano
medal from the Academy of Sciences in 2000, a medal of the Minister of Education
of the Czech Republic in 2002, the De scientiae et humanitate optime meritis medal
from the Academy of Sciences in 2006, the Medal of Merit from the President of
the Czech Republic in 2006, the Josef Hlavka medal in 2009, and the EUSFLAT
Scientific Excellence Award in 2013.

Apart from the pursuit of mathematics, Petr Hajek is an organist. He graduated
from the Academy of Performing Arts in Prague and was, for a considerable period
of time, organist on Sundays at the protestant St. Clemens Church in Prague; since
childhood years he has been a member of the Evangelical Church of Czech Brethren.
He is married, has two children and a grandson. He is fluent in several languages,
including German, English, and Polish.

Petr Hijek is generally viewed as a very friendly and modest person, known for his
readiness to help and listen to others. Many colleagues consider him their teacher. He
is respected for his principles, not least among these, his stands during the totalitarian
era, when he would not enter the Communist Party of Czechoslovakia nor cooperate
with the State Security? when asked to. For considerable periods of time, he was
prevented from advancing his career or travelling abroad.

The few above paragraphs condense Petr Hajek’s life to a very modest space,
collecting the highlights of his professional career. This may be sufficient for many
readers. Still, in this biographical essay, I will try to offer somewhat more: to record an
appropriate context for events; to mention people that Petr encountered; and to answer
some why-questions. I must emphasize that, though I can contribute a knowledge
of Petr based on personal acquaintance, being younger I have only met him in his
“fuzzy period”. Thus in the earlier periods I rely on documents and recollections of
others. By nature this is a professional biography, thus it will not delve into Petr’s
private life.

2 Known under the acronym ‘StB’.
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2.2 Early Years and Set Theory

Petr Hdjek was born in Prague on February 6, 1940; after him, two girls were subse-
quently born into the family. His mother was a private language teacher and his father
worked in Papirografia Praha; the family lived in the Prague quarter of Zizkov. In
supplement to the usual education, Petr received a musical one: he took piano lessons
in a public school of arts. The family were religious, being members of the Evan-
gelical Church of Czech Brethren and frequenting a church near their home; it was
a natural decision for young Petr to start to study the organ, with a view of, one day,
being able to play it at services, thus contributing his skill to the community.

In June 1957 Petr completed his secondary education by graduating from a local
high school, namely, Jedendctiletd stredni skola v Praze, Sladkovského ndmésti3 At
that time, Petr was deliberating his future, deciding between mathematics and music.

The final decision was to make mathematics his main pursuit, and the young Petr
commenced his studies at the newly established Faculty of Mathematics and Physics
of Charles University in Prague. He finished in 1962, submitting a master thesis in
algebra, written under the guidance of Vladimir Kofinek, a well known algebraist.
Even though Petr was an excellent student, it was out of the question for him to get
a position at the Faculty: authorities declared it undesirable that a religious person
such as himself have any contact with students. At that time, upon graduating from
the University, students were “assigned” employment roughly in the area of study.
The exact process of assignation varied, but its results were often cumbersome:
it was not uncommon for Prague residents to be assigned to the outskirts of the
country. This time, however, Petr was lucky: in 1962, he obtained a position at the
Institute of Mathematics of the Czechoslovak Academy of Sciences. This was also
the commencement of his postgraduate training, which, at that time in our country,
was called aspirantura, and those who successfully completed it were honoured by
a candidatus scientiarum (CSc) degree.

Petr started his studies under the guidance of Ladislav Rieger, a professor at the
Czech Technical University in Prague and a distinguished logician. He introduced
Petr to contemporary results in mathematical logic and recommended some essential
reading. To appreciate what Rieger’s agenda was like, see for example Rieger (1960).
He also conducted a seminar in mathematical logic; one of the attendees was Petr
Vopénka. Unfortunately, Rieger passed away in 1963. In his essay Prague set the-
ory seminar (Vopénka 2009), Petr Vopénka writes: ““...Then [after Rieger’s death],
I decided to start a new seminar in axiomatic set theory, intended mainly for students.
The students who enlisted were (in alphabetical order) Bohuslav Balcar, Tomas Jech,
Karel Hrbécek, Karel Prikry, Antonin Sochor, Petr §tépének and some others. We
were joined by Lev Bukovsky from Bratislava, and, last but not least, Rieger’s doc-
toral student, Petr H4jek. The main target of the seminar was to study non-standard
models of Godel-Bernays set theory”. The seminar took place at the Faculty of
Mathematics and Physics, where Vopénka worked throughout.

3 Currently, Gymndzium Karla Sladkovského.
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Petr Vopénka is often considered to have been Petr Hdjek’s thesis advisor. While
there is no doubt that Vopénka actually advised Petr Hdjek’s in many respects, and
was his teacher, it was Karel Culik who was appointed the advisor after Rieger’s
death. Culik, at that time employed in the Institute of Mathematics, was an excellent
mathematician with a broad scope of interests, and, like so many of his colleagues,
not in grace of the authorities; he finally left Czechoslovakia in 1976 (see Héjek
2002). Petr Héjek submitted his thesis, ‘Models of set theory with individuals’, in
1964 (see Hdjek 1965), and defended it a year later.

Subsequently to his thesis, Petr Hajek published a considerable number of papers
on set theory; many of them were about the role of the axiom of foundation. Some
were coauthored by colleagues from Vopénka’s seminar. Some favourite publishing
options included Commentationes Mathematicae Universitatis Carolinae, a mathe-
matical journal published by Charles University since 1960; Casopis pro péstovdni
matematiky (‘Journal for the Fostering of Mathematics’), published by the Union of
Czech Mathematicians and Physicists; or Zeitschrift fiir Mathematische Logik und
Grundlagen der Mathematik, where many papers of Vopé€nka’s group were published
in English or in German. Meanwhile, Petr was not neglecting music, and continued to
study the organ, under the guidance of Jaroslava PotméSilov4, a distinguished Czech
organist.

Vopénka’s set theory seminar was a great success: it brought together a group
of young researchers* who shared a common topic of interest and who contributed
substantially to the set-theoretical agenda of the period. Even today, there are very
few students of logic in Prague who have never heard about Vopénka’s seminar and
are not aware of many of the participants’ contributions to mathematical logic, given
in the course of their lives. Still, even though Vopénka himself achieved lasting
results in (what he refers to as) Cantor’s set theory, he was rather uncomfortable
with its progress. In particular, the independence results of the late nineteen sixties
seemed for Vopénka to highlight an element of arbitrariness in choosing set-theoretic
axioms which was beyond his endurance (see Vopénka 2009). Vopénka is, primarily,
a mathematician. For him, investigations of formal theories and relations inbetween
them (the term ‘metamathematics’ is often used) is an interesting, but secondary
pursuit; a formal theory does not constitute the objects that form the subject matter
of mathematics, but merely tries to capture them, more or less conveniently. He
has always had strong preconceptions of the universe of mathematical discourse;
in particular, his concern was the phenomenon of infinity. Vopénka’s view was that
Cantor’s set theory was cumbersome in capturing this phenomenon, having closed
many doors that should have remained open.

The Theory of Semisets, written by Petr Vopénka and Petr Hajek (neither of the
authors was fluent in English at that time and the book was translated from Czech by
T.Jech and G. Rousseau), was published simultaneously by North Holland Publishing
Company and by Academia in Prague in 1972 (see Vopénka and Hédjek 1972). This
book is a result of an intense study of the construction of models for set theory, to
which Vopénka contributed significantly during the sixties. A semiset is a subclass

4 In 1963, Petr Vopénka was twenty-eight, and most of the attendants were undergraduate students.
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of a set; the theory of semisets is formally obtained by modifying the axioms of NBG
in such a way that they admit (but do not prove) the existence of proper semisets.
The theory of sets extends the theory of semisets by simply positing that all semisets
are sets; this extension is conservative in the sense that it does not add any new
statements about sets. The book develops both theories (i.e., of semisets and of
sets) along each other, exploring their mathematics and presenting many results on
them, highlighting the differences. It sets great store by interpretations (also called
‘syntactical models’ in the text), typically sought as a means of obtaining relative
consistency statements; interpretability later—during his arithmetic years—became
the flagship of Petr Hajek’s research.

Perhaps it is worth stressing at this point that, while Vopénka and Héjek joined
forces to make a significant step aside from the mainstream of research in math-
ematical logic, both were, at the same time, excellent and very active researchers
in the classical line. Interestingly, the mindsets of these two researchers seem to be
very different: with a little exaggeration, one might say that from Vopénka’s view,
Petr Héjek is a formalist, whereas from Hdjek’s view, Petr Vopénka is a founda-
tionist. Looking at Petr Hajek’s works, one notices that very early on he gives a
set of axioms and rules; without these, it would be unthinkable to continue. In Petr
Vopénka’s works, some axioms will, reluctantly and almost apologetically, be given
halfway through the text. From this aspect, the book on semisets is an interesting
synthesis of these two approaches operating together. Although excellently thought
of and docilely written, the book never attracted a wide audience.

Some years later, Petr Vopénka wrote another book and brought up another gener-
ation of students. This book, called ‘An Introduction to Mathematics in an Alternative
Set Theory’ (see Vopénka 1979), was published in Bratislava in 1979, having been
translated into Slovak language by Pavol ZlatoS. While Vopénka’s alternative set the-
ory can be seen as a continuation of some ideas present in The Theory of Semisets,
it departs much further from the classical line and, one may say, offers a remedy to
some of its alleged misconceptions. A notorious example of a semiset in alternative
set theory is the collection of natural numbers n such that n grains of wheat do not
form a heap; this property delimits a class within a fixed set, but the class itself is
not considered a set. Perhaps this example may sketch how semisets, among other
things, can model the vagueness phenomenon. Prior to this publication, Vopénka had
been running a second installment of his set-theoretic seminar, which was dedicated
to developing and working in the alternative set theory. Again the seminar was very
popular among its contemporaries.> Among the former attendants of the seminar, and
researchers who contributed to the development later, one can find Karel Cuda, Josef
Micek, Jifi Sgall, Antonin Sochor, Katefina Trlifajovd, Alena Vencovskd, Blanka
Vojtaskova and Jiff Witzany. While Vopénka’s alternative set theory is still a pop-
ular concept among Czech logicians, from a more global point of view it seems to
have shared the fate of many other hitherto proposed alternatives to the mainstream
conception of mathematics: it was trampled underfoot the crowd that pursued the
classical direction.

3 The first installment of Vop&nka’s seminar dispersed after 1968.
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A focused view of Petr Vopénka’s personality and achievements can be found in
Sochor (2001), an introductory paper to a special issue of Annals of Pure and Applied
Logic dedicated to himself.

The years spent with Vopénka’s group at the Faculty of Mathematics and Physics
brought another major change into Petr’s life: he met his second wife, Marie, among
the people who frequented the seminar. They were married in 1969, after Petr had
spent a semester visiting his colleague and lifelong friend, Gert Miiller, in Heidelberg.
Petr Vopénka was a witness at the wedding. Petr cooperated with Marie and they
coauthored several papers; a glimpse into their life together can be found in Hijkova
(2009).

2.3 Arithmetic

In the beginning of the seventies, Petr Hijek was still deeply engaged in set theory;
however, he also seemed open to starting a new line of research. Alluring new top-
ics presented themselves at that time; in particular, computational complexity was
established as a new research area. A bit later, exciting new incompleteness results
appeared in the form of natural combinatorial statements independent of Peano arith-
metic. A first-hand account of the echoes these great currents had in Prague, and a
lot more, is presented in the essay (Pudlak 2009).

During this busy period, Petr also enlisted as a student® at the Music Faculty of
the Academy of Performing Arts in Prague, where his subject was the organ and
his tutor was Jiff Reinberger, a Czech organ virtuoso, teacher and composer. Petr
obtained his degree, and continued his engagement as an organist in the St. Clemens
Church.

Pavel Pudldk became Petr’s student in mid seventies, in particular, he wrote his
master thesis under Petr’s supervision, on a subject in finite model theory. The scope
of Pudldk’s interests was rather broad, ranging over algebra, combinatorics, and
computational complexity. After some time elapsed, and some deliberation, he and
Petr arrived at a decision to make arithmetic the object of their joint study, in the late
seventies. Petr had had a previous acquaintance with Andrzej Mostowski in Warsaw,
with whom the topic had a long tradition and around whom a working group formed
itself gradually (including Zofia Adamowicz and Roman Kossak, see Adamowicz
2009). Poland is a neighbouring country and it was relatively easy to travel there;
this was a lucky circumstance, owing to which Polish and Czech logicians were able
to meet frequently and share knowledge.

Another person with whom Petr shared his interest in arithmetic was his wife,
Marie. She was a member of Petr Vopénka’s department, and her thesis, defended
in 1969, concerned binumerations of arithmetic, extending earlier results (Feferman
1960). This inspired Petr to give a course for students on the topic at the Faculty of
Mathematics and Physics, in the early seventies.

In the late seventies, Petr gained another student, Vitézslav §Vejdar, who was at
that time working on his master thesis on interpretability; later, in 1982, he defended a

6 Because of his employment, the form was a distance study.
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dissertation ‘Modal Logic and Interpretability’ (see Svejdar 1982, 1983). As already
remarked, interpretability was a key topic of Petr Hijek’s research; Svejdar’s work
explored interpretability as a modality on arithmetical sentences, in a manner anal-
ogous to that of provability.

A mini-seminar on arithmetic was started in the Hdjeks’ flat around 1978, in which
Marie also participated. Gradually a working group on arithmetic formed itself at the
Institute of Mathematics; somewhat later on, this group would include Jan Krajicek
(then a student of Pavel Pudlak). Shortly before 1980, a regular seminar was started
at the Institute. It would meet weekly in long, lively sessions to discuss the group’s
own results or to present interesting papers; at the especially busy period when Hajek
and Pudldk were working on Metamathematics of First-Order Arithmetic, reportedly
two hours were not sufficient, so there were two sessions; often one was dedicated
to what Petr was writing, the other occupied by topic of the attendants’ choice. The
seminar is still alive at the Institute of Mathematics; after Petr Hijek left, it has been
run by Jan Kraji¢ek and Pavel Pudlak for a long period of time; currently, it is run
by the joint effort of Pavel Pudldk and Neil Thapen.

The arithmetic group (within the Department of Numerical Algebra, Graph Theory
and Mathematical Logic, headed by Miroslav Fiedler) cooperated with other groups,
especially set theorists and recursion theorists in Prague, organizing workshops in
AlSovice in the Czech mountains of Jizerské hory. The workshops were quite popular,
enjoying a warm, informal atmosphere; occasionally the Czech community would
be able to welcome distinguished guests, such as Jeff Paris, Per Lindstrom, or Alex
Wilkie. Otherwise, travelling options of Czech logicians, and hence also their chance
of meeting researchers from abroad, were limited.

It was a great honour for logicians in Prague to be entrusted with organizing
the Logic Colloquium 1980. Petr Vopénka was appointed chair of the programme
committee. Petr H4jek was chair of the organizing committee, and the whole working
group at the Institute of Mathematics was involved in the preparations, alongside
other Prague logicians. The preliminary list of participants counted nearly 400 heads
from all over the world. Before the conference, in the spring of 1980, there was
some deal of perplexity among the foreign researchers who were about to take part,
regarding whether and how to express their views on the totalitarian regime then in
full swing in Czechoslovakia. Particular regard was paid to Viclav Benda, a Czech
mathematician, a Charter 77 signatory and the father of five small children, who was
at that time imprisoned for political reasons (a so-called “prisoner of conscience”).
His wife, Kamila Bendova, was a member of the logic group at the Institute of
Mathematics, involved in the organization of the event. The general idea was that a
focused effort of many mathematicians might help a fellow mathematician to lessen
the pressure of authorities on himself. However, before these intentions were allowed
to take a concrete direction, the State Security, in fear of any kind of trouble (the term
“provocations” is used in their files), set things in motion so that the Colloquium had
to be cancelled. Petr Hajek was obliged to personally send out letters of apology,
stating a fictitious reason for cancellation. The affair hit him deeply; moreover, he
was, for a time, prevented from travelling abroad.
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Despite limitations in contact, Prague came to be considered an important member
of the European arithmetic community; apart from the already mentioned researchers
in Warsaw, the arithmetic group at the Institute of Mathematics enjoyed longterm,
fruitful cooperation with Manchester (Peter Clote, Richard Kaye, Jeff Paris, Alex
Wilkie), Amsterdam and Utrecht (Dick de Jongh, Rineke Verbrugge, Albert Visser),
Siena (Franco Montagna) and other researchers; many people considered it worth
their while to come and stay (see Baaz 2009). In the summer of 1991, Prague hosted a
month-long workshop and an associated conference on proof theory, arithmetic and
complexity, complementing a similar event in San Diego a year earlier; see Clote
and Krajic¢ek (1993) for papers from the meeting.

In arithmetic, Petr applied his craft especially to studying conservativity and inter-
pretability: given that a consistent, recursively axiomatizable theory T containing
arithmetic is incomplete, for each ¢ independent of 7" one may ask how conservative
itis over 7', and whether T U {¢} has an interpretation in 7. The notions are studied
in the context of arithmetical hierarchy of formulas; particular attention is paid to
fragments of arithmetic obtained by setting an upper bound on arithmetical com-
plexity of formulas used in the induction schema. In Petr Hdjek’s treatment, these
notions became a rather neat way of capturing the strength of theories of arithmetic.
These topics are extensively covered in Petr’s dissertation submitted in 1988 for the
doctor scientiarum (DrSc) degree. The dissertation is called ‘Metamathematics of
First-Order Arithmetic’ (Hdjek 1990), and it is a direct predecessor of Petr’s part
of the famous book on arithmetic bearing the same title, written jointly with Pavel
Pudlédk a couple of years later. The dissertation is typewritten in lovely, docile Czech,
with handwritten formulas and symbols. Based on this work, Petr became doctor of
sciences in 1990.

Around 1990, the £2-Group, through one of its members, Gert Miiller, approached
Petr Hjek with the question whether he would be willing to write a monograph on
arithmetic. Petr agreed, inviting Pavel Pudldk as a coauthor. Metamathematics of
First-Order Arithmetic was published by Springer in 1993, in the ‘Perspectives in
Mathematical Logic’ series (Hdjek and Pudlak 1993). The book has three parts.
The first one investigates fragments of Peano Arithmetic obtained by bounding the
arithmetical complexity of formulas used in the induction axiom, showing them suf-
ficient for some parts of mathematics (e.g., combinatorial principles) and developing
some technical tools. The second part is devoted to the incompleteness phenomenon
and the study of various notions of relative strength of theories, such as the above.
The third part, written by Pavel Pudldk, studies bounded arithmetic, reflecting the
tumultuous development of this area during the eighties.

2.4 Logic Applied to Computer Science

A prevailing trait of Petr Héjek’s personality is his strong desire to offer his ser-
vice. This desire has many facets, and we shall not be exploring all of them; in
this section, we shall look into Petr’s efforts to offer the services of logic to other
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scientific disciplines, mainly computer science, and through it also to medicine,
biology, humanities, etc. Characteristically, Petr was always keen to help and employ
his skill in interdisciplinary research, but never willing to make one step down from
the high standards on clarity and rigour that he maintained.

Very soon after he finished his postgraduate training, a challenge to apply a rather
nice portion of logic presented itself. It was initiated by Metodéj Chytil from the
Institute of Physiology of the Czechoslovak Academy of Sciences; he proposed some
ideas that initiated the development of the General Unary Hypotheses Automaton
(GUHA) method. The idea of GUHA rested in listing exhaustively all valid univer-
sally quantified implications about a given data matrix, where lines represent objects
and columns represent their Boolean properties. A suggested usage was to perform
an exhaustive search for valid statements on a small sample of data, thus obtaining
all valid statements within reasonable time; then conceiving the “most interesting”
statements as hypotheses to be tested on a larger dataset.

The authors of the method were Petr Hijek (who contributed the element of
logic), Ivan Havel (who implemented the algorithm) and Metod€j Chytil; it was first
presented in 1965 and published as Héjek et al. (1966). The first implementation was
running on a MINSK 22 machine.

This pioneering work grounded a new area of applied research in Prague, and
much effort was devoted to enhancement of the GUHA method; part of the effort
naturally went to implementing and applying GUHA, and to collaborating with
intended users, mainly researchers in medicine, biology, and social sciences. The
word ‘user’ is perhaps too laden with recent connotations to convey what it was like
to use the early implementation (or, one may say, any implementation) of GUHA; a
small interdisciplinary team was usually needed, to collect and prepare the data, to
correctly define the parameters of each run, to actually run the program, and to cope
with the results.

However, GUHA also lent itself to theoretical endeavours. Obviously, if any oper-
ation on data is costly, then time can be saved with applying deduction wherever
possible and refraining from testing the validity of deducible statements in the data.
Petr Héjek spoke about observational calculi, and these form his main contribution
to publications about the theoretical aspects of GUHA.

The GUHA team included Kamila Bendovd from the Institute of Mathematics,
Zdenék Renc from the Faculty of Mathematics and Physics, Dan Pokorny from
Mathematical centre of Biological Institute of the Czech Academy of Sciences, and
many other people.

The method benefited considerably from the arrival of Tomas§ Havranek on the
team. Havranek was a statistician, and under his guidance, statistical quantifiers were
introduced to GUHA in addition to a logical implication: moreover, he supervised
the employ of the statistical paradigm in the whole approach.

Petr H4jek and Tomas Havranek wrote a very comprehensive book about GUHA:
Mechanizing Hypothesis Formation: Mathematical Foundations of a General The-
ory, published by Springer (Hajek and Havranek 1978). The book contained the full
thitherto developed theory, and also many methodological and historical remarks.
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A Czech book about GUHA, targeting mainly its potential users, was published by
Academia in Prague in 1983 (see Hajek et al. 1983).

Petr gained two successful doctoral students in the GUHA line: Jifi Ivinek and
Jan Rauch (Ivanek 1984; Rauch 1986). Both of them have retained an interest in
the development of the method, and have continued their work on the method or
related issues. The GUHA research continued naturally at the Institute of Computer
Science, before and after Petr became its director (in 1992); perhaps we can say that
this line of Petr’s research played a major role in eventually bringing him into the
Institute. The research group there included Anna Sochorova, Dagmar Harmancova,
Jana Zvarova, Martin Holena and David Coufal.

GUHA never enjoyed a large-scale application or the interest of software-
developing companies. Its limitations are easy to grasp: it was designed at a time and
place where any kind of commercial enterprise was hardly thinkable; its theoretical
aspects were too formidable for a user from a different background; it only oper-
ated on binary data; there was little demand for exploratory data analysis. However,
it remained an interesting subject of study, a tool for academic applications, and a
ground for interdisciplinary cooperation.

Around 1980, Petr Héjek became interested in expert systems, then very pop-
ular artificial intelligence tools. Apart from viewing expert systems as a possible
application of logic and a stimulation for its development, the interest was due to a
practical need for such system, to complement the existing GUHA procedures. In
particular, it was hoped that such a system might guide a nonexpert user through
the advanced options offered by GUHA implementations, especially its many quan-
tifiers; the ultimate target was a fully automated GUHA. This target provided a
name for the earliest version of the expert system—it was called G-QUANT (‘G’ for
‘GUHA’ and ‘QUANT" for ‘quantifiers’).

Petr Hijek and his colleagues focused on rule-based systems, i.e., those using the
architecture of a knowledge base and rules. A knowledge base is a set of proposi-
tions. Rules of the form A — S(w) express the fact that knowing A contributes to
knowing S with some weight w. The weights are taken from a chosen set endowed
with some mathematical structure, allowing for comparison and combining weights.
Weights intuitively represent how certain the given individual is of validity of the
given information. Moreover, uncertainty may be present in the form of missing
information, inherent vagueness, imprecision, etc.

Dempster—Shafer theory of evidence is a generalization of Bayesian probability
theory; it is based on assigning beliefs masses to subsets of events. During the eight-
ies, Petr acted as advisor to a graduate student from Cuba, Julio Valdés. Together
they undertook an algebraic analysis of the system of assignations developed by
Dempster and Shafer. The structure is that of the Dempster semigroup, an ordered
Abelian semigroup with the operation of Dempster’s rule of belief combination; their
results are collected in the dissertation (Valdés 1987). Also Milan Daniel, originally
a student of Tomas Havranek (who passed away in 1991) wrote his dissertation under
the guidance of Petr Hajek (Daniel 1993). David Harmanec, Petr Hijek’s doctoral
student, finished his studies in the United States under supervision of George Klir.
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On a practical line, Petr and his colleagues, mostly based at the Institute of Com-
puter Science—Marie Héjkovd, Milan Daniel, and Tom4§ Havranek—developed
and implemented an expert system shell, called EQUANT, in Prolog. ‘E’ stands for
‘empty’—the system has no fixed knowledge base, but concerns itself with combin-
ing the assigned weights and the propagation of uncertainty. The system developed
over time, and several implementations existed. However, the dream did not come
quite true: GUHA never became fully automated.

Theoretical issues on processing uncertainty gave rise to a book, Uncertain Infor-
mation Processing in Expert Systems, written by Petr Hijek, Tomas Havranek, and
Ivan Jirousek, published in 1992 by CRC Press (Hajek et al. 1992). The issues dis-
cussed in the book attracted a wider community; Ivan Kramosil, previously at the
Institute of Information Theory and Automation, joined the group at the Institute of
Computer Science in 1992.

In the late sixties, Petr Héjek founded a seminar to pursue the GUHA issues;
it is customarily referred to as “seminar of applied mathematical logic” or simply
“Héajek’s seminar”. The seminar would meet weekly, at first at the Faculty of Math-
ematics and Physics in Karlin, then in a Czech Technical University building in
Albertov, later also at the Institute of Mathematics. As time passed, the scope of
the seminar widened, and it attracted many people from the mathematical logic and
computer science communities in Prague. It later moved with Petr to the Institute of
Computer Science, and changed contents according to the shift of Petr’s interests—
recently, a lot of time has been devoted to fuzzy logic. The seminar is still being run
by the joint efforts of Petr Hijek and Petr Cintula.

The difficulty in travelling abroad and maintaining contact with researchers from
other countries perhaps contributed to bringing local and regional conferences to
rather high standards. There was a lot of meetings and workshops, on regular and
irregular basis; some of them grew into a tradition and are still continued nowadays.
Distinguished speakers from abroad were invited where possible, and the possibility
to meet them was regarded as a treat. Let us recall two of the regular events.

MFCS (Mathematical Foundations of Computer Science) is an annual conference
started in 1972. The conference is organized in turns in Czech Republic, Slovakia,
and Poland, in summertime; it remains a major regional event in theoretical computer
science in each of these countries. Petr Hdjek would be frequently a member of the
programme committee of MFCS, and also a speaker there.

SOFSEM (Software Seminar) is held annually since 1974; intended for the
Czechoslovak computer science community, it usually took place in the mountains
in wintertime, and until 1994, a meeting would last two weeks, resembling a school
more than a conference. The SOFSEM meetings had a warm, lively atmosphere and
were extremely popular; at the height of their glory, they were so crowded that it was
difficult to secure a place there. As time passed, the SOFSEMs grew more and more
international, now being regular international conferences, held in Czech Republic
or in Slovakia. Petr Hijek was invited as a speaker there several times, contributing
topics discussed in this section.

In the beginning of the 1990s, big changes were in order both for Petr Hijek and
for his homeland, Czechoslovakia. The country had just seen the Velvet Revolution,
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and the fall of the totalitarian regime had splashed away a lot of repression. Many
people who had been barely tolerated by the regime, for their political stands, class
origin, religious beliefs, or family ties, and consequently had been prevented from
developing their careers, travelling abroad, and doing many other things that human
spirit longs to do, were free at last. Petr Hijek was, to a considerable degree, such a
person.

In 1991, Tomas Havrének, director of the Institute of Computer Science and Petr
Héjek’s coauthor and friend, passed away at the bloom of his scientific powers.
Soon after, it was proposed to Petr to consider himself a candidate for the position
of director. The link to Petr consisted in his longterm engagement in the scientific
agenda of the Institute. It was felt that Petr was able to contribute not only his scientific
excellence on an international scale, but also an unblemished personal record; at the
particular time at the particular place, the second quality was to be appreciated as
much as the first one. Petr considered and accepted the idea, he was elected and
appointed director of the Institute, and assumed office in March 1992.

The Institute of Computer Science’ has an interesting history. It was established
in 1975 as a General Computing Centre of the Czechoslovak Academy of Sciences,
relatively well equipped to provide computing services on demand of the institutes
of the Academy. During the 1980s, it was transformed into a scientific institute in its
own right. At that time, and especially in the 1990s, the Institute strove to establish
itself as a fully fledged academic organization. By being appointed its director, Petr
Héjek became an important partaker in the effort.

With the change of political regime, it was also possible for Petr to extend his
activities by starting teaching students on a regular basis. In 1993, he became asso-
ciate professor at the Faculty of Mathematics and Physics, Charles University in
Prague; in 1997, he was appointed full professor of mathematics there. He taught a
comprehensive course in first-order logic. At the Faculty of Nuclear Sciences and
Physical Engineering, he later taught fuzzy logic.® He also taught logic at the Vienna
University of Technology, being fluent in German, and was appointed honorary pro-
fessor there in 1994.

2.5 Fuzzy Logic

The monograph Metamathematics of First-Order Arithmetic brought both its authors
a worldwide recognition. Arithmetic was a subject well in the mainstream of math-
ematical logic. On the other hand, fuzzy logic, even now, after a continued effort of
many researchers spanning more than two decades, still seems to stand slightly in
need of defence, or at least, an explanation. Petr has always been a person capable of
providing very convincing explanations. We will try to retrace his path, exploring the

7 The name ‘Institute of Computer Science’ was established in 1997, but for simplicity we use it
also for the earlier period.

8 It was there that he met Petr Cintula.
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interaction between Petr and fuzzy logic, tracing the shift of meaning of the phrase
over time.

Fuzzy logic is based on the conviction that the truth of a proposition is a matter
of degree, that truth degrees of propositions can be compared, and that the truth
degree of a compound proposition can be computed from those of its constituents.
This leads to the concept of an algebra of truth degrees; key examples of fuzzy
logics have emerged as formal deductive counterparts of some desirable algebraic
semantics.

In 1965 Lotfi Zadeh introduced fuzziness in his keynote paper (Zadeh 1965),
dealing with fuzzy sets. A fuzzy set was an object of classical set theory, being mod-
elled by its characteristic function on a fixed universe, taking values in some algebra
of truth degrees (typically the real unit interval endowed with suitable operations).
The concept turned out to be extremely helpful in applications and also intrigued
many theoretical researchers, spreading rapidly and giving rise to a fast-growing
research area, perhaps best labelled ‘theory of fuzzy sets’ (though, quite often, the
terms ‘fuzzy set theory’ or even ‘fuzzy logic’ are used to denote it).

One of the persons who pursued Zadeh’s ideas on fuzziness was his doctoral
student, Joseph Goguen. His paper (Goguen 1969) remains a source of inspiration
for generations of readers; among other things, he distinguishes various kinds of
imprecision (e.g., vagueness or ambiguity), he points out the difference between
fuzziness and probability, he implicitly introduces a residuated product algebra, and
he also sets the challenge to develop a formal deductive system for partially true
propositions.

Zadeh’s and Goguen’s works on fuzziness did not pass unnoticed in the Czech
Republic. First one must mention (Pultr 1976), where Ales Pultr analyzed the concept
of fuzziness mainly from a categorical point of view (as Goguen also did). Pultr’s
doctoral student Jan Pavelka, in his thesis defended in 1976, developed a formal
deductive system of fuzzy logic introducing truth constants for elements of the alge-
bra in the language. Pavelka was intrigued by the challenge posed by Goguen; most
researchers in fuzzy logic will have heard about Pavelka’s logic, as a propositional
system conservatively expanding Fukasiewicz logic, allowing for inference among
partially true statements, using the values from the standard Lukasiewicz algebra as
labels. In fact Pavelka’s work is much more comprehensive (Pavelka 1979).

Petr Hajek was the reviewer of Pavelka’s thesis; thus he had, quite early on, a direct
contact with results obtained in our country and the works they referred to. Many
years later, in his monograph (Hdjek 1998), he continued the ideas of Pavelka and
designed what he called a “rational Pavelka’s logic”, a system expanding Lukasiewicz
logic with constants for rationals within [0, 1] (thus in a countable language).

A bit later, in 1988, a somewhat similar situation recurred: Petr Hijek was the
reviewer of the thesis of Vilém Novak, who, like Jan Pavelka many years before
him, was a student of Ales Pultr working on fuzzy logic in language expanded with
constants. It was his endeavour to extend Pavelka’s results to the first-order case.

In 1991, Gaisi Takeuti visited Prague to attend the already mentioned work-
shop on proof theory, arithmetic and computational complexity. It was just then that
Takeuti had finished a joint paper with Satoko Titani, called Fuzzy logic and fuzzy
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set theory (Takeuti and Titani 1992). In this comprehensive piece of work, the terms
‘fuzzy logic’ and ‘fuzzy set theory’ acquired a new meaning: the paper contains an
axiomatization (with an infinitary rule) of a Godel logic enriched with Lukasiewicz
connectives and the product conjunction, and the constant 1/2 (a predecessor of the
logic LH%). The appeal of this system is plain to see: it is a semantically rich logic,
subsuming several other already existing systems (such as Lukasiewicz logic or
Godel logic), and it has standard completeness (at the cost of decidability). However
it may be argued that the real beauty of the paper lies in the set theory developed
in this logic; a first-order theory, the axioms mimicking the Zermelo-Fraenkel ones,
governed by the laws of fuzzy logic. The paper leans back on well-established results
on set theory in intuitionistic logic, exploiting the fact that Godel logic is a semilin-
ear extension thereof. Petr Hijek must have been captivated by the paper, because
he later contributed both to the logic, rephrasing it in his monograph (H4jek 1998),
and to the set theory, recasting the ZF-style theory into the setting of his basic logic
(H4jek and Hanikova 2003).

In the early 1990s, learning from others, Petr clarified to himself the traits that
distinguished fuzzy logic among dozens of other approaches that could be labelled
“reasoning under uncertainty”’; he gradually started to clarify the distinction to others,
and did so with the unrelenting determination of a true missionary. He argued that
fuzzy logic, like many-valued logic, has a purely formal deductive facet; he stressed
the distinction between degrees of truth (involving vague notions, such as ‘beautiful’)
degrees of belief (involving the subject’s views on potentially crisp notions), and
probability (Hajek 1994); he ventured to seek the ties of fuzziness to natural language
semantics, and to philosophical treatment of the vagueness phenomenon.

Quite importantly, Petr was not alone in his efforts: he was able to pursue some
previously made bonds and acquaintances, since many researchers shared his interest
in fuzzy logic. At the time, our country’s boundaries were open, so it was possible
to go abroad and receive guests. Petr knew Franco Montagna, Matthias Baaz, and
Jeff Paris from his arithmetic years. He also enjoyed a longterm cooperation with
Francesc Esteva and Lluis Godo, initiated in the early nineties. He also knew Siegfried
Gottwald. He knew, and was on visiting terms with, researchers in Italy pioneering
many-valued and fuzzy logic, such as Daniele Mundici, Antonio Di Nola and Gian-
giacomo Gerla. He was aware of Ulrich Hohle’s work. Moreover, fuzzy logic had
had a continuing tradition in the Czech Republic.

In mid 1990s, a group of researchers from fourteen European countries applied
successfully for a COST (European Cooperation in Science and Technology) project.
The project Many Valued Logics for Computer Science Applications was approved
and initiated in 1995. The countries (managers) involved in the project were Aus-
tria (Matthias Baaz and Erich Peter Klement), Belgium (Etienne Kerre and Marc
Roubens), the Czech Republic (Petr Hdjek), Finland (Esko Turunen), France (Luisa
Itturioz and Guy Tassart), Germany (Peter H. Schmitt and Siegfried Gottwald),
Greece (Costas Drossos), Italy (Daniele Mundici and Antonio Di Nola), Poland (Ewa
Orlowska and Janusz Kacprzyk), Portugal (Isabel M. A. Ferreirim), Slovakia (Radko
Mesiar), Spain (Ventura Verdd Solans and Immaculada P. de Guzman Molina), Swe-
den (Patrik Eklund), Turkey (Aydan M. Erkmen and Ismet Erkmen) and the United
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Kingdom (Dov Gabbay and Hans Jiirgen Ohlbach). The scope of the grant was rather
broad; however, among other things, for the 5years of its duration, it continued to
promote cooperation among European researchers who focused on fuzzy logic as a
rigorous mathematical discipline. This grant was a milestone in that it established the
fuzzy logic community in Europe (however vaguely defined and subject to change
in time); in analogously broad terms, a major part of the agenda of this group of
researchers can be (and is, nowadays) labelled mathematical fuzzy logic. Within the
community, many loose ends were tied together, many different perspectives united,
and fuzzy logic saw a rapid development, with close ties to already existing many-
valued logics, residuated lattices, intuitionistic theories, philosophy of vagueness,
and other areas.

Starting in 1992, Petr H4jek served two four-year terms as director of the Institute
of Computer Science. He did not mitigate his research during the period of his
appointment; quite on the contrary. After an initial phase of searching and sorting
the territory, the mid nineties saw him developing a new formal system, intended to
capture the logic of continuous t-norms and their residua. This system, since it was
a common fragment of some already existing logics describing particular examples
of continuous t-norms, was named the ‘basic logic’ (abbreviated BL). At the time, it
may have indeed seemed basic and rather weak; nowadays, when both Petr and his
peers have delved much deeper and brought to light many weaker systems, the term
‘basic logic’ (even ‘basic fuzzy logic’) seems a bit awkward, so many people choose
to call it ‘Hajek’s basic logic’.

The monograph Metamathematics of Fuzzy Logic was published in 1998, the
fourth volume of the ‘Trends of Logic’ series of Kluwer Academic Publishers (Hajek
1998). It offered a thorough development of the basic logic BL (propositional and
first-order), which provided the subject of fuzzy logic with a much needed formal
treatment meeting the standards of a subarea of mathematical logic. The book also
includes an explanation of how these results project back to applications and some
neighbouring areas. The monograph was a product of several years’ continued effort,
evolving from lecture notes for tutorials given on the new and captivating topic. It
roughly marks the end of an era that can be viewed as pioneering work in mathe-
matical fuzzy logic for Petr H4jek. The next decade would see mathematical fuzzy
logic in full bloom.

Other books on closely related topics emerged at about the same time as
Petr’s monograph. To start with, Siegfried Gottwald published the English trans-
lation (Gottwald 2001) of his earlier monograph in German. Roberto Cignoli,
Itala M. L. D’Ottaviano, and Daniele Mundici wrote a book on MV-algebras
(Cignoli et al. 1999). Vilém Novdk, Irina Perfilieva, and Jifif Mockot prepared a
book covering the evaluated-syntax approach of the group (Novik et al. 2000).

In 2000 Petr’s term in office as director of the Institute of Computer Science
elapsed; his successor was Jifi Wiedermann. Petr was appointed head of the Depart-
ment of Theoretical Computer Science, a position he held for several years. Currently,
he holds the position of a senior researcher.

A publication of a monograph is a good step in spreading the knowledge and
involving other people in the topic. With the publication of Hijek’s book and some



36 Z. Hanikovd

of the above, more people became involved in fuzzy logic: Petr was active in evange-
lizing people, gaining the attention of some of his former colleagues in arithmetic for
example. Jeff Paris joined efforts with Petr in several papers about fuzzy logic, and
Franco Montagna made fuzzy logic his primary research topic. Moreover, a group of
students gradually formed around Petr: these included Petr Cintula, Rostislav Hor¢ik,
Libor Béhounek and myself; a working group on fuzzy logic was formed. I wrote
a dissertation under Petr’s supervision (Hanikovd 2004) and another one (Cintula
2005) appeared a year later. Together with people already working with Petr, such
as Ivan Kramosil, Dagmar Harmancova, Peter Vojtas, Martin Holeiia, Milan Daniel,
and some regular visitors, such as Mirko Navara, we saw some very active years,
meeting at the seminar of applied mathematical logic, going to conferences, reading
papers, and broadening our perspective. Importantly, we were also more and more
able to recognize the role of fuzzy logic among other nonclassical logics, in the
philosophy of vagueness, as a ground for developing fuzzy mathematics, etc.

The first decade of the new millennium has also been a marked success for math-
ematical fuzzy logic on an international scale. Though still not quite accepted by
the mainstream of mathematical logic, the discipline attracted the attention of more
and more researchers, including those who did not work in it, but saw it as relevant
for or related to their research. Many young people became involved. In particular,
Prague continued the fruitful cooperation with the Barcelona group and with the
Vienna group, and with many researchers in Italy. A MathFuzzLog working group
of EUSFLAT has been established in 2007. The amount of results gathered by the
community through the decade called for a new book that would encompass all the
new material. In fact, several books were published, but, from the point of view
of Petr Héjek, a key moment was the decision to prepare not another monograph,
but a handbook with chapters written by people who closely pursued the particular
subareas. The Handbook of Mathematical Fuzzy Logic was edited by Petr Cintula,
Petr H4jek and Carles Noguera; eleven chapters were agreed upon, roughly covering
the main areas, and authors started writing their chapters around the middle or 2009.
The book was published in 2011, comprising nearly one thousand pages. Apart from
editorship, Petr coauthored the introductory chapter and the chapter on arithmetical
complexity of fuzzy logics. The main import of this book is that it collects current
knowledge in key areas of mathematical fuzzy logic, offering it to interested readers.

2.6 Sources and Acknowledgements

Some of Petr’s older papers may be available online through Czech Digital Mathe-
matics Library at www.dml.cz. His full bibliography is maintained by the library of
Institute of Computer Science, and is also available online.

In 2009, the volume Witnessed Years: Essays in Honour of Petr Hdjek, dedicated to
Petr Héjek on the occasion of his 70th birthday, was edited by Petr Cintula, Vitézslav
Svejdar and myself and published by College Publications. Many of Petr’s friends
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and colleagues contributed and the book contains a lot of information about Petr and
his scientific interests.

I am indebted to a number of people for their willingness to share their rec-
ollections with me, and for finding time to actually do so; without them, writing
this biography would not have been possible. They include (in no particular order)
Dagmar Harmancovd, Pavel Pudldk, Vitézslav Svejdar, Kamila Bendova, Milan
Daniel, Petr Cintula, Ale§ Pultr, Miroslav Tima, Petr Vopénka, Jifi Ivinek, Marie
Héjkova, Daniele Mundici, and Franco Montagna. Moreover, a few people read
drafts of this text and suggested many improvements; these include Jirka Hanika,
Vitézslav Svejdar, Milan Daniel, Miroslav Tima, and Daniele Mundici. Our librarian,
Ludmila Nyvltov4, has been miraculous in retrieving literature (especially various
people’s dissertations) and other information. Last but not least, Petr Hijek has borne
the fact that his biography is being written, and my repeated questioning him, with a
degree of patience usually only found in saints, and he was so kind as to read a draft
of the biography as well. Shortcomings in the text remain, of course, my own.

The preparation of this text was supported by grant P202/10/1826 of the Czech
Science Foundation and by RVO: 67985807.
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Part 11
Foundational Aspects of Mathematical
Fuzzy Logic

This part is devoted to the foundational aspects of Mathematical Fuzzy Logic, and
discusses problems like: How can we apply Fuzzy Logic to the foundations of
mathematics, or Is it possible to treat vagueness inside Mathematical Fuzzy Logic.
The papers Set theory and arithmetic in fuzzy logic, by Libor Béhounek and
Zuzana Hanikova and The logic of fuzzy set theory: a historical approach, by
Siegfried Gottwald discuss the first aspect, namely Héijek’s contribution to
foundations of mathematics inside Fuzzy Logic. As it might be expected, Set
Theory plays a basic role in the foundations of mathematics, even in the context of
many-valued logic. It may be understood in several different ways: for instance,
one might investigate the usual set theory, but with a many-valued background
logic, for instance, MTL, instead of classical logic. Alternatively, one might study
set theories, which are inconsistent in a classical context (like Cantor’s naive set
theory), but become consistent when based on many-valued logic. Finally, one
may investigate Zadeh’s fuzzy sets. Clearly, these approaches are related to each
other, but there are also differences: for instance, fuzzy sets might also be
invesigated inside classical logic.

For a discussion about the relationship between Fuzzy Sets and Fuzzy Logic, 1
warmly invite the reader to consult Gottwald’s chapter The logic of fuzzy set
theory: a historical approach, in which the history of fuzzy sets and their
relationship with fuzzy logic is widely discussed, and Hdjek’s contribution is
explained in detail. The chapter also touches on another interesting aspect of fuzzy
logic, namely, Giles’ intepretation in terms of games.

The chapter Set theory and arithmetic in fuzzy logic, by Béhounek and Hanikova
investigates the other approach, namely axiomatic set theories with a many-valued
logic as a background logic. Héjek considered set theories over BLV, while the
authors work in the more general logic MTLYV.
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But in my opinion, the most interesting part of this chapter is the investigation of
theories, like arithmetic plus a truth predicate, or Cantor’s naive set theory, which
are classically inconsistent, but are (probably)' consistent if the background logic
is not classical, but many-valued.

The chapter Bridges Between Contextual Linguistic Models of Vagueness and
TNorm Based Fuzzy Logic, by Christian G. Fermiiller and Christoph Roschger,
focuses on another foundational aspect of fuzzy logic, namely the treatment of
vagueness. This problem was the source of interesting discussions between
researchers from Fuzzy Logic and philosophers, and perhaps it would deserve a
whole chapter.

Philosophers and linguists observed that truth degrees are not sufficient for a
satisfactory treatment of vagueness, and proposed some alternative approaches.
The chapter constitutes a bridge between the approaches proposed by linguists and
fuzzy logic, and shows that fuzzy sets can be extracted systematically from the
meaning of predicates in a given context and that one can reconstruct a
corresponding degree-based semantics of logical connectives in various ways. In
particular, the three fundamental t-norms, Lukasiewicz t-norm, minimum, and
product, naturally appear in different ways as limits of degrees extracted from
contexts.

! As the authors remark in this chapter, Terui found an error in White’s consistency proof of
Cantor’s naive set theory over Lukasiewicz logic.



Chapter 3
The Logic of Fuzzy Set Theory: A Historical
Approach

Siegfried Gottwald

2010 Mathematics Subject Classification: 03-03; 01A60; 01A61; 03B50; 03B52;
03E72

3.1 Introduction

The notion of fuzzy set is a technical tool to mathematically grasp the use and the
effect of “vague” notions, more precisely: of not sharply delimited notions, in a
manner completely different from the way classical mathematics is treating them,
if unavoidable: viz. by “precisifying” them into crisp notions. Formally, each fuzzy
set A is a fuzzy subset of a given universe of discourse U, characterized by its
membership function 4 : U — [0, 1]. The value 4 (x) is the membership degree
of x with respect to the fuzzy set A.

Fuzzy sets have been introduced into the mathematical discourse in 1965 in a paper
Zadeh (1965) by the US-American system scientist Lotfi A. Zadeh. The intention
came from applications, particularly from ideas related to the modeling of large scale
systems, as explained e.g. in the historical study Seising (2007).

In parallel, and independent of the approach by Zadeh, the German mathematician
Dieter Klaua presented two versions Klaua (1965, 1966b) for a cumulative hierarchy
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of so-called many-valued sets.! These many-valued sets had the fuzzy sets of Zadeh
as a particular case.

Historically, Zadeh’s approach proved to be much more influential than that of
Klaua, so we adopt the name fuzzy sets for both these types of objects here.

This chapter intends to sketch the way which led from the introduction of these
kinds of non-traditional sets to the development of logics particularly designed to
serve as suitable logics to develop the theory of fuzzy sets.

This has not been an obvious development. Even philosophically oriented prede-
cessors of Zadeh in the discussion of vague notions, like Black (1937) and Hempel
(1939), did refer only to classical logic, even in those parts of these papers in which
they discuss the problem of some incompatibilities of the naively correct use of
vague notions and principles of classical logic, e.g., concerning the treatment of
negation-like statements.

3.2 The “Fuzzy Sets” of Zadeh

As Zadeh introduced fuzzy sets in his seminal paper Zadeh (1965) he essentially
did not relate them, or at least their suitable treatment, to non-classical logics. There
was, however, a minor exception: in discussing the meaning of the membership
degrees he mentioned—in a “comment” pp. 341-342; and with reference to Kleene’s
monograph Kleene (1952) and Kleene’s three valued logic—with respect to two
thresholds 0 < B < « < 1 that one may interpret the case p4(x) > « as saying
that x belongs to the fuzzy set A, that one may interpret 4 (x) < f as saying that
x does not belong to the fuzzy set A, and leaving the case 8 < pu4(x) < o as an
indeterminate status for the membership of x in A.

This indicates a certain internal three-valuedness of the considerations on fuzzy
sets, a topic which essentially remained hidden up to now.

Nevertheless, the overwhelming majority of fuzzy set papers that followed Zadeh
(1965) and the other early Zadeh papers on fuzzy sets treated fuzzy sets in the standard
mathematical context, i.e. with an implicit reference to a naively understood classical
logic as argumentation structure.

Formally, however, it was important that Zadeh not only proposed to define union
A U B and intersection A N B of fuzzy sets A, B by the well known formulas

maup(x) = max {ua(x), up(x)}, (3.1
manB(x) = min{ua(x), wp(x)}, (3.2)

! The German language name for these objects was “mehrwertige Mengen”. The stimulus for these
investigations came from discussions following a colloquium talk which Karl Menger had given in
Berlin (East) in the first half of the 1960s. (Personal communication to this author by D. Klaua.)
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but that he also introduced in Zadeh (1965) other operations for fuzzy sets, called
“algebraic” by him, as, e.g., an algebraic product AB and an algebraic sum A + B
defined via the equations

mwap(x) = pa(x) - up(x), (3.3)
ma+p(x) = min{ua(x) + up(x), 1}. (3.4)

The core point here is that it is mathematically more or less obvious that these
two additional operations are particular cases of further generalized intersection and
union operations for fuzzy sets besides the “standard” versions (3.2) and (3.1), and
that they are non-idempotent operations.

3.2.1 Relating the Zadeh Approach to Non-classical Logics

It was Goguen who, starting only from Zadeh’s approach, was the first to emphasize
an intimate relationship to non-classical logics. In his 1969 paper Goguen (1968-69),
he considers membership degrees as generalized truth values, i.e. as truth degrees.
Additionally he sketches a “solution” of the sorites paradox, i.e. the heap paradox,
using—but only implicitly—the ordinary product * in [0, 1] as a generalized con-
junction operation. Based upon these ideas, and having in mind suitable analogies
to the situation for intuitionistic logic, he proposes completely distributive lattice
ordered monoids, called closg’s by him, enriched with a (right) residuation opera-
tion — characterized by the well known adjointness condition

axb<c¢c & b<a—c, 3.5

and with the “implies falsum”-negation, as suitable structures for the membership
degrees of fuzzy sets. He introduces in this context the notion of tautology, with
the neutral element of the monoid as the only designated truth degree. He defines
a graded notion of inclusion in the same natural way as Klaua (3.6) did, of course
with the residual implication — instead of the implication — | of the Lukasiewicz
systems. But he does not mention any results for this graded implication.

Additionally, because of an inadequate understanding of logical calculi, he does
not see a possibility to develop a suitable formalized logic of closg’s, as may be seen
from his statement:

Tautologies have the advantage of independence of truth set, but no list of tautologies can
encompass the entire system because we want to perform calculations with degrees of validity
between 0 and 1. In this sense the logic of inexact concepts does not have a purely syntactic
form. Semantics, in the form of specific truth values of certain assertions, is sometimes
required.

So, the question was what structural consequences the acceptance of definitions
like (3.3) and (3.4) would have for generalized intersections and unions. A particular,
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somehow “reverse” question was which structural conditions, besides (3.2) and (3.1),
could eliminate such generalizations. An answer to this “reverse” question was given
in Bellman and Giertz (1973), cf. also Gaines (1976): some rather natural “bound-
ary conditions” together with the inclusion maximality of the standard intersection
w.r.t. each other generalized intersection, with the inclusion minimality of the stan-
dard union w.r.t. each other generalized union, with commutativity and associativity,
and with the mutual distributivity of the generalized union and intersection force a
restriction to the “standard” case (3.2) and (3.1).

However, the set of all these structural restrictions from Bellman and Giertz (1973)
seems to be very restrictive, and hence it did not really look convincing. Therefore
the restriction to the “standard” operations (3.2) and (3.1) was never accepted by the
majority of the mathematically oriented people of the fuzzy community.

As a consequence, a group of authors, a lot of them from the Spanish fuzzy
community, discussed what might be suitable choices of such “fuzzy” connectives
which might be used to define unions and intersections for fuzzy sets different from
(3.2) and (3.1). One of the leading ideas in their considerations was to look at the
types of restrictive conditions discussed in Bellman and Giertz (1973) as functional
equations or functional inequalities, to reduce this set of functional conditions, to
look also at other conditions, and to discuss the solutions of suitable sets of such
functional conditions. The paper Alsina et al. (1983) is a typical example, its focus is
on pairs of generalized conjunctions and disjunctions. Other papers, with emphasis on
generalized implication operations are, e.g., Trillas and Valverde (1985) and Bandler
and Kohout (1980).

Almost from the very beginning it was, however, clear from the mathematical
point of view that set-algebraic operations for fuzzy sets can be reduced, in a many-
valued setting, to generalized connectives in essentially the same way as standard
set-algebraic operations for crisp, i.e. classical sets can be reduced to connectives of
classical logic.

3.3 The “Many-Valued Sets” of Klaua

In Klaua’s two versions Klaua (1965, 1966b) for a cumulative hierarchy of fuzzy
sets he considered as membership degrees the real unit interval #5, = [0, 1] or a
finite, m-element set %, = {% |0<k< m} of equidistant points of [0, 1]. He
also started his cumulative hierarchies from sets U of urelements. The infinite-valued
case with membership degree set #5, = [0, 1] gives, in both cases, on the first level
of these hierarchies just the fuzzy sets over the universe of discourse U in the sense
of Zadeh.

So it is reasonable to identify the many-valued sets of Klaua with the fuzzy sets
of Zadeh, as shall be done further on in this chapter.

Furthermore Klaua understood the membership degrees as the truth degrees of
the corresponding Fukasiewicz systems L, or L,,, respectively.
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The first one of these hierarchies, presented in Klaua (1965, 1967) in 1965, offered
an interesting simultaneous definition of a graded membership and a graded equality
predicate, but did not work well and was almost immediately abandoned. The main
reason for this failure, cf. Gottwald (2010), was that the class of objects that was
intended to act as many-valued sets was not well chosen.

The second one of these hierarchies, presented in 1966 in Klaua (1966a,b), had
as its objects A functions into the truth degree set %, the values A(x) being the
membership degrees of the object x in the generalized set A.

Therefore the 1966 approach by Klaua offered immediately the Lukasiewicz sys-
tems of many-valued logic as the suitable logics to develop fuzzy set theory within
their realm.

And indeed, the majority of results in Klaua (1966a,b) were presented using the
language of these Lukasiewicz systems. Some examples are:

E ACB&BCC—_ ACC,
E aeB&BCSC—LaceC,
= A=B&BCC > ACC.

Here — | is the Lukasiewicz implication, & the strong (or: arithmetical) conjunction
with truth degree function (u, v) — max{0, u + v — 1}, ¢ the graded membership
predicate, and |= ¢ means that the formula ¢ of the language of Lukasiewicz logic
is logically valid, i.e. assumes always truth degree 1.
A graded inclusion relation € is defined (for fuzzy sets of the same level in the
hierarchy) as
AC B =g VXx(xe A —>| xeB), (3.6)

and a graded equality = for fuzzy sets is defined as
A=B =4t AS B ABCA. (3.7)

These are prototypical examples for fuzzy, i.e. graded relationships which appear
quite naturally in a fuzzy sets context.

This line of approach was continued in the early 1970s, e.g., in this author’s papers
Gottwald (1974, 1976). The topic of Gottwald (1974) is the formulation of (crisp)
properties of fuzzy relations. The natural continuation, to consider graded properties
of fuzzy relations, was realized for the particular cases of the graded uniqueness
of fuzzy relations and the graded equipollence of fuzzy sets in Gottwald (1980).
A more general approach toward graded properties of fuzzy relations was sketched
in the 1991 paper Gottwald (1991).

The topic of Gottwald (1976) was the formulation of generalized versions of the
standard ZF axioms valid in a modified version of Klaua’s second hierarchy of fuzzy
sets. All this happened in the context of the Lukasiewicz logics, even if there was
a kind of vague awareness that only few properties of these Lukasiewicz systems
really had to be used.
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3.4 A Betting Approach

Another author who pointed out a strong relationship between fuzzy sets and many-
valued logic is Giles. Starting in 1975, he proposed in a series of papers Giles (1975,
1976, 1979), and again in Giles (1988), a general treatment of reasoning with vague
predicates by means of a formal system based upon a convenient dialogue interpre-
tation. This dialogue interpretation he had already used in other papers, like Giles
(1974), dealing with subjective belief and the foundations of physics. The main idea
is to let “a sentence represent a belief by expressing it tangibly in the form of a bet”.
In this setting then a “sentence v is considered to follow from sentences ¢1, ..., ¢,
just when he who accepts the bets ¢1, ..., ¢, can at the same time bet ¥ without
fear of loss™.

The (formal) language obtained in this way is closely related to Lukasiewicz’s
infinite-valued logic Lo in fact the two systems coincide if one assigns to a sentence
¢ the truth value 1 — (p), with (@) for the risk value of asserting ¢. And he even
adds the remark “that, with this dialogue interpretation, Lukasiewicz logic is exactly
appropriate for the formulation of the ‘fuzzy set theory’ first described by Zadeh
Zadeh (1965); indeed, it is not too much to claim that L, is related to fuzzy set
theory exactly as classical logic is related to ordinary set theory”.

3.5 Invoking T-Norms

It the beginning 1980s it became common use in the mathematical fuzzy community
to consider t-norms as suitable candidates for connectives upon which generalized
intersection operations for fuzzy sets should be based, see (Alsina et al. 1980; Dubois
1980; Prade 1980) or a bit later (Klement 1982; Weber 1983). These t-norms, a
shorthand for “triangular norms”, first became important in discussions of the tri-
angle inequality within probabilistic metric spaces, see (Schweizer and Sklar 1983;
Klement et al. 2000). They are binary operations in the real unit interval which make
this interval into an ordered abelian monoid with 1 as unit element of the monoid.
The most basic examples of t-norms for the present context are the Lukasiewicz
t-norm 7}, the Godel t-norm 7, and the product t-norm 7p defined by the equations

T (u,v) = max{u +v — 1, 0},
TG (u, v) = min{u, v},

Tp(u,v) =u-v.

The general understanding in the context of fuzzy connectives is that t-norms
form a suitable class of generalized conjunction operators.

For logical considerations the class of left-continuous t-norms is of particular
interest. Here left-continuity for a t-norm 7' : [0, 11> — [0, 1] means that for each
a € [0, 1] the unary function 7,(x) = T (a, x) is left-continuous. The core result,
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which motivates the interest in left-continuous t-norms, is the fact that just for left-
continuous t-norms * a suitable implication function, usually called R-implication, is
uniquely determined via the adjointness condition (3.5). Suitability of an implication
function here means that it allows for a corresponding sound detachment, or modus
ponens rule: to infer a formula v from formulas ¢ — i and ¢ salva veritate. In the
present context this means for the truth degrees the inequality [¢] *[¢ — ] <
[¥1 and hence it means the logical validity

Eo&klp—>9y)—> 9. (3.8)

It was almost immediately clear that a propositional language with connectives
A, V for the truth degree functions min, max, and with connectives &,— for a left-
continuous t-norm 7 and its residuation operation offered a suitable framework to
do fuzzy set theory within—at least as long as the complementation of fuzzy sets
remains out of scope.

With this limitation, i.e. disregarding complementation, this framework offers a
suitable extension of Zadeh’s standard set-algebraic operations.

Additionally, this framework, with the “implies falsum” construction, yields a
natural way to define a negation, i.e. to introduce a t-norm related complementation
operation for fuzzy sets, via the definition —7¢ =gef ¢ — 0 using a truth degree
constant 0 for the truth degree 0. However, this particular complementation operation
does not always become the standard complementation of Zadeh’s approach.

This t-norm based construction gives the infinite-valued Lukasiewicz system L
if one starts from the t-norm 7} , and thus the right negation for Zadeh’s complemen-
tation. This construction gives the infinite-valued Gédel system G if one starts with
the t-norm 7g, and it gives the product logic Hajek et al. (1996) if one starts with the
t-norm Tp. The “implies falsum” negations of the latter two systems coincide, but
are different from the negation operation of the f.ukasiewicz system Lo.. So these
two cases do not offer Zadeh’s complementation. But this can be reached if one adds
the Lukasiewicz negation to these systems, as done in Esteva et al. (2000).

It was essentially a routine matter to develop this type of t-norm based logic to
some suitable extent, as was done 1984 in this author’s paper Gottwald (1984). Also
the development of fuzzy set theory on this basis did not offer problems, and it was
done in Gottwald (1986), including essential parts of fuzzy set algebra, some fuzzy
relation theory up to a fuzzified version of the Szpilrajn order extension theorem, and
some solvability considerations for systems of fuzzy relation equations (All these
considerations have later been included into the monograph (Gottwald 1993)).2

2 Personal reminiscence: In these papers appears the notion of a g-operator of a t-norm (so in
Gottwald (1984, 1986, 1993) called @-operator instead). I learned this notion from Pedrycz. He
used it in his PhD work on fuzzy relation equations. In Pedrycz (1985) it is called ¥ -operator, and
in Pedrycz (1983) a particular case appears as t-operator.

Clearly this was a suitable implication operation, and it is just the R-implication for the given
t-norm. But in that time I was unaware of the equivalent characterizability of the p-operator by the
adjointness condition (3.5).
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There is, however, also another way to develop t-norm based logics for fuzzy set
theory. This way avoids the introduction of the R-implications via the residuation
operation—and so it does not need the restriction to left-continuous t-norms. Instead
ituses additionally negation functions, i.e. unary functions N : [0, 1] — [0, 1] which
are at least order reversing and satisfy N(0) = 1 as well as N(1) = 0. The strategy
to introduce an implication function I7 y in this setting is to define

It n(u,v) = N(T (u, N(v))). 3.9)

The implication connectives defined in this way usually are called S-implications. A
prominent paper which studies this type of approach is Butnariu et al. (1995).

But the fact that S-implications do not necessarily satisfy (3.8) means that the
corresponding rule of detachment is not always correct, i.e. does not guarantee infer-
ences salva veritate. And this seems to be the main reason that this type of approach
never became popular among logicians interested in fuzzy set matters.

3.6 Logics of T-Norms

What was missing in all the previously mentioned approaches toward a suitable logic
for fuzzy set theory, as long as this logic should be different from the infinite-valued
Fukasiewicz system Lo, or from the infinite-valued Godel system Goo,> that was
an adequate axiomatization of such a logic. All these approaches offered interesting
semantics, but did not provide suitable logical calculi—neither for the propositional
nor for the first-order level.

The first proposal to fill in this gap was made by Hohle (1994, 1995, 1996) who
offered his monoidal logic. This common generalization of the Lukasiewicz logic
Lo, the intuitionistic logic, and Girard’s integral, commutative linear logic Girard
(1987) was determined by an algebraic semantics, viz. the class M-alg of all integral
residuated abelian lattice-ordered monoids with the unit element of the monoid, i.e.
the universal upper bound of the lattice, as the only designated element. So this
monoidal logic was determined by a particular subclass of Goguen’s closg’s, indeed
by a variety of algebras. And adequate axiomatizations for the propositional as well
as for the first-order version of this logic were given in Hohle (1994, 1996).

Of course, this monoidal logic had the whole matter of the relationship of fuzzy set
theory and the t-norm basedness of their set-algebraic operations in the background.
But it was not really strongly tied with this background.

3.6.1 The Logic of all Continuous T-Norms

The use of t-norm based logics in fuzzy set theory, particularly those ones based upon
left-continuous t-norms, happened throughout the 1980s and beginning 1990s in a

3 In 1996 the product logic Héjek et al. (1996) was added to this list.
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naive way: there was only the naive semantics available, but in general any logical
calculus was missing.

To discuss the case of a single corresponding logic based upon an arbitrary left-
continuous t-norm seemed to be a very hard problem.

Different from Hohle’s quite general approach, and guided by the idea that it
would be sufficiently general to restrict the considerations to the case of continuous
t-norms, instead of allowing also non-continuous but left-continuous ones, it was the
idea of Petr Hajek to ask for the common part of all those t-norm based logics which
refer to a continuous t-norm: in short, to ask for the logic of all continuous t-norms.

This logic was called basic logic by Hajek, later he used also basic fuzzy logic or
basic t-norm logic.* This logic is usually denoted BL. It is based upon an algebraic
semantics.

There are two crucial observations which pave the way to the original, and still
mainly used algebraic semantics for BL. The first one is that for any t-norm * and
their residuation operation — one has

u—->vyyVvy—>u=1, (3.10)

with Vv to denote the lattice join here, i.e. the max-operation for a linearly ordered
carrier. This prelinearity condition (3.10) is a first restriction on the variety M-alg
which determines the monoidal logic, and it yields the variety MTL-alg of all MTL-
algebras—now with * denoting the semigroup operation.

Moreover, by the way, if this condition is imposed upon the Heyting algebras,
which form an adequate algebraic semantics for intuitionistic logic, the resulting
class of prelinear Heyting algebras is an adequate algebraic semantics for the infinite-
valued Godel logic.

The second observation is that the continuity condition can be given in algebraic
terms: for any t-norm = and its residuum — one has that the divisibility condition

ux(u —v) =uAv 3.11

is satisfied if and only if * is a continuous t-norm, see Hohle (1995). Condition (3.11),
again with * denoting the semigroup operation and A the lattice meet, is the second
restriction here. The subclass of all those algebras from MTL-alg which satisfy this
divisibility condition (3.11) is the subvariety BL-alg of all BL-algebras.

Hajek characterized his basic fuzzy logic by this class BL-alg as algebraic
semantics—again with the universal upper bound of the lattice as the only desig-
nated element. And he gave adequate axiomatizations for the propositional version
BL as well as for the first-order version BLY of this basic fuzzy logic in his highly
influential monograph Hajek (1998).

4 In the fuzzy logic community e.g. also “Héjek’s basic logic” is in use. The simple name “basic
logic” has a certain disadvantage because it is also in use in a completely different sense: as some
weakening of the standard system of intuitionistic logic, e.g. in (Ardeshir and Ruitenburg 1998;
Ruitenburg 1998).
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Despite the fact—caused by the properties of the R-implications—that the set &
of equations, which characterizes the algebras of the variety BL-alg as the model
class of &, could routinely be rewritten as a set & of implications such that BL-alg
is also the model class of &™*, Petr Hajek offered in Hdjek (1998) a much shorter and
considerably more compact axiomatic basis for the propositional system BL:

(AxgLl) (9 = ¥) — (¥ = x) = (¢ — X)),
(AXgL2) &Y — o,

(AXgL3) ¢ &V —> Y &g,

(AxgLd) (¢ = (¥ — x)) = (9 &Y — x),

(AxgLS) (&Y — x) — (9 — (¥ — x)),

(AXgLb) @& (¢ — V) = Y& (Y — ¢),

(AxgL?) (¢ = ¥) = x) = (Y = @) = X) = X),
(AxgL8) 00— ¢,

with the rule of detachment as its (only) inference rule.

Routine calculations show that the axioms Axg) 4 and AXg) 5 essentially code the
adjointess condition (3.5). Also by elementary calculations one can show that Axg_7
codes the prelinearity condition (3.10). This was one of the interesting reformulations
Hajek gave to the standard algebraic properties. Another one was that he recognized
that the weak disjunction, i.e. the connective which corresponds to the lattice join
operation in the truth degree structures, could be defined as

eV Y =gt (9 = V) = YIAY = ¢) = ). (3.12)

Here A is the weak conjunction with the lattice meet as truth degree function which
can, according to the divisibility condition, be defined as

PAY =def 9&(p = V). (3.13)

A feeling for the compactness of this system may come from the hint that Hohle’s
axiom system for the monoidal logic consisted of 14 axioms, and did not have to
state the prelinearity and the divisibility conditions. Nevertheless, also in this axiom
system the axioms (Axg 2) and (Axg_3) are redundant, i.e. can be proved from
the other ones. Even more, the remaining axioms then are mutually independent, as
shown in Chvalovsky (2012).

But Héjek’s presentation of the basic fuzzy logic BL was only a partial realization
of the plan to give the logic of all continuous t-norms. The most natural, somehow
standard algebraic semantics for such a logic of all continuous t-norms would be the
subclass T-alg of BL-alg consisting of all BL-algebras with carrier [0, 1], i.e. the
subclass of all T-algebras.’

It was the guess of Petr Hajek that this standard semantics, determined by the
class T-alg of all T-algebras, should be an adequate semantics for the fuzzy logic

5 If a BL-algebra has carrier [0, 1] with its natural ordering then its semigroup operation is auto-
matically a continuous t-norm.
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BL too. He was able to reduce the problem to the BL-provability of two particular
formulas H4jek (1998a), but the final adequacy result was proved by Cignoli et al.
(2000).

And yet another fundamental property of BL could be proved by Esteva et al.
(2004): all the t-norm based residuated many-valued logics with one continuous
t-norm algebra as their standard semantics can be adequately axiomatized as finite
extensions of BL. The proof comes by algebraic methods, viz. through a study of
the variety of all BL-algebras and their subvarieties which are generated by contin-
uous t-norm algebras: for each one of these subvarieties a finite system of defining
equations is algorithmically determined.

3.6.2 The Logic of all Left-Continuous T-Norms

Only a short time after Hijek’s axiomatization of the logic of continuous t-norms
also the logic of all left-continuous t-norms was adequately axiomatized. It was the
guess of Esteva and Godo (2001) that the class MTL-alg should give an adequate
semantics for this logic. First they offered an adequate axiomatization of the logic
MTL, a shorthand for monoidal t-norm logic, which is determined by the class MTL-
alg. And later on Jenei and Montagna (2002) proved that MTL is really the logic
of all left-continuous t-norms: the logical calculus MTL has an adequate algebraic
semantics formed by the subclass of MTL-alg consisting of all MTL-algebras with
carrier [0, 1].6

3.6.3 First-Order Logics

The extensions of these propositional logics to first-order ones follows the standard
lines of approach: one has to start from a first-order language’ .# and a suitable
residuated lattice A, and has to define A-interpretations M by fixing a nonempty
domain M = |M| and by assigning to each predicate symbol of . an A-valued
relation in M (of suitable arity) and to each constant an element from (the carrier
of) A.

The satisfaction relation is also defined in the standard way. The quantifiers V and
3 are interpreted as taking the infimum or supremum, respectively, of all the values
of the relevant instances.

In order to show that this approach worked well one had either to suppose that the
underlying lattices of the interpretations are complete lattices, or at least that all the

6 If an MTL-algebra has carrier [0, 1] with its natural ordering then its semigroup operation is
automatically a left-continuous t-norm.

7 With the two standard quantifiers V, 3, but without function symbols for the present considerations.
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necessary infima and suprema do exist in these lattices. Interpretations over lattices
which satisfy this last condition are called safe by Hajek (1998).
For the logic BL of continuous t-norms, Héjek (1998) added the axioms

V1)  (Vx)p(x) — (1), where ¢ is substitutable for x in ¢,
A1) @) — (Ax)e(x), where ¢ is substitutable for x in ¢,
V2)  (Vx)(x — @) — (x — (Vx)p), where x is not free in x,
3F2) (Yx)(¢ = x) = ((Ax)¢ — x), where x is not free in x,
V3)  (Vx)(x Vo) = x Vv (¥Yx)p, where x is not free in y,

and the rule of generalization to the propositional system BL yielding the system
BLYV.

Then he was able to prove the following general chain completeness theorem: A
first-order formula ¢ is BLY-provable iff it is valid in all safe interpretations over
BL-chains.

This result can be extended to finite theories as well as to a lot of other first-order
fuzzy logics, e.g. to MTLYV.

We will not discuss further completeness results here but refer to the survey paper
Cintula and Héjek (2010) or the more recent extended survey Béhounek et al. (2011).

But it should be mentioned that, as suprema are not always maxima and infima
not always minima, the truth degree of an existentially/universally quantified for-
mula may not be the maximum/minimum of the truth degrees of the instances. It is,
however, interesting to have conditions which characterize models in which the truth
degrees of each existentially/universally quantified formula is witnessed as the truth
degree of an instance. Cintula and Héjek (2006) study this problem, Béhounek et al.
(2011) surveys it too.

In general, the Handbook of Mathematical Fuzzy Logic Cintulaet al. (2011) offers
extended discussions of all the main developments in the field of mathematical fuzzy
logics and shows impressively the wealth of new results which came out up to
approximately 2011 from Héjek’s ideas.

3.6.4 Some More Recent Extensions

3.6.4.1 Uninorm Based Logics

In their core role as generalized conjunction operations, t-norms are also particular
cases of aggregation operators Grabisch et al. (2009). Other types of aggregation
operators, introduced for fuzzy sets applications, have been the OWA operators of
Yager (1988), and also the uninorms, cf. Yager and Rybalov (1996); Metcalfe et al.
(2009).

A uninorm x is a binary operation in the unit interval such that ([0, 1], *, ey)
becomes an ordered monoid for some suitable unit element e, € [0, 1]. Hence
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t-norms as well as t-conorms®

ratio uninorm:

are uninorms. Another example is the so-called cross

x%cy = m if {x, y} # {0, 1}
0, otherwise.

Instead of basing a fuzzy logic upon a t-norm, as discussed up to now, one can
also try to start from some uninorm. Such approaches have e.g. been discussed in
Gabbay and Metcalfe (2007), Metcalfe and Montagna (2007).

To have a residuation operation ., available via the corresponding adjoint-
ness condition, one has to restrict the considerations to residuated uninorms s,
i.e. SS to uninorms which are left-continuous and satisfy additionally the condi-
tion Oxx = x*x0 = 0. Such residuated uninorms determine uninorm algebras
([0, 1], max, min, *, ., e,) wWhich are pointed residuated lattices.

The most basic uninorm logic UL is determined by its standard semantics con-
sisting of the class of all uninorm algebras. As for t-norm based logics there are
different schematic extensions, completeness results, hypersequent proof systems,
and complexity results. The interested reader is referred to Gabbay and Metcalfe
(2007), Metcalfe and Montagna (2007), Metcalfe et al. (2009).

3.6.4.2 Equivalence Based Logics

Forming the residual implication to a given left-continuous t-norm opens the way to
the basic connectives of the t-norm based mathematical fuzzy logics.

The uninorm logics show, as already the non-commutative fuzzy logics did e.g.
in Hajek (2003a, b), that one can start from other binary operations in [0, 1] too. And
these other binary operations need not even be considered as generalized conjunction
operations—some generalized biimplication could also serve as a starting point.

This was done by V. Novék as he introduced the notion of an EQ-algebra, cf. Novak
and De Baets (2009).

The main operation of an EQ-algebra is a generalized biimplication operation ~,
also called fuzzy equality operation or fuzzy equivalence operation, accompanied by
the binary operations of meet and multiplication (®).

The operation ~ offers a natural interpretation of the main connective in Novak’s
fuzzy type theory FTT, cf. Sect. 3.7.3.

The essential difference between residuated lattices and EQ-algebras lies in the
definition of implication operation. Unlike residuated lattices, where the adjointness
property is the essential link between the strong, i.e. monoidal conjunction and the
(residual) implication, in EQ-algebras the implication operation is defined directly
from the fuzzy equality ~. So the adjointness property might be relaxed. This has as
consequence that the strong conjunction operation can be non-commutative without

8 The t-conorms are binary operations in [0, 1] which make this unit interval into an ordered abelien
monoid with O as unit element of the monoid. They are in 1-1 correspondance with t-norms.



54 S. Gottwald

forcing the consideration of two kinds of implication, as is the case for the usual
non-commutative generalizations of t-norms.

The relation between EQ-algebras and residuated lattices is quite intricate and it
seems that the former open the door to another look at the latter. When considering
implication only, it can be shown that the corresponding reducts of EQ-algebras are
BCK-algebras, and so, residuated lattices are “hidden” inside. On the other hand,
EQ-algebras form a variety and they are not equivalent with residuated lattices; in
fact, EQ-algebras generalize residuated lattices because they relax the tie between
multiplication and residuation, i.e. between conjunction and implication in the cor-
responding logics.

Such logics, called EQ-logics, are studied in Dyba and Novdk (2011) via their
algebraic semantics. Completeness theorems are proved, and relationships to the
t-norm based logics discussed.

3.7 Basing fuzzy Set Theory on t-norm Logics

With the previously discussed t-norm based fuzzy logics a toolbox is given to develop
fuzzy set theory. Of course, there are still quite different ways to approach this
problem depending, e.g., on whether one is interested to have some more model-
based approach, or whether one prefers a primarily axiomatic one.

In both respects Héjek has offered ideas how to attack this problem. They are
special cases in a much wider spectrum of approaches as explained in Gottwald
(20064, b). Nevertheless they deserve to be mentioned here.

3.7.1 ZF-Style Approaches

Two (slightly different) model-based approaches of a ZF-like fuzzy set theory have
been presented by Petr Hijek and Zuzana Hanikova in H4jek and Hanikova (2001)
and in H4jek and Hanikova (2003). They are based upon the first-order basic t-norm
logic BLY A, enriched with the A-operator of Baaz (1996).7

In a language with primitive predicates €, &£, = the axioms chosen in Héjek
and Hanikova (2001, 2003) are suitable versions of (i) extensionality, (ii) pairing,
(ii1) union, (iv) powerset, (v) €-induction (i.e. foundation), (vi) separation, (Vvii)
collection (a form of replacement), (viii) infinity, together with (ix) an axiom stating
the existence of the support of each fuzzy set.!”

A kind of “standard” model for these theories is formed w.r.t. some complete
BL-chainL = (L, A, Vv, %, —, 0, 1) and designed in the style of the Boolean-valued

9 This logic is in detail explained, e.g., in Hajek (1998).
10" In Hajek and Hanikové (2001) the axiom of e-induction is missing.
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models for standard ZF set theory, see e.g. Bell (1985). This model is based upon
the hierarchy

vi=g, V&4 = {f € 9OmE I | dom (u) < vaL}

with unions at limit stages. In H4jek and Hanikova (2001), the primitive predicates
€, €, = are interpreted as

Ixeyl=\/ (u=xIxyw),

uedom (y)

xSyl= A @ =1lueyb,

uedom (x)

[x =yl = Allx € yl = Ally & x].

The last condition forces the equality to be crisp, and makes the authors’ standard
form of the axiom of extensionality trivially true in the model.

In H4jek and Hanikova (2003), however, these primitive predicates are in a simpler
way determined by

[x € yI = y),

together with

1 if x =y,
X = =
I v 0 otherwise.

The main results are that the structure VY = (J, o, V& together with the
different interpretations of the primitive predicates gives in both cases a model of all
the (respective) axioms chosen by the authors.

It is interesting to see that the modification in the interpretations of the primitive
predicates which distinguishes Hajek and Hanikovd (2001, 2003) essentially mirrors

a similar difference between Klaua (1965) and Klaua (1966b).

3.7.2 A Cantor-Style Approach

Another, primarily axiomatic approach by Hajek (2005) toward a fuzzy set theory,
in the sense of a set theory based upon a many-valued logic, is going back to an older
approach and has the form of a Cantorian set theory over L.

That older approach toward a consistency proof of naive set theory, i.e. set theory
with comprehension and extensionality only, in the realm of Lukasiewicz logic was
initiated by Skolem (1957) and resulted in a series of intermediate results, mentioned
in Gottwald (2001), which show consistency with respect to more and more extended
versions of comprehension. In 1979 White (1979) claimed to have (in the realm of
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Loo) a proof theoretic consistency proof for naive set theory with full comprehen-
sion.!!
Two equality predicates come into consideration here—Leibniz equality =; and

extensional equality =, with definitions

X =1y =der Vz(x €2 <> y € 2),
X =¢y =def VZ(z €Ex <> Z € Yy).

Leibniz equality is shown to be a crisp predicate, but extensional equality is not.
The whole system becomes inconsistent by the coincidence assumption

X =1y < X=¢).

A set of natural numbers can be added. This yields an essentially undecidable and
essentially incomplete system, see Héjek (2013).

3.7.3 Fuzzified Mathematical Theories and Fuzzy Type Theories

Having in mind that large parts of modern mathematics got their set theoretic foun-
dation in the 20th century, it has to be recognized too that this set theoretic basis in
the beginning often was provided only by naive set theoretic ideas.

Accordingly one might use such a “more naive” approach toward a development
of seriously'? “fuzzified” parts of mathematics, and not necessarily rely upon an
axiomatized set theory for such a setting.

An interesting approach in such a direction has been initiated by work of two
of Hajek’s disciples, Béhounek and Cintula, on fuzzy class theory Béhounek and
Cintula (2005). In this paper the authors introduce an axiomatic presentation of
Zadeh’s notion of fuzzy set, i.e. an elementary fuzzy set theory, cast as two-sorted
first-order theory over the first-order fuzzy logic LITV. They offer a reduction of this
elementary fuzzy set theory to fuzzy propositional logics and a general method of
fuzzification of classical mathematical theories within their formalism. The focus is
on set relations and operations that are definable without any structure on the universe
of discourse.

11 There are, however, still doubts whether this proof is correct or has essential gaps. So, around
2010, Kazushige Terui circulated a note which explains an error in the proof of one of White’s
crucial theorems (cf. also footnote 78 on p. 92 of B&hounek et al. 2011).

12 In the early days of (naive) fuzzy set theory, mainly in the 1970s, a lot of papers had been written
which offered, independent of any reasonable intended application, nothing but some quite trivial
generalizations of standard mathematical notions, usually together with some adaptations of well
known elementary results—generalizations which, essentially, did nothing but substituting fuzzy
sets for crisp ones which play a role in the understanding of such classical mathematical notions.
Such l’art pour I’art generalizations I consider here as non-serious ones.
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These considerations on fuzzy relations are continued in Béhounek et al. (2008),
with their main focus on preordering and equivalence relations, now with MTLx
as basic logic, and also in Béhounek and Darikova (2009), now with the focus of
notions related to relation composition, like different composition operations, images
and preimages. In a natural way, properties of fuzzy relations come as graded ones
in this context. Almost all basic facts of classical relation theory can be generalized
in an essentially canonical way.

Such graded versions of standard properties can also be considered in other con-
texts, e.g. in elementary set theoretic topology, as done in Béhounek and Kroupa
(2007), or also with respect to properties of the t-norm based connectives in propo-
sitional fuzzy logics, as done in Béhounek (2012).

It is interesting, in the present context, that the approach from B&hounek and
Cintula (2005) toward a theory for fuzzy sets of level one!? can be extended, e.g.
by using many-sorted languages together with the first-order fuzzy logic MTLx, to
theories which allow quantification over fuzzy sets of level two, three etc., and so
also to a kind of fuzzy type theory. This extension is also already given in Béhounek
and Cintula (2005).

Another Church-style version FTT of a fuzzy type theory was offered by Novik
(2004), and slightly modified in Novédk (2011). FTT differs from the classical type
theory essentially by extending the structure of truth values. This structure is assumed
to be a residuated lattice with prelinearity and double negation extended by the
Monteiro-Baaz A-operation, or to be an EQ-algebra. This delta connective offers a
natural way in which problems of fuzzy equalities can be avoided in making them
crisp ones if necessary.

In Novék (2004), various properties of fuzzy type theory are proved including its
completeness. Later papers like Novak (2008); Murinova and Novak (2012) apply
it e.g. to model natural language phenomena with fuzzy logic tools.

3.8 Conclusion

Actually, approximately five decades after the introduction of fuzzy sets into knowl-
edge engineering and mathematics, the scientific community owes to Petr Hajek’s
work, particularly to his system BL and its extensions and generalizations, convinc-
ing systems of logics for fuzzy sets. These t-norm based systems seem to offer a
family of “canonical” logics for fuzzy sets—at least as long as the choice of the class
of t-norms as suitable candidates for non-idempotent, i.e. “interactive” versions of
intersections for fuzzy sets remains favored in the fuzzy sets community.

But independently of this situation, the class of t-norm based fuzzy logics, pio-
neered by the inception of the basic fuzzy logic BL, has become an interesting
research area for logicians. And this topic of mathematical fuzzy logics is not only

13 The notion of level of a fuzzy set is used here as e.g. in Gottwald (1979), and corresponds directly
to the notion of rank in classical set theory.
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related to fuzzy set theory, as was the main focus of this chapter, it has its inde-
pendent interest as a field of logic in which one studies logics of comparable truth
degrees. And additionally these logics can be understood as particular cases of sub-
structural logics, see Kowalski and Ono (2010), because essentially all of them lack
the contraction property.

A series of recent surveys, as well as the current research activities in the field,
indicate that Hajek’s monograph Hajek (1998) opened a kind of gold mine for inves-
tigations in the wider field of non-classical logics.
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In this chapter we survey Hédjek’s contributions to arithmetic and set theory over
fuzzy logic, in some cases slightly generalizing the results. Our generalizations
always concern the underlying fuzzy logic: Hajek, as the designer of the logic
BLYV, naturally worked in this logic or in one of its three prominent extensions—
Lukasiewicz, Godel, or product logic. However, Esteva and Godo’s similar, but
weaker fuzzy logic MTL of left-continuous t-norms can be, from many points of
view, seen as an even more fundamental fuzzy logic; therefore, where meaningful
and easy enough, we discuss or present the generalization of Hdjek’s results to MTL.

The chapter is organized as follows: after the necessary preliminaries given in
Sect.4.2, we address three areas of axiomatic fuzzy mathematics—a ZF-style fuzzy
set theory (Sect.4.3), arithmetic with a fuzzy truth predicate (Sect.4.4), and naive
Cantor-style fuzzy set theory (Sect.4.5). The motivation and historical background
are presented at the beginning of each section. Owing to the survey character of this
chapter, for details and proofs (except for those which are new) we refer the readers
to the original works indicated within the text.

4.2 Preliminaries

This chapter deals with some formal theories axiomatized in several first-order fuzzy
logics: MTLYV, BLYV, and its three salient extensions—tukasiewicz logic (LV), Godel
logic (GY), and product fuzzy logic (ITV), with or without the connective A. We
assume the reader’s familiarity with the basic apparatus of these fuzzy logics; all
standard definitions can be found in the introductory chapter by Béhounek, Cintula,
and Hajek (2011), which is freely available online. In this section we only focus on
the definitions and theorems needed further on which cannot be found in the chapter.
Of the first-order variants of a fuzzy logic L (see Béhounek et al. 2011, Def. 5.1.2),
throughout the chapter we employ exclusively that first-order variant LY which in-
cludes the axiom (Vx)(x VvV ¢) — x V (¥x)¢ (for x not free in x) ensuring strong
completeness with respect to (safe) models over linearly ordered L-algebras.

Convention 4.1 Let us fix the following notational conventions:

e The conjunction ¢ & ... & @ of n identical conjuncts ¢ will be denoted by ¢".

e The exponents ¢" take the highest precedence in formulae, followed by prefix unary
connectives. The connectives — and <> take the lowest precedence.

e The chain of implications 1 — @2, Q2 —> @3, ..., Pn—1 —> @, can be written as
Q01 —> O3 —> ... —> @, and similarly for <—.

e We use the abbreviations (Yx Pt)@ and (Ix Pt), respectively, for (Vx)(x Pt — @)
and (3x)(x Pt & o), for any infix binary predicate P, term t, formula ¢, and
variable x.

e Negation of an atomic formula can alternatively be expressed by crossing its
(usually infix) predicate: x ¢ y =g¢ —(x € y), and similarly for #, Z, %, eftc.
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As usual, by an extension of a logic L. we mean a logic which is at least as strong
as L and has the same logical symbols as L. (Thus, e.g., BL is an extension of MTL,
but BL is not.)

Definition 4.1 Let L be a logic extending MTLY or MTLVA. Let T be a theory
over L, M a model of T, and ¢ a formula in the language of T'.

We say that ¢ is crisp in M if M = ¢ Vv =g, and that ¢ is crisp in T if it is crisp
in all models of T'.

Taking into account the semantics of L, one can observe that ¢is crisp in M iff
it only takes the values 0 and 1 in M the linear completeness theorem for L yields
that s crispin 7 iff T 1 ¢ vV —¢. By convention we will also say that an n-ary
predicate P is crisp in M or T if the formula P(xy, ..., x,) iscrispin M or T.

Definition 4.2 Let L extend MTLV or MTLVA. By L= we shall denote the logic
L with the identity predicate = that satisfies the reflexivity axiom x = x and the
intersubstitutivity schema x =y — (¢(x) < ¢(y)).

Remark 4.1 1Tt can be observed that the identity predicate = is symmetric and tran-
sitive, using suitable intersubstitutivity axioms. The crispness of = can be enforced
by the additional axiom x = y V x # y. However, the latter axiom is superfluous in
all extensions of MTLV A —, and also in those extensions of MTLV_ that validate the
schema (¢ — ¢?) — (¢ V —¢), e.g., in E¥_and I1V_, since over all these logics
the predicate = comes out crisp anyway (the proof is analogous to that due to Hajek
2005, Cor. 1).

Later on we will need the following lemmata, formulated here just for the variants
of MTL, but valid as well for any stronger logic (as they only assert some provability
claims).

Lemma 4.1 The following are theorems of propositional MTL:

1. (9> 0&p)&(@—>VY)—> (@AY > o&Y)
22 (0—=>0&)& (W >V &)= (A = o&Y)

Proof 1.o Ay — ¢ — ¢ & ¢ —> ¢ & Y (the antecedents of the theorem are
used in the second and third implication).

2. By prelinearity, we can take the cases ¢ — ¢ and v — ¢@. The former
case follows by weakening from Lemma 4.1(1); the latter is proved analogously:
OAY — Y —> Y &Y — &Y. |

Lemma 4.2 (cf. Hanikovd 2004) MTLV 5 proves:

1. (Ax)Ae — A(Tx)e

2. (Vx)Ap < A(Vx)p

3. (V) A(p &) = (Vx)Ap & (Vx)AY
4. Alp vV =) < Alp — Ag)

Proof By inspection of the BLV A -proofs (Hanikovad 2004) we can observe that the
theorems are valid in MTLV 5, too. O
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Lemma 4.3 Let ¢(x,y,...) be a formula of MTLY and ¥ (x, ...) a formula of
MTLV_, and t be a term substitutable for both x and y in ¢ and for x in . Then:

1. MTLY proves: ¢(t,t) — (Ix)p(x, 1)
2. MTLV_ proves: (Yx = t)(Y(x)) < ¥ (1)
3. MTLV= proves: (3x = t)(Y(x)) < ¥ (1)

Proof 1. Immediate by the MTLV-axiom of dual specification.

2. Left to right: (Vx)(x =t — Y(x)) — ( =1t — Y(t)) «<— ¥ (1), by
specification and the reflexivity of =. Right to left: ¥ (r) — (x =t — ¥ (x))
by the intersubstitutivity of equals; generalize on x and shift the quantifier to the
consequent.

3. Left to right: x = t & ¥ (x) — ¥ (¢) by the intersubstitutivity of equals;
generalize on x and shift the quantifier (as 3) to the antecedent. Right to left: ¢ (1) —>
t=t&Y@) — (Ax)(x =t & ¥(1)), by the reflexivity of =, dual specification,
and Lemma 4.3(1). |

Lemma 4.4 In MTLV_, any formula is equivalent to a formula in which function
symbols are applied only to variables and occur only in atomic subformulae of the
formy = F(xy, ..., Xg).

Proof Using Lemma 4.3, we can inductively decompose nested terms s(z) by
o(s(t)) < (3x = 1) (s(x)) and finally by

PF(x1, ... xp) < @y = Fxr, ..., x)e(y)
for all function symbols F. O

We now give a few results on the conservativity of introducing predicate and
function symbols.

Definition 4.3 For L a logic, T; a theory in a language ] and 7> D T a theory in
a language 1> O I, we say that T» is a conservative extension of Ty if To 1 ¢
implies 71 Fr. ¢ for each I'1-formula ¢.

The proofs of the following theorems are easy adaptations of the proofs due
to Hajek (2000). Note that Theorem 4.3 covers introducing constants, too, forn = 0
(in which case the congruence axiom becomes trivially provable and need not be
explicitly added to the theory).

Theorem 4.2 (Adding predicate symbols; cf. Hijek 2000) Let L extend MTLY or
MTLVp and T be a theory over L in a language I'. Let P & I" be an n-ary predicate
symbol and ¢(xy, ..., x,) a I'-formula. If T’ results from T by adding P and the
axiom

P(x1, ..., xn) < @(x1, ..., X3)

then T' is a conservative extension of T.
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Theorem 4.3 (Adding function symbols; cf. Hijek 2000) Let L extend MTLV_ or
MTLV A= and T be a theory over L in a language I'. Let F ¢ I" be an n-ary
function symbol and ¢ a I'-formula with n + 1 free variables. Let T’ result from

T by adding the axiom ¢(x1,...,Xn, F(x1,...,X,)) and the congruence axiom
xi=z21&...&x, =z, > F(x1,...,x) = F(z1,...,2n)-
1. If L extends MTLY= and T 1 (3y)p(x1, ..., X, y), then T' is a conservative

extension of T.
2. If L extends MTLNV p— and T 1, (3y)A@(x1, ..., Xxu, y), then T' is a consery-
ative extension of T.

If" in addition’ T l_L (EI.V)(w(xlv M xn’ Y) & (Vy/)((p(‘xls ML) xl’l? y/) - y = y/));
then each T'-formula is T'-equivalent to a T -formula.

4.3 ZF-Style Set Theories in Fuzzy Logic

This section intends to give an overview of results on axiomatic set theory developed
in fuzzy logic in the style of classical Zermelo—Fraenkel set theory. It draws primarily
on Héjek and Hanikova’s paper (2003), where a ZF-like set theory is developed over
BLVA. The theory introduced by Hajek and Hanikova was called ‘fuzzy set theory’
for simplicity, and the acronym FST was used; this was not meant to suggest that
FST was the set theory in fuzzy logic, since clearly there are many possible ways to
develop a set theory in fuzzy logic. It was shown that FST theory admitted many-
valued models, and that at the same time it faithfully interpreted classical Zermelo—
Fraenkel set theory ZF. Moreover, some of its mathematics was developed.

Here, for the sake of precision, we shall use FSTg for the above theory of Hdjek
and Hanikova (2003) over BLV , and alongside, we shall consider a theory FSTyvTL
developed over MTLV . The focus will be on the theory FSTgL..

We start with a short overview of related ZF-style set theories in non-classical
logics. A more comprehensive treatment of the history of the subject can be found
in Gottwald’s survey (2006); see also Hanikova (2004); these take into account also
the interesting story of the full comprehension schema (discussed in Sect.4.5).

An early attempt is presented in the works of Klaua (1965, 1966, 1967), who does
not develop axiomatic theory but constructs cumulative hierarchies of sets, defining
many-valued truth functions of =, C, and € over a set of truth values that is an
MV-algebra. Interestingly, Klaua (1967) constructs a cuamulative universe similar to
ours in definition of its elements and the value of the membership function, but with
a non-crisp equality; his universe then validates extensionality and comprehension,
but fails to validate the congruence axioms. Klaua’s works have been continued and
made more accessible in the works of Gottwald (1976a,b, 1977).

It is instructive to study a selection of chapters on ZF-style set theory in the intu-
itionistic logic. Powell (1975) defines a ZF-like theory with an additional axiom of
double complement (similar in effect to our support), develops some technical means,
such as ordinals and ranks, and defines a class of stabilized sets, which it proves to be
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an inner model of classical ZF. Grayson (1979) omits double complement but uses
collection instead of replacement, and constructs, within the theory, a Heyting-valued
universe over a complete Heyting algebra. Using a particular Boolean algebra which
it constructs, it shows relative consistency with respect to ZF. This paper also offers
examples of how (variants of) axioms of classical ZF can strengthen the underlying
logic to the classical one. For example, the axiom of foundation, together with a
very weak fragment of ZF, implies the law of the excluded middle, which yields the
full classical logic (both in intuitionistic logic and in the logics we use here), and
thus the theory becomes classical. It also shows—by using e-induction instead of
foundation—that some classically equivalent principles are no longer equivalent in
a weaker logical setting.

Inspired by the intuitionistic set theory results, Takeuti and Titani (1984) wrote a
paper on ZF-style set theory over Godel logic, giving an axiomatization and present-
ing some nice mathematics. Later (1992), the authors enhanced their approach to a
logical system that combines Lukasiewicz connectives with the product conjunction,
the strict negation and a constant denoting % on [0, 1] (thus defining the well-known
logic of Takeuti and Titani, a predecessor of the logics LIT and LH%—see Hijek
1998, Sect. 9.1). This logic contains Godel logic, and it is Godel logic that is used
in the set-theoretic axioms. Equality in this system is many-valued. Within their
set-theoretic universe, Takeuti and Titani are then able to reconstruct the algebra of
truth values determining the logic, and they also prove a completeness theorem. In
her paper (1999), Titani gives analogous constructions, including completeness, for
a set theory in lattice-valued logic. This theory was interpreted in FSTpy, by Héjek
and Hanikova (2013).

We will now start developing our theories FSTgr, and FSTytrL. We will not
give proofs for statements that were proved elsewhere, for FSTpL ; as for a possible
generalization for FSTyrr, proofs can be obtained by inspection of the FSTgy, case.
For both theories, we assume the logic contains a (crisp) equality. The only non-
logical symbol in the language is a binary predicate symbol €.

Definition 4.4 In both FSTgy, and FSTy\r. we define:

e Crispness: Cr(x) =4t Yu)A(u € x Vu ¢ x)
e Inclusion: x Cy =gt Vz €x)(z€y)

Semantically, crisp sets only take the classical membership values. Using Lemma
4.2 one gets:

Cr(x) <«— (Vu)A(u € x > A(u € x)) <—
ANVu)(u € x — A(u € x)) <—— AANu)(u € x - A(u € x)),

so crispness itself is a crisp property: one has —vrry, Cr(x) <> ACr(x). Thus also
Cr(x) < ACr(x) < (ACr(x))? «— (Cr(x))2.
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Definition 4.5 FSTpy is a theory over BLV—, with a basic predicate symbol €.
(FSTmtL is defined analogously over MTLV A —.) The axioms of the theory are as
follows:

1. Extensionality: x = y <> A(x € y) & A(y € x); the condition on the right is
MTLV x-equivalent to (Vz)A(z € x <> 7 € y)

2. Empty set: (3x)A(Vy)(y ¢ x); we introduce! a new constant ¢

3. Pair: (I2)AYu)(u € z < (u = x V u = y)); we introduce the pairing {x, y}
and singleton {x} function symbols

4. Union: (A2)AVu)(u € z <+ (Fy)(u € y & y € x)); we introduce a unary
function symbol | J x, and we use x U y for J{x, y}

5. Weak power: (3z)A(Vu)(u € z < A(u C x)); we introduce a unary function
symbol WP(x)

6. Infinity: (32)AW € z & (Vx € 2)(x U {x} € 7))

7. Separation: (32)A(Vu)(u € z < (u € x & ¢(u, x))), if z is not free in @;
we introduce a function symbol {u € z | ¢(u,x)}, and we use x N y for
fuex|uey}

8. Collection: (I2)A(Vu € x)(@v)p(u,v) — Yu € x)(3v € 2)p(u,v)), if z is
not free in ¢

9. e-Induction: A(Vx)(A(Vy € x)p(y) = ¢(x)) = A(VXx)p(x)

10. Support: (3z)(Cr(z) & A(x € 7))

Let us remark that making = a crisp predicate is not an altogether arbitrary deci-
sion. Indeed, in particular logics, such as Lukasiewicz logic or product logic,” even
much weaker assumptions on equality than those of Definition 4.2 entail its crisp-
ness; this was pointed out by Petr Hajek in an unpublished note. This, together with
the fact that a crisp equality is much easier to handle (while it does not prevent a
development of a very rich fuzzy set theory), makes the crispness of = a universal
choice in our theory.

We consistently use A after existential quantifiers® in axioms in order to be able
to define some of the standard set-theoretic operations like the empty set, a pair, a
union, the set w, etc., as the Skolem functions of these axioms (i.e., by Theorem 4.3).
Notice that if FSTpy, and FSTytL, were defined with the function symbols for these
set-theoretic operations in the primitive language, the corresponding Skolem axioms
(i.e,y ¢ W, u€{x,y} < u=xVu=y,etc.) would not contain these A’s.

In the weak power set axiom, the second A weakens the statement.

Further, similarly as in set theory over the intuitionistic logic (Grayson 1979), the
axiom of foundation in a very weak setting implies the law of excluded middle for all
formulae. Therefore, e-induction is used instead. For a reader familiar with Héjek
and Hanikova’s paper (2003), we point out that here we employ a different spelling

1 At the same time, we add the axiom y ¢ @ to the theory; see Theorem 4.3. Henceforth, whenever
we add new constants and function symbols, we also add the corresponding axioms implicitly.

2 In fact, in any logic that proves the schema (¢ — ¢2) — (¢ V —¢); cf. Remark 4.1.

3 Note the semantics of the existential quantifier: mere validity of a formula (3x)¢(x) in a model
M does not guarantee that there is an object m for which ||¢(m)|m = 1.
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of the e-induction schema: originally, the schema read A(Vx)((Vy € x)o(y) —
¢(x)) = A(Vx)p(x). The current form of induction axiom was inspired by Titani’s
paper (1999). As pointed out by Hajek and Hanikova (2013), it is an open problem
whether the original €-induction implies the current one (the converse is obviously
the case).

Given the above sample of possible problems, the first thing one might like to
vouchsafe is that the presented theory really is fuzzy, i.e., that it admits many-valued
models. Hajek and Hanikova (2003) showed this for FSTgL, in the following manner.

Take a complete BLYA-chain A = (A, $4 A A4 A 04 14, AA) and de-
fine a universe V4 by transfinite induction. Take Fnc(x) for a unary predicate stating
that x is a function, and Dom(x) and Rng(x) for unary functions assigning to x its
domain and range, respectively. Set:

Vet = (0}
VA | = {f: Fnc(f) & Dom(f) = V* & Rng(f) C A} for any ordinal o
VA = | Vor a limit ordinal A

a<i

vi= ] v
aeOrd

Observe that « < 8 € Ord implies VaA C VB“. Define two binary functions from
VA into A, assigning to any u, v € VA the values lu € v|] and |ju = v|| in A:

lu € v|| = v(u) if u € Dom(v), otherwise 04
lu =v| = 14 if u = v, otherwise 04
and use induction on the complexity of formulae to define for any formula ¢ (x1, .. .,

x,) a corresponding n-ary function from (V4)" into A, assigning to an n-tuple
ui,...,u, thevalue ||y, ..., u,)|:

o] = 0%
v & x|l = vl A x|, and similarly for —, A and Vv
Ay =A%y

IV Yl = Ayeya ¥ Ge/wl
1@V = Vyeya ¥ (x/w)ll

For a sentence ¢, one says that ¢ is valid in VAff o] = 14 is provable in ZF.
We are able to demonstrate the following soundness result:

Theorem 4.4 Let ¢ be a closed formula provable in FSTgy. Let A be a complete
BLVY A-chain. Then g is valid in VA.
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We remark that an analogous construction of an A-valued universe can be per-
formed for a complete MTLV A -algebra; based on that, the above result can be stated
for FSTyrL w.r.t. the universe defined over such algebra. In either case, the given
construction provides an interpretation of the fuzzy set theory in classical ZF. Cur-
rently, there is no completeness theorem available.

Within FSTgL,, one can define a class of hereditarily crisp sets and prove it to be
an inner model of ZF in FSTgy .

Definition 4.6 In FSTp, we define the following predicates:

e HCT(x) =g Cr(x) & (Vu € x)(Cr(u) & u C x); we write x € HCT for HCT(x)
o H(x) =4t Cr(x) & (3x’ € HCT)(x C x'); we write x € H for H(x)

Lemma 4.5 FSTgy proves that HCT and H are crisp classes, and moreover, that
H is transitive.

It was further shown (H4jek and Hanikovd 2003) that FSTg|, proves H to be an
inner model of ZF. In more detail, for ¢ a formula in the language of ZF (where the
language of classical logic is considered with connectives &, —, 0, and the universal
quantifier V) one defines a translation ¢! inductively as follows:

(pH = ¢ for ¢ atomic

=0
(W & M =y & xH
W — O =yl - M
(V) = (vx e (¥
(Then also (—=y) = =), ( v " = yH v 1, and (@x)y)! = @x € H)

().
One can show that the law of the excluded middle holds in H:

Lemma 4.6 Let ¢(xy,...,x,) be a ZF-formula whose free variables are among
X1, ..., Xy. Then FSTgL proves

(Vx1 € H) ... (Vx, € H)(@(xr, oy o00) v =gy, o x0)).

Considering classical ZF with the axioms of empty set, pair, union, power set,
infinity, separation, collection, extensionality, and €-induction, one can prove their
translations in FSTgL:

Lemma 4.7 For ¢ being the universal closure of any of the abovementioned axioms
of ZF, FSTgy proves ™.

This provides an interpretation of ZF in FSTpL (in particular, H is an inner model
of ZF in FSTgy):
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Theorem 4.5 Let a closed formula ¢ be a theorem of ZF. Then FSTgy, - o'

Moreover, the interpretation is faithful: if FSTgy, - ¢, then ZF + ¢ (since it is
formally stronger), but then ZF - ¢.

Again, by inspection of the proof, one arrives at the conclusion that exactly the
same result can be obtained for FSTyrr. This poses the question of a formal dif-
ference between FSTpr and FSTyr: it would be interesting to determine to what
degree the two theories, built in one fashion over two distinct logics, differ.

We now discuss ordinal numbers in FSTgy, (H4jek and Hanikova 2013). In order
to obtain a suitable definition of ordinal numbers in FSTgy,, we rely on Theorem 4.5.
Recall the classical definition of an ordinal number by a predicate symbol Ordg:

Ordo(x) =¢r Vy € x)(y € x) &
(Vy,zex)(yezvy=zvzey &
Vg Sx)g#D— Qyeq)ynNg=19))

If x € H, then Ordy(x) < OrdIO{ (x), and Ordg(x) is crisp. We define ordinal
numbers to be those sets in H for which Ordg is satisfied:

Definition 4.7 In FSTgp we define: Ord(x) =4¢ x € H & Ordg(x).

Furthermore, we define in FSTgy:
CrispFn(f) =q4r Rel(f) &Cr(f) & (Vx € Dom(f))({(x,y) € f & (x,2) € f > y=12)

where the property of being a relation, and the operations of ordered pair, domain, and
range are defined as in classical ZF.
The iterated weak power property is as follows:

ItWP( ) =4 CrispFn(f) & Dom(f) € Ord & f(#) = &
(Vo € Ord)(@ # ¥ & @ € Dom(f) — f(@) = | WP(£(B))

Bea

The notion is crisp: tWP(f) < AItWP(f). Moreover, tWP(f) & ItWP(g) &
Dom(f) < Dom(g) — A(f C g).

Lemma 4.8 FSTgy proves: (Ya € Ord)(3f)(ItWP(f) & Dom(f) = «).
Definition 4.8 For each « € Ord, let \70, be the unique (crisp) set z such that:

GHMWP(f) & o € Dom(f) & f(a) =2)

Then one can show some classical results about ordinal induction and ranks, as:

Theorem 4.6 FSTg| proves: (Vx)(3a € Ord)(x € V).
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4.4 Arithmetic and the Truth Predicate

In this section we focus on theories of arithmetic over fuzzy logic. We recall the results
obtained by Héjek, Paris, and Shepherdson (2000), taking into account also Restall’s
results (1995); these papers muse on the degree to which considering a logical system
formally weaker than the classical one eradicates the paradoxes one obtains when adding
a truth predicate to a theory of arithmetic. Then we briefly visit the method which Petr
Hajek used in order to show that the first-order satisfiability problem in a standard product
algebra is non-arithmetical (Hajek 2001). Interestingly, in all these works, the theory of
arithmetic is a crisp one—enriched, in the respective cases, by new language elements
that admit a many-valued interpretation.

4.4.1 Classical Arithmetic and the Truth Predicate

We start with a tiny review of theories of arithmetic in classical first-order logic. The
language of arithmetic has a unary function symbol s for successors, binary function
symbols + for addition and - for multiplication, an object constant 0, and its predicate
symbols are = for equality and < for ordering.* An arithmetical formula (sentence) is a
formula (sentence) in this language.

We assume = is a logical symbol and the usual axioms for it are implicitly present.
Robinson arithmetic Q has the following axioms:

QD sx)=s(y) >x=y
(Q2) s(x)#0

(Q3) x#0—> Ay)x=s()
Q4) x+4+0=x

Q5) x+s(y)=s(x+y)
Q6) x-0=0

Q7)) x-s(y)=x-y+x

Q8) x=y< (F)z+x=y)

Peano arithmetic PA adds induction, usually as an axiom schema. Here we will need a
(classically equivalent) rule: for each arithmetical formula ¢, from ¢ (0) and (Vx)(¢p(x) —
@(s(x))) derive (Vx)p(x).

The standard model of arithmetic is the structure .4/ = (N, 0, s, +, -, <), where N
is the set of natural numbers and 0, s, +, -, < are the familiar operations and ordering of
natural numbers (by an abuse that is quite common, the same notation is maintained for
the symbols of the language and for their interpretations on N).

An arithmetization of syntax, first introduced by Godel, is feasible in theories of
arithmetic such as Q or PA; thereby, in particular, each arithmetical formula ¢ is assigned
a Godel number, denoted @. Then one obtains a classical diagonal result: for 7" a theory

4 One can also take < to be a defined symbol, relying on axiom (Q8).
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containing PA,> and for each formula v in the language of T with exactly one free
variable, there is a sentence ¢ in the language of T such that T - ¢ < ¥ (9).

Atheory T suchas above (i.e., with a Godel encoding of formulae), has a truth predicate
iff its language contains a unary predicate symbol Tr such that 7 F ¢ < Tr(p) for each
sentence ¢ of the language. This is what Petr Hdjek likes to call the (full) dequotation
scheme, with the following example for its import: the sentence ‘It’s snowing’ is true if and
only if it’s snowing. Hence another term in usage ‘It’s snowing—“It’s snowing” lemma’.
On the margin, we remark that a per-partes dequotation is native to PA (or indeed, I3%):
one can define partial truth predicates for fixed levels of the arithmetical hierarchy and
fixed number of free variables (Hdjek and Pudldk 1993). However, here it is required of
Tr that it do the same job uniformly for all formulae.

The juxtaposition of the diagonal result with the requirements posed on a truth predi-
cate reveals that consistent arithmetical theories (over classical logic) cannot define their
own truth (a result due to Tarski): taking —Tr(x) for ¥ (x), diagonalization yields a sen-
tence ¢ such that 7 + ¢ <> =Tr(¢), so T - ¢ <> —¢, a contradiction.

4.4.2 Arithmetic with a Fuzzy Truth Predicate

Hijek et al. (2000) noted that a (crisp) Peano arithmetic might be combined with a
(many-valued) truth predicate over Lukasiewicz logic (where the existence of a ¢ such
that ¢ <> —¢ is not contradictory); it then proceeds to develop the theory. We shall
reproduce its main results, in combination with those by Restall (1995).

Definition 4.9 PAL stands for a Peano arithmetic in Lukasiewicz logic, i.e., a theory
with the axioms and rules of first-order Lukasiewicz logic LV, the congruence axioms
of equality w.r.t. the primitive symbols of the language of arithmetic, the above axioms
(Q1)—(Q8), and the induction rule.

Making PAL crisp is easy: one postulates a crispness axiom for the predicate symbol
= as the only basic predicate symbol of the theory (< is definable). In other words,
x = yVx # yisadopted as a new axiom. Then one can prove crispness for all arithmetical
formulae, propagating it over connectives and quantifiers.

However, Restall (1995, actually earlier than Hajek et al. 2000) shows that PAL is
provably crisp even without a crispness axiom.® The proof is a neat example of weakening
operating hand in hand with the induction rule, showing that:

1. PALFXx=0Vvx #0

2. If PAL F ¢(0, y) and PAL F ¢(x,0) and PAL - ¢(x,y) — ¢(s(x), s(y)), then
PAL F ¢(x, y).

3. PALF @x)(x =0« y=12)

4. PALFy=zVvy#z

and consequently:

5 An analogous statement can be formed for weaker theories, including Q.

6 In fact, Restall does not prove the crispness axiom in PAL but rather verifies it as a semantic
consequence of the theory PAL in the standard MV-algebra; note that this is a weaker statement
since LV is not complete w.r.t. the standard M V-algebra. Still, each of the steps can be reconstructed
syntactically in PAL.
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Theorem 4.7 (Restall 1995) Let ¢(x1, ..., xp) be an arithmetical formula. Then
PAL F @(x1,...,x) V =@(x1, ..., Xp).

Crispness pertaining to PAL as the theory of numbers, as Restall goes on to remark,
need not concern additional concepts that one may wish to add to it, such as the truth
predicate; these may be governed by the laws of Lukasiewicz logic LV.

Definition 4.10 (Hdjek etal. 2000) PALTTr is the theory obtained from PAL by expanding
its language with a new unary predicate symbol Tr (extending the congruence axioms of
= to include Tr, while only arithmetical formulae are considered in the induction rule)
and adding the axiom schema ¢ <> Tr(¢) for each formula ¢ of the expanded language.

Theorem 4.8 (Hdjek et al. 2000) PALTT is consistent.”

Hence any theory obtained by replacing L.V with a weaker logic is consistent too. In
choosing a weaker logic, one might want to retain weakening in order to be able to prove
crispness of the arithmetical part.

The paper then proceeds to show that one cannot go further and demand that Tr as
formalized truth commute with the connectives: such a theory is contradictory.

Theorem 4.9 (Hdjek et al. 2000) The standard model ./ cannot be expanded to a model
of PALTr. Thus PALTr has no standard model.

Actually, Restall (1995) shows that PAL as such is w-inconsistent over the standard
MV-algebra [0, 1]¢. It is yet to be investigated whether Peano arithmetic with a truth
predicate developed in a suitable weaker logic than £.V might have standard models.

4.4.3 Non-arithmeticity of Product Logic

Now we turn to a different topic, though with the same arithmetic flavour. We recall
a result of Hajek (2001), where a particular expansion of a crisp, finitely axiomatizable
arithmetic over first-order product logic ITV is considered, in order to show that first-order
satisfiability in standard product algebra [0, 1]y is non-arithmetical.

Definition 4.11 (Hdjek 2001)

1. QIT stands for a crisp theory extending Robinson arithmetic in product logic with
finitely many axioms (such as the theory PA™ of Kaye 1991).
2. QITU expands QIT with a new unary predicate U and adds the following axioms:

=(Vx)Ux

—(3x)~Ux

y=s@) = Uy < Ux)?)
x<y— (Uy— Ux)

7 In fact, Héjek et al. (2000) proved a stronger statement, for a variant of PALTr allowing the
predicate symbol Tr to occur in formulae the induction rule is applied to.
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Informally speaking, the axioms enforce the truth value of Ux to decrease monotoni-
cally (and exponentially) towards 0, but never reaching it, as x is iteratively incremented
by the successor function s. Hijek has shown that, among all (classical) structures for
the language of arithmetic, exactly those that are isomorphic to the standard model of
arithmetic (A) can be expanded to a [0, 1]-model of QITU. Hence, one can decide
truth in the standard model of arithmetic in the manner indicated in the next theorem.
Take /\ QITU to be the A-conjunction of all axioms of QITU.

Theorem 4.10 (Hajek 2001) An arithmetical sentence ¢ is true in A iff the formula

/\ QMU A ¢

is satisfiable in [0, 1]7.

Hence, first-order satisfiability in [0, 1]y7 is a non-arithmetical decision problem. This
technique inspired Franco Montagna to prove that also first-order tautologousness in
the standard product algebra [0, 1], as well as in all standard BL-algebras, are non-
arithmetical; these results are to be found in Montagna’s paper (2001), actually in the
volume containing also Héjek’s paper (2001).

4.5 Cantor-Lukasiewicz Set Theory

Another first-order mathematical theory to which Héjek has significantly contributed
is naive set theory over Lukasiewicz logic. As is well known, the rule of contraction
(or equivalently the validity of ¢ — ¢ & ¢ in sufficiently strong logics) is needed to
obtain a contradiction from the existence of Russell’s set by the usual proof. Indeed, the
consistency of the unrestricted comprehension schema has been established over several
contraction-free logics, including the logic BCK (Petersen 2000) and variants of linear
logic (Grishin 1982; Terui 2004). Lukasiewicz logic, which is closely related to the latter
logics and like them disvalidates the contraction rule, is thus a natural candidate for the
investigation of whether or not it can support a consistent and viable naive set theory.

The consistency of the unrestricted comprehension schema over Lukasiewicz logic
was first conjectured by Skolem (1957). In the 1960s, Skolem (1960), Chang (1963),
and Fenstad (1964) obtained various partial consistency results for the comprehension
schema restricted to certain syntactic classes of formulae. A proof of the full consistency
theorem was eventually published by White (1979). Unlike its predecessors, White’s
proof was based strictly on proof-theoretical methods and did not attempt at constructing
a model for the theory.

White’s proof of the consistency of unrestricted comprehension over Lukasiewicz
logic prompted Héjek to elaborate the theory, for which he coined the name Cantor—
Lukasiewicz set theory. With the consistency of Cantor—tukasiewicz set theory sup-
posedly established, its non-triviality was questioned: i.e., whether the theory is strong
enough to reconstruct reasonably large parts of mathematics (as conjectured already by
Skolem). Hajek’s contributions (2005, 2013a, 2013b), dealing mainly with arithmetic and
decidability in Cantor—t.ukasiewicz set theory, gave a partially negative answer to this
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question. Naive comprehension over (standard) Lukasiewicz logic has also been devel-
oped by Restall (1995), some of whose earlier results Hijek independently rediscovered
(2005), and by Yatabe (2007, 2009) who extended some of Héjek’s results. We survey
the results on Cantor—fukasiewicz set theory in Sects.4.5.1-4.5.2.

In 2010 Terui (pers. comm.) found what appears to be a serious gap in White’s con-
sistency proof. Consequently, the consistency status of Cantor—Lukasiewicz set theory
remains unknown. It is therefore worth asking which of Héjek’s and Yatabe’s results
survive in weaker fuzzy logics, such as IMTL or MTL.® This problem is addressed in
Sect.4.5.3 below, giving some initial positive results and indicating the main problems
that such enterprize has to face.

4.5.1 Basic Notions of Cantor-Lukasiewicz Set Theory

Definition 4.12 (Hajek 2005) Cantor—Eukasiewicz set theory, denoted here by Cg.? is a
theory in first-order Lukasiewicz logic. The language of Cy, is the smallest language .
such that it contains the binary membership predicate € and for each formula ¢ of . and
each variable x contains the comprehension term {x | ¢}. (Thus, comprehension terms
in Cy, can be nested.) The theory Cg is axiomatized by the unrestricted comprehension
schema:

ye{x o)} < o),

for each formula ¢ of Cg, and any variables x, y.

Remark 4.2 An alternative way of axiomatizing naive set theory is to use the compre-
hension schema of the form:

@A) (Vx)(x € z < @) 4.1)

for any formula ¢ in the language containing just the binary membership predicate €
and not containing free occurrences of the variable z. The latter restriction is partly
alleviated by the fixed-point theorem (see Theorem 4.13), which makes it possible to
introduce sets by self-referential formulae (though not uniquely). The comprehension
terms of Definition 4.12 are then the Skolem functions of the comprehension axioms
(4.1), conservatively introduceable, eliminable, and nestable by Theorems 4.11 and 4.3
and Lemma 4.4.

Remark 4.3 Clearly, no bivalent or even finitely-valued propositional operator can be
admitted in the propositional language of naive set theories over fuzzy logics on pain of

8 The consistency status of naive comprehension over these logics is not known, either. Still, being
weaker, they have better odds of consistency even if naive comprehension turns out to be inconsistent
over Lukasiewicz logic.

9 Hajek (2005 and subsequent papers) denoted the theory by Ckg, whereas by CE he denoted an
inconsistent extension of CLy. In this paper we shall use a systematic symbol C; for naive set
theory over the logic L. The corresponding theory over standard [0, 1] -valued Lukasiewicz logic
is called H by White (1979) and Yatabe (2007).
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contradiction, as Russell’s paradox could easily be reconstructed by means of such an
operator. Unrestricted comprehension is thus inconsistent in any fuzzy logic with A (incl.
L) as well as in any fuzzy logic with strict negation (e.g., Godel logic, product logic,
and the logics SBL and SMTL). For further restrictions on the fuzzy logic underlying
naive comprehension see Corollary 4.4.

Cantor-Lukasiewicz set theory is in many respects similar to other naive set theo-
ries over various logics, esp. substructural. In particular, the shared features include the
distinction between intensional and extensional equality, the fixed-point theorem, the ex-
istence of the universal and Russell’s set, non-well-foundedness of the universe, etc. The
reason for these resemblances is the fact that the proofs of these theorems are mainly
based on instances of the comprehension schema and involve just a few logical steps, all
of which are available in most usual non-classical logics. Moreover, the comprehension
schema ensures the availability of the constructions provided by the axioms of ZF-style
set theories, such as pairing, unions, power sets, and infinity. We shall give a brief account
of these features of Cy.. Unless a reference is given, the proofs are easy or can be found
in papers by Hajek (2005) and Cantini (2003).

First observe that by the comprehension schema, the usual elementary fuzzy set
operations are available in Cy.:

Definition 4.13 In Cy, we define:!°

0 =ar {q | L} ~x =g {q | g & x}
xNy=a{qlqgex&qcey} xUy=af{glgexdqgey}
xNy=4g{glqgexngey} xUy=¢g{glgexVvgqgey)

The usual properties of these fuzzy set operations are provable in Cg..!! Notice, how-
ever, that the notions of kernel and support of a fuzzy set are undefinable in C, as they
would make the connective A definable (by setting Ag(y) = y € Ker{x | ¢(x)}). Thus
unlike ZF-style fuzzy set theories (such as FST of Sect.4.3), naive fuzzy set theories can
hardly serve as axiomatizations of Zadeh’s fuzzy sets, as some of the basic concepts of
fuzzy set theory cannot be defined in theories with unrestricted comprehension. '

10 See Theorems 4.2—4.3 for the conservativeness of these (and subsequent similar) definitions in Cg..
The symbol & denotes the ‘strong’ disjunction of Lukasiewicz logic, defined in L as ¢ ® ¢ =g
—(—p & —).

1 The schematic translation of propositional tautologies into theorems of elementary fuzzy set
theory (Béhounek and Cintula, 2005) only relies on certain distributions laws for quantifiers, and
so works for Cg, (as well as Cyr introduced in Sect.4.5.3). The converse direction (disproving
theorems not supported by propositional tautologies), however, cannot be demonstrated as in ele-
mentary fuzzy set theory (namely, by constructing a model from the counterexample propositional
evaluation), since no method of constructing models of Cy, or Cyrr is known. In fact, it is well
possible (esp. for Cyr) that the comprehension schema does strengthen the logic of the theory (as
it does exclude some algebras of semantic truth values, see comments following Theorem 4.21 and
preceding Corollary 4.4 in Sect.4.5.3).

12 In order to become a full-fledged theory of fuzzy sets, some kind of (preferably, conservative)
extension of naive fuzzy set theories would be needed (cf. Béhounek 2010; Hajek 2013b, Sect. 3).
Such extensions, however, make the comprehension axioms restricted to the formulae in the original
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Definition 4.14 In C;, we define the following binary predicates:

e Inclusion: x €y =qr Yu)(u € x — u € y).
e Extensional equality (or co-extensiormlity):]3 x~y=g Vu)(uex <uecy).
e Leibniz equality: x =y =4t Yu)(x e u <y € u).

We will use x # y, x % y, x ¢ y, etc., respectively for =(x = y), =(x = y), ~(x € y),
etc.

As there is a direct correspondence between sets and properties in Cyg,, the definition of
Leibniz equality effectively says that the sets which have the same properties (expressible
in the language of Cy) are equal (cf. Leibniz’s principle of identity of indiscernibles).
Since moreover a concept’s intension is often identified with the set of its properties,
Leibniz equality can also be understood as co-intensionality, or intensional equality.
Unlike in first-order fuzzy logics with identity (see Sect. 4.2), the predicates = and ~ are
defined predicates of Cy . It turns out that the properties required of the identity predicate
(in particular, the intersubstitutivity of identicals) are satisfied by Leibniz equality, but
not by extensional equality. Since moreover Leibniz equality turns out to be crisp in Cy.,
it can be understood as the crisp identity of the objects of Cy, (i.e., each model of Cy, can
be factorized by = salva veritate of all formulae).

The following theorem lists basic provable properties of both equalities.

Theorem 4.11 Cg proves:

1. Both = and =~ are fuzzy equivalence relations; i.e.:
X=x, xX=y—>y=x, x=y&y=7—>x=23,
and analogously for ~. Moreover,  is a fuzzy preorder whose min-symmetrization

is ~o:

xCx, xCy&y<Cz—xCz, xRy<>xZCyAyCx.

N

Leibniz equality is crisp, i.e., x =y V X # y.

3. Leibniz equality ensures intersubstitutivity: x =y — (¢(x) < ¢(y)), for any Cg-
formula ¢.

4. Leibniz equality implies co-extensionality: x = y — x =~ y. The converse (i.e., the

extensionality of Cy-sets), however, is inconsistent with Cy. (Hajek 2005).14

By means of the crisp identity, (crisp) singletons, pairs, and ordered pairs can be
defined in Cy:

language, and so lose the intuitive appeal of the unrestricted comprehension schema. Cf. Remark 4.4
below.

13 Cantini (2003) as well as Hajek (2005 and subsequent papers) denote extensional equality by
the symbol =,.

14 In fact, as proved by Héjek (2013a), if Cg., I ¢ ¢ ¢ for a term ¢, then there is a term ¢’ such that
Cp Ft~1t &t # . Moreover, he also proved that if Cy = (Yu)(u ~ t — u ¢ 1) for a term ¢,
then there are infinitely many terms #; such that Cy, proves r ~ ; and #; # t;, for each i, j € N.
(Thus, for instance, there are infinitely many Leibniz-different empty sets.) The above terms ¢/, t;
are defined by the fixed-point theorem (i.e., Theorem 4.13).
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Definition 4.15 In C;, we define (for all K > 1):

{x} =ar {q | ¢ = x} {x.y}=alglg=xVvqg=y}
(x, y) =ar {{x}, {x, y}} (X1, ooy Xk, Xpg1) =df (X1, -+ o5 Xk)s Xeg1)

The behavior of these crisp sets is as expected (cf. Theorem 4.20 below). In particular,
Ct, proves (x,y) = (u,v) < x =u A y =v. This makes it possible to employ the
following notation:

Convention 4.12 By {(x, y) | ¢} we abbreviate the comprehension term {q | (3x)(3y)
(g = (x,y) A @)}, and similarly for tuples of higher arities.

Like many other naive set theories, Cg, enjoys the fixed-point theorem that makes
self-referential definitions possible:

Theorem 4.13 (The Fixed-Point Theorem) For each formula ¢(x, ..., z) of Cg there
is a comprehension term {, such that Cy, proves {p, ~ {x | ¢(x, ..., {y)}.

Hijek’s proof of the Fixed Point Theorem (2005) is just a reformulation of Cantini’s
proof (2003), which works well in Cg. The proof is constructive, i.e., yields effectively
and explicitly a particular fixed-point comprehension term ¢, for each formula ¢.

Convention 4.14 Let us denote the particular fixed-point comprehension term ¢ con-
structed in the proof of Theorem 4.13 by FP,{x | @(x,...,2)}. In definitions using
the fixed-point theorem, instead of u =qr FP{x | @(x,...,2)} we shall write just
u~ge {x | o(x,...,u)}

Thus if we define a fixed point u ~4¢ {x | ¢(x, ..., u)}, then by Theorem 4.13, Cg.
proves g € u <> ¢(q, ..., u). The fixed-point theorem thus ensures that the “equation”
CrFqg ez« ¢(g,...,z) hasasolutionin z forany formula¢(q, .. ., z). Consequently,
as usual in non-classical naive set theories enjoying the fixed-point theorem, Cy, proves the
(non-unique) existence of a “Quine atom” u ~ {u}, a set comprised of its own properties
u~{p|ue p},etc.

4.5.2 Arithmetic in Cantor-Lukasiewicz Set Theory

In naive set theories that enjoy the fixed-point theorem, the set @ of natural numbers can
be defined in a more elegant way than in ZF-like set theories, straightforwardly applying
the idea that a natural number is either O or the successor of another natural number.
Identifying O with the empty set ¥ and the successor s(x) of x with {x}, we define by the
fixed-point theorem:

wo~g{n|n=0V (3m e w)(n =s(m))}. “4.2)
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The definition is not unique w.r.t. Leibniz identity: Hdjek (2013a) showed that there are
infinitely many terms w; such that @ &~ w; (so w; satisfies the co-extensionality (4.2) as
well), but w; # w;, for each (metamathematical) natural numbers i, j € N.15

Ct. expanded by the constant w satisfying (4.2) proves some basic arithmetical prop-
erties of w (cf. Sect.4.4.1), e.g.:

Theorem 4.15 (Héjek 2005) Cy, proves:

1. s(x) #0
2. sx)y=s(y) >x=y
3. xew<+sx)ew

With suitable definitions of addition and multiplication (as given in Hajek (2013a),
namely as ternary predicates, adapting the usual inductive definitions to Lukasiewicz logic
by means of min-conjunction A), further arithmetical properties, amounting in effect to
a Cp-analogue of Grzegorczyk’s weakening Q™ of Robinson arithmetic, can be proved.
The proof of essential undecidability of the latter weak classical arithmetic can then
be adapted for Cg, yielding its essential undecidability and incompleteness. The proof
proceeds along the usual lines of Godel numbering and self-reference (Hdjek 2013a).

Theorem 4.16 (Héjek 2013a) The theory Cy. is essentially undecidable and essentially
incomplete; i.e., each consistent recursively axiomatizable extension of Cy, is undecidable
and incomplete.

Recall, though, that a theory T over first-order Lukasiewicz logic is considered com-
plete if for each pair ¢, ¥ of sentences in the language of T, either ¢ — ¥ or y — @ is
provable in T (Hajek 1998); such theories are also called linear (e.g., Hijek and Cintula
2006). Incompleteness thus means that for some pair ¢, ¥ of sentences, neither ¢ —
nor ¥y — ¢ is provable in T. The self-referential lemma thus refers to pairs of formulae
as well:

Lemma 4.9 (Hajek 2013a) For each pair ¥1(x1, x2), ¥2(x1, x2) of Cy-formulae there
is a pair @1, @2 of Cy-sentences such that Cy, proves @1 < Y1(¢, ¢;) and ¢z <>
V2 (@1, 92).

Regarding induction, the situation is tricky:

Theorem 4.17 (Hajek 2005) If Cy, is consistent, then Cy, extended by the rule

?(0), (Vx)(p(x) < ¢(s(x)))
(Vx € w)g(x)

)

for any ¢ not containing w, is consistent as well. However, Cy, extended by the same rule
for any ¢ (including those containing the constant ), is inconsistent.

Hdjek (2005) demonstrated the latter inconsistency claim by developing arithmetic in
the extended theory, constructing a truth predicate (cf. Sect.4.4.2), and showing that it
commutes with connectives, which yields inconsistency (Hdjek et al. 2000).

15 This is a corollary of the theorem given in footnote 14, as w satisfies its conditions.
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In the variant of Cy over standard [0, 1]-valued Lukasiewicz logic (called H, see
footnote 9), the arithmetic of w can be shown to be w-inconsistent (Yatabe 2007; cf.
Restall 1995); i.e., H - ¢(n) for each numeral 7z, but also H - (3n € w)—¢(n) for some
formula ¢. It is unclear, though, whether the result can be extended to Cy. (Hajek 2013b).

It can be shown that in every model of Cy,, the set w contains a crisp initial segment iso-
morphic to the standard model of natural numbers (Hdjek 2013a). However, this segment
need not represent a set of the model (cf. the w-inconsistency of H).

Remark 4.4 Inorder to be able to handle such collections of elements that need not be sets,
but are nevertheless present in models of Cg, extending Cg with classes (which cannot
enter the comprehension schema) has been proposed (Hdjek 2013b; Béhounek 2010).
Although this move may be technically advantageous and can possibly yield an interesting
theory, admittedly it destroys the appeal of unrestricted comprehension by restricting it
to class-free formulae. It should be kept in mind, though, that the tentative consistency of
unrestricted comprehension in Cy, itself is only admitted by a restriction of its language
(see Remark 4.3), and therefore does not apply the comprehension principle unrestrictedly
anyway. As this is a common feature of substructural naive set theories, it suggests that
the consistency of naive comprehension in certain contraction-free substructural logics
(and so the necessity of contraction for Russell’s paradox) is in a sense “accidental”, and
that a truly unrestricted comprehension principle would require other logical frameworks
(such as paraconsistent or inconsistency-adaptive ones).

4.5.3 Naive Comprehension over MTL

In this section we shall discuss which of Hajek’s results in Cy, can survive the weakening
of the underlying logic to the logic MTL. We will only give an initial study, hinting at
the main problems of this transition.

Naive set theory over the first-order logic MTL axiomatized in the same way as in
Definition 4.12 will be denoted by Cyrr. The basic set operations as well as inclusion
and the two equalities can be conservatively introduced in Cyr, in the same way as in
Definitions 4.13—4.14. Cantini’s proof (2003) of the fixed-point theorem (Theorem 4.13;
cf. H4jek 2005) works well in Cytr; consequently, the set @ of natural numbers can be
introduced in Cyrr, in the same self-referential way as in Cy, (see Sect.4.5.2).

It can be easily observed that similarly as in Cg, (cf. Theorem 4.11), both equali-
ties =, ~ are fuzzy equivalence relations, inclusion C is a fuzzy preorder whose min-
symmetrization is &, and Leibniz equality implies intersubstitutivity (and therefore also
co-extensionality). It will also be seen later that & is provably fuzzy and differs from
= (so the extensionality of all sets is inconsistent with CyTr, too), although these facts
need be proved in a manner different from that of Héjek (2005).

In Héjek’s paper (2005), the crispness of =, or the provability of (x = y) V (x # y),
is inferred from the fact that Cy, proves contraction (or &-idempotence) for the Leib-
niz equality, i.e., (x =y) — (x = y)2. Hijek’s proof of the latter fact works well in
CmTL, too. However, since MTL-algebras (unlike M V-algebras for Lukasiewicz logic)
can have non-trivial &-idempotents, crispness in MTL does not generally follow from
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&-idempotence. Consequently, in Cytr, Héjek’s proof only ensures the &-idempotence
of the Leibniz identity.

Whether the crispness of = can be proved in Cyrr, by some additional arguments
appears to be an open problem. Below we give some partial results which further restrict
the possible truth values of Leibniz identity; the complete solution is, however, as yet
unknown. The question is especially pressing since so many proofs of Héjek’s advanced
results (2005, 2013a) utilize the crispness of = in Cg. In some cases, the results can
be reconstructed in Cytr, by more cautious proofs; examples of such theorems (though
mostly simple ones) are given below. However, it is currently unclear which part of
Héjek’s results on Cg, described in Sects.4.5.1-4.5.2 can still be recovered in CyrL-

For reference in further proofs, let us first summarize the properties of C, =, and &~
that translate readily into Cyrr:

Theorem 4.18 (cf. Hijek 2005) Cyr proves:

X=x,x=y—>y=x,x=y&y=7z— x =z and analogously for ~
XCx,xCy&yCz—>xCz,xRy<>xCyAyCx
x =y = (px) < ¢(y), for any CumrL-formula ¢.

X=y—> xR~y
x=y - (r=y)>

SR N~

Now let us reconstruct in Cyrr, some basic theorems of Cg,, without relying on the
crispness of Leibniz equality. First it can be observed that the &-idempotence of = makes
it irrelevant which of the two conjunctions is used between equalities. Consequently, =
is not only &-transitive (see Theorem 4.18(1)), but also A-transitive, so the notation
x =y = z can be used without ambiguity.

Theorem 4.19 CytL proves:

l. a=bAnc=d<a=b&c=d
2. x=yAy=7—>x=7Z

Proof The claims follow directly from Theorem 4.18(5) and Lemma 4.1. O

Even without assuming the crispness of =, singletons and pairs (defined as in Def-
inition 4.15) behave as expected. Unlike Cy, where crisp cases can be taken due to the
crispness of = and the proofs are thus essentially classical, Cytr requires more laborious
proofs of these facts.

Theorem 4.20 Cyp proves:

1. {a}={b}<a=>b

{a,b} ={c,d} <> (a=cAb=d)Vv(a=dAb=c)

{a,b} C {c} <> a = b = ¢, inparticular, {a,b} ~ {a} <> a=D>b
(a,b) ={c,d)y <>a=cAb=d

(Y el ) Tolx, y, .. 0 < (X, Y, ..0)
yyUfxloxey

Ak
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Proof 1.Right to left: by intersubstitutivity. Left to right: {a} = {b} —> {a} = {b} «—
Vx)(x €efa} o xe{b}) «— V) x=a<x=b)—>a=a<a=b<«—>a=
b.

2. Right to left: Both disjuncts imply the consequent by intersubstitutivity. Left to
right:

{a,b} ={c,d} — {a,b} = {c,d} <— (Vx)(x=aVvVx=b<x=cVx=d) «—
Vx)x=avx=b—>x=cVvVx=d)ANVx)x=cVx=d—>x=aVx=>b)<+—
VMx) x=a—->x=cVx=d)ANx)x=b—>x=cVx=d)A

VMx) x=c—>x=aVx=bANMVMx)dx=d—>x=aVx=>b)—
(a=cva=d)yA(b=cVvb=d)A(c=aVvc=b)A(d=avVvd=D>)

Distributivity then yields max-disjunction of 16 min-conjunctions, of which 14 are equiv-
alenttoa=b=c=d,onetoa=cAb=d,andonetoa=d Ab=c.

3.Righttoleft: x € {a,b} —> x =aVx=b<«—>x=cVXxX=c<—>x=
¢ <—> x € {c}; intersubstitutivity is used in the second step. Left to right:

{a,b} C{c} «— (VX)x=aVx=b—x=c) «—

Vx) x=a—->x=c)ANVx) (x=b—>x=c)—a=cAb=c.
4. Right to left: by Theorems 4.20(1)—(2). Left to right: By Theorem 4.20(2),
(a,b) = (c,d) < ({a} = {c} AMa, b} ={c.d}) v ({a} = {c,d} Afa, b} = {c]).
Thus it is sufficient to show the following two implications:

{a} = {c} Aa,b} ={c,d} «— by Theorem 4.20(1)+2)
a=cAN({(a=cAb=dyv(a=dAb=c)) «— by distributivity
(a=cha=cAb=d)V(a=dAb=cAa=c)—> by A -transitivity of =
a=cAb=d, and

{a} ={c,d} A {a, b} = {c} — by Theorem 4.18(2)
{e.d} € {a} Afa, b} S {c} — by Theorem 4.20(3)
a=b=c=d—a=cAb=d.

5. The claim is proved by the following chain of equivalences:

@)@, y') = (x,y) & ¢(x, y,...)) «<— by Theorems 4.20(4) and 4.19
@@ x=x"& y=y & ¢(x,y,...)) < in first-order MTL

Gx =x")Y3y = y)(pkx, y,...)) < by Lemma 4.3(3)
e,y

6. The claim is proved by the following chain of equivalences (where the last one follows
from Lemma 4.3(2)):
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yrRyUlxl«— (V@)lgey<qgeyvg=x) <«
~Vg)gey—>qeyvg=x)ANNg)gey—>qe) ANNVg)g=x > g€y <
Vg)lg=x —>qgey) «<—>x€y.

O

Several useful facts about the Leibniz equality can be derived from considering Rus-
sell’s set, r =¢gr {x | x ¢ x}. The following observation is instrumental for these consid-
erations:

Theorem 4.21 Cytr proves: (r € r)2 < 1.

Proof By comprehension,r er < r¢r;thusrer&rer<«—rer&ré¢r<«— L.
O

Sincer € r <> r ¢ r, the truth value of the formular € r is the fixed point p of negation
in the MTL-algebra of semantic truth values in any model of Cyrr. Consequently, CyL
has models only over MTL-algebras possessing the fixed point (e.g., there is no model of
CwmrL over Chang’s M V-algebra). Moreover, Theorem 4.21 makes it possible to establish
the inconsistency of extensionality in Cyrr, without the assumption of the crispness of
Leibniz equality:

Corollary 4.1 Cytr plus the extensionality axiom x ~ 'y — x =y is inconsistent.

Proof Since x = y — x &~ y is a theorem (Theorem 4.18(4)), under extensionality the
equality relations = and =~ would coincide. Thus by Theorems 4.18(5) and 4.20(6), the
relation € would have to yield idempotent values. However, by Theorem 4.21,r € r is
not idempotent. O

Theorem 4.21 shows that the fixed point p of negation is nilpotent; consequently, there
are no non-trivial idempotents smaller than p. As a corollary, the truth value of Leibniz
identity cannot lie between 0 and p:

Corollary 4.2 CyrL proves: x ZyV (rer — x = y).

Proof By Theorems 4.18(5) and 4.21, and the strong linear completeness of MTL.
A direct proof in CyT can easily be given as well: By prelinearity we can prove that

(x:y—>rer)2\/(rer—>x:y).

Thus to prove Cor. 4.2 it is sufficient to prove (x =y — r € N2 - (x = y — 1).
Now, x = y <— (x = y)? —> (r € 1)? «<— L, respectively by Theorem 4.18(5), the
assumption (x =y —>r1 € )2, and Theorem 4.21. m]

Thus, only sufficiently large truth values (namely, those larger than the truth value p of
r € 1) can be non-trivial idempotents in any model of Cyyrr.. This result can be extended
by considering the following sets:
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Definition 4.16 For each n > 1, we define r,, =gr {x | (x ¢ x)"}

By definition, 1, € 1, < (1, ¢ r,)". Consequently, the semantic truth value p, of
r, € 1, satisfies p, = (—p,)". Clearly, p, > 0 for each n, since otherwise 0 = p, =
(—=pn)" = (=0)" = 1" = 1 # 0, a contradiction. The values p, form a non-increasing
chain:

Theorem 4.22 For eachn > 1, CyTL proves: 1,41 € Tyy1 —> Iy € Iy

Proof We shall prove that (r, € 1, — 1,41 € 141)" = (41 € Tyl — I € Ty),
whence the theorem follows by prelinearity.

First, by (1, € 1, — 1341 € 1,41)" we have (ty+1 ¢ 1,41 — 1, & 1,)". Then we
obtain:

] o,
Lyyl € Tnpl <—> (g1 € T,0)"T' by definition

—> (tpg1 & Tng)" by weakening
— (rn ¢ r”)n by (rn+l ¢ In41 — In ¢ rn)n
<« 1, €1, by definition.

]

As a corollary to Theorems 4.21 and 4.22, the truth values p,, are nilpotent for each n:
Corollary 4.3 (r, €1,)> < L

Proof By Theorems 4.21 and 4.22, (1, € 1,)?> — (1] € 11)? <— L. |

The sequence of truth values p, is in fact strictly decreasing, and the sequence of —p;,
strictly increasing:

Theorem 4.23 In any model of CmrtL, the truth values p, of 1, € t, form a strictly
decreasing chain and the truth values —p, of 1, & t, form a strictly increasing chain.

Proof By Theorem 4.22 we know that p,, 11 < p,, SO =p;, < —pp4+1. Suppose —p, =
—Pu+1- Then p, 41 = (_'pn+1)n+l = (_‘pn)n_H = ((—=pn)" & =pp) = (pn & —py) =0,
but we have already observed that p, 1 > 0 for all n—a contradiction. Thus —p,+1 #

—Pn, SO 7 Pp41 > —Pp and Ppy1 < Pn. o

As a corollary we obtain that the theory CyrL is infinite-valued, as each model’s
MTL-algebra contains an infinite decreasing chain of truth values below the fixed point
of — and an infinite increasing chain of truth values above the fixed point of —. Moreover,
since (—p,)" = pu, which by Corollary 4.3 is not idempotent, —p,, is not n-contractive. 16
Consequently, there are no models of Cyr. over n-contractive MTL-algebras, for any
n>1:

16 Recall that an element x of an MTL-algebra is called n-contractive if x"~! = x". Equivalently,
x is n-contractive if x~! is idempotent. An MTL-algebra is called n-contractive if all its elements
are n-contractive.
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Corollary 4.4 Naive comprehension is inconsistent in all logics C,MTL of n-contractive
MTL-algebras (i.e., in MTL plus the axiom ¢~ — ¢"), for any n > 1. Consequently,
it is also inconsistent in any extension of any C,MTL, which class includes all logics
SuMTL of n-nilpotent MTL-algebras (i.e., MTL plus the axiom ¢"~' v —¢) as well as
the logics NM and WNM of (weak) nilpotent minima.”

By Theorem 4.23, the truth values —p, of r, ¢ r, form an increasing sequence. By
Corollary 4.3, each —=p,, is nilpotent, since (—0,)*" = ((—p)")* = p> = 0. Non-trivial
idempotents can thus only occur among truth values larger than all —p,:

Corollary 4.5 Inany model of CyitL, all non-trivial idempotents are larger than all truth
values —py of 1, & t,. (In particular, they are larger than the fixed point p of negation).

This fact is internalized in the theory by the following strengthening of Corollary 4.2:
Corollary 4.6 Foralln > 1, CyrL proves: x #y V (I, ¢ 1, > x = y).

Proof The proof is analogous to that of Corollary 4.2: by prelinearity, it is sufficient to
prove (x = y — 1, ¢ 1,)*" — x # y, which obtains by x = y «— (x = y)** —
(1 & 1,)>" < (r, € 1,)> <— L, using the previous observations. o

By Corollary 4.5, the truth values of the Leibniz equality can only be 0 or sufficiently
large (namely, larger than all p,). At present it is, however, unclear whether they have
to be crisp or not. As we have seen in Theorems 4.18—4.20, some basic properties of
Leibniz equality known from Cy, can be proved in Cyrr, by more laborious proofs even
without the assumption of the crispness of =. However, since most of Hdjek’s results on
arithmetic in Cg, rely heavily on the crispness of identity, it is unclear whether they can
be reconstructed in Cpr or not.

4.6 Conclusions

In this chapter we have surveyed (and on a few occasions slightly generalized) the work
in axiomatic fuzzy mathematics connected with Petr Hijek. A recurring pattern could
be observed in Hdjek’s work in this area: even in a non-classical setting of mathematical
fuzzy logic, he made a point of employing the knowledge and methods he mastered
during earlier stages of his career, for example, in comparing axiomatic theories using
syntactic interpretations, or in relying on strong independence results in arithmetic.
Even though Héjek’s results remain a landmark of these investigations, it could also be
seen from our exposition of them that the theories in question (as well as their metamath-
ematics) are still at initial stages of their development, and many interesting questions
remain still open. H4jek’s investigation into these theories opened the way for interesting
research and demonstrated that some intriguing results can be achieved. One of the aims

17 Owing to the existence of a fixed point p; of negation, naive comprehension is furthermore
inconsistent in logics with strict negation, i.e., in SMTL and any of its extensions, which include
IMMMTL, SBL, I1, and G.
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of this chapter was to gather the results in this field of research scattered in several papers
and present them in a synoptic perspective, in order to promote further research in this
area of axiomatic non-classical mathematics. We therefore conclude it with a list of open
problems mentioned or alluded to in this chapter:

e Can a completeness theorem be proved for the ZF-style fuzzy set theory FST over
MTL?

o What is the difference between FSTg1, and FSTyr.?

e Can Peano arithmetic with a truth predicate over MTL (or some intermediate logic

between MTL and t.) have standard models?

Is Cg. (or CvtL) consistent (relative to a well-established classical theory)?

Is the Leibniz equality = crisp in Cyr,?

Is w crisp in Cg, (CmL)?

Is Cvrr (essentially) undecidable and incomplete?

Is there a method of constructing models of Cg, or CytL, so that the models would

satisfy some required properties?
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Chapter 5
Bridges Between Contextual Linguistic Models
of Vagueness and T-Norm Based Fuzzy Logic

Christian G. Fermiiller and Christoph Roschger
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5.1 Introduction

With the benefit of hindsight, one can ascertain that Petr Hdjek’s Metamathematics
of Fuzzy Logic (Héjek 2001), published in 1998, has been a real breakthrough in the
study of mathematical fuzzy logic.! At the end of Chap. 1 (Preliminaries of Hajek
2001) Héjek summarizes his introduction to the topic by expressing the hope that his
book validates the following four statements (repeated here in abbreviated form):

e Fuzzy logic is neither a poor man’s logic nor poor man’s probability.

e Fuzzy logic is a logic.

e There are various systems of fuzzy logic, not just one.

e Fuzzy logic in the narrow sense is a beautiful logic, but is also important for
applications: it offers foundations.

! The term ‘mathematical fuzzy logic’ has been successfully propagated by students and col-
leagues of Petr Hdjek only well after the appearance of Héjek (2001). Hajek, like others at that
time, referred to ‘fuzzy logic in the narrow sense’, following Zadeh’s distinction between a
wider and a narrow sense of fuzzy logic, where the latter meant the study of deductive systems
of logics that are based on the real unit interval as set of truth values.
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The still increasing stream of work, more recently documented in the hand-
book Cintula et al. (2011), witnesses that Héjek has succeeded admirably and to
the benefit of a by now fairly large and lively community of logicians, mathemati-
cians, and computer scientists, who regularly publish their sophisticated results about
(mathematical) fuzzy logic in the best logic journals, which had hardly been the case
before the appearance of Hajek (2001).

As H4jek made clear already in the preface to Hajek (2001), fuzzy logic is intended
as “alogic of imprecise (vague) propositions”. Indeed, vagueness is a significant and
ubiquitous phenomenon of human communication. Consequently, adequate models
of reasoning with vague information are not only of considerable interest to logicians
and computer scientists, but also to philosophers (see, e.g., Keefe and Smith 1999;
Keefe 2000; Williamson 1994; Fermiiller 2003; Shapiro 2006; Smith 2008; Dietz
and Moruzzi 2010 and references there) and to linguists. Of particular interest from
a logical point of view are approaches to formal semantics of natural language that
can be traced back to Richard Montague’s ground breaking work, firmly connecting
formal logic and linguistics in the generative grammar tradition (see, e.g., Partee
1997; Heim and Kratzer 1998).

This chapter is motivated by the fact that the most widely studied contemporary
linguistic models of vagueness appear to be incompatible with the degree based
approach offered by fuzzy logic, at least at a first glimpse. To model the behav-
ior of competent speakers and hearers in face of vagueness, linguists—often only
implicitly—insist on the following principles (cf. Pinkal 1995; Bosch 1983; Barker
2002; Kennedy 2007; Kyburg and Morreau 2000; Fernando and Kamp 1996):

e Like all declarative sentences, utterances of vague propositions are either (pre-
liminarily) accepted or rejected by competent hearers. Matters of degree typically
appear not at the level of truth, but on deeper levels, like processing gradable
adverbs, adjectives, and predicate modifiers.

e The central feature of vague language is its specific form of context dependency.
Contexts of admissible precisifications are not only needed to sort out ambiguities,
but rather are systematically to be taken into account whenever vague expressions
are processed, even if the modeled scenario eliminates all ambiguities and strictly
epistemic uncertainties from the discourse in question.

e Any linguistically adequate model of vagueness should strive to capture subtle
facts about grammaticality. For example, a comprehensive linguistic model should
respect that not only tall and very tall are vague predicates, but also that clearly tall
and definitely tall can be seen as vague expressions. Moreover, the models should,
e.g., reflect that definitely very tall is an ordinary English expression, while very
definitely tall presumably sounds much less natural to most native speakers.

e The formal semantics of vague expressions should fit the wider realm of natural
language semantics as developed in the above mentioned tradition. The models
should not introduce ad hoc features (like ‘degrees of truth’) that do not already
play a role in the context of formal semantics of natural language.
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Faced with such a list, fuzzy logicians may shrug their shoulders and go on to
explain that the different methodological principles underlying their approach to
reasoning under vagueness is guided by quite different aims and intended applica-
tions.” In contrast, the purpose of this contribution is to show that even those models
of vague language preferred by linguists, that seem to be very distant from fuzzy logic
at first, may be fruitfully analyzed from a fuzzy logic point of view. More precisely,
our aim is to bridge the seemingly wide gap between context based linguistic models
and fuzzy logic by explicating how fuzzy sets can be extracted systematically from the
meaning of predicates in a given context and how one can reconstruct a corresponding
degree based semantics of logical connectives in various ways. To make this concrete,
we will refer to a specific linguistic framework—dynamic context semantics—as
used by Chris Barker (2002) for the analysis of vagueness. While Barker’s model
certainly exhibits a number of original features, it is nevertheless a fairly characteris-
tic and important example of contemporary linguistic approaches to vagueness (not
only due to superficial attributes, like its heavy reliance on lambda notation). Building
on a straightforward connection between contexts and fuzzy sets we will compare
the information content coded in contextual models and in fuzzy sets, respectively.
At this point Hijek’s emphasis on logics based on continuous t-norms will receive
further vindication: the three fundamental t-norms—*}.ukasiewicz t-norm, minimum,
and product—naturally appear in different ways as limits of degrees extracted from
contexts. Motivated by this coincidence, we will also discuss some approaches to the
problem of justifying truth functional (fuzzy) semantics of logical connectives, with
the aim to relate standard fuzzy logic interpretations to Barker’s semantic framework.

We do not pretend to provide a systematic overview of connections between
linguistic research and fuzzy logic. Just in passing, we refer to the extensive work
of Vilem Novék and his collaborators (see, e.g., Novak 1992, 2008) for an approach
that aims at models of natural language expressions, in particular by using so-called
fuzzy type theory. Certainly, further examples of bridges between these seemingly
quite distant paradigms of dealing with vague language can be found. Moreover,
we emphasize that our aim is to address conceptual challenges, not to provide new
mathematical results. Our hope is that our remarks amounts to an (admittedly rather
indirect) further appraisal of Petr Hijek’s great work on t-norm based fuzzy logic
from a presumably rather unexpected angle.

2 Some fuzzy logicians seem tempted to argue that models like that of Barker, that we will take as
starting point here, compare unfavorably with fuzzy logic, even if the aim is to model the semantics
of natural language. But, as our brief review of Barker’s model in Sect. 5.2 will indicate, context
based models are usually much more fine grained than those offered by fuzzy logic. They indicate
that the mentioned methodological principles successfully support contemporary linguistic research
in various ways. We thus take the idea that linguists should replace their own approach to formal
semantics of vague language by that of fuzzy logic as a quixotic move, that hardly deserves serious
debate. On the other hand, the claim that there is no relation between natural language semantics and
fuzzy logic at all seems dubious. After all, both fields attempt to model the successful processing
of vaguely stated information. In this endeavor they frequently refer to the same natural language
examples and moreover rely both on tools from mathematical logic.
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5.2 A Contextual Linguistic Approach to Vagueness

Linguists, like logicians, often focus on predicates and predicate modifiers in mod-
eling the semantics of vague language. It is impossible to provide a survey of the
relevant literature that does justice to all linguistic approaches to vagueness in short
space.> For our purpose it suffices to note that there seems to be wide agreement
that adequate truth conditions for vague sentences have to refer not only to fixed
lexical entries, but also to contexts of utterance that may be identified with sets of
contextually relevant permissible precisifications. Moreover, many authors take it
for granted that a realistic and complete formal semantics of natural languages has
to take into account the context dependence of truth conditions, anyway, e.g., to be
able to resolve ambiguities and to handle anaphora. However, some care has to be
taken in this respect, since ‘context’ can mean different things here, that may operate
on different levels. For example, in applying the adjective fall it is obviously relevant
to know whether the reference is to trees in a forest, to basketball players, to school
kids, or to a fall story. On the other hand, consider a situation where it is clear that
the general context of asserting Jana is tall is a discussion about students in my class
and not about basketball players. Even there, something like Lewis’s conversational
score (Lewis 1970) (cf. also Shapiro 2006) is needed to model the intended meaning
of Jana is tall unambiguously. To see this, imagine the following two options. Either
(1) the speaker wants to communicate information about Jana’s height to someone
who does not know her or (2) both speaker and hearer have precise common knowl-
edge about Jana’s height, but the speaker intends to establish a standard of tallness by
making this utterance. Reference to such conversational contexts of possible precisi-
fications is convincingly argued to be an essential ingredient of adequate models of
communication with vague notions and propositions (see, e.g., Pinkal 1995; Bosch
1983; Barker 2002; Kennedy 2007; Shapiro 2006).

Instead of detailing the mentioned arguments for using contexts, we will illustrate
the versatile use of contexts in formal semantics by outlining just one particular,
rather recent and prominently published approach, due to Chris Barker (2002). This
will serve as motivation and bridgehead—to stick with the metaphor in the title of
this contribution—for exploring connections to fuzzy logic in the following sec-
tions. Barker casts his analysis of various linguistic features of vagueness in terms of
so-called dynamic semantics (Heim 2002; Groenendijk and Stokhof 1991), that has
been successfully employed to handle, e.g., anaphora. In this approach the mean-
ing [[¢]] of a statement (declarative sentence, propositional expression) ¢ is given
by an update function operating on the set of contexts, which in turn are modeled as
sets of possible worlds. As already indicated above, semantic theories differ in their
intended meaning and formal manifestation of the notion of contexts. Barker (2002),
following Stalnaker (1998), identifies a context with a set of ‘worlds’, where in each
world the extension of all relevant predicates with respect to the actual universe of
discourse is completely precisified; i.e., each (relevant) atomic proposition is either

3 For this we refer to the handbook article Rooij (2011), the collections (van Rooij et al. 2011; Egré
and Klinedinst 2011), but also to the classic monograph Pinkal (1995).
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true or false in a given world. For gradable adjectives these precisifications are spec-
ified by a delineation §: for each world, § maps every gradable adjective—or more
precisely: every reference to the meaning of a gradable adjective—into a particu-
lar value or degree of a corresponding scale. These values represent local standards
of acceptance. For instance, if §(w) is the delineation function associated with the
world w, then d = §(w)(Ttall) yields the standard of tallness in w expressed, say, in
cm; i.e. every individual that is at least d cm tall in w will be accepted as fall in w.

In fact, only a simple form of update functions is needed; namely filters,* where
[¢l(C) < C for all contexts C—the result [¢](C) being the set of worlds in C
that survive the update of C with the assertion that ¢. This observation entails that
dynamic semantics is just a notational variant of a more traditional specification of
‘truth at a world’: ¢ is true (accepted) at w if w € [[¢]|(C) and ¢ is false (rejected)
atwif w & [¢]l(C). Moreover, we assume that all worlds of a context refer to the
same universe of discourse U .

Gradable predicates, like tall, relate individuals with degrees on some fixed scale.
The denotation of tall is modeled by a function tall, such that tall(w)(a) returns the
degree of tallness, i.e. the height (again measured, say, in cm) for individual a in the
possible world w. Note that different degrees of tallness for the same individual a in
different possible worlds are not attributed to the vagueness of fall, but to the hearer’s
uncertainty about @’s height. Barker’s approach thus demonstrates how epistemic and
vagueness related uncertainty interact with each other.

Accordingly, Barker presents the (dynamic) meaning of tall by

[tallll =45 AxAC.{w € C : sw)(Ttall) < tall(w)(x)}.

Note that here we slightly deviate from Barker’s notation presented in Barker
(2002) in two ways: First, Barker lets tall(d, a) denote the set of worlds in which the
individual a is at least d cm tall. As argued by Kennedy (2007), such a formalism is
more flexible and better suited for non-linear scale structures. Here however, we focus
only on linearly ordered arithmetic scales. Therefore tall(w)(a) directly denotes a
degree of tallness (on the relevant scale for heights of persons), as described above.
Moreover, we will use addition and subtraction on degrees in order to simplify some
definitions below. Secondly, Barker does not distinguish between [[fall] and the
purely referential use of it. Our notation " #all is meant to indicate that the circularity
is of a harmless type.

Among other features, this semantic setup allows Barker to capture the intuitive
difference in the meaning of the modifiers very, definitely, and clearly. They are
implemented as predicate modifiers, i.e., the first argument of [very]l, [definitely]],
or [clearly] is the predicate (e.g. [7all]) that is to be modified.

To define [very]] Barker uses an underlying ternary relation very over degrees,
such that very(s, d, d’) holds if and only if the difference between d and d’ is larger
than the vague (world dependent) standard s. With these notational simplifications

4 By a filter we (here) just mean a function f which maps any set to one of its subsets, i.e.
[ 2(8) - 2(S), with f(X) € X forall X € 2(S).
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Barker’s definition of [[very]] reads as follows:

[veryll =ar AaixAC. {w € a(x)(C) : Id(wld/a] € a(x)(C)A
sw)(Pa) +8w)(Tvery) < d)},

where the first argument o denotes the predicate to be modified by [[very]] and
wld/a] denotes a world that is like w, except for setting §(w) Ta) = d. E.g., in
w[185 cm/[[tall]]] the standard of tallness is 185 cm. Therefore, [[Ann is very tall]] =
([veryl([[zall]))(Ann) is a filter (update) that is survived by exactly those worlds of
a given context, where Ann exceeds the standard of tallness by at least some margin s.
This margin s not only depends on the meaning of tall and very, but also on the world
itself. Thus the vagueness of very is modeled by a twofold context dependence: (1)
the meaning of very may obviously vary from context to context, but (2) even within
a fixed context different worlds may show different standards of accepting that an
individual is very fall, granted that it is accepted as rall.

Barker’s presentation of [[very]], and also of other predicate modifiers, however has
two subtle problems regarding the type of § (w) (T very) and regarding the composition
of predicate modifiers. In the following we show how to enhance his definitions in
order to circumvent these issues while maintaining his original intentions regarding
the semantics of very, definitely, and clearly.

An interesting feature of Barker’s representation of [[very] is that the value
8(w)(tvery) does not depend on the vague predicate in question. This implies that
by stating Jana is very tall one communicates also the intended use of the word very,
thus possibly affecting how the sentence Jana is very clever will be evaluated in a
subsequent context. However this presupposes that fall, clever, and very, all refer to
the same scale. Moreover, even on the same scale it is hard to see why the (absolute)
margin involved by uttering very huge should be the same as for uttering very tiny.
Therefore, we will stipulate that this margin for each world may differ for different
predicates, denoted by e.g. §(w)(Tvery, Ttall).’ Secondly, in Barker’s original setup
it is not possible to iterate predicate modifiers. For example very very tall cannot be
represented as [very[|([[veryll([tall])), although this is clearly intended by Barker.
The reason for this is that the definition of [[very]] uses the local threshold value of the
modified predicate o and adjusts it to a new degree d as expressed by w[d /a]. This
does not work if « is a composite predicate such as very tall, because there simply
is no local threshold value for very fall registered by the delineation §. Instead for
each world both threshold values 8 (w)(Tvery, Ttall) and 8(w)(Ttall) are needed to
decide whether the world survives the context update. (The situation gets even more
involved when turning to other complex predicates such as very clearly tall). We
solve this problem by introducing the function A(w)(«, x) denoting the difference
between the threshold value for o and the actual degree to which « applies to the
individual x in the world w. For a simple (atomic) predicate such as fall we have

5> Note that §(w) is polymorphic: for simple predicates such as rall it has only one argument.
However, if the first argument is a reference to a modifier like [[very]| or [[clearly]| then a reference
to a predicate is expected as second argument.
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Aw)(Mall, x) =45 tall(w) (x) — 8(w)(Mtall).
Based on this function we can define the predicate modifier [[very] as
[veryll =ar AaAxAC.{w € C : A(w)(a, x) > 5(w)(Tvery, Ta)}.

By defining the behavior of A on predicates modified by very as follows, [very]
becomes fully iterable:

Aw)Mvery(@), x) =ar Aw)(a, x) — 8(w)(Tvery).

Note that, on the level of an individual world w, the update function for very refers
only to information pertaining to w. In contrast, Barker suggests to model definitely
as a kind of modal operator:

[ definitelyll =45 AarxAC.{w € a(x)(C) : Vd(wld/a] € C — wld/a] € a(x)(C))}.

This means that a world w € C survives the update with [Jane is definitely tall] if
and only if all worlds in C in which Jane has the same height as in w judge Jane
as tall according to their local standard. Note that the hearer of the utterance may
be uncertain about Jane’s actual height. This uncertainty is reflected in the model
if Jane has different heights (degrees of tallness) in different worlds of the context.
Consequently, in general, definitely tall is not just equivalent to ‘zall in all worlds
of the context’. However, if there is no uncertainty about Jane’s height, i.e. if Jane
has the same height in all worlds, then [[definitely tall]] does not filter out any world
([definitely tall](C) = C)incase Jane’s height is above the local standard for tallness
and filters out all worlds ([[definitely tall]|(C) = ¥) in case Jane’s height is below the
local standard for tallness.

Again this definition, as given by Barker, poses an obstacle when iterating predi-
cate modifiers such as in definitely very tall: the use of w[d /] does not (yet) scale up
to composite predicates. However defining wld/a(8)] =4 wld/B] for composite
predicates yields a robust notion of substitution in a world, i.e. we discard all predi-
cate modifiers and only change the threshold value of the underlying atomic predicate
in the respective world. Evaluated at a particular world w € C the sentence Jane is
definitely very tall can then be understood as intended, namely as Jane is very tall in
all worlds in C in which she has the same height as in w. Note that there is no direct
analogon for defining A(w)("definitely, x), since, unlike for very, there is no world
dependent margin 8 (w) (" definitely, o) for definitely. This matches the intuition that
it is (at least somewhat) odd to apply the modifier very to the predicate definitely
tall, in contrast to applying definitely to very tall, which seems quite appropriate.
Barker’s model captures this intuition by insisting that definitely, in contrast to very,
is not gradable.”

6 Note that nevertheless both, very and definitely, are understood as vague adjectives, in the sense
of being systematically context dependent.
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Barker recognizes that alternative models, where [definitely]] is gradable and
thus may be meaningfully iterated to convey emphasis, might be more realistic.
However, he prefers to explore such an alternative by attributing it to the modifier
[clearly]l, instead. In fact, the following presentation of the meaning of clearly
combines essential elements of [[very] as well as of [[definitely]] (See also Table
5.1):

[clearly]l =ar AadxA(C).{w € C :Vd(w[d/a] € C
— Awld/a))(«, x) = s(w)(Tclearly, Ta))}.

The reference 'clearly as an argument of §(w) indicates that clearly itself is
vague: 8(w)(Tclearly, Tar) returns a world dependent margin for « analogously
to 8(w)(7very, Ta). However there is an essential difference between [very] and
[clearly]: while for very tall one compares the local standard of tallness with the
local value for an individual x’s height in each world w, clearly tall checks whether
for all worlds where x has the same height as in w the individual x is fall even by
the margin §(w)("clearly). This comparison of all worlds in the context that share
the same height is completely analogous to the definition of [[definitely]l. Moreover,
defining A(w)("clearly(c), x) accordingly as follows enables iterating clearly to
obtain e.g. very clearly

Aw) (" clearly(@), x) =af {d:w[rg/iglec}{A(w[d/ot]})(a, x) — 8w)(telearly, Ta)}.

5.3 Extracting Fuzzy Sets from Contexts

Our main pillar in building a bridge between linguistics and fuzzy logics consists
in connecting the dynamic, context based meaning of predicates like tall with fuzzy
sets. We define logical operators and, or, and not directly on predicates’ in a straight-
forward manner and explore how they relate to the corresponding operations on fuzzy
sets. Note that linguists may seek to preserve a subtle difference in the meaning of
statements like Jana is tall and clever and Jana is tall and Jana is clever, respec-
tively. In any case, it is straightforward to lift our analysis of predicate operators to
the propositional level.

We introduce the notion of an element filter. These are filters parameterized by
an element of the universe.® Element filters that we have already encountered are,
e.g., [tall]] but also [veryll([[zall])), where for a given element a both [[fall](a) and
([veryll([ltall]))(a) are filters.

7 For brevity we focus on monadic predicates, but the concepts can easily be extended to relations
of higher arity.

8 As already implicitly assumed above (following Barker), we stipulate that the relevant element
is in the universe of the context to which the filter is applied. (Otherwise the result simply remains
undefined.)
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Table 5.1 Example of a context C with j denoting Jane, valuating the sentences Jane is tall (¢:q11),
Janeis very tall (¢,ry), Jane is definitely tall (pq.5), and Jane is clearly tall (¢cj.)

w__tallw)() s (rall) sw)(Tvery, T1all) s(w)("clearly, Tall) guan_ ¢vry  Qaer  @ete

w180 185 5 10

wy 185 190 10 5

wz 185 180 5 5 v v

ws 190 185 10 10 v v

ws 190 185 5 10 v v v

we 190 185 5 5 v v v v
wr 190 185 10 5 v v v

Given a context C we extract a fuzzy set from the meaning o« = [ P]] of a predicate
P by applying for each element a the filter «(a) to C and measuring the amount of
surviving worlds of C.

In the following we consider only finite sets of worlds as contexts and moreover
stipulate that all considered contexts share the same universe U. Although adjectives
like tall or heavy at the first glance refer to continuous scales, we argue that the scales
of perceived heights or weights are discrete by imposing some level of granularity
that is due to our perception and to cognitive limitations. This allows one to straight-
forwardly determine the membership degree of an individual a in the fuzzy set [« ]¢
by counting the worlds in C before and after applying the filter o

We identify fuzzy sets with their membership functions to obtain:

Definition 5.1 Let C be a context over a universe U and « an element filter. Then
the fuzzy set [a]¢ is given by

la(x)(O)]

la]lc : U — [0,1]: Tel

Note that the collection of fuzzy sets [«a]¢ for all relevant element filters « carries
less information than C itself. This will get apparent when we compare logical oper-
ators defined on predicates with corresponding operations on fuzzy sets. Extending
the framework of Barker, we model compound predicates (like tall and clever), built
up from logically simpler predicates (tall, clever), as follows.

Definition 5.2

o [and] =45 AadBAxAC.a(x)(C) N B(x)(C)
o [[or]l =45 rarprxrC.a(x)(C) U B(x)(C)'0
o [not]] =45 AarxAC.C\(a(x)(C))

9 Of course, the approach can be generalized to infinite contexts by imposing suitable probability
measures on possible worlds. We will implicitly use such a model in Sect. 5.4, below. In any case,
we do not claim any originality, but rather follow a well established concept here.

10 In patural language one can also find exclusive disjunction, e.g. Janais either tall or
clever (but not both), but note that exclusive disjunction can be modeled as well in the obvious way.
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Note that in the above definition &« = [[A]] and 8 = [B] are element filters rep-
resenting the meaning of the predicates A and B, respectively. Using infix notation,
[A and B] is an element filter as well. In general, applying [[A and B] is not equiva-
lent to applying the element filters [A]] and [[ B] consecutively. We may additionally
define

o [land” || =45 AadBrxAC.B(x)(a(x)(C)).

Then [A and~ B] is notonly different from [A and B]], butalso from [B and™ A].
One might argue that this form of conjunction corresponds to the natural language
expression and moreover or to certain uses of but. It is interesting to note that in
this model the non-commutativity of [A and” B] arises only if one of the vague
predicates A and B is built up using modalities like definitely or clearly. Otherwise,
both forms of conjunction coincide. If no modalities are involved, all worlds are
tested individually and independently of the context in which they are appearing.
Consequently exactly those worlds survive the update where both A and B hold.
However, consider the predicates tall and definitely tall and tall and~ definitely tall.
Let the context C consist of the two worlds w; and w», where there is no uncertainty
about Ann’s height, but where in wi Ann is judged tall and in wy she is not. Then
tall and definitely tall filters out both worlds, whereas tall and~ definitely tall filters
out wi in the first step and therefore w, survives the update.

Material implication!! is expressed by composing [not] and [or]], as usual:

(1 =ay AarBAC.(C\a(x)(C)) U B(x)(C).

The membership degree of x in the fuzzy set [A and B]c'? is determined by ap-
plying the filter [ A and B]|(x) to the context C and calculating the fraction of worlds
in C that survive this update. Proceeding a step further on our bridge from linguis-
tics to fuzzy logics, the question arises whether we can determine [A and B]c(x)
from the membership degrees [A]c(x) and [B]c(x) alone. This, of course, would
give us a fully truth functional semantics for and, or, and not. However, fuzzy sets
abstract away from the internal structure of contexts that may show various possible
dependencies of worlds. We illustrate this by the following example.

Let C be a context consisting of the five possible worlds wy to ws as in Table 5.2.
Furthermore, let [Jana]] = j be in the universe and let tall, clever, and heavy be
the denotations of the unary predicates fall, clever, and heavy, respectively, just as
demonstrated for tall in Sect. 5.2.

Then [heavy]l is an element filter where [heavy]l(j)(C) = {w3}. Accordingly,
[heavy]c(j) = 1/5. Likewise we have [clever]c(j) = [tall]c(j) = 3/5. Since these
latter are equal, also the membership degrees of j in the fuzzy sets [tall and heavy]c
and [clever and heavy]c, respectively, had to be equal if the (context update) mean-
ing of and were truth functional. But we obtain [tall and heavy] (j)(C) = {w3}, thus

1T As is well known, it is questionable whether material implication has a natural language equiv-
alent. We include this logical connective here mainly for the purpose of comparison.

12 For the sake of readability we write [X]c¢ instead of [[X]]c.
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Table 5.2 Example context C
w sw)(Trall)  tallw)(§)  s(w)(Tclever)  clever(w)()  s(w)(Theavy)  heavy(w)(j)

wy 170 175 100 105 80 75
wy 160 170 120 125 75 70
wz 170 180 100 95 90 100
wg 180 175 105 100 85 75
ws 170 165 110 115 70 65

[tall and heavy]c(j) = 1/5, while, on the other hand, [clever and heavy]c(j) = 0.
Note that by extracting the three fuzzy sets from the corresponding element filters
we lose the information about the specific overlap of the corresponding updates in
the given context.

The following bounds encode optimal knowledge about membership degrees for
fuzzy sets extracted from logically compound predicates with respect to membership
degrees referring to the corresponding components.

Proposition 5.1 Let C be a context, d € U, and let « = [A]] and B = [[B]] be two
element filters. Then the following bounds are tight:

e max{0, [a]c(d) + [Blc(d) — 1} < [Aand B]c(d) < min{[a]c(d), [Blc(d)},
e max{[a]c(d), [Blc(d)} = [Aor Blc(d) < min{l, [a]c(d) + [Blc(d)},
e [nor Alc(d) =1 —[a]c(d).

Proof The value 1 — [«a]¢(d) for negation follows directly from the relevant defini-
tions.

For conjunction and disjunction note that the membership degree [«]c () can—
according to Definition 5.1—be identified with the probability that arandomly chosen
possible world w survives the corresponding update [ ] (u). The operators and and
or then calculate the conjunction and disjunction, respectively of these events. The
given bounds arise in the extremal cases where the two sets «(d)(C) and B(d)(C)
are maximally disjoint or maximally overlapping and thus directly follow from the
Fréchet inequalities (Fréchet 1935). O

Note that * g = min and *g = max are the Godel #-norm and co-¢-norm, respec-
tively. Moreover, *¢, = Ax, y.max{0,x + y — 1} and * = Ax, y. min{l, x 4+ y}
are the Lukasiewicz f-norm and co-f-norm, respectively. In other words, Proposi-
tion 5.1 shows that the truth functions of (strong) conjunction and (strong) disjunction
in Godel and Lukasiewicz logic (see Hajek 2001) correspond to opposite extremal
cases of context based evaluations of conjunction and disjunction.

The bounds for the material implication [if], as defined above, can be derived
easily as well:

max{l — [a]c(d), [Blc(d)} = [if Athen Blc(d) < min{l, 1 —[a]c(d) +[Blc(d)}.
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Note the emergence of the residual Lukasiewicz implication (R-implication) as upper
bound and the so-called S-implication with respect to the Godel co-f-norm as lower
bound. (See Klement and Navara (1999) for more information on these two different
forms of implication.)

Remark Although motivated in a different vein, Paris (2000) obtains essentially
the same bounds for truth functions that seek to approximate probabilities. Moreover
he suggests that a reasonable determinate truth value for a compound statement could
be obtained by taking the arithmetic mean value of the corresponding lower and upper
bounds, computed as above for the outermost logical connective of the statement.
However, such a truth function is non-associative.

The above analysis of logical predicate operators can be easily lifted to the propo-
sitional level. For a sentence like Jana is tall its meaning [[Jana is tall]] is a filter,
rather than an element filter. Logical connectives on propositions can be defined in
analogy to Definition 5.2:

Definition 5.3 [0 A Y] =47 AC.[¢](C) N [Y](C)
o [o Vv Y]l =ar AC.[@](C) U 1(C)
o [—¢ll =4r AC.C\[¢I(C)

Likewise we may augment:

e [ = ¥ =ar AC.(C\[¢])(C) UY1(C) and
o [on™ vl =ay AC.([Y T{IeI)(O).

In the following the set of all propositions formed in this way is called Prop.
Similarly to the predicate level we can associate a ‘degree of truth’ |¢| ¢ for every
¢ € Prop by applying the filter [¢] to the context C:

eIl (O]

lellc =ar iC]

In other words, we identify the degree of truth of ¢ in a context C with the fraction
of worlds in C that survive the update with the filter [¢]]. Returning to the context
C specified in Table 5.2, Jana is tall is true to degree 3/5 in C since three out of five
worlds in C classify Jana’s height as above the relevant local standard of tallness.

Once more we note that contexts allow to model specific constraints on the worlds
(i.e. contextually relevant possible precisifications) of which they consist. Therefore,
in general, there are no truth functions that determine |¢ A ¥ |c and [|¢ V ¥|¢c in
terms of |¢|c and |¢ | ¢ alone. However the optimal bounds of Proposition 5.1 also
apply at the level of sentences. In particular:

o xt(lelc. I¥lc) <l Avlc < *cll¢lc. 1¥lc), and
o xG(lelc. 1¥lc) = eV ¥lc = *(elc. I¥ic),

where * g(*g) and =g (x;,) are the Godel and Lukasiewicz f-norms (co-z-norms),
respectively. (Analogously for material implication.)
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5.4 Saturated Contexts

Having determined bounds for truth functions applied to arbitrary contexts, we now
turn to a special class of contexts, called saturated contexts. In a saturated context
the degrees to which predicates apply as well as all relevant thresholds values are
defined by intervals. All values (up to a certain level of granularity) in the given
interval are assumed to occur in that context with equal frequency. Moreover, the
intervals for different attributes and corresponding threshold values are assumed to
be independent of each other. This means that, e.g., an adequate saturated context for
uttering Jane is tall can be completely defined by giving lower and upper bounds for
Jane’s height (denoted by hjl and hj”) and for possible threshold values for tallness

(denoted by tall’ and tall*). Saturated contexts thus naturally arise when modeling
situations, where only those bounds are known, but no further information, e.g.,
about dependencies between the values or about varying likelihood for the individual
possible values, is available to the hearer of an utterance. As we will see below, this
lack of specific information is crucial, when one seeks to extract not only bounds for
truth functions of logical connectives (as in Sect. 5.3), but a specific truth-functional
semantics.

In the last section we stipulated contexts to be finite sets of worlds and argued why
this is a natural assumption in linguistics, due to the granularity imposed by limits of
distinguishabilty. Here however we will be interested only in contexts with arbitrary
fine granularity; in fact we will analyze the limit case, where we can treat the set of
possible values for a particular magnitude as an intervals of real numbers. To motivate
this move, consider a hearer of Jane is tall who only knows about Jane’s height that
it is between 4! = 179cm and " = 181 cm. Moreover, for sake of simplicity, let
the hearer be certain that it is adequate (in the given context C) to call a person
tall if and only it its height is at least tall = tall* = 180cm. If the granularity is
too coarse and the interval only includes the three values 179, 180, and 181 cm as
possible values for Jane’s height, then in two out of these three possible worlds Jane
is judged to be tall, hence [talllc(j) = 2/3. This value however is just an artifact
imposed by the very low level of granularity, as for higher levels of granularity
the value [tall]¢ (j) approaches 1/2. (In other words, the fraction of worlds in the
given context where Jane’s height is above the threshold of tallness, is arbitrarily
close to 1/2 for sufficient high levels of granularities.) From now on we will only
be interested in the limit case where we can interpret [hjg, h]?’] as a real interval and
calculate [tall]¢(j) = 1/2, corresponding to the intuition that exactly half of this
interval of possible values for Jane’s height is cut off by the given threshold value
for tallness. Note that Definition 1 only applies to finite contexts. However, the value
[tall]lc (j) can also be interpreted as the probability that a randomly chosen possible
world w survives the corresponding update [[tall]|(j), assuming a uniform distribution
over all worlds of the original context. This point of view will enable us to analyze
the relevant limit cases directly.

As pointed out above, saturated contexts abstract away from information about
dependencies or varying likelihood of possible values. This abstraction allows one
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Fig. 5.1 Illustration of a saturated context before and after an update with Jane is tall

to compute the fuzzy membership value [tall]¢(j) from given values ., h]?‘, taII’,

and tall* alone. For the actual computation, one has to distinguish between six cases,
depending on the relative position of the two intervals [hf, h]?’] and [tall’, tall“]: either
they are completely disjoint with (1) hjl > tall“ or with (2) h]” < tall’; orone of them is

contained in the other one with (3) 2" > tall”, th < tall’ or with (4) hi' < tall", hJ’ >

tall'; or they are properly overlapping with (5) hj” < tall*, h]” > talll > h]l or with
6) h! > tall’, h* > tall* > h!.

For cases (1) and (2) it is easy to see that the fuzzy membership degree in question
is 1 (or 0, respectively). Case (6) is depicted by Fig. 5.1. The hatched area of size
A= (hj” - h]l y(tall* — tall') on the left hand side represents the possible worlds in
a saturated contexts determined by the boundary values of the two intervals before
applying the update. The hatched area on the right hand side represents the worlds
after applying the update that corresponds to accepting Jane is tall: all worlds under
the diagonal are eliminated by the element filter [7all] (j). Its size is A— (tall” —hl)? /2.
Putting these observations together, the probability that a randomly chosen world of
the context survives the update—and thus the membership degree for j in [tall]¢ for
this case—is readily computed as

A - 1dall" — hJ?)2
A

case (5): [talllc () = with A = (hf' — hf)(tall” — tall).

For the remaining three cases the fuzzy membership degree can be computed anal-
ogously, leading to
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1 pu 1\2
L(n—tall’) '
ZIT in case (6)
; tall —tall’) (h* —tall*) + 1 (tall” —tall’)2
[tall]c () = § DG, aA)+2(a T in case (3)
(hl—tall'y(h* —h!) + L (h*—n!)? .
J —a — in case (4).

For two independent predicates, say tall and clever, saturated contexts induce a
fully compositional semantics for logical connectives such as and. In other words,
[tall and clever]c is determined by the values [fall]c and [clever]c. The indepen-
dence of the two predicates is crucial here: every possible combination of a degree of
tallness and a degree of cleverness for, say, Jane and corresponding threshold values
for tallness and cleverness is assumed to occur with equal probability as (part of) a
world in C. The probability that Jane is tall in a randomly selected world w € C is
[tall(j)]c, while the probability that she is clever in w is [clever(j)]¢. The indepen-
dence implies that the probability of Jane being tall and clever at w is modeled as
the joint probability, i.e., by the product t-norm:

[tall and clever]c(j) = [talllc () - [clever]c ().

Asin Sect. 5.2 this analysis can be lifted with an analogous argument to the sentential
level in order to model e.g. Jane is tall and Ann is clever as

|Jane is tall A\ Ann is clever|c = |Janeis tall|c - |Annis clever|c.

In contrast, the sentence Jane is tall and Ann is tall is not modeled in a truth-
functional way by saturated contexts, in general. While saturation reflects the as-
sumption that the heights of Jane and Ann are independent of each other, the respec-
tive judgments of tallness are not independent, since they refer to the same threshold
value 8 W) (1 tall) in each world w of the context. In other words, the probability that
Jane is tall and Ann is tall holds in a randomly selected world is not just a function
of the probability that Jane is tall and the probability that Ann is tall, respectively.
Rather, for arbitrary saturated contexts, one has to take into account the particular
intervals of tallness for both Ann and Jane in relation to the possible thresholds to
obtain the value for the compound statement. However, let us consider an interesting
special case of saturated contexts, where there is perfect knowledge about the height
of the individuals, but still vagueness in the meaning of tal/l. This means that all
possible worlds agree on their values for the heights of Jane, tall(w)(j), and of Ann,
tall(w)(a), while differing in their threshold value & (w) (* tall) for tallness. It is easy to
see that in this case the membership degree of a conjunction (or disjunction) amounts
to the minimum (or maximum, respectively) of the components’ fuzzy membership
degrees:

|Jane is tall A Ann is tall|c = min(||Jane is tall| ¢, |Annis tall|¢),
|Janeis tall v Ann is tall|c = max(||Janeis tall|c, |Annis tall|c).
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In other words, the Godel f-norm and co-t-norm appear as truth-functions for con-
junction and disjunction in this specific case.

5.5 Dialogue Semantics

Giles’s game (Giles 1970, 1974) is a combination of a dialogue game and a betting
scheme, originally proposed by Robin Giles for reasoning in physical theories. Ar-
guments about logically complex statements are reduced to arguments about atomic
statements governed by dialogue rules that are intended to capture the meaning of
logical connectives. In the final state of the dialogue game the players place bets
on the results of dispersive experiments that decide about ‘truth’ and ‘falsity’ of oc-
currences of corresponding atomic statements. Below we present a re-interpretation
of Giles’s game in terms of Barker’s contexts of precisifications instead of physi-
cal experiments. We also show how to account for predicate modifiers like very or
definitely in this approach by extending the betting part of the game.

The dialogue part of Giles’s game is a two-player zero-sum game with perfect
information. The players are called you and me, with me initially asserting a logically
complex statement. The game can be considered an evaluation game, since the players
devise their strategies with respect to a payoff function that is determined by a given
context C (in our case) or by given success probabilities of experiments associated
with atomic assertions (in Giles’s original setup).

At any point in the game each player asserts a multi-set of propositions, which we
will call her fenet. Accordingly a game state is denoted as [y, ..., ¥, | @1, .-+, Om]
where [, ..., ¥,]isyourtenetand [¢y, . . ., ¢,] is mine, respectively. Initial game
states take the form [ | ¢];i.e., I assert a single statement ¢, while your tenet is empty.
In each move of the game one of the players picks one of the statements asserted by
her opponent and either challenges it or grants it explicitly. In both cases the picked
statement is deleted from the state and therefore cannot be challenged again. The
other player has to respond to the challenge in accordance with the following rules,
that can actually be traced back to Lorenzen (1960).

Rule 1 (Implication). A player asserting If ¢ thenys is obliged to assert v if her
opponent challenges by asserting ¢.
Rule 2 (Disjunction). A player asserting ¢ or v is obliged to assert either ¢ or ¥ at
her own choice.
Rule 3 (Conjunction). A player asserting ¢ and ¥ is obliged to assert ¢ or i at her
opponent’s choice.

Negation is considered equivalent to the implication of a statement L that is
always evaluated as ‘false’. Thus we obtain:
Rule 4 (Negation). A player asserting not ¢ is obliged to assert _L if his opponent
challenges by asserting ¢.

As already indicated, Giles stipulated that at the final state of the game the play-
ers have to pay a fixed amount of money, say 1€, for each atomic statement in
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their tenet that is evaluated as ‘false’ according to an associated experiment. These
experiments may show dispersion, i.e., they may yield different answers upon rep-
etition. However a fixed risk value (p) specifies the probability that the experiment
associated with the atomic statement p results in a negative answer. My total risk,
i.e., the expected amount of money!3 that I have to pay to you for an atomic state
[g1,---,9n | P1,-.., Pm] therefore is

m n

(o | P o) = (i) = D a;)-

i=1 j=1

Giles proved the following:

Theorem 5.1 (Giles 1970, 1974) For all assignments of risk values to atomic state-
ments I have a strategy to avoid positive risk in the game starting with my assertion
that ¢ if and only if ¢ corresponds to a valid formula of Lukasiewicz logic.

As has been demonstrated in Fermiiller and Metcalfe (2009) an alternative rule
for conjunction, that corresponds to the ‘strong conjunction’ interpreted by the
Lukasiewicz f-norm x, = Ax, y. max{0, x + y — 1}, can be specified as follows.
Rule 5 (Strong conjunction). A player asserting ¢ and* i is obliged to assert either
both, ¢ as well as i, or to assert L.

The optional assertion of _L in this conjunction rule corresponds to a principle of
limited liability that limits the amount of money to be paid for false statements to 1€,
also for logically complex statements. An extended discussion of this principle can
be found in Fermiiller (2010). Further variants of Giles’s game for other fuzzy logics
have been presented in (Ciabattoni et al. 2005; Fermiiller 2009). Here, we adapt the
betting part of the game in order to relate the game to evaluations with respect to
Barker’s context model.

In our intended application the dialogue game ends in a state where you and me
assert (in general) vague statements, like John is tall, that are logically atomic, i.e.,
they do not contain logical connectives. Instead of referring to dispersive experiments
in physics, we now evaluate such atomic statements with respect to a given context C,
consisting of a finite number of relevant precisifications (see Sect. 5.2). We stipulate
that for each occurrence of an atom p in the final state a world w € C is randomly
picked. The player that asserts the relevant occurrence of p has to pay 1€ to the
opponent player if w does not survive the update of C with [[p]]. Like in Giles’s
original scenario, we may speak of a risk value (p) associated with p in context C.
Assuming a uniform distribution over C, we obtain

[IPICO)]

=1- -
(p) ]

13 Note that risk, here, refers to expected payments and not to guaranteed bounds. If I am unlucky
then, for a final state [p | p], the experiment associated with p might yield a negative answer for my
assertion that p, but might nevertheless yield a positive answer for your assertion that p. Accordingly
I have to pay 1€ to you, although my corresponding total risk remains 0, independently of (p).
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Let us illustrate this setup with a concrete example. Suppose I state

If Peter is heavy then John is tall

in a given context C. (Remember that we here stipulate the meaning ‘if ’ to correspond
to material implication and not to refer to any causal or conceptual connection.)
According to the dialogue rule for implication you may grant my statement, in which
case the game ends in the empty state [|], where no risks or payments result. However,
if you find more worlds v in C where Peter satisfies the standard 8 (v) (T heavy) of
accepting heaviness than worlds w where John satisfies the standard &§(w)("tall)
of tallness then it is rational for you (in the sense of game theory) to assert that
Peter is heavy, thereby obliging me to assert that Johnistall. The resulting state
[Peter is heavy | Johnis tall] carries my risk (i.e., expected amount of money in €,
that I have to pay to you)

(Johnis tall) — (Peter is heavy),

where
_lwec: sw)(Ttall) > tall(w)(j)}]|

(Johnis tall) = 1
IC|

and
l{w € C : 8(w)(Theavy) > heavy(w)(p)}|

(Peteristall) = 1 —
IC]

(j and p denote John and Peter, respectively).

By analyzing the proof of Theorem 1 (see Fermiiller and Metcalfe 2009; Fermiiller
2010) we obtain a direct connection between the dialogue rules and the 7-norm
based truth functions of Lukasiewicz logic. For this purpose, risk values for atomic
statements are generalized inductively to risk values for complex statements taking
into account that whenever I can choose I will minimize my risk, whereas a choice
by you amounts to maximizing my risk over corresponding alternatives.

Proposition 5.2 My risk involved in the assertion of a logically complex statement
arises from the risks (@) and (\r) of its immediate sub-statements, as specified in the
following table:

my statement — my risk

¢ andy max{{p) , ()}
@ ory min{{p) , (¥)}
If ¢ then ¢ max{0, (V) — (@)}
¢ and* Y min{1, (V) + (p)}

Note that the functions in Proposition 5.2 turn into the corresponding truth func-
tions of Lukasiewicz logic by stipulating that the truth value v (¢) of ¢ is obtained
from its risk value by vt.(p) = 1 — (¢).
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In addition to modeling the evaluation of atomic propositions like John is tall we
may specify game rules for the predicate modifiers very, definitely, and clearly, as
well. For very the evaluation scheme does not have to be modified substantially: as
above, we randomly pick a possible world w € C and test whether the proposition
is locally true at w. Thus, e.g., the risk value (John is very tall) is calculated as

l{w e C: 8(w)(Mtall) + s(w)(Tvery) > tall(w)(j)}|
IC]

(Johnisverytall) = 1 —

with j denoting John.

However, for other predicate modifiers like definitely or clearly we cannot decide
if the proposition holds at w without taking into account also the other worlds in C.
We have to change the evaluation scheme accordingly.

Assume that [ assert, e.g., John is definitely tall in a context C. Reflecting Barker’s
definition of definitely discussed in Sect. 5.2, this assertion is evaluated as follows.
First, a world w € C is picked randomly. Then you choose a world v € C where
John is just as tall as in w (i.e., where tall(w)(j) = tall(v)(j)). Finally, we stipulate
that T have to pay 1€ to you if John is not tall at v, i.e. if §(v)(Ttall) > tall(v)(j).
The pay off scheme for your assertions of an atomic statement involving definitely
is completely symmetric.

As defined by Barker, clearly acts like a combination of definitely and of very,
where the vague standard sw)(" clearly) is used instead of sw)(! very). Therefore
the proposition John is clearly tall is evaluated analogously to John is definitely tall.
The only difference is that T now owe you 1€ if §(v)(Ttall) + 8(v)(Tclearly) >
tall(v)(j) holds.

5.6 Contexts and Similarity Based Reasoning

Remember that the intended use of contexts in linguistic models of vagueness is to
specify sets of plausible alternatives of precisified interpretations (classical worlds),
given the current information of the hearer of an utterance. While Barker’s dynamic
semantics filters out those worlds of a context that become implausible upon ac-
cepting the relevant utterance, one may alternatively be interested in evaluating the
degree of plausibility or ‘truth’ of a sentence with respect to the information coded
in the given context as a whole. In this endeavor it seems natural to start with the
observation that the individual worlds that form a concrete context are to higher or
lesser degree similar to each other. After all, vagueness in this model amounts to the
fact that, while hearers don’t have access to precise criteria for judging a statement
as definitely true or false, they are nevertheless supposed to evaluate with respect to
a given set of such precise criteria that is constrained in a specific manner reflecting
the context of discourse. Taking the degrees of similarity between the worlds as a
basis of an evaluation that is graded accordingly provides a further bridge between
contextual models and fuzzy logic.
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A (fuzzy) similarity relation on a set A is a function S : A x A — [0, 1] that is
reflexive, symmetric, transitive with respect to some ¢-norm x:

e S(x,x)=1forallx € A,
e S(x,y)=S(y,x) forall x,y € A, and
e S(x,y)*xS(y,2) <S(x,z)forallx,y,z € A.

Similarity relations are well investigated for concrete underlying -norms. For the
Product t-norm the concept goes back to Menger (1951) and has been studied
by Ovchinnikov (1991); for the Godel z-norm (min) see Zadeh (1971); for the
Lukasiewicz r-norm see Ruspini (1977) and Bezdek and James (1978). Similarity
relations and fuzzy sets are closely related. Given a similarity relation S on A and
a (crisp) subset B of A one obtains a normalized fuzzy subset B* of A—the fuzzy
set of elements close to B—by defining the membership degree for every x € A as
follows:
wp(x) =sup S(x, v).
veB

Conversely, similarity relations are induced by fuzzy sets, according to Valverde’s
representation theorem Valverde (1985). For every similarity relation S there is a
fuzzy set F such that

S(x,y) =min(ur(x) =+ ur(y), ur(y) =« wrx)),

where = is the residuum of some (left continuous) #-norm.

Based on the principle that a proposition can be identified with the set of worlds
in which it holds, various different formal models of similarity based reasoning
have been defined in the literature (Dubois et al. 1997; Esteva et al. 2000; Godo and
Rodriguez 2008) provide relevant overviews). In particular Dubois, Esteva and Godo,
with various collaborators, have studied different entailment relations arising from
similarity relations over sets of worlds, i.e., of contexts in our current terminology.
These entailment relations generalize Ruspini’s notion of graded implication Ruspini
(1991) given by Is(p | q) = inf sup S(v,w),

Vg wiep
where S is a similarity relation over a set of classical worlds and p, g are atomic
propositions. Intuitively Is(p | ¢) measures the extent to which all worlds in which
q holds are close to some world in which p holds. In the following we will illustrate
just one out of many options that arise for linguistic models of vagueness following
this approach.

Once a particular (fuzzy) similarity relation S is declared on a context C, the
machinery of (Esteva et al. 2000; Godo and Rodriguez 2008) can be directly applied
to define logics that refer to graded entailment relations derived from S on C. But
the question arises how one obtains a similarity relation that adequately reflects the
semantic information represented by C. As to be expected, there is no unique canon-
ical way of doing so.'* However an interesting possibility emerges if one follows

14 Note that the mentioned literature does not address this problem. There, the similarity relation
over worlds is assumed as given and remains independent of the structure of the worlds themselves
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linguists in assuming that the context contains a comparison class of paradigmatic
cases as reference of judgment (see Kennedy (2007), Rooij (2011), and further
references there). For example, restricting attention to a single individual, say Jana,
and a particular gradable adjective, say fall, we assume that a subset P (paradig-
matic worlds) of the context C singles out those worlds in which Jana satisfies the
respective standard of tallness. Since we let the comparison class consist just of Jana
in accepting a person as tall, we take all worlds in P to be maximally similar to each
other; i.e., we assign S(v, w) = 1 for v, w € P. For each world u € C — P we again
consider the height (degree of tallness) of Jana in u and define

S(u)(Ttall) — tall(u)(j)
max,ec (§(v)(Ttall) — tall(v)(j))

Su,w)y=1-—

if w € P, where, like in Sect. 5.2, §(v)(ttall) denotes the standard of tallness in
world v and tall(v)(j) the height of Jana in v. In other words: the closer Jana’s height

in a world gets to the standard of accepting tallness there, the more similar this world
is to a paradigmatic world. Therefore S(u, w) in this case does not directly depend
on w, but on the whole class of paradigmatic worlds. (Foru € P andw € C — P
the similarity S(u, w) is defined analogously.) If both worlds # and w are in C — P
then we define analogously'?

(8 @) (Ptall) —tall@) ())) — Sw)(Mtall) — tall(w) ()|

Su,w)y=1-— max,cc (8(v)(Ttall) — tall(v)(j))

It is straightforward to check that S, thus defined, is reflexive, symmetric, and
transitive with respect to the Lukasiewicz t-norm. (To obtain fuzzy similarity relations

with respect to other #-norms one has to use alternative definitions of S or to impose
specific constraints on the contexts.) This opens the way to systematically assign
degrees of acceptability of statements like If Jana is tall then Peter is tall in contexts
C where not only tall is vague, but where there might also be uncertainty about
the respective heights of Jana and Peter. We only need to apply Ruspini’s measure
Is to the arguments If Jana is tall and Peter is tall, where S is extracted from C as
indicated. Of course it is more problematic to extract suitable similarity relations from
contexts, where we look at different gradable adjectives simultaneously and where
more than one individual is designated as paradigmatic. While there is no technical
obstacle in doing so, criteria for evaluating the adequateness of the resulting formal
model are much less clear. In any case, as already mentioned, once a similarity
relation is fixed one may employ the results of Esteva, Godo et al., to generalize

(atleast in principle). However, for our current purpose, we have to take into account that similarities
typically depend on the particular valuations of atomic formulas that characterize the individual
worlds.

15 In the case where there is no uncertainty about Jane’s height, this definition can be simplified by
changing the numerator to |6 («) (Mtall) — s(w)(Ptall)|.
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to logically complex assertions and more general entailment relations; thus—so to
speak—having crossed yet another bridge between contextual linguistic models and
mathematical fuzzy logic.

5.7 Summary and Outlook

We commenced by observing that linguists prefer to analyze the semantics of vague
expressions by reference to contexts of utterance that register relevant possible pre-
cisifications from the hearer’s perspective. This seems to be at variance with the de-
gree based approach to vagueness suggested by fuzzy logic. However, taking Barker’s
version of dynamic (update) semantics (Barker 2002) as a point of reference, we have
demonstrated that fuzzy sets can be associated in a systematic manner with contexts
and corresponding filters as used in Barker’s model. While the structure of context
filters used to specify the different meanings of modifiers like very, definitely, and
clearly allows to take into account information that is abstracted away in correspond-
ing fuzzy sets, standard 7-norm based operators faithfully register the extremal cases
that may result from applying logical connectives to vague predicates and sentences.

It is rather straightforward to identify intermediate truth values with the fraction
of worlds in a given context that survive certain updates codifying the meaning of
vague expressions. But it is much less clear how to derive specific truth functions
in such a setting (beyond providing the indicated bounds). This problem, of course,
is just a particular instance of a well known challenge for deductive fuzzy logic:
how to justify truth functions with respect to more fundamental semantic notions
like, e.g., votes or arguments for and against accepting a vague assertion. In (Paris
2000), the author provides a useful overview over semantic frameworks for fuzzy
logics that support truth functionality. Here we have selected two examples of such
frameworks—dialogue games and similarity based reasoning—to illustrate how one
may connect context based update semantics with 7-norm based fuzzy logics.

We emphasize that both, Barker’s specific update functions over contexts and the
indicated fuzzy semantics, should be understood as just particular spots on either
side of the river separating formal semantics of natural language as pursued by lin-
guists from fuzzy logic. Other sites for building bridges crossing that troubled water
should be explored as well. On the linguistic side, context and precisification based
approaches suggested, e.g., by Kennedy (2007), Kyburg and Morreau (2000), and
already earlier by Pinkal (1995) and Bosch (1983) are certainly worth investigating
from this perspective. On the fuzzy logic side, e.g., voting semantics Lawry (1998),
acceptability semantics Paris (1997), re-randomising semantics (Hisdal 1988; Hajek
2001), and approximation semantics (Bennett et al. 2000; Paris 2000) are alternative
candidates for constructing corresponding bridgeheads. We plan to explore at least
some of these options in future work. In any case, we hope to have shown already
here that the attempt to bridge the gap between linguistic views on vagueness and the
machinery offered by fuzzy logic is neither a futile nor a completely trivial matter.
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Part III
Semantics and Consequence Relation in
Many-Valued Logic

This part deals with the semantics of many-valued logics, and contains three
chapters. The first two chapters introduce new kinds of semantics, one based on the
principle that all truth degrees are to be preserved (not only degree 1), and
the other based on the behavior of the formula and of its derivatives in the
neighbourhood of a point. The third chapter is about a classification of the most
important many-valued logics in terms of general semantic principles.

Semantics is a fundamental concept in many-valued logic. Héjek basically
proposed three kinds of semantics, one based on the whole variety of the algebras
for the logic (consisting of prelinear, commutative, integral, and bounded
residuated lattices), the second based on the chains of the variety, and the third
called the standard semantics, based on algebras having [0, 1] as lattice reduct. But
in all cases, consequence relation is defined in terms of valuations, as preservation
of degree 1. Hence, the first two chapters of this part, which introduce two
alternative semantics, constitute an important and original contribution to Hijek’s
research. As regards the third chapter, the idea of classifying logics according to
semantic principles is new and opens an interesting line of research.

In more detail, in the chapter Consequence and degrees of truth in many-valued
logic, by Josep Maria Font, the author discusses an alternative notion of
consequence relation. Instead of requiring, like in Hajek’s book, preservation of
degree 1, the new interpretation requires preservation of all truth degrees.
Interestingly, the two semantics provide the same set of theorems, but consequence
relations are quite different. It is argued that the new definition is a better rendering
of Bolzano’s idea of consequence in terms of preservation of truth when truth
comes in degrees. In the chapter, the author extends some results previously
obtained for Lukasiewicz logic to the broader framework of substructural logics.

The chapter, The differential semantics of Lukasiewicz syntactic consequence,
by Daniele Mundici, investigates the problem of strong standard completeness for
Lukasiewicz logic. As we said, Petr Hijek devoted much effort in the standard
semantics. Among other things, he proved that the most important fuzzy logics are
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complete, but not strongly complete (with the exception of Godel logic), with
respect to the standard semantics. Now Mundici replaces the traditional
consequence relation

I' E @iff all valuations validating I' validate ¢,

by another, more geometric notion, still based on the standard semantics, but
taking into account not only the behavior of a set of formulas at a point (valuation)
but also in a neighborhood of the point, and considering also the derivatives of the
corresponding truth functions. Somewhat surprisingly, strong standard complete-
ness is completely restored. This chapter not only proposes a new notion of
standard semantics for which strong standard completeness holds, but opens the
possibility of proving strong standard completeness (with respect to the new
interpretation) for other fuzzy logics, or possibly, for Lukasiewicz first-order logic.

In the chapter Two principles in many-valued logic, by Stefano Aguzzoli and
Vincenzo Marra, the authors discuss two basic principles, which are both valid in
classical logic. The principle (P1) says that two formulas are equivalent if they
receive truth value 1 for the same valuations. The principle (P2) says that given
two different valuations v and w, there is a formula ¢ such that
v(¢) = 0 and w(¢p) # 0. The three main logics of continuous t-norms are
characterized in terms of the above-mentioned principles. That is, among all
logics of continuous t-norms, Lukasiewicz logic is the unique one that satisfies
(P2), Godel logic is the unique one that satisfies (P1), and product logic is the
unique one such that each of its extensions, with the exception of classical logic,
which fails both (P1) and (P2).



Chapter 6
Consequence and Degrees of Truth
in Many-Valued Logic

Josep Maria Font

6.1 Introduction

Let me begin by calling your attention to one of the main points made by Petr Hijek in
the introductory, vindicating section of his influential book (Hdjek 1998) (the italics
are his):

Logic studies the notion(s) of consequence. It deals with propositions (sentences), sets of

propositions and the relation of consequence among them. [page 1]

[...]
Fuzzy logic is a logic. It has its syntax and semantics and notion of consequence. It is a study
of consequence. [page 5]

Petr’s book contains no discussion on how consequence in mathematical fuzzy logic
should be defined, or why. He simply defines his consequences either by a Hilbert-
style axiomatization or semantically by the truth-preserving paradigm, which takes
1 as the only designated truth value in the real interval [0, 1] or in other algebraic
structures which are ordered and have a maximum value 1. That is, if I” is a set of
formulas and ¢ is a formula, then!

I'¢ <= e(p) =1whenevere(w) =1foralla € I',
R (6.1)

for any evaluation e in the model.
I would also like to call your attention to a result about propositional Godel-
Dummett logic G, whose consequence I is defined axiomatically on p. 97 of Héjek

! In this chapter I will represent logics as consequences by the symbol -, independently of the
way they are defined, be it of semantical or syntactical origin, and will add sub- or superscripts
when needed. The symbol F will only be used for satisfaction of equations in (classes of)
algebras.
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(1998). G is proved in Theorem 4.2.17 to be strongly complete with respect to the
standard Godel algebra over [0, 1] taking the minimum as the t-norm whose residuum
interprets the implication. Then Theorem 4.2.18 reads:

Theorem 6.1 For each theory T over G, each formula ¢ and each rational r such
that 0 < r < 1, T kg ¢ iff each evaluation e such that e(«) > r for each axiom o
of T satisfies e(¢p) > r.

The same holds if we take all reals in [0, 1] instead of the rationals (by the density
of Q inside R), but Petr establishes this only to give a relation with “partial truth”,
which has been previously discussed in the book in the framework of the Rational
Pavelka Logic.

This result, which in H4jek (1998) appears to be an anecdotal result on the standard
semantics of G, has an alternative view when it is reformulated as the coincidence
of two consequences: if we define

' ¢ <= e(p) > r whenevere(a) > rforalla € T, ©62)
for any evaluation e and any value r in the model, '
then Theorem 6.1 says that =g and - coincide when the model at hand is the Godel
algebra of rationals, or equivalently of the reals, in [0, 1]. This is a more interesting
perspective, and it is then natural to wonder whether it holds for other many-valued
logics, and why, and whether it is just a technical result or whether it hides some
deeper insights.

For future reference let me say now that when considering the definition (6.2) in
general, if the model has a complete lattice structure, then it can be equivalently put
in the form

' ¢ & e(p) > N\le(a) : a € I'} for all evaluations e. (6.3)

We will see that this setting has also been popular. When 1 is the maximum of the
ordered model set, either (6.1), (6.2) or (6.3) yield the same set of theorems:

Do < P ¢ <= e(p) =1 for all evaluations e. (6.4)

Note that, while this is clearly included in (6.1) and (6.2), for this to follow from (6.3)
the implicit assumption that the infimum of an empty set is the maximum of the order
is needed.

Investigating these and similar issues we discover a connection with the area of
logics preserving degrees of truth, which has been gaining momentum recently; see
Bou (2008, 2012), Bou et al. (2009), Font (2007, 2009), Font et al. (2006). So I
will begin by discussing this idea in general (Sect. 6.2); then I will review the results
obtained so far in the literature for the case of Lukasiewicz’s infinite-valued logic
(Sect. 6.3) and for a larger family ofsubstructural logics (Sect. 6.4). The resulting
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logics are particularly interesting for abstract algebraic logic (Sect. 6.5). I will briefly
review some results on the Deduction Theorem (Sect. 6.6) and on their axiomatization
(Sect. 6.7). The chapter ends with some research proposals.

6.2 Some Motivation and Some History

Speaking generally, logics defined like (6.1) are called truth-preserving, while logics
defined like (6.2) or (6.3) are called logics that preserve degrees of truth. Just a few
words to argue why I think that the latter reflects the semantical idea of many-valued
logic better than the former; for a lengthier discussion in a wider context, see Font
(2009).

The idea of logical consequence as a truth-preserving one, firmly established from
Bolzano to Tarski and beyond, is reasonably unproblematic when there is a single
notion of truth in the models, and even more when there is a single model. However,
it is at least surprising that it has not raised any significant debate in the context of
many-valued logic.

Phrases such as “Truth comes in degrees” (Cintula et al. 2011, p. v) or “Truth
of a fuzzy proposition is a matter of degree” (Hajek 1998, p. 2) appear as a starting
justification in many papers and books on fuzzy logic or many-valued logic. One
may discuss the meaning of these degrees of truth, their philosophical significance,
whether they adequately reflect the phenomenon of vagueness, and so on, and for
those wanting to do this Smith (2008) is a very enlightening exposition. But I think
that for the (mathematical) logician the important thing is not to discuss what they
are or should be, but how they are used (to define a logic).

Now, if logic dealt only with fautologies, then it would be natural to define them
as those propositions that are always true, that is, their truth value always attains the
maximum degree, as in (6.4). However, if it is consequence that matters, then it seems
more natural to demand that consequence preserves truth not only in its maximum
degree, but in all the available degrees. Thus, the usage of (6.1) in many-valued
contexts raises some dissatisfaction: it seems as if, while all points in the model are
considered as truth values when the task is to determine the truth value of a complex
formula from the truth values of the atomic formulas,? only 1 is really treated as a
truth bearer when the task is to establish consequence. Under this view, the other
points in the model seem to be treated rather as expressing degrees of falsity.’

Scheme (6.2) can even be considered as an alternative rendering of the same
idea of preservation of truth: not of absolute truth, but of that truth that comes in
degrees and characterizes the many-valued landscape. While individual points in a
model V may still be regarded as truth values in that they are the values assigned to
propositions by each of the evaluations, (6.2) suggests identifying degrees of truth
with the sets 17 = {s € V : r < s}, and then implements the idea that consequence

2 In whatever mechanism; one need not assume truth-functionality for this discussion to make sense.

3 Scott in Scott (1974, p- 421) calls them “degrees of error”, see below. Gottwald (2001, Sect.3.1)
seems to be sympathetic with this idea as well.
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is the relation that preserves all these sets; it is in this sense that it is called “preserving
degrees of truth”. Since the two schemes produce the same set of tautologies (6.4),
separate consideration of the logics obtained by the two paradigms is only of interest
when assigning the central role in logic to consequence. The second paradigm is
potentially as general as the first one; it can be applied to any semantics where truth
values are ordered and there is a maximum one, which is indeed a very reasonable
and common assumption.* It may also be taken to justify interpreting generalized
matrices as the most general structures of degrees of truth, but this is another issue,
discussed in Font (2009).

Logics of the form < appeared in the literature much earlier than Hdjek (1998),
but were only thoroughly studied much more recently. The idea seems to have sprung
up independently, but sporadically, i