
Verification of Certifying Computations
through AutoCorres and Simpl

Lars Noschinski1,�, Christine Rizkallah2,�, and Kurt Mehlhorn2,�

1 Institut für Informatik, Technische Universität München, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Certifying algorithms compute not only an output, but also a witness
that certifies the correctness of the output for a particular input. A checker pro-
gram uses this certificate to ascertain the correctness of the output. Recent work
used the verification tools VCC and Isabelle to verify checker implementations
and their mathematical background theory. The checkers verified stem from the
widely-used algorithms library LEDA and are written in C. The drawback of this
approach is the use of two different tools. The advantage is that it could be car-
ried out with reasonable effort in 2011. In this article, we evaluate the feasibility
of performing the entire verification within Isabelle. For this purpose, we con-
sider checkers written in the imperative languages C and Simpl. We re-verify
the checker for connectedness of graphs and present a verification of the LEDA
checker for non-planarity of graphs. For the checkers written in C, we translate
from C to Isabelle using the AutoCorres tool set and then reason in Isabelle. For
the checkers written in Simpl, Isabelle is the only tool needed. We compare the
new approach with the previous approach and discuss advantages and disadvan-
tages. We conclude that the new approach provides higher trust guarantees and it
is particularly promising for checkers that require domain-specific reasoning.

1 Introduction

A user of a program has in general no easy means to know whether the result computed
by the program is correct or has been compromised by a bug. While formal verification
is one solution, for complex programs the cost is often prohibitive. We are interested
in complex programs for combinatorial and geometric problems as, for example, dis-
cussed in [1,4,21]. For an input x, a certifying algorithm [7,26,19] produces an output
y and a witness w. The accompanying checker is a simpler and more efficient program
that uses the witness w to ascertain that y is a correct output for input x. The checker is
supposed to return true if and only if the witness w indeed proves that y is the correct
output for x. A small example helps understanding the concept. The input for a planarity
test is a graph. A certifying planarity test witnesses the output “is-planar” by a planar
embedding and the output “is-not-planar” by a Kuratowski subgraph. Certifying algo-
rithms are a key design principle of the algorithms library LEDA [21]. Checkers are an
integral part of the library and are optionally invoked after every execution of a LEDA
program. Adoption of the principle greatly improved the reliability of the library [20].

� The first two authors contributed equally to this work. The third author supervised the work.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 46–61, 2014.
c© Springer International Publishing Switzerland 2014

Verification of Certifying Computations 47

The (relative) simplicity of checkers makes them amenable to formal verification.
Recent work [2] provides a framework for verifying certifying computations. The ap-
proach uses the interactive theorem prover Isabelle as a backend to the automatic code
verifier VCC. Low level properties of the C code are proven using VCC. These are then
translated to Isabelle and used to derive the desired mathematical properties, which are
translated back to VCC. This framework (the VCC approach) is illustrated on several
examples in the domain of graphs. Using two proof tools has the advantage of using
the strength of each tool: verification of C code with VCC and mathematical reasoning
with Isabelle/HOL.

In this work, we investigate the feasibility of carrying out the entire verification of
the checkers within Isabelle/HOL. We implement the checkers both in Simpl and in C.
Simpl [25] is a generic imperative programming language embedded into Isabelle/HOL
that was designed as an intermediate language for program verification. The Simpl
checkers are verified directly within Isabelle. To translate from C to Isabelle we use
the C-to-Isabelle parser that was developed as part of the seL4 project [17] and was
used to verify a full operating system kernel. We do not work on the output of the
parser directly, but use the AutoCorres tool [15] that simplifies reasoning about C in
Isabelle/HOL. This approach (the AutoCorres approach) avoids double formalizations
in two systems and reduces the trusted code base: instead of trusting VCC, one now has
to trust the C-to-Isabelle parser, a significantly simpler program. Since we are the first
external users of AutoCorres, it was not clear at the beginning of our work, whether the
AutoCorres approach is competitive. At least for our examples, it is competitive, if not
superior.

Why do we verify implementations both in C and in Simpl? It allows us to separate
the verification of the checker algorithm and of the checker implementation. Simpl has
a very powerful expression language as all Isabelle expressions are Simpl expressions.
Therefore, one can write pseudo-code like Simpl programs. Verifying both a C and
a Simpl implementation allows us to estimate how much additional effort for the full
verification is needed in addition to the pseudo-code verification. The hope was that
after the Simpl verification is done the verification of the C-program would be only
dealing with C-intricacies and hence be relatively straight-forward.

Section 3 introduces the implementations and verifications of the checkers both in
Simpl and in C and discusses lessons learned. In Section 4 we suggest a refinement
framework for using Autocorres. Then in Sections 5 and 6 we give an evaluation and
talk about related work. The full implementation and all proofs are available on the
companion website.1

2 Preliminaries

As in the VCC approach, we consider algorithms taking an input x from a set X and
producing an output y from a set Y and a witness w from a set W . Input x is supposed
to satisfy a precondition ϕ(x), and x and y are supposed to satisfy a postcondition
ψ(x, y). A witness predicate for a specification with precondition ϕ and postcondition
ψ is a predicate W ⊆ X × Y ×W with the following witness property:

1 http://www21.in.tum.de/˜noschinl/Verifying_Certifying

http://www21.in.tum.de/~noschinl/Verifying_Certifying

48 L. Noschinski, C. Rizkallah, and K. Mehlhorn

∀x, y, w. ϕ(x) ∧W(x, y, w) −→ ψ(x, y) (1)

In contrast to algorithms, which work on abstract sets X , Y , and W , programs as their
implementations operate on concrete representations of abstract objects. We use X ,
Y , and W for the set of representations of objects in X , Y , and W , respectively and
assume mappings iX : X → X , iY : Y → Y , and iW : W → W . The checker
program C receives a triple (x, y, w) and is supposed to check whether it fulfills the
witness property. More precisely, let x = iX(x), y = iY (y), and w = iW (w). If
¬ϕ(x), C may do anything (e.g., run forever or halt with an arbitrary output). If ϕ(x),
C must halt and either accept or reject. A correct checker C will accept if W(x, y, w)
holds and reject otherwise. The following proof obligations arise:

Witness Property: A proof for the implication (1).
Checker Correctness: A proof that C checks the witness predicate if the precondition

ϕ is satisfied. I.e., for an input (x, y, w) with x = iX(x), y = iY (y), w = iW (w):
1. If ϕ(x), C halts.
2. If ϕ(x), C accepts if and only if W(x, y, w).

Tools. Isabelle/HOL [23] is an interactive theorem prover for classical higher-order
logic based on Church’s simply-typed lambda calculus. The system is built on top of
a kernel providing a small number of inference rules; complex deductions (especially
by automatic proof methods) ultimately rely on these rules only. This strategy [14]
guarantees correctness as long as the inference kernel is correct. Isabelle/HOL comes
with a rich set of already formalized theories, e.g., natural numbers, integers, sets, finite
sets, and as a recent addition graphs [24]. Proofs in Isabelle/HOL can be written in
a style close to that of mathematical textbooks. The user structures the proof and the
system fills in the gaps by its automatic proof methods.

Simpl [25] is a generic imperative language designed to allow a deep embedding of
real programming languages such as C into Isabelle/HOL for the purpose of program
verification. The C-to-Isabelle parser converts a large subset of C99-code into low-level
Simpl code. Simpl provides the usual imperative language constructs such as functions,
variable assignments, sequential composition, conditional statements, while loops, and
exceptions. There is no return statement for abrupt termination; it is emulated by ex-
ceptions. Simpl has no expression language of its own; rather, every Isabelle expression
is also a Simpl expression. Programs may be annotated by invariants. Specifications for
Simpl programs are given as Hoare triples, where pre- and post-condition are arbitrary
Isabelle expressions. A verification condition generator (VCG) converts Hoare Triples
to a set of higher-order formulas.

The C-to-Isabelle parser makes no effort to abstract from details of the C-language.
AutoCorres [15] builds upon this parser and, in a fully verified way, provides a sim-
pler representation of the original program. Apart from simplifying the control flow, it
transforms the deeply embedded Simpl code into a shallowly embedded monadic rep-
resentation where local variables are modeled as bound Isabelle variables. There are
multiple monads from which AutoCorres chooses depending on the C features used;
the most common one is the nondeterministic state monad. In this monad, program
statements are a function from a heap to a tuple consisting of a failure flag and the non-
deterministic state, represented as a set of pairs of return value and heap. The monadic

Verification of Certifying Computations 49

bind operation implements sequential composition. Again, specifications are given as
Hoare triples and a VCG converts these to higher-order formulas [11].

VCC [12] is an assertional, automatic, deductive code verifier for full C code. Source
code is annotated with specifications in the form of function contracts, data invariants,
loop invariants, and further annotations to guide the verifier. Annotated code can still
be compiled with a normal C compiler. From the annotated program, VCC generates
verification conditions for partial or total correctness, which it then tries to discharge
automatically.

3 Verification of Checkers within Isabelle/HOL

The VCC approach was used to verify several checkers in the field of graphs from the
algorithmic library LEDA. For the sake of comparison, we rework the verification of
the connectedness checker. Moreover, we verify the LEDA checker for testing graph
non-planarity. In order to get a measure of the effort dedicated to the verification of the
algorithm respectively that of dealing with C-intricacies, we use two methods to verify
the checker in Isabelle/HOL: First, we verify an implementation in Simpl. Second, we
use AutoCorres to verify a C implementation. We compare the approaches in Section 5.

Connectedness of Graphs. Given an undirected graph G = (V,E), we consider an
algorithm that decides whether G is connected, i.e., whether there is a path between
any pair of vertices [21, Section 7.4]. Non-connectedness is certified by a cut, i.e., a
nonempty subset S of the vertices with S �= V , such that every edge of the graph has
either both or no endpoint in S. Connectedness is certified by a spanning tree of G. On
a high level, we instantiate the general framework as follows:

input x = an undirected graph G = (V,E)
output y = either True or False indicating whether G is connected

witness w = a cut or a spanning tree
ϕ(x) = G is well-formed, i.e., E ⊆ V × V , V and E are finite sets

W(x, y, w) = y is True and w is a spanning tree or y is False and w is a cut
ψ(x, y) = if y is True, G is connected and if y is False , G is not connected.

As in previous work [2], we restrict ourselves to the positive case y = True. For
an example of a graph and its witnessing spanning tree see Fig. 3 in [2]. We represent
spanning trees by functions parent -edge and num and a root vertex r and view the
edges of the tree oriented towards r: for each v, parent -edge(v) is the first edge on the
path from v to r (we set parent -edge(r) = None), and num(v) is the length of this
path. Undirected graphs are represented as bidirected graphs, i.e., for every unordered
edge {u, v} of G, we have ordered pairs (u, v) and (v, u) in the representation of G.

Witness Property. The witness property states that if the conditions in Fig. 1 hold, the
graph is connected. This was already proven in Isabelle/HOL by Alkassar et al. [2]. We
extend the theorem to also state that the conditions imply that the num-value of each
vertex is its depth in the spanning tree. This is important for the C-verification.

50 L. Noschinski, C. Rizkallah, and K. Mehlhorn

locale connected -components-locale = pseudo-digraph +
fixes num : α ⇒ nat and parent-edge : α ⇒ β option and r : α
assumes r -assms : r ∈ verts G ∧ parent-edge r = None ∧ num r = 0
assumes parent-num-assms :

∧
v. v ∈ verts G ∧ v �= r =⇒

∃ e ∈ arcs G. parent-edge v = Some e ∧ head G e = v ∧ num v = num (tail G e) + 1

Fig. 1. Preconditions for the connectedness proof in Isabelle. G is a well-formed graph with
vertices of type α and edges of type β.

Simpl Implementation and Verification. We represent graphs as in previous work [2].
The type IGraph represents a graph G by the numbers ivertex -cnt G and iedge-cnt G
of its vertices and edges and a function iedges G, mapping 0 ≤ i < iedge-cnt G to the
pair of endpoints of the i-th edge. A graph is well-formed if all endpoints are smaller
than ivertex -cnt G.

Each of the conditions in Fig. 1 is checked by a procedure. For example, the pro-
cedure parent -num-assms in Fig. 2 checks parent -num-assms in the obvious way.
The loop invariant parent -num-assms-inv states that parent -num-assms holds up
to vertex i. VAR MEASURE introduces the measure function used for the termina-
tion proof and the command ANNO binds logical variables to be used in the invari-
ant. Total correctness of each function is formulated as a Hoare triple; see Lemma
parent -num-assms-spec in Fig. 2. Invoking the VCG and using the annotations (loop
invariant and measure function) is sufficient for the correctness proof.

C Implementation and Verification. The C representation of graphs is similar to that
in Simpl. In particular, numbers are now of bounded precision. This means we need
to prove absence of overflows during verification. The number of vertices and edges
are now unsigned ints. We represent spanning trees as explained above, but use arrays
instead of functions. The function parent -edge is represented as an array of (signed)
int, and num as an array of unsigned int. As in previous work [2], we require as a
precondition that the input graph is well-formed.

The check -connected checker is a function that accepts exactly when the two func-
tions check -r and check -parent -num accept. The first function checks that r is indeed
the root of the spanning tree. The second function checks for every vertex v different
from r that the edge parent -edge[v] is incident to v and that the other endpoint of the
edge has a number one smaller than num[v].

The first step in the C verification is calling the C-to-Isabelle parser and invoking
AutoCorres. As in Simpl, for each function in the code we prove a corresponding spec-
ification lemma, formulated as a Hoare triple and reasoned about using a VCG. The ter-
mination proof of the checkers is as trivial as in the Simpl case. For proving functional
correctness, we introduce some helper functions that assist in relating the implemen-
tation types to Isabelle types. For example, the abstraction predicate array list, arrlist ,
takes as input the state of the heap h, a list l and a pointer p and checks whether p points
in h to an array containing the values of l. We also introduce a set of lemmas to ease
dealing with bounded numbers.

We prove that the checker function checks the conditions in Fig. 1. This proof hap-
pens under the assumption that the pointers to the graph, to its edges, to num and to
parent -edge can be abstracted to Isabelle datatypes (using the arrlist predicate).

Verification of Certifying Computations 51

definition parent-num-assms-inv : IGraph⇒IVert⇒IPEdge⇒INum⇒nat⇒bool
where parent-num-assms-inv G r p n k ≡ ∀ k < i. i �= r → (case p i of None ⇒ False

| Some x⇒ x < iedge-cnt G ∧ snd (iedges G x) = i ∧ n i = n (fst (iedges G x)) + 1)

procedures parent-num-assms
(G : IGraph , r : IVert , parent-edge : IPEdge , num : INum | R : bool)

in ANNO (G, r, p, n). {| G = G ∧ r = r ∧ parent-edge = p ∧ num = n |}
where vertex : IVert , edge-id : Edge-Id

R := True ; vertex := 0 ;
TRY
WHILE vertex < ivertex -cnt G
INV {| R = parent-num-assms-inv G r parent-edge num vertex
∧ vertex ≤ ivertex -cnt G|} VAR MEASURE (ivertex -cnt G − vertex)

DO
IF (vertex �= r) THEN

IF parent-edge vertex = None THEN R := False ; THROW FI ;
edge-id := the (parent-edge vertex) ;
IF edge-id ≥ iedge-cnt G ∨ snd (iedges G edge-id) �= vertex
∨ num vertex �= num (fst (iedges G edge-id)) + 1 THEN R := False ; THROW FI

FI ;
vertex := vertex + 1

OD
CATCH SKIP END {|R=parent-num-assms-inv G r parent-edge num (ivertex -cnt G)|}

lemma (in parent-num-assms-impl) parent-num-assms-spec:
∀G r p n. Γt{|G = G ∧ r = r ∧ parent-edge = p ∧ num = n|}
R := PROC parent-num-assms (G, r, parent-edge, num)
{| R = parent-num-assms-inv G r p n (ivertex -cnt G)|}

Fig. 2. Excerpts from the Simpl implementation and verification of connectedness. The
Lemma parent-num-assms-spec, formulated as a Hoare triple, states that the procedure
parent-num-assms terminates (indicated by t) and computes parent-num-assms-inv . Ob-
serve the distinction between logical and program variables; x versus x for a variable with
name x.

Experiences and Lessons Learned. The verification of this checker assures us that the
AutoCorres approach is feasible. The effort for the verification of the C-version of the
connectedness checker was about the same as in the VCC approach. VCC knows more
about C and this made it easier to reason about the C-program. This advantage would
show even more clearly in programs that use low-level features of C more intensively,
e.g., bit operations on words. On the other hand, one is forced to formalize a small
number of graph-theoretic concepts such as path in two logical systems, this compli-
cates the VCC-approach. A small number sufficed because verifying that the C-checker
correctly checks the assumptions from Fig. 1 needs no graph-theoretic knowledge and
hence there is a clear separation of labor between VCC and Isabelle/HOL. The dis-
advantage of double formalization shows more clearly in programs that need complex
mathematical reasoning in the checker correctness proof and hence would require for-
malizing more advanced concepts in VCC. The checker for non-planarity presented in

52 L. Noschinski, C. Rizkallah, and K. Mehlhorn

the next section is an example to this effect. There the correctness proof of the pro-
gram requires graph-theoretic reasoning. If we had tried to verify this example using
the VCC-approach, we would have had to formalize a non-trivial theory twice.

The connectedness checker verified using the VCC approach [2] has an unintended
weakness. Not every representable connected graph has a spanning tree that could be
represented as input to the checker. This is because the vertices of the graph were rep-
resented as unsigned int and the array num had type unsigned short; this holds true
for the program actually verified, not for the program listed in the paper. Thus graphs
having no spanning tree of depth bounded by the size of unsigned short had no rep-
resentable witness. VCC had no difficulties in automatically verifying that the addition
in the C equivalent of num (fst (iedges G edge-id)) + 1 (see Fig. 2) does not overflow,
because types smaller than int are lifted to int for arithmetic operations in C. In the
AutoCorres verification, we had to manually prove that s + 1 ≤ u, where s and u are
the maximum values of unsigned short and int, respectively. This led us to notice and
modify the type of num in the checker to unsigned int. Now the addition could poten-
tially overflow and we need to show that it does not. This is proven by strengthening
the loop invariant to infer that num-value cannot exceed the number of vertices and
hence does not overflow in a correct witness. In order to prove that the checker accepts
if and only if the assumptions in Listing 1 hold one needs the stronger witness property
mentioned above. Even though in this case manually discharging guards was useful, it
demonstrates that VCC saves effort when it comes to automatically discharging guards.

Non-planarity of Graphs. One of the motivating examples for the introduction of
certified algorithms in the LEDA library is the planarity test [21]. The planarity check
in LEDA takes as input a graph x and returns y = True and a combinatorial planar
embedding w of x if x is planar or y = False and a Kuratowski subgraph w of x
otherwise. On a high level, we instantiate the general framework as follows:

input x = an undirected graph G = (V,E), possibly with loops
output y = either True or False

witness w = combinatorial planar embedding or Kuratowski subgraph
ϕ(x) = G is well-formed, i.e., E ⊆ V × V where V and E are finite.

ψ(x, y) = If y is True, x is planar, else x is not planar.

In this paper, we restrict ourselves to the case y = False . Then W(x,False, w) holds
iff w is a Kuratowski subgraph of x. Let K5 be the complete graph on five vertices
and K3,3 the complete bipartite graph on three and three vertices. We call K3,3 and
K5 Kuratowski graphs. Kuratowki’s theorem is the basis for our formalization of non-
planarity (see Fig. 3).

Theorem 1 (Kuratowski). A graph K is a Kuratowski subgraph of G if K is a sub-
graph of G and the subdivision of a Kuratowski graph. A graph G is planar if and only
if it has no Kuratowski subgraph.

Witness Predicate. The key step of the checker is testing whether the certificate K is
a subdivision of a K3,3 or K5. One option is to repeatedly take a node of degree 2
and contract it. In an imperative implementation this requires the program to work on a

Verification of Certifying Computations 53

subdivide(K, (u, v), w) = (V (K) ∪ {w}, (E(K) \ {uv}) ∪ {uw, vw})
planar(G) = ¬(∃K. K ≤ G ∧ (∃H. subdivision(H,K) ∧ (K3,3(H) ∨K5(H))))

Fig. 3. Characterization of planarity. subdivision(H,K) is the minimal predicate satisfying the
following rules: H is a subdivision of itself and if K is a subdivision of H , e is an edge of K, and
w is a new vertex, then subdivide(K, e,w) is a subdivision of H . By ≤, we denote the subgraph
relation.

(a) G (b) all ipaths (c) contracted graph

Fig. 4. A graph G and its ipaths and contracted graph (V3(G) in black). Neither the isolated circle
nor the node of degree 1 are on any ipath (or in V3(G)), so they do not contribute to the contracted
graph.

copy of K (or to modify the input). Instead, we follow the method used in LEDA [21]
and compute the contraction of K in single step and check whether the contraction is a
Kuratowski graph. This requires only a constant amount of memory.

Definition 1 (Contraction). Let G be a graph and V3(G) be the set of all vertices
of G with degree at least three. Let E′ be such that uv ∈ E′ iff u, v ∈ V3(G) and
there is a path in G connecting u and v whose interior vertices are not in V3(G). Then
G′ = (V3(G), E′) is the contraction of G. A path with end nodes in V3(G) and interior
nodes in V (G) \ V3(G) is called an ipath. See Fig. 4 for an illustration.

Note that in general G is not a subdivision of its contraction. In particular, vertices
of degree one or less and isolated cycles are discarded and cannot be reconstructed
by subdivision. Nevertheless, contraction gives us a useful over-approximation of the
Kuratowski subgraphs, as demonstrated by the following lemmas.

Lemma 1. Let K be a graph and H the contracted graph of K . Then there exists a
subgraph K ′ of K such that K ′ is a subdivision of H . In particular, if H is a K3,3 or
K5 and K a subgraph of a graph G, then G is not planar.

Lemma 2. Let H be a Kuratowski graph. If K is a subdivision of H , then H is the
contracted graph of K . In particular, if K is a Kuratowski subgraph of a graph G, then
the contracted graph of K is a Kuratowski graph.

We prove both properties in Isabelle. To this end, we introduce the class of slim graphs.
These correspond to those graphs on which contraction is an inverse to subdivision. The
contraction of a non-slim graph G is also the contraction of a slim subgraph of G and
the above lemmas derive from that. For details of the proof see [24].

54 L. Noschinski, C. Rizkallah, and K. Mehlhorn

Based on this, we give a new witness predicate W ′ as follows: W ′(x,False , w)
holds if and only if w is well-formed and a loop-free subgraph of x such that the con-
tracted graph of w is a Kuratowski graph. Then Lemma 1 ensures the witness property.
Lemma 2 ensures that W ⊆ W ′, i.e., all certificates of non-planarity are accepted.

Implementation and Verification. The implementation of the checker is roughly divided
into four steps: (1) Test whether K is a subgraph of G. (2) Test whether K is loop-free.
(3) Compute H by contracting K . (4) Test whether H is a Kuratowski graph. The input
is accepted if and only if all four tests succeed. The test for loop-freeness is not needed
for correctness, but simplifies the verification of the contraction step. We verified the
full algorithm, but focus on step (3) in this write-up. We use a different representation
of graphs than in the previous example (see Fig. 5), as we need to encode vertices
explicitly (and not only the number of vertices) to represent subgraphs.

The code to compute the contraction of K consists of three parts: First, the graph H
is created by taking all vertices of degree three or more (and no edges) of K; if there
are more than 6 such vertices, the certificate is rejected. The core of the computation
is then performed by the function find-endpoint (Fig. 6): For a given vertex vstart ∈
V (H) and an incident edge e ∈ E(G) (given by its other endpoint vnext), it computes
implicitly the ipath of G starting with this edge end returns its last vertex (if it exists).
The contracted edge described by this ipath is then added to H .

Checker Correctness. We assume that the input and certificate are well-formed graphs.
Most of the termination arguments are pretty trivial (loops counting upwards to some
constant), but termination of find-endpoint is not obvious: The procedure implicitly
constructs an ipath, adding a vertex in every iteration. Termination follows as the length
of an ipath is bounded by the number of vertices.

For partial correctness, the checker returns true if and only if W ′(x, False, y) holds.
In the verification, most of the work is needed for step (3). To prove the specification of
find-endpoint (Fig. 7) one needs to show that a maximal path where all interior nodes
are of degree two is uniquely determined by its first edge. From this it follows relatively
easily that calling find-endpoint for all nodes and their incident edges determines all
edges of the contracted graph. Without referring to the mathematical background theory,
both termination and partial correctness would be hard to prove.

Verifying the C Implementation. There are some differences between the Simpl and C
implementations. In C, Graphs are not represented as a pair of lists, but as a struct with
two pointers to arrays, and instead of natural numbers, we use bounded machine words.
Finally, in Simpl, basic graph operations like “vertex contained” were stated as Isabelle
expressions. In C, they need to be implemented and verified.

AutoCorres provides a natural translation of C code, so we hoped that for the verifi-
cation of the C program, we could start with the the Simpl proof and fill in the gaps: i.e.,
abstract memory accesses and datatypes to the ones used in the Simpl proof and verify
the functions not implemented before. The latter was indeed straight-forward. Similarly,
abstracting the heap to the graph datatypes of Isabelle was tedious, but straight-forward,
following established schemes [22]. Most of the additional effort was needed because of
the bounded precision integers. This was somewhat surprising, because the only arith-
metic operations occurring in the program are equality and increment against a fixed
upper bound.

Verification of Certifying Computations 55

struct edge t {
unsigned start;
unsigned target; };

struct graph t {
unsigned vert cnt;
unsigned edge cnt;
unsigned ∗verts;
struct edge t ∗edges; };

struct contr t {
unsigned char vert cnt;
unsigned verts[6];
unsigned char

edges[6][6]; };

Fig. 5. C datastructures for graphs. graph t represents a graph by a list of vertices and a list of
edges. contr t represents the contracted graph as an adjacency matrix.

procedures find-endpoint (G : IGraph ′,
H : IGraph ′, vstart : IVert , vnext : IVert
| R : IVert option)

where
found : bool , i : nat , len : nat , v0 : IVert ,
v1 : IVert , vt : IVert io-edges : ig-edge list,

TRY
IF vstart = vnext THEN RAISE R := None FI ;
v0 := vstart ; v1 := vnext ; len := 1 ;
WHILE v1 �∈ set (ig-verts H) DO
io-edges := ig-in-out-edges G v1 ;
i := 0 ; found := False ;
WHILE ¬found ∧ i < length io-edges DO
vt := ig-opposite G (io-edges ! i) v1 ;
IF vt �= v0 THEN
found := True ; v0 := v1 ; v1 := vt FI ;
i := i + 1

OD ;
len := len + 1 ;
IF ¬ found THEN RAISE R := None FI

OD ;
IF v1 = vstart THEN RAISE R := None FI ;
R := Some v1

CATCH SKIP END

unsigned find endpoint(struct graph t ∗g,
struct contr t ∗h, unsigned v start,
unsigned v next) {

unsigned v0 = v start;
unsigned v1 = v next;

while (tmp get index(h, v1) ≡ −1) {
unsigned i;
for (i=0; i < edge cnt(g); i++) {

unsigned vt = opposite(v1,
edge(g,i));

if (vt �= v0 ∧ vt �= −1) {
v0 = v1;
v1 = vt;
break;

}
}
if (i ≡ edge cnt(g)) return −1;

}
if (v1 ≡ v start) return −1;
return v1;

}

Fig. 6. The function find-endpoint in Simpl and C. H (resp. h) is the preliminary contracted graph.
The function implicitly constructs an ipath by adding vertices until a vertex of degree 3 (i.e., in H)
is reached. The if-statement in the inner loop ensures that the algorithm does not go back the edge
from the previous iteration. If the outer loop aborts abnormally, then no vertex in H is reachable
from vstart via (vstart, vnext). The Simpl implementation uses relatively high-level datastructures,
like sets and list.

∀σ. Γ t {|σ. iverts H = iverts3 G ∧ loop-free (mk-graph G) ∧ vstart ∈ set (iverts H)
∧ iadj G vstart vnext ∧ IGraph-inv G|}
R := PROC find-endpoint(G, H, vstart, vnext)

{|case R of None ⇒¬(∃p w. ipath (mk-graph σG) σvstart (σvstartσvnext # p) w)
| Some w ⇒ (∃p. ipath (mk-graph σG) σvstart (σvstartσvnext # p) w) |}

Fig. 7. Specification of find-endpoint: If H has all degree-3 nodes of G and G has no loops, then
the procedure decides the existence of an ipath starting with the nodes vstart and vnext. mk-graph
abstracts a graph and σx refers to the value of x before the execution.

56 L. Noschinski, C. Rizkallah, and K. Mehlhorn

There are mainly two reasons for the problems we encountered with words: First,
Isabelle has only weak support for proving properties involving words automatically.
Second, such properties often occur not on their own, but as side-conditions in a larger
proof. While Isabelle’s automatic proof tools can often discharge such properties for
natural numbers, they cannot do so for words and therefore fail, leaving the user to
solve the goal mostly manually.

4 Abstraction

The issues with reasoning about functions using words motivated us to implement an
abstraction framework for AutoCorres programs. The idea is to take the original func-
tion f and give a modified implementation f ′ that uses natural numbers instead of
words. With the help of the abstraction framework, we prove f and f ′ to be equivalent
and then perform verification on the abstracted function.

Abstraction or refinement is a well-known idea going back to Dijsktra [13] and
Wirth [28] and put into a formal calculus by Back [3]. In particular, AutoCorres uses
this technique to get from the Simpl program generated by the C parser to the sim-
plified version presented to the user. We want to change two things in the abstraction
process: Where appropriate, we want to replace words by natural numbers. For this, we
also need to insert a guard before each operation on words that asserts that there will
be no overflow (these guards then need to be discharged in the correctness proof of the
abstract function). Moreover, we want to be able to insert ghost code (and ghost state),
i.e., additional computations which have no influence on the outcome of the function.
Such ghost code is often useful for stating loop invariants.

However, the abstraction framework used by AutoCorres [27] is unsuited for our
purposes: It expects that each state in the concrete program corresponds to at most one
state in the abstract program. This makes it difficult to insert ghost code. Moreover,
although the given proof rules are syntax directed they must be applied in a guided
manner, this makes them harder to use. Therefore, we give our own definition.

Recall that a computation in the nondeterministic state monad returns a failure flag
and a set of states. For a relation rel on states, we define a relation refines on abstract.
resp. concrete program statements A and C:

refines rel A C = (¬fail A −→ (¬fail C ∧ ∀c ∈ st C. ∃a ∈ st A. (a, c) ∈ rel)

In particular, instead of proving correctness for the concrete program, we can prove
correctness for the abstract program. We only give a simplified version here, which does
not allow abstracting the heap. A state is a pair (r, h), where r is the return value of the
previous command (often a tuple) and h is the heap.

Lemma 3. Let PA and PC be programs (i.e., functions from state to program state)
and rel be a relation on states. The Hoare triple

{|Q|} PC {|R |}!
states that PC is totally correct w.r.t. to the precondition Q (a predicate on heaps) and
the postcondition R (a predicate on value/heap pairs). Assume that

∀h. Q h −→ refines rel (PA h) (PC h)

Verification of Certifying Computations 57

i.e., for all heaps satisfying a precondition Q the result of the abstract and concrete
programs are related. In addition, assume that

{|Q|}PA{|λrA sA. ∀rC sC . ((rA, sA), (rC , sC)) ∈ rel −→ R rC sC |}!

i.e., for a heap h satisfying Q, the result of PA h is related to a concrete program state
satisfying R. Then the concrete program PC satisfies the specification above.

To prove that two programs are related, we provide a syntax directed proof proce-
dure which compares the two programs instruction by instruction. This requires the two
programs to be very similar in structure. This is the case in our application. The central
rule of the proof procedure is the rule for sequential composition.

Lemma 4 (Refinement of Sequential Composition). Let PA,1 be a program and PA,2

a function mapping a return value of PA,1 to a program (similarly for PC,1, PC,2).

[[refines rel (PA,1 hA) (PC,1 hC);

∀((rA, hA), (rC , hC)) ∈ rel . refines rel ′ (PA,2 rA hA) (PC,2 rC hC)]]

=⇒ refines rel ′ ((PA,1 �= PA,2) hA) ((PC,1 �= PC,2) hC)

Here, �= is the operator for sequential composition. (P1 �= P2) h calls P1 with heap
h, and, for every pair (r2, h2) in the result of P1 h, calls P2 r2 h2. The union of the
results is returned.

Note that the relation rel w.r.t. which PA,1 and PC,1 are refined is not fixed a pri-
ori. Our verification condition generator will synthesize it during the proof, using the
following basic blocks:

– A refinement relation for words: {(n,w) | n = unat w}. Here, unat is the conver-
sion from words to natural numbers.

– The identity relation.
– A ghost relation, allowing the introduction of an additional stack variable in the

abstracted program: {(((g, r), h), (r′, h′)) | ((r, h), (r′, h′))}
These are put together with the help of a pairing relation {((r, h), (r′, h′)) | (r, r′) ∈
rrel ∧ (h, h′) ∈ hrel}.

Putting Abstraction to Use. For the Kuratowski checker, our proof process is as follows:
For each function f containing word arithmetic, we make a copy f ′ of this function, in
which we replace words by natural numbers. For each arithmetic operation, we insert
a guard stating that this operation would not overflow on words (see Fig. 8). Where
necessary, we also add ghost code and annotate loops with invariants. One example of
this is function find-endpoint, where we add an variable holding the computed ipath and
use this in the invariant. Note that the ghost code can use arbitrary Isabelle expressions.
Then we prove that f ′ is an abstraction of f , using the verification condition generator
sketched in the previous section. The proof is mostly automatic; we only need to prove
simple properties about words and natural numbers.

58 L. Noschinski, C. Rizkallah, and K. Mehlhorn

return ((i : 32 word) + 1)

(a) concrete program

guard (λ . (i : nat) < unat (max -word : 32 word));
return (i + 1)

(b) abstract program

Fig. 8. Abstraction of word arithmetic. The guard ensures that the operations on words and natural
numbers behave the same. For the refinement proof, we write ADD guard instead of guard as a
hint for our syntax directed VCG.

5 Evaluation

After abstraction, verification of the non-planarity checker follows closely the proof
of the Simpl program. Overall, we conclude that the use of AutoCorres provides a
viable alternative to the VCC approach for the verification of certifying computations.
Moreover, we can profit from a previous verification of the algorithm. However, it is
necessary to lift the C program to a similar level of abstraction as the pseudo code. This
could not be achieved with the facilities provided by AutoCorres alone, but required us
to implement our own refinement framework. The effort of developing this framework
is required only once and can be reused for future verifications.

It is worth noting that there is parallel work adding automatic abstraction of words
into AutoCorres [16]. However, when verifying a program, one is likely to encounter
other datatypes that need a custom abstraction. In addition, our abstraction framework
gives the option of adding ghost code, which is known to ease the formulation of in-
variants.

Both the Simpl and the C implementation of the Kuratowski checker consist of
around 300 lines of code (the Simpl syntax is more verbose than C). The verifica-
tion of the Simpl checker was done in 1300 lines. The verification of the C checker
required 3200 lines and 1400 lines for the refinement framework. Of the 3200 lines,
900 deal with heap abstraction and access and the verification of basic graph operations
not implemented in the Simpl code.

6 Related Work

Verifying code within interactive theorem provers is a an active field of research. The
seL4 microkernel that is written in low-level C was verified within Isabelle/HOL using
the C-to-Isabelle parser [17]. The underlying approach is refinement starting from an
abstract specification via an intermediate implementation in Haskell to the final C code.
Coq [5] was used both for programming the CompCert compiler and for proving its
correctness [18]. CFML is a verification tool embedded in Coq that targets imperative
Caml programs [10]. It was used to verify several imperative data structures.

Shortest path algorithms, especially imperative implementations thereof, are popu-
lar as case studies for demonstrating code verification [10,8]. They target full functional
correctness as opposed to instance correctness. Verifying instance correctness is orthog-
onal to verifying the implementation of a particular algorithm and it is a tempting choice
that also attracted much attention. In 1997, a checker for sorting algorithms has been
developed and verified [9]. The DeCert project aims to design an architecture where

Verification of Certifying Computations 59

either decision procedures are proven correct within Coq or produce witnesses allow-
ing external checkers to verify the validity of their results, [6] provides an example. In
recent work [2], a general framework to verify certifying computations is developed.

7 Conclusion

In this paper, we explored an alternative to the VCC approach, which provides higher
trust guarantees, and verified checker for graph non-planarity. To our knowledge, no
algorithm or checker for graph non-planarity was verified before.

The LEDA project [21] has shown that the concept of certifying computations eases
the construction of libraries of reliable implementations of complex combinatorial and
geometric algorithms. Reliability is increased because the output of every computation
is checked for correctness by a checker program. Checker programs are relatively sim-
ple and hence easier to implement correctly than the corresponding solution algorithms.
Certifying algorithms are available for a large number of algorithmic problems [19].

Our AutoCorres approach does not use VCC; the entire verification is done in Is-
abelle/HOL. We did so for three reasons: (1) The VCC approach, with its use of two
different tools requires the formalization of certain concepts in two theories, a dupli-
cation of effort. (2) Furthermore, it requires trust in VCC, a fairly complex program.
We have no reason not to trust the program. However, as a matter of principle, the
trusted code base should be kept as small and simple as possible. (3) The recent tool
AutoCorres [15] promised to greatly simplify reasoning about C in Isabelle.

Our experience with AutoCorres is positive. The AutoCorres approach presented in
this paper yields a viable alternative to the VCC approach. It is particularly useful when
the verification requires domain-specific reasoning (e.g., graph theory, as it was the case
for the non-planarity checker).

The implementation of each of the advanced algorithms in LEDA took several man-
months (recollection of the third author). In comparison, with either approach, it took
less time to verify the checker. Note that the non-planarity checker is amongst the most
complex checkers in LEDA. The verification time is likely to go down with increased
experience and development of the tools (cf. [16]). In particular, we extended Auto-
Corres with a reusable abstraction framework. We find that our work demonstrates that
the development of libraries of certifying programs with formally verified checkers is
feasible at reasonable cost.

Acknowledgement. We thank David Greenaway and Thomas Sewell for their advice
on using AutoCorres and for their feedback on the paper. We also thank Jasmin Chris-
tian Blanchette for his feedback on the paper.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall (1993)
2. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: A framework for the verification of

certifying computations. JAR (2013), doi:10.1007/s10817-013-9289-2

60 L. Noschinski, C. Rizkallah, and K. Mehlhorn

3. Back, R.J.R.: Correctness preserving program refinements: Proof theory and applications.
Mathematical Centre tracts. Mathematisch centrum (1980)

4. de Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algo-
rithms and Applications. Springer (1997)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development—Coq’Art:
The Calculus of Inductive Constructions. Springer (2004)

6. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Certified result checking for polyhedral
analysis of bytecode programs. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC
2010, LNCS, vol. 6084, pp. 253–267. Springer, Heidelberg (2010)

7. Blum, M., Kannan, S.: Designing programs that check their work. In: STOC, pp. 86–97
(1989)

8. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie—An interactive prover for the Boogie
program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 150–166. Springer, Heidelberg (2008)

9. Bright, J.D., Sullivan, G.F., Masson, G.M.: A formally verified sorting certifier. IEEE Trans-
actions on Computers 46(12), 1304–1312 (1997)

10. Charguéraud, A.: Characteristic formulae for the verification of imperative programs. In:
ICFP, pp. 418–430 (2011)

11. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 167–182.
Springer, Heidelberg (2008)

12. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

13. Dijkstra, E.W.: Notes on structured programming. Technological University Eindhoven
Netherlands (1970)

14. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Com-
putation. LNCS, vol. 78. Springer, Heidelberg (1979)

15. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified abstraction
of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 99–115. Springer,
Heidelberg (2012)

16. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: Formal verifi-
cation of c code without the pain. In: PLDI (2014) (to appear)

17. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an operating-system kernel. CACM 53(6), 107–115 (2010)

18. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
19. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer

Science Review 5(2), 119–161 (2011)
20. Mehlhorn, K., Näher, S.: From algorithms to working programs: On the use of program

checking in LEDA. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
pp. 84–93. Springer, Heidelberg (1998)

21. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing.
Cambridge University Press (1999)

22. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Information and Com-
putation 199, 200–227 (2005)

23. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

Verification of Certifying Computations 61

24. Noschinski, L.: A graph library for Isabelle (2013),
http://www21.in.tum.de/˜noschinl/documents/
noschinski2013graphs.pdf (submitted)

25. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. Ph.D. thesis,
Technische Universität München (2006)

26. Sullivan, G.F., Masson, G.M.: Using certification trails to achieve software fault tolerance.
In: FTCS, pp. 423–431 (1990)

27. Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D., Norrish, M.: Mind the gap: A
verification framework for low-level C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 500–515. Springer, Heidelberg (2009)

28. Wirth, N.: Program development by stepwise refinement. CACM 14(4), 221–227 (1971)

http://www21.in.tum.de/~noschinl/documents/noschinski2013graphs.pdf
http://www21.in.tum.de/~noschinl/documents/noschinski2013graphs.pdf

	Verification of Certifying Computations through AutoCorres and Simpl
	1 Introduction
	2 Preliminaries
	3 Verification of Checkers within Isabelle/HOL
	4 Abstraction
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

