
Testing-Based Compiler Validation
for Synchronous Languages�

Pierre-Loïc Garoche1, Falk Howar2, Temesghen Kahsai2,
and Xavier Thirioux3

1 ONERA
2 NASA Ames / CMU

3 IRIT

Abstract. In this paper we present a novel lightweight approach to vali-
date compilers for synchronous languages. Instead of verifying a compiler
for all input programs or providing a fixed suite of regression tests, we
extend the compiler to generate a test-suite with high behavioral cover-
age and geared towards discovery of faults for every compiled artifact.
We have implemented and evaluated our approach using a compiler from
Lustre to C.

1 Introduction

In the safety critical domain it is common to verify (safety) properties of systems.
Usually proofs for these properties are established at the level of source code or
formal models. Source code and/or models are compiled to executables for some
target platform. This compilation may invalidate already established verification
results. It is thus of utmost importance to have a trustworthy compilation pro-
cess. Existing approaches to trusted compilation fall into two categories. Either
they aim at verifying the compiler itself (e.g., [7]), or they aim at validating
the compiled output using a verified validator (e.g., [8]). Both exist in weaker
variants, where verification is replaced by testing. There exists a body of work
on generating test suites for verifying the correctness of a compiler (c.f., [3]).
Testing the correctness of a compiled artifact is usually done by some form of
specification-based testing (e.g., [9]).

The more rigorous approaches come at a high cost. Establishing the correct-
ness of a compiler takes a lot of effort. Developing and verifying a validator is
not less of an effort. Also, to be successful, a shared semantic basis is needed
between the source and the target language. Testing the correctness of a com-
piler is difficult because the set of potential input programs to a compiler is
potentially infinite and hard to sample in an automated fashion. Specification-
based testing, on the other hand, is well understood and cheap (compared to
the other approaches). It will, however, in many cases not uncover errors in a
compiler: test-suites are geared towards finding violations of a specification and
not towards uncovering faults in the translation of a program.
� Acknowledgement for the projects ANR INS CAFEIN and NSF Craves.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 246–251, 2014.
c© Springer International Publishing Switzerland 2014

Testing-Based Compiler Validation for Synchronous Languages 247

Fig. 1. Schematic view of a testing-based validating compiler from Lustre to C

In this paper, we present a lightweight approach to compiler validation. We
build our validating compiler upon specification-based testing, which we aug-
ment with a method for generating test cases targeting potential bugs in a com-
piler. Fig. 1 illustrates an overview of the developed framework. The lightweight
validating compiler from Lustre to C consists of five main components: A mod-
ular compiler from Lustre to C, a test suite generator for Lustre programs, a
grammar-based mutant generator for Lustre programs, a test suite enhancer –
extends test suites with test cases for killing mutants – and a validator, which
will execute the test suite on the compiled C program. The validator will use
the input Lustre program as a test oracle. Test results are provided as output
along with the compiled C program.

The central idea of this approach is twofold. On one hand, we verify that the
compiler did not introduce any difference between the source program (Lustre)
and the compiled version (C). We do this by generating automatically test suites
from the source program (Lustre) based on MC/DC coverage criterion. On the
other hand, we use mutations of the source program to simulate bugs in the com-
piler, and that test cases that differentiate mutations from the original program
are likely to uncover errors in the translation of this program. We have imple-
mented a prototypical version of such a lightweight validating compiler from
Lustre to C. In this paper, we discuss the different components of our approach
and present some results from a preliminary evaluation of our technique.
Outline. The paper is structured as follows: The next section, introduces the
synchronous language Lustre and outlines our coverage-based test synthesis us-
ing bounded model checking (BMC). Section 3 presents how we reinforce test
suites using mutants. Finally, Section 4 presents our preliminary experimental
evaluations.

2 MC/DC Test Suites for Lustre Programs

Synchronous languages are a class of languages proposed for the design of “reac-
tive systems” – systems that maintain a permanent interaction with a physical
environment. Such languages are based on the theory of synchronous time, in
which the system and its environment are considered to both view time with

248 P.-L. Garoche et al.

some “abstract” universal clock. In order to simplify reasoning about such sys-
tems, outputs are usually considered to be calculated instantly [1]. In this paper,
we will concentrate on Lustre [4]. Lustre combines each data stream with an as-
sociated clock as a means to discretize time. The overall system is considered to
have a universal clock that represents the smallest time span the system is able
to distinguish, with additional, coarser-grained, user-defined clocks. Lustre pro-
grams and subprograms are expressed in terms of nodes. Nodes directly model
subsystems in a modular fashion, with an externally visible set of inputs and
outputs. A node can be seen as a mapping of a finite set of input streams (in the
form of a tuple) to a finite set of output streams (also expressed as a tuple). At
each instant t, the node takes in the values of its input streams and returns the
values of its output streams. Operationally, a node has a cyclic behavior: at each
cycle t, it takes as input the value of each input stream at position or instant
t, and returns the value of each output stream at instant t. Lustre nodes have
a limited form of memory in that, when computing the output values they can
also look at input and output values from previous instants, up to a finite limit
statically determined by the program itself. Figure 2 describes a simple Lustre
program: a node that every four computation steps activates its output signal,
starting at the third step. The reset input reinitializes this counter.

node c oun t e r (r e s e t : boo l) r e t u r n s (a c t i v e : boo l) ;
var a , b : boo l ;
l e t

a = f a l s e −> (not r e s e t and not (pre b)) ;
b = f a l s e −> (not r e s e t and pre a) ;
a c t i v e = a and b ;

t e l

Fig. 2. A simple Lustre program

Lustre programs can be compiled to main stream languages such as C or Java.
Whereas initial compilation schemes of Lustre were computing a global automa-
ton of the system [4], the approach of [2] relies on an object-like compilation of
the program: each Lustre node call is seen as an instance of the generic declara-
tion of the node. Our compiler from Lustre to C follows the latter approach.

A traditional technique to verify safety properties of synchronous languages
is to use SMT-based model checking [6]. Such technique requires a predicate
M[s̃, ĩn, s̃′, ˜out]1 describing the relationship between input flows ĩn, output flows
˜out as well as internal states s̃ for the model M it represents. It also requires

a predicate over initial states Minit[s̃] as well as a condition C[s̃, ĩn, ˜out] we are
trying to meet at some time. A valid finite trace of length n for M would satisfy
the following expression:

Minit[s̃0] ∧
n−1∧

i=0

M[s̃i, ĩni, s̃i+1, ˜outi] ∧ C[s̃n, ĩnn, ˜outn]

1 We refer to the traditional definition of transition system in model checking tech-
niques. A detailed description of a transition system for Lustre programs can be
found in [5].

Testing-Based Compiler Validation for Synchronous Languages 249

A satisfiability check using an SMT solver over this expression for a given n
will produce a set of values for ĩni, s̃i and ˜outi for i ∈ [0..n]. In practice, tools
unroll the transition relation one step at a time trying to meet the specific C
condition. This can be done efficiently with an SMT solver by reusing previously
computed states. We denote by bmc(Minit,M,C) such a typical BMC algorithm.

We generate test suites using Modified Condition/Decision Coverage (MC/DC)
coverage criterion. The latter has been used as a test adequacy metrics for decades
specially when testing critical software. We express MC/DC criteria as a pred-
icates C[s̃, ĩn, ˜out] and use BMC to find test cases that satisfy these predicates.
From a decision P (c1, . . . , cn) where the ci’s are a set of atomic conditions over
the variables s̃, ĩn and ˜out, we have to exert the value of each condition ci with re-
spect to the global truth value ofP , the other conditions cj �=i being left untouched.
Precisely, we have to find two test cases for which, in the last element of the trace,
ci is respectively assigned to False and True.
Remark: Bounded model checking may not be able to find a test case for some
condition within an acceptable time limit2. In such cases, we conclude that the
generated test suite does not reach the MC/DC coverage.

3 Reinforcing Test Suites via Mutation Testing

In the following, we denote by a mutant a mutated model or implementation
where a single mutation has been introduced. The considered mutation, which
is grammar based, does not change the control flow graph or the structure of
the semantics but could either: (i) perform arithmetic, relational or boolean
operator replacement; or (ii) introduce additional delay (pre operator in Lustre)3,
or (iii) negate boolean variables or expressions; or (iv) replace constants. Such
generation of mutants has been implemented as an extension of our Lustre to
C compiler. Once mutants are generated and the coverage-based test suite is
computed, we can evaluate the number of mutants killed by the test suite. This
evaluation is performed at the binary level, once the C code has been obtained
from the compilation of the mutant. In this setting, the original Lustre model acts
as an oracle, i.e., a reference implementation. Any test that shows a difference
between a run of the original model compiled and a mutation of it, allows to kill
this mutant.

In the literature, mutants are mainly used to evaluate the quality of a test
suite. In our case, the motivation is different, we aim at providing the user with
a test suite related to its input model. This test suite covers the model behavior
in order to show that the compiler doesn’t introduce bugs. We conjecture that a
test suite achieving a good coverage of the code but unable to kill many mutants
would not certify that the compiler did a good job. We thus introduce new tests
to kill the un-killed (or resistant) mutants by the initial MC/DC-based test suite.

2 In our experiments the timeout for BMC was set to 100 secs.
3 Note that, introducing additional delay could produce a program with initialization
issues.

250 P.-L. Garoche et al.

(1) proc genNewTest(Minit,M,M ′
init,M

′) ≡
(2) M ′′ := gen_mcdc_conds(Minit,M);
(3) test := bmc(Minit[x̃ ∧M ′

init[ỹ],

(4) M [˜xk−1, ˜ink−1, x̃k, ˜outk−1] ∧M ′[˜yk−1, ˜ink−1, ỹk, ˜out′k−1],
(5) ¬(out = out′))
(6) print test

Fig. 3. A procedure to introduce new test cases in order to kill previously un-killed
mutants

Figure 3 illustrates the procedure to generate new test cases that allow to kill
previously un-killed mutants. If the call to BMC (Line 3) does not terminate
within the timeout (100 sec in our experiments), we don’t introduce a new test
case.

4 Experimental Evaluation

We have implemented a prototypical version of the lightweight validating com-
piler from Lustre to C using the PKind model checker [6] and have performed
a preliminary evaluation4. We ran the lightweight validating compiler on a set
of 330 Lustre benchmarks. For every benchmark, we use MC/DC conditions to
generate basic test suites. We then automatically generate a set of mutants (160
on average) for each benchmark.

Test suite generated via BMC guided by MC/DC conditions were able to
achieve 100% MC/DC coverage on 10% of the overall benchmark. On the remain-
ing 90% benchmarks, 87% of the MC/DC conditions could be satisfied, while
13% could not be satisfied. On average, test cases generated using BMC guided
by the MC/DC conditions were able to kill 25.12% of the generated mutants
(with a standard derivation of 0.26). Test cases generated using the procedure
highlighted in Figure 3 increased the performance of these basic test suites by
56% (std. dev. of 1.06). In absolute terms, the combined test suites killed 34% of
the mutants (std. dev. of 0.31). Figure 4 shows a view on this results. For every
experiment we show the percentages of mutants killed by MC/DC generated test
cases and additional mutants killed by test cases generated using genNewTest.
The data set was sorted by the overall number of killed mutants.

Considering these results, the number of mutants that could not be killed
is strikingly high. We believe that this is due to many behaviorally equivalent
mutants being generated. This is supported by the relatively high number of
cases for which we could not satisfy MC/DC conditions, indicating the existence
of dead code in the examples. This will have to be substantiated in a future
investigation.

4 The prototypical implementation, benchmarks and results can be found at
https://bitbucket.org/lememta/nfm-14

https://bitbucket.org/lememta/nfm-14

Testing-Based Compiler Validation for Synchronous Languages 251

Fig. 4. Killed mutants per Benchmark. Ordered by percentage of mutants killed

5 Future Work

As a next step we plan to assess the fault finding capabilities of the generated
test suites and compare these to other methods for generating test suites (e.g.,
random testing). A more recent work by Whalen et. al extended MC/DC with
a notion of observability (OMC/DC) [9]. Our approach is orthogonal to such, in
principle any coverage criterion can be used to generate the initial test case. We
plan to integrate the OMC/DC technique in our validating compiler. Moreover,
we plan to perform experiments with seeded bugs in the Lustre to C compiler to
confirm that the mutations that we selected on Lustre programs mimic the effects
of potential bugs in a compiler. We also plan to investigate how the validation
results can be quantified and provide an estimate for the trustworthiness of the
compiler. Finally, we plan to extend this work to object oriented languages.

References

1. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time sys-
tems. In: Proceedings of the IEEE, pp. 1270–1282 (1991)

2. Biernacki, D., Colaço, J.L., Hamon, G., Pouzet, M.: Clock-directed modular code
generation for synchronous data-flow languages. In: Flautner, K., Regehr, J. (eds.)
LCTES, pp. 121–130. ACM (2008)

3. Boujarwah, A., Saleh, K.: Compiler test case generation methods: a survey and
assessment. Information and Software Technology 39(9), 617–625 (1997)

4. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for
programming synchronous systems. In: POPL 1987, pp. 178–188. ACM Press (1987)

5. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with
SMT-based techniques. In: FMCAD 2008, pp. 109–117. IEEE (2008)

6. Kahsai, T., Tinelli, C.: PKind: a parallel k-induction based model checker. In:
PDMC. EPTCS, vol. 72, pp. 55–62 (2011)

7. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

8. Necula, G.C.: Translation validation for an optimizing compiler. SIGPLAN
Not. 35(5), 83–94 (2000)

9. Whalen, M., Gay, G., You, D., Heimdahl, M.P.E., Staats, M.: Observable modified
condition/decision coverage. In: ICSE 2013, pp. 102–111. IEEE Press (2013)

	Testing-Based Compiler Validation for Synchronous Languages
	1 Introduction
	2 MC/DC Test Suites for Lustre Programs
	3 Reinforcing Test Suites via Mutation Testing
	4 Experimental Evaluation
	5 Future Work
	References

