
Julia M. Badger
Kristin Yvonne Rozier (Eds.)

 123

LN
CS

 8
43

0

6th International Symposium, NFM 2014
Houston, TX, USA, April 29 – May 1, 2014
Proceedings

NASA
Formal Methods

Lecture Notes in Computer Science 8430
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Julia M. Badger Kristin Yvonne Rozier (Eds.)

NASA
Formal Methods
6th International Symposium, NFM 2014
Houston, TX, USA, April 29 – May 1, 2014
Proceedings

13

Volume Editors

Julia M. Badger
NASA-Johnson Space Center
2101 NASA Parkway, M/C ER4
Houston, TX 77058, USA
E-mail: julia.m.badger@nasa.gov

Kristin Yvonne Rozier
NASA Ames Research Center
Intelligent Systems Division
Moffett Field, CA 94035, USA
E-mail: kristin.y.rozier@nasa.gov

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06199-3 e-ISBN 978-3-319-06200-6
DOI 10.1007/978-3-319-06200-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014935174

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This publication contains the proceedings of the Sixth NASA Formal Methods
Symposium (NFM 2014), which was held April 29 - May 1, 2014 at NASA
Johnson Space Center (JSC) in Houston, Texas, USA.

The widespread use and increasing complexity of mission- and safety-critical
systems require advanced techniques that address their specification, verification,
validation, and certification requirements.

The NASA Formal Methods Symposium is a forum for theoreticians and
practitioners from academia, industry, and government, with the goals of identi-
fying challenges and providing solutions to achieving assurance in mission- and
safety-critical systems. Within NASA such systems include autonomous robots,
separation assurance algorithms for aircraft, Next Generation Air Transporta-
tion (NextGen), and autonomous rendezvous and docking for spacecraft. More-
over, emerging paradigms such as property-based design, code generation, and
safety cases are bringing with them new challenges and opportunities. The focus
of the symposium was on formal techniques, their theory, current capabilities,
and limitations, as well as their application to aerospace, robotics, and other
safety-critical systems in all design life-cycle stages. We encouraged work on
cross-cutting approaches marrying formal verification techniques with advances
in safety-critical system development, such as requirements generation, analysis
of aerospace operational concepts, and formal methods integrated in early design
stages carrying throughout system development.

The NASA Formal Methods Symposium is an annual event that was cre-
ated to highlight the state of the art in formal methods, both in theory and in
practice. The series is a spinoff of the original Langley Formal Methods Work-
shop (LFM). LFM was held six times in 1990, 1992, 1995, 1997, 2000, and 2008
near NASA Langley in Virginia, USA. In 2009 the first NASA Formal Methods
Symposium was organized by NASA Ames Research Center in Moffett Field,
CA. In 2010, the Symposium was organized by NASA Langley Research Center
and NASA Goddard Space Flight Center, and held at NASA Headquarters in
Washington, D.C. The third NFM symposium was organized by the Labora-
tory for Reliable Software at the NASA Jet Propulsion Laboratory/California
Institute of Technology, and held in Pasadena, CA in 2011. NFM returned to
NASA Langley Research Center in 2012; the Symposium was organized by the
NASA Langley Formal Methods Group in nearby Norfolk, Virginia. NASA Ames
Research Center organized and hosted NFM 2013, the fifth Symposium in the
series. This year’s Symposium was organized via a collaboration between NASA
Goddard Space Flight Center, NASA Johnson Space Center, and NASA Ames
Research Center.

The topics covered by NFM 2014 include but are not limited to: model
checking; theorem proving; static analysis; model-based development; runtime

VI Preface

monitoring; formal approaches to fault tolerance; applications of formal methods
to aerospace systems; formal analysis of cyber-physical systems, including hybrid
and embedded systems; formal methods in systems engineering, modeling, re-
quirements, and specifications; requirements generation, specification debugging,
formal validation of specifications; use of formal methods in safety cases; use of
formal methods in human-machine interaction analysis; formal methods for par-
allel hardware implementations; use of formal methods in automated software
engineering and testing; correct-by-design, design for verification, and property-
based design techniques; techniques and algorithms for scaling formal methods,
e.g., abstraction and symbolic methods, compositional techniques, parallel and
distributed techniques; application of formal methods to emerging technologies.

Two types of papers were considered: regular papers describing fully devel-
oped work and complete results, and short papers describing tools, experience
reports, or descriptions of work in progress with preliminary results. The Sym-
posium received 107 abstract submissions, 83 of which resulted in full papers:
50 regular papers, and 33 short papers in total. Out of these, 20 regular papers
and 9 short papers were accepted, giving an overall acceptance rate of 35% (a
40% rate for regular papers and a 27% rate for short papers). All submissions
went through a rigorous reviewing process, where each paper was read by at
least three reviewers.

In addition to the refereed papers, the symposium featured three invited
talks and a panel feature. NASA provided a special guest talk on “NASA Fu-
ture Challenges in Formal Methods,” delivered by Bill McAllister, Chief, Safety
and Mission Assurance, International Space Station Safety Panels, Avionics and
Software Branch, NASA Johnson Space Center. Professor Lawrence C. Paulson
from the University of Cambridge gave a keynote talk on “Theorem Proving and
the Real Numbers: Overview and Challenges.” Professor Moshe Y. Vardi from
Rice University gave a keynote talk on “Compositional Temporal Synthesis.”

The NFM 2014 panel feature, titled “Future Directions of Specifications for
Formal Methods,” featured panelists Matt Dwyer of the University of Nebraska,
Hadas Kress-Gazit of Cornell University, and Moshe Y. Vardi of Rice University.
Specifications are required for all applications of formal methods yet extracting
specifications for real-life safety critical systems often proves to be a huge bottle-
neck or even an insurmountable hurdle to the application of formal methods in
practice. This is the state for safety-critical systems today and as these systems
grow more complex, more pervasive, and more powerful in the future, there is
not a clear path even for maintaining the bleak status quo. Therefore, NFM2014
highlighted this issue in the home of an important critical system, the Mission
Control Center of NASA’s most famous critical systems, and asked our panelists
where we can go from here.

The organizers are grateful to the authors for submitting their work to NFM
2014 and to the invited speakers and panelists for sharing their insights. NFM
2014 would not have been possible without the collaboration of the Steering

Preface VII

Committee, Program Committee, external reviewers, and the support of the
NASA Formal Methods community. We are also grateful to our collaborators
at the LERO the Irish Software Engineering Research Centre. The NFM 2014
website can be found at http://www.NASAFormalMethods.org.

February 2014 Julia M. Badger
Kristin Yvonne Rozier

Organization

Program Committee

Domagoj Babic Google Research, USA
Calin Belta Boston University, USA
Armin Biere Johannes Kepler University, Austria
Nikolaj Bjorner Microsoft Research, USA
Jonathan P. Bowen Museophile Limited, UK
Guillaume Brat CMU/NASA Ames Research Center, USA
Gianfranco Ciardo Iowa State University, USA
Frederic Dadeau FEMTO-ST/Inria, France
Ewen Denney SGT/NASA Ames Research Center, USA
Ben Di Vito NASA Langley Research Center, USA
James Disbrow NASA Dryden Flight Research Center, USA
Steven Drager Air Force Research Laboratory, USA
Alexandre Duret-Lutz LRDE/EPITA, France
Cindy Eisner IBM Research - Haifa, Israel

Éric Féron Georgia Institute of Technology, USA
Shalini Ghosh SRI, USA
Alwyn Goodloe NASA Langley Research Center, USA
Arie Gurfinkel Software Engineering Institute, Carnegie

Mellon University, USA
John Harrison Intel Corporation, USA
Klaus Havelund NASA/Jet Propulsion Laboratory, California

Institute of Technology, USA
Connie Heitmeyer Naval Research Laboratory, USA
Gerard Holzmann NASA/Jet Propulsion Laboratory, California

Institute of Technology, USA
Hadas Kress-Gazit Cornell University, USA
Joe Leslie-Hurd Intel Corporation, USA
David Lester Manchester University, UK
Kenneth McMillan Microsoft Research, USA
Sheena Miller Barrios Technology/NASA Johnson Space

Center, USA
Steven Miller Rockwell Collins, USA
Cesar Munoz NASA Langley Research Center, USA
Suzette Person NASA Langley Research Center, USA
Lee Pike Galois, Inc., USA
André Platzer Carnegie Mellon University, USA
Neha Rungta SGT/NASA Ames Research Center, USA

X Organization

Johann Schumann SGT/NASA Ames Research Center, USA
Cristina Seceleanu Mälardalen University, Sweden
Sandeep Shukla Virginia Tech, USA
Radu Siminiceanu Amazon, USA
Oksana Tkachuk SGT/NASA Ames Research Center, USA
Stefano Tonetta FBK-irst, Italy
Helmut Veith Vienna University of Technology, Austria
Arnaud Venet CMU/NASA Ames Research Center, USA
Mike Whalen University of Minnesota Software Engineering

Center, USA
Nok Wongpiromsarn Singapore-MIT Alliance for Research and

Technology, Singapore
Karen Yorav IBM Research - Haifa, Israel

Steering Committee

Ewen Denney SGT/NASA Ames Research Center, USA
Ben Di Vito NASA Langley Research Center, USA
Klaus Havelund NASA/Jet Propulsion Laboratory, California

Institute of Technology, USA
Gerard Holzmann NASA/Jet Propulsion Laboratory, California

Institute of Technology, USA
Cesar Munoz NASA Langley Research Center, USA
Corina Pasareanu CMU/NASA Ames Research Center, USA
Suzette Person NASA Langley Research Center, USA
Kristin Yvonne Rozier NASA Ames Research Center, USA

Additional Reviewers

Anderson, Matthew
Archer, Myla
Aydin Gol, Ebru
Bak, Stan
Bartocci, Ezio
Breuer, Peter
Bushnell, David
Dagit, Jason
Deng, Yi
Diatchki, Iavor
Donzé, Alexandre
Duggirala, Parasara Sridhar
Elenius, Daniel
Faber, Johannes

Fischer, Bernd
Fulton, Nathan
Gario, Marco
Gascón, Adrià
Guralnik, Elena
Hatvani, Leo
Hendrix, Joe
Jobredeaux, Romain
Jovanović, Dejan
Julliand, Jacques
Kong, Zhaodan
Koyfman, Anatoly
Li, Wenchao
Mallet, Frederic

Organization XI

Marinescu, Raluca
Mitsch, Stefan
Moran, Shiri
Mover, Sergio
Müller, Andreas
Nanjundappa, Mahesh
Orni, Avigail
Owre, Sam
Pai, Ganesh
Pan, Guoqiang
Pham, Hung
Pidan, Dmitry
Renault, Etienne

Rodriguez-Navas, Guillermo
Rozier, Eric
Saeedloi, Neda
Seidl, Martina
Swei, Sean
Thompson, Sarah
Tiwari, Ashish
Veksler, Tatyana
Völp, Marcus
Wang, Timothy
Whiteside, Iain
Zawadzki, Erik

Keynotes/Panel

NASA Future Challenges in Formal Methods

R. William McAllister

NASA Johnson Space Center,

Houston, TX 77058, USA

The introduction of formal methods into a legacy software development process
like the International Space Station Programs presents many of the same chal-
lenges impeding the wide acceptance of formal methods by industry. Not the
least of these being budget and schedule targets and process inertia. While prior
work shows that even the highly regarded Shuttle flight software development
process could have benefited from the use of formal methods, the approach was
never integrated into the baseline process.

Further, NASA software safety and quality assurance engineers face sig-
nificant challenges of oversight and insight where NASA, rather than acquiring
a software product in support of a program, contracts for a program service
that happens to require software. For example, the ISS program levies no more
than thirty computer based control system (software safety) and ten software
quality assurance requirements on the Commercial Resupply Services and the
Commercial Crew providers. While the providers compliance data is reviewed
and approved by NASA, there is only the slightest opportunity to influence the
software development methods employed.

Regardless, any mature development process includes corrective actions to
eliminate the recurrence of escapes. Because single corrective actions routinely
identify multiple escapes in the development cycle, these investigations provide
an opportunity to examine the utility of formal methods.

Theorem Proving and the Real Numbers:

Overview and Challenges

Lawrence C. Paulson

Computer Laboratory, University of Cambridge, England
lp15@cl.cam.ac.uk

One of the first achievements in automated theorem proving was Jutting’s con-
struction of the real numbers using AUTOMATH [14]. But for years afterwards,
formal proofs focused on problems from functional programming and elemen-
tary number theory. In the early 90s, John Harrison revived work on the reals
by formalising their construction using HOL [8] and by undertaking an exten-
sive programme of research into verifying floating point arithmetic, including the
exponential and trigonometric functions [9–11].

MetiTarski represents a different approach to theorem proving about the
reals. Reducing everything to first principles is rigorous, but makes proofs of the
simplest statements extremely time-consuming. Many other automatic theorem
provers are confined to linear arithmetic, or at best, polynomial comparisons.
MetiTarski can prove complicated assertions involving transcendental functions.
It takes many of their properties as axioms, and reasons from these properties
using sophisticated decision procedures. MetiTarski has recently been integrated
with other powerful reasoning tools, including KeYmaera [19] and PVS [17].
With this power, proofs involving such things as aircraft manoeuvres and the
stability of hybrid systems can be undertaken, even when the dynamics are
described by complicated formulas involving many special functions. Examples
of this research can be found in these proceedings, for example, Denman’s work
on qualitative abstraction of hybrid systems [6].

This very success raises the question of how to recover the rigour of LCF-
style theorem proving without losing the power of MetiTarski. The standard
answer to this question (used by Isabelle’s Sledgehammer for example [18]) is
for the external prover to generate some sort of certificate that can be checked
rigorously. The point is that the expensive proof search does not need to be
checked, but only the proof that was actually found.

Checking a certificate using a separate theorem prover, such as Isabelle,
requires machine formalisations of all the underlying mathematics. Since Harri-
son’s work mentioned above, researchers worldwide have formalised substantial
chunks of real analysis, including measure theory and probability theory [12, 16].
Independently, from the 1960s onwards, computer algebra systems enjoyed rapid
development, as did decision procedures for real arithmetic. Much recent work
has focused on formalising computer algebra algorithms within theorem provers,
especially Coq [2, 15]. Investigations into special function inequalities have been
conducted using PVS [5].

Theorem Proving and the Real Numbers XVII

Nevertheless, the mathematics needed to certify the sort of proofs found
by MetiTarski does not appear to have been formalised as yet. MetiTarski re-
lies on an external decision procedure for real-closed fields (RCF) [7] to test
the satisfiability of first-order formulas involving polynomials. The underlying
algorithm is called CAD (Cylindrical Algebraic Decomposition) and QEPCAD
[3] is a well-known implementation, although it has also been implemented in
Mathematica and Z3 [13]. Each of these implementations is very complicated,
and there is no obvious way to verify their results.

The underlying mathematics is real algebraic geometry [1]. MetiTarski also
relies upon upper and lower bounds for the fractions it reasons about, given in
the form of truncated power series or rational functions derived from continued
fractions [4]. The necessary mathematics here belongs to approximation theory,
and unusually, we are not concerned with the closeness of the approximations;
the soundness of MetiTarski relies only upon the property that they are indeed
upper or lower bounds. Proving these properties formally appears to require a
substantial effort. And although we are only concerned with the real numbers,
the necessary theory is most easily reached via complex analysis. That branch
of mathematics remains largely unformalised at the moment, so we have much
to do.

Acknowledgements. The Edinburgh members of the project team are Paul
Jackson, Grant Passmore and Andrew Sogokon. The Cambridge team includes
James Bridge, William Denman and Zongyan Huang. We are grateful to our
outside collaborators such as César Muñoz, Eva Navarro-López, André Platzer,
and others not listed here.

The research was supported by the Engineering and Physical Sciences Re-
search Council [grant numbers EP/I011005/1, EP/I010335/1].

References

1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn.
Springer, Heidelberg (2006)

2. Bertot, Y., Guilhot, F., Mahboubi, A.: A formal study of Bernstein coefficients and
polynomials. Mathematical Structures in Computer Science 21(04), 731–761 (2011),
http://hal.inria.fr/inria-00503017

3. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets us-
ing CADs. SIGSAM Bulletin 37(4), 97–108 (2003), http://doi.acm.org/10.1145/
968708.968710, doi:10.1145/968708.968710

4. Cuyt, A., Petersen, V., Verdonk, B., Waadeland, H., Jones, W.B.: Handbook of
Continued Fractions for Special Functions. Springer, Heidelberg (2008), http://

www.springer.com/math/analysis/book/978-1-4020-6948-2

5. Daumas, M., Muñoz, C., Lester, D.: Verified real number calculations: A library for
integer arithmetic. IEEE Trans. Computers 58(2), 226–237 (2009), http://dx.doi.
org/10.1109/TC.2008.213

XVIII L.C. Paulson

6. Denman, W.: Verifying nonpolynomial hybrid systems by qualitative abstraction
and automated theorem proving. In: 6th International Symposium on NASA Formal
Methods, NFM 2014 (2014) (these proceedings)

7. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–247. Springer, Heidelberg (1999), http://dx.doi.org/10.1007/

978-3-642-59932-3_11

8. Harrison, J.: Constructing the real numbers in HOL. Formal Methods in System
Design 5, 35–59 (1994)

9. Harrison, J.: Floating point verification in HOL Light: the exponential function.
Formal Methods in System Design 16, 271–305 (2000)

10. Harrison, J.V.: Formal verification of floating point trigonometric functions. In:
Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 217–233.
Springer, Heidelberg (2000)

11. Harrison, J.: Formal verification of IA-64 division algorithms. In: Aagaard, M.D.,
Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 233–251. Springer, Heidel-
berg (2000)

12. Hurd, J.: Verification of the Miller-Rabin probabilistic primality test. Journal of
Logic and Algebraic Programming 56, 3–21 (2002)

13. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidel-
berg (2012)

14. van Benthem Jutting, L.S.: Checking Landau’s “Grundlagen” in the AUTOMATH
System. PhD thesis, Eindhoven University of Technology (1977)

15. Mahboubi, A.: Implementing the CAD algorithm within the Coq system. Mathe-
matical Structure in Computer Sciences 17 (2007)

16. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of measure theory and Lebesgue
integration for probabilistic analysis in HOL. ACM Trans. Embedded Comput.
Syst. 12(1), 13 (2013)

17. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining
specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

18. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive the-
orem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732,
pp. 232–245. Springer, Heidelberg (2007)

19. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems.
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

Compositional Temporal Synthesis

Moshe Y. Vardi

Rice University, Houston, Texas, USA

vardi@cs.rice.edu

Synthesis is the automated construction of a system from its specification. In
standard temporal-synthesis algorithms, it is assumed the system is constructed
from scratch. This, of course, rarely happens in real life. In real life, almost
every non-trivial system, either in hardware or in software, relies heavily on
using libraries of reusable components. Furthermore, other contexts, such as
web-service orchestration and choreography, can also be modeled as synthesis of
a system from a library of components.

In this talk we describe and study the problem of compositional temporal
synthesis, in which we synthesize systems from libraries of reusable components.
We define two notions of composition: data-flow composition, which we show is
undecidable, and control-flow composition, which we show is decidable. We then
explore a variation of control-flow compositional synthesis, in which we construct
reliable systems from libraries of unreliable components.

Acknowledgements. Joint work with Yoad Lustig and Sumit Nain.

References

1. Lustig, Y., Nain, S., Vardi, M.Y.: Synthesis from probabilistic components.
In: Bezem, M. (ed.) CSL. LIPIcs, vol. 12, pp. 412–427. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, http://dblp.uni-trier.de/db/conf/csl/

csl2011.html#LustigNV11

2. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. STTT 15(5-6), 603–618
(2013)

3. Nain, S., Vardi, M.Y.: Synthesizing Probabilistic Composers. In: Birkedal, L. (ed.)
FOSSACS 2012. LNCS, vol. 7213, pp. 421–436. Springer, Heidelberg (2012)

Panel: Future Directions of Specifications for

Formal Methods

Julia M. Badger1 and Kristin Yvonne Rozier2,�

1NASA Johnson Space Center, Houston, Texas, USA

Julia.M.Badger@nasa.gov
2NASA Ames Research Center, Moffett Field, California, USA

Kristin.Y.Rozier@nasa.gov

Specifications are required for all applications of formal methods, yet extract-
ing specifications for real-life safety critical systems often proves to be a huge
bottleneck or even an insurmountable hurdle to the application of formal meth-
ods in practice. This is the state for safety-critical systems today and as these
systems grow more complex, more pervasive, and more powerful in the future,
there is not a clear path even for maintaining the bleak status quo. Therefore,
we propose highlighting this issue in the home of an important critical system,
the Mission Control Center of NASA’s most famous critical systems, and asking
our panelists where we can go from here.

Panelists

– Matt Dwyer, University of Nebraska, USA
– Hadas Kress-Gazit, Cornell University, USA
– Moshe Y. Vardi, Rice University, USA

Panel Questions

1. Where are we now? Please outline your background and answer the ques-
tion “Where are we now?” with regards to specifications.

2. Where will we get specifications from? At NASA in particular, ex-
tracting specifications needed for any formal analysis is a huge challenge.
Some critical systems are designed without ever having what this commu-
nity would consider to be a formal set of requirements. Some design processes
don’t formally define requirements until the testing phase, far too late to use
them for design or design-time analysis, or other key periods in the system
development life-cycle where formal methods are applicable. Even for criti-
cal systems where specifications are defined early in the system development
life-cycle, they often mix many different objectives, mixing many different
levels of detail and describing things like how the system is defined, how
the system should behave, legal-speak on why the system satisfies rules, and

* Panel Moderator

Panel: Future Directions of Specifications for Formal Methods XXI

more – sometimes all in the same sentence! As safety-critical systems be-
come increasingly complex and the budgetary and other constraints tighten,
where can we look in the future to hope to extract the specifications we need
for formal analysis?

3. How should we measure specification quality? How can we know when
we’re “done” extracting specifications or have some idea of how well we’ve
done? As critical systems continue to grow in complexity, how will we mea-
sure the completeness, coverage, or general quality of a specification or a set
of specifications?

4. How do we best use specifications? How should formal specifications
(both those we are given and those we must extract) fit into the design life-
cycle for different kinds of critical systems? How can we indoctrinate formal
specifications into diverse teams of system designers without hitting barriers
to adoption such as huge costs in terms of time and learning curves? What
should our roadmap look like for a future full of well-specified (formally
analyzable) critical systems?

5. We are now open for questions from the audience.

Table of Contents

DO-333 Certification Case Studies . 1
Darren Cofer and Steven Miller

A Compositional Monitoring Framework for Hard Real-Time
Systems . 16

André de Matos Pedro, David Pereira, Lúıs Miguel Pinho, and
Jorge Sousa Pinto

Leadership Election: An Industrial SoS Application of Compositional
Deadlock Verification . 31

Pedro R.G. Antonino, Marcel Medeiros Oliveira,
Augusto C.A. Sampaio, Klaus E. Kristensen, and
Jeremy W. Bryans

Verification of Certifying Computations through AutoCorres and
Simpl . 46

Lars Noschinski, Christine Rizkallah, and Kurt Mehlhorn

Distinguishing Sequences for Partially Specified FSMs 62
Robert M. Hierons and Uraz Cengiz Türker

On Proving Recoverability of Smart Electrical Grids 77
Seppo Horsmanheimo, Maryam Kamali, Mikko Kolehmainen,
Mats Neovius, Luigia Petre, Mauno Rönkkö, and Petter Sandvik

Providing Early Warnings of Specification Problems 92
Dustin Hoffman, Aditi Tagore, Diego Zaccai, and Bruce W. Weide

Mechanized, Compositional Verification of Low-Level Code 98
Björn Bartels and Nils Jähnig

Formally Verified Computation of Enclosures of Solutions of Ordinary
Differential Equations . 113

Fabian Immler

On the Quantum Formalization of Coherent Light in HOL 128
Mohamed Yousri Mahmoud and Sofiène Tahar

Refinement Types for TLA+ . 143
Stephan Merz and Hernán Vanzetto

XXIV Table of Contents

Using Lightweight Theorem Proving in an Asynchronous Systems
Context . 158

Matthew Danish and Hongwei Xi

JKelloy: A Proof Assistant for Relational Specifications of Java
Programs . 173

Aboubakr Achraf El Ghazi, Mattias Ulbrich, Christoph Gladisch,
Shmuel Tyszberowicz, and Mana Taghdiri

Verifying Hybrid Systems Involving Transcendental Functions 188
Paul Jackson, Andrew Sogokon, James Bridge, and
Lawrence Paulson

Verifying Nonpolynomial Hybrid Systems by Qualitative Abstraction
and Automated Theorem Proving . 203

William Denman

Combining PVSio with Stateflow . 209
Paolo Masci, Yi Zhang, Paul Jones, Patrick Oladimeji,
Enrico D’Urso, Cinzia Bernardeschi, Paul Curzon, and
Harold Thimbleby

Qed. Computing What Remains to Be Proved . 215
Löıc Correnson

Warps and Atomics: Beyond Barrier Synchronization in the Verification
of GPU Kernels . 230

Ethel Bardsley and Alastair F. Donaldson

Testing-Based Compiler Validation for Synchronous Languages 246
Pierre-Löıc Garoche, Falk Howar, Temesghen Kahsai, and
Xavier Thirioux

Automated Testcase Generation for Numerical Support Functions in
Embedded Systems . 252

Johann Schumann and Stefan-Alexander Schneider

REFINER: Towards Formal Verification of Model Transformations 258
Anton Wijs and Luc Engelen

Designing a Deadlock-Free Train Scheduler: A Model Checking
Approach . 264

Franco Mazzanti, Giorgio Oronzo Spagnolo, and Alessio Ferrari

A Synthesized Algorithm for Interactive Consistency 270
Adrià Gascón and Ashish Tiwari

Energy-Utility Quantiles . 285
Christel Baier, Marcus Daum, Clemens Dubslaff, Joachim Klein,
and Sascha Klüppelholz

Table of Contents XXV

Incremental Verification of Compiler Optimizations 300
Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina

Memory Efficient Data Structures for Explicit Verification of Timed
Systems . 307

Peter Gjøl Jensen, Kim Guldstrand Larsen, Jǐŕı Srba,
Mathias Grund Sørensen, and Jakob Haar Taankvist

The Gradual Verifier . 313
Stephan Arlt, Cindy Rubio-González, Philipp Rümmer,
Martin Schäf, and Natarajan Shankar

Synthesizing Predicates from Abstract Domain Losses 328
Bogdan Mihaila and Axel Simon

Formal Verification of kLIBC with the WP Frama-C Plug-in 343
Nuno Carvalho, Cristiano da Silva Sousa, Jorge Sousa Pinto, and
Aaron Tomb

Author Index . 359

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 1–15, 2014.
© Springer International Publishing Switzerland 2014

DO-333 Certification Case Studies

Darren Cofer and Steven Miller

Rockwell Collins Advanced Technology Center
{ddcofer,spmiller}@rockwellcollins.com

Abstract. RTCA DO-333, Formal Methods Supplement to DO-178C and
DO-278A, provides guidance for software developers wishing to use formal
methods in the certification of airborne systems and air traffic management
systems. This paper presents three case studies describing the use of different
classes of formal methods to satisfy DO-178C certification objectives. The case
studies examine different aspects of a common avionics example, a dual-
channel Flight Guidance System (FGS), which is representative of the issues
encountered in actual developments. The three case studies illustrate the use of
theorem proving, model checking, and abstract interpretation. Each of these
techniques has strengths and weaknesses and each could be applied to different
life cycle data items and different objectives than those described here. Our
purpose is to illustrate a reasonable application of each of these techniques to
produce the evidence needed to satisfy certification objectives in a realistic
avionics application. We hope that these case studies will be useful to industry
and government personnel in understanding formal methods and the benefits
they can provide.

Keywords: Formal methods, certification, model checking, theorem proving,
abstract interpretation.

1 Introduction

Certification can be defined as legal recognition by a government authority that a
product, service, organization, or person complies with specified requirements. In the
context of commercial aircraft, certification consists primarily of convincing the
relevant certification authority (the FAA in the U.S. or EASA in Europe) that all re-
quired steps have been taken to ensure the safety, reliability, and integrity of the air-
craft. Software itself is not certified in isolation, but only as part of an aircraft design.
Certification differs from verification in that it focuses on evidence provided to a third
party to demonstrate that the required activities were performed completely and
correctly, rather on performance of the activities themselves.

For software in commercial aircraft, the relevant certification guidance is found in
DO-178C, “Software Considerations in Airborne Systems and Equipment Certifica-
tion” (known in Europe as ED-12C) [10]. Certification authorities in North American
and Europe have agreed that an applicant (aircraft manufacturer) can use this guid-
ance as a means of compliance with the regulations governing aircraft certification.

2 D. Cofer and S. Miller

Its predecessor, DO-178B, allowed for the use of formal methods to satisfy certifi-
cation objectives, but did so only as an “Alternative Method.” DO-178C now
provides guidance specific to newer software technologies including formal methods,
model-based development, and object-oriented software. This technology-specific
guidance is contained in supplemental documents which may add, modify, or replace
objectives in the core document. With the publication of DO-333, Formal Methods
Supplement to DO-178C and DO-278A [12], the use of formal methods has become a
recognized means of compliance (rather than an alternative method), streamlining the
process for aircraft manufacturers to obtain certification credit through the use of
formal verification techniques.

This paper presents three case studies describing the use of different classes of
formal methods to satisfy DO-178C certification objectives using the guidance in
DO-333. The three case studies illustrate the use of theorem proving, model checking,
and abstract interpretation. Each of these techniques has strengths and weaknesses,
and each could be applied to different life cycle data items and different objectives
than those described here. The material presented is not intended to represent a
complete certification effort. Rather, the purpose is to show how formal methods can
be used in a realistic avionics software development, focusing on the evidence
produced that could be used to satisfy the verification objectives found in DO-178C.
The complete version of the case studies along with all the associated models, code,
and verification artifacts will be available as a NASA contractor report in 2014.

Fig. 1. Formal Methods applications in the Flight Guidance System example

The case studies examine different aspects of a common avionics system, a dual-
channel Flight Guidance System (FGS), shown in Fig. 1. While not intended as a
complete example, it is representative of the issues encountered in actual development

 DO-333 Certification Case Studies 3

projects and includes design artifacts specified using PVS, MATLAB Simulink/
Stateflow®, and C source code.

An FGS is a component of the overall Flight Control System (FCS). It compares
the measured state of an aircraft (position, speed, and attitude) to the desired state and
generates pitch and roll guidance commands to minimize the difference between the
measured and desired state. The pilots interact with the FGS via the Flight Control
Panel (FCP), Primary Flight Display (PFD), and the Display Control Panel (DCP).

The FGS subsystem accepts input about the aircraft's state from the Attitude Head-
ing Reference System (AHRS), the Air Data System (ADS), the Flight Management
System (FMS), and the Navigation Radios. Using this information, it computes pitch
and roll guidance commands that are provided to the autopilot (AP). When engaged,
the AP translates these commands into movement of the aircraft's control surfaces
necessary to achieve the commanded changes about the lateral and vertical axes.

The FGS has two physical sides, or channels – one on the left side and one on the
right side of the aircraft. These provide redundant implementations that communicate
with each other over a cross-channel bus. Each channel of the FGS can be further
broken down into the mode logic and the flight control laws. The flight control laws
accept information about the aircraft’s current and desired state, and compute the
pitch and roll guidance commands. A flight control law is active if its guidance com-
mands are being used to control the aircraft or to provide visual cues to the flight
crew. A flight control law that is operational but that is not yet active is armed. The
mode logic determines which lateral and vertical modes of operation are active (e.g.
controlling the aircraft or providing visual guidance cues to the flight crew) and
armed (e.g. operational but not yet active) at any given time. These in turn determine
which flight control laws are active and armed.

2 Certification and DO-333

General guidance is provided in DO-333 that is applicable to the overall verification
process when formal methods are used. This includes the following requirements:

− All formal notations used must have unambiguous, mathematically defined syn-
tax and semantics.

− The soundness of each formal analysis method should be documented. A sound
method never asserts that a property is true when it may not be true. Soundness
here refers to the underlying analysis method, not soundness of the tool imple-
mentation. Tool soundness issues are addressed separately as part of the tool qu-
alification process described in DO-330 [11].

− All assumptions related to the formal analysis should be described and justified
(e.g. assumptions about execution semantics on the target computer, or assump-
tions about data range limits).

Beyond these general requirements, specific guidance is provided to describe how
formal methods can be applied within each of the verification activities and objectives
defined in DO-178C. This is illustrated in Fig. 2 for Level A software, the highest
criticality level defined in DO-178C. These include compliance with requirements,

4 D. Cofer and S. Miller

accuracy and consistency of requirements, compatibility with the target computer,
verifiability of requirements, conformance to standards, traceability between life cycle
data items, and algorithmic correctness.

Fig. 2. Relationship of Case Studies to DO-178C Level A Objectives (adapted from DO-333)

Fig. 2 also shows the relationship between the three case studies and DO-178C ob-
jectives. Theorem proving was applied to the verification of the High-Level Require-
ments (HLR) for the Pilot Flying synchronization logic of the two channels of the
FGS, focusing on the objectives of DO-333 Table FM.A-3. Theorem proving is gen-
erally considered the most powerful and versatile class of formal methods, but it is
also the least automated, and usually requires the significant expertise and user train-
ing. This case study is described in Section 3.

Model checking has been applied to the verification of the Low-Level Require-
ments (LLR) for the mode logic of a single FGS channel, focusing on the objectives
of DO-333 Table FM.A-4. Current model checking tools are very powerful and pro-
vide much more automation than theorem provers. In general, less user expertise is
required, but the user must be able to specify requirements to be analyzed in a formal

 DO-333 Certification Case Studies 5

language. These tools are relatively mature and (in our opinion) the benefits of using
formal methods are greatest at this level. This case study is described in Section 4.

Abstract interpretation has been applied to the Source Code implementing one of
the control laws of the FGS, focusing on the objectives of DO-333 Table FM.A-5.
Abstract interpretation is the most automated of the three techniques, at least as used
in currently available commercial tools, and typically requires the least expertise from
users. Part of this is due to the use of abstract interpretation to check non-functional
requirements, eliminating the need to formally specify requirements. We should note,
however, that more powerful versions of abstract interpretation tools exist which
require much more expertise to specify and check user-defined abstract domains. This
case study is described in Section 5.

Another issue we address in each case study is tool qualification. Tool qualifica-
tion is the process necessary to obtain certification credit for the use of a software tool
within the context of a specific airborne system. The purpose of qualification is
to ensure that the tool provides confidence at least equivalent to that of any process
which is eliminated, reduced, or automated. DO-178C specifies that tool qualification
should be performed in accordance with DO-330, Software Tool Qualification
Considerations [11].

Each case study includes:

− The objectives to be satisfied and the evidence produced
− A general description of the portion of the example system to be verified
− A description of the verification approach, including the life cycle data items pro-

duced and the tools used, corresponding to some of the information that should be
included in a Software Verification Plan

− Tool qualification issues for the formal methods tools used
− A detailed description of the verification effort that was performed

There are some parts of DO-333 that are not covered in these case studies. In par-
ticular, we do not address the verification of Executable Object Code (DO-333 Table
FM.A-6), nor do we address the replacement of coverage testing by formal analysis
(DO-333 Table FM.A-7).

3 Theorem Proving Case Study

This case study illustrates the use of the PVS [9] and the HOL4 [7] theorem proving
systems to verify the outputs of the software requirements process (DO-178C Section
5.1) focusing on the objectives of Table A-3 in DO-178C and Table FM.A-3 in
DO-333. The purpose of these verification activities is to detect any errors that may
have been introduced during the software requirements process. The DO-178C and
DO-333 objectives satisfied through theorem proving are summarized in Table 1. The
table indicates whether an objective was satisfied (fully or partially) in the case study
for each software level, A through D. Some objectives do not need to be satisfied for
the less critical Level C or Level D software and are indicated by shaded boxes in the
corresponding columns of the table.

6 D. Cofer and S. Miller

Table 1. Summary of Objectives Satisfied by Theorem Proving

Obj Description A B C D Notes
A-3.1 High-level requirements comply

with system requirements.
■ ■ ■ ■ Established by proof the system requirements are

implemented by the high-level requirements and the
system architecture.

A-3.2 High-level requirements are
accurate and consistent.

■ ■ ■ ■ Accuracy is established by formalization of the high-
level requirements. Consistency is established by
proving the absence of logical conflicts.

A-3.3 High-level requirements are
compatible with target computer.

 Not addressed

A-3.4 High-level requirements are
verifiable.

■ ■ ■ Established by formalizing the requirements and
completion of the proof.

A-3.5 High-level requirements conform to
standards.

□ □ □ Partially established by specifying the high-level
requirements as formal properties.

A-3.6 High-level requirements are
traceable to system requirements.

■ ■ ■ ■ Established by verification of the system require-
ments, and by demonstrating the necessity of each
high-level requirement for satisfying some system
requirement.

A-3.7 Algorithms are accurate. ■ ■ ■ Correctness of the pilot flying selection logic is
established by proof.

FM.A-
3.8

Formal analysis cases and proce-
dures are correct.

■ ■ ■ Established by review.

FM.A-
3.9

Formal analysis results are correct
and discrepancies explained.

■ ■ ■ Established by review.

FM.A-
3.10

Requirements formalization is
correct.

■ ■ ■ Established by review.

FM.A-
3.11

Formal method is correctly de-
fined, justified, and appropriate.

■ ■ ■ ■ Established by review.

■ Full credit claimed □ Partial credit claimed Satisfaction of objective is at applicant’s discretion

Consider Objective A-3.1 in Table 1 (high-level requirements comply with system
requirements). The system architecture is captured in the PVS theory Pilot_Flying_
System. This theory describes how the system components interact in the overall sys-
tem. The system requirements are stated formally as theorems in the PVS theory Pi-
lot_Flying_System_Requirements. Machine checked proofs are developed in PVS to
prove that these requirements are satisfied by the system architecture and the high-
level requirements for the system components. The high-level software requirements
are specified for each FGS side in the Side_HLR theory. This theory uses axioms and
uninterpreted types, constants, and functions to eliminate design detail from the
requirements. The axioms are proven consistent by demonstrating that at least one
concrete implementation exists that satisfies the axioms. The objective is satisfied by
proving with the PVS theorem prover that the system level requirements specified as
theorems in theory Pilot_Flying_System_Requirements are implemented by the system
architecture defined in theory Pilot_Flying_System, the high-level software require-
ments specified as axioms in theory Side_HLR and the high-level hardware require-
ments specified as axioms in theory Bus_HLR. A more detailed discussion of how each
objective is satisfied is provided in the full contractor report available from NASA.

The specific example used in the theorem proving case study is the synchronization
of the Pilot Flying side of the aircraft. The overall FGS system has two physical sides,
or channels, one on the left side and one on the right side of the aircraft. These provide
redundant implementations that communicate with each other over a cross-channel bus
as shown in Fig. 3. Bidirectional communication between the left and right sides is
modeled separately as LR_Bus and RL_Bus.

 DO-333 Certification Case Studies 7

Fig. 3. Overview of the Dual FGS System

Most of the time, the FGS operates in dependent mode where only one FGS chan-
nel is active and provides guidance to the AP. In this mode, the flight crew can choose
whether the left or the right FGS is the active, or pilot flying, side by pressing the
Transfer Switch. The other side serves as a hot spare and sets its modes to agree with
those of the active side. In this example, there are five system-level requirements
related to the synchronization of the pilot flying side. Stated informally, these are:

R1. At least one side shall be the pilot flying side.
R2. At most one side shall be the pilot flying side.
R3. Pressing the Transfer Switch shall always change the pilot flying side.
R4. The system shall start with the Primary Side as the pilot flying side.
R5. The system shall not change the pilot flying side unless the Transfer Switch is

pressed.

The case study formalizes these system-level requirements in PVS and HOL4, de-
velops high-level software and hardware requirements for each side and the cross-
channel bus, and proves that that the system architecture, the high-level software re-
quirements, and the high-level hardware requirements comply with the system re-
quirements. This is done in both PVS and HOL4 for a synchronous design in which all
components are driven from single master clock. The example was repeated in PVS for
an asynchronous design in which the components are driven by separate clocks.

For example, the PVS specification of the requirements R1 and R2 for the syn-
chronous design is shown in Fig. 4. Note that formalizing these requirements required
a precise statement of what it means for the system to be switching sides.

The case study then develops a set of high-level requirements for each subcompo-
nent, i.e., the FGS sides and the buses of Fig. 3, that are completely free of design
detail by using uninterpreted PVS types and axioms specifying the relationship of
their outputs to their inputs. These high-level requirements are then proven to be con-
sistent (i.e. to not contradict each other) by creating a concrete implementation using
interpreted PVS types and functions and showing that the concrete implementation is
a PVS theory interpretation of the high-level component requirements. Finally, we
prove that the system architecture and the high-level requirements of the components
comply with the system requirements by proving that the system requirements are
satisfied by the synchronous design instantiated with any components that satisfy the
high-level component requirements.

8 D. Cofer and S. Miller

%―――
% The system is switching sides when either side has become the
% pilot flying side and that change has not reached the other side
%―――
switching_sides(s) : bool =
 pilot_flying(Left_Side(s)) AND NOT output(LR_Bus(s)) OR
 pilot_flying(Right_Side(s)) AND NOT output(RL_Bus(s))

%―――
% R1. At least one side shall be the pilot flying side.
%―――
 R1: THEOREM
 Reachable_State(s) =>
 Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s)
%―――
% R2. At most one side shall be the pilot flying side
% except while the system is switching sides.
%―――
 R2: THEOREM
 Reachable_State(s) AND NOT switching_sides(s) =>
 Left_Pilot_Flying_Side(s) /= Right_Pilot_Flying_Side(s)

Fig. 4. Example of FGS System Requirements in PVS

The verification was then repeated for an asynchronous design in which each side
and each bus is driven by its own independent clock (CLK1-4 in Fig. 3). We followed
the same process for the asynchronous case. However, the sides and the buses needed
to be modified to allow an acknowledgement signal to be exchanged between the two
sides to implement a hand-shaking protocol to synchronize on the pilot flying side.
Aside from changing the definition of what it meant to be switching sides, the system
level requirements did not need to be modified.

The synchronous Dual FGS example was also verified using HOL4. HOL4 proofs
were developed using both the next-state approach used with PVS and a stream ap-
proach similar to that used in synchronous data flow languages such as Lustre [4]. In
the next-state approach, the evolution of each component and the overall system was
specified by defining a next-state function that returns the next state given its current
state and inputs as arguments. In the stream-based approach, each system variable is
specified as a mapping from a natural number representing the system step to the
variable’s value on that step. The evolution of each component and the overall system
is then specified by defining the value of each system variable for each step.

Qualification of a theorem prover may be a difficult task. The largest part of a
normal qualification effort is focused on defining operational requirements for the
tool (what the tool claims to do – the processes eliminated, reduced, or automated),
and then developing a comprehensive test suite to show that those requirements are
satisfied over an appropriate range of tool inputs. An alternative approach is to avoid
the need to qualify the theorem prover itself by providing an independent check of the
proof it produces. This may be feasible depending on the nature of the proof artifacts
generated by a particular theorem prover.

PVS is based on a classical strongly-typed higher-order logic and the theorem
prover itself is a based on a sequent calculus for this logic. PVS does not normally

 DO-333 Certification Case Studies 9

emit a proof that could be checked by a separate (qualified) proof checking tool,
though this option is available. Depending upon the nature of the proof rules used,
this expansion could in principle be independently checked by a separate tool. How-
ever, we are not aware of this having been done in practice and development of an
appropriate independent checker for PVS is still a research topic.

Table 2. Summary of Objectives Satisfied by Model Checking

Objective Description A B C D Notes

A-4.1 Low-level requirements
comply with high-level
requirements.

■ ■ ■ Established by proof that the high-level requirements are
implemented by the low-level requirements and the
software architecture.

A-4.2 Low-level requirements are
accurate and consistent.

■ ■ ■ Established by modeling using an executable language
and translation to a formal specification language.

A-4.3 Low-level requirements are
compatible with target
computer.

 Not addressed

A-4.4 Low-level requirements are
verifiable.

■ ■ Established by modeling using an executable language
and translation to a formal specification language.

A-4.5 Low-level requirements
conform to standards.

□ □ □ Established by use of Simulink/Stateflow design lan-
guage.

A-4.6 Low-level requirements are
traceable to high-level
requirements.

□ □ □ Established by verification of the high-level requirements.

A-4.7 Algorithms are accurate. ■ ■ ■ The accuracy of the mode logic is established by model
checking.

A-4.8 Software architecture is
compatible with high-level
requirements.

■ ■ ■ Established by proof that the high-level requirements are
implemented by the low-level requirements and the
software architecture.

A-4.9 Software architecture is
consistent

■ ■ ■ Established by modeling using an executable language
and translation to a formal specification language.

A-4.10 Software architecture is
compatible with target
computer.

 Not addressed

A-4.11 Software architecture is
verifiable.

■ ■ Established by modeling using an executable language
and translation to a formal specification language.

A-4.12 Software architecture
conforms to standards.

□ □ □ Partially established by use of Simulink/Stateflow.

A-4.13 Software partitioning integri-
ty is confirmed.

 Partitioning integrity has been established using formal
methods for several commercial operating systems. This
is not addressed in the current case study.

FM.A-
4.14

Formal analysis cases and
procedures are correct.

■ ■ ■ Established by review

FM.A-
4.15

Formal analysis results are
correct and discrepancies
explained.

■ ■ ■ Established by review

FM.A-
4.16

Requirements formalization
is correct.

■ ■ ■ Established by review

FM.A-
4.17

Formal method is correctly
defined, justified, and
appropriate.

■ ■ ■ ■ Established by review

■ Full credit claimed □ Partial credit claimed Satisfaction of objective is at applicant’s discretion

The HOL4 implementation is based on a small trusted kernel, which encapsulates
just the primitive inference rules, axioms, and definition mechanisms of the logic. The
logic kernel is an abstract data type, having the property that the only way a theorem
can be obtained is ultimately by making primitive inference steps, which are very
close in granularity to those in the mathematical definition of the logic. As a conse-
quence, it is straightforward to instrument HOL kernels so that they emit formal

10 D. Cofer and S. Miller

proofs. This has been done in a variety of research projects [8] [5]. Programs that
check the correctness of such proofs are small and relatively easy to verify.

4 Model Checking Case Study

This case study illustrates the use of the Kind [3] and MathWork’s Design Verifier
model checkers to perform verification activities associated with the outputs of the
software design process, focusing on the objectives of Table A-4 in DO-178C and
Table FM.A-4 in DO-333. The purpose of these verification activities is to detect any
errors that may have been introduced during the software design process (DO-178C
Section 5.2). The DO-178C and DO-333 objectives satisfied through model checking
are summarized in Table 2.

The specific example used in the model checking case study is the verification of
the mode logic of one side of the FGS. Specifically as it relates to the FGS, FAA
Advisory Circular AC/ACJ 25.1329 defines a mode as a system configuration that
corresponds to a single (or set of) FGS behavior(s) [2]. In the FGS, the modes are
actually abstractions of their associated flight control law and reflect the current state
of the flight control law. The FGS modes are organized into the lateral modes, which
control the behavior of the aircraft about the roll and yaw axes of the aircraft and the
vertical modes, which control the behavior of the aircraft about the pitch axis of the
aircraft. The lateral modes in the example include Roll Hold, Lateral Navigation,
Lateral Approach, and Lateral Go Around. The vertical modes include Pitch Hold,
Vertical Speed, Flight Level Change, Altitude Hold, Altitude Select, Vertical Ap-
proach, and Vertical Go Around.

In the case study, the mode logic is viewed as the software low-level requirements
and is specified using MATLAB Simulink and Stateflow. For example, the Stateflow
diagram for the Lateral Navigation (NAV) mode is shown in Fig. 5. Details of the
transition guards are specified as Stateflow truth tables.

Fig. 5. Lateral Navigation (NAV) Mode Low-Level Requirements in Stateflow

The mode logic of the FGS specifies these individual modes and the rules for tran-
sitioning between them. To provide proper guidance of the aircraft, these modes are
tightly synchronized so that only a small portion of their total state space is actually
reachable. For example, since at least one lateral and one vertical mode must be active

 DO-333 Certification Case Studies 11

and providing guidance whenever the AP is engaged, one mode is designated as the
basic mode for each axis. The basic mode is automatically activated if no other mode
is active for that axis. In this example, the basic modes are Roll Hold and Pitch Hold.
In similar fashion, only one lateral mode and one vertical mode can provide guidance
to the AP at the same time, so the mode logic must ensure that at most one lateral and
one vertical mode are ever active at the same time.

Other constraints enforce relationships between the modes that are dictated by the
characteristics of the aircraft and the airspace. For example, Vertical Approach mode
is not allowed to become active until Lateral Approach mode has become active to
ensure that the aircraft is horizontally centered on the localizer before tracking the
glideslope. These constraints constitute the high-level software requirements for the
mode logic and are captured as 118 high-level properties written in the Lustre specifi-
cation language. For example, the requirement that at least one lateral mode is always
active is specified in Lustre as

At_Least_One_Lateral_Mode_Active =
 ROLL_Active or HDG_Active or NAV_Active or
 LAPPR_Active or LGA_Active;

To verify that the Simulink and Stateflow low-level requirements for the mode log-
ic satisfy these high-level requirements, the Simlink/Stateflow model of the mode
logic is translated into Lustre, the input language of the Kind model checker, using
the Rockwell Collins formal translation framework [6] and merged with the high-
level requirements written in Lustre. This file can then be analyzed by the Kind model
checker. Sixteen errors were discovered in the mode logic using the Kind model
checker and three errors are discussed in detail in the full report.

Once these error were corrected, the model checker showed that the Simu-
link/Stateflow model (the software LLR) complies with the Lustre specifications (the
software HLR). This corresponds to Objective A-4.1 in Table 2.

The mode logic was also verified using MATLAB Design Verifier. Properties can
be specified either textually as MATLAB function blocks or graphically as Simu-
link/Stateflow models. For example, the requirement that at least one vertical mode is
active is specified textually as a MATLAB function block.

function At_Least_One_Vertical_Mode_Active(PITCH_Active, VS_Active,
 FLC_Active, ALT_Active, ALTSEL_Active, VAPPR_Active, VGA_Active)
 % At least one vertical mode shall be active.
 P = (PITCH_Active || FLC_Active || ALT_Active ||
 ALTSEL_Active || VAPPR_Active || VGA_Active);
sldv.prove(P);

The command sldv.prove(P) instructs Design Verifier to attempt to prove that P is
true for all combinations of inputs and outputs.

Model checkers do not (in general) produce independently checkable output. This
means that a model checker must be qualified if its outputs are to be used for certifica-
tion credit. In addition to the development artifacts that must be provided, tool qualifica-
tion requires that Tool Operational Requirements (TOR) be defined. The TORs describe
what the tool claims to do relative to the certification objectives. Then a comprehensive

12 D. Cofer and S. Miller

test suite must be developed to show that those requirements are satisfied over an ap-
propriate range of tool inputs. For a model checker, this would mean producing a collec-
tion of models and properties that span the full range of constructs found in the model
and property specification language(s) of the tool. These example models would need to
contain property errors which the model checker would have to be shown to identify
correctly. We are not aware of any existing efforts to qualify an academic open source
model checker like Kind. For commercial tools like Simulink Design Verifier, some
support from the tool vendor may be needed to achieve qualification.

Table 3. Summary of Objectives Satisfied by Abstract Interpretation

Objective Description A B C D Notes

A-5.1 Source Code complies with low
level requirements.

 Not addressed

A-5.2 Source Code complies with
software architecture.

 Not addressed

A-5.3 Source Code is verifiable. □ □ This may be partially satisfied by demonstrating that
the code conforms to input restrictions for the tool.

A-5.4 Source Code conforms to
standards

□ □ □ This may be partially or fully satisfied by different
analysis tools, depending upon the coding standards
and tool qualification

A-5.5 Source Code is traceable to
low-level requirements.

 Not addressed

A-5.6 Source Code is accurate and
consistent.

□ □ □ The absence of some classes of run-time errors is
established through analysis with abstract interpreta-
tion tools.

A-5.7 Output of software integration
process is complete and cor-
rect.

 Not addressed

A-5.8 Parametric Data Item File is
correct and complete.

 Not addressed

A-5.9 Verification of Parametric Data
Item File is achieved.

 Not addressed

FM.A-
5.10

Formal analysis cases and
procedures are correct.

■ ■ ■ Established by review

FM.A-
5.11

Formal analysis results are
correct and discrepancies
explained.

■ ■ ■ Established by review

FM.A-
5.12

Requirements formalization is
correct.

■ ■ ■ Established by review

FM.A-
5.13

Formal method is correctly
defined, justified, and appropri-
ate.

■ ■ ■ ■ Established by review

■ Full credit claimed □ Partial credit claimed Satisfaction of objective is at applicant’s discretion

5 Abstract Interpretation Case Study

This case study illustrates the use of two commercial static analysis tools (AbsInt’s
Astrée and MathWorks’ Polyspace) to perform verification activities associated with
the outputs of the software coding process, focusing on the objectives of Table A-5 in
DO-178C and Table FM.A-5 in DO-333. The purpose of these verification activities
is to detect any errors that may have been introduced during the software coding
process (DO-178C Section 5.3). The DO-178C and DO-333 objectives satisfied
through abstract interpretation are summarized in Table 3.

 DO-333 Certification Case Studies 13

The Heading Control Law (Fig. 6) is one of the flight modes in the FGS that is se-
lected by the mode logic. It computes aileron, elevator, rudder, and throttle commands
based on sensor inputs and commanded aircraft heading, altitude, and speed. For this
case study, we are using a publicly available model provided by researchers at the
University of Minnesota (UMN) [1]. The complete flight software implemented by
UMN consists of a sensor data acquisition module, a navigation module, a guidance
law, a main control law, and a number of other modules associated with sensor faults
and system identification. The heading control law that we are using is one mode
available in the main control law. It is comparable in many ways to flight control laws
that would be found in commercial aircraft. The other functions of the UMN flight
test platform would be carried out by other parts of our FGS example system.

Fig. 6. Heading Control Law Model

In this case study, we have used abstract interpretation to verify the outputs of the
software coding and integration process. In the example, this corresponds to verifica-
tion that the source code implementing the Heading Control Law is correct. Current
abstract interpretation tools are best suited to detecting run-time errors in the code
rather than satisfaction of behavioral requirements. Verification was performed on C
source code generated from the Simulink control law model. Our primary objective
was to check the code for accuracy and consistency (DO-333 Section 6.3.4.f and
Objective A-5.6 in Table 3). We can also check for unreachable code. We assume that
the code will be tested against high and low level requirements–based test cases as
part of a traditional test-based verification process.

Astrée can be used to prove that no floating-point overflow errors can occur during
the execution of the control code, but this is only possible if the user does some fine-
tuning in order to eliminate false alarms. This fine-tuning is done by indicating to
Astrée that at certain points in the program, different cases need to be distinguished,
which is called partitioning in the terminology of Astrée. In order to find the places in
the code where partitioning needs to be done, and to determine the conditions which
distinguish the different cases in the partitioning, the user needs to have some under-
standing of the implemented system.

1

control_cmd

theta_cmd [rad]

theta [rad]

q [rad/sec]

r [rad/sec]

phi_cmd [rad]

phi [rad]

p [rad/sec]

elevator [rad]

rudder [rad]

aileron [rad]

baseline control

V_cmd [m/s]

V_s [m/s]

Throttle

Velocity Tracker

psi_cmd [rad]

psi [rad]

phi_cmd [rad]

Psi Tracker-1

[V_cmd]

[V_s]

[r]
[psi_cmd]

[psi]

[phi]

[h_cmd]

[q]

[theta]

[p]

[h]

h_cmd [m/s]

h [m]

theta_cmd [rad]

Altitude Tracker

14 D. Cofer and S. Miller

Astrée initially reported four potential issues in the source code, corresponding to
C statements which might cause floating-point overflow errors. The code of the con-
trol law implements four integrators, which are protected from overflow by anti-
windup mechanisms. However, the abstraction made by Astrée keeps the tool from
detecting the effectiveness of the overflow prevention. To enable Astrée to prove that
these mechanisms are effective, the analysis needs to be guided by some partitioning
information provided by the user.

Astrée is, in general, not able to provide direct user feedback to show where the
case partitions must be done. However, an experienced user can find the necessary
fine-tuning relatively easily. Also, there is some hope that future versions of Astrée
will be able to treat this kind of program completely automatically using new parti-
tioning heuristics currently under development.

We also analyzed the example source code using Polyspace and obtained similar
results. Polyspace identified unreachable code which was determined to be caused by
branch conditions in the anti-windup logic which always evaluate to false. The unused
branch of the logic can be optimized away by either the code generator or the compi-
ler, eliminating the unreachable code.

Polyspace also identified several floating-point overflow errors. Polyspace pro-
vides a Data Range Specification (DRS) mechanism to specify range limits on inputs
to the system. These limits can then be used to more precisely compute the actual
range of the variables whose values are computed from these inputs. Once a DRS is
setup for each of the system inputs, the potential overflow errors are eliminated.

A DO-178C/DO-330 tool qualification kit is available for Polyspace from the ven-
dor. The qualification kit includes development artifacts and an extensive list of
TORs. Test cases are defined with input code for the errors that the tool is intended to
detect. For Astrée, a Qualification Support Kit (QSK) is available from its vendor,
AbsInt. The currently available QSK can be used for qualification up to level A under
DO-178B.

6 Conclusion

We have provided an overview of three case studies illustrating the use of different
formal methods tools to satisfy the certification objectives defined in DO-178C and
its accompanying formal methods supplement, DO-333. These case studies provide a
practical demonstration of theorem proving, model checking, and abstract interpreta-
tion applied to a Flight Guidance System design that is representative of systems
deployed in commercial aircraft. The case studies show how the evidence produced
by these three techniques might be used in an actual certification effort. Each tech-
nique has strengths and weaknesses and each could be applied to different life cycle
data items and different objectives from those described here.

Formal methods and tools have already been used to a limited extent in several ac-
tual aircraft certification efforts. However, due to the proprietary nature of the models,
code, and other artifacts, it has not been possible to make these results public. We
hope that by providing a collection of publicly available examples, our case studies

 DO-333 Certification Case Studies 15

will be useful to industry and government personnel in understanding both the new
certification guidance in DO-333 and the benefits that can be realized through the use
of formal methods.

The complete version of the case studies along with all the associated models,
code, and verification artifacts will be available as a NASA contractor report.

Acknowledgements. This work was sponsored by NASA under contract NNL12AB85T,
under subcontract from The Boeing Company. The authors thank Hugh Taylor at Boeing,
and Konrad Slind, Jennifer Davis, Siddhartha Bhattacharrya, and Michael Dierkes at
Rockwell Collins for their contributions to the case studies.

References

[1] Dorobantu, A., Johnson, W., Lie, F.A.P., Murch, A., Paw, Y.C., Gebre-Egziabher, D.,
Balas, G.J.: An Airborne Experimental Test Platform: From Theory to Flight. In: Proceed-
ings of the 2013 American Control Conference, Washington DC (June 2013)

[2] Federal Aviation Administration, Joint Advisory Circular: Flight Guidance System
Appraisal, AC/ACJ 25.1329 (2001)

[3] Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-
based techniques. In: Proceedings of the 8th International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2008), Portland, Oregon. IEEE (2008)

[4] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The Synchronous Dataflow Program-
ming Language LUSTRE. In: Proceedings of the IEEE (1991)

[5] Hurd, J.: Composable packages for higher order logic theories. In: Aderhold, M., Autexier,
S., Mantel, H. (eds.) Proceedings of the 6th International Verification Workshop, VERIFY
2010 (July 2010), http://gilith.com/research/papers

[6] Miller, S.P., Whalen, M.W., Cofer, D.D.: Software Model Checking Takes Off. Commu-
nications of the ACM 33(2) (February 2010)

[7] Norrish, M., Slind, K.: HOL-4 Manual (1998-2013),
http://hol.sourceforge.net/.

[8] Obua, S., Skalberg, S.: Importing HOL into isabelle/HOL. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)

[9] Owre, S., Shankar, N.: The Formal Semantics of PVS, NASA Technical Report CS-1999-
209321 (May 1999)

[10] RTCA DO-178C, Software Considerations in Airborne Software (December 2011)
[11] RTCA DO-330, Software Tool Qualification Considerations (December 2011)
[12] RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A (December 2011)

A Compositional Monitoring Framework

for Hard Real-Time Systems

André de Matos Pedro1, David Pereira1,
Lúıs Miguel Pinho1, and Jorge Sousa Pinto2

1 CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal
{anmap,dmrpe,lmp}@isep.ipp.pt

2 HASLab/INESC TEC & Universidade do Minho, Portugal
jsp@di.uminho.pt

Abstract. Runtime Monitoring of hard real-time embedded systems is
a promising technique for ensuring that a running system respects tim-
ing constraints, possibly combined with faults originated by the software
and/or hardware. This is particularly important when we have real-time
embedded systems made of several components that must combine differ-
ent levels of criticality, and different levels of correctness requirements.
This paper introduces a compositional monitoring framework coupled
with guarantees that include time isolation and the response time of a
monitor for a predicted violation. The kind of monitors that we propose
are automatically generated by synthesizing logic formulas of a timed
temporal logic, and their correctness is ensured by construction.

1 Introduction

Real-time systems (RTSs) range from simple, isolated components to large,
highly complex and inherently concurrent systems. They act upon a variety
of environments which are frequently very dynamic and hard to capture during
design time. Therefore, developing an RTS can easily become a very difficult task
to complete. However, even in the presence of potentially complex requirements,
the design and development processes for RTSs limit themselves to model-driven
techniques and intensive testing and fault-injection, which are known to allow
the existence of human introduced errors. At later stages of the development cy-
cle such errors can become highly expensive and very hard to tackle, even with
the number of static analysis tools available. A notable example is in the area of
scheduling analysis, where schedules for task sets are obtained by a rigorously
defined scheduling algorithm. In hard RTSs the scheduling guarantees for task
sets are obtained prior to the execution of the system. It is also often the case
that schedulability analysis has to be performed in a compositional framework,
such as the one presented in [9,22], in order to determine a valid schedule for
the system (e.g., when the system is made of a set components, each of which
with its own set of tasks and local scheduling policy).

On the more rigorous side of RTS development, formal methods have been
introduced progressively in the development cycle, most of which are based on

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 16–30, 2014.
c© Springer International Publishing Switzerland 2014

A Compositional Monitoring Framework for Hard Real-Time Systems 17

temporal logic. While standard temporal logics yield a natural and abstract
framework for the analysis of safety and liveness properties [21], these logics fail
to capture the specific timing properties of RTSs [13]. This limitation is tackled
by a set of timed temporal logics [1], and many of these logics have already
been used to develop model checking tools [5]. However, model checking has its
own pitfalls, namely when the size of the state space of the model that captures
the RTS under consideration is too large to be mechanically analyzed by a tool
implementing a model checking algorithm. Moreover, it might be the case that
the properties to be checked cannot be captured rigorously at the abstract level
of the model of the system.

In order to address the cases where static analyses of an RTS fail, researchers
have introduced the concept of runtime verification (RV). RV is a major com-
plement to static methods because it can be used to check errors for which it
is possible to conclude some property of interest based exclusively in knowledge
that can be gathered only at execution time. Contrary to ad hoc instrumen-
tation of runtime behavior, RV based approaches use formal specifications and
synthesize them into monitors, that is, pieces of code that take partial traces
of execution of the system and match them against the referred specifications
and make a verdict. Moreover, monitors can be used both to verify and enforce
the properties which are provided by components, even when the components
assume the form of a black-box, as long as each component is coupled with a
formal specification. A simple example of the power of RV is the case when the
response to a property violation detection consists in shutting down a complex
component and give control to a simpler, yet formally verified component. RV
has been progressively adopted by the industry of real-time operating systems
as described in [6].

In this paper we introduce a compositional monitoring framework (CMF) that
allows us to make assumptions about the time isolation between components as
well as the response times of the monitors. We apply this notion to components
with different criticality assurances, and whose specific requirements shall be
ensured statically and dynamically through schedulability analysis and runtime
monitoring, respectively. To guarantee these frameworks’ assumptions we use a
fragment of the metric temporal logic with durations (MTL-

∫
) [14] to analyze

the schedulability of the CMF, and to statically check the maximum response
times of each of the generated monitors. To the best of our knowledge, this is
the first approach that combines MTL-

∫
with the generation of monitors with

explicit durations, for RV of hard RTSs. The timing enforcers of the CMF are
synthesized from MTL-

∫
formulas.

The paper is organized as follows: in Section 2 we describe work that is related
to the subject of this paper; in Section 3, we describe the model and architecture
of the CMF; in Section 4 we introduce a version of MTL-

∫
, with a restricted

syntax and augmented axiomatic system to handle the properties of our CMF;
in Section 5 we describe the process that synthesizes MTL-

∫
formulae into mon-

itors; in Section 6 a set of guarantees provided by the CMF is introduced, in-
cluding the response time bound guarantee of each monitor; in Section 7 it is

18 A.M. Pedro et al.

exemplified how to use monitors and a practical applicability of the proposed
schedulability analysis is given; finally, Section 8 draws some conclusions and
directions for further work.

2 Related Work

RV is being progressively introduced in RTS development in those corner cases
for which static approaches are not strong enough. In the following we review
theories and tools that are related to the ideas we are proposing in this paper,
namely, monitor synthesis approaches based on timed temporal logics and their
tools, as well as alternative techniques for schedulability analysis.

2.1 Monitor Based Approaches

Auguston and Takhtenbrot [3] describe a model-driven approach which dynam-
ically enforces properties specified from statechart-based models via runtime
monitoring. Monitors are automatically generated from formulas that specify
the system’s behavior, in a proposed assertion language, and their expressiveness
always depends on the assertion language. Bauer et al. [4] propose an algorithm
to efficiently generate monitors from TLTL formulae. Such monitors are able to
specify real-time constraints from which verdicts can be made at any point of the
execution. The three-valued notion of timed linear-time temporal logic (TLTL)3
is specially suitable for runtime monitoring since a complete set of traces is
not available at runtime, and the monitors’ specifications are increasingly evalu-
ated. Nickovic et al. [16] describe a translation of MTL into deterministic timed
automata. The full MTL language is considered, and no bounds are imposed
in the future temporal connectives. The process first converts metric tempo-
ral logic (MTL) into non-deterministic timed automata, and then determinizes
them. Another close research effort is the runtime enforcement of timed proper-
ties. In Pinisetty et al. [20], monitors are introduced to enforce properties with
explicit time. This approach is useful to delay events (or messages) that arrive
before the allowed time (e.g., when a buffer becomes full due to a premature
arrival of an event).

Tool support for the monitorization of RTSs is scarce. Temporal Rover [8]
is appropriate for monitoring of hard real-time systems due to the temporal
constraints being specified by the MTL. However, the monitoring software is
proprietary and many specifications are hidden from common users. Alves et
al. [2] present the results of a formal computer-aided validation and verifica-
tion of critical time-constrained requirements of the Brazilian Satellite Launcher
flight software based on Temporal Rover. Pike et al. [17] introduce the Copilot
tool which is able to monitor hard real-time systems. The tool is a compiler that
supports a pre-defined streaming language in which properties shall be specified.
The tool also generates a scheduler that guarantees the timing constraints of the
system, and outcomes a constant-execution time and constant-space C program.
However, no time specifications are allowed by the tool since they are statically

A Compositional Monitoring Framework for Hard Real-Time Systems 19

ensured by a scheduler that is automatically generated. The correctness of the
timed properties depends of this step. New features have later been added into
the tool for distributed systems. A case study of a Byzantine fault-tolerant air-
speed sensor system is described in [18]. More prominent experiments have been
carried out recently as described by the report [19], where two case-studies using
Copilot monitors are tested in a true avionic system. The authors also show the
capability of their approach to cover such realistic settings.

2.2 Schedulability Analysis and Predictable Monitoring

Fersman et al. [11,12] introduces an interesting research effort that discards the
classic schedulability analysis for uni-processor systems. The authors use timed
automata extended with real-time tasks to specify the system behavior together
with the scheduler behavior. Regarding these, the schedulability test remains a
reachability analysis problem, which is normally solved by model checkers such
as UPPAAL [5]. Recently, Fersman et al. [10] have showed that the schedula-
bility for multi-processor systems is possible for non-preemptive and preemptive
schedulers with constant execution time.

Work that addresses a predictable monitoring framework of temporal prop-
erties is proposed by Zhu et al. [24]. The authors take inspiration from classical
schedulability analysis to find a response time bound for monitors using sporadic
servers. However, no composability or duration of real time tasks were considered
for runtime monitoring.

3 Proposed Framework

In this section we introduce our CMF, an abstract component-based framework
that includes runtime monitors, thus supporting external observations at run-
time. We begin by introducing the definitions of real-time task-sets and periodic
resource models; event sequences; and lastly the framework.

We will assume tasks sets Γ = {τ1, τ2, ..., τn}, such that n ∈ N+ is the number
of tasks τi = (pi, ei) where pi and ei are, respectively, the period and the worst-
case execution time of τi. Each task τi ∈ τ is periodic. A periodic resource model
ω is a tuple (τ, π, θ, rm), where τ ⊆ Γ , π is the replenishment period, θ is the
server budget, and rm is the rate monotonic (RM) scheduling algorithm. The set
of periodic resource models is denoted by Ω. The outputs of a resource model ω
are sequences of events. Considering a pair (ω, τi) with ω ∈ Ω and τi ∈ τ , each
event can be of one of the following types: a release-event erelease(ω, τi); a start-
event estart(ω, τi); a sleep-event esleep(ω, τi); a resume-event eresume(ω, τi); or a
stop-event estop(ω, τi). In addition, we assume a parameterized event ε(ωj , τi, id)
that denotes the critical events of a task, where id is the event identifier, and
erenewal(ω) denotes the budget release of a resource model. We denote sets of
events by E .

Event sequences are a formalism that allows us to describe the scheduler
behavior, creating a generic event language that a system can produce. If a

20 A.M. Pedro et al.

system produces unexpected event words, we shall consider it a faulty system.
This abstraction also establishes an interface for temporal logic observations [14].
A sequence of events, also known as execution trace, is an infinite sequence

ρ = (e1, t1)(e2, t2) · · ·

of time-stamped events (ei, ti) with ei ∈ E and ti ∈ R+. The sequence satisfies
monotonicity and progresses, i.e., ti ≤ ti+1 for all i ∈ N+, and for all t ∈ R+

there is some i > 0 such that ti > t, respectively.

3.1 CMF Model and Architecture

The CMF model is composed of a set of elements of one of the following types:

– (Component) A simple component C = (Γ, ω, ϑ, φ) is a component, where ω
is a resource model, ϑ is a scheduler, and φ is a set of properties to be verified
at runtime. The scheduler ϑ behaves accordingly to a scheduling policy, such
as a fixed-priority scheduler. The variable φ is a set of properties defined in
a program logic to monitor the behavior of the task set Γ.

– (Hypervisor) A supervisor component manages several components allowing
us to coordinate component executions with lower interference among them.
Let H = (Ω, ηp, ηm, φh) denote a hypervisor, where Ω is a set of periodic
resource models, ηp is a set of notational processors (these is for future
work) that may be assigned to the required components, ηm is a set of
notational memory blocks that each component is able to use, and φh is a
set of properties that the hypervisor H shall employ.

The CMF architecture accommodates the previously defined components as
depicted in Fig. 1. The monitor for each component is synthesized automatically
by the set of monitor properties φ assigned to each component. φ is a logic for-
mula corresponding to a specification, which can be seen as an assume/guarantee
condition of a component. Our architecture manages the monitors by three levels
of criticality, and joins similar monitors in similar resource models: Mh, Mm,
and M l, respectively. This management can be composed by n-levels. A monitor
resource model is viewed as a resource model of a component. However, each
component or hypervisor has a set of quasi omniscient monitors (resp. hyper-
visor monitor) that draws a verdict about the assumptions of the architecture
that may be violated.

4 Metric Temporal Logic with Durations

In this section we introduce a fragment of the formal logic MTL-
∫

[14], whose
evaluation is carried out with respect to sequences of events produced by resource
models. MTL-

∫
enables the automatic generation of monitors and, at the same

time, it allows us to statically ensure properties about our architecture (resp.
the response time bound of monitors). Such monitors are able to observe and

A Compositional Monitoring Framework for Hard Real-Time Systems 21

Hypervisor

Hypervisor

MonitorResource Server Model (Scheduler Level 1)

Component α

Level 2
Scheduler

Workload

Component β

Level 2
Scheduler

Workload

Notational Processors

....
...

Mm

mon 1
mon 2

mon n

1 2 3

4 5 6

1 2 3

4 5 6

...h1 h2 h3Notational Memory Blocks

S
p
ec
ifi
ca
ti
o
n

Model
Resource

...

M l

mon 1
mon 2

mon n S
p
ec
ifi
ca
ti
o
n

Model
Resource

...

Mh

mon 1
mon 2

mon n S
p
ec
ifi
ca
ti
o
n

Model
Resource

Fig. 1. Component-based Monitoring Architecture (CMA)

check timed constraints, as well as the worst case execution time (WCET) of the
tasks of a given resource model. Nevertheless, computing the value of MTL-

∫
formulae may not always be possible. In order to cope with this limitation, we
consider a fragment of MTL-

∫
that uses only the ≤, <, and = relations over

terms, and and we exclude occurrences of functions in terms. We also consider
a strong form of the existential quantifier operator, which we denote by ∃′.

Definition 1 (MTL-
∫
). Let P be a set of propositions and V a set of logical

variables. Logical variables in V are mapped to R. The syntax of MTL-
∫

is
defined inductively, as follows:

δ ::= α | x |
∫ δ ϕ

ϕ ::= p | δ1∼δ2 | ϕ1∨ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2 | ϕ1 S∼γ ϕ2 | ∃xϕ | ∃′xϕ

where δ are terms,
∫ δ

ϕ is the duration of the subformula ϕ in the interval [0, δ],
x is a continuous variable in V, p ∈ P is an atomic proposition, γ ∈ R≥0,
∼∈ {<,≤,=}, and α ∈ R.

We are now able to define the semantic of the MTL-
∫
. The semantic of MTL-

∫
is separated in two parts: terms and formulas. The semantic of terms is defined
using the notation T �τ�(σ, ϑ)t in Table 1. All terms represent numerical values

in R+
0 . The term

∫ δ
ϕ is the integral over the Boolean function Bφ(σ,ϑ)(t) (whose

return value is 1 if (σ, ϑ, t) |= φ, and 0 otherwise). Since Bφ(σ,ϑ)(t) behaves as a
step function, it is always Riemann integrable. The same is not true in the full
MTL-

∫
logic. The semantic of the MTL-

∫
formula is defined inductively in Ta-

ble 1, where the satisfability of a formula φ in a model (σ, ϑ) at time t is defined
by (σ, ϑ, t) |= φ. σ and ϑ are an observation function and a logic environment

22 A.M. Pedro et al.

Table 1. Semantic of the restricted MTL-
∫

Evaluation of the restricted MTL-
∫

terms

T �α�(σ, ϑ)t = α
T �x�(σ, ϑ)t = ϑ(x)

T �
∫ δ

φ�(σ, ϑ)t =

{∫ t+T �δ�(σ,ϑ)t

t
Bφ(σ,ϑ)(t∗) dt∗ if T �δ�(σ, ϑ)t ≥ 0

0 otherwise

Evaluation of the restricted MTL-
∫

formulas

(σ, ϑ, t) |= p iff σ(p)(t) = true and t < |σ|
(σ, ϑ, t) |= δ1 ∼ δ2 iff T �δ1�(σ, ϑ)t ∼ T �δ2�(σ, ϑ)t
(σ, ϑ, t) |= φ1 ∨ φ2 iff (σ, ϑ, t) |= φ1 or (σ, ϑ, t) |= φ2

(σ, ϑ, t) |= ¬φ iff (σ, ϑ, t) �|= φ
(σ, ϑ, t) |= φ1 U∼γ φ2 iff ∃t′ ∈ R≥0 such that

t ≤ t′ ∼ t+ γ ∧ (σ, ϑ, t′) |= φ2, and
∀t′′ ∈ R≥0, t ≤ t′′ < t′, (σ, ϑ, t′′) |= φ1

(σ, ϑ, t) |= φ1 S∼γ φ2 iff ∃t′ ∈ R≥0 such that
t− γ ∼ t′ ≤ t ∧ (σ, ϑ, t′) |= φ2, and
∀t′′ ∈ R≥0, t

′ < t′′ ≤ t, (σ, ϑ, t′′) |= φ1

(σ, ϑ, t) |= ∃xϕ iff there exists a value v ∈ R such that (σ, ϑv
x, t) |= φ

(σ, ϑ, t) |= ∃′xϕ iff there exists a value v ∈ ν such that (σ, ϑv
x, t) |= φ

Table 2. Syntactic abbreviations for our MTL-
∫

fragment

Operator Abbreviation Equivalent Formula

Eventually �∼γφ true U∼γ φ

Always �∼γφ ¬(�∼γ¬φ)
Next ©φ1

φ2 φ1 U∼∞ φ2

Implies Next
φ1

©
=⇒ φ2

¬φ1 ∨©φ1
φ2

defined as usual [14]. The set ν contains the time stamps for the differential
between the observed truth values given by the σ function (allowing us to for-
mulate some axioms to turn our logic evaluation in a computable function). We
will use the abbreviations eventually (�) and always (�) as usual.

In the remaining of the paper we will frequently refer to the abbreviations
presented in Table 2 in order to ease the presentation of properties that describes
the monitor behavior. For illustrative purposes, we now introduce a practical
example of the expressive power of MTL-

∫
’s language.

Example 1. To ensure that a monitor task responds in a bounded response time,
the formula ψ1 =⇒ �≤γ ψ2 is sufficient. The proposition ψ1 describes a set
of events that may violate the system, the proposition ψ2 describes the task
invocation, and γ is the maximum expected response time bound. Informally,
the formula means that if a fault event occurs, then the task executes within γ
time units.

A Compositional Monitoring Framework for Hard Real-Time Systems 23

4.1 MTL-
∫

Axiomatization

Having restricted the original MTL-
∫

described in [14], we are able to fix new
axioms for durations. Most interesting is that such axioms will allow us to turn
our MTL-

∫
fragment computable. As the meaning of the duration term

∫ r
φ is

defined as an integral, and the relation ≤ as a term operator, we have axioms
that capture properties of integrals over the ≤ operator. They are, as follows:

A1. ∃x α ≤
∫ α

φ ≡ α ≤
∫ α

φ;
A1′. ∃x

∫ α
φ ≤ α ≡

∫ α
φ ≤ α;

A2. ∃x x ≤
∫ α

φ ≡ min(x) ≤
∫ α

φ;
A2′. ∃x

∫ α
φ ≤ x ≡

∫ α
φ ≤ max(x);

A3. ∃x α ≤
∫ x

φ ≡ α ≤
∫maxx

φ;

A3′. ∃x
∫ x

φ ≤ α ≡
∫minx

φ ≤ α;

A4. ∃x α ≤
∫ ∫ ∫x φn φ1 φ ≡ α ≤

∫ ∫ ∫maxx φn φ1 φ;

A4′. ∃x
∫ ∫ ∫x φn φ1 φ ≤ α ≡

∫ ∫ ∫min x φn φ1 φ ≤ α;

A5. ∃x ∃y
∫ x

φ1 ≤
∫ y

φ2 ≡
∫min(x)

φ1 ≤
∫max(y)

φ2;
A6. ∃x

∫ x
φ1 ≤

∫ x
φ2 ≡ ∃′p

∫ p
φ1 ≤

∫ p
φ2.

Axioms A1 and A1′ remove the existential operator in the evaluation of a con-
stant inequality over a constant interval. Axioms A2 and A2′ substitute the
existential quantification with a minimum and maximum that a variable x can
take according to the constraints applied to x. If x is unbounded the minimum
is zero, and the maximum is infinity. Axioms A3 and A3′ reduce the existential
operator over a duration into a minimum and maximum inequality. Axioms A4
and A4′ deal with nested durations. For the remaining axioms we have variables
and duration primitives of MTL-

∫
in both sides of the operator ≤. Once we have

an infinite observation over a path composed by finite pieces we have a procedure
to compute the truth value of this type of formula. Axiom A5 establishes that
the order relation between two durations specified by different variables is the
same as if their minimum and maximum allowed values are considered. This can
be seen as a desynchronization of durations axiom. Axiom A6 means that the
existential quantification of duration terms over the ≤ operator can be reduced
by substituting the existential quantification in points along the path where ob-
servation of MTL-

∫
formulas is made. This can be seen as a synchronization of

durations axiom.

Example 2. Consider an application of Axiom A6 with the two MTL- formulas

φ1 =
∫ |ρ|

(εβ ∧ εα) ≤ 10 and φ2 =
∫ |ρ|

(εβ) ≤ 10. To easily understand their
use we will show two figures. Figure 2a depicts the sequence of events ρ, their
respective activation times as well as the evaluation of three formulas εβ U εα,
φ1, and φ2 over the duration of the sequence ρ. Figure 2b depict an evaluation
of the formula ∃x

∫ x
(εβ) ≤

∫ x
(εβ ∧ εα), where the undefined values are shown

in gray. Note that the duration of any MTL-
∫

formula cannot be greater than
the duration of a true formula as depicted by the figure. In practice, we shall
conclude that the points to compare are the time stamps of events of each path ρ
since these points form a set of monotonic increasing piecewise linear segments.

24 A.M. Pedro et al.

εα

εβ

εidle

ρ
εidleεidleεidle εβ εβεβ εα εαεα

εβ U εα false

falseφ2

falseφ1

(a) A diagram containing: a path ρ; three event releases εβ , εα, and εidle; and the
respective truth value of the logic formulas εβ U εα, φ1, and φ2.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

ϑ(x)

x

Undef.

φ = true

φ =
∫ x

(εβ ∧ εα)

φ =
∫ x

(εβ) and
∫ x

(εβ ∧ εα)

(b) The graph depicts the formula
∫ x

(εβ) and
∫ x

(εβ ∧ εα) which allows us to visually
check the formula ∀x

∫ x
(εβ) ≤

∫ x
(εβ ∧ εα) in the finite interval [0, 64).

Fig. 2. Diagram of a path (a) and respective duration computation (b)

5 Evaluation of MTL-
∫

Formulas

In order to synthesize monitors for our CMF we have defined a fragment of
MTL-

∫
that is able to describe durations for RTS, an algorithm to evaluate logic

and their WCET estimation, and the time complexity analysis of the algorithm.
We have implemented the semantics of our MTL-

∫
fragment and implemented

it in OCaml language [23].

5.1 The Evaluation Algorithm

The semantics of MTL-
∫

introduced in [14] may not be fully computable due
to the real numbered existential and universal quantifications. In addition, the
axioms established previously allow us to compute the non negative real number
existential and universal quantifications, and to enable the WCET estimation.

A Compositional Monitoring Framework for Hard Real-Time Systems 25

However, the validity of the argument is also shown by the evaluation function of
Algorithm 1 where the MTL-

∫
semantics is codified exclusively using functions

applied to lists. This algorithm evaluates MTL-
∫
formulas and produces Boolean

verdicts.
Some notations need to be introduced before the description of the algorithm,

obs is a function that corresponds to an observation, env is a logical environment,
and mt is a term function which evaluates terms such as α, x, and

∫ α
φ. These

functions are defined according to the semantics of [14]. Note that these terms
are always computable, i.e., terms are non negative real valued numbers.

The functions Φ∫ , Φx, and Φ are special functions that rewrite formulas by ap-
plying the axioms described previously to compute new values. Next, we present
an example to clarify the role of these functions.

Example 3. Suppose that we have an existential quantification of x over the for-

mula α ≤
∫ Φ(σ,ϑ)tr1 φ. This formula will be rewritten to α ≤

∫max(mt (σ,ϑ) t r1) φ
which means that the maximum allowed value is enough to know if there exists
an x sufficiently large to validate the inequality condition. The other functions
follow the same principle, but considering x ≤

∫
,
∫
≤ x, and

∫
≤

∫
.

5.2 The Time Complexity of Our Evaluation Algorithm

In order to provide an analysis of the CMF, the WCET of monitors should be
supplied. We address a pessimistic bound for our evaluation function eval based
on time complexity, T (m,n) = n×m, where n is the length of the formula and
m the length of the trace to be consumed by the monitor. This means that in
the worst case we have n×m comparisons between list elements, and the WCET
can be computed by multiplying the constant cost that each list element takes.
Note that our algorithm is based on functions applied to lists, forall, exists,
and fold left, and a more accurate estimation of the WCET defining a recursive
cost function could easily be employed.

5.3 Runtime Monitoring as the Evaluation of an MTL-
∫

Formula

After establishing a computable logic, a monitor may be seen as a procedure to
evaluate a formula. Thus, we introduce the notion of monitor generated from an
MTL-

∫
formula.

Definition 2. A monitor is a process that evaluates one specific bounded for-
mula in the MTL-

∫
fragment.

Monitors belong to resources models (or components), and are represented by
tasks (one formula produces one task). Our algorithm is adequate to estimate
the WCET of a monitor even with a pessimistic bound, and also to be employed
in practice (as will be seen later). Note that WCET parameters of monitors are
required in order to make a prior schedulability analysis which ensures a certain
responsiveness for the monitor components. Note also that this process is an
alternative to the synthesis approaches using automata theory [16].

26 A.M. Pedro et al.

in : An execution trace ρ of length |ρ|, and a logic formula φ.
out: A Boolean evaluation of the logic formula φ over the trace ρ.

1 let eval ρ t φ = let σ = obs ρ in let ϑ = env in models (σ, ϑ, t) φ
2

3 let models (σ, ϑ, t) φ = match φ with
4 | p → σ.evaluate p t and σ.interval t
5 | ¬ (φ1) → not (models (σ, ϑ, t) φ1)
6 | ∨ (φ1, φ2) → models (σ, ϑ, t) φ1 or models (σ, ϑ, t) φ2

7 | U<γ (φ1, φ2) → let (b,t’) = exists (fun a → models (σ, ϑ, a) φ2) (σ.intrv t
(t +γ − ε)) in b and forall (fun t′′ → models (σ, ϑ, t′′) φ1) (σ.intrv t (t′ − ε))

8 | U=γ(φ1, φ2) → models (σ, ϑ, γ) φ2 and forall (fun t′′ → models (σ, ϑ, t′′)
φ1) (σ.intrv t (t′ − ε))

9 | ∃ (var, φ1) → exists (fun n → let () = ϑ.add var n in models (σ, ϑ, t) φ1)
(σ.intrv t (ϑ.bound var))

10 | ∼ (
∫ r1 φ1,α) → mt (σ, ϑ) t (

∫ Φ (σ,ϑ) t r1 φ1) ∼ mt (σ, ϑ) t α

11 | ∼ (α,
∫ r1 φ1) → mt (σ, ϑ) t α ∼ mt (σ, ϑ) t (

∫ Φ (σ,ϑ) t r1 φ1)

12 | ∼ (
∫ r1 φ1,x) → mt (σ, ϑ) t (

∫ Φx (σ,ϑ) t r1 φ1) ∼ mt (σ, ϑ) t x

13 | ∼ (x,
∫ r1 φ1) → mt (σ, ϑ) t x ∼ mt (σ, ϑ) t (

∫ Φx (σ,ϑ) t r1 φ1)

14 | ∼ (
∫ r1 φ1,

∫ r2 φ2) → mt (σ, ϑ) t (
∫ Φ∫ (σ,ϑ) t r1 φ1) ∼ mt (σ, ϑ) t

(
∫ Φ∫ (σ,ϑ) t r1 φ1)

15

16 let mt (σ, ϑ) t r = match r with
17 | α→ α
18 | x→ ϑ(x)
19 |

∫ r
φ→ if mt (σ, ϑ) t r ≥ 0 and (σ.intrv t (t+ mt(σ, ϑ) t r)) ≥ 2 then

int t (t+mt(σ, ϑ) t r) (oneφ (σ, ϑ) t1) else 0
20

21 let oneφ (σ, ϑ) t1 = if models (σ, ϑ, t1) φ then 1 else 0
22

23 let int tb te f = let v, = fold left (fun (a, tl), t → (a+ f(t) · (t− tl), t)) (0, hd
σ.intrv tb te) (tl σ.intrv tb te) in v

Algorithm 1. MTL-
∫
Evaluation Algorithm, with ∼∈ {<,≤,=}

Our approach is particularly suited to handle the reorganization of monitors
that belong to different resource models. Once the monitor synthesis process
provides one task per logical formula, the performance is affected. This is due
to the increasing number of tasks that may reduce substantially the systems’
utilization (a known problem of the fixed-priorities schedulers). To relax this
problem, a clustering of monitor tasks based on the execution time, deadline,
and response time bound is a possible solution.

After generating series of monitors the clusters are classified within n-level
components, i.e., each cluster is assigned to one resource model independently of
the system under monitoring. This guarantees non-interference of time between
monitors and the system’s schedulability.

A Compositional Monitoring Framework for Hard Real-Time Systems 27

6 Guaranteeing Real-Time Constraints Using MTL-
∫

for CMF

Constraints for our CMF shall be statically ensured using our logic fragment as
basis [7]. WCET violations of one or more tasks may interfere with other non
monitoring tasks resulting in an undesirable environment. This can be tackled
by using higher priority tasks for monitor processes or by assigning monitors to
independent resource models. However, to guarantee non interference between
resource models, we shall ensure the correct behavior of such models by specify-
ing their allowed budgets and periods. Other formulas are required to establish
a complete formalization as described in [7].

Assuming a correct release of events, namely the erenewal(ω), the budget
supply is specified by the formula φ(ω) equivalent to

�≤∞

(
erenewal(ω)

©
=⇒

(
�=π erenewal(ω)

)
∧
∫ π ∨

τi∈τ
evs+(ω, τi) ≤ θ

)
,

where ω is one resource model; π and θ their renewal period and budget, respec-

tively; erenewal(ω) is the budget renewal event, and evs+(ωj , τi)
def

=estart(ωj , τi)∨
eresume(ωj , τi)∨ erenewal(ω) ∨ estop(ωj , τi) ∨ ε(ωj , τi, ·) ∨ erelease(ωj , τi). This
formula states that for each occurrence of the event erenewal(ω) in the resource
model ω, the duration of the other events until π time units does not overpasses
the budget θ per period π. In this formula we assume the correct specifica-
tion of the periodic event releases (erenewal(ω, τi)), and the schedulability of the
workload according to a fixed priority policy. Note that this assumption can be
discarded using schedulability analysis based on task automata or following the
instruction provided in [7].

In addition, the predictability of our framework with respect to event se-
quences can be established by identifying the relevant or critical events, and
preserving the partial order of events arrival for monitor processes. We denote
the critical events by the subset Eφ

cr ⊆ E , and the prefix-tree which preserves the
partial order of events for all possible executions by pt. Given these predictable
traces pt we are able to ensure the response time of the monitor mon id for each
trace ρ ∈ pt by the formula

∧
e∈Eφ

cr
e =⇒ �≤γ estop(ω,τ1), (1)

where estop(ω, τ1) is the triggered event that monitors generate at the end of
their complete execution, and Eφ

cr is a set of the events used by formula φ.

Example 4. Assuming two resource models RS-A(π=10, θ=8) and RS-C(π= 5,
θ = 1) described in Figure 3 containing three tasks (ts1 with period of 14 and
WCET of 3; ts2 with period of 20 and WCET of 5; and ts3 with period of 27 and
WCET of 7), and one task (ts1 with period of 33 and WCET of 4), respectively.
We could see that to guarantee the maximum detection delay of the monitor task
ts1 in RS-C, the trace depicted in the Figure 3 need to be generated. This trace
assumes the critical instant theorem [15] (to find the worst execution trace) as

28 A.M. Pedro et al.

RS-A

RS-C

ts1
εidle

Pts1 Pts1Pts1 Pts2Pts3Pts2

εidle
ts1

Pattern C

ts1 ts1ts2 ts3 ts3

estart(ωC , τ1) eresume(ωC, τ1)

ts2 ts3

estart(ωA, τ1)

ts3 ts2 ts1

Pattern A

Pts1

ρ

estart(ωA, τ1) estart(ωA, τ1)
estart(ωA, τ2)

estart(ωA, τ3)

eresume(ωA, τ3)

estart(ωA, τ2) estart(ωA, τ3)

eresume(ωA, τ3)

estop(ωA, τ1)
estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ3)

esleep(ωC , τ1)

estop(ωA, τ1)

estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ1)

estop(ωA, τ3)

εidle εidlets1

beginning of trace
Monitor miss the deadline (option one)

Maximum detection delay ts1

Pts1

Monitor executes (option two)

10 units

Fig. 3. Example of patterns and the global trace generated by the composition of
resource models defined in the Example 4

well as the hyper-period of the resource model (to define the length of the trace).
Replacing the event estop(ω, τ1) with estop(RS − C, ts1) in Equation 1 we are
able to obtain the maximum detection delay of our trace, which corresponds to
value γ equal to 34 time units. We also known that the deadline of 27 time units
for monitor period is not enough for the established resource models settings,
RS-A and RS-C, respectively. However, if we increase the period of the monitor
task to a value greater than 39 time units we obtain a schedulable taskset.

7 Performance Evaluation of our MTL-
∫

Approach

To estimate the performance of our evaluation algorithm we define some clas-
sical properties in MTL-

∫
and monitor them using our evaluation algorithm,

such as: true U≤t φ (eventually); φ → �≤t ψ (bounded-invariance); φ → �≤t ψ

(bounded-response); �≤t

∫ t
φ ≤ β (limited-duration); and φ →

∫ t
ψ ≤ β

(bounded-duration). Results of the performance analysis are depicted in Ta-
ble 3. The values are presented in milliseconds. Average values are computed
over multiple runs provided by a stochastic model. The length of the input trace
is denoted by |ρ|. The entry taverage is the execution time that a set of monitors
takes, on average, to the evaluation algorithm. The throughput shows how many

events can be processed by the monitor as the trace increases, i.e., |ρ|
tmonitor

.
The experiments were performed on an Intel Core i3-3110M at 2.40GHz CPU,

and 8 GB RAM running on Fedora 18 X64. Note that all the monitors are time
bounded in t, indicating that only one trace that has this duration should assign
a truth value for the formula (a verdict). Our algorithm executes in polynomial
time as the experiments also show.

A Compositional Monitoring Framework for Hard Real-Time Systems 29

Table 3. Performance analysis of enforcement monitors (milliseconds)

Monitors
|ρ|

throughput
10 100 1000 10000

true U≤t φ 0.051 1.717 171.376 26366.48 196.1, 0.379

φ→ �≤t ψ 0.065 1.834 172.683 26159.36 153.8, 0.382

φ→ �≤t ψ 0.055 1.765 174.594 26944.16 181.8, 0.371

�≤t

∫ t
φ ≤ β 0.309 65.950 76682.652 > 10min indef

φ→
∫ t

ψ ≤ β 0.011 0.195 14.033 1993.12 909.1, 5.01

taverage 0.098 14.192 15443.068 indef no value

8 Conclusion and Further Work

In this paper we have introduced a novel approach to runtime monitoring. Com-
pared with currently available methods our approach extends runtime moni-
toring for component-based approaches; introduces the monitor synthesis for
duration formulas; establishes guarantees such as time interference of monitors,
predictability, and avoidance of catastrophic scenarios due to WCET violations
for our compositional framework; and supplies a platform for design of hard real-
time embedded system where knowledge provided at execution time is required.
In terms of current and future research goals, we are presently working on for-
mally establishing the correctness of the algorithm as well as several properties of
our MTL-

∫
fragment. Our preliminary empirical findings strongly suggest that

our fragment is well suited in terms of expressiveness for schedulability analysis
of uni-processor and multi-processor systems.

Acknowledgments. The authors would like to thank the anonymous review-
ers for their detailed and helpful comments. This work was partially supported
by National Funds through FCT (Portuguese Foundation for Science and Tech-
nology) and by ERDF (European Regional Development Fund) through COM-
PETE (Operational Programme ’Thematic Factors of Competitiveness’), within
projects Ref. FCOMP-01-0124-FEDER-022701 (CISTER), FCOMP-01-0124-
FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-020486 (AVIACC).

References

1. Alur, R., Henzinger, T.A.: Logics and Models of Real Time: A Survey. In: Real-
Time: Theory in Practice, REX Workshop, pp. 74–106 (1992)

2. Alves, M.C.B., Drusinsky, D., Michael, J.B., Shing, M.: Formal validation and ver-
ification of space flight software using statechart-assertions and runtime execution
monitoring. In: SOSE 2011, pp. 155–160 (2011)

3. Auguston, M., Trakhtenbrot, M.: Synthesis of Monitors for Real-Time Analysis of
Reactive Systems. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of
Computer Science. LNCS, vol. 4800, pp. 72–86. Springer, Heidelberg (2008)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

30 A.M. Pedro et al.

5. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST 2006, pp. 125–126 (2006)

6. Cotard, S., Faucou, S., Bechennec, J., Queudet, A., Trinquet, Y.: A Data Flow
Monitoring Service Based on Runtime Verification for AUTOSAR. In: HPCC 2012,
pp. 1508–1515 (2012)

7. Pedro, A.M., Pereira, D., Pinho, L.M., Pinto, J.S.: Logic-based Schedulability Anal-
ysis for Compositional Hard Real-Time Embedded Systems. In: Proceedings of the
6th International Workshop on Compositional Theory and Technology for Real-
Time Embedded Systems, CRTS 2013 (2013)

8. Drusinsky, D.: The Temporal Rover and the ATG Rover. In: Havelund, K., Penix,
J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000)

9. Easwaran, A., Lee, I., Sokolsky, O., Vestal, S.: A Compositional Scheduling Frame-
work for Digital Avionics Systems. In: RTCSA 2009, pp. 371–380 (2009)

10. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-
cidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)

11. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of fixed-
priority systems using timed automata. Theor. Comput. Sci. 354(2), 301–317 (2006)

12. Fersman, E., Pettersson, P., Yi, W.: Timed Automata with Asynchronous Pro-
cesses: Schedulability and Decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002)

13. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

14. Lakhneche, Y., Hooman, J.: Metric temporal logic with durations. Theor. Comput.
Sci. 138(1), 169–199 (1995)

15. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

16. Ničković, D., Piterman, N.: From MTL to deterministic timed automata. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167.
Springer, Heidelberg (2010)

17. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A hard real-time runtime
monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–
359. Springer, Heidelberg (2010)

18. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems.
In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 310–324. Springer,
Heidelberg (2012)

19. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: Monitoring Embedded
Systems. Innovations in Systems and Software Engineering, 1–21 (2013)

20. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena Timo, O.L.:
Runtime enforcement of timed properties. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 229–244. Springer, Heidelberg (2013)

21. Pnueli, A.: The temporal logic of programs. In: SFCS 1977, pp. 46–57 (1977)
22. Shin, I., Lee, I.: Compositional real-time scheduling framework with periodic

model. ACM Trans. Embed. Comput. Syst. 7(30), 30:1–30:39 (2008)
23. The OCaml Development Team. Ocaml programming language (2013)
24. Zhu, H., Dwyer, M.B., Goddard, S.: Predictable Runtime Monitoring. In: ECRTS

2009, pp. 173–183 (2009)

Leadership Election: An Industrial SoS

Application of Compositional Deadlock
Verification

Pedro R.G. Antonino1,�, Marcel Medeiros Oliveira2, Augusto C.A. Sampaio1,
Klaus E. Kristensen3, and Jeremy W. Bryans4

1 Centro de Informática, Universidade Federal de Pernambuco, Brazil
prga2@cin.ufpe.br

2 Departamento de Informática e Matemática Aplicada,
Universidade Federal do Rio Grande do Norte, Brazil

3 Bang & Olufsen, Denmark
4 School of Computing Science, University of Newcastle upon Tyne, UK

Abstract. In distributed computing, the leadership election has been
used to distributively designate a node as the central controller (leader)
of a network of nodes. The complexity of the algorithm arises due to the
unawareness of every node of who the current leader is. After running
the algorithm, however, a unique node in the network must be elected
as the leader and recognized as so by the remaining nodes. In this pa-
per, using CSP, we formalise the leadership election algorithm used by
our industrial partner. Its verification is feasible only due to the use of
a pattern based strategy that allows the verification to be carried out
in a fully local manner. The pattern used here is novel and a further
contribution of the paper. A refinement relation together with predicate
abstraction is used to describe pattern conformance. The mechanisation
of the behavioural conformance is carried out using FDR.

Keywords: Leadership Election, Local Analysis, Deadlock Freedom.

1 Introduction

The complexity inherent to most distributed algorithms (and systems) can turn
their development into a very laborious and error-prone task. The use of formal
methods like CSP [12] considerably simplifies this task and provides a better
understanding and means for verification of phenomena that are exclusive to
the concurrent world, like deadlock and livelock. For CSP, the model checker
FDR [6] provides an automatic check of finite state specifications for correctness
and properties like deadlock and divergence freedom.

Component-based or Systems of Systems (SoS) development are only feasible
in an industrial context of high-quality critical systems if trustworthy architec-
tures are obtained by carefully designing and systematically verifying the con-
stituents integration in a scalable fashion. A naive practice has been to verify and

	 Corresponding Author.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 31–45, 2014.
c© Springer International Publishing Switzerland 2014

32 P.R.G. Antonino et al.

validate them after they have been built [8,9,4]. The major issue is the high cost
to fix a problem that is found in a late stage of development. Instead of verifying
the entire system, more promising approaches focus on iteratively identifying
problems in compositions. However, in most approaches the cost of subsequent
compositions is not alleviated by the results of the previous ones [1,3,5]. Every
composition is taken as a monolithic system for verification, and properties of
its constituting parts are not considered. Hence, these methods are not compo-
sitional and have scalability problems by not considering local analysis.

In [11,10], we proposed an approach to build trustworthy component-based
systems underpinned by CSP [12]. In this approach, constituents may only be
composed using composition rules that impose the necessary constraints for a
safe interaction among components. Together, the composition rules systematise
the approach preserving deadlock-freedom by construction. Although systematic,
this approach is not local for cyclic communicating systems, potentially present-
ing a state explosion in the verification of such systems. This drawback can make
our approach inapplicable to complex cyclic systems.

In this paper, we formalise and analyse the version of the leadership election
algorithm used at B&O1, which is an example of a class of cyclic networks.
This algorithm is used in B&O’s networks of Audio and Video (AV) systems
with up to 32 systems. There are other solutions to this problem [7,15], whose
details are discussed in the conclusions. They make different assumptions on the
networks topology and faults. Like [15], we use CSP as our modelling language
as it is a well-established notation with industrial strength tools for verification
of communicating systems.

The use of standard approaches in the formal verification of our model pre-
sented scalability issues. This motivated the use of a local analysis strategy based
on architectural patterns. However, none of the existing architectural patterns
in the literature (including those in [15]) match directly the structure of our case
study. As a further contribution, we formalise a new pattern that allows local
deadlock analysis of our example. We use CSP to specify the pattern’s behaviour
and its stable failures refinement to formalise a conformance relation. We com-
pare the application of our local analysis with a standard global analysis using
FDR.

In Section 2, we introduce the CSP notation. Section 3 presents the underpin-
ning model and theory used to analyse systems for deadlocks. In Section 4 we
formalise a verification approach that allows local analysis of systems that obey
a communication pattern suitable for our case study. The leadership algorithm,
its practical use at B&O, and its formalisation in CSP is presented in Section 5.
In Section 6, we apply the verification approach of Section 4 to our example.
We also present an empirical analysis of the approach and contrast its verifica-
tion effort against the standard approach based on a global analysis. Finally, in
Section 7, we present our concluding remarks and future work.

1 http://www.bang-olufsen.com/

http://www.bang-olufsen.com/

Leadership Election: An Industrial SoS Application 33

2 CSP

CSP is a process algebra that can be used to describe systems as interacting
components, which are independent self-contained processes with interfaces that
are used to interact with the environment [12]. Most of the CSP tools, like FDR2
and ProBE, accept a machine-processable CSP, called CSPM , used in this paper.

The two basic CSP processes are STOP and SKIP; the former deadlocks, and
the latter does nothing and terminates. The prefixing a -> P is initially able
to perform only the event a; afterwards it behaves like process P. A boolean
guard may be associated with a process: g & P behaves like P if the predicate g

is true; it deadlocks otherwise. The alternation if b then P else Q is available
and has a standard behaviour. The operator P1;P2 combines P1 and P2 in se-
quence. The external choice P1[]P2 initially offers events of both processes; the
occurrence of the first event or termination resolves the choice in favour of the
process that performs either of them. The environment has no control over the
internal choice P1|~|P2, in which the choice is resolved internally. The synchro-
nised parallel composition P1[|cs|]P2 synchronises P1 and P2 on the events in
the set cs; events that are not listed occur independently. Processes composed
in interleaving P1|||P2 run independently. The event hiding P\cs encapsulates
the events that are in cs. The renamed process P[[a<-b]] behaves like P except
that all occurrences of a in P are replaced by b. The interrupt operator allows
a process Q to take over from another process P: P /\ Q specifies that, while
behaving as P, this process always offers the choice of P and Q, once Q is chosen,
then it behaves as Q.

CSP also provides replicated versions for most of its compositional operators.
For instance, ||| x : S @ P(x) stands for the interleaving of all P(x), for x∈
S. Local processes are defined using the let Id = P within Q construct, which
behaves as Q and restricts the scope of process Id to Q.

There are three major semantic models for CSP: traces, stable failures, and the
failures-divergences model. In this work we only use the stable failures one. In this
model processes are described by their traces, a set of finite sequences of events
it can perform given by traces(P), and by its set of stable failures, given by the
function failures(P). The stable failures set contains all pairs (s,X) where s is a
finite trace of P and X is a set of events that P can refuse after performing s. All
states in which P may perform an internal action are considered unstable: they
are not taken into account. Finally, the function refusals(P, s) gives the set of
events the process P can refuse after the trace s. This model also possesses a
refinement relation ([F=) on processes. The relation P [F= Q holds if and only
if traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q) holds.

3 Networks of Processes

The concepts presented in this section are essentially drawn from [13,14], which
present an approach to deadlock analysis of systems described as a network of
CSP processes. The most fundamental concept is the one of atomic tuples, which

34 P.R.G. Antonino et al.

represents the most fundamental components of a system. These are triples that
contain an identifier for the component, the process describing the behaviour
of this component and an alphabet that represents the set of events that this
component can perform. A network is a finite set of atomic tuples.

Definition 1 (Network). Let CSP Processes be the set of all possible CSP
processes, Σ the set of CSP events and IdType the set for identifiers of atomic
tuples. A network is a finite set V , such that:

V ⊂ Atomics

where: Atomics =̂ IdType× CSP Processes×PΣ.

The behaviour of a network is given as the alphabetised parallel composition
of the behaviour of each component, where processes and alphabets are extracted
from atomic tuples. We use an indexed version of the alphabetised parallel oper-
ator, which generalises the binary one with processes interacting in the alphabet
intersection. The functions A(id, V) and B(id, V) extract the alphabet, and the
behaviour of an atomic process id from the network V , respectively.

Definition 2 (Behaviour of a network). Let V be a network.
B(V) = || id : dom V @ [A(id,V)] B(id,V)

By way of illustration, let V = {(id1, B1, A1), (id2, B2, A2), (id3, B3, A3)}. The
behaviour of this network is given by B(V) = B1 [A1||A2] B2 [A2||A3] B3.

A live network is a structure that satisfies three assumptions. The first one is
busyness. A busy network is a network whose atomic components are deadlock
free. The second assumption is atomic non-termination, i.e. no atomic compo-
nent can terminate. The last assumption concerns interactions. A network is
triple-disjoint if at most two processes share an event, i.e. if for any three differ-
ent atomic tuples their alphabet intersection is the empty set.

In a live network, a deadlock state can only arise from an improper interaction
between processes, since no process can individually deadlock. This particular
misinteraction is captured by the concept of ungranted requests. The states σ of
a network are pairs (s,R), such that s is a trace of the network and R is a vector
of refusal sets. The function R(id) returns the refusal set of the process id after
s |̀ A(id). The projection t |̀ s takes a trace t and a set of events s as arguments
and yields the trace t restricted to s. An ungranted request arises in a state σ
when an atom, say id1, is offering an event to communicate with another atom,
say id2, but id2 cannot offer any of the events expected by id1. In addition, both
processes must not be able to perform internal actions.

A proper cycle of ungranted requests is an important element of deadlock
analysis. It is represented as a sequence of different process identifiers, C, where
each element at the position i, C(i), has an ungranted request to the element at
the position i⊕ 1, C(i⊕ 1), where ⊕ is addition modulo length of the sequence.
A conflict is a proper cycle of ungranted requests with length 2, and a long
cycle is one with length greater than 2. After these definitions two fundamental
theorems extracted from [13] are introduced.

Leadership Election: An Industrial SoS Application 35

Theorem 1. Let V be a live network. Any deadlocked state has a cycle of un-
granted requests. If V is conflict-free then a deadlock state has a long cycle.

The next theorem requires the introduction of three important concepts. A
communication graph is a representation of the topology of the network where
vertexes represent atomic components of the network and edges represent the
alphabet intersection between components. A disconnecting edge is an edge that,
if removed, increases the number of connected components of the graph, i.e., an
edge that is not part of a cycle in the communication graph. The components left
after the removal of every disconnecting edge are called essential components.

Theorem 2. Let V be a live network with essential components V1, . . . , Vk where
the pair of processes joined by each disconnecting edge are conflict-free. Then if
each Vi of the network is deadlock free, then so is V.

Theorem 1 allows one to reduce the problem of avoiding deadlock by pre-
venting cycles of ungranted requests. Theorem 2 allows the decomposition of a
network in subnetworks called essential components that can be independently
verified for deadlock freedom.

With these two results it is already possible to fully verify a tree topology
network in a local way, by checking only pairs of processes, due to the fact that
only proper cycles of length two can arise in tree networks. Nevertheless, cyclic
networks cannot be locally verified by these methods. Moreover, if one tries to
verify the freedom of long cycles of ungranted requests, based on Theorem 1, this
might be as complex as exploring the whole state space. Therefore, for networks
with cycles in their topology a complete and local method for checking deadlock
freedom is not generally available.

4 Pattern Based Approach to Cyclic Network Verification

As a complementary approach to the decomposition strategy presented in the
previous section, we consider the adoption of communication patterns in order
to support local analysis of cyclic networks. Our approach is based on the design
rules described in [12], which proposes resource sharing and client/server design
rules, among others. As a novel contribution, we propose a pattern so as to
prevent deadlocks by avoiding the emerging of cycles of ungranted requests. The
pattern proposed in this section can be used to design and analyse networks that
are asynchronous and dynamic (in the sense that nodes might turn on and off)
and whose transport layer possesses a mechanism allowing to detect whether a
node is on or off.

The pattern can be applied to networks with two different types of nodes:
the participants and the transport layer. The participants of the network do
not interact directly with each other, but exchange messages via the transport
layer. The participants recursively send messages to all its peer participants and
receives messages from them. Both sending and receiving must follow an order.
Furthermore, participants can turn on and off at any time. The transport layer,

36 P.R.G. Antonino et al.

composed of a set of transport entities, provides communication point-to-point
between participants of the network. It has also the ability to identify whether
participants are on or off.

The proposed pattern imposes behavioural and structural restrictions on a
network as a means to guarantee deadlock freedom. Our approach uses CSP
processes, which are parametrised, to capture pattern specifications and the
stable failures refinement relation to capture a notion of pattern conformance.
Structural restrictions are captured as predicates over the network structure and
conformance through a predicate satisfaction relation.

A transport entity connects two participants: a sender and a receiver. It is
entitled to receive data from its sender participant and to pass this data on to
its receiver participant. This communication is unidirectional from the sender to
the receiver. It also detects whether its sender is switched on or off.

Definition 3 (Transport entity specification). Let id be an identifier of
a transport entity, source(id) and target(id) the identifiers of the sender and
receiver participants associated to the transport entity id, and offCh, sendCh,
receiveCh, onCh, timeoutCh functions that, given the identifiers of source and
target participants, yield the channels used for detecting that the sender is off,
receiving data, sending data, detecting that the sender is on, and signalling a
timeout, respectively. The transport entity CSP specification is:

TransportSpec(id) =
let

idS = source(id)
idT = target(id)
On = offCh(idS,idT) -> Off [] sendCh(idS,idT)?data -> OnF(data)
OnF(d) = offCh(idS,idT) -> Off

[] sendCh(idS,idT)?data -> OnF(data)
[] receiveCh(idS,idT)!d -> On

Off = onCh(idS,idT) -> On [] timeoutCh(idS,idT) -> Off
within Off

The processes On, OnF and Off specify the expected behaviour of a transport
entity in a sender detected as on and no data available state, in a sender detected
as off and data available state, and in a sender detected as off state, respectively.
The transport entity initially behaves as Off, in which case it offers two events to
its participants: a timeout that informs the receiver that the sender is switched
off, and a turn on that detects when the sender turns on, in which case it
behaves as the process On. In this state the transport entity is on and empty: it
can receive data from the sender participant or detect a switching off event
from it. In the case of the latter, the entity behaves as Off again. However,
if it receives data, the transport entity stores this data and starts behaving as
OnF. In the OnF state, the transport entity can receive new data from its sender
participant, in which case the new data overwrites the data previously stored.
However, it can also transmit the data stored to its receiver participant, in which
case the transport entity behaves as On again. Finally, it can also detect whether
its sender participant has turned off, in which case it behaves as the process Off.

The participants specify the domain related behaviour (business logic) of the
network. They have a dynamic behavioural feature that allows them to turn on

Leadership Election: An Industrial SoS Application 37

and off and a functional behaviour that involves data exchange and any business
related function. The behavioural specification of a participant is given as follows.

Definition 4 (Participant specification). Let id be the identifier of the par-
ticipant and sequence(id) a function that yields a sequence of ids representing
the order in which this participant interacts with its neighbours. The participant
CSP specification is:

ParticipantSpec(id) =
let s = sequence(id)

SendReceive(id,s) = Send(id,s);Receive(id,s);SendReceive(id,s)
within OnDetect(id,s); (SendReceive(id,s) /\ (SKIP |~| STOP));

OffDetect(id,s); ParticipantSpec(id,s)

A participant first behaves as the process OnDetect, which sends a signal to
inform that it is on to each transport entity to which it acts as a sender. This
mechanism abstracts the ability of the transport layer to detect participant sta-
tus. The s parameter gives the order in which the participant interacts with
its transport entities. After turning on, it acts recursively, first behaving as a
sender (Send) and then as a receiver (Receive). When behaving as a sender,
it sends messages to all transport entities that have this participant as sender,
following the order recorded in s. When acting as a receiver, in the same way,
it interacts with the transport entities that have it as a receiver, also following
the order stated in s: it accepts both the incoming data and a timeout sig-
nal that indicates the sender associated with the transport entity is off. The
process (SKIP |~| STOP) is used as a mechanism to abstract the fact that the
sending and receiving behaviours might be interrupted due to a failure of a node.
When SKIP is chosen, the participant might fail; conversely, when STOP is chosen,
the participant cannot fail.

In order to check whether a concrete model of either a transport entity or
a participant conforms to the corresponding abstract behaviour, we use a re-
finement relation in the stable failures model of CSP. We restrict the behaviour
of the processes being tested for conformance to the events that are related in-
teractions, as these are the only events of interest for deadlock analysis. This
restriction is given by the Abs function. Hence, transport entity and participant
conformance is given by the following definition.

Definition 5 (Transport entity and Participant conformance). Let Spec
stand for the specification of either a transport entity or of a participant (as in
Definitions 3 and 4). Let id be the identifier of the candidate concrete model.
Then id conforms to Spec if, and only if, the following refinement holds:

Spec [F= Abs(id,V)

where:

– Abs(id,V) = B(id,V) \ diff(A(id,V),AVoc(id,V)), diff standing for set difference.
– AVoc(id,V) = Union({inter(A(id,V),A_(a)) | a <- V, ID_(a) != id})

– a <- V states that a is an atomic tuple from V

– A_(a) and ID_(a) give the alphabet and identifier of a, respectively.

38 P.R.G. Antonino et al.

In addition to the behavioural restrictions, the pattern also imposes struc-
tural restrictions. The first one restricts the alphabet of any two participants or
transport entities to be disjoint. This restriction is encoded in the disjointAlpha
predicate. This ensures that two participants or two transport entities may in-
teract directly. The controlledAlpha predicate is satisfied if the alphabet of the
interaction between constituents is the set composed of the send, receive, on, off
and timeout events. This ensures that the behaviour related to the interaction
between constituents of the network is restricted to the controlled behaviour.
The sequence of ids used to guide the order of interaction for the participant’s
behavioural restriction must have only one occurrence of each neighbour of this
participant. This restriction is guaranteed by the validOrder predicate. Hence,
the conformance of a network to this pattern is given by the following predicate,
which is a conjunction of the restrictions presented.

Definition 6 (Async Dynamic network). Let V be a network, participants
a set of participants and transport entities a set of transport entities.

AsyncDynamic(V, participants, transport entities) =̂

disjointAlpha(participants) ∧ disjointAlpha(transport entities) ∧
partition(V, participants, transport entities) ∧
∀ id : participants • ParticipantBehaviouralRestriction(id) ∧
∀ id : transport entities • TransportBehaviouralRestriction(id) ∧
∀ id : participants • validOrder(id) ∧
∀ id1 : participants, id2 : transport entities • controlledAlpha(id1, id2)

where:

– disjointAlpha(set) =̂ ∀ id1, id2 : set •A(id1) ∩ A(id2) = ∅
– partition(v, s1, s2) =̂ s1 ∩ s2 = ∅ ∧ s1 ∪ s2 = dom v
– ParticipantBehaviouralRestriction(id, V) =̂ ParticipantSpec(id,V) [F= Abs(id,V)

– TransportBehaviouralRestriction(id, V) =̂ TransportSpec(id,V) [F= Abs(id,V)

– validOrder(id) =̂

neighbours(id) = ran sequence(id) ∧ functional(sequence(id))

– controlledAlpha(id1, id2) =̂

A(id1) ∩ A(id2) = {|sendCh(source(id2), target(id2)),

receiveCh(source(id2), target(id2)), onCh(source(id2), target(id2)),

offCh(source(id2), target(id2)), timeoutCh(source(id2), target(id2))|}

The following theorem ensures the ability of our pattern to prevent deadlock.
A proof sketch can be found in [2].

Theorem 3. Let V be a network, and participants and transport entities two
partitions of the domain of this network, then:

AsyncDynamic(V, participants, transport entities)⇒ V is deadlock free

Leadership Election: An Industrial SoS Application 39

5 Industrial Case Study: The Leadership Election
at B&O

A critical concept in B&O product networks is that of the dynamic global sys-
tem configuration, which describes the current combined configuration of all the
products in the network. For example, the currently active user experiences (such
as current song, planned playlist, volume) are stored in the system configuration,
enabling the B&O system to allow the experiences to be reproduced as the user
moves around the home, thus giving the impression that the experiences follow
the user.

The requirements for availability and consistency of the system configura-
tion must be realised by the communications architecture, which is based on a
publisher-subscriber pattern. To enable this communication pattern the under-
lying network must always be able to identify a leader (the publisher). Concep-
tually the architecture of a B&O product network contains two global states:

– The publisher-subscriber state: a single publisher (the leader) is present and
the product network can guarantee availability and consistency of user expe-
rience. All other connected products are subscribers (followers), and newly
joined products are undecided, until they learn the identity of the leader.

– The election state: no publisher is present and the user experiences are in-
consistent or unavailable. In this state all connected products are undecided.

In the election state a leadership protocol is executed by the products in the
network. During this state each product reacts to a set of local transition rules
that will guarantee the desired emergent property. A B&O network is inherently
asynchronous, and therefore the algorithm must tolerate the following cases:

– Products may join or leave the network at any point during or after an
election. Products may enter a power-saving state, restart because of defects,
or be turned on or off by their users. As a consequence, the algorithm must
handle the disappearance of leaders and the appearance of new contenders
for leadership.

– Communication is asynchronous, with some latency in the network. There
is, therefore, no coordination of when an election is started, and so any prod-
uct can initiate an election independently. The likelihood of simultaneously
initiated elections is increased by network latency.

One of the risks that such a fluid environment increases is that the protocol
might reach a deadlocked state. To mitigate this, we develop a formal model of
the B&O leadership election protocol and show that it is deadlock-free. B&O in-
vests in a formal analysis of this kind because of its desire to develop and analyse
models in the early design stages, before expensive implementation commitments
are made.

Our leadership election model is composed of distributed nodes that store in-
ternal data in a set of memory cells; this data storage is managed by a memory
controller. A node communicates with another node through a bus cell, which

40 P.R.G. Antonino et al.

provides a point-to-point unidirectional communication. To illustrate these con-
nections, a 2-node configuration architecture is given in Figure 1(a).

The nodes are distinguished by their id parameter, which is drawn from the
set {0..N}. The processes prefixed with BroadCast specify the order in which
messages are sent and received by nodes: the process BroadCastData(id,data)
is used by node id to broadcast data to all other processes, while the process
BroadCastControl(id,..)distributes status messages throughout the network.

A node that is off is modelled by the process OffNode:

OffNode(id, priority) = switchOn.id ->
BroadCastControl(id,onSource,OnNode(id, max(LOWER_LIMIT_PET,priority-1)))

When a node is turned on it broadcasts that fact, then behaves as a switched
on node. The priority is decremented as a heuristic strategy to elect a stable
leader, i.e. the one that has the least occurrences of leaving the network. Fol-
lowing an initialisation, the process Node repeatedly checks for updates in the
network configuration. Using the CSP interruption (/\), we specify that this be-
haviour can be interrupted at any time via a switchOff event. When switched
off, the node first informs all other nodes that it has been turned off (by broad-
casting the message offSource). This behaviour, of broadcasting messages after
having been turned off, abstracts the behaviour of the B&O protocol, in which
any node can always detect when another node is off.

OnNode(id, priority) = Node(id, <id..N>, priority, undecided)
/\ ((switchOff.id -> BroadCastControl(id,offSource,OffNode(id, priority))) |~| STOP)

The main behaviour of a node, given by process Node, regulates the status
exchange cycle between nodes, controlled by the list <id..N>, as well as the elec-
tion process. The process Node either broadcasts its local state or receives status
updates from other nodes. The list of nodes is re-initialised to <id..N> when it
is empty. The local state is given by the priority of a node and its claim: its
current state in the election process – undecided, leader or follower. After
this initial broadcast it waits for the local state of each of its neighbours in turn.
The node receives either the current state of the neighbour (through channel
cp_pack.in.a.id) or a timeout event (through channel timeout.in.a.id) if
the corresponding neighbour is turned off.

Node(id, <a>^list, mypriority, myclaim) =
if a == id then BroadCastData(id, myclaim.mypriority);

Node(id, list, mypriority, myclaim)
else ((cp_pack.in.a.id?valC?valP -> setPack.id.a!valC!valP -> SKIP)

[]
(commTimeout.in.id.a -> setPack.id.a!off!0 -> SKIP));
Choice(id, <a>^list, mypriority, myclaim)

Each incoming message is stored, and the node reassesses its own local state
in Choice.

Choice(id, <a>^list, mypriority, myclaim) =
if myclaim == undecided then Undecided(id, <a>^list, mypriority)
else if myclaim == leader then Leader(id, <a>^list, mypriority)

else Follower(id, list, mypriority)

Leadership Election: An Industrial SoS Application 41

A Leader begins by retrieving the number of other nodes that are also claim-
ing to be leaders. If this is not zero, the node becomes undecided; otherwise it
remains a leader. The priority of a leader node is incremented (up to an upper
limit) when it has completed a full cycle of status exchanges. This ensures that
stable nodes are more likely to become leaders.

Leader(id, <a>^list, mypriority) =
nleaders.id?valLeaders ->

if valLeaders > 0 then Node(id, list, mypriority, undecided)
else if id == next(a) then Node(id, list, min(UP_LMT,mypriority+1),
leader) else Node(id, list, mypriority, leader)

A Follower remains so if there exists a leader; it becomes undecided, other-
wise.

Follower(id, list, mypriority) =
nleaders.id?valLeaders ->

if valLeaders == 0 then Node(id, list, mypriority, undecided)
else Node(id, list, mypriority, follower)

An Undecided node decides to lead or follow by first retrieving the number
of competing leaders, the value of the highest priority among these, and the
value of the largest identity among the highest priority nodes. The node follows
a leader if it finds one. Otherwise, it remains undecided until the end of the
status exchange cycle (id = next(a)). It then becomes a leader if its priority is
higher than all other nodes. If multiple nodes have the same priority, the node
becomes a leader if it has the highest id.

Undecided(id, <a>^list, mypriority) =
nleaders.id?valLeaders -> hpetition.id?highest -> hpetitionid.id?highestid ->
(let myclaim =

if valLeaders > 0 then follower
else if id == next(a) then

if highest == mypriority and highestid < id
or highest < mypriority then leader

else follower
else undecided

within Node(id, list, mypriority, myclaim))

Communication between nodes takes place over a Bus that provides bidi-
rectional communication between every pair of nodes. The Bus is composed of
various BusCells, each of which provides an unidirectional channel between a
source and a target node.

BusCell(idSource,idTarget) =
let On(data) = cp_pack.out.idSource.idTarget?val -> On(val)

[] data != -1 & cp_pack.in.idSource.idTarget!data -> On(-1)
[] offSource.idSource.idTarget -> Idle

Idle = timeout.idSource.idTarget -> Idle
[] onSource.idSource.idTarget -> On(-1)

within Idle

We create our fully connected model using the alphabetised parallel operator
to connect bus cells and nodes.

42 P.R.G. Antonino et al.

(a) Communication graph of a
2-node configuration.

(b) Essential components after decomposition.

Fig. 1. Views of the system

6 A Local Strategy for Deadlock Analysis
of the Leadership Election and Experimental Results

Although, in principle, our CSP model can be fully analysed by tools like FDR,
this approach to analyse the complete model for deadlock freedom is not local
and incurs in an exponential growth in the number of states to be analysed,
becoming infeasible at early stages. Our alternative to this problem is to use a
strategy that combines the theory for deadlock analysis presented in Section 3
together with the pattern based approach that we proposed in Section 4.

The model presented for the leadership election can be decomposed based
on Theorem 2. This decomposition gives the memory cells, the memory con-
trollers, and the subnetwork as essential components. The latter is composed of
interconnected nodes and bus cells as depicted in Figure 1(b).

This decomposition alone enables the local verification for deadlock freedom
of both memory cells and memory controllers. Nevertheless, based on the results
of [14,13] summarised in Section 3, the verification of the subnetwork of bus cells
and nodes is still left to be verified as a single component, which also leads to an
exponential analysis in the number of nodes, as shown later in this section. As a
demonstration of the benefits brought by this pattern, we show that, using the
pattern proposed in Section 4, we need to verify only local behavioural condi-
tions for guaranteeing deadlock freedom. As an example of how the conformance
notions are encoded as assertions that can be automatically verified by FDR,
we present the following two assertions, which verify the conformance of atom
BUS_CELL.0.1 to the transport entity specification and the conformance of atom
NODE.0 to the participant specification, respectively.

assert TransportSpec(BUS_CELL.0.1,LENetwork) [F= Abs(BUS_CELL.0.1,LENetwork)
assert ParticipantSpec(NODE.0,LENetwork) [F= Abs(NODE.0,LENetwork)

As expected, by conducting a full local analysis using FDR, we verified that
all the restrictions imposed by the pattern are satisfied. This guarantees that
that our example is indeed deadlock free.

Leadership Election: An Industrial SoS Application 43

In order to demonstrate that our local analysis avoids combinatorial explo-
sion, we conducted a comparative analysis of three verification approaches, all
using FDR: (i) analysis of the complete model; (ii) local analysis based on the
decomposition supported by [14,13], as presented in Section 3 and Figure 1b; (iii)
the decomposition considered in (ii) in addition to the pattern based approach
proposed in Section 4. For the analysis of our strategy (iii), we only evaluate
state, transitions and time for behavioural restriction as this is the most com-
plex task in checking pattern adherence, the predicate satisfaction time being
insignificant in comparison to that time.

Our goal was to analyse a model with 32 nodes, which is the maximal number
of nodes of a B&O network of devices. For this reason, we conducted the analysis
for 2, 3, 4, 5, 10, 20 and 32 node instances of this model. The results are presented
in Table 1, in which we provide the number of states analysed, the number of
transitions, the number of processes in the network and the amount of time
spent in the verification. The number of states and transitions are the ones of
the Labelled Transitions System generated and analysed by FDR. The time
is measured in seconds, and transitions and states in thousands. We used a
dedicated server with an 8 core Intel(R) Xeon(R) 2.67GHz and 16 GB of RAM
in an Ubuntu 4.4.3 system.

Table 1. Practical comparison

(iii) Proposed strategy (ii) Decomposed model (i) Complete model

Nodes #Procs States Trans Time States Trans Time States Trans Time

2 8 0.4 1.5 0.5 17.5 81.5 0.3 1,695 7,663 11.27
3 18 1.7 6.7 1.7 242,626 1,886,533 3,115 * * *
4 32 4.7 19.9 3.86 * * * * * *
5 50 10 47 7 * * * * * *
10 200 156 740 46 * * * * * *
20 800 2,490 12,149 659 * * * * * *
32 2,048 16,414 80,939 5,161 * * * * * *

* FDR exceeds the machine’s memory available

As expected, the exponential explosion quickly makes the leadership election
model intractable by the strategy (i). The verification time for deadlock freedom
for a 2-node configuration is 11 seconds, but the 3-node instance needs more than
16 GB of memory, which is beyond the configuration of the server used. Even if
the decomposition strategy is applied, as described in (ii), FDR is not capable of
analysing further than the 3-node configuration. Also, the state space explosion
in this case is very clear as the number of states leaps from about 17,500 in the
2-node configuration to 242,626,600 in the 3-node configuration. Our strategy
(iii) is by far the only viable option, being able to analyse the 2,048 processes
of the 32-node configuration, in 1.43 hours. Note that, in addition to the state
explosion, the processes being analysed also grow in complexity as the number of

44 P.R.G. Antonino et al.

nodes in the configuration increases because every node needs to communicate
with more nodes, making the analysis of this example even more expensive.

7 Conclusion and Related Work

In this paper, we proposed a pattern that prevents deadlocks and the formali-
sation of a notion of pattern conformance using first order logic and refinement
expressions. We also presented a formal specification of the leadership election
algorithm. This algorithm is used by one of our industrial partners, B&O, to
define the publisher of their publisher-subscriber protocol, in which one of the
products (the publisher) is the leader of the other products (the subscribers).
We applied the proposed pattern to this industrial case study and compared the
efficiency of our verification approach to a global approach.

As demonstrated by the analysis in Section 6, the verification of a complex
algorithm using a global approach rapidly becomes infeasible. Our pattern based
approach is a valid and promising alternative to verifying complex systems for
deadlock freedom. By verifying adherence to a pattern that requires only local
analysis, we were able to guarantee that a complex distributed algorithm used
in industry is deadlock free. In the case of B&O, we were able to guarantee the
deadlock freedom of their distributed algorithm with up to 32-nodes (the maxi-
mum number of nodes in a B&O network), involving 2,048 processes. Moreover,
during the development and verification of this model several issues were iden-
tified and the real C++ implementation was modified as a result.

A CSP specification of the leadership election “Bully algorithm” of [7] is given
in [15]. The assumptions on processes are similar to the ones we make: processes
may fail and revive at any time, and contain some stable storage. Although both
models assume that messages will not be duplicated or lost, their network as-
sumptions differ. The Bully algorithm does not allow a failed communication
between two live processes. We model this possibility using a timeout. Further-
more, in the Bully algorithm, messages may not overtake each other: they must
be processed in the order in which they are sent. In our model, message may over-
take each other. Finally, in the Bully algorithm communication is synchronous,
whilst we model asynchronous communications.

In terms of algorithm design, a leadership competition in the Bully algorithm
is resolved by the node with the highest identifier “bullying” the other nodes
into accepting its claim. In the case of competing claims in the algorithm we
present, the primary decision mechanism is the value of priority, although the
node id may be used as a last resource.

In the future, we plan to increase the range of systems to which our approach
is applicable through the development and verification of new architectural pat-
terns. Furthermore, we also intend to extend the application of our approach to
other properties such as livelock-freedom. Finally, we plan to apply the pattern-
based strategy to a wide spectrum of real systems.

Leadership Election: An Industrial SoS Application 45

Acknowledgments. TheEUFramework7 IntegratedProjectCOMPASS(Grant
Agreement 287829) financed most of the work presented here. INES and CNPq
supports the work of Marcel Oliveira: grants 573964/2008-4, 560014/2010-4 and
483329/2012-6.

References

1. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382,
pp. 21–37. Springer, Heidelberg (1998)

2. Antonino, P.R.G., Oliveira, M.V.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership Election: An Industrial SoS Application of Compositional
Deadlock Verification — Extended version. Technical report, UFPE (2013),
http://www.cin.ufpe.br/~prga2/tech/techNFM2014.html

3. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software
systems with process algebras. ACM Transactions on Software Engineering and
Methodology 11(4), 386–426 (2002)

4. Cheung, E., Chen, X., Hsieh, H., Davare, A., Sangiovanni-Vincentelli, A.,
Watanabe, Y.: Runtime deadlock analysis for system level design. Design Automa-
tion for Embedded Systems 13(4), 287–310 (2009)

5. Cheung, S., Kramer, J.: Context constraints for compositional reachability analysis.
ACM Transactions on Software Engineering and Methodology 5(4), 334–377 (1996)

6. Formal Systems Ltd. FDR: User Manual and Tutorial, version 2.82 (2005)
7. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Transactions

on Computers C-31(1), 48–59 (1982)
8. He, J., Li, X., Liu, Z.: A theory of reactive components. Electronic Notes in The-

oretical Computer Science 160, 173–195 (2006)
9. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans-

actions on Software Engineering 28(11), 1056–1076 (2002)
10. Ramos, R., Sampaio, A., Mota, A.: Systematic development of trustworthy com-

ponent systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 140–156. Springer, Heidelberg (2009)

11. Ramos, R.T., Sampaio, A.C.A., Mota, A.C.: Conformance notions for the coordina-
tion of interaction components. Science of Computer Programming 75(5), 350–373
(2010)

12. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall (1998)

13. Roscoe, A.W., Brookes, S.D.: Deadlock analysis in networks of communicating
processes. Distributed Computing (4), 209–230 (1991)

14. Roscoe, A.W., Dathi, N.: The pursuit of deadlock freedom. Information and Com-
putation 75(3), 289–327 (1987)

15. Roscoe, A.W.: Understanding Concurrent Systems, 1st edn. Springer-Verlag
New York, Inc., New York (2010)

http://www.cin.ufpe.br/~prga2/tech/techNFM2014.html

Verification of Certifying Computations
through AutoCorres and Simpl

Lars Noschinski1,�, Christine Rizkallah2,�, and Kurt Mehlhorn2,�

1 Institut für Informatik, Technische Universität München, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Certifying algorithms compute not only an output, but also a witness
that certifies the correctness of the output for a particular input. A checker pro-
gram uses this certificate to ascertain the correctness of the output. Recent work
used the verification tools VCC and Isabelle to verify checker implementations
and their mathematical background theory. The checkers verified stem from the
widely-used algorithms library LEDA and are written in C. The drawback of this
approach is the use of two different tools. The advantage is that it could be car-
ried out with reasonable effort in 2011. In this article, we evaluate the feasibility
of performing the entire verification within Isabelle. For this purpose, we con-
sider checkers written in the imperative languages C and Simpl. We re-verify
the checker for connectedness of graphs and present a verification of the LEDA
checker for non-planarity of graphs. For the checkers written in C, we translate
from C to Isabelle using the AutoCorres tool set and then reason in Isabelle. For
the checkers written in Simpl, Isabelle is the only tool needed. We compare the
new approach with the previous approach and discuss advantages and disadvan-
tages. We conclude that the new approach provides higher trust guarantees and it
is particularly promising for checkers that require domain-specific reasoning.

1 Introduction

A user of a program has in general no easy means to know whether the result computed
by the program is correct or has been compromised by a bug. While formal verification
is one solution, for complex programs the cost is often prohibitive. We are interested
in complex programs for combinatorial and geometric problems as, for example, dis-
cussed in [1,4,21]. For an input x, a certifying algorithm [7,26,19] produces an output
y and a witness w. The accompanying checker is a simpler and more efficient program
that uses the witness w to ascertain that y is a correct output for input x. The checker is
supposed to return true if and only if the witness w indeed proves that y is the correct
output for x. A small example helps understanding the concept. The input for a planarity
test is a graph. A certifying planarity test witnesses the output “is-planar” by a planar
embedding and the output “is-not-planar” by a Kuratowski subgraph. Certifying algo-
rithms are a key design principle of the algorithms library LEDA [21]. Checkers are an
integral part of the library and are optionally invoked after every execution of a LEDA
program. Adoption of the principle greatly improved the reliability of the library [20].

	 The first two authors contributed equally to this work. The third author supervised the work.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 46–61, 2014.
c© Springer International Publishing Switzerland 2014

Verification of Certifying Computations 47

The (relative) simplicity of checkers makes them amenable to formal verification.
Recent work [2] provides a framework for verifying certifying computations. The ap-
proach uses the interactive theorem prover Isabelle as a backend to the automatic code
verifier VCC. Low level properties of the C code are proven using VCC. These are then
translated to Isabelle and used to derive the desired mathematical properties, which are
translated back to VCC. This framework (the VCC approach) is illustrated on several
examples in the domain of graphs. Using two proof tools has the advantage of using
the strength of each tool: verification of C code with VCC and mathematical reasoning
with Isabelle/HOL.

In this work, we investigate the feasibility of carrying out the entire verification of
the checkers within Isabelle/HOL. We implement the checkers both in Simpl and in C.
Simpl [25] is a generic imperative programming language embedded into Isabelle/HOL
that was designed as an intermediate language for program verification. The Simpl
checkers are verified directly within Isabelle. To translate from C to Isabelle we use
the C-to-Isabelle parser that was developed as part of the seL4 project [17] and was
used to verify a full operating system kernel. We do not work on the output of the
parser directly, but use the AutoCorres tool [15] that simplifies reasoning about C in
Isabelle/HOL. This approach (the AutoCorres approach) avoids double formalizations
in two systems and reduces the trusted code base: instead of trusting VCC, one now has
to trust the C-to-Isabelle parser, a significantly simpler program. Since we are the first
external users of AutoCorres, it was not clear at the beginning of our work, whether the
AutoCorres approach is competitive. At least for our examples, it is competitive, if not
superior.

Why do we verify implementations both in C and in Simpl? It allows us to separate
the verification of the checker algorithm and of the checker implementation. Simpl has
a very powerful expression language as all Isabelle expressions are Simpl expressions.
Therefore, one can write pseudo-code like Simpl programs. Verifying both a C and
a Simpl implementation allows us to estimate how much additional effort for the full
verification is needed in addition to the pseudo-code verification. The hope was that
after the Simpl verification is done the verification of the C-program would be only
dealing with C-intricacies and hence be relatively straight-forward.

Section 3 introduces the implementations and verifications of the checkers both in
Simpl and in C and discusses lessons learned. In Section 4 we suggest a refinement
framework for using Autocorres. Then in Sections 5 and 6 we give an evaluation and
talk about related work. The full implementation and all proofs are available on the
companion website.1

2 Preliminaries

As in the VCC approach, we consider algorithms taking an input x from a set X and
producing an output y from a set Y and a witness w from a set W . Input x is supposed
to satisfy a precondition ϕ(x), and x and y are supposed to satisfy a postcondition
ψ(x, y). A witness predicate for a specification with precondition ϕ and postcondition
ψ is a predicate W ⊆ X × Y ×W with the following witness property:

1 http://www21.in.tum.de/˜noschinl/Verifying_Certifying

http://www21.in.tum.de/~noschinl/Verifying_Certifying

48 L. Noschinski, C. Rizkallah, and K. Mehlhorn

∀x, y, w. ϕ(x) ∧W(x, y, w) −→ ψ(x, y) (1)

In contrast to algorithms, which work on abstract sets X , Y , and W , programs as their
implementations operate on concrete representations of abstract objects. We use X ,
Y , and W for the set of representations of objects in X , Y , and W , respectively and
assume mappings iX : X → X , iY : Y → Y , and iW : W → W . The checker
program C receives a triple (x, y, w) and is supposed to check whether it fulfills the
witness property. More precisely, let x = iX(x), y = iY (y), and w = iW (w). If
¬ϕ(x), C may do anything (e.g., run forever or halt with an arbitrary output). If ϕ(x),
C must halt and either accept or reject. A correct checker C will accept if W(x, y, w)
holds and reject otherwise. The following proof obligations arise:

Witness Property: A proof for the implication (1).
Checker Correctness: A proof that C checks the witness predicate if the precondition

ϕ is satisfied. I.e., for an input (x, y, w) with x = iX(x), y = iY (y), w = iW (w):
1. If ϕ(x), C halts.
2. If ϕ(x), C accepts if and only if W(x, y, w).

Tools. Isabelle/HOL [23] is an interactive theorem prover for classical higher-order
logic based on Church’s simply-typed lambda calculus. The system is built on top of
a kernel providing a small number of inference rules; complex deductions (especially
by automatic proof methods) ultimately rely on these rules only. This strategy [14]
guarantees correctness as long as the inference kernel is correct. Isabelle/HOL comes
with a rich set of already formalized theories, e.g., natural numbers, integers, sets, finite
sets, and as a recent addition graphs [24]. Proofs in Isabelle/HOL can be written in
a style close to that of mathematical textbooks. The user structures the proof and the
system fills in the gaps by its automatic proof methods.

Simpl [25] is a generic imperative language designed to allow a deep embedding of
real programming languages such as C into Isabelle/HOL for the purpose of program
verification. The C-to-Isabelle parser converts a large subset of C99-code into low-level
Simpl code. Simpl provides the usual imperative language constructs such as functions,
variable assignments, sequential composition, conditional statements, while loops, and
exceptions. There is no return statement for abrupt termination; it is emulated by ex-
ceptions. Simpl has no expression language of its own; rather, every Isabelle expression
is also a Simpl expression. Programs may be annotated by invariants. Specifications for
Simpl programs are given as Hoare triples, where pre- and post-condition are arbitrary
Isabelle expressions. A verification condition generator (VCG) converts Hoare Triples
to a set of higher-order formulas.

The C-to-Isabelle parser makes no effort to abstract from details of the C-language.
AutoCorres [15] builds upon this parser and, in a fully verified way, provides a sim-
pler representation of the original program. Apart from simplifying the control flow, it
transforms the deeply embedded Simpl code into a shallowly embedded monadic rep-
resentation where local variables are modeled as bound Isabelle variables. There are
multiple monads from which AutoCorres chooses depending on the C features used;
the most common one is the nondeterministic state monad. In this monad, program
statements are a function from a heap to a tuple consisting of a failure flag and the non-
deterministic state, represented as a set of pairs of return value and heap. The monadic

Verification of Certifying Computations 49

bind operation implements sequential composition. Again, specifications are given as
Hoare triples and a VCG converts these to higher-order formulas [11].

VCC [12] is an assertional, automatic, deductive code verifier for full C code. Source
code is annotated with specifications in the form of function contracts, data invariants,
loop invariants, and further annotations to guide the verifier. Annotated code can still
be compiled with a normal C compiler. From the annotated program, VCC generates
verification conditions for partial or total correctness, which it then tries to discharge
automatically.

3 Verification of Checkers within Isabelle/HOL

The VCC approach was used to verify several checkers in the field of graphs from the
algorithmic library LEDA. For the sake of comparison, we rework the verification of
the connectedness checker. Moreover, we verify the LEDA checker for testing graph
non-planarity. In order to get a measure of the effort dedicated to the verification of the
algorithm respectively that of dealing with C-intricacies, we use two methods to verify
the checker in Isabelle/HOL: First, we verify an implementation in Simpl. Second, we
use AutoCorres to verify a C implementation. We compare the approaches in Section 5.

Connectedness of Graphs. Given an undirected graph G = (V,E), we consider an
algorithm that decides whether G is connected, i.e., whether there is a path between
any pair of vertices [21, Section 7.4]. Non-connectedness is certified by a cut, i.e., a
nonempty subset S of the vertices with S �= V , such that every edge of the graph has
either both or no endpoint in S. Connectedness is certified by a spanning tree of G. On
a high level, we instantiate the general framework as follows:

input x = an undirected graph G = (V,E)
output y = either True or False indicating whether G is connected

witness w = a cut or a spanning tree
ϕ(x) = G is well-formed, i.e., E ⊆ V × V , V and E are finite sets

W(x, y, w) = y is True and w is a spanning tree or y is False and w is a cut
ψ(x, y) = if y is True, G is connected and if y is False , G is not connected.

As in previous work [2], we restrict ourselves to the positive case y = True. For
an example of a graph and its witnessing spanning tree see Fig. 3 in [2]. We represent
spanning trees by functions parent -edge and num and a root vertex r and view the
edges of the tree oriented towards r: for each v, parent -edge(v) is the first edge on the
path from v to r (we set parent -edge(r) = None), and num(v) is the length of this
path. Undirected graphs are represented as bidirected graphs, i.e., for every unordered
edge {u, v} of G, we have ordered pairs (u, v) and (v, u) in the representation of G.

Witness Property. The witness property states that if the conditions in Fig. 1 hold, the
graph is connected. This was already proven in Isabelle/HOL by Alkassar et al. [2]. We
extend the theorem to also state that the conditions imply that the num-value of each
vertex is its depth in the spanning tree. This is important for the C-verification.

50 L. Noschinski, C. Rizkallah, and K. Mehlhorn

locale connected -components-locale = pseudo-digraph +
fixes num : α⇒ nat and parent-edge : α⇒ β option and r : α
assumes r -assms : r ∈ verts G ∧ parent-edge r = None ∧ num r = 0
assumes parent-num-assms :

∧
v. v ∈ verts G ∧ v �= r =⇒

∃ e ∈ arcs G. parent-edge v = Some e ∧ head G e = v ∧ num v = num (tail G e) + 1

Fig. 1. Preconditions for the connectedness proof in Isabelle. G is a well-formed graph with
vertices of type α and edges of type β.

Simpl Implementation and Verification. We represent graphs as in previous work [2].
The type IGraph represents a graph G by the numbers ivertex -cnt G and iedge-cnt G
of its vertices and edges and a function iedges G, mapping 0 ≤ i < iedge-cnt G to the
pair of endpoints of the i-th edge. A graph is well-formed if all endpoints are smaller
than ivertex -cnt G.

Each of the conditions in Fig. 1 is checked by a procedure. For example, the pro-
cedure parent -num-assms in Fig. 2 checks parent -num-assms in the obvious way.
The loop invariant parent -num-assms-inv states that parent -num-assms holds up
to vertex i. VAR MEASURE introduces the measure function used for the termina-
tion proof and the command ANNO binds logical variables to be used in the invari-
ant. Total correctness of each function is formulated as a Hoare triple; see Lemma
parent -num-assms-spec in Fig. 2. Invoking the VCG and using the annotations (loop
invariant and measure function) is sufficient for the correctness proof.

C Implementation and Verification. The C representation of graphs is similar to that
in Simpl. In particular, numbers are now of bounded precision. This means we need
to prove absence of overflows during verification. The number of vertices and edges
are now unsigned ints. We represent spanning trees as explained above, but use arrays
instead of functions. The function parent -edge is represented as an array of (signed)
int, and num as an array of unsigned int. As in previous work [2], we require as a
precondition that the input graph is well-formed.

The check -connected checker is a function that accepts exactly when the two func-
tions check -r and check -parent -num accept. The first function checks that r is indeed
the root of the spanning tree. The second function checks for every vertex v different
from r that the edge parent -edge[v] is incident to v and that the other endpoint of the
edge has a number one smaller than num[v].

The first step in the C verification is calling the C-to-Isabelle parser and invoking
AutoCorres. As in Simpl, for each function in the code we prove a corresponding spec-
ification lemma, formulated as a Hoare triple and reasoned about using a VCG. The ter-
mination proof of the checkers is as trivial as in the Simpl case. For proving functional
correctness, we introduce some helper functions that assist in relating the implemen-
tation types to Isabelle types. For example, the abstraction predicate array list, arrlist ,
takes as input the state of the heap h, a list l and a pointer p and checks whether p points
in h to an array containing the values of l. We also introduce a set of lemmas to ease
dealing with bounded numbers.

We prove that the checker function checks the conditions in Fig. 1. This proof hap-
pens under the assumption that the pointers to the graph, to its edges, to num and to
parent -edge can be abstracted to Isabelle datatypes (using the arrlist predicate).

Verification of Certifying Computations 51

definition parent-num-assms-inv : IGraph⇒IVert⇒IPEdge⇒INum⇒nat⇒bool
where parent-num-assms-inv G r p n k ≡ ∀ k < i. i �= r→ (case p i of None ⇒ False
| Some x⇒ x < iedge-cnt G ∧ snd (iedges G x) = i ∧ n i = n (fst (iedges G x)) + 1)

procedures parent-num-assms
(G : IGraph , r : IVert , parent-edge : IPEdge , num : INum | R : bool)

in ANNO (G, r, p, n). {| G = G ∧ r = r ∧ parent-edge = p ∧ num = n |}
where vertex : IVert , edge-id : Edge-Id

R := True ; vertex := 0 ;
TRY
WHILE vertex < ivertex -cnt G
INV {| R = parent-num-assms-inv G r parent-edge num vertex
∧ vertex ≤ ivertex -cnt G|} VAR MEASURE (ivertex -cnt G − vertex)

DO
IF (vertex �= r) THEN

IF parent-edge vertex = None THEN R := False ; THROW FI ;
edge-id := the (parent-edge vertex) ;
IF edge-id ≥ iedge-cnt G ∨ snd (iedges G edge-id) �= vertex
∨ num vertex �= num (fst (iedges G edge-id)) + 1 THEN R := False ; THROW FI

FI ;
vertex := vertex + 1

OD
CATCH SKIP END {|R=parent-num-assms-inv G r parent-edge num (ivertex -cnt G)|}

lemma (in parent-num-assms-impl) parent-num-assms-spec:
∀G r p n. Γ�t{|G = G ∧ r = r ∧ parent-edge = p ∧ num = n|}
R := PROC parent-num-assms (G, r, parent-edge, num)
{| R = parent-num-assms-inv G r p n (ivertex -cnt G)|}

Fig. 2. Excerpts from the Simpl implementation and verification of connectedness. The
Lemma parent-num-assms-spec, formulated as a Hoare triple, states that the procedure
parent-num-assms terminates (indicated by �t) and computes parent-num-assms-inv . Ob-
serve the distinction between logical and program variables; x versus x for a variable with
name x.

Experiences and Lessons Learned. The verification of this checker assures us that the
AutoCorres approach is feasible. The effort for the verification of the C-version of the
connectedness checker was about the same as in the VCC approach. VCC knows more
about C and this made it easier to reason about the C-program. This advantage would
show even more clearly in programs that use low-level features of C more intensively,
e.g., bit operations on words. On the other hand, one is forced to formalize a small
number of graph-theoretic concepts such as path in two logical systems, this compli-
cates the VCC-approach. A small number sufficed because verifying that the C-checker
correctly checks the assumptions from Fig. 1 needs no graph-theoretic knowledge and
hence there is a clear separation of labor between VCC and Isabelle/HOL. The dis-
advantage of double formalization shows more clearly in programs that need complex
mathematical reasoning in the checker correctness proof and hence would require for-
malizing more advanced concepts in VCC. The checker for non-planarity presented in

52 L. Noschinski, C. Rizkallah, and K. Mehlhorn

the next section is an example to this effect. There the correctness proof of the pro-
gram requires graph-theoretic reasoning. If we had tried to verify this example using
the VCC-approach, we would have had to formalize a non-trivial theory twice.

The connectedness checker verified using the VCC approach [2] has an unintended
weakness. Not every representable connected graph has a spanning tree that could be
represented as input to the checker. This is because the vertices of the graph were rep-
resented as unsigned int and the array num had type unsigned short; this holds true
for the program actually verified, not for the program listed in the paper. Thus graphs
having no spanning tree of depth bounded by the size of unsigned short had no rep-
resentable witness. VCC had no difficulties in automatically verifying that the addition
in the C equivalent of num (fst (iedges G edge-id)) + 1 (see Fig. 2) does not overflow,
because types smaller than int are lifted to int for arithmetic operations in C. In the
AutoCorres verification, we had to manually prove that s + 1 ≤ u, where s and u are
the maximum values of unsigned short and int, respectively. This led us to notice and
modify the type of num in the checker to unsigned int. Now the addition could poten-
tially overflow and we need to show that it does not. This is proven by strengthening
the loop invariant to infer that num-value cannot exceed the number of vertices and
hence does not overflow in a correct witness. In order to prove that the checker accepts
if and only if the assumptions in Listing 1 hold one needs the stronger witness property
mentioned above. Even though in this case manually discharging guards was useful, it
demonstrates that VCC saves effort when it comes to automatically discharging guards.

Non-planarity of Graphs. One of the motivating examples for the introduction of
certified algorithms in the LEDA library is the planarity test [21]. The planarity check
in LEDA takes as input a graph x and returns y = True and a combinatorial planar
embedding w of x if x is planar or y = False and a Kuratowski subgraph w of x
otherwise. On a high level, we instantiate the general framework as follows:

input x = an undirected graph G = (V,E), possibly with loops
output y = either True or False

witness w = combinatorial planar embedding or Kuratowski subgraph
ϕ(x) = G is well-formed, i.e., E ⊆ V × V where V and E are finite.

ψ(x, y) = If y is True, x is planar, else x is not planar.

In this paper, we restrict ourselves to the case y = False . Then W(x,False, w) holds
iff w is a Kuratowski subgraph of x. Let K5 be the complete graph on five vertices
and K3,3 the complete bipartite graph on three and three vertices. We call K3,3 and
K5 Kuratowski graphs. Kuratowki’s theorem is the basis for our formalization of non-
planarity (see Fig. 3).

Theorem 1 (Kuratowski). A graph K is a Kuratowski subgraph of G if K is a sub-
graph of G and the subdivision of a Kuratowski graph. A graph G is planar if and only
if it has no Kuratowski subgraph.

Witness Predicate. The key step of the checker is testing whether the certificate K is
a subdivision of a K3,3 or K5. One option is to repeatedly take a node of degree 2
and contract it. In an imperative implementation this requires the program to work on a

Verification of Certifying Computations 53

subdivide(K, (u, v), w) = (V (K) ∪ {w}, (E(K) \ {uv}) ∪ {uw, vw})
planar(G) = ¬(∃K. K ≤ G ∧ (∃H. subdivision(H,K) ∧ (K3,3(H) ∨K5(H))))

Fig. 3. Characterization of planarity. subdivision(H,K) is the minimal predicate satisfying the
following rules: H is a subdivision of itself and if K is a subdivision of H , e is an edge of K, and
w is a new vertex, then subdivide(K, e,w) is a subdivision of H . By≤, we denote the subgraph
relation.

(a) G (b) all ipaths (c) contracted graph

Fig. 4. A graph G and its ipaths and contracted graph (V3(G) in black). Neither the isolated circle
nor the node of degree 1 are on any ipath (or in V3(G)), so they do not contribute to the contracted
graph.

copy of K (or to modify the input). Instead, we follow the method used in LEDA [21]
and compute the contraction of K in single step and check whether the contraction is a
Kuratowski graph. This requires only a constant amount of memory.

Definition 1 (Contraction). Let G be a graph and V3(G) be the set of all vertices
of G with degree at least three. Let E′ be such that uv ∈ E′ iff u, v ∈ V3(G) and
there is a path in G connecting u and v whose interior vertices are not in V3(G). Then
G′ = (V3(G), E′) is the contraction of G. A path with end nodes in V3(G) and interior
nodes in V (G) \ V3(G) is called an ipath. See Fig. 4 for an illustration.

Note that in general G is not a subdivision of its contraction. In particular, vertices
of degree one or less and isolated cycles are discarded and cannot be reconstructed
by subdivision. Nevertheless, contraction gives us a useful over-approximation of the
Kuratowski subgraphs, as demonstrated by the following lemmas.

Lemma 1. Let K be a graph and H the contracted graph of K . Then there exists a
subgraph K ′ of K such that K ′ is a subdivision of H . In particular, if H is a K3,3 or
K5 and K a subgraph of a graph G, then G is not planar.

Lemma 2. Let H be a Kuratowski graph. If K is a subdivision of H , then H is the
contracted graph of K . In particular, if K is a Kuratowski subgraph of a graph G, then
the contracted graph of K is a Kuratowski graph.

We prove both properties in Isabelle. To this end, we introduce the class of slim graphs.
These correspond to those graphs on which contraction is an inverse to subdivision. The
contraction of a non-slim graph G is also the contraction of a slim subgraph of G and
the above lemmas derive from that. For details of the proof see [24].

54 L. Noschinski, C. Rizkallah, and K. Mehlhorn

Based on this, we give a new witness predicate W ′ as follows: W ′(x,False , w)
holds if and only if w is well-formed and a loop-free subgraph of x such that the con-
tracted graph of w is a Kuratowski graph. Then Lemma 1 ensures the witness property.
Lemma 2 ensures that W ⊆ W ′, i.e., all certificates of non-planarity are accepted.

Implementation and Verification. The implementation of the checker is roughly divided
into four steps: (1) Test whether K is a subgraph of G. (2) Test whether K is loop-free.
(3) Compute H by contracting K . (4) Test whether H is a Kuratowski graph. The input
is accepted if and only if all four tests succeed. The test for loop-freeness is not needed
for correctness, but simplifies the verification of the contraction step. We verified the
full algorithm, but focus on step (3) in this write-up. We use a different representation
of graphs than in the previous example (see Fig. 5), as we need to encode vertices
explicitly (and not only the number of vertices) to represent subgraphs.

The code to compute the contraction of K consists of three parts: First, the graph H
is created by taking all vertices of degree three or more (and no edges) of K; if there
are more than 6 such vertices, the certificate is rejected. The core of the computation
is then performed by the function find-endpoint (Fig. 6): For a given vertex vstart ∈
V (H) and an incident edge e ∈ E(G) (given by its other endpoint vnext), it computes
implicitly the ipath of G starting with this edge end returns its last vertex (if it exists).
The contracted edge described by this ipath is then added to H .

Checker Correctness. We assume that the input and certificate are well-formed graphs.
Most of the termination arguments are pretty trivial (loops counting upwards to some
constant), but termination of find-endpoint is not obvious: The procedure implicitly
constructs an ipath, adding a vertex in every iteration. Termination follows as the length
of an ipath is bounded by the number of vertices.

For partial correctness, the checker returns true if and only if W ′(x, False, y) holds.
In the verification, most of the work is needed for step (3). To prove the specification of
find-endpoint (Fig. 7) one needs to show that a maximal path where all interior nodes
are of degree two is uniquely determined by its first edge. From this it follows relatively
easily that calling find-endpoint for all nodes and their incident edges determines all
edges of the contracted graph. Without referring to the mathematical background theory,
both termination and partial correctness would be hard to prove.

Verifying the C Implementation. There are some differences between the Simpl and C
implementations. In C, Graphs are not represented as a pair of lists, but as a struct with
two pointers to arrays, and instead of natural numbers, we use bounded machine words.
Finally, in Simpl, basic graph operations like “vertex contained” were stated as Isabelle
expressions. In C, they need to be implemented and verified.

AutoCorres provides a natural translation of C code, so we hoped that for the verifi-
cation of the C program, we could start with the the Simpl proof and fill in the gaps: i.e.,
abstract memory accesses and datatypes to the ones used in the Simpl proof and verify
the functions not implemented before. The latter was indeed straight-forward. Similarly,
abstracting the heap to the graph datatypes of Isabelle was tedious, but straight-forward,
following established schemes [22]. Most of the additional effort was needed because of
the bounded precision integers. This was somewhat surprising, because the only arith-
metic operations occurring in the program are equality and increment against a fixed
upper bound.

Verification of Certifying Computations 55

struct edge t {
unsigned start;
unsigned target; };

struct graph t {
unsigned vert cnt;
unsigned edge cnt;
unsigned ∗verts;
struct edge t ∗edges; };

struct contr t {
unsigned char vert cnt;
unsigned verts[6];
unsigned char

edges[6][6]; };

Fig. 5. C datastructures for graphs. graph t represents a graph by a list of vertices and a list of
edges. contr t represents the contracted graph as an adjacency matrix.

procedures find-endpoint (G : IGraph ′,
H : IGraph ′, vstart : IVert , vnext : IVert
| R : IVert option)

where
found : bool , i : nat , len : nat , v0 : IVert ,
v1 : IVert , vt : IVert io-edges : ig-edge list,

TRY
IF vstart = vnext THEN RAISE R := None FI ;
v0 := vstart ; v1 := vnext ; len := 1 ;
WHILE v1 �∈ set (ig-verts H) DO
io-edges := ig-in-out-edges G v1 ;
i := 0 ; found := False ;
WHILE ¬found ∧ i < length io-edges DO
vt := ig-opposite G (io-edges ! i) v1 ;
IF vt �= v0 THEN
found := True ; v0 := v1 ; v1 := vt FI ;
i := i + 1

OD ;
len := len + 1 ;
IF ¬ found THEN RAISE R := None FI

OD ;
IF v1 = vstart THEN RAISE R := None FI ;
R := Some v1

CATCH SKIP END

unsigned find endpoint(struct graph t ∗g,
struct contr t ∗h, unsigned v start,
unsigned v next) {

unsigned v0 = v start;
unsigned v1 = v next;

while (tmp get index(h, v1) ≡ −1) {
unsigned i;
for (i=0; i < edge cnt(g); i++) {

unsigned vt = opposite(v1,
edge(g,i));

if (vt �= v0 ∧ vt �= −1) {
v0 = v1;
v1 = vt;
break;

}
}
if (i ≡ edge cnt(g)) return−1;

}
if (v1 ≡ v start) return−1;
return v1;

}

Fig. 6. The function find-endpoint in Simpl and C. H (resp. h) is the preliminary contracted graph.
The function implicitly constructs an ipath by adding vertices until a vertex of degree 3 (i.e., in H)
is reached. The if-statement in the inner loop ensures that the algorithm does not go back the edge
from the previous iteration. If the outer loop aborts abnormally, then no vertex in H is reachable
from vstart via (vstart, vnext). The Simpl implementation uses relatively high-level datastructures,
like sets and list.

∀σ. Γ �t {|σ. iverts H = iverts3 G ∧ loop-free (mk-graph G) ∧ vstart ∈ set (iverts H)
∧ iadj G vstart vnext ∧ IGraph-inv G|}
R := PROC find-endpoint(G, H, vstart, vnext)

{|case R of None ⇒¬(∃p w. ipath (mk-graph σG) σvstart (σvstartσvnext # p) w)
| Some w⇒ (∃p. ipath (mk-graph σG) σvstart (σvstartσvnext # p) w) |}

Fig. 7. Specification of find-endpoint: If H has all degree-3 nodes of G and G has no loops, then
the procedure decides the existence of an ipath starting with the nodes vstart and vnext. mk-graph
abstracts a graph and σx refers to the value of x before the execution.

56 L. Noschinski, C. Rizkallah, and K. Mehlhorn

There are mainly two reasons for the problems we encountered with words: First,
Isabelle has only weak support for proving properties involving words automatically.
Second, such properties often occur not on their own, but as side-conditions in a larger
proof. While Isabelle’s automatic proof tools can often discharge such properties for
natural numbers, they cannot do so for words and therefore fail, leaving the user to
solve the goal mostly manually.

4 Abstraction

The issues with reasoning about functions using words motivated us to implement an
abstraction framework for AutoCorres programs. The idea is to take the original func-
tion f and give a modified implementation f ′ that uses natural numbers instead of
words. With the help of the abstraction framework, we prove f and f ′ to be equivalent
and then perform verification on the abstracted function.

Abstraction or refinement is a well-known idea going back to Dijsktra [13] and
Wirth [28] and put into a formal calculus by Back [3]. In particular, AutoCorres uses
this technique to get from the Simpl program generated by the C parser to the sim-
plified version presented to the user. We want to change two things in the abstraction
process: Where appropriate, we want to replace words by natural numbers. For this, we
also need to insert a guard before each operation on words that asserts that there will
be no overflow (these guards then need to be discharged in the correctness proof of the
abstract function). Moreover, we want to be able to insert ghost code (and ghost state),
i.e., additional computations which have no influence on the outcome of the function.
Such ghost code is often useful for stating loop invariants.

However, the abstraction framework used by AutoCorres [27] is unsuited for our
purposes: It expects that each state in the concrete program corresponds to at most one
state in the abstract program. This makes it difficult to insert ghost code. Moreover,
although the given proof rules are syntax directed they must be applied in a guided
manner, this makes them harder to use. Therefore, we give our own definition.

Recall that a computation in the nondeterministic state monad returns a failure flag
and a set of states. For a relation rel on states, we define a relation refines on abstract.
resp. concrete program statements A and C:

refines rel A C = (¬fail A −→ (¬fail C ∧ ∀c ∈ st C. ∃a ∈ st A. (a, c) ∈ rel)

In particular, instead of proving correctness for the concrete program, we can prove
correctness for the abstract program. We only give a simplified version here, which does
not allow abstracting the heap. A state is a pair (r, h), where r is the return value of the
previous command (often a tuple) and h is the heap.

Lemma 3. Let PA and PC be programs (i.e., functions from state to program state)
and rel be a relation on states. The Hoare triple

{|Q|} PC {|R |}!
states that PC is totally correct w.r.t. to the precondition Q (a predicate on heaps) and
the postcondition R (a predicate on value/heap pairs). Assume that

∀h. Q h −→ refines rel (PA h) (PC h)

Verification of Certifying Computations 57

i.e., for all heaps satisfying a precondition Q the result of the abstract and concrete
programs are related. In addition, assume that

{|Q|}PA{|λrA sA. ∀rC sC . ((rA, sA), (rC , sC)) ∈ rel −→ R rC sC |}!

i.e., for a heap h satisfying Q, the result of PA h is related to a concrete program state
satisfying R. Then the concrete program PC satisfies the specification above.

To prove that two programs are related, we provide a syntax directed proof proce-
dure which compares the two programs instruction by instruction. This requires the two
programs to be very similar in structure. This is the case in our application. The central
rule of the proof procedure is the rule for sequential composition.

Lemma 4 (Refinement of Sequential Composition). Let PA,1 be a program and PA,2

a function mapping a return value of PA,1 to a program (similarly for PC,1, PC,2).

[[refines rel (PA,1 hA) (PC,1 hC);

∀((rA, hA), (rC , hC)) ∈ rel . refines rel ′ (PA,2 rA hA) (PC,2 rC hC)]]

=⇒ refines rel ′ ((PA,1 �= PA,2) hA) ((PC,1 �= PC,2) hC)

Here, �= is the operator for sequential composition. (P1 �= P2) h calls P1 with heap
h, and, for every pair (r2, h2) in the result of P1 h, calls P2 r2 h2. The union of the
results is returned.

Note that the relation rel w.r.t. which PA,1 and PC,1 are refined is not fixed a pri-
ori. Our verification condition generator will synthesize it during the proof, using the
following basic blocks:

– A refinement relation for words: {(n,w) | n = unat w}. Here, unat is the conver-
sion from words to natural numbers.

– The identity relation.
– A ghost relation, allowing the introduction of an additional stack variable in the

abstracted program: {(((g, r), h), (r′, h′)) | ((r, h), (r′, h′))}

These are put together with the help of a pairing relation {((r, h), (r′, h′)) | (r, r′) ∈
rrel ∧ (h, h′) ∈ hrel}.

Putting Abstraction to Use. For the Kuratowski checker, our proof process is as follows:
For each function f containing word arithmetic, we make a copy f ′ of this function, in
which we replace words by natural numbers. For each arithmetic operation, we insert
a guard stating that this operation would not overflow on words (see Fig. 8). Where
necessary, we also add ghost code and annotate loops with invariants. One example of
this is function find-endpoint, where we add an variable holding the computed ipath and
use this in the invariant. Note that the ghost code can use arbitrary Isabelle expressions.
Then we prove that f ′ is an abstraction of f , using the verification condition generator
sketched in the previous section. The proof is mostly automatic; we only need to prove
simple properties about words and natural numbers.

58 L. Noschinski, C. Rizkallah, and K. Mehlhorn

return ((i : 32 word) + 1)

(a) concrete program

guard (λ . (i : nat) < unat (max -word : 32 word));
return (i + 1)

(b) abstract program

Fig. 8. Abstraction of word arithmetic. The guard ensures that the operations on words and natural
numbers behave the same. For the refinement proof, we write ADD guard instead of guard as a
hint for our syntax directed VCG.

5 Evaluation

After abstraction, verification of the non-planarity checker follows closely the proof
of the Simpl program. Overall, we conclude that the use of AutoCorres provides a
viable alternative to the VCC approach for the verification of certifying computations.
Moreover, we can profit from a previous verification of the algorithm. However, it is
necessary to lift the C program to a similar level of abstraction as the pseudo code. This
could not be achieved with the facilities provided by AutoCorres alone, but required us
to implement our own refinement framework. The effort of developing this framework
is required only once and can be reused for future verifications.

It is worth noting that there is parallel work adding automatic abstraction of words
into AutoCorres [16]. However, when verifying a program, one is likely to encounter
other datatypes that need a custom abstraction. In addition, our abstraction framework
gives the option of adding ghost code, which is known to ease the formulation of in-
variants.

Both the Simpl and the C implementation of the Kuratowski checker consist of
around 300 lines of code (the Simpl syntax is more verbose than C). The verifica-
tion of the Simpl checker was done in 1300 lines. The verification of the C checker
required 3200 lines and 1400 lines for the refinement framework. Of the 3200 lines,
900 deal with heap abstraction and access and the verification of basic graph operations
not implemented in the Simpl code.

6 Related Work

Verifying code within interactive theorem provers is a an active field of research. The
seL4 microkernel that is written in low-level C was verified within Isabelle/HOL using
the C-to-Isabelle parser [17]. The underlying approach is refinement starting from an
abstract specification via an intermediate implementation in Haskell to the final C code.
Coq [5] was used both for programming the CompCert compiler and for proving its
correctness [18]. CFML is a verification tool embedded in Coq that targets imperative
Caml programs [10]. It was used to verify several imperative data structures.

Shortest path algorithms, especially imperative implementations thereof, are popu-
lar as case studies for demonstrating code verification [10,8]. They target full functional
correctness as opposed to instance correctness. Verifying instance correctness is orthog-
onal to verifying the implementation of a particular algorithm and it is a tempting choice
that also attracted much attention. In 1997, a checker for sorting algorithms has been
developed and verified [9]. The DeCert project aims to design an architecture where

Verification of Certifying Computations 59

either decision procedures are proven correct within Coq or produce witnesses allow-
ing external checkers to verify the validity of their results, [6] provides an example. In
recent work [2], a general framework to verify certifying computations is developed.

7 Conclusion

In this paper, we explored an alternative to the VCC approach, which provides higher
trust guarantees, and verified checker for graph non-planarity. To our knowledge, no
algorithm or checker for graph non-planarity was verified before.

The LEDA project [21] has shown that the concept of certifying computations eases
the construction of libraries of reliable implementations of complex combinatorial and
geometric algorithms. Reliability is increased because the output of every computation
is checked for correctness by a checker program. Checker programs are relatively sim-
ple and hence easier to implement correctly than the corresponding solution algorithms.
Certifying algorithms are available for a large number of algorithmic problems [19].

Our AutoCorres approach does not use VCC; the entire verification is done in Is-
abelle/HOL. We did so for three reasons: (1) The VCC approach, with its use of two
different tools requires the formalization of certain concepts in two theories, a dupli-
cation of effort. (2) Furthermore, it requires trust in VCC, a fairly complex program.
We have no reason not to trust the program. However, as a matter of principle, the
trusted code base should be kept as small and simple as possible. (3) The recent tool
AutoCorres [15] promised to greatly simplify reasoning about C in Isabelle.

Our experience with AutoCorres is positive. The AutoCorres approach presented in
this paper yields a viable alternative to the VCC approach. It is particularly useful when
the verification requires domain-specific reasoning (e.g., graph theory, as it was the case
for the non-planarity checker).

The implementation of each of the advanced algorithms in LEDA took several man-
months (recollection of the third author). In comparison, with either approach, it took
less time to verify the checker. Note that the non-planarity checker is amongst the most
complex checkers in LEDA. The verification time is likely to go down with increased
experience and development of the tools (cf. [16]). In particular, we extended Auto-
Corres with a reusable abstraction framework. We find that our work demonstrates that
the development of libraries of certifying programs with formally verified checkers is
feasible at reasonable cost.

Acknowledgement. We thank David Greenaway and Thomas Sewell for their advice
on using AutoCorres and for their feedback on the paper. We also thank Jasmin Chris-
tian Blanchette for his feedback on the paper.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall (1993)
2. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: A framework for the verification of

certifying computations. JAR (2013), doi:10.1007/s10817-013-9289-2

60 L. Noschinski, C. Rizkallah, and K. Mehlhorn

3. Back, R.J.R.: Correctness preserving program refinements: Proof theory and applications.
Mathematical Centre tracts. Mathematisch centrum (1980)

4. de Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algo-
rithms and Applications. Springer (1997)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development—Coq’Art:
The Calculus of Inductive Constructions. Springer (2004)

6. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Certified result checking for polyhedral
analysis of bytecode programs. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC
2010, LNCS, vol. 6084, pp. 253–267. Springer, Heidelberg (2010)

7. Blum, M., Kannan, S.: Designing programs that check their work. In: STOC, pp. 86–97
(1989)

8. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie—An interactive prover for the Boogie
program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 150–166. Springer, Heidelberg (2008)

9. Bright, J.D., Sullivan, G.F., Masson, G.M.: A formally verified sorting certifier. IEEE Trans-
actions on Computers 46(12), 1304–1312 (1997)

10. Charguéraud, A.: Characteristic formulae for the verification of imperative programs. In:
ICFP, pp. 418–430 (2011)

11. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 167–182.
Springer, Heidelberg (2008)

12. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

13. Dijkstra, E.W.: Notes on structured programming. Technological University Eindhoven
Netherlands (1970)

14. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Com-
putation. LNCS, vol. 78. Springer, Heidelberg (1979)

15. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified abstraction
of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 99–115. Springer,
Heidelberg (2012)

16. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: Formal verifi-
cation of c code without the pain. In: PLDI (2014) (to appear)

17. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an operating-system kernel. CACM 53(6), 107–115 (2010)

18. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
19. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer

Science Review 5(2), 119–161 (2011)
20. Mehlhorn, K., Näher, S.: From algorithms to working programs: On the use of program

checking in LEDA. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
pp. 84–93. Springer, Heidelberg (1998)

21. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing.
Cambridge University Press (1999)

22. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Information and Com-
putation 199, 200–227 (2005)

23. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

Verification of Certifying Computations 61

24. Noschinski, L.: A graph library for Isabelle (2013),
http://www21.in.tum.de/˜noschinl/documents/
noschinski2013graphs.pdf (submitted)

25. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. Ph.D. thesis,
Technische Universität München (2006)

26. Sullivan, G.F., Masson, G.M.: Using certification trails to achieve software fault tolerance.
In: FTCS, pp. 423–431 (1990)

27. Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D., Norrish, M.: Mind the gap: A
verification framework for low-level C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 500–515. Springer, Heidelberg (2009)

28. Wirth, N.: Program development by stepwise refinement. CACM 14(4), 221–227 (1971)

http://www21.in.tum.de/~noschinl/documents/noschinski2013graphs.pdf
http://www21.in.tum.de/~noschinl/documents/noschinski2013graphs.pdf

Distinguishing Sequences for Partially Specified

FSMs

Robert M. Hierons1 and Uraz Cengiz Türker2

1 School of Information Systems, Computing and Mathematics, Brunel University,
Uxbridge, Middlesex, UK

rob.hierons@brunel.ac.uk
2 Sabancı Üniversitesi Orta Mahalle, Üniversite Caddesi No: 27, 34956

Tuzla-Istanbul, Turkey
urazc@sabanciuniv.edu

Abstract. Distinguishing Sequences (DSs) are used in many Finite State
Machine (FSM) based test techniques. Although Partially Specified FSMs
(PSFSMs) generalise FSMs, the computational complexity of construct-
ing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been
addressed. This paper shows that it is possible to check the existence of
an ADS in polynomial time but the corresponding problem for PDSs is
PSPACE-complete. We also report on the results of experiments with
benchmarks and over 8 ∗ 106 PSFSMs.

1 Introduction

Model Based Testing (MBT) techniques and tools use behavioural models and
generally operate on either finite state machines (FSMs) or labelled transition
systems (LTSs) that define the semantics of the underlying model. There has
been significant interest in automating testing based on an FSM or LTS model
in areas such as sequential circuits [1], lexical analysis [2], software design [3],
communication protocols [3–12], object-oriented systems [13], and web services
[14–17]. Such techniques have also been shown to be effective when used in
significant industrial projects [18].

The literature contains many approaches that automatically generate test
sequences from FSM models of systems [11, 19–26]. The reader may also refer
to [8, 27, 28] for detailed surveys of such methods. These methods are based on
fault detection experiments [29], a methodology in which an input sequence x̄
is applied to the implementation under test (IUT) N and the resultant output
sequence is compared to that produced when x̄ is applied to the specification M .
The core principles of fault detection experiments were outlined by Moore [30],
who introduced Checking Experiments and Checking Sequences (CEs, CSs). A
CS is a single test case (input sequence) that is guaranteed to lead to a failure
if the IUT is faulty, assuming that it has no more states than the specification.
A CE is a set of test cases that has this guaranteed fault detection ability.

The literature contains many techniques that automatically generate check-
ing sequences [3, 30–36]. Most approaches consist, in-principle, of three parts:

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 62–76, 2014.
c© Springer International Publishing Switzerland 2014

Distinguishing Sequences for Partially Specified FSMs 63

initialization, state identification, and transition verification. The third part can
be seen as identifying the starting and ending states of the transitions. Many
techniques for constructing CSs use distinguishing sequences (DSs) to resolve
the state identification problem. There are two reasons for the interest in DSs:
there are polynomial time algorithms that generate CSs when there is a known
DS and the length of the CS is relatively short when designed with a DS
[31, 32, 37, 33, 34]1. There are other approaches such as Unique Input Out-
put (UIO) sequences or Characterizing Sets (W-Set) that can be used to identify
the current state of the IUT. However, these lead to longer CSs [38]. A DS can
be preset or adaptive: if the input sequence applied is fixed then the DS is a
Preset Distinguishing Sequence (PDS) and otherwise, when the next input to
be applied depends on the response to the previous input, it is an Adaptive Dis-
tinguishing Sequence (ADS)2. Throughout the paper we refer to PDS or ADS
when we write DS.

1.1 Motivation and Problem Statement

It has been long known that in practice, FSM specifications are often partial
meaning that some state-input combinations do not have corresponding tran-
sitions [40–43]. Such FSMs are called Partially Specified FSMs (PSFSMs). For
PSFSMs the traditional state identification methodologies usually are not appli-
cable [20, 44]. The FSM based testing literature usually applies the Completeness
Assumption [45, 46], which states that the FSMs used are completely specified.
This is justified by assuming that a PSFSM can be completed by, for example,
adding transitions with null output.

Although it is sometimes possible to complete a PSFSM, as reported by Pe-
trenko and Yevtushenko [44], this is far from being a solution to the general state
identification problem for PSFSMs. For example, sometimes there being no tran-
sition from state s with input x corresponds to the situation in which x should not
be received in state s and testing should respect such a restriction. This might be
the case if the test cases are to be applied by a context that cannot supply the un-
specified inputs [44]. It has been observed that it is possible to test the IUT via an-
other FSM (tester FSM) such that the tester FSM may never execute the missing
transitions, which partially bypasses the completeness assumption [47, 48]. Nev-
ertheless, in the FSM based testing literature we know of only one paper [39] in
which the CS generation problem is addressed for PSFSMs. Although the method
proposed [39] introduces a polynomial time algorithm, the algorithm assumes that
DSs are known in advance but does no report how one can derive DSs for the un-
derlying PSFSM. As far as we are aware, no previous work has investigated the
problem of generating a DS from a PSFSM.

These observations form the motivation for the work reported in this paper,
which explores the complexity of deciding the existence of a DS for a given
PSFSM. We examine the following problems.

1 While the upper bound on PDS length is exponential, test generation takes polyno-
mial time if there is a known PDS.

2 ADSs are also called Distinguishing Sets [31, 39].

64 R.M. Hierons and U.C. Türker

Definition 1 (PDS-Existence Problem). Given a PSFSM M , is there a
PDS for M?

Definition 2 (ADS-Existence Problem). Given a PSFSM M , is there an
ADS for M?

1.2 Practical Implications of Our Results and Future Directions

We show that it is possible to decide in polynomial time whether a PSFSM
has an ADS. As a result of this, where a PSFSM has an ADS it is possible to
generate a CS in polynomial time using a previously defined algorithm [39] and
there is the potential to extend other technique for generating a CS from an
FSM. This can all be achieved without making the Completeness Assumption,
leading to test generation algorithms that can be applied where there being no
transition from state s with input x corresponds to the situation in which x
should not be received in state s and testing should respect such a restriction.
This paper reports the results of initial experimental studies in which PSFSMs
were randomly generated and it was found that relatively few of these PSFSMs
had an ADS or a PDS. In contrast, we analysed a benchmark that has PSFSM
specifications of digital circuits and found that where a PSFSM had a DS it was
usually of a reasonable length.

The computational complexity results regarding PDSs are less positive. How-
ever, there may be scope to develop Greedy Algorithms for constructing PDSs
for PSFSMs and we see this as an interesting research direction. While it might
seem that ADSs are preferable to PDSs, there are benefits to using preset DSs.
In particular, preset sequences can be applied using a simpler test infrastruc-
ture and sometimes there are timing constraints that make it difficult to apply
adaptive tests since, for example, they can lead to the IUT timing out.

1.3 Summary of the Paper

Section 2 introduces terminology and notation that we use throughout the paper.
Section 3 examines the computational complexity of checking the existence of
PDSs and Section 4 considers the complexity of checking the existence of ADSs.
Section 5 presents the results of experiments. Finally we conclude our discussion.

2 Preliminaries

A PSFSM M is defined by tuple (S,X, Y, δ, λ,D) where S = {s1, s2 . . . sn} is
the finite set of states, X = {a, b, . . . , p} and Y = {1, 2, . . . , q} are finite sets
of inputs and outputs, D ⊆ S ×X is the domain, δ : D → S is the transition
function, and λ : D → Y is the output function. If (s, x) ∈ D then x is defined
at s. Given input sequence x̄ = x1x2 . . . xk and s ∈ S, x̄ is defined at s if there
exist s1, s2, . . . sk+1 ∈ S such that s = s1 and for all 1 ≤ i ≤ k, xi is defined at
si and δ(si, xi) = si+1. M is completely specified if D = S ×X and otherwise is

Distinguishing Sequences for Partially Specified FSMs 65

partially specified. If (s, x) ∈ D and x is applied when M is in state s, M moves
to state s′ = δ(s, x) and produces output y = λ(s, x). This defines transition
τ = (s, x/y, s′) and we say that x/y is the label of τ , s is the start state of τ ,
and s′ is the end state of τ .

We use juxtaposition to denote concatenation. The transition and output
functions can be extended to input sequences as follows in which ε is the empty
sequence, x ∈ X , x̄ ∈ X�, and xx̄ is defined at s: δ(s, ε) = s and δ(xx̄) =
δ(δ(s, x), x̄); λ(s, ε) = ε and λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄). If there exists x̄ ∈ X∗

defined in s and s′ such that λ(s, x̄) �= λ(s′, x̄), then x̄ distinguishes s and s′.
We now define Preset DSs and Adaptive DSs.

Definition 3. Given PSFSM M , x̄ ∈ X∗ is a Preset Distinguishing Sequence
for M if all distinct states of M are distinguished by x̄.

Definition 4. Given PSFSM M = (S,X, Y, δ, λ,D), an Adaptive Distinguish-
ing Sequence is a rooted tree A such that the following hold. Each node is labeled
by a set of states and the root is labeled by S. Each leaf of A is labeled by a
singleton set. Each edge is labeled by an input/output pair.

Let us suppose that node v has state set S′. If v has one or more outgoing
edges then these edges are labeled by the same input x, x is defined in all states
in S′, and if there exists s ∈ S′ such that λ(s, x) = y then there is a unique edge
(v, x/y, v′) such that v′ is labeled with the set S′′ = {s′′ ∈ S|∃s′ ∈ S′.λ(s′, x) =
y ∧ δ(s′, x) = s′′} of states reached from S′ by a transition with label x/y.

If v has state set S′ ⊆ S and has one or more outgoing edges then the input
x on these edges satisfies the following property: for all s, s′ ∈ S′ with s �= s′ we
have that either λ(s, x) �= λ(s′, x) or δ(s, x) �= δ(s′, x).

An ADS defines an experiment ending in a leaf. From the last condition,
two states cannot be mapped to the same state unless they have already been
distinguished. Applying A in s ∈ S leads to the input/output sequence that
labels both a path from the root of A to a leaf and a path of M with start state
s. From the definition, the input/output sequences for distinct states differ and
so A distinguishes the states of M .

3 Preset Distinguishing Sequences

The following immediately follows from the PSPACE hardness of PDS existence
problem for completely specified FSMs [34].

Lemma 1. Theproblemofdecidingwhether aPSFSMhasa PDS isPSPACE-hard.

We now give an upper bound for the length of a minimal PDS to use in the
proof that the PDS existence problem is in PSPACE, adapting the approach for
FSMs [49]. Throughout the following S, S̄ are sets of states. Sequence x̄ ∈ X∗

splits S̄ if it distinguishes two or more states of S̄ and for all distinct s, s′ ∈ S̄,
δ(s, x̄) = δ(s′, x̄) ⇒ λ(s, x̄) �= λ(s′, x̄). We let n = |S|, m = |S̄| and ν = |x̄|. We
write x̄i to denote the ith input of x̄ and prei(x̄) to denote the prefix of length i.

66 R.M. Hierons and U.C. Türker

We also write δ(s, prei(x̄)) to denote the state reached when we apply prei(x̄)
at s and by abusing notation we write δ(S̄, prei(x̄)) =< δ(s, prei(x̄))|s ∈ S̄ > to
denote a vector of states called a state configuration.

A minimal PDS x̄ is of the form x̄1x̄2 . . . x̄p where the partition on S in-
duced by prefixes of x̄ changes (becomes more refined) on the last inputs of the
x̄k. In the worst case, prefix x̄1x̄2 . . . x̄k distinguishes k states from all others
and so at the end of this either the start state is known or we have a set S̄ of
n− k states that are possible ‘current states’. This is the worst case because it
maximises the size of S̄. Consider x̄k and S̄. When reasoning about the appli-
cation of x̄k from S̄ we can can refer to the set of states reached from S̄ by a
prefix x̄i

k. This leads to a data structure, that we call an input-state configura-
tion, that combines the prefix x̄i

k with the state information and is represented
by < x̄i

k.δ(S̄, prei(x̄k)) >. Then the application of x̄k in S̄ defines a sequence
< x̄1

k.δ(S̄, pre1(x̄k)) > < x̄2
k.δ(S̄, pre2(x̄k)) > · · · < x̄ν

k.δ(S̄, preν(x̄k)) > of con-

figurations. If < x̄j
k.δ(S̄, prej(x̄k)) >=< x̄i

k.δ(S̄, prei(x̄k)) > for j < i then

x̄′k =< x̄1
k.δ(S̄, pre1(x̄k)) > · · · < x̄j

k.δ(S̄, prej(x̄k)) > < x̄i+1
k .δ(S̄, prei+1(x̄k)) >

· · · < x̄ν
k.δ(S̄, preν(x̄k)) > can replace x̄k in x̄. Thus, if x̄ is minimal then the

configurations obtained by applying x̄k to S̄ have no repetitions. The maximum
number of state configurations reached from S̄ is C

(
n
m

)
. Thus, since m = |S̄|

changes from 2 to n, the length of the minimal PDS is bounded above by
� =

∑i=n
i=2 C

(
n
i

)
< 2n.

Lemma 2. One can check if PSFSM M has a PDS using polynomial space.

Proof. We show that a non-deterministic Turing Machine (TM) T can solve the
problem using polynomial space. T guesses one input at a time, maintaining
a set π of pairs of states such that (s, s′) ∈ π if and only if the current input
sequence x̄ takes s ∈ S to s′. T also maintains equivalence relation r such that
(s, s′) ∈ r if and only if s and s′ are not distinguished by x̄. When T guesses an
input it updates π and r. The input sequence received defines a PDS if no two
different states are related under r. Thus, T can generate a PDS from a PSFSM
M that has a PDS and requires polynomial space.

Now consider the case where there is no PDS for M and we have to guarantee
that T terminates with failure. In order to achieve this goal, T will use an extra
log2(�) = n bits of space as a counter. It increments the counter each time it
guesses an input and before each guess T checks this counter to see whether it
has reached the upper bound. T terminates with failure if the states have not
been distinguished (determined by examining r) and the counter reaches the
upper bound value �. Thus the problem can be solved in polynomial space by a
non-deterministic TM. The result follows from non-deterministic PSPACE being
equal to PSPACE [50].

Using Lemmas 1 and 2 we have the following result.

Theorem 1. The problem of deciding whether a PSFSM has a PDS is PSPACE-
complete.

Distinguishing Sequences for Partially Specified FSMs 67

4 Adaptive Distinguishing Sequences

Let us assume that we have been given a PSFSM M and that we wish to decide
whether it has an ADS and, if it does, generate such an ADS. We will show
how given M we can construct a completely specified FSM M(M) such that
there is a suitable correspondence between ADSs for M and M(M). Given
M = (S′, X ′, Y ′, δ, λ,D) we will define M(M) = (Q,X, Y, δQ, λQ) as follows.

We take two copies M1 = (S1, X ′, Y ′, δ, λ,D1), M2 = (S2, X ′, Y ′, δ, λ,D2) of
M , we give the states superscripts to distinguish between states of M1 and M2

and so if s is a state of M then the corresponding states of M1 and M2 are
s1 and s2 respectively. The state set of M(M) is S = S1 ∪ S2. We add a new
input d and new outputs y, y1, y2 and so the set of input symbols of M(M) is
X = X ′ ∪ {d} and the set of output symbols is Y = Y ′ ∪ {y, y1, y2}. We let s0
denote some fixed state from S2: the choice of state does not affect the proof.
The transition function δQ of M(M) is defined as follows:

δQ(s, x) =

⎧⎪⎪⎨
⎪⎪⎩

s1b , s = s1a, x is specified at sa ∧ δ(sa, x) = sb,
s2b , s = s2a, x is specified at sa ∧ δ(sa, x) = sb,
s0, x is not specified at s,
s0, x = d

The output function λQ of M(M) is defined as follows in which i ∈ {1, 2},

λQ(s
i, x) =

⎧⎪⎪⎨
⎪⎪⎩

λ(s, x), If x is specified at s,
y, x is not specified at s and x �= d,
y1, x is not specified at s ∧ x = d ∧ i = 1,
y2, x is not specified at s ∧ x = d ∧ i = 2,

It is clear thatM(M) is completely specified. The construction also ensures that
we cannot distinguish states s1 and s2 without using input d. It also ensures
that in forming an ADS we cannot apply d in a node whose current set of
states contains states ski and skj in which i �= j: the application of d would map
these to state s0 with common output yk. Further, until d has been applied,
for every state s we have that s1 and s2 are in the same block (have yet to be
distinguished) and so an ADS cannot apply an input that is not specified in s;
such an input takes s1 and s2 to the same state with common output y.

Recall that each node of an ADS has an associated set of states, which is the
set of possible states given the observed input/output sequence that labels the
path from the root of the ADS to this node. We will say that an ADS A is
non-redundant if the only nodes of A that have singleton sets are the leaves of
A. If this property does not hold then the use of A in a state s can lead to the
application of input in the situations in which s has already been distinguished
from the other states of M (the current state set is a singleton); such an ADS
can be replaced by a non-redundant ADS. We will now prove that we have the
required correspondence between non-redundant ADSs for M and M(M). We
demonstrate the construction in Figure 3.

68 R.M. Hierons and U.C. Türker

s1

s2

s3

a/0

b/1

a/0

b/1

b/0

Fig. 1. PSFSM M1

s1

s2

s3

s0

s′1

s′2

s′3

a/0

b/1

d/y1

a/0

b/1

d/y1b/0

a/y,d/y1

a/0

b/1

d/y2

Σ/y2

a/0

b/1

d/y2 b/0

a/y,d/y2

Fig. 2. Completely specified FSM M(M) con-
structed from PSFSM M1 given in Figure 1

b

s0

y2

b

d

s1

y1

s′1

y2

1

d

s2

y1

s′2

y2

0

1

d

s3

y1

s′3

y2

0

Fig. 3. ADS constructed for M(M) given in Figure 2. Highlighted tree is an ADS for
PSFSM M1 given in Figure 1

Let Ad denote the ADS A′ that applies input d when a leaf of A has been
reached. Then, clearly, if a given PSFSM M has an ADS A, then Ad is an ADS
for M(M). Formally;

Lemma 3. If A is an ADS for the PSFSM M then Ad is an ADS for M(M).

On the other hand if, there exist an ADS A for M(M) then the machine M
has an ADS.

Lemma 4. Given PSFSM M , if A is a non-redundant ADS for M(M) then
A = A′d for some ADS A′ for M .

Distinguishing Sequences for Partially Specified FSMs 69

Proof. First observe that since A is anADS forM(M), for each state s ofM the
application of A in s1 and s2 must lead to d being applied; otherwise A does not
distinguish s1 and s2. Further, d maps all states to s0 and so a non-redundant
ADS does not apply any further input after d. Thus, there exists some A′ such
that A = A′d and A′ does not contain input d.

Let us suppose that the input of A′ in state sk (1 ≤ k ≤ 2) leads to the
sequence (sk1 , x1/y1, s

k
2) . . . (s

k
m, xm/ym, skm+1) of transitions. Then we must have

(s1, x1/y1, s2), . . . , (sm, xm/ym, sm+1) are transitions of M since otherwise A
would not distinguish between s1 and s2; some input xi would be applied in a
state ski such that xi is not specified in si and so s1 and s2 would be mapped to
the same state before d is applied. Thus, the application of A′ in a state s of M
leads to a sequence of inputs begin applied in states where they are specified.
Now consider states si and sj of M . Since A distinguishes between s1i and s1j
we must have that A′ distinguishes s1i and s1j . Since the application of A′ in a
state s of M does not lead to an input begin applied in a state where it is not
specified, we have that the output produced by applying A′ in state s of M is
the same as the output produced by applying A′ in state s1 of M(M). Thus,
since A′ distinguishes states s1i and s1j of M(M) we have that A′ distinguishes
states si and sj of M . Since this holds for all si, sj ∈ S with si �= sj we have
that A′ is an ADS for M as required.

Theorem 2. Given an incomplete FSM M with n states and p inputs, it is
possible to decide in time O(pn log n) whether M has an ADS and, if it does, it
is possible to construct such an ADS in O(pn2) time.

Proof. By Lemmas 3 and 4 we know that M has an ADS if and only if M(M)
has an ADS. Thus, the first part of the result follows from it being possible to
decide in O(pn logn) whether M(M) has an ADS [34]. The second part of the
result follows from there being an O(pn2) algorithm that will generate an ADS
for M(M) if it has such an ADS [34].

It is known that if a completely specified FSM M has an ADS then it has one

of length at most π2n2

12 . Thus, given a partially specified FSM M with n states

we have that if M(M) has an ADS then it has an ADS of depth at most π2n2

3
since M(M) has 2n states. Since the last input of a non-redundant ADS μ for
M(M) is d, and this can be removed when constructing the ADS for M from
μ, we can conclude that if M has an ADS then it has an ADS of depth at most
π2n2

3 − 1. However, whether this is a tight bound is an open problem.

5 Experimental Results

This section describes the results of experiments using 8 ∗ 106 randomly gener-
ated PSFSMs and PSFSMs of digital circuits from a benchmark. We found that
PSFSM specifications usually have DSs of a reasonable length, when they exist.

70 R.M. Hierons and U.C. Türker

5.1 PSFSM Generation

To construct a PSFSM with n states, p inputs and q outputs, we first randomly
generated a minimal, strongly connected, completely specified FSM using the
tool utilised in [37, 51]. In this process we randomly assigned the values of δ(s, x)
and λ(s, x) for each state s and input x. We then checked whether the machine
M was strongly connected, minimal, and had an ADS3. If the FSM failed one
or more of these tests then we omitted this FSM and produced another.

Having constructed an FSM M , we randomly selected an integer K between
n and n ∗ p. Afterwards, we randomly selected K state-input pairs. For each
pair (s, x) we erased the transition of M whose start state is s and input label
is x. If deleting a transition disconnected the FSM then we did not delete this
transition and guessed another state input pair.

By following this scheme we formed four classes of PSFSMs where each class
had 2 ∗ 106 PSFSMs. The sizes of the input/output alphabets and the state sets
were (2/2, 9), (2/2, 17), (3/3, 9), and (3/3, 17) respectively. To carry out these
experiments we used an Intel Xeon E5-1650 @3.2-GHZ CPU with 16 GB RAM.

5.2 Results

In Table 1, we show how many PSFMSs had an ADS/PDS and the average
time taken to compute an ADS/PDS for a given PSFSM. In the third column
we see the number of PSFSMs that had an ADS and in the fourth column we
see the number of PSFSMs that had a PDS.

Comparing the first and the third or the second and the fourth rows of the
third column, we can see that the number of PSFSMs that have an ADS ap-
pears to increase with the size of the input and output alphabets. The results
in the first and the second or the third and the fourth rows of the third column
suggest that as the number of states increases the number of PSFSMs that have
anADS reduces. The number of PSFSMs that possess an ADS is larger than the

Table 1. Number of PSFSMs that have ADS/PDS. |S|, |Σ|, |Q|, ADS, PDS, TADS

and TPDS are the number of states, the cardinality of the input/output alphabets,
the number of PSFSMs, the number of PSFSMs that have an ADS, the number of
PSFSMs that have a PDS, the average time to compute an ADS and the average time
to compute a PDS respectively.

|S| |Q| ADS PDS TADS (msec) TPDS (msec)

|Σ| = 2
9 2 ∗ 106 120.575 (6.02%) 16.365 (0.81%) 0.006 0.097
17 2 ∗ 106 40.368 (2.01%) 26.784 (1.33%) 0.012 0.106

|Σ| = 3
9 2 ∗ 106 415.101 (20.75%) 23.561 (1.17%) 0.008 0.113
17 2 ∗ 106 113.023 (5.65%) 33.590 (1.67%) 0.017 0.121

3 We used the LY-Algorithm from [34].

Distinguishing Sequences for Partially Specified FSMs 71

Fig. 4. ADS lengths and frequencies of
120575 PSFSMs where |S| = 9, |Σ| = 2

Fig. 5. ADS lengths and frequencies of
415101 PSFSMs where |S| = 9, |Σ| = 3

Fig. 6. ADS lengths and frequencies of
40368 PSFSMs where |S| = 17, |Σ| = 2

Fig. 7. ADS lengths and frequencies of
113023 PSFSMs where |S|=17, |Σ|=3

number with a PDS, which is to be expected since a PDS defines an ADS but
the converse is not the case. These results are just as expected since it is well
known that the ratio of the number of states to the number of outputs affects
the distinguishablity of the states [29]. When we compare the timings we see
that, on average, the PDS computation takes longer. But this is expected since
for a given PSFSM a brute–force algorithm is used to find a PDS. Moreover,
Figures 4, 5, 6, and 7 show that the average length of PDSs is longer than the
average for ADSs.

Consider now the depths of the ADSs shown in Figures 4, 5, 6 and 7. Here
we find that most ADSs have depth close to the lower bound formula logq|S|,
where q is the size of the output alphabet. Moreover, comparing Figures 4 with 6
and 5 with 11, we see that the depths of the ADSs increases with the number
of states. Figures 4-5 and 6-7 reveal that depths seem to decrease as the number
of inputs and outputs increase.

The lengths of the PDSs are presented in Figures 8, 9, 10 and 11. Interestingly,
although there is no polynomial upper bound on PDS length, these PSFSMs are
relatively short. In fact, most of the lengths are lower than |S| and the results
are similar to those for ADSs. However, fewer PSFSMs had a PDS than had an
ADS.

72 R.M. Hierons and U.C. Türker

Fig. 8. PDS length distribution of
16365 PSFSMs where |S| = 9, |Σ| = 2

Fig. 9. PDS length distribution of
23561 PSFSMs where |S| = 9, |Σ| = 3

Fig. 10. PDS length distribution of
26784 PSFSMs where |S| = 17, |Σ| = 2

Fig. 11. PDS length distribution of
33590 PSFSMs where |S| = 17, |Σ| = 3

In the experiments only a relatively small percentage of PSFSMs had DSs.
This can be explained by the high number of transitions left undefined; at least
one per state on average and up to one per state/input pair. Observe that a
PSFSM M is guaranteed not to have a DS if for every input x we have that M
has a state s from which there is no transition with input x. The choices made
in the experiments made it extremely likely that a randomly generated PSFSM
M had this property. It is unclear what proportion of transitions are typically
unspecified in practice, a factor that is likely to significantly influence how many
PSFSMs have DSs, and so we explored a set of benchmark PSFSMs.

5.3 Benchmark Dataset

We considered the ACM/SIGDA benchmarks. This benchmark has 59 FSM spec-
ifications, representing circuits, obtained from industry [52]. The FSM specifi-
cations are presented in kiss2 format where “don’t care” inputs are specified as
−. We converted the kiss2 format to our FSM specification format. The analy-
sis revealed that 25.42% of the specifications have partial transitions and so we

Distinguishing Sequences for Partially Specified FSMs 73

determined how many of these PSFSMs had DSs. For each PSFSM we applied
the adapted LY algorithm and found that 20% of the PSFSMs had ADSs. We
also executed the brute–force algorithm presented in [29] to compute the PDSs of
the PSFSMs and found that all PSFSMs with ADSs also had PDSs. In Table 2
we present the size of the PSFSMs and the length of the ADSs/PDSs and the
time required to compute ADSs/PDSs. As with the randomly generated FSMs,
DS computation took very little time but took longer for PDSs than ADSs.
Scalability to larger FSMs is a topic for future work.

Table 2. Average lengths and computation times of ADSs and PDSs

Name ADS-PDS lengths |S| |X| TADS (msec) TPDS (msec)

ex1 3-4 20 29 0.103 0.730
ex4 3-7 14 26 0.073 0.188
ex6 4-6 8 25 0.019 0.124
opus 3-7 10 25 0.014 0.127

These results are important and justify our initial claims. Without apply-
ing a completeness assumption to the PSFSMs in the benchmark (if such an
assumption is applicable for these PSFSMs), one can compute ADSs and use
a checking sequence generation algorithm similar to that in [39] to construct
polynomial length checking sequences for the PSFSMs in the benchmark.

6 Conclusions

In this paper we addressed the state identification problem for partially specified
deterministic finite state machines (PSFSMs). Specifically, we considered adap-
tive and preset distinguishing sequences (ADS/PDS) motivated by the fact that
a checking experiment can be constructed in polynomial time if we have a PDS
or ADS. We determined the complexity of checking the existence of ADSs and
PDSs for PSFSMs: it is polynomial time solvable to test if a PSFSM possesses
an ADS and it is PSPACE-complete in the case of PDSs. The results of experi-
ments suggest that ADSs and PDSs are relatively short where they exist. This
suggests that where DSs exist they can form the basis for generating checking
sequences of reasonable size.

We showed that the depth of an ADS is bounded above by π2n2

3 − 1 for
PSFSMs. As we do not know whether the bound on ADS depth is tight, it
would be interesting to find a tight bound on ADSs length. The PDS problem is
PSPACE-complete and so it would also be interesting to explore heuristics, such as
Greedy algorithms, for this problem. Finally, there is a need to run experiments
with more PSFSMs representing real specifications in order to further explore
how often there are DSs and how long these tend to be.

74 R.M. Hierons and U.C. Türker

References

1. Friedman, A.D., Menon, P.R.: Fault detection in digital circuits. Computer Appli-
cations in Electrical Engineering Series (1971)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, principles, techniques, and tools.
Addison-Wesley series in computer science

3. Chow, T.S.: Testing software design modelled by finite state machines. IEEE Trans-
actions on Software Engineering 4, 178–187 (1978)

4. Holzmann,G.J.: Design and validation of computer protocols. Prentice-Hall software
series

5. Brinksma, E.: A theory for the derivation of tests. In: Proceedings of Protocol
Specification, Testing, and Verification VIII, pp. 63–74. North-Holland, Atlantic
City (1988)

6. Dahbura, A.T., Sabnani, K.K., Uyar, M.U.: Formal methods for generating pro-
tocol conformance test sequences. Proceedings of the IEEE 78(8), 1317–1326
(August)

7. Lee, D., Sabnani, K.K., Kristol, D.M., Paul, S.: Conformance testing of proto-
cols specified as communicating finite state machines-a guided random walk based
approach. IEEE Transactions on Communications 44(5), 631–640 (May)

8. Lee, D., Yannakakis, M.: Principles and methods of testing finite-state machines -
a survey. Proceedings of the IEEE 84(8), 1089–1123 (1996)

9. Low, S.H.: Probabilistic conformance testing of protocols with unobservable transi-
tions. In: Proceedings of the 1993 International Conference on Network Protocols,
pp. 368–375 (October 1993)

10. Mihail, M., Papadimitriou, C.H.: On the random walk method for protocol testing.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 132–141. Springer, Heidelberg
(1994)

11. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works 15(4), 285–297 (1988)

12. Sidhu, D.P., Leung, T.-K.: Formal methods for protocol testing: A detailed study.
IEEE Transactions on Software Engineering 15(4), 413–426 (1989)

13. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley (1999)

14. Haydar, M., Petrenko, A., Sahraoui, H.A.: Formal verification of web applications
modeled by communicating automata. In: de Frutos-Escrig, D., Núñez, M. (eds.)
FORTE 2004. LNCS, vol. 3235, pp. 115–132. Springer, Heidelberg (2004)

15. Betin-Can, A., Bultan, T.: Verifiable concurrent programming using concurrency
controllers. In: Proceedings of the 19th IEEE International Conference on Auto-
mated Software Engineering, pp. 248–257. IEEE Computer Society (2004)

16. Pomeranz, I., Reddy, S.M.: Test generation for multiple state-table faults in finite-
state machines. IEEE Transactions on Computers 46(7), 783–794 (1997)

17. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability 22(5), 297–312 (2012)

18. Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V.A.: Model-based quality
assurance of protocol documentation: Tools and methodology. Software Testing,
Verification and Reliability 21(1), 55–71 (2011)

19. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization technique for
protocol conformance test generation based on UIO sequences and rural chinese
postman tours. In: Protocol Specification, Testing, and Verification VIII, Atlantic
City, pp. 75–86. Elsevier, North-Holland (1988)

Distinguishing Sequences for Partially Specified FSMs 75

20. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings
of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
pp. 95–110. Princeton, New Jersey (November 1964)

21. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans-
actions on Computers 19, 551–558 (1970)

22. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics and Systems Analy-
sis 9, 653–665

23. Vuong, S.T., Chan, W.W.L., Ito, M.R.: The UIOv-method for protocol test se-
quence generation. In: The 2nd International Workshop on Protocol Test Systems,
Berlin (1989)

24. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Transactions on Software Engineer-
ing 17(6), 591–603 (1991)

25. Ural, H., Zhu, K.: Optimal length test sequence generation using distinguishing
sequences. IEEE/ACM Transactions on Networking 1(3), 358–371 (1993)

26. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifica-
tions. IEEE Transactions on Computers 54(9), 1154–1165 (2005)

27. von Bochmann, G., Petrenko, A.: Protocol testing: Review of methods and rele-
vance for software testing. In: ACM International Symposium on Software Testing
and Analysis, Seattle USA, pp. 109–123 (1994)

28. Lai, R.: A survey of communication protocol testing. Journal of Systems and Soft-
ware 62(1), 21–46 (2002)

29. Kohavi, Z.: Switching and Finite State Automata Theory. McGraw-Hill, New York
(1978)

30. Moore, E.P.: Gedanken-experiments. In: Shannon,C.,McCarthy, J. (eds.) Automata
Studies. Princeton University Press (1956)

31. Boute, R.T.: Distinguishing sets for optimal state identification in checking exper-
iments. IEEE Trans. Comput. 23, 874–877 (1974)

32. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans.
Comput. 55, 618–629 (2006)

33. Jourdan, G.-V., Ural, H., Yenigun, H., Zhang, J.: Lower bounds on lengths of
checking sequences. Formal Aspects of Computing 22(6), 667–679 (2010)

34. Lee, D., Yannakakis, M.: Testing finite-state machines: State identification and
verification. IEEE Trans. on Computers 43(3), 306–320 (1994)

35. da Silva Simão, A., Petrenko, A.: Checking completeness of tests for finite state
machines. IEEE Transactions on Computers 59(8), 1023–1032 (2010)

36. da Silva Simão, A., Petrenko, A., Yevtushenko, N.: On reducing test length for
FSMswith extra states. Software Testing, Verification andReliability 22(6), 435–454
(2012)

37. Hierons, R.M., Jourdan, G.-V., Ural, H., Yenigun, H.: Checking sequence construc-
tion using adaptive and preset distinguishing sequences. In: SEFM, pp. 157–166
(2009)

38. Ural, H.: Formal methods for test sequence generation. Computer Communica-
tions 15(5), 311–325 (1992)

39. da Silva Simão, A., Petrenko, A.: Generating checking sequences for partial reduced
finite state machines. Testing of Software and Communicating Systems, 153–168
(2008)

40. Tsai, P.-C., Wang, S.-J., Chang, F.-M.: FSM-based programmable memory bist
with macro command. In: 2005 IEEE International Workshop on Memory Tech-
nology, Design, and Testing, MTDT 2005, pp. 72–77 (August 2005)

76 R.M. Hierons and U.C. Türker

41. Zarrineh, K., Upadhyaya, S.J.: Programmable memory bist and a new synthesis
framework. In: Twenty-Ninth Annual International Symposium on Fault-Tolerant
Computing. Digest of Papers, pp. 352–355 (June 1999)

42. Xie, L., Wei, J., Zhu, G.: An improved FSM-based method for BGP protocol
conformance testing. In: International Conference on Communications, Circuits
and Systems, pp. 557–561 (2008)

43. Drumea, A., Popescu, C.: Finite state machines and their applications in software
for industrial control. In: 27th Int. Spring Seminar on Electronics Technology:
Meeting the Challenges of Electronics Technology Progress, vol. 1, pp. 25–29 (2004)

44. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifica-
tions. IEEE Transactions on Computers 54(9), 1154–1165 (2005)

45. Yannakakis, M., Lee, D.: Testing finite state machines: Fault detection. Journal of
Computer and System Sciences 50(2), 209–227 (1995)

46. Yevtushenko, N., Petrenko, A.: Synthesis of test experiments in some classes of
automata. Automatic Control and Computer Sciences 4 (1990)

47. Gill, A.: Introduction to The Theory of Finite State Machines. McGraw-Hill, New
York (1962)

48. Rho, J.-K., Hachtel, G., Somenzi, F.: Don’t care sequences and the optimiza-
tion of interacting finite state machines. In: IEEE International Conference on
Computer-Aided Design, ICCAD 1991. Digest of Technical Papers, pp. 418–421
(November 1991)

49. Sokolovskii, M.N.: Diagnostic experiments with automata. Kibernetica (6), 44–49
(1971)

50. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)

51. Güniçen, C., Türker, U.C., Ural, H., Yenigün, H.: Generating preset distinguish-
ing sequences using sat. In: Computer and Information Sciences II, pp. 487–493.
Springer (2012)

52. Brglez, F.: ACM/SIGMOD benchmark dataset,
http://cbl.ncsu.edu:16080/benchmarks/Benchmarks-upto-1996.html

http://cbl.ncsu.edu:16080/benchmarks/Benchmarks-upto-1996.html

On Proving Recoverability

of Smart Electrical Grids

Seppo Horsmanheimo1, Maryam Kamali2, Mikko Kolehmainen3,
Mats Neovius2, Luigia Petre2, Mauno Rönkkö3, and Petter Sandvik2,4

1 VTT Technical Research Centre of Finland
2 Åbo Akademi University

3 University of Eastern Finland
4 TUCS – Turku Centre for Computer Science

Abstract. Smart electrical grids refer to networked systems for dis-
tributing and transporting electricity from producers to consumers, by
dynamically configuring the network through remotely controlled
(dis)connectors. The consumers of the grid have typically distinct priori-
ties, e.g., a hospital and an airport have the highest priority and the street
lighting has a lower priority. This means that when electricity supply is
compromised, e.g., during a storm, then the highest priority consumers
should either not be affected or should be the first for whom electricity
provision is recovered. In this paper, we propose a general formal model
to study the provability of such a property.We have chosen Event-B as our
formal framework due to its abstraction and refinement capabilities that
support correct-by-construction stepwise development of models; also,
Event-B is tool supported. Being able to prove various properties for such
critical systems is fundamental nowadays, as our society is increasingly
powered by dynamic digital solutions to traditional problems.

1 Introduction

Our society and lifestyles are rapidly changing to being powered by digital tech-
nologies. One prominent example is provided by the electrical grids that are
increasingly digital. In grids, as well as in other control systems, action is deter-
mined by sensing, monitoring, and measuring. The control part of the paradigm
is nowadays implemented in software, which forms a critical infrastructure for
decision making in these smart grids. Hence, the high-quality of the controlling
software is of utmost importance.

This modus operandi of smart grids leads to a high degree of flexibility for
the grid configuration and functions. Smart grids are networked systems for
connecting electricity generators to consumers, by dynamically configuring the
network through remotely controlled (dis)connectors. The consumers of the grid
have typically distinct priorities, e.g., a hospital and an airport have the highest
priority and the street lighting has a lower priority. This means that when elec-
tricity supply is compromised, e.g., due to a storm or peak consumption, then
the order of (re-establishing) electricity provision is with respect to the priori-
ties. Another example of functional flexibility of smart grids is the possibility of

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 77–91, 2014.
c© Springer International Publishing Switzerland 2014

78 S. Horsmanheimo et al.

(regularly) changing priorities, e.g., in the evenings, factories and office buildings
have a lower lighting priority than living areas. In this context, the problem that
we address here is how can we trust that consumers with the highest priority
have almost always a path in the grid from an electricity generator; and, if such
a connection is lost, is finding an alternative one guaranteed?

The solution that we propose in this paper is based on formal methods.
Some example of formal method usage in industry can be seen for instance
with Siemens [8], Space Systems [12] and SAP [5]. The fundamental design tech-
niques of formal methods that we employ here are abstraction and refinement.
We start from a simple, abstract model of the smart grid, that is striped away
of many details (including connections among grid nodes), so that it is easy to
prove some desired properties for it. Among others, we prove that high-priority
consumers can recover from failure. Then, we add details in a stepwise manner
to our model, until we reach a level of abstraction that agrees to our purposes.
In this paper, we prove that, when connections to high-priority consumers fail,
the smart grid can find alternative connections for these consumers, whenever
there are connections available. We also prove that the more detailed models
correctly refine the less detailed models.

In our work we use the Event-B formal method [2] for system modelling and
analysis, due to its abstraction and refinement capabilities. Event-B comes with
an associated toolset, the Rodin Platform, a theorem prover-based environment
where proofs about the models are generated automatically and discharged either
automatically or interactively.

Our contribution is thus twofold:

1. We propose smart grid models at different levels of abstraction and prove
that the more concrete models refine the more abstract ones.

2. We demonstrate the recoverability property for smart grids as an invariant
for our models.

Importantly, as our proving is based on assumptions, we are able to reason on
when we can prove the recoverability property for smart grids and discuss why.
Also, our modelling is developed for reusability: depending on various criteria,
our recovery methodology can produce different reconnected paths, thus our
most detailed model can be reused for various purposes.

We proceed as follows. In Section 2 we describe the smart grids and our model
restrictions, in Section 3 we outline Event-B, and in Section 4 we describe our
Event-B model to the extent needed in this paper. In Section 5 we discuss some
interesting proving aspects of our approach. Related work is reviewed in Section
6 and some conclusions are presented in Section 7.

2 Smart Grids

The term grid indicates a structured framework of interconnected elements.
Within the domain of the electricity, the electrical grid refers to the interconnected
network delivering electricity from power plants to consumers. The grid comprises
electricity generators labelled Gi, substations labelled Sj, and consumers labelled

On Proving Recoverability of Smart Electrical Grids 79

Ck, where i,j,k denote natural numbers. This is illustrated in Fig. 1a) where edges
betweenGi and Sj or in between Sj denote the (high-voltage) transmission network
and the edges between Sj and Ck denote the distribution network.

Fig. 1. Smart Grid’s Layers of Operation: a) Information Flow; b) Power Flow Tree;
c) Smart Grid (SG) graph

The term Smart Grid (SG) comprises an intelligent grid of this kind, typ-
ically considered an enhancement of the traditional 20th century grid. Some
significant differences are presented in [11]. Gharavi and Ghafurian [13] define
SG as a system that uses information and provides two-way, cyber-secure com-
munication. This enables computational intelligence for a safe, secure, reliable,
resilient, efficient and sustainable system. On the differences between the 20th
century grid and SG, we note that the bidirectional communication is funda-
mental, implying several of the others. This connects SG with the information
revolution era, where ”smart” refers to using information regarding the grid for
enabling pervasive self* properties. A categorisation on the physical realisation
of the bidirectional communication [11] and a survey on SG [10] may be found
elsewhere.

Research on SG has several points of focus. First, smart infrastructure systems
are studied, in particular the communication infrastructure (the information flow
layer in Fig. 1a)). This addresses the communication technology and protocols,
the information subsystem concerned with information interoperability and the
energy subsystem concerned with, among others, small scale energy production
such as solar panels. Second, the management system is of interest, considering
energy efficiency, operation costs reduction, demand and supply balance, emis-
sion control and utility maximization. Third, the smart protection system is very
relevant, being concerned with user errors, equipment failures, natural disasters
and deliberate cyber attacks [11]. Of these, in this paper we are concerned with
the smart protection system and its feature of failure recovery, implemented in
software. This is of outmost importance to increase the SG reliability and is
strongly motivated by the annual costs of outage; for example, in 2002 these
were estimated to 79 billion dollars in the US [19].

To study failure recovery, we assume reliable outage detection; reports on
this by phasor measurement may be found elsewhere [23]. With respect to fail-
ure recovery, we formally outline the requirements of a fully and a partly con-
nected grid (network) topology. We do recovery by switching (dis)connectors on
the edges of this network, i.e. by operating the dis(connectors) depicted on the

80 S. Horsmanheimo et al.

edges in Fig. 1c). Hence, we assume each element of the network to be remotely
controllable. We assume the momentary topology to be of a tree structure with
an added virtual root node, labelled VR in Fig. 1b). This tree connects all con-
sumers (leaves) with the generators (first level nodes) by substations (interme-
diate nodes). The intermediate nodes may be connected (an open edge between
S1 and S2 in Fig. 1c)), much alike power substations in reality for the sake of re-
dundancy. In addition, we consider the consumers to have a priority of criticality
determined by the cost (monetary, moral, etc) of a shortage, where a hospital is
more critical than residential houses. Contrary to the 20th century grid, except
the momentary hierarchical tree structure, the network structure covering for all
possible connections is not hierarchical; we assume it to be a graph.

A blackout partitions the grid tree to a tree connected to the virtual root and a
disconnected compromised subtree. Recovery effectively means reconnecting this
compromised subtree’s leaves to the virtual root node by finding an alternative
route in the smart grid graph. As the recovery strategy implemented may vary
depending on the setting, we implement a general strategy of circumventing the
compromised subtree’s root node; this general strategy can be adapted to many
settings later. When recovery is not possible (there are no alternative paths to
choose from), an operator could dispatch human resources for repairing the point
of failure. The priorities of consumers set the recovery order when needed. An
optimal condition with respect to our problem is thereby reached when the tree is
fully connected, i.e. all leaves, independently of priority, have a path to the root.

3 Event-B

The Event-B [2] formalism is derived from the B-Method [1] and the Action
Systems [3] framework, and was created for modelling and reasoning about par-
allel, distributed and reactive systems. The associated Rodin Platform [9] tool
provides automated support for modelling and verification by theorem proving
in Event-B.

In Event-B, a model of a system consists of a dynamic part, machine, and
optionally also a static part, context. An Event-B context can specify constants,
carrier sets, and axioms about these. A machine in Event-B optionally sees a
context, and describes the model state by variables, updated by events. Events
are atomic sets of (simultaneous) variable updates, and each event may contain
guards, which are associated predicates, that must evaluate to true for the event
to be enabled, i.e., be able to execute. If more than one event is enabled simulta-
neously, the choice between the events is non-deterministic. An Event-B machine
should also include invariants, i.e., properties that must hold for any reachable
state of the model. Thus, these properties must be established by a special ini-
tialisation event and hold before and after every occurrence of any other event.
The proof manager in the Rodin Platform [9] tool automatically generates what
needs to be proved in order for an invariant to hold.

Event-B provides a stepwise refinement-based approach to system development,
preserving correctness by gradually detailing a model. In this paper, starting from

On Proving Recoverability of Smart Electrical Grids 81

an abstract model, refinement [2,4] refers to adding new variables, events and con-
stants in addition to existing ones. Old events can also be modified, typically ei-
ther updating the newly introduced variables or introducing more deterministic
assignments on the old variables, while also strengthening the event guards.

4 Three Smart Grid Models: M0,M1,M2

In this section we describe the high-level models M0, M1 and M2 for SG; due
to space restrictions, we only discuss here M0 and M1 and refer for more details
in [16]. Our models are at three increasing levels of detail so that each model is a
refinement of the previous one: M0 � M1 �M2. In the initial model, we specify
the set of consumers with different priorities, introduce random electricity outage
and specify the behaviour of a recovery mechanism. We define the correctness
properties of the recovery mechanism based on the priority of the consumers. We
fold (hide) further detail of SG and magically recover from the outage problem.
In the second model, we unfold (add) new data, refine events to model the tree
structures in SG as well as link failures. We design the recovery mechanism
in a way that guarantees that, after recovery, the structure of the momentary
SG remains a tree and all consumers with higher priority are connected to a
generator. In the third model, we detail our recovery mechanism by refining
(splitting) events to distinguish between successful and unsuccessful recovery; in
the latter case, we provide information on the failed subtree, for human-directed
reconfiguration, that we assume to take place.

4.1 The Initial Model M0

The initial model M0 that we construct is very abstract: we do not consider
the underlying SG connections but only the SG consumers; the SG connections
are introduced in the subsequent refinement. M0 thus allows us to specify our
recovery goal very abstractly. The model M0 is formed of the static part and the
dynamic part, as follows.

The Static Part. The static part of our model is described below and contains
the sets NODE, MODE, STATE and the constants consumer, generator, pr1,
pr2, normal, recovery, on and off . The SG nodes are elements of the finite and
non-empty NODE set (axm1). Nodes can be either consumers or generators, so
the NODE set is partitioned into consumer and generator (axm2). Some con-
sumers have higher priority, so we partition consumer into pr1 and pr2 (axm3).
SG can be in two different modes (axm4) and the state of consumers can be
either on or off (axm6). In [16] we have also a third SG mode, called optimal.

CONSTANTS consumer generator pr1 pr2 normal recovery on off
SETS NODE MODE STATE
AXIOMS
@axm1 finite(NODE) ∧ NODE �= ∅

@axm2 partition(NODE, consumer, generator)
@axm3 partition(consumer, pr1, pr2)
@axm4 partition(MODE, {normal}, {recovery})
@axm5 partition(STATE, {on}, {off})

82 S. Horsmanheimo et al.

The Dynamic Part. In the dynamic part of the model M0, we define the state
of consumers and the SG mode. We specify that whenever there is some power
outage in higher priority consumers, there would be a mechanism to recover from
the outage. We model a magical recovery mechanism which eventually recovers
high-priority consumers from the outage. In [16] we also model a mechanism
that provides the recovery of lower priority consumers as well, called optimising.

The outline of the dynamic part is shown below. The cons st variable models
the state of each consumer (inv1) and themode variable models the current mode
of SG (inv2). The pr1 consumers have higher priority than the pr2 consumerswith
respect to recovery, modelled by invariant inv3: when SG is in normal mode, all
higher priority consumers are in on state. When SG is in recovery mode, there is
power outage of at least one higher priority consumer (inv4).

VARIABLES cons st mode
INVARIANTS
@inv1 cons st ∈ consumer → STATE
@inv2 mode ∈ MODE
@inv3 mode = normal⇒ (∀c · c ∈ pr1⇒ cons st(c) = on)
@inv4 mode = recovery ⇒ (∃c · c ∈ pr1 ∧ cons st(c) = off)

Our assumption is that initially all consumers are on and as a consequence, to
satisfy the invariants, SG is in the normal state, as shown in the INITIALI-
SATION event above. The failure event models a random power outage that
happens to a subset i of consumers, at least one of which is a high priority con-
sumer. SG mode changes from normal to recovery and the state of the consumer
subset i with power outage updates from on to off .

INITIALISATION
BEGIN
@act1 mode := normal
@act2 cons st := consumer × {on}

END

failure
ANY i WHERE
@grd1 mode = normal
@grd2 i ⊂ consumer
@grd3 i �= ∅ ∧ i ∩ pr1 �= ∅

THEN
@act1 mode := recovery
@act2 cons st := cons st �− (i× {off})

END

Two events failure recovery and recovery complete magically solve the out-
age, gradually reconnecting the compromised consumers, by switching their state
to on. When the state of the last subset of consumers updates to on in recov-
ery complete, the SG mode switches to normal. When SG is in normal mode,
there might still be some lower priority consumers with power outage.

failure recovery
ANY i WHERE
@grd1 i ⊂ pr1
@grd2 cons st[i] = {off} ∧ i �= ∅

@grd3 mode = recovery
@grd4 ∃j ·j /∈ i∧j ∈ pr1∧cons st(j) = off

THEN
@act1 cons st := cons st �− (i× {on})

END

recovery complete
ANY i WHERE
@grd1 i ⊂ pr1
@grd2 cons st[i] = {off} ∧ i �= ∅

@grd3 mode = recovery
@grd4 cons st[(pr1\i)] = {on}

THEN
@act1 cons st := cons st�−(i×{on})
@act2 mode := normal

END

On Proving Recoverability of Smart Electrical Grids 83

4.2 The Second Model M1

Recovery from the power outage that affects high priority consumers is achieved
in the model M0 simply by switching their state from off to on. In this section,
we refine the initial model M0 to also specify links between nodes in SG. For
this, we keep two structures. The SG graph denotes the entire grid, with all the
available links and nodes. The momentary SG tree denotes the currently used
links and nodes. This is illustrated in Fig. 2. The SG tree is, in fact, extracted
from the SG graph. When the momentary SG tree suffers a failure, it needs
to find an alternative path, in the SG graph, to make all the higher priority
consumers connected to SG again.

Fig. 2. An SG graph and an instance of one of its trees

The Static Part. In order to express and reason about the recovery property,
we need to define a closure property for relations. In the context shown below,
the constant cl is defined as a total function from netrel (NODE ↔ NODE,
axm6) to netrel (axm7). The characteristic properties of cl(r) are: (i) The
relation r is included in cl(r). (ii) The forward composition of cl(r) with r is
included in cl(r). (iii) The relation cl(r) is the smallest relation dealing with
(i) and (ii). These properties are modelled respectively by axm8, axm9, and
axm10; the closure theorems are introduced in thm1-3.

CONSTANTS netrel cl tree root net initial net setting
AXIOMS
@axm6 netrel = NODE↔ NODE
@axm7 cl ∈ netrel→ netrel
@axm8 ∀r ·r ⊆ cl(r)
@axm9 ∀r ·r; cl(r) ⊆ cl(r)
@axm10 ∀r, t·(r ⊆ t ∧ r; t ⊆ t⇒ cl(r) ⊆ t)
theorem @thm1 ∀r ·r ∈ netrel⇒ cl(r) = r ∪ (r; cl(r))

theorem @thm2 ∀t·(∀s·s ⊆ t−1[s]⇒ s = ∅)⇒ cl(t) ∩ (NODE � id) = ∅

theorem @thm3 cl(∅) = ∅

@axm11 tree ∈ NODE \ {root}� NODE \ consumer

@axm12 ∀s·s ⊆ tree−1[s]⇒ s = ∅

theorem @thm4 ∀T ·root ∈ T ∧ tree−1[T] ⊆ T ⇒NODE ⊆ T

theorem @thm5 cl(tree−1)[{root}] ∪ {root} = NODE
theorem @thm6 cl(tree)[consumer] ∪ consumer = NODE
theorem @thm7 ∀T ·consumer ⊆ T ∧ tree[T] ⊆ T ⇒NODE ⊆ T
theorem @thm8 ∀S ·S ⊆ tree[S]⇒ S = ∅

theorem @thm9 cl(tree) ∩ (NODE � id) = ∅

@axm13 net ∈ NODE \ {root}↔↔ generator

@axm14 net ∩ net−1 = ∅ ∧NODE � id ∩ net = ∅

@axm15 initial net setting ∈ NODE \ {root}� NODE \ consumer

@axm16 cl(initial net setting−1)[root] ∪ {root} = NODE
@axm17 ∀S ·S ⊆ initial net setting[S]⇒ S = ∅

@axm18 initial net setting ⊆ net

84 S. Horsmanheimo et al.

We also model a tree structure of the network, in the constant tree, with the
following properties: (i) A tree is a total surjection function from NODE\{root}
to NODE \ consumer (axm11). (ii) The consumer set are leaves of tree and
root is the top point in a tree (axm11). (iii) The tree is acyclic (axm12). The
theorems (thm4-9) further describe tree properties.

Moreover, we define the net and initial net setting constants. The net con-
stant is an asymmetric, irreflexive and total surjective function modelling the SG
graph (axm13, axm14). The initial net setting constant is a tree (axm15-17),
extracted from net (axm18).

The adapted theorems for closure allow us to prove the adapted theorems of
the tree structure which will be used in the dynamic part of the second model to
guarantee the correctness of the SG tree evolution during the recovery process.

The Dynamic Part. In M1, we show how the recovery mechanism solves
the power outage problem by changing the SG momentary tree. There are five
variables in M1: node, dyn net, failed link, failed path and failed flag. The
node variable is a subset of NODE and models the nodes of the SG momentary
tree (inv5). In our model, root always belongs to the SG tree, hence root ∈ node
(inv6). In inv7 we link node to the abstract variable cons st from M0: we model
that there is no consumer with state off in set node, but all consumers that are
in state on are members of node. The dyn net models the SG tree with nodes
and links between them: a total function from node \ {root} to node (inv8) that
is loop-free (inv9). We introduce inv10 to restrict the range of dyn net so that
consumers can only be leaves in dyn net.

VARIABLES node dyn net failed link failed path failed flag
INVARIANTS
@inv5 node ⊆ NODE
@inv6 root ∈ node
@inv7 cons st−1[{off}] ∩ node = ∅ ∧ cons st−1[{on}] ⊆ node
@inv8 dyn net ∈ node \ {root}→ node

@inv9 ∀s·(s ⊆ dyn net−1[s]⇒ s = ∅)
@inv10 (consumer ∩ node) ∩ ran(dyn net) = ∅

@inv11 failed link ∈ NODE \ {root} �→ NODE \ {root}
@inv12 failed path ∈ failed link �→ (NODE↔ NODE)
@inv13 ∀f ·f ∈ dom(failed path)⇒ failed path(f) ∈ NODE \ {root} �→NODE \ {root}
@inv14 ∀i, j ·i �→ j ∈ dom(failed path)⇒ (∀k·k ∈ ((dom(failed path(i �→ j))∪

ran(failed path(i �→ j))) \ {j}) ∧ k ∈ (cl(failed path(i �→ j)))−1[{j}])
@inv15 ∀i, j ·i �→ j ∈ dom(failed path)⇒ consumer ∩ ran(failed path(i �→ j)) = ∅

@inv16 failed flag ∈ BOOL
@inv17 mode = recovery⇒ dom(failed path) = failed link
@inv18 failed link �= ∅ ∧ dyn net ∩ failed link = ∅ ⇒

(∃r ·r ∈ consumer ∧ r /∈ (cl(dyn net))−1[{root}])
@inv19 failed flag = FALSE ∧mode �= recovery⇒ failed link = ∅ ∧ failed path = ∅

@inv20 ∀r ·r ∈ consumer ∧ r /∈ (cl(dyn net))−1[{root}] ∧ failed link �= ∅∧
dyn net ∩ failed link = ∅⇒ cons st(r) = off

theorem @mthm1 ∀S ·(root ∈ S ∧ dyn net−1[S] ⊆ S⇒ node ⊆ S)

theorem @mthm2 node \ {root} ⊆ (cl(dyn net))−1[{root}]
theorem @mthm3 cl(dyn net) ∩ (NODE � id) = ∅

In the initial model, power outage hits a subset of consumers nondeterminis-
tically. In M1, it happens due to some link failures in the SG tree. The partial
function failed link denotes the set of link failures in SG (inv11). We note that

On Proving Recoverability of Smart Electrical Grids 85

the root cannot fail, because the root is virtual and actually not belonging to SG.
We use it for the sake of modelling. Each link failure leads to disconnectivity in a
part of tree. We store the disconnected subtree for each link failure in failed path
function (inv12). In order to guarantee that a disconnected subtree of each link
failure is a tree we introduce inv13 and inv14. Invariant inv13 denotes that
each subtree is a partial function from NODE \ {root} to NODE \ {root}. In-
variant inv14 denotes that all the nodes in a subtree of a failed link, say i �→ j,
can be reached from both nodes i and j. In other words, any node in the subtree
is a child of node i and j. In addition, we ensure that the built subtree of each
failed link satisfies inv10: consumers are leaves of the subtree (inv15).

To update the value of the failed path variable after a link failure, we need to
define a flag to allow us to do preprocessing before recovery. This is just for mod-
elling purposes. The flag failed flag is modelled by inv16. When failed flag =
TRUE the preprocessing should be initiated and the SG mode be updated to
recovery. In other words, when the network is in recovery mode, it means that
failed path contains all subtrees of all failures (inv17). The consequence of any
failure is having at least one consumer which suffers from power outage due to
the tree structure of SG (inv18). Finally, invariant inv19 denotes that when
the network is not in recovery mode, failed link is empty. It is formulated as
shown in inv20.

In order to ensure that every node in the dyn net is reachable from the root
node, we model the theorems mthm1-3, derived from existing invariants. Theo-
rem mthm2 denotes that all nodes in node except root are reachable from root.
Theorem mthm1 is used in the proof of mthm2 and mthm3 is introduced to
satisfy the no-loop property.

To address the newly added structures we add three new events in M1 as well
as refine the abstract events. The newly introduced events define failure of links
(Link fail event), preprocessing to update function failed path (Failed path
update event) and distributing the knowledge about link failure to the grid
(Failed tree update event). We explain these in more detail below.

Link fail
ANY l WHERE
@grd1 l ⊆ dyn net �− {root}
@grd2 failed flag = FALSE
@grd3 l �= ∅

@grd4 mode = normal
THEN
@act1 failed flag := TRUE
@act2 failed link := l
@act3 failed path := ∅

END

Failed path update
ANY f des subtree l i WHERE
@grd1 failed flag = TRUE
@grd2 l ∈ failed link ∧ l = i �→ f
@grd3 l /∈ dom(failed path)

@grd4 des = (cl(dyn net))−1[{f}]
@grd5 subtree = des � dyn net

THEN
@act1 failed path := failed path ∪

({l} × {subtree})
END

Link fail. This event models the failure of a non-empty (grd3) subset of links in
SG, except virtual links to root (grd1) when SG is in normal mode (grd4). The
failed flag variable which is initially FALSE (grd2) is set to TRUE (act1)
in order to enable the preprocessing event. The failed link set updates to the
list of failed links(act2) and failed path initiates to ∅ (act3). The only enabled
event after the execution of the Link fail event is Failed path update event,
to ensure that preprocessing is performed before any further actions.

86 S. Horsmanheimo et al.

Failed path update. This event is enabled when failed flag is TRUE (grd1).
It is enabled until all failed links (grd2) become members of dom(failed path)
(grd3). This event is aimed at storing a set of subtrees of the grid that are
unreachable due to link failures. In order to compute the subtree for each indi-
vidual failed link, we need to add two computational parameters des and subtree.
Parameter des is the set of all descendants of nodes of a failed link (grd3). Pa-
rameter subtree is the set of all links which form the subtree (grd5). Function
failed path is updated so that failed link becomes a symbolic ‘root’ for subtree
(act1).

Failed tree update
ANY f des subtree l i r WHERE
@grd1 failed flag = TRUE
@grd2 dom(failed path) = failed link
@grd3 l ∈ failed link
@grd4 l ∈ dyn net
@grd5 l = i �→ f
@grd6 l /∈ dom(failed path)

@grd7 des = (cl(dyn net))−1[{f}]
@grd8 subtree = des � dyn net
@grd9 ∀k·k ∈ consumer∧k ∈ des⇒k ∈ r

THEN
@act1 dyn net := dyn net\({l}∪subtree)
@act2 node := node \ des
@act3 cons st := cons st �− (r × {off})

END

Failure refines failure
WHERE
@grd1 mode = normal
@grd2 failed flag = TRUE
@grd3 failed link �= ∅

@grd4 ∀f ·f ∈ failed link⇒
f ∈ dom(failed path)

@grd5 ∀f ·f ∈ failed link⇒ f /∈ dyn net
THEN
@act1 mode := recovery
@act2 failed flag := FALSE

END

Failed tree update. This event is enabled when preprocessing is complete: the
subtree of all failed links are assigned (grd2). In order to update SG based on link
failures, we remove a failed link, say l, with its subtree, stored in failed path(l)
from dyn net. The node set, the set of reachable nodes from root, and the func-
tion cons st update accordingly. Function cons st updates in this event in order
to guarantee that if a consumer is unreachable in the grid, the consumer is in
off state (inv7 and inv20).

Failure event: This event is enabled when the preprocessing and the grid up-
dating is completed. It simply resets the failed flag and updates the grid mode.

Fail rec extends failure recovery
ANY i rec set last res WHERE
@grd5 ∀r ·r ∈ failed link⇒ failed path(r) ⊆ res
@grd6 ∀k·k ∈ res⇒ (∃i·i ∈ failed link ∧ failed path(i) ⊆ res)
@grd7 rec set ⊆ res ∪ (net \ failed link)
@grd8 dyn net ∪ rec set ∈ NODE \ {root} �→ NODE
@grd7 dyn net ∪ rec set ∈

(node∪ dom(rec set)∪ ran(rec set))\{root}→(node∪dom(rec set)∪ ran(rec set))

@grd9 ∀s·(s ⊆ (dyn net ∪ recovery set)−1[s]⇒ s = ∅)

@grd10 ∀p·p ∈ pr1 \ last⇒ p ∈ (cl(dyn net ∪ recovery set))−1[{root}]
@grd11 last ⊆ pr1
@grd12 cons st[last] = {off} ∧ (last ∩ cl(dyn net ∪ rec set)−1[{root}] = ∅)

@grd13 (cons st−1[{off}] ∩ pr1) \ last ⊆ dom(rec set ∪ dyn net)

@grd14 (node∪ dom(rec set)∪ ran(rec set)) ⊆ {root}∪ (cl(dyn net∪ rec set))−1[{root}]
@grd15 i ⊆ dom(rec set)

THEN
@act2 dyn net := dyn net ∪ rec set
@act3 node := node ∪ dom(rec set) ∪ ran(rec set)

END

On Proving Recoverability of Smart Electrical Grids 87

Fail rec event: There are two approaches for power outage recovery: (i) to
find an alternative path from the original graph, modelled as net in the static
part of the second model and (ii) to repair failed links (human intervention).
The Fail rec event combines these two approaches which can be taken to solve
the power outage problem for high priority consumers. The abstract event is
extended by adding three computational parameters res, rec set and last. Pa-
rameter res is a subset of all subtrees, extracted from failed path function.
Parameter rec set is a subset of parameter res and all existing links in the origi-
nal graph except those failed ones with the following conditions: (i) The union of
rec set and dyn net does not introduce a loop and preserve the tree structure of
the grid (ii) Consumers are either leaves or unreachable (iii) the set of consumers
that belongs to rec set are reachable (from root).
Parameter last is a subset of high priority consumers that are neither reachable
in dyn net nor reachable in dyn net ∪ dom(rec set). Parameter last is an evi-
dence that the recovery is not completed yet. Parameter rec set is a solution for
power outage problem of a subset of high priority consumers, represented as i
in the event. The set of recovery links are added to the current grid (act2) and
correspondingly the subset of node is updated (act3).

Recovery complete extends Recovery complete
ANY rec set res WHERE
@grd5 ∀r ·r ∈ failed link⇒ failed path(r) ⊆ res
@grd6 ∀k·k ∈ res⇒ (∃i·i ∈ failed link ∧ failed path(i) ⊆ res)
@grd7 rec set ⊆ res ∪ (net \ failed link)
@grd8 dyn net ∪ rec set ∈

(node ∪ dom(rec set) ∪ ran(rec set)) \ {root}→ (node ∪ dom(rec set) ∪ ran(rec set))

@grd9 ∀s·(s ⊆ (dyn net ∪ rec set)−1 [s]⇒ s = ∅)

@grd10 ∀p·p ∈ pr1⇒ p ∈ (cl(dyn net ∪ recovery set))−1[{root}]
@grd11 (node ∪ dom(rec set) ∪ ran(rec set)) ⊆ {root} ∪ (cl(dyn net ∪ rec set))−1[{root}]

THEN
@act2 failed link := ∅

@act3 failed path := ∅

@act4 node := node ∪ dom(rec set) ∪ ran(re set)
@act5 dyn net := dyn net ∪ rec set

END

Recovery complete event: This event is similar to Fail rec event, except it
is the final stage of recovery and the grid mode changes to normal after the event
execution. In order to show that it is the last recovery step, we need to add grd10
that denotes all high priority consumers are reachable in dyn net∪ recovery set:
there is no power outage problem that hits any high priority consumers. There-
fore, the grid mode can switch to normal and failed link and failed path up-
date to emptyset.

4.3 The Third Model M2

In M1, we have defined the tree structure of the grid and non-deterministically
constructed a solution for power outage of high priority consumers regardless of
its cost. For instance, a solution could be repairing some failed links while there
would be other alternatives in the original network graph. In the second model
M1, we have not included any policy for selecting a solution from a set of possible
solutions because we intended to construct a reusable correct source model. The
generic source model supports further refinements following particular policies.

88 S. Horsmanheimo et al.

One basic policy for selecting a recovery solution can be first searching the
original network graph for existing links. If there are links in the network graph,
those alternatives are used first and then the rest of failures are recovered by
repairing the failed links. In this refined model M2, we specify this policy by
restricting the non-determinism of the abstract model M1 [16].

5 Verification of Models

Deciding from what kind of abstraction to start modelling and what details to
add at each refinement step is problem-specific. Often, we take decisions that
address modelling/proving complexity and enable reusability of models.

In order to prove that the models satisfy their correctness properties we have
to check that they respect their invariants, in our case, the tree properties for
SG and the gradual reconstruction of the tree due to node failures. To prove
this, we have generated the proof obligations for all the models using the Rodin
platform tool. The proof statistics for our models are shown in Table 1. These
figures express the number of proof obligations generated by the Rodin platform
as well as the number of obligations automatically discharged by the platform
and those interactively proved.

Table 1. Proof Statistics

Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Context 19 11 8

M0 Model 41 30 11

M1 Model 112 83 29

M2 Model 76 54 22

Total 248 178 70

One of the most essential requirements for proving the correctness of the re-
covery mechanism is to show that each step of the recovery reduces the number
of disconnected high priority consumers. To prove this, we define the recovery
events as convergent [2] and introduce a numeric variant. The Rodin platform
generates a variant proof obligation ensuring that each convergent event de-
creases the proposed numeric variant. The other essential requirements are to
construct a correct tree: each step of the recovery preserves the tree structure of
dyn net. For instance, to prove the preservation of the invariant inv10, stating
that all consumers which are in set node are leaves, for the event Fail rec of
model M1, we have distributed union and intersection throughout the generated
proof obligation. The distribution allowed us to split the proof obligation into
three simple ones:

(1) consumer ∩ node ∩ (ran(dyn net) ∪ ran(rec set)) = ∅

(2) consumer ∩ dom(rec set) ∩ (ran(dyn net) ∪ ran(rec set)) = ∅

(3) consumer ∩ dom(rec set) ∩ (ran(dyn net) ∪ ran(rec set)) = ∅

To prove these proof obligations, we applied case distinction for the param-
eter rec set. When links in rec set were corresponding links in the range of
failed path, we could not prove the proof obligation. This was due to a missing
invariant: denoting links in range of failed path also follows the requirement

On Proving Recoverability of Smart Electrical Grids 89

that consumers are leaves. We added the invariant inv15 and those discharged
branches of proof obligation were proved.

Hence, our most important result in this paper can be formulated as follows.
If an SG is constructed according to our modelling, then we can recover from link
failures by providing alternative paths from generator to high-priority consumers,
when there are paths available. There are two important issues to note here. First,
if there are no available paths to choose from, then, obviously, we cannot provide
any. However, in this case, we save (in failed path) the subtrees corresponding to
the failed links and at least human resources could be dispatched to repair them.
Second, our modelling is fundamentally based on the momentary SG having a
tree structure. We can recover from failure because we have the consumers as
leaves in this tree, i.e., they are not distributing electricity further. They might
have this capability in smart grids, and the available SG graph may have them
as substations. But in the momentary SG tree, they are leaves. This illustrates
the strength of abstraction (and proof) in modelling.

6 Related Work

The area of failure identification, diagnosis and recovery in smart grids has been
extensively studied. Clark andPavlovski have presented their experiences as a case
study in deploying a cellular wireless solution to support smart grid solutions [7].
In [15], a system-level simulation model including interdependencies between elec-
tricity distribution and mobile communication networks has been presented and
evaluated with field trials. The formal aspects of electrical grids have also been
studied before, for instance by Calderaro et al: they captured the details of mod-
elling a protection system for the grid, using Petri Nets [6]. Probabilistic graphical
models for modelling spatially correlated data from phasor measurement units,
as well as using statistical hypothesis testing for fault diagnosis, was proposed
by He and Zhang [14]. Apart from electrical grids, other types of distributed net-
works have also previously been formally modelled, for instance sensor-actor net-
works [18], peer-to-peer networks [22], and network recovery [17].

The general formal model proposed in this article addresses the safety and
recoverability analysis of many of the advanced properties of smart grids as
discussed for instance by Moslehi et al [21]. It can be extended to cover the main
aspects of smart grids, as discussed by Fang et al [10], and it should be noted that
the proposed model could be refined further to take into account various load
profiles or personalised electricity use information, to provide further adaptation
capabilities against failures and power outages. The proposed method is of high
interest also to smart grid (communication) capacity planning, as discussed for
instance by Luan et al [20]. The plan must take into account various modes of
operation. Luan et al discussed two modes, or scenarios, which they called “Blue
Sky Day” and “Storm Day”. Such scenario based planning can be verified and
proven correct with the proposed method.

7 Conclusions

In this paper we have illustrated the use of formal methods, notably the abstrac-
tion and refinement techniques, in modelling recovery in smart electrical grids.

90 S. Horsmanheimo et al.

This is useful from several points of view. First, there is no report of proving
this kind of properties in related literature, hence our methodology proposes a
novel view on addressing these problems. Second, our modelling is intended for
reusability and can be extended in several directions. For instance, consumers
could be divided into more than the two classes of priority that we have mod-
elled. However, by abstracting away details we have captured the basic problem
of addressing first the high-priority consumers and the rest of the consumers
could now be modelled by partitioning pr2 consumers into other sets. Also, our
link failures are non-deterministic; however, we might need to simulate partic-
ular failures to see what happens, if alternative paths are found. For instance,
this is useful when a storm is forecasted and the SG operators need to ensure
that their high-priority consumers are safe. To model this, we only need to refine
the non-deterministic choice with a particular choice and our models continue to
work. Moreover, when we have several recovery paths to choose from, some may
be preferred with respect to various criteria; in that case, the nondeterministic
choice in M2 can be refined.

We have employed Event-B as our formal method due to its integrated support
of abstraction and refinement; also, the tool support from the Rodin platform is
very useful and can help for an easier acceptance of this methodology in industry.
An interesting aspect of Event-B is that the context modelling the constants, sets
and axioms on them needs, in principle, no proofs. However, for proving recovery
as an invariant of our modelling, we needed to ensure the tree structure of the
momentary SG, and so in M1 we have part of the axioms proved, to ensure
consistency of our context. This makes for a stronger model and it was largely
facilitated due to the Event-B tool support.

In our model we have only considered a binary situation, i.e., there is a failure
or not. In reality, this type of failure is called blackout; there is at least an-
other type of failure, called brownout, referring to a situation where the power is
not completely disconnected but the voltage drops below acceptable levels. Fur-
thermore, brownouts can be intentional, whereby dropping the voltage overall
can prevent a blackout in some part of the grid. As we have not modelled this
situation in our work, it remains a future research topic.

Acknowledgement. This research is based on the cooperation between the
Academy of FinlandFResCo project (grant numbers 264060 and 263925, “FResCo:
High-quality Measurement Infrastructure for Future Resilient Control Systems”)
and the Tekes/SHOK Smart Grids and Energy Markets (SGEM) programme.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Back, R., Sere, K.: From Modular Systems to Action Systems. Software - Concepts
and Tools 13, 26–39 (1996)

4. Back, R., Sere, K.: Superposition Refinement of Reactive Systems. Formal Asp.
Comput. 8(3), 324–346 (1996)

On Proving Recoverability of Smart Electrical Grids 91

5. Bryans, J.W., Wei, W.: Formal Analysis of BPMN Models Using Event-B. In:
Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 33–49.
Springer, Heidelberg (2010)

6. Calderaro, V., Hadjicostis, C.N., Piccolo, A., Siano, P.: Failure identification in
smart grids based on Petri Net modeling. IEEE Transactions on Industrial Elec-
tronics 58(10), 4613–4623 (2011)

7. Clark, A., Pavlovski, C.: Wireless Networks for the Smart Energy Grid: Applica-
tion Aware Networks. In: Proceedings of the International Multi Conference of
Engineers and Computer Scientists, vol. 2 (2010)

8. Craigen, D., Gerhart, S., Ralson, T.: Case Study: Paris Metro Signaling System.
In: Proceedings of IEEE Software, pp. 32–35. IEEE (1994)

9. Event-B and the Rodin Platform, http://www.event-b.org/ (accessed January
2014)

10. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid - the new and improved power
grid: A survey. IEEE Communications Surveys and Tutorials 14(4), 944–980 (2012)

11. Farhangi, H.: The path of the smart grid. IEEE Power & Energy Mag. 8(1), 18–28
(2010)

12. Salehi Fathabadi, A., Rezazadeh, A., Butler, M.: Applying Atomicity and Model
Decomposition to a Space Craft System in Event-B. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 328–342.
Springer, Heidelberg (2011)

13. Gharavi, H., Ghafurian, R.: Smart grid: The electric energy system of the future.
Proc. IEEE 99(6), 917–921 (2011)

14. He, M., Zhang, J.: Fault detection and localization in smart grid: A probabilistic
dependence graph approach. In: IEEE SmartGridComm 2010, pp. 43–48 (2010)

15. Horsmanheimo, S., Maskey, N., Kokkoniemi-Tarkkanen, H., Savolainen, P.,
Tuomimäki, L.: Evaluation of Interdependencies between Mobile Communica-
tion and Electricity Distribution Networks in Fault Scenarios. In: IEEE ISGT Asia
2013 (2013)

16. Horsmanheimo, S., Kamali, M., Kolehmainen, M., Neovius, M., Petre, L., Rönkkö,
M., Sandvik, P.: On Proving Recoverability of Smart Electrical Grids. Tech. Rep.
1096, TUCS – Turku Centre for Computer Science (2013)

17. Kamali, M., Laibinis, L., Petre, L., Sere, K.: A Distributed Design of a Network Re-
covery Algorithm. International Journal of Critical Computer-Based Systems 4(1),
45–68 (2013)

18. Kamali, M., Laibinis, L., Petre, L., Sere, K.: Formal development of wireless sensor-
actor networks. Science of Computer Programming 80, 25–49 (2014)

19. LaCommare, K., Eto, J.: Cost of power interruptions to electricity consumers in the
United States. Tech. rep., Ernest Orlando Lawrence Berkeley National Laboratory,
lBNL-58164 (2006)

20. Luan, W., Sharp, D., Lancashire, S.: Smart grid communication network capac-
ity planning for power utilities. In: Proceedings of Transmission and Distribution
Conference and Exposition, pp. 1–4. IEEE (2010)

21. Moslehi, K., Kumar, R.: A Reliability Perspective of the Smart Grid. IEEE Trans-
action on Smart Grid 1(1), 57–64 (2010)

22. Petre, L., Sandvik, P., Sere, K.: Node Coordination in Peer-to-Peer Networks. In:
Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 196–211. Springer,
Heidelberg (2012)

23. Tate, J., Overbye, T.: Double line outage detection using phasor angle measurements.
In: Power & Energy Society General Meeting, PES 2009, pp. 1–5. IEEE (2009)

http://www.event-b.org/

Providing Early Warnings

of Specification Problems

Dustin Hoffman, Aditi Tagore, Diego Zaccai, and Bruce W. Weide

Department of Computer Science and Engineering
The Ohio State University

Columbus, Ohio 43210, USA
{hoffman.373,tagore.2,zaccai.1,weide.1}@osu.edu

Abstract. A formal software verification system relies upon a software
engineer writing mathematically precise specifications of intended behav-
ior. Humans often introduce defects into such specifications. Techniques
and tools capable of warning about common defects can help them de-
velop correct specifications by finding subtle issues that would permit
unintended behavior. New specification-checking techniques and a tool
that implements them, SpecChec, are described.

1 Introduction

A formal verification system normally tries to prove that implementations sat-
isfy formal specifications, but it cannot show that those specifications prop-
erly capture informal requirements. Therefore, specifications that erroneously
encode requirements, combined with verified implementations of those specifica-
tions, could lead to false confidence in a system. Deciding whether specifications
match requirements is a problem that generally has been regarded as beyond the
scope of formal methods because, essentially by definition, formal specifications
are developed from informal requirements. However, some specification defects
can be caught by performing internal consistency checks on specifications alone
(see [1]). This paper expands upon previous work in automatic detection of spec-
ification errors by describing a new specification-checking technique along with
the implementation of a tool, SpecChec, capable of detecting certain kinds of
inadmissible specifications as described here and in previous work.

Our experience with writing formal specifications suggests that simply identi-
fying which parameters might be modified by an operation is generally an easy
part of the process of formalizing requirements. Writing a sensible post-condition
is normally more prone to both logical errors and typos. So, if a parameter has
been identified as one that might be (i.e., is intended to be) modified by the
operation—but the post-condition as written admits a correct implementation
that never changes it—the postcondition is probably wrong. We submit that
such a specification should receive what we call a trivial-update warning.

For example, consider fire-control software for a torpedo. The launch sys-
tem needs to increase the pressure in the tube to equalize with sea pressure.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 92–97, 2014.
c© Springer International Publishing Switzerland 2014

Providing Early Warnings of Specification Problems 93

The design of this system might involve an operation IncreaseP. If its specifi-
cation inadvertently allows a correct implementation to do nothing to the pres-
sure (even though the pressure parameter is marked as modifiable), the torpedo
might not be able to launch. Thus a verified system fails.

Our proposed technique identifies trivial-update defects when a specification
is being created. Typically, errors are detected by a verification system (in our
case, the RESOLVE tools [2]) when a verification condition (VC) cannot be
discharged by a theorem-prover (in our case, Z3 [3] and/or SplitDecision [4])
and subsequently the VC is traced back to its origin in implementation code.
The specification-checking approach used here also involves generating VCs and
feeding them to a theorem-prover—but much earlier in the design process. Since
the cost of detecting and fixing errors increases as software development reaches
the later stages of its life-cycle, eliminating errors early is widely regarded as a
best practice in software engineering [5].

We assume familiarity with formal design-by-contract specifications using pre-
and post-conditions. However, except as noted here, no prior knowledge of the
RESOLVE language [6] or tools [2] or any specific theorem-prover is necessary.
The ideas apply to specification and verification more generally.

The primary contributions of this work are in codifying and automating cer-
tain checks on the quality of specification engineering:

– A technique to detect trivial-update defects: specification errors that admit
unintended behavior, i.e., failure of the specification to capture requirements.

– A tool to warn the developer of this and other specification defects.

2 Specification Modes

Most formal specification languages have syntax to mark each formal param-
eter whose value might be changed by an operation, such as the modifies
clause in Dafny [7], JML [8], and Spec# [9]; by default, a parameter’s value
is unchanged. RESOLVE uses a slightly different approach. Every formal pa-
rameter to an operation has a specification mode (“mode” for short) that
concisely declares something about how its value is affected by the operation,
and about the relevance of the incoming and/or outgoing value of that param-
eter to the operation’s overall effect. There are multiple modes in RESOLVE,
four of which are of particular interest for this paper: restores, updates,
replaces, and clears. The latter three can be viewed as specializations of
the all-encompassing modifies of other languages. The mode restores in-
dicates that the outgoing value is the same as the incoming value. The mode
updates indicates that the outgoing value might be different from the incom-
ing value, and that both are relevant. The mode replaces indicates that the
outgoing value is set by the operation, and that the incoming value is irrelevant.
The mode clears indicates that that the outgoing value is an initial value for
its type, and that the incoming value is relevant.

94 D. Hoffman et al.

3 Trivial-Update Defects

3.1 Examples

The following two examples illustrate trivial-update defects. Both exemplify ac-
tual specification errors we have made ourselves or have observed others making.
The first involves a trivial typo, the second a logical mistake.

procedure IncreaseP (
updates p: Integer,
restores max: Integer)

requires
p < max

ensures
p >= #p

procedure RemoveAny(
updates s: Set,
replaces x: Item)

requires
s /= empty_set

ensures
x is in #s and
#s = s union {x}

Fig. 1. Specifications of IncreaseP and RemoveAny

The error in IncreaseP is that the post-condition should read p > #p (i.e.,
the outgoing value of p exceeds its incoming value). 1 Other than performing
some kind of natural-language processing on the name of the operation, how can
this defect be detected?
RemoveAny is intended to remove an arbitrary element from a non-empty

set. What is the defect here, and how can it be detected?

3.2 Identifying Trivial-Update Defects

The updates mode is unique in that it introduces some redundancy: it sum-
marizes the specifier’s intent for the parameter at a coarse level, while the pre-
condition and post-condition pin down the details. It is this redundancy that
allows a trivial-update defect to be identified.

procedure Foo(restores r: T1, updates u: T2,
replaces s: T3, clears c: T4)

requires
pre 〈r, u, c〉

ensures
post〈r, #u, u, s, #c, c〉

Listing 1.1. A general operation specification schema

Consider the general schema for an operation shown in Listing 1.1 (in which
the types of the parameters are unimportant). The modes determine which pa-
rameters’ incoming and outgoing values may be mentioned in the pre-condition
and post-condition. Indeed, conformance to this schema is one of the purely
syntactic specification admissibility checks discussed in [1].

1 A formal parameter appearing with a # prefix in an ensures clause denotes the
parameter’s value before the call. This is omitted in a requires clause, where all
parameters necessarily denote their values before the call.

Providing Early Warnings of Specification Problems 95

The process of identifying trivial-update defects begins by building sentence (1)
claiming that there exist incoming values of the parameters that satisfy the
pre-condition—because if not, the specification is inadmissible [1] since any im-
plementation of it is correct:

∃r, u, c (pre〈r, u, c〉) (1)

Assuming this first admissibility check is passed, we next build sentence (2)
claiming that for all possible incoming parameter values that satisfy the pre-
condition, there exist outgoing parameter values that satisfy the post-condition.
Notice that the last two conjuncts in the post-condition are a direct result of the
parameter modes, i.e., the value of r is restored to its incoming value, and the
value of c is changed to an initial value for its type:

∀#r,#u,#c (pre〈#r,#u,#c〉 ⇒
∃ r, u, s, c (post〈r,#u, u, s,#c, c〉 ∧ (r = #r) ∧ is initial(c))) (2)

The variable r, introduced by the existential quantifier in sentence (2), is sim-
ply introducing a new name for #r. Thus, it can be removed from the existential
quantifier by using the name r for both:

∀r,#u,#c (pre〈r,#u,#c〉 ⇒
∃ u, s, c (post〈r,#u, u, s,#c, c〉 ∧ is initial(c))) (3)

If sentence (3) is valid then we have completed another of the specification
admissibility checks introduced in [1]. Assuming the specification also passes this
check, we now treat the updates-mode parameter u as if it were restores-
mode and build sentence (4) claiming that the contract might be implemented
by code that never modifies u:

∀r,#u,#c (pre〈r,#u,#c〉 ⇒
∃ u, s, c (post〈r,#u, u, s,#c, c〉 ∧ (u = #u) ∧ is initial(c))) (4)

Finally, we can simplify this to sentence (5):

∀r, u,#c (pre〈r, u,#c〉 ⇒ ∃ s, c (post〈r, u, u, s,#c, c〉 ∧ is initial(c))) (5)

Sentence (5) is the meaning of “the specification has a trivial-update defect.”
So, the validity of sentence (6) (the negation of sentence (5)) indicates the ad-
missibility of the specification with respect to trivial-update defects:

∃r, u,#c (pre〈r, u,#c〉 ∧ ∀ s, c (¬post〈r, u, u, s,#c, c〉 ∨ ¬is initial(c)))) (6)

3.3 Examples Revisited

For the specification of IncreaseP, the sentence claiming there is a trivial-
update defect is clearly valid:

∀p,max : integer (p < max ⇒ p ≥ p) (7)

96 D. Hoffman et al.

For the specification of RemoveAny, the sentence claiming there is a trivial-
update defect is also valid, though it is hardly as obvious:

∀s : finite set of Item (s �= ∅ ⇒ ∃ x : Item ((x ∈ s) ∧ (s = s ∪ {x}))) (8)

The problem with the RemoveAny specification is that the second clause of
the post-condition does not guarantee that x has been removed from s. A correct
specification replaces this clause with s = #s \ {x}.

In each example, the corrected specification results in the trivial-update defect
sentence being invalid.

4 SpecChec: A Specification Analysis Tool

We created a specification analysis tool, SpecChec, that tries to prove both ad-
missibility (sentences (1), (3), (6)) and inadmissibility (their negations) of specifi-
cations. The tool is implemented inside of the Modular Verification Environment
(MVE), which is the foundation for the OSU RSRG RESOLVE tools [10].

Within the MVE framework, SpecChec is implemented as if it were a VC
generator. Once its “VCs” (i.e., the six sentences mentioned above, only half of
which are true) have been created, the system first sends each sentence to the
automated theorem-prover SplitDecision. If that fails to prove it, the sentence is
sent to Z3. The examples discussed in Section 3 can be accessed and tested with
SpecChec via the website http://resolveonline.cse.ohio-state.
edu/?r=NFM2014. At this site, the examples can be found by navigating to
components in the tree along the left side of the page and then opened by
clicking on the name of the specification. Clicking “Verify” at the top runs the
SpecChec tool on the specification. After this step, the VCs that were gener-
ated for a given operation can be viewed by clicking on the large dot in the left
margin on the line of specification associated with that set of VCs. A red dot
indicates that the specification has an admissibility problem. Yellow indicates
that SpecChec was unable to determine admissibility.

SpecChec is often able to discharge VCs associated with the admissibility
checks, described earlier, when they involve only universal quantifiers or Pres-
burger arithmetic. However, the trivial-update defect identification technique
introduces an alternation of quantifiers that automated solvers generally can-
not presently handle. When automated provers become more adept at handling
various mathematical types and quantifier structures, even if just for ∀∃- and ∃∀-
style quantifier alternation, more and more specifications will be automatically
checkable for admissibility.

5 Conclusions

It will never be possible to prove that the formal specification of an operation
captures its informally-stated requirements. However, the use of specification
modes in RESOLVE or (to some extent) modifies clauses in other languages,

http://resolveonline.cse.ohio-state.
edu/?r=NFM2014

Providing Early Warnings of Specification Problems 97

introduces a small redundancy that provides an opportunity in principle to check
whether a contract is self-consistent. The introduction of alternating quantifiers
means that such admissibility checks often cannot be discharged automatically
with current technology. Yet the fact that such a small degree of redundancy
allows for any specification checks begs the open question of what other ways
we might be able to leverage redundancy in contract specifications, e.g., perhaps
by imposing other syntactic requirements for limited kinds of redundancy. JML,
for example, optionally allows redundant clauses in post-conditions [8].

Acknowledgment. The authors thank all members of RSRG for their sugges-
tions and support. This material is based upon work supported by the National
Science Foundation under Grant No. CCF-1162331. Any opinions, findings, con-
clusions, or recommendations expressed here are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

1. Tagore, A., Weide, B.W.: Automatically detecting inconsistencies in program spec-
ifications. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871,
pp. 261–275. Springer, Heidelberg (2013)

2. Sitaraman, M., Adcock, B., Avigad, J., Bronish, D., Bucci, P., Frazier, D., Fried-
man, H., Harton, H., Heym, W., Kirschenbaum, J., Krone, J., Smith, H., Weide,
B.: Building a push-button RESOLVE verifier: Progress and challenges. Formal
Aspects of Computing 23(5), 607–626 (2011)

3. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

4. Adcock, B.M.: Working Towards the Verified Software Process. PhD thesis, The
Ohio State University, Columbus, OH, USA (2010)

5. Westland, J.: The cost of errors in software development: evidence from industry.
Journal of Systems and Software 62(1), 1–9 (2002)

6. Sitaraman, M., Weide, B.: Component-based software using RESOLVE. SIGSOFT
Softw. Eng. Notes 19, 21–63 (1994)

7. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

8. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: Notations and
tools supporting detailed design in Java. In:OOPSLA2000 Companion, pp. 105–106.
ACM (2000)

9. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

10. Hoffman, D.: A Framework for Integrating Automated Software Verification Tools.
Tech-Report (2012),
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2012/TR05.pdf

ftp://ftp.cse.ohio-state.edu/pub/tech-report/2012/TR05.pdf

Mechanized, Compositional Verification

of Low-Level Code

Björn Bartels and Nils Jähnig

Technische Universität Berlin, Germany
{bjoern.bartels,nils.jaehnig}@tu-berlin.de

Abstract. For many safety-critical systems besides functional correct-
ness, termination properties are especially important. Ideally, such prop-
erties are not only established for high-level representations of a system,
but also for low-level representations.

In this paper, we therefore present a compositional semantics and a
related proof calculus for possibly non-deterministic low-level languages.
The calculus facilitates total correctness proofs about program repre-
sentations given in a low-level language. We cope with the complexity
inherent to such proofs by mechanizing the entire theory using the the-
orem prover Isabelle/HOL and exploiting the provers mechanisms for
constructing well-founded relations.

1 Introduction

Many safety critical systems are composed of terminating components or tasks.
In such a setting, not only functional correctness needs to be assured but also
termination of the components. Furthermore, it is not sufficient to establish these
properties on the level of a high-level programming language because transforma-
tions to low-level representations are complex and low-level code is often subject
to manual optimizations. Therefore, the desired properties need to be established
for the low-level implementation as well. However, proofs about low-level code
are complicated by the unstructured nature of low-level code.

In [9] a compositional approach to the semantics of low-level languages and a
related partial correctness logic is presented. In this paper, we build on this work
and construct a compositional semantics and proof calculus for total correctness
proofs about low-level languages. To obtain a formalization that can serve as
a starting point for instantiations to a broad variety of concrete languages, we
keep the low-level language as abstract as possible. The low-level language can
be used to simulate advanced constructs like binary choice between commands
and random assignment, for example. However, we need to account for the high
level of abstraction when establishing soundness and completeness. For exam-
ple, in the presence of unbounded non-determinism (as introduced by random
assignment), the weakest precondition approach cannot be used anymore. To
cope with these problems, we show that proof techniques targeting proof calculi
for high-level languages [7] can be transferred to the level of low-level languages.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 98–112, 2014.
c© Springer International Publishing Switzerland 2014

Mechanized, Compositional Verification of Low-Level Code 99

Moreover, we provide a semantics and proof calculus that is polymorphic with
respect to the notion of state and entirely mechanized 1 using the theorem prover
Isabelle/HOL [6]. This facilitates the instantiation of our semantic framework to
obtain mechanized verification environments for concrete low-level languages.

The paper is structured as follows. First, we introduce the syntax and the
notion of state in Section 2. Based on these definitions, in Section 3 we define a
small-step semantics for the basic low-level language. In Section 4, we present the
compositional big-step semantics for which we define a total correctness calculus
in Section 5 and establish soundness and completeness. Afterwards, we explain
the usage of the logic using a small example in Section 6. Finally, we finish the
paper with a discussion of related work in Section 7 and a conclusion in Section 8.

2 Syntax and State Definitions

We formalize the notion of state as a record with the name state that is param-
eterized over the type (’a):

record (′a) state = R :: ′a PC ::label

In Isabelle/HOL records offer convenient selector functions for components of
the record,i.e., we can refer to the components of a given state record s using
qualified names, i.e., R s or PC s. Furthermore, components of a record can be
updated in a similar fashion as we will explain in the next section. The low-level
programming language that we consider operates on a store R of type ’a. Using
the type variable ’a here expresses that we do not fix a concrete representation
of the store. Our further definitions of instructions and semantics will be poly-
morphic over the type ’a as well. This implies that our formalization can later
be used for concrete verification efforts by instantiating it with a convenient
representation for the store, for example by using a simple function (as we do
in the example later). The program counter PC points to the instruction that
is to be executed next and is of type label (which here is a type synonym for
the HOL type nat of natural numbers). The low-level programming language is
defined using the type of instructions (’a)instr. Instructions are parameterized
over the type of the store ’a as well:

datatype (′a)instr = do (′a ⇒ ′a set) | br label | brt (′a ⇒ bool) label label

The instruction do f applies an arbitrary (HOL) function f (of type ′a ⇒
′a set) to the state. The function maps to a set of states and might thereby
introduce non-determinism. The instructions br and brt are unconditional and
conditional branch instructions and reflect the unstructured control flow of the
language. The conditional branch instruction depends on a predicate of type ′a
⇒ bool that maps a given state to a boolean value.

1 The theory files will soon be submitted to the Archive of Formal Proofs (AFP). For
a preleminary version please contact the authors.

100 B. Bartels and N. Jähnig

(l , do f) ∈ lis
PC s = l x ∈ f (R s) t = s(|R := x , PC := PC s + 1 |)

(s, t) ∈ small-step
dof

(l , br m) ∈ lis PC s = l t = s(|PC := m|)
(s, t) ∈ small-step

smbr

(l , brt bexp m n) ∈ lis PC s = l bexp (R s) t = s(|PC := m|)
(s, t) ∈ small-step

smbrtt

(l , brt bexp m n) ∈ lis PC s = l ¬ bexp (R s) t = s(|PC := n|)
(s, t) ∈ small-step

smbrtf

Fig. 1. Rules of the Small Step Semantics

3 Small-Step Semantics

The rules of the small-step semantics are given in Figure 1. They refer to a
fixed set of labeled instructions lis and are defined within a locale context [6].
In such a context assumptions can be fixed and referred to. For example, we
require labeled instruction sets to contain no two tuples with the same label. In
general, a state transition from a state s to a state t is possible, if the program
counter in the state s (PC s) points to the label of an instruction. For the
individual instructions further conditions need to hold. If these are fulfilled, the
state t is obtained from s by updating the respective components (R and PC)
of the state record. In our basic low-level language, we generalize the assignment
instruction as used in [9] to a non-deterministic setting. This is reflected by
the definition of the instruction do f. It is similar to the one used in [7] for
a high-level language and formalizes the effect of an application of some HOL
function f to the state s. The function yields a set of states. Therefore, for every
element of this set (x ∈ f (R s)) there is a possible state t, which can be reached
from s. The program counter of this state t is obtained by incrementing the
program counter of s by one. By allowing the function f to be defined as an
arbitrary HOL function, the instruction do f can be used to model a variety of
instructions like single assignments and binary assignments. Furthermore, skip
instructions (provided f does not change the state), abortion (if f yields the
empty set) and non-deterministic instructions like non-deterministic choice and
also random assignment can be modeled. The unconditional branch instruction
br m updates the state s by setting the program counter to the value m. The last
two rules are concerned with the conditional branch brt bexp m n . Depending
on the truth value of the the predicate bexp, evaluated with respect to the store
R in state s, the instruction either updates the state by setting the program
counter to m or n. Note that f and bexp depend only on the store R in a given
state.

Mechanized, Compositional Verification of Low-Level Code 101

4 Big Step Semantics

Following [9], we define a compositional big step semantics by imposing a struc-
ture on sets of instructions. The central idea is that any unstructured set of
labeled instructions can be viewed as being constructed from subsets of labeled
instructions (which do not share labeled instructions with the same label) and
that, if this implicit structure is made explicit, a compositional semantics can
be obtained. Given some state s, the big-step semantics evaluates executions
with respect to this structured set of instructions. Depending on the value of the
program counter, a structured set of instructions may be entered at and exited
to different labeled instructions. Evaluation solely depends on the instructions
that the respective structured set is constructed from, i.e., no information about
the possible effect of instructions outside of the respective structured set and
its subcomponents is needed. This reflects the compositional nature of the se-
mantics. We formalize structured code using the following inductively defined
datatype:

datatype (′a)structuredCode = none |
one nat (′a)instr |
seq (′a)structuredCode (′a)structuredCode

The constructor none (which has the syntax abbreviation ∅) corresponds to
the empty set, while the constructor one (written as label :: instruction) corre-
sponds to a set consisting of exactly one labeled instruction. The constructor seq
(structuredCode⊕ structuredCode) formalizes the intuition of set construction
given above and is used for sequential composition in the big-step semantics. In
general, a set of labeled instructions can be structured in many ways. However,
the evaluations of the big-step semantics using the rules presented below are
oblivious with respect to the actual fixed structure.

The rules of the big-step semantics are given in Figure 2. The rules for do, br
and brt clearly correspond to the ones from the small-step semantics. However,
for the branch instructions it is required that the destination of a jump does not
equal its own label. In the inference rules, the labeled instructions are now defined
with respect to a piece of structured code sc that needs to be well-formed (wff sc

sc). Well-formedness here means that no constituent parts of a structured set
of instructions share an instruction with the same label. The central part of the
big-step semantics are the rules for sequential composition (SEQ1 and SEQ2),
and the rule TERM that is applicable if the program counter of a given state s
does not point into the structured piece of code. The intuition behind the rules
for sequential composition is the following: if execution of a piece of structured
code sc1 ⊕ sc2 from a given state s starts in the first part of the structured
piece of code (because PC s points to a label within sc1), then the code sc1 is
executed from this state. After this, a state s1 with a program counter outside of
sc1 is obtained. From this state both parts of the original structured code (sc1
⊕ sc2) are executed. The reason for considering both parts of the composition
is that from sc2 there might be a jump back into sc1. This way of executing the

102 B. Bartels and N. Jähnig

wff sc sc sc = (l :: do f) (l , do f) ∈ lis
PC s = l x ∈ f (R s) t = s(|R := x , PC := PC s + 1 |)

(s, sc, t) ∈ big-step
dof

wff sc sc sc = (l :: br m)
(l , br m) ∈ lis PC s = l l �= m t = s(|PC := m|)

(s, sc, t) ∈ big-step
br

wff sc sc sc = (l :: brt bexp m n) (l , brt bexp m n) ∈ lis
PC s = l bexp (R s) l �= m t = s(|PC := m|)

(s, sc, t) ∈ big-step
brtt

wff sc sc sc = (PC s :: brt bexp m n) (l , brt bexp m n) ∈ lis
PC s = l ¬ bexp (R s) l �= n t = s(|PC := n|)

(s, sc, t) ∈ big-step
brtf

sc = (sc1 ⊕ sc2) PC s ∈sc sc1
wff sc sc (s, sc1 , s1) ∈ big-step (s1 , sc1 ⊕ sc2 , t) ∈ big-step

(s, sc, t) ∈ big-step
seq1

sc = (sc1 ⊕ sc2) PC s ∈sc sc2
wff sc sc (s, sc2 , s1) ∈ big-step (s1 , sc1 ⊕ sc2 , t) ∈ big-step

(s, sc, t) ∈ big-step
seq2

¬ (PC s ∈sc sc) wff sc sc

(s, sc, s) ∈ big-step
term

Fig. 2. Rules of the Bigstep Semantics

two pieces of code is done until a state is reached, in which the program pointer
is outside of sc1 ⊕ sc2.

The big-step semantics corresponds to the small-step semantics, i.e., for a
given execution in the big-step semantics there exists a corresponding execution
in the small-step semantics and for stuck executions of the small-step semantics
(i.e., if the program pointer does not point to a labeled instruction anymore)
there exists a corresponding big-step execution. These simulation and reduction
theorems enable the transfer of properties established on the level of the big-step
semantics to the small-semantics. Thereby, the big-step semantics serves as a
connection layer between the unstructured layer of the small-step semantics and
the structured and more abstract layer of the proof calculus, which we present
in the upcoming section.

5 Proof Calculus for Total Correctness

In this section, we present our proof calculus for total correctness. In our formal-
ization assertions are defined using the extensional approach, i.e., we only fix the

Mechanized, Compositional Verification of Low-Level Code 103

type of assertions but do not define an assertion language. We model auxiliary
variables explicitly using an auxiliary state. Auxiliary variables are used to refer
to the values of variables appearing in a precondition within the postcondition
of a specification. The type of assertions is formalized as:

type-synonym (′aux , ′a)ass = ′aux ⇒ (′a)state ⇒ bool

The definition is parameterized over the type of auxiliary state ’aux and the
type of state ’a . The auxiliary state can therefore be instantiated conveniently
when using the calculus. For example, in the completeness proof we instantiate
the auxiliary state with the type of state.

The approach to total correctness proofs is similar to the way total correctness
is realized in proof calculi for structured programming languages. The specifica-
tion of a variant is required in the rule for sequential composition. Informally,
for structured programming languages such a variant ensures that in every loop
iteration a value of the state (or a combination of values) is decreased. If a lower
bound is known for the values of the respective part of the state, execution of
the loop must terminate at some point. Recall that the rule of sequential com-
position in our proof system for low-level code corresponds to both the rules
for sequential composition and loops in Hoare calculi for high-level languages.
In order to obtain a rule for sequential composition in our proof calculus, we
can follow the approach used for structured languages. The rules of the total
correctness calculus are given in Figure 3.

In contrast to the partial correctness case, the rule for do f requires that the
set of states yielded by f is not empty. For the branch instructions it is required
that they do not branch to their own label. Regarding sequential composition, a
well-founded relation needs to be provided (condition wf r). A binary relation is
well-founded iff it does not allow for infinitely descending chains. For example,
the relation less-than on the natural numbers is a well-founded relation. Given
such a relation, it needs to be established for both of the sub specifications that
the state is decreased with respect to this relation. This is formalized by the
term s = s′ in the precondition and the term (s, s′) ∈ r in the postcondition of
the assumptions in the rule for sequential composition. The rule of consequence
is similar to the one for partial correctness, but a conjunct for strengthening the
auxiliary state in the precondition is added. This is required to achieve adap-
tion completeness [10,8]. Informally, adaption completeness expresses that the
auxiliary state can always be adjusted as required in order to express arbitrary
valid specifications. This is of particular importance when extending a proof sys-
tem to recursive function calls, for example. The treatment of recursion can be
significantly simplified when using auxiliary variables [10].

Validity of a specification is defined similarly to validity in the context of par-
tial correctness. Additionally, we require that if a state s fulfills the precondition
p, execution of the respective structured code terminates for all executions of
code starting in s. This is formalized using the predicate ↓ defined by the rules
in Figure 4 and reflected by the last conjunct in the following definition:

104 B. Bartels and N. Jähnig〈
λ aux s.PC s = l ∧ f (R s) �= ∅ ∧

∀ x∈f (R s). q aux (s(|R := x , PC := PC s + 1 |))
∨ PC s �= l ∧ q aux s

〉
l :: do f 〈q〉 HDOF

〈
λ aux s.PC s = l ∧

q aux (s(|PC := m|)) ∧ m �= l

∨ PC s �= l ∧ q aux s

〉
l :: br m 〈q〉 HBR

〈
λ aux s.PC s = l ∧

(b (R s) ∧ q aux (s(|PC := m|)) ∧ m �= l ∨
¬ b (R s) ∧ q aux (s(|PC := n|)) ∧ n �= l)

∨ PC s �= l ∧ q aux s

〉
l :: brt b m n 〈q〉 HBRTF

wf r
∀ s ′. �t 〈λaux s. (PC s ∈sc sc1) ∧ i aux s ∧ s = s ′〉 sc1 〈λaux s. i aux s ∧ (s, s ′) ∈ r〉
∀ s ′. �t 〈λaux s. (PC s ∈sc sc2) ∧ i aux s ∧ s = s ′〉 sc2 〈λaux s. i aux s ∧ (s, s ′) ∈ r〉

�t 〈i〉 sc1 ⊕ sc2 〈λaux s. ¬ (PC s ∈sc sc1) ∧ ¬ (PC s ∈sc sc2) ∧ i aux s〉
hseq

�t 〈p ′〉 sc 〈q ′〉
∀ s t. (∀ aux . p ′ aux s −→ q ′ aux t) −→ (∀aux . p aux s −→ q aux t)

∀ s. (∃ aux . p aux s) −→ (∃ aux . p ′ aux s)

�t 〈p〉 sc 〈q〉
hcons

�t 〈p〉 ∅ 〈p〉hnone

Fig. 3. Rules of the Total Correctness Calculus

Definition 1 (Validity for total correctness)
|=t 〈p〉 code 〈q〉 ←→

∀ aux s t . p aux s ∧ (s , code, t) ∈ big-step −→ q aux t ∧
∀ aux s . p aux s −→ code ↓ s

A specification is valid (abbreviated |=t 〈p〉 code 〈q〉) iff for all states that
fulfill the precondition p and from which code is executed, the postcondition q
holds for the reached states and furthermore the execution of code terminates.
The axiomatization of termination using the predicate ↓ is necessary because
in the presence of non-determinism the existence of a terminating execution
is not sufficient to claim that all executions from a certain state terminate.
The intuition behind the formalized rules is as follows. As mentioned in the
introduction, the instruction do f can be used to model an instruction that
blocks execution given that the function f yields an empty set. Therefore, the
termination rule for do f requires the set of states yielded by f to be non-
empty. For the branch instructions, it is obvious that they terminate if they do
not target their own label. Any instruction terminates, if it is evaluated in a
state where the instruction pointer does not point to the label of the respective
instruction. The empty structured instruction ∅ terminates for any state because
it contains no labeled instructions that the program counter might point to. The
most interesting case is sequential composition, where termination behavior is
defined inductively. A sequential composition terminates from a given state s,

Mechanized, Compositional Verification of Low-Level Code 105

f (R s) �= ∅ ∨ PC s �= l

(l :: do f) ↓ s
dof

m �= l ∨ PC s �= l

(l :: br m) ↓ s
br

b (R s) ∧ m �= l ∨ ¬ b (R s) ∧ n �= l ∨ PC s �= l

(l :: brt b m n) ↓ s
brtf

PC s ∈sc (sc1 ⊕ sc2)
((PC s ∈sc sc1) ∧ sc1 ↓ s ∧ (∀ t . (s, sc1 , t) ∈ big-step −→ (sc1 ⊕ sc2) ↓ t)∨
(PC s ∈sc sc2) ∧ sc2 ↓ s ∧ (∀ t . (s, sc2 , t) ∈ big-step −→ (sc1 ⊕ sc2) ↓ t))

(sc1 ⊕ sc2) ↓ s
SEQ

¬ (PC s ∈sc (sc1 ⊕ sc2))

(sc1 ⊕ sc2) ↓ s
seq2

∅ ↓ snone

Fig. 4. Definition of the termination predicate

if execution of the first part of the structured code of the composition terminates
from s in a state t, and then the sequential composition terminates from this
state or vice versa. If the program pointer in s does not point into the sequential
composition, it terminates as well.

Theorem 1 (Soundness for total correctness)
 t 〈p〉 code 〈q〉 −→ |=t 〈p〉 code 〈q〉

The proof is by induction on the rules of the proof logic. For the basic in-
structions, it is sufficient to unfold the definition of the respective rules from
the big-step semantics and the termination predicate ↓. The most interesting
case is sequential composition. The proof requires an induction over the rules of
the big-step semantics. To establish that the termination predicate holds for se-
quentially composed code, we invoke well-founded induction over the induction
predicate using the specified well-founded relation r.

We prove completeness using the most general triple approach [2] because
the weakest precondition approach does not work in the presence of unbounded
non-determinism. Formally, the most general triple is defined as follows:

Definition 2 (Most general triple)
mgt code ≡ (λz s. z = s ∧ code ↓ s, code, λz t . (z , code, t) ∈ big-step)

The intuition behind the most general triple is that it reflects all possible exe-
cutions from a state fulfilling the precondition by ’freezing’ this state using the
auxiliary state z, and then claiming in the postcondition that it holds for all
states t reachable via the big-step semantics. Since we deal with total correct-
ness, it is also specified (using the termination predicate ↓) that execution from
a state fulfilling the precondition needs to terminate. If it can be established

106 B. Bartels and N. Jähnig

that the rules of our calculus are sufficient to prove the most general triple, it
follows that the proof system is complete (here fst refers to the first part of the
mgt-tuple and snd(snd(mgt code)) refers to the third part):

Lemma 1 (Most general triple implies completeness)
If wff sc code and �t 〈fst (mgt code)〉 code 〈snd (snd (mgt code))〉 then
|=t 〈P〉 code 〈Q〉 −→ �t 〈P〉 code 〈Q〉

The following theorem establishes that the rules of our proof system are suf-
ficient to derive the most general triple:

Lemma 2 (Derivation of the most general triple)
If ∪sc code ⊆ lis and wff sc code then �t 〈fst (mgt code)〉 code 〈snd (snd (mgt

code))〉

The proof is done by induction on code (which needs to be well-formed).
We show the case for the instruction do f here and then focus on sequential
composition. The other cases are similar. For do f, we need to show that the
following triple holds:
�t 〈λz s. z = s ∧ (l :: do f) ↓ s〉 l :: do f 〈λz t . (z , l :: do f , t) ∈ big-step〉
Using the rule of consequence we strengthen the precondition to obtain the

following triple:
�t 〈λaux s. PC s = l ∧ f (R s) �= ∅ ∧

∀ x∈f (R s). (aux , l :: do f , s(|R := x , PC := PC s + 1 |)) ∈ big-step

∨PC s �= l ∧ (aux , l :: do f , s) ∈ big-step〉
l :: do f

〈λz t . (z , l :: do f , t) ∈ big-step〉
Using the proof rule for the instruction do f, we want to show that this triple

can be derived in our proof system. In order to apply the rule, we first need
to apply the rule of consequence. The application of the rule of consequence
requires to show that the following holds:
If (l :: do f) ↓ s and PC s = l ∨ (s, l :: do f , s) /∈ big-step then

PC s = l ∧ f (R s) �= ∅ ∧
∀ x∈f (R s). (s, l :: do f , s(|R := x , PC := Suc (PC s)|)) ∈ big-step

The definition of termination in the first assumption ((l :: do f) ↓ s) implies
that the function f must not yield the empty set (f (R s) �= ∅). This already
shows the second conjunction of our proof goal. The second assumption in this
proof obligation states that either the program counter points to the instruction
do f at label l, or that there exists no transition from s to itself through the
instruction do f at label l. It is easy to show that the latter can only be the case
if the instruction pointer indeed points to l. It therefore remains to show that:
∀ x∈f (R s). (s, PC s :: do f , s(|R := x , PC := Suc (PC s)|)) ∈ big-step

This follows from the big-step rule for do f, since the program counter of s
points to the label of the do f instruction.

Mechanized, Compositional Verification of Low-Level Code 107

For sequential composition, we have the assumption that the following triples
hold for the individual parts of the sequential composition:

 t 〈λz s . z = s ∧ sc1 ↓ s〉 sc1 〈λz t . (z , sc1 , t) ∈ big-step〉 (1)

 t 〈λz s . z = s ∧ sc2 ↓ s〉 sc2 〈λz t . (z , sc2 , t) ∈ big-step〉 (2)

and we have to establish the following triple:

 t 〈λz s . z = s ∧ (sc1 ⊕ sc2) ↓ s〉 (3)

sc1 ⊕ sc2

〈λz t . (z , sc1 ⊕ sc2 , t) ∈ big-step〉

In order to apply the appropriate proof rule for sequential composition, we need
to find a suitable invariant and provide a well-founded relation for the composi-
tion. Both are based on the observation that execution of the sequential compo-
sition might alternate between the two pieces of structured code involved in the
sequential composition. Therefore, we define the invariant based on the transitive
closure of the set of state-pairs (u, v), where the state v can be reached from the
state u through sc1 or sc2. For a tuple of states (z, t), the invariant then describes
all the states z visited after and between executing sc1 or sc2 in an alternating
manner. Note that states visited ’within’ the execution of either of the pieces of
code are not captured. Furthermore, the invariant requires the alternating execu-
tions to terminate. Using the rule of consequence, we strengthen the precondition
of the desired specification (3) to the following assertion, which exactly formalizes
the invariant described above using the termination requirement:

〈λz t. (z, t) ∈ {(u, v) |((PC u ∈sc sc1) ∧ (u, sc1 , v) ∈ big-step ∨
(PC u ∈sc sc2) ∧ (u, sc2 , v) ∈ big-step)}∗∧

(sc1 ⊕ sc2) ↓ z〉

We weaken the postcondition in a similar manner. Note that we need to add
that the program counter does not point into the sequentially composed pieces
of code anymore in order to apply the rule of consequence:

〈λz t. ¬ (PC t ∈sc sc1) ∧ ¬ (PC t ∈sc sc2) ∧
(z, t) ∈ {(u, v) |((PC u ∈sc sc1) ∧ (u, sc1 , v) ∈ big-step∨

(PC u ∈sc sc2) ∧ (u, sc2 , v) ∈ big-step)}∗∧
(sc1 ⊕ sc2) ↓ z〉.

The desired specification (3) now has the form required to apply the rule
for sequential composition as defined in our proof system. To apply the rule,
we have to provide an appropriate well-founded relation. We use the following
relation, which claims that the terminating executions of the sequential compo-
sition (which might ’circulate’ through both parts of the composition) form a
well-founded relation:

108 B. Bartels and N. Jähnig

wf{(t, s) | (sc1 ⊕ sc2) ↓ s ∧ PC s ∈sc (sc1 ⊕ sc2) ∧
((PC s ∈sc sc1) −→ (s, sc1 , t) ∈ big-step ∧
(PC s ∈sc sc2) −→ (s, sc2 , t) ∈ big-step)}

To show that this relation is indeed well-founded, we use the following lemma,
which specifies that if a sequential composition sc1 ⊕ sc2 is executed starting in
a state f(k)2 and terminates, then for every possible execution path there exists
an argument i such that the program counter in the state f(i) does not point
into the sequential composition anymore and therefore the execution terminates.
Clearly, this reflects the characterization of a well-founded relation, i.e., that
there is no infinitely descending chain. The resulting lemma is the following:

If (sc1 ⊕ sc2) ↓ f k and
(∀i. PC (f i) ∈sc (sc1 ⊕ sc2) =⇒

(PC (f i) ∈sc sc1) −→ (f i , sc1 , f (Suc i)) ∈ big-step ∧
(PC (f i) ∈sc sc2) −→ (f i , sc2 , f (Suc i)) ∈ big-step)

then ∃ i . ¬ (PC (last (f i)) ∈sc sc1) ∧ ¬ (PC (last (f i)) ∈sc sc2)

The lemma is proved by induction on the termination predicate. Well-
foundedness of the relation described above is then easily established. Now that
the appropriate well-founded relation is specified, it needs to be shown that the
preconditions of the triples (1) and (2) from the assumptions of our overall proof
goal can be strengthened to yield the specified invariant. Moreover, we need to
show that the postconditions can be weakened to yield the invariant and that
furthermore the state is decreased with respect to the given well-founded rela-
tion. For (1) we need to show that we can obtain the following specification using
the rule of consequence:
∀s′〈λaux s.PC s ∈sc sc1 ∧

(aux, s) ∈ {(u, v).(PC u ∈sc sc1) ∧ (u, sc1 , v) ∈ big-step∨
(PC u ∈sc sc2) ∧ (u, sc2 , v) ∈ big-step}∗∧

(sc1 ⊕ sc2) ↓ aux ∧ s = s ′〉
sc1

〈λaux s.(aux, s) ∈ {(u, v).(PC u ∈sc sc1) ∧ (u, sc1 , v) ∈ big-step∨
(PC u ∈sc sc2) ∧ (u, sc2 , v) ∈ big-step}∗∧

(sc1 ⊕ sc2) ↓ aux ∧
((sc1 ⊕ sc2) ↓ s ′ ∧ ((PC s ′ ∈sc sc1) ∨ (PC s ′ ∈sc sc2)) ∧
(PC s ′ ∈sc sc1) −→ (s ′, sc1 , s) ∈ big-step ∧
(PC s ′ ∈sc sc2) −→ (s ′, sc2 , s) ∈ big-step))}〉

Note that the precondition is a conjunction consisting of a predicate referring
to the program pointer (as required by the respective rule of the proof system)
and the invariant. It also connects the states of the precondition to the states of
the postcondition via the universally quantified variable s’. The postcondition
in turn is a conjunction of the invariant and the requirement that the states
of the postcondition are related to the states of the precondition (via s’) with
respect to the well-founded relation that we have given above. To prove that the
specification can be derived from (1) we use the following auxiliary lemma:

2 f is a function from the natural numbers into the states.

Mechanized, Compositional Verification of Low-Level Code 109

Lemma 3 (Transitivity of termination)
If wff sc (sc1 ⊕ sc2) and ∪sc (sc1 ⊕ sc2) ⊆ lis and (sc1 ⊕ sc2) ↓ s and s �= s ′

and PC s ∈sc (sc1 ⊕ sc2) and (s, s ′) ∈ {(u, v) | (PC u ∈sc sc1) ∧ (u, sc1 , v) ∈
big-step ∨ (PC u ∈sc sc2) ∧ (u, sc2 , v) ∈ big-step}∗ then (sc1 ⊕ sc2) ↓ s ′

The lemma states that, if execution of a sequential composition sc1 ⊕ sc2
terminates from a state s, and furthermore s and s’ are related via the relation
that describes the intermediate states of executions alternating between sc1 and
sc2, then execution of sc1 ⊕ sc2 terminates from s’ as well. Finally, the rule for
sequential composition can be applied to establish that the desired specification
(3) is indeed valid in our calculus. Once it is shown that the most general triple
can be derived in the calculus, completeness follows directly (if the code is well-
formed and fulfills the requirements for labeled instruction sets):

Theorem 2 (Completeness for total correctness)
If ∪sc c ⊆ lis and wff sc c then |=t 〈P〉 c 〈Q〉 −→ �t 〈P〉 c 〈Q〉

6 Example

As an example, we explain how the presented proof calculus can be used to
verify the total correctness of low-level code resulting from the compilation of a
high-level loop. The code and the related high-level code is given as follows:

reg1 = {1,2,3,4};

while (reg1 < 10)

{reg1 := reg1 + 1}

1 do set1t0

2 brt sm10 3 5

3 do incr1

4 br 2

We use the following definitions to specify the initial non-deterministic as-
signment of a value from the set {1, 2, 3, 4} to register 1 and the addition of 1 to
the value residing in register 1 in line 3. Furthermore, the function sm10 defines
the branch condition in line 2. Note that we use a function of type nat⇒ nat to
model the registers here. The first two functions given below take such a func-
tion as an argument and perform pointwise updates. The value of the respective
function for the argument 1 corresponds to the contents of the variable reg1.

set1t0 regs = {(regs(1 :=1)),(regs(1 :=2)),(regs(1 :=3)),(regs(1 :=4))}
incr1 regs = {regs(1 := (regs 1) + 1)}
sm10 regs = (regs 1 < 10)

Wewant to derive the following total correctness specification, which states that
executed from a state where the program pointer PC points to label 1, execution
ends in a state where the PC points to 5 and register 1 holds the value 10.

〈λaux s. PC s = 1 〉
(1 :: do set1t0) ⊕ ((2 :: brt sm10 3 5) ⊕ ((3 :: do incr1) ⊕ (4 :: br 2)))

〈λaux s. PC s = 5 ∧ R s 1 = 10 〉

110 B. Bartels and N. Jähnig

Fig. 5. Proof tree for the example

The proof tree is given in Figure 5. We use the following abbreviations and
definitions for structured code and assertions:
s2 =2 :: brt sm10 3 5 s3 =3 :: do incr1
s4 =4 :: br 2 s34 =(3 :: do incr1) ⊕ (4 :: br 2)
s234 =(2 :: brt sm10 3 5) ⊕ ((3 :: do incr1) ⊕ (4 :: br 2))

Inv125 aux s = (λauxs.((PCs = 1) ∨
(PC s = 2 ∧ ((R s) 1) ≥ 0 ∧ ((R s) 1) ≤ 10) ∨
(PC s = 5 ∧ ((R s) 1) = 10))) aux s

Inv235 aux s = (λauxs.((PC s = 2 ∧ ((R s) 1) ≥ 0 ∧ ((R s) 1) ≤ 10) ∨
(PC s = 3 ∧ ((R s) 1) < 10)∨
(PC s = 5 ∧ ((R s) 1) = 10))) aux s

Inv234 aux s s′a =
(λaux s.((PCs = 3 ∧ ((R s)1) < 10 ∧ ((R s)1) ≤ 10) ∧ v2def s = v2def s′a ∨

(PCs = 4 ∧ ((R s)1) ≤ 10) ∧ v2def s < v2def s′a ∨
(PCs = 2 ∧ ((R s)1) ≤ 10) ∧ v2def s < v2def s′a)) aux s

Mechanized, Compositional Verification of Low-Level Code 111

When proving total correctness for structured code, a variant is specified,
which is decreased by every execution of the loop body. The same technique can
be used for low-level code, but here a variant needs to be specified here for every
sequential composition. We use the following functions from the program state
into the natural numbers in order to define suitable variants:

v1def s = (if (PC s = 1) then 1 else 0)
v2def s = (10 − (R s 1))
v3def s = (if (PC s ≥ 1 ∧ PC s ≤ 5) then (6 −PC s) else 0)
v4def s = (if (PC s = 3 ∨ PC s = 4) then (5 − PC s) else 0)
cvdef s = ((v1def s), (v2def s), (v3def s))
cvrel = (inv-image (less-than <∗lex∗> less-than <∗lex∗> less-than) cvdef)

Based on the given functions, we define well-founded relations v1rela,v2rela,
v3rela using the function measure of Isabelle/HOL. The function yields rela-
tions, which are well-founded by construction. Note that we take the value of
the register corresponding to the variable reg1 in the definition of v2def . We
define the combined variant cvrel for the given low-level code using the function
cvdef , which maps a given state s to a tuple consisting of the mappings of the
previously defined functions to s. The well-founded relation cvrel is then de-
fined as the inverse image of the lexicographic product of the previously defined
functions. The actual proof depicted in Figure 5 is carried out using backward
reasoning. We use the combined variant cvrel for the sequential compositions.
An interesting situation arises in the last sequential composition in the upper
right of the proof tree. To apply the rule of consequence, the invariant Inv234
needs to mention v2def explicitly. This is due to the backward jump in line 4
and reflects the usage of the variant as known for total correctness proofs about
high-level code in the setting of low-level code.

7 Related Work

Closely related to our work is of course the work of Saabas and Uustala on which
our work builds [9]. The partial correctness calculus was mechanized in [1] using
the theorem prover Coq and extended with a separation logic. Total correctness
and non-determinism was not considered in this work. Regarding total correct-
ness, [5] presents a logic for low-level code that is formalized using the theorem
prover HOL. However, the assertion format used there is quite different from the
one we use because it is not based on labels but uses multiple pre- and post-
conditions. A further logic for low-level code extended with a separation logic is
presented in [3].

8 Conclusions and Further Work

In this paper, we have presented a mechanized verification framework for total
correctness of low-level code in the presence of non-determinism. We have built
our development on the work presented in [9]. Our extensions required signifi-
cant changes to the soundness and completeness proofs of the logic. To overcome

112 B. Bartels and N. Jähnig

these problems, we adopted an approach from [7] for high-level languages to the
setting of low-level code. Furthermore, we have shown how the resulting verifi-
cation environment can be used for concrete mechanized total correctness proofs
by exploiting Isabelle/HOLs mechanisms for well-founded relations. This is espe-
cially useful to cope with the complexity inherent to proofs about unstructured
low-level code and the further challenges of proving total correctness in this set-
ting. As future work, we consider extending the formalization to a concurrent
setting with shared variable concurrency. Because of the compositional nature of
the presented logic, we expect that we can transfer techniques for rely-guarantee
reasoning [4] to the setting of low-level code and obtain a mechanized and com-
positional verification environment for concurrent low-level code.

References

1. Affeldt, R., Nowak, D., Yamada, K.: Certifying assembly with formal security
proofs: The case of bbs, vol. 77, pp. 1058–1074. Elsevier North-Holland, Inc.,
Amsterdam (2012)

2. Gorelick, G.A.: A complete axiomatic system for proving assertions about recur-
sive and non-recursive programs. Technical Report 75, Dept. of Computer Sci-
ence,University of Toronto (1975)

3. Jensen, J.B., Benton, N., Kennedy, A.: High-level separation logic for low-level code.
In: Proceedings of the 40th Annual ACMSIGPLAN-SIGACTSymposium on Princi-
ples of Programming Languages, POPL 2013, pp. 301–314. ACM, New York (2013)

4. Jones, C.B.: Specification and Design of (Parallel) Programs. In: IFIP Congress,
pp. 321–332 (1983)

5. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007)

6. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

7. Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism.
In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 103–119.
Springer, Heidelberg (2002)

8. Olderog, E.-R.: On the notion of expressiveness and the rule of adaptation. Theo-
retical Computer Science 24(3), 337–347 (1983)

9. Saabas, A., Uustalu, T.: A compositional natural semantics and hoare logic for
low-level languages. Electron. Notes Theor. Comput. Sci. 156(1), 151–168 (2006)

10. Schreiber, T.: Auxiliary variables and recursive procedures. In: Bidoit, M., Dauchet,
M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214,
pp. 697–711. Springer, Heidelberg (1997)

Formally Verified Computation of Enclosures
of Solutions of Ordinary Differential Equations

Fabian Immler�

Institut für Informatik, Technische Universität München
immler@in.tum.de

Abstract. Ordinary differential equations (ODEs) are ubiquitous when
modeling continuous dynamics. Classical numerical methods compute
approximations of the solution, however without any guarantees on the
quality of the approximation. Nevertheless, methods have been developed
that are supposed to compute enclosures of the solution.

In this paper, we demonstrate that enclosures of the solution can be
verified with a high level of rigor: We implement a functional algorithm
that computes enclosures of solutions of ODEs in the interactive theorem
prover Isabelle/HOL, where we formally verify (and have mechanically
checked) the safety of the enclosures against the existing theory of ODEs
in Isabelle/HOL.

Our algorithm works with dyadic rational numbers with statically
fixed precision and is based on the well-known Euler method. We abstract
discretization and round-off errors in the domain of affine forms. Code
can be extracted from the verified algorithm and experiments indicate
that the extracted code exhibits reasonable efficiency.

Keywords: Numerical Analysis, Ordinary Differential Equation, Theo-
rem Proving, Interactive Theorem Proving.

1 Introduction

Ordinary differential equations (ODEs) are used to model a vast variety of dy-
namical systems. In many cases there is no closed form for the solution, but one
can resort to numerical approximations. They are usually given by “traditional”
one-step methods like the Euler method or the more general family of Runge-
Kutta methods, which approximate the solution in several discrete steps in time.
However, especially in safety-critical applications, approximations are too vague
in that they provide no rigorous connection to the solution.

To establish such a connection, in the area of “guaranteed integration”, dif-
ferent approaches have been proposed. They have in common that they do not
compute with approximate values, but with sets enclosing the solution. The
most basic way to compute with sets is interval arithmetic, which suffers from
the wrapping effect (i.e., large overapproximations when enclosing rotated boxes
� Supported by the DFG Graduiertenkolleg 1480 (PUMA)

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 113–127, 2014.
c© Springer International Publishing Switzerland 2014

114 F. Immler

in a box) and cannot track dependencies between variables. The proposed ap-
proaches differ in the data structures that represent the sets as well as the
algorithms that are used to compute them.

A well-studied family of algorithms is based on on Taylor series expansions
and computing with interval arithmetic, surveyed e.g., by Nedialkov [18], and
implemented in tools like AWA [15], ADIODES [25], VNODE [17], VNODE-
LP[19]. Those overcome the wrapping effect with QR-decomposition. A differ-
ent approach is based on Taylor models, which suffer from neither the wrapping
effect nor the dependency problem and which were studied by Makino and Berz
and implemented to solve ODEs in COSY [1]. A survey of Taylor model based
methods is given by Neher et al. [20]. Tucker [26] uses the “traditional” Eu-
ler method with interval arithmetic and uses interval splitting to overcome the
wrapping effect. Bouissou et al. [3] also use “traditional” methods, but they rep-
resent sets with affine forms [6] to overcome the wrapping effect and track linear
dependencies.

Most of the aforementioned “guaranteed” methods have in common that the
proofs that they actually compute enclosures of the solution are carried out on a
relatively high level, without formal connection to the source code. Nedialkov [19]
has been worried about this gap and responds with implementing VNODE-LP
using literate programming, such that the correctness can be verified via code
review by a human expert. The operations used in COSY are (manually) proved
correct in [24] – but only for the basic operations on Taylor models, without a
connection to ODEs.

Our work aims at narrowing the gap between implementation and proof even
more by allowing for mechanical software verification. We formalize both proof
and algorithm in an interactive theorem prover, namely Isabelle [22]. The the-
orem prover provides a formal language to express mathematical formulas and
allows to prove theorems in a rigorous calculus, where every reasoning step is
checked by the system. Isabelle/HOL implements higher-order logic, a subset of
which can be seen as a functional programming language. Isabelle/HOL there-
fore allows to extract code from the formal specifications.

Our approach is to give a specification of a guaranteed method for ODEs in
Isabelle/HOL. We verify that the computed enclosures are correct with respect
to a formalization of ODEs in Isabelle/HOL. Our specified method is executable,
we therefore extract code and compute enclosures for some examples.

The method we chose to formalize is based on the approach taken by Bouis-
sou et al. [3]: they essentially let “traditional” methods operate on sets repre-
sented by affine forms. We liked the flexibility of their framework – the fact
that it can be extended with different “traditional” methods, which are all well-
studied and each known to be suited for particular kinds of ODEs. Moreover, we
had already formalized a (rudimentary) numerical analysis of the Euler method.

1.1 Contributions

We contribute a formal and mechanically checked verification of a set-based
Euler method. We therefore provide a formalization of affine forms, a formal

Formally Verified Computation of Enclosures 115

specification of the Euler method based on affine forms and a formal correctness
proof with respect to the formalized mathematical specification of ODEs. In the
course, we discovered subtle issues in informal proofs given for other set-based
methods (see also Section 2.4).

Note that every definition and theorem we explicitly display in the following
text possesses a formally proved and mechanically checked counterpart. The
development is available in the Archive of Formal Proofs [14,12].

1.2 Related Work

In addition to the already mentioned work on guaranteed integration, we would
like to point to related work on differential equations in theorem provers: Spit-
ters and Makarov [16] use the constructive proof of the existence of a unique
solution to calculate solutions of ODEs in Coq. The local nature of the proof
restricts their computations to short existence intervals. Boldo et al. [2] approxi-
mate the solution of one particular partial differential equation in Coq. A formal
development of Taylor models is given by Brisebarre et al. [4]. Platzer [23] uses
differential invariants to reason about dynamical systems in a proof assistant.

1.3 Overview

Let us start with a high-level overview of our “tool”: We present the required
mathematical background and the formalization thereof in Section 2. Formally
verified approximations of ODEs will be obtained as follows:

1. The user needs to input a term f for the right-hand side of the ODE.
2. A term for the derivative Df of f can then be obtained automatically via

symbolic differentiation (Section 2.3).
3. Given f and Df , we provide a method to automatically obtain affine arith-

metic approximations f̂ and f̂ ′ of f and Df . (Section 3)
4. Now f , Df f̂ , and f̂ ′ can be shown to satisfy the assumptions for numerical

approximations with the Euler method (Section 4).
5. Code for the Euler method can then be extracted, compiled and executed in

order to obtain a list of enclosures. Theorem 9 states the correctness of the
method.

We conducted experiments with some concrete ODEs in Section 5.

2 Background

We work with the interactive theorem prover Isabelle [22], inside the logic Isa-
belle/HOL. Isabelle is an LCF-style theorem prover, i.e., every proposition passes
through a small, trusted inference kernel.

In the following, we present the background theory we use in our formalization
and the notation we use in this paper to refer to it. As a subset of Isabelle/HOL

116 F. Immler

can be seen as a functional programming language, the notation we use in this
presentation is inspired by functional programming languages: for a term t we
write t :: α if t is of type α. We write function application juxtaposition as in f t
and function abstraction λx. t. Types are built from base types like N, Z, R, Rn

or via type constructors like α ⇒ β for functions from type α to β, α×β for pairs,
or α set respectively α list for sets respectively lists with elements of type α. ⇒
binds weaker than ×, which binds weaker than other type constructors. α option
denotes the option type with constructors None and Some. For operations in
the option monad we use Haskell-style do-notation. For A :: α set, B :: β set we
denote with A → B the function set {f | ∀a ∈ A. f a ∈ B}. We make use of
standard functional programming functions like map, fold, filter, fst, snd and write
appending (concatenating) lists with _@_ :: α list ⇒ α list ⇒ α list

We also make use of Isabelle’s code generator [8]: it performs a (mostly syn-
tactic) translation from equations in the logic to functions in functional pro-
gramming languages like SML, OCaml, Haskell, or Scala. Worth noticing for
our application is that we make use of a shallow embedding of integers Z, i.e.,
operations on type Z are mapped to operations of the arbitrary-precision integers
provided by the respective target languages.

In the remainder of this section, we present the notation of the mathematical
formalization upon which we base our work.

2.1 Real Numbers

Isabelle/HOL provides a theory of real numbers R, which does not directly allow
for code generation. We formalize all of our algorithms in terms of real numbers,
but in order to obtain an executable formalization, we make use of data refine-
ment [7] and represent the type R with dyadic rational numbers:

We introduce (based on Obua’s [21] construction of Floating point numbers)
a “pseudo-constructor” Float :: Z ⇒ Z ⇒ R for dyadic rational numbers, i.e.,
Float m e = m · 2e. Isabelle’s code generator can be instructed to translate R as
a type with elements constructed by Float in the target language. Operations on
real numbers then need to be given in terms of pattern matching on Float, e.g.,
(Float m1 e1) · (Float m2 e2) = Float (m1 · m2) (e1 + e2).

For efficiency reasons we need to restrict the precision, i.e., the size of the
mantissa, during computations. We therefore use trunc+ and trunc− with the
property trunc− p x ≤ x ≤ trunc+ p x. Moreover, trunc+ and trunc− make sure
that the absolute value of the returned mantissa is smaller than 2p. When we
speak of precision, we usually denote it with a value p corresponding to the
length of the mantissa as described above. We also give a function round, for
which if round p x = (y, e), then y is rounded with precision p and |x − y| ≤ e.

Some operations like division or transcendental functions cannot be computed
exactly on dyadic rational numbers, for them we use approximating functions
with precision p like div− and div+ with div− p x y ≤ x

y ≤ div+ p x y.

Formally Verified Computation of Enclosures 117

2.2 Euclidean Space

Our work is based on Isabelle/HOL’s Multivariate Analysis [11], which is an
extension and generalization of a port of Harrison’s formalization of Euclidean
space in HOL Light [9].

Euclidean spaces Rn are formalized as types α with a set of base vectors
Basis :: α set with the vector space operations addition + :: α ⇒ α ⇒ α, scalar
multiplication · :: R ⇒ α ⇒ α and inner product • :: α ⇒ α ⇒ R. Products
of real numbers are Euclidean spaces, we therefore write for example R × R
also as R2, and we have e.g., (Basis :: R2 set) = {(1, 0), (0, 1)}. Every element
of the Euclidean space can be written as a sum of base vectors scaled with the
respective coordinates. Coordinates can be extracted by taking the inner product
with a base vector, so it holds that x =

∑
i∈Basis(x • i) · i.

For a, b :: Rn write a ≤ b if for all base vectors i ∈ Basis, a • i ≤ b • i. Then
the interval [a; b] = {x | a ≤ x ∧ x ≤ b} is the smallest box containing a and b.
We also define the absolute value |a| :: Rn componentwise, i.e., for base vectors
i, |a| • i = |a • i|.

2.3 Derivatives

The (ordinary) derivative of a function g :: R ⇒ Rn is written g′ :: R ⇒ Rn.
For f :: Rn ⇒ Rm, we denote by Df :: Rn ⇒ Rn ⇒ Rm the Frechet (or
total) derivative of f . Df x is the linear approximation of f at x (which can
be represented with the Jacobian matrix). We use the notation for derivatives
under the implicit assumption that they exist (which we prove or assume in the
formal development).

Isabelle/HOL provides a set of rules allowing to symbolically compute deriva-
tives. Together with the rewrite engine of Isabelle/HOL, this allows to automat-
ically obtain a term for the derivative Df of f .

2.4 Notes on Taylor Series Expansion in Euclidean Space

In the course of formally proving the correctness of our implementation, we even
identified a subtle issue in the presentation of Bouissou et al. [3]: They develop
(in Equation 8) a Taylor series expansion of a function y, where they assume the
existence of a ξ ∈ [t; t + h] with y(t + h) = y(t) +

∑k
i=1

hi

i! y(i)(t) + hk+1

k! y(k+1)(ξ).
Such a ξ only exists for functions y :: R ⇒ R. In the multivariate case, y :: R ⇒
Rn can be seen as a family of functions yi :: R ⇒ R such that there exists a
family of ξi ∈ [t; t + h] for the remainders of yi. The remainder of y can then
be written as r := (y(k)

i ξi)i≤n. But this element need not be a member of the
set A = {y(k)(t). t ∈ [t; t + h]}, which they overapproximate as enclosure of the
remainder in their Equation 12. However, r is an element of any box enclosing
A and they use such a box enclosure in their implementation, which keeps their
method safe. Consider e.g., y(t) = (t3 + t, t3) as example illustrating the issue.

118 F. Immler

2.5 Ordinary Differential Equations

In the following, we repeat standard results about ODEs, most of which have
been formalized in [13]. A homogeneous first order ODE is an equation x′ t =
f(x t) with an unknown function x :: R ⇒ Rn, the independent variable t is
usually denoted as time. We treat only this kind of ODE, as inhomogeneous (f
may depend on t) and higher-order ODEs (only the higher derivatives of x are
part of the ODE) can be reduced to the simple case. Constraining the ODE to
an initial value problem (IVP) is crucial for the existence of a unique solution.

Definition 1 (Initial Value Problem). An initial value problem ivp is a
named tuple of elements f :: Rn ⇒ Rn, t0 :: R, x0 :: Rn, T :: R set, X :: Rn set
ivp = (f, t0, x0, T, X).

Definition 2 (Solution). A function x :: R ⇒ Rn is a solution to an initial
value problem ivp, if x′ t = f(x t) and x′ t ∈ X for all t ∈ T and if x t0 = x0.

If X is bounded, the metric space of bounded continuous functions T → X
is complete. Then the Banach fixed point theorem guarantees the existence of
a unique fixed point of the Picard operator P :: (R ⇒ Rn) ⇒ (R ⇒ Rn) with
P x t = x0 +

∫ t

t0
f (x s)ds, if P is an endomorphism, i.e., maps functions from

T → X onto T → X .

Theorem 3 (Existence of a unique solution). For T = [t0; t1], if f is Lip-
schitz continuous (i.e., ∃L. ∀x1, x2 ∈ X. ‖f x1 − f x2‖ ≤ L · ‖x1 − x2‖) on a
compact set X and if P is an endomorphism on T → X, then there exists a
unique solution sol of the IVP ivp on T .

Let us now present some results about numerical approximations of solutions.
The Euler method naively approximates the solution with line segments in the
direction given by the right-hand side of the ODE (x(t+h) ∈ x t+h · (f (x t))+
O(h2)). Since the error in one step goes to zero with the stepsize h, the method
is called consistent. We represent errors explicitly as sets, hence we give a for-
mulation of consistency in terms of sets. We formalize enclosures of functions
with the function set X → Y .

Theorem 4 (Consistency of Euler method). Assume a compact interval
[t; t + h], a convex and compact set X :: Rn set, and a function x ∈ T → X
with derivative x′ t = f(x t). Further assume that f is bounded by F (f ∈
X → F) and that the derivative Df is bounded by a box [Dmin; Dmax] (∀x ∈
X. ∀y ∈ F. Df x y ∈ [Dmin; Dmax]). Then the Euler method is consistent:
x(t + h) − x t + h · (f(x t)) ∈

[
h2

2 · Dmin; h2

2 · Dmax

]

The proof makes use of the Taylor series expansion of x, which is why we
assume Df bounded by a box. This ensures that the remainder (which is repre-
sented with Df) is contained in that box (cf. the discussion in Section 2.4).

Formally Verified Computation of Enclosures 119

3 Affine Arithmetic

We are going to adapt the Euler method to compute with sets in order to obtain
a guaranteed method. We represent sets by affine forms (as described in detail
in [6]) x0 +

∑n
i=1 εi · xi, where x0 is called the center, the xi are coefficients and

εi formal variables or noise symbols. The set represented by such an affine form
is the set of all elements given by the form when the εi range in [−1; 1].

We represent sets α set with affine forms of type α affine. In order to stay close
to an efficient executable representation, we chose α affine = N× α × (N× α) list.
For a tuple (m, x0, xs), x0 :: Rn is the center, xs :: (N×Rn) list a list of indexed
coefficients (distinct and sorted by the first component) where every index is
smaller than the degree m. We write affine forms either with capital letters X, Y
or explicitly as tuples. elem :: Rn affine ⇒ (N ⇒ R) ⇒ Rn returns an element
given by a valuation for the formal variables: elem (m, x0, xs) e =

∑
(i,x)∈xs(e i) ·

x. coeff :: (N × Rn) list ⇒ N ⇒ Rn returns the coefficient with a given index if
it exists in the list and zero otherwise. The function Affine :: Rn affine ⇒ Rn set
returns the set represented by an affine form: it is the set of all elements obtained
via “valid” valuations: Affine X = {elem X e | e ∈ N → [−1; 1]}.

An important notion is that of the joint range of affine forms. Affine forms
representing the same set may have different dependencies: εi and εj represent
the same set [−1; 1], but the subtraction εi − εj represents either {0} or [−2; 2],
depending on whether i = j. More general, when reasoning about some function
f taking two arguments x ∈ Affine X and y ∈ Affine Y , f is surely called only for
arguments (x, y) ∈ (Affine X) × (Affine Y). But the Cartesian product discards
dependencies that the affine forms are actually supposed to track: respecting the
dependencies, we can be more precise and state that (x, y) is contained in the
set {(x, y) | x = elem X e ∧ y = elem Y e ∧ e ∈ N → [−1; 1]}, which is called the
joint range of X and Y . We generalize this to an arbitrary number of arguments
by defining the joint range for lists of affine forms via Affines :: α affine list ⇒
α list set, where we have Affines xs = {map (λx. elem x e) xs | e ∈ N → [−1; 1]}.

The maximum deviation of an affine form (m, x0, xs) is the sum of the ab-
solute values of all coefficients, we denote it by rad xs :: Rn. We overap-
proximate rad with precision p by safely rounding all additions: rad+ p xs =
fold (λ(i, x) e0. trunc+ p (|x| + e0)) xs 0. This can be used to obtain a bounding
box for an affine form with box p (m, x0, xs) = [x0 − rad+ p xs; x0 + rad+ p xs],
where we have Affine X ⊆ box p X .

To convert boxes to affine forms, distinct noise symbols are needed for every
coordinate. [a; b] is represented by the affine form a+b

2 +
∑

i∈Basis εi · ((b−a
2 • i) · i),

for which we write affine-of-ivl a b.
The Minkowski sum A ⊕ B = {a + b. a ∈ Affine A ∧ b ∈ Affine B} discards

dependencies between A and B and is used for example to add some uncertainty
B to a given affine form A. It can easily be implemented by adding the coefficients
of B as coefficients with fresh indices to A.

We define binary coefficientwise operations that accumulate round-off er-
rors via round-binop :: N ⇒ (α ⇒ α ⇒ α) ⇒ (N × α) list ⇒ (N × α) list ⇒
(N × α) list × α. round-binop can be implemented efficiently thanks to the fact

120 F. Immler

that lists of coefficients are sorted. For round-binop p f xs ys = (zs, err),
the first essential property is that round-binop distributes a binary function
f rounded with precision p over the coefficients: for all i :: N, coeff zs i =
fst (round p (f (coeff xs i) (coeff ys i))). The second property states that
err overapproximates the sum of the absolute values of all rounding errors:∑

i∈N
|coeff zs i − f (coeff xs i) (coeff ys i)| ≤ err.

3.1 Reification of Expressions
The aim when using affine arithmetic is to replace operations in an expression
on real numbers or Euclidean space by the corresponding operations on affine
forms. This is similar to work by Hölzl [10] on approximations using interval
arithmetic in Isabelle/HOL. This requires an explicit representation of expres-
sions. A technique called reification allows to transform a term into an explicit
data structure for expressions, evaluated by an interpretation function.

Let us start with expressions in real arithmetic aexp, for which we define an
inductive datatype like in Figure 1. Elements of this datatype are interpreted
recursively using the function [[_]]vs for an environment vs :: Rn list as given in
Figure 2. The environment contains the list of free variables of the expression.
They are of type Rn because ultimately we want to approximate functions Rn ⇒
Rn. Var i b allows to take the component indicated by a base vector b of the i-th
element of the environment.

aexp = Add aexp aexp
| Mult aexp aexp
| Minus aexp
| Inverse aexp
| Num R
| Var N N

Fig. 1. Inductive data
type of arithmetic ex-
pressions

[[Add a b]]vs = [[a]]vs + [[b]]vs

[[Mult a b]]vs = [[a]]vs · [[b]]vs

[[Minus a]]vs = −[[a]]vs

[[Inverse a]]vs = 1/[[a]]vs

[[Num r]]vs = r
[[Var i b]]vs = (vs ! i) • b

Fig. 2. Recursive interpreta-
tion of arithmetic expressions

eexp = AddE eexp eexp
| Scale aexp Rn

[[AddE x y]]vs = [[x]]vs + [[y]]vs

[[Scale a b]]vs = [[a]]vs · b

Fig. 3. Datatype and interpre-
tation of Euclidean space ex-
pressions

We make use of the automated method for reification by Chaieb [5], which,
given a set of equations for the interpretation function and a term, proves a
reification theorem. With the equations for [[_]] from above and the fact that
x2 = x • b2 when b2 is the second base vector, we get e.g., for the term x2 + 3
the theorem x2 + 3 = [[Add (Var 0 b2) (Num 3)]][x].

For functions between Euclidean spaces, every expression λ(x1, . . . , xn).
(f1 x1 · · · xn, . . . , fm x1 · · · xn) can be rewritten as λx. (f1 (x • b1) · · · (x •
bn)) · b1 + · · · + (fm (x • b1) · · · (x • bn)) · bm. We therefore define expression and
interpretation for expressions on Euclidean space as given in Figure 3.

To give an example, the expression (2, x1) is first rewritten to 2·(1, 0)+(x•b1)·
(0, 1) and then reified to [[AddE (Scale (Num 2) (1, 0)) (Scale (Var 0 1) (0, b1))]][x]

Formally Verified Computation of Enclosures 121

3.2 Approximation of Elementary Operations

For affine forms on real numbers, we support the arithmetic operations addition,
multiplication, and their respective inverses. Note that, in essence, we work with
a fixed, finite precision p, which means that we have to take rounding errors into
account. The general approach is to round all “ideal” operations and summarize
the encountered round-off errors in a fresh formal variable.

Let us illustrate this for the example of addition: We calculate the new center
z with rounding error e1, the coefficientwise addition zs of xs and ys with ac-
cumulated error e2 and add a new coefficient (overapproximating the errors e1
and e2) for the formal variable with fresh index l to the resulting affine form.

add-affine p (n, x0, xs) (m, y0, ys) =
let (z, e1) = round p (x0 + y0);

(zs, e2) = round-binop p (λx y. x + y) xs ys;
e = trunc+ p (e1 + e2);
l = max n m

in (l + 1, z, zs@[(l, e)])

Correctness of operations on affine forms states that if the arguments are
members of affine sets, then the result from the “ideal” operation is in the affine
set resulting from the operation on affine forms. Moreover the dependencies of
the formal variables stay intact. In the example of addition:

Theorem 5 (Correctness of Addition). If [x, y] ∈ Affines [X, Y],
then [x, y, x + y] ∈ Affines [X, Y, add-affine p X Y]

We proved similar correctness theorems for multiplication mult-affine. multi-
plicative inverse inverse-affine and unary minus, where we guided our implemen-
tation by the descriptions in [6].

3.3 Approximation of Expressions

The explicit representation of arithmetic expressions due to reification and the
approximations of elementary operations allow to recursively define an approx-
imation function approx :: N ⇒ aexp ⇒ Rn affine list ⇒ N ⇒ R affine option in
affine arithmetic. Below we give addition as example but refrain from a presen-
tation of further cases. In order not to introduce wrong dependencies, l is used as
index of a fresh formal variable and needs to be threaded through the recursive
calls. Approximation is performed inside the option monad, in order to handle
failures like e.g., approximating the inverse of an affine form that contains zero.

approx p (Add a b) vs l =
do (n, x0, xs) ← approx p a vs l

(m, y0, ys) ← approx p b vs n
Some (add-affine p (n, x0, xs) (m, y0, ys))

Approximation approx :: N ⇒ eexp ⇒ Rn affine list ⇒ N ⇒ Rn affine of expres-
sions in Euclidean space is just coefficientwise scaling and addition.

122 F. Immler

Correctness for the approximation of an expression in Euclidean space can
then be stated as follows: If the input variables vs are in the joint range of the
affine forms V S, then the approximated affine set is in the joint range with the
interpreted expression. (We write x#xs for prepending the element x to the list
xs)

Theorem 6 (Correctness of approximation). If vs ∈ Affines V S, the max-
imum degree of the affine forms in VS is d, and approx p expr V S d = Some X,
then [[expr]]vs#vs ∈ X#V S

3.4 Summarizing Noise Symbols

During longer computations, the approximations due to affine arithmetic (and
rounding errors) will add more and more noise symbols to the affine form, which
impairs performance in the long run. The number of noise symbols can be re-
duced by summarizing (or condensing) several noise symbols into a new one.
This process obviously discards the correlation mediated by the summarized
noise symbols, so a trade-off needs to be found.

Following [6], we summarize all symbols with an absolute value smaller than
a given fraction r (the summarization threshold) of the maximum deviation of
the affine form. Note that we compare the coefficients in Euclidean space, that
means when we summarize a noise symbol, the dependencies in all coordinates
are small. We then extend the affine form consisting of the large coefficients ys
with a box enclosing all small deviations zs:

summarize p r (n, x0, xs) =
let rad = rad+ p xs
let ys = filter (λx. x ≥ r · rad) xs

zs = filter (λx. ¬ x ≥ r · rad) xs
in (n, x0, ys) ⊕ affine-of-ivl (−rad+ p zs) (rad+ p zs)

The necessary correctness theorem states that summarization returns a safe
overapproximation: Affine X ⊆ Affine (summarize p r X).

4 Approximation of ODEs

Our algorithm approximates ODEs in a series of discrete steps in time. We start
the section by presenting the implementation and proofs for a single step, then
show the extension to a series of steps.

The formalization of our algorithm and the correctness proof are generic in
the ODE f , its derivative Df and respective approximations in affine arithmetic
f̂ , f̂ ′, which we will assume for the remainder of this section:

f :: Rn ⇒ Rn

f̂ :: N ⇒ R ⇒ Rn affine ⇒ Rn affine option
Df :: Rn ⇒ Rn ⇒ Rn

f̂ ′ :: N ⇒ R ⇒ Rn affine ⇒ Rn affine ⇒ Rn affine option

Formally Verified Computation of Enclosures 123

∀x. x ∈ Affine X −→ f̂ p t X = Some F −→ [x, f x] ∈ Affines [X, F]
∀x y. [x, y] ∈ Affines [X, Y] −→ f̂ ′ p t X Y = Some F ′ −→

[x, y, Df x y] ∈ Affines [X, Y, F ′]
f has continuous derivative Df

4.1 Euler Step

ODEs are approximated in a series of discrete steps. A step consists of two
phases, one for certification and one for approximation. In the first phase, we
certify the existence of a unique solution and obtain an a-priori bound on the
solution. In the second phase we use this a-priori bound to compute a tighter
enclosure with a set-based Euler method. Let us assume a step size h > 0 at
time t0 :: R. Further assume that the step starts at value x0 :: Rn, for which we
assume an affine approximation X0 with x0 ∈ Affine X0.

Certification. The idea is to certify the existence of a unique solution according
to Theorem 3. One prerequisite is to show that the operator P used for Picard
iteration is an endomorphism, which can be shown by finding a post fixed point.
Like Bouissou [3], we use the set-based overapproximation Q X = X0 +h · (f X)
of the operator P . For a box X with x t ∈ X for t ∈ [t0; t0 + h], it holds that
P x t = x0 +

∫ t

t0
f (x s) ds ∈ Q X .

We define a function Q̂ using affine arithmetic to overapproximate Q. Then
we iterate Q̂ p r, starting with box p X0, until we find a post fixed point. That
means when we encounter boxes B and C such that Q̂ p r C = Some B and
B ⊆ C. Since Q is an overapproximation of P , it follows that for all t ∈ T and
x ∈ T → C, P x t ∈ C, which certifies that P is an endomorphism on T → C.

Now that we have verified P as an endomorphism, a unique solution exists
according to Theorem 3, if f is Lipschitz continuous, which follows from our
assumption that f is continuously differentiable.

The results of the certification phase can be summarized in the following
theorem, which guarantees the existence of a unique solution for the current
step size h and also provides an a-priori bound for the evolution of the solution:

Theorem 7 (Certification of Solution). If the iteration of Q̂ started with X0
yields a C with Q̂ p r C = Some B and B ⊆ C, then the ODE f has a unique
solution sol on [t0; t0 + h] for the initial value (t0, x0). Moreover, the solution is
bounded by sol ∈ [t0; t0 + h] → (Affine C).

Note that it is possible that the iteration of Q does not reach a fixed point
if the step size is too large – one can then repeat the phase with a smaller step
size. It is also possible to accelerate the iteration with some sort of widening.

Approximation. The approximation phase aims to compute a tighter enclosure
for the solution, making use of the a-priori enclosure from the previous phase.
For this phase we assume that the previous phase returned for some step size
h :: R an a-priori bound C :: Rn affine.

124 F. Immler

We work with a set-based Euler method and therefore use Theorem 4, which
bounds the method error of one Euler step. We first overapproximate the Euler
step ψ x := x + h · (f x) using an affine arithmetic function ψ̂ and add to the
resulting affine form the uncertainty given by the method error.

For the overapproximation of the Euler step ψ x0, recall the assumption x0 ∈
X0. We can therefore overapproximate ψ x0 with ψ̂ p r X0.

Concerning the method error, we need to bound Df . We know from the a-
priori bound of Theorem 7, that for all t ∈ [t0; t0 + h], sol t ∈ Affine C. We can
further bound f on C with f̂ , i.e., with F := f̂ p r C. With the assumption that
Df is bounded by f̂ ′, we have for all [x, y] in Affines [C, F] that [x, y, Df x y] ∈
Affine [C, F, f̂ ′ p r C F]. If we set [Dmin; Dmax] = box p (f̂ ′ p r C F), then
Theorem 4 allows to prove that the solution is safely enclosed by an Euler step
in affine arithmetic ψ̂ p r X0, extended with the method error of one Euler step:

Theorem 8. sol (t0 + h) ∈ Affine (ψ̂ p r X0 ⊕ [h2

2 · Dmin; h2

2 · Dmax])

4.2 Euler Series

We denote with the term “local” a solution certified by the fact that the certifi-
cation phase of one Euler step succeeded. Taking the enclosure from the approx-
imation phase (which is usually smaller, and can be made arbitrarily small with
the step size) as initial enclosure X0 for a subsequent Euler step and iterating the
process, one gets a series of enclosures for local solutions. The respective step
sizes are determined by the certification phase of the Euler step. Inductively,
one can connect the proofs for the existence of local solutions to one theorem
stating the existence of a unique global solution. The a-priori bounds can be
used as bounds over local time intervals, and tight bounds can be given for dis-
crete points in time. During computation, we accumulate several of the interval
bounds and give back a list of time intervals, together with an enclosure of the
solution on that interval and a tight enclosure at the end of the interval. We
define the function that iterates and accumulates local steps as euler-series p r
for precision p and summarizing threshold r (Section 3.4), the final theorem then
looks as follows:

Theorem 9. If euler-series p r t0 X0 returns (t1, xs), then there exists a unique
solution on [t0; t1]. Moreover for all (ti, Ci, tj , Xj) ∈ xs, the solution is bounded
by Ci resp. Xj: for all t ∈ [ti; tj], sol t ∈ Affine Ci and sol tj ∈ Affine Xj.

5 Experiments

Our experiments do not aim for a thorough comparison of different approaches
for guaranteed integration – this can and should be done for unverified code. We
compare experiments using our extracted code with the experimental results of
Bouissou et al. [3]. They run their experiments on a machine with two processors
running with 2.33GHz and 2GB RAM, we perform our computations on an
Intel R© CoreTM2 Duo CPU T7700 at 2.40GHz and 4GB RAM.

Formally Verified Computation of Enclosures 125

Table 1. Experimental comparison for the oil reservoir problem (time interval [0; 50])

method steps time error y error z

1 euler-series 50 2−7 13 · 103 280 s 1.6 · 100 8.0 · 10−2

2 euler-series 50 2−7 52 · 103 810 s 2.5 · 10−1 6.0 · 10−3

3 euler-series 50 2−7 220 · 103 3100 s 6.8 · 10−2 1.6 · 10−3

4 Heun [3] 220 · 103 141 s 7 · 10−5

5 ode45 [3] 8 · 103 15 s 1.7 · 10−1

-25

-20

-15

-10

-5

 34.6 34.8 35 35.2 35.4 35.6 35.8

z(
t)

t

Fig. 4. Enclosures for z in the oil reser-
voir problem

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

x(
t)

t

Fig. 5. Enclosures for x in f(t, x) =
x2 − t with (t0, x0) = (0, 0.71875)

One example they give is the oil reservoir problem f(y, z) = (z, z2 − 3
10−3+y2)

for initial values (y0, z0) = (10, 0). In Figure 4, we plot the enclosures from the
list of verified bounds output by euler-series 50 2−7 when extracted to SML
(4500 lines of generated code) and compiled with PolyML 5.5.1. The values are
therefore verified in the sense of Theorem 9. We experience similar behavior like
Bouissou et al. [3] in that it is hard to integrate over the time around t = 35,
i.e., very small step sizes are used there. But also note that the method gains
accuracy later on. Note that this example is not trivial, as other packages like
VNODE cannot integrate this ODE.

In Table 1, we cite experimental results from Bouissou and compare with
our experiments. We give the number of steps, the time needed to integrate
the problem and the error of the approximation at the end of the integration.
Comparing experiments with comparable step sizes, namely lines 1 and 5 resp.
3 and 4, it can be seen that our method takes roughly a factor of 20 more time.
Note that the method of Heun needs twice as many evaluations of f̂ in one
step and ode45 even more. So interpret the figures just as a rough estimate,
suggesting that our method is currently between one or two orders of magnitude
slower than comparable tools. We believe that this is still reasonable as e.g., our
method does not use native floating point numbers, where we lose a large factor.
With comparable step sizes our method is less accurate, which is not surprising,
as the Euler method converges linearly with the step size, the method of Heun
quadratic and ode45 cubic.

126 F. Immler

A second example we would like to give is a comparison with the numerical
analysis given in previous work [13]. There we integrated the ODE f(t, x) = x2−t
on the time interval t ∈ [0; 0.5] with an error 2·10−2. We were unable to certify the
existence of a solution for a longer time span. Now (with the same computational
effort of around 2 seconds), we can give enclosures for the solution on an eight
times larger time span t ∈ [0; 4] with a smaller error of 3 · 10−3 at t = 0.5, which
we consider a significant improvement.

6 Conclusion

The experiments indicate that our method exhibits reasonable performance in
comparison to unverified tools and great advances when compared to previous
approaches to a formally verified treatment of ODEs.

Nevertheless, there is still room for improvement: our method could be com-
piled for native IEEE floating point numbers, a formalization thereof is already
available in Isabelle/HOL [27]. Moreover we have not yet implemented approxi-
mations of e.g., trigonometric functions, square root or the exponential function
in affine arithmetic. In order to achieve competitive accuracy, methods in addi-
tion to the Euler method need to be implemented and proved consistent.

Acknowledgements. I would like to thank Olivier Bouissou for discussions on
the topic. Thanks are due to Johannes Hölzl and the anonymous reviewers for
valuable comments on drafts of this paper.

References

1. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing 4(4), 361–369
(1998)

2. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: A comprehensive mechanized proof of a C program.
Journal of Automated Reasoning 50(4), 423–456 (2012)

3. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynam-
ical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013)

4. Brisebarre, N., Joldeş, M., Martin-Dorel, É., Mayero, M., Muller, J.-M., Paşca, I.,
Rideau, L., Théry, L.: Rigorous Polynomial Approximation Using Taylor Models in
Coq. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 85–99.
Springer, Heidelberg (2012)

5. Chaieb, A.: Automated methods for formal proofs in simple arithmetic and algebra.
Diss., Technische Universität, München (2008)

6. de Figueiredo, L.H., Stolfi, J.: Affine Arithmetic: Concepts and Applications. Nu-
merical Algorithms 37(1-4), 147–158 (2004)

7. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isa-
belle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

Formally Verified Computation of Enclosures 127

8. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems.
In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009,
pp. 103–117. Springer, Heidelberg (2010)

9. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

10. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In:
Reis, G.D., Théry, L. (eds.) Programming Languages for Mechanized Mathematics
Systems (ACM SIGSAM 2009), pp. 38–45 (2009)

11. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical anal-
ysis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP
2013. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013)

12. Immler, F.: Affine Arithmetic. Archive of Formal Proofs (February 2014),
http://afp.sf.net/devel-entries/Affine_Arithmetic.shtml

13. Immler, F., Hölzl, J.: Numerical Analysis of Ordinary Differential Equations in
Isabelle / HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 377–392. Springer, Heidelberg (2012)

14. Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs
(February 2014),
http://afp.sf.net/devel-entries/Ordinary_Differential_Equations.shtml

15. Lohner, R.: Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertauf-
gaben und Anwendungen. Dissertation, Universität Karlsruhe (1988)

16. Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equations
in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 463–468. Springer, Heidelberg (2013)

17. Nedialkov, N.S., Jackson, K.R.: The design and implementation of a validated
object-oriented solver for IVPs for ODEs. Tech. rep., McMaster University (2002)

18. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: 12th GAMM-IMACS
International Symposium SCAN. IEEE (2006)

19. Nedialkov, N.S.: Implementing a rigorous ODE solver through literate program-
ming. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems
with Uncertainties. Mathematical Engineering, pp. 3–19. Springer (2011)

20. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of
ODEs. SIAM Journal on Numerical Analysis 45(1), 236–262 (2007)

21. Obua, S.: Flyspeck II: The basic linear programs. Diss., Technische Universität
München, München (2008)

22. Paulson, L.C.: Isabelle: The next 700 theorem provers. In: Logic and Computer
Science, pp. 361–386 (1990)

23. Platzer, A.: The complete proof theory of hybrid system. In: Logic in Computer
Science (LICS), pp. 541–550 (2012)

24. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic:
Proof that arithmetic operations are validated in COSY. The Journal of Logic and
Algebraic Programming 64(1), 135–154 (2005)

25. Stauning, O.: Automatic validation of numerical solutions. Diss., Technical Uni-
versity of Denmark (1997)

26. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Foundations of
Computational Mathematics 2(1), 53–117 (2002)

27. Yu, L.: A Formal Model of IEEE Floating Point Arithmetic. Archive of Formal
Proofs (2013), http://afp.sf.net/entries/IEEE_Floating_Point.shtml

http://afp.sf.net/devel-entries/Affine_Arithmetic.shtml
http://afp.sf.net/devel-entries/Ordinary_Differential_Equations.shtml
http://afp.sf.net/entries/IEEE_Floating_Point.shtml

On the Quantum Formalization of Coherent

Light in HOL

Mohamed Yousri Mahmoud and Sofiène Tahar

Electrical and Computer Engineering Dept., Concordia University
1455 De Maisonneuve Blvd. W., Montreal, Canada

{mo_solim,tahar}@ece.concordia.ca

http://hvg.ece.concordia.ca

Abstract. During the last decade, formal methods, in particular the-
orem proving, have proven to be effective as analysis tools in different
fields. Among them, quantum optics is a potential area of the application
of theorem proving that can enhance the analysis results of traditional
techniques, e.g., paper-and-pencil and lab simulation. In this paper, we
present the formal definition of coherent light, which is typically a light
produced by laser sources, using higher-order logic and show the effect of
quantum operations on it. To this aim, we first present the formalization
of underlying mathematics, in particular, finite/infinite summation over
quantum states, then prove important theorems, such as uniqueness and
the effect of linear operators. Thereafter, basic quantum states of light,
called fock states, are formalized and many theorems are proved over
such states, e.g., the effect of the quantum creation operation over fock
states. Finally, the fundamental notions of coherent light are formalized
and their properties also verified.

Keywords: Quantum optics, Fock states, Coherent states, Infinite sum-
mation, Theorem proving, HOL-Light.

1 Introduction

Classical physics has studied light from different points of view, i.e., ray and
wave. Each corresponding theory exposed new optical properties, which later
were used in developing several optical systems, such as cameras and high speed
communications systems. In contrast, quantum optics treats light as a stream
of particles, called photons [19]. It was started by Planck in 1900 when he ex-
plained the discrete nature of light energy based on the photon definition [2].
Light streams of a low number of photons are the best examples for applying
quantum optics rules where non-classical optical properties appear, e.g., fluctu-
ating absolute phase of a wave [12]. An important example is single-photon light
streams which have wide applications in the area of quantum cryptography and
quantum networks [17]. Quantum optics also introduces the most practical im-
plementations of quantum computers, e.g., [9] and [8]. This application is quite
important since it promises to solve “hard” computational problems [14].

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 128–142, 2014.
c© Springer International Publishing Switzerland 2014

http://hvg.ece.concordia.ca

On the Quantum Formalization of Coherent Light in HOL 129

Despite the advantages of quantum optics, the analysis of quantum systems
is not easy, and it poses many difficulties. Unlike regular systems, quantum ones
cannot be simulated on ordinary computers, i.e., computers based on Turing
machine [4]. Alternatively, a physical-lab simulation is being utilized for systems
analysis. However, it is costly and not safe: every little optical element varies in
cost from a few hundred to a few thousand of dollars [5]. In addition, scientists
and engineers who carry out the simulation process should be well protected
against the beams due to their harmful nature [15]. Another analysis method is
using numerical tools (typically Matlab [18]) and CAS (typically Mathematica
[3]) besides traditional paper-and-pencil based analytical approaches. However,
such tools cannot completely replace paper-and-pencil analysis due to accuracy
and expressiveness problems. In this paper, we propose to formalize a milestone
in the vast theory of quantum optics using the HOL-Light theorem prover [6] in
order to mechanize the paper-and-pencil reasoning process. Thus we can provide
better and accurate results about the system subject to analyse.

An important notion of quantum mechanics is the uncertainty principle. It
admits that performing a measurement on a quantum system affects the accuracy
of the subsequent measurements. In 1926, Schrödinger discovered the notion of
coherent states that achieve minimal measurement error [13]. Coherent states
are of high interest in quantum optics analysis, as they are able to express the
quantum systems in different states [12]. Therefore, their development allows
the analysis of optical systems in several situations. Our formal development of
coherent states is based on the formalization of quantum mechanics presented in
[10]. Nevertheless, the formalization requires additional mathematical concepts,
e.g., summation over infinite dimension vector spaces, which are presented here.
The entire formalization presented in this paper is available at [11].

The rest of the paper is organized as follows: Section 2 briefly summarizes
some basics of quantum optics and quantum-related mathematical definitions
which are developed in [10]. Section 3 deals with the formalization of infinite
summation over quantum states. Section 4 presents the development of fock and
coherent states. Finally, we conclude the paper in Section 5 and give an overview
of a potential application of coherent light.

2 Preliminaries

In this section we briefly present the basic knowledge of quantum optics, in
particular coherent light. We then summarize the required mathematical notions
for the coherent light formalization.

2.1 Quantum Physics

A quantum system is fully described with what is so-called quantum states, to
which we refer as |ψ〉. Mathematically, it is a square integrable complex-valued
function, and the set of all states forms an inner product space. The product

130 M.Y. Mahmoud and S. Tahar

function of such a space is the integration function. In addition, the square
integration of each state is equal to one.

Usually, a system has a set of pure quantum states (or we can call them basis
states, similar to the basis of a vector space). At any time, the system is described
with a pure state or a mix of them:

|ψ〉 =
∑

|ci| ∗ |ψ〉i i = 0, 1, 2, ... (1)

where ci is a complex number,
∑
|ci| = 1 and |ψ〉i is a pure state. A system is

at a pure state i, if ci = 1 and for any j �= i, cj = 0.
In quantum optics, light is considered as a stream of particles called photons,

in contrast to the classical theory that considers light as an electromagnetic
wave. As a quantum system, light has a set of pure states, called fock states.
Light in a fock state |n〉, where n = 0, 1, 2..., means that the light stream exactly
contains n photons. Light is said to be coherent if the number of photons in the
light stream (at any time instance) is probabilistically Poisson distributed. In
other words, the probability of having (or observing) n photons is:

P (N = n) =
|α|n e|α|

n!
(2)

where |α| is the expected number of observed photons (α is a complex number).
A coherent light with expected photons |α| is in the quantum state |α〉. It is
represented in terms of fock states as follows (see Equation (1)):

|α〉 = e−
|α|2
2

∑
n=0

αn

√
n!
|n〉 (3)

Similar to classical physics, quantum mechanics physicists are interested in
some information about the system, e.g., temperature, velocity, pressure,.etc.
Classically, those quantities are expressed by real variables. However, they are
complete functions (or operators) in quantum mechanics. Those functions oper-
ate on quantum states, i.e., they map complex-valued functions (i.e., quantum
state space) onto complex-valued-functions. The important information we have
to keep in mind is that a quantum operator (denoted as Ô) is a linear transfor-
mation over the quantum states space.

In the case of optics, there are two basic quantum operators: creator and
annihilator operators. Their names suggest how these operators affect a stream of
photons. An annihilator â decreases the number of photons by one (i.e., destroys
a photon):

â|n〉 =
√
n|n− 1〉 (4)

Note that the resulting state is not exactly the quantum state |n−1〉 , it is scalar-
multiplied by

√
n. Similarly, the creation â† increases the number of photons by

one (i.e., creates a photon):

â†|n〉 =
√
n+ 1|n+ 1〉 (5)

On the Quantum Formalization of Coherent Light in HOL 131

It is important to mention here that the scalar-multiplication does not change
the behavior of a quantum state. Thereby, the resulting states in (4) and (5) still
have n− 1 and n+ 1 photons, respectively.

By solving Equation (5) as a recurrence relation, we obtain a general repre-
sentation of any fock state |n〉:

|n〉 = (â†)n |0〉√
n!

(6)

where |0〉 is called vacuum state since it does not contain any photon. Note here
that the power notation used in (â†)n means the application of the creation
operator n times (recall that quantum operators are functions).

According to Equations (3) and (6), we can re-express coherent state in terms
of the vacuum state and creation operator:

|α〉 = e−
|α|2
2

(∑
n=0

(αâ†)n

n!

)
|0〉 (7)

Note that for a linear operator a†, (αâ†)n = αn(â†)n.
In a nutshell, formalizing quantum optics, in particular coherent states, re-

quires different mathematical aspects: 1) Linear spaces of complex functions (i.e.,
quantum states), 2) Inner product space, 3) Linear transformation (i.e., quan-
tum operators) over those spaces, and 4) infinite/finite summation of quantum
states. The following section addresses the formalization of aspects (1-3) which
were initially introduced in [10]. Infinite/finite summation and related aspects
(e.g., notion of limit) will be covered in Section 3.

2.2 Quantum State Space Formalization

In order to reason about any quantum system, we first need to formalize the
quantum space, which is mathematically an inner product space of square inte-
grable complex-valued functions. In the following, we provide the most important
definitions, for details see [10].

We start by defining a new HOL type for a quantum state, cfun : A → complex

which stands for complex function. The type is a complex-valued function with
an abstract domain. This type definition basically fits different systems. Before
we go through the states space definition, we have to list the arithmetic oper-
ations allowed among quantum states. The following are the addition, scalar-
multiplication, negation and subtraction:

Definition 1.
cfun add (v1 : cfun) (v2 : cfun) : cfun = λx : A. v1 x+ v2 x

cfun smul (a : complex) v = λx : A. a ∗ v x

cfun neg (v : cfun) : cfun = cfun smul (−Cx(1)) v
cfun sub (v1 : cfun) (v2 : cfun) : cfun = cfun add v1 (cfun neg v2)

132 M.Y. Mahmoud and S. Tahar

where Cx is a function to cast real numbers to complex ones. Note that multi-
plication is not allowed (or meaningless) between two quantum states. A vector
space of states is then defined as follows:

Definition 2.
is cfun subspace (spc : cfun→ bool)⇔
∀x y. x IN spc ∧ y IN spc⇒
x+ y IN spc ∧ (∀a. a%x IN spc) ∧ cfun zero IN spc

where cfun zero = λx : A. Cx(0) and it is the identity element of the space. To
complete the states space definition, we have to define the inner product over the
space. As previously mentioned, the inner product function of a quantum space
is the integral function. However, in quantum mechanics, we are not interested
in the operation itself but in the properties of the product function. Thus, we
define the inner product function axiomatically as follows:

Definition 3.
is inner space ((s, inprod) : qs→ bool× cfun→ cfun→ complex)⇔

is cfun subspace s ∧
∀x. x ∈ s⇒

real (inprod x x) ∧ 0 ≤ real of complex (inprod x x) ∧
(inprod x x = Cx(0)⇔ x = qs zero) ∧
∀y. y ∈ s ⇒
cnj (inprod y x) = inprod x y ∧
(∀a. inprod x (a%y) = a ∗ (inprod x y)) ∧
∀z. z ∈ s ⇒
inprod (x+ y) z = inprod x z + inprod y z

where real x admits that the complex value x has no imaginary part, and
real of complex is a function converting a complex number into a real one (if
it is real).

Now we turn to quantum operators. Similar to the quantum state, we define a
new type for an operator, cop : cfun→ cfun. A quantum operator attains two
main properties, first its linearity:

Definition 4.
is linear qop (op : cop)⇔
∀x y. op (x+ y) = op x+ op y ∧ ∀a. op (a % x) = a % (op x)

and second its self-adjointness:

Definition 5.
is self adjoint (s, inprod) op1 op2 ⇔

is inner space (s, inprod)⇒
is closed by s op ∧
is linear cop op ∧
∀x y. inprod x (op y) = inprod (op x) y

where is closed by s op⇔ ∀x. x ∈ s ⇒ op x ∈ s.

On the Quantum Formalization of Coherent Light in HOL 133

This concludes the preliminaries section where we acquired a basic knowledge
of quantum optics, and how we can formalize some of its essential notions such
as quantum states and quantum operators. In the next section, we will complete
the formalization of the mathematical notions needed for the coherent states
formalization.

3 Formalization of Quantum States Summation

In this section, we formalize the notion of infinite/finite summation over cfun.
Being inspired by Harrison’s formalization of summation over finite vector spaces
[7], we develop ours for infinite complex space. The summation formalization goes
through three major steps: 1) define the finite summation, 2) define the limit
notion, then 3) extend the finite one to the infinite summation by applying the
notion of limit.

3.1 Finite Quantum State Summation

HOL-Light supports the iterate function that accepts an operation and finite
set of elements, then repeatedly applies the operation on the elements belonging
to the set. Hence, iterate is the best way to define finite summation:

Definition 6.
cfun sum = iterate cfun add

where cfun add is the addition operation between two quantum states. Now,
cfun sum is a new operation that accepts two parameters: a finite indexing set
s (typically, but not limited to, a subset of natural numbers N) and a function
f : s→ cfun. About 19 theorems have been proved for the finite summation over
quantum states, we present here the most important ones.

In order to prove useful properties about cfun sum, we first need to provide
the following essential theorem, sum clauses :

Theorem 1.
(∀f. cfun sum {} f = cfun zero)∧

(∀f n m. FINITE s ⇒
cfun sum (n..m) f = f(m) + cfun sum(n+ 1..m) f)

Here, the theorem states that if the indexing set is empty then the summation
is trivial and the result is cfun zero. Or, given a set of natural numbers {x :
x ≥ n∧ x ≤ m} then the summation can be divided into two terms as shown in
the third line of Theorem 1. We can then prove many interesting results, such
as sum of constant :

Theorem 2.
∀c s. FINITE s⇒ cfun sum s (λn. c) = (CARD s)%c

where CARD s returns the number of elements in s. Theorem 2 simply shows that
a finite summation turns into a scalar multiplication whenever f is a constant
function. The next theorem is about closure under cfun sum:

134 M.Y. Mahmoud and S. Tahar

Theorem 3.
∀g spc. is cfun subspace spc∧ (∀n. g n IN spc)⇒
∀s. FINITE s ⇒ cfun sum s g IN spc

The theorem describes that given a set of vectors which belong to a subspace
spc, the resulting sum over those vectors belongs to the subspace spc, and hence
it is a vector too. Another important theorem is linearity over summation:

Theorem 4.
∀f g s.is linear cop f ∧ FINITE s⇒ (f(cfun sum s g) = cfun sum s (f o g))

The theorem states that linear functions are interchangeable with the summa-
tion operation, i.e., applying a linear function on a set of elements then doing
the summation is equivalent to applying the summation of elements then do-
ing the linear function. A known application of this theorem is exchanging the
integration function with the summation operation.

3.2 Infinite Quantum State Summation

The infinite summation can be easily extended from the finite one as long as
the notion of limit is provided. The latter is tightly coupled with the existence
of a normed-space (i.e., a linear space augmented with a norm function which
is defined over its elements). The quantum state space is a normed-space by
definition: the square root of an inner product of a vector and itself yields the
norm operation. Thus, the notion of limit can be implemented for quantum
spaces:

Theorem 5.
cfun lim (s, inprod) f l net⇔

is inner space (s, inprod)∧ l IN s/ (∀x. (f x) IN s)∧
(∀e. 0 ≤ e ⇒ eventually(λ x. cfun dist inprod (f x) l < e) net)

where cfun dist inprod x y = cfun norm inprod (x − y) and
cfun norm inprod x =

√
inprod x x. The definition starts by the guarding an-

tecedents which assure that we have an inner space and all elements, we are
dealing with, are inside this space. The limit comes as a predicate which en-
sures that the difference (or cfun dist) between a vector f x and vector l is
getting smaller, while x changes according to the net. An example of nets is
sequential net for which the parameter x starts from 0 and increases gradually
until infinity.

About 15 theorems have been proved for the notion of limit. Since limit is
not the main interest of this section, we are presenting only one theorem as an
example, which is believed to be the most important one, uniqueness :

Theorem 6.
∀ net f l l′ innerspc.

cfun lim innerspc f l net ∧cfun lim innerspc f l′ net⇒ (l = l′)

On the Quantum Formalization of Coherent Light in HOL 135

We mean by uniqueness here that if it happens that a function f : A→ cfun

limits to a vector l:cfun, and at the same time to vector a l’:cfun, then l

should be equal to l’.
Now, we can define infinite summation of cfun as follows:

Definition 7.
cfun sums innerspc f l s⇔

cfun lim innerspc (λn. cfun sum (s INTER (0..n)) f) l sequentially

where INTER is the sets intersection operator. In order to easily understand the
definition, let us assume s is equal to the set of natural numbers. Consequently,
(s INTER (0..n))= 0..n. Then, the definition states that while n increases, the
finite summation cfun sum coincides with (or limit to) l. However, this predicate
definition does not help much in usual mathematical manipulation. Therefore,
we develop another functional definition:

Definition 8.
cfun infsum innerspc s f = @l. cfun sums innerspc f l s

Here, the definition uses the Hilbert choice operator @ to get a vector that satisfies
the cfun sums predicate.

In order to proceed with proving theorems related to infinite summation, we
have first to make sure that the series of vectors subject to summation is con-
vergent, i.e., the limit exits. For this purpose, we define the summable predicate:

Definition 9.
cfun summable innerspc s f = ∃l. cfun sums innerspc f l s

It is important to know how cfun infsum deals with arithmetic operations,
i.e., addition and scalar multiplication. Thereby, we provide the following two
essential theorems:

Theorem 7.
∀ f g innerspc.
cfun summable innerspc s f ∧ cfun summable innerspc s g⇒

cfun infsum innerspc s(λn.fn+ gn) =
cfun infsum innerspc s f+ cfun infsum innerspc s g

Theorem 8.
∀ f innerspc a. cfun summable innerspc s f⇒

cfun infsum innerspc s(λn.a % f n) = a% cfun infsum innerspc s f

Similar to the notion of limit, uniqueness of infinite summation is proved. Since
we have already presented it, there is no need to re-express it here for infinite
summation. Likewise, we prove the linearity theorem for cfun infsum as it is
developed for the finite summation. However, the linearity of a function is not
enough to exchange it with infinite summation. It should be a bounded function
too. Before we present the theorem of linearity, let us express the definition of
boundness:

136 M.Y. Mahmoud and S. Tahar

Definition 10.
is bounded (s, inprod) h⇔ is inner space (s, inprod)
⇒ is closed by s h ∧ ∃B. 0 < B∧

(∀x. x IN s⇒ cfun norm inprod (h x))) ≤ B ∗ cfun norm inprod x)))

Here, a linear operator h is bounded if for all x the norm of h x is less than or
equal to the norm of x multiplied by a scalar B, given that B does not depend
on x. Now we can present the effect of a linear operator on the cfun infsum

operation:

Theorem 9.
∀f h s innerspc.

cfun summableinnerspcsf∧ is linear cop h ∧ is bounded innerspc h

⇒ cfun infsum innerspc s(λn. h(f n)) = h(cfun infsum innerspc s f)

The theorem shows that a linear bounded operator (or function) is exchangeable
with the cfun infsum operation.

We conclude this section by mentioning that about 50 theorems have been
proved for the finite/infinite summation of over cfun. In the next section, we
will describe the coherent states formalization where the notions presented in
this section are being utilized.

4 Coherent Light Formalization

In this section, the formal definition of coherent states is presented, then we
prove that coherent states are eigenvectors of the annihilation operator. The
coherent light formal development is carried out in three steps: 1) quantum light
formalization, 2) fock states formalization which are the basis of quantum optics
states space, then finally 3) coherent states formalization.

4.1 Single Mode

Classically, light is consider as an electromagnetic field. Quantum physics restud-
ies such a field according to quantum rules. Thereby, the first step towards quan-
tum optics formalization is implementing the electromagnetic field quantization.
Electromagnetic fields can be classified according to the number of resonance
frequencies per field. Accordingly, there are single-mode fields, i.e., single reso-
nance frequency and multi-mode fields for a higher number of frequencies. For
simplicity, we are concerned with properties of single-mode field which can be
extended for multi-mode fields. The first formal definition of quantum single-
mode field is presented in [10]. We use it here with some changes: we fix the
vacuum state of the field and add its properties to the definition itself (see the
last two lines of the definition):

On the Quantum Formalization of Coherent Light in HOL 137

Definition 11.
is sm ((sp, cs, H), w, vac)⇔

is qsys (sp, cs, H) ∧ 0 < w ∧ ∃q p. cs = [q; p]
∧ ∀t.is observable sp (p t) ∧ is observable sp(q t)

∧ H t = w2

2
%((q t) pow 2) + 1

2
%((p t) pow 2)

∧is qst sp vac ∧ is eigen pair (H t) (vac, planck∗w
2

)

The reason behind these changes is that quantum states spaces consist of equiv-
alent classes of quantum states. In this way, we specify the representative of the
vacuum state class, and hence of all other classes. The is qst predicate ensures
that the norm of the state is equal to unity and belongs to the space sp. Ac-
cording to the definition, we assume that vac is an eigenvector of the quantum
operator H which is responsible for calculating the total energy inside the field.
The corresponding eigenvalue is equal to planck∗w

2
. We can then prove that vac

is an eigenvector of the photon number operator N which is responsible for cal-
culating the number of photons inside the field. The corresponding eigenvalue is
equal to zero:

Theorem 10.
∀sp cs H omega vac.

let sm = (sp, cs, H), omega, vac in

is sm sm ⇒ is eigen pair (n of sm sm)(vac, 0)

Before we tackle the notion of fock states, we have to consider two impor-
tant theorems, which show the effects of creation and annihilation operators on
eigenvectors of the photon number operator. Here is the creation operator effect:

Theorem 11.
∀sp cs H omega vac.

let sm = (sp, cs, H), omega, vac in

is sm sm⇒
∀v. (create of sm sm v = cfun zero)⇒
∀n. is eigen pair (n of sm sm) (v, n)⇒
is eigen pair (n of sm sm)(herma of sm sm f, n+ 1))

where the last line shows that the number of photons is increased by one. Simi-
larly, the annihilation operator affects the number of photons as follows:

Theorem 12.
∀sp cs H omega vac.

let sm = (sp, cs, H), omega, vac in

is sm sm⇒
∀v. (create of sm sm v = cfun zero)⇒
∀n. is eigen pair (n of sm sm) (v, n)⇒
is eigen pair (n of sm sm)(ann of sm sm v, n− 1))

138 M.Y. Mahmoud and S. Tahar

Here, the number of photons is decreased by one. In the same context, it is
important to know how annihilation operator affects the vacuum state, where
there are no photons:

Theorem 13.
∀sp cs H omega vac.
let sm = (sp, cs, H), omega, vac in

is sm sm ⇒ (a of sm sm) vac = cfun zero

Note that the resulting state is a non-quantum state since the norm of cfun zero

is equal to zero.

4.2 Fock States

Recall that a single-mode field at a fock state |n〉 means that the light stream
contains exactly n photons. Such states are quite important since they form the
basis of the single-mode quantum states space. Moreover, it is widely used in the
development of single-photon devices which have direct applications in quantum
cryptography. We start by giving the formal definition of a fock state:

Definition 12.
let (((s, inprod), cs, H), omega, vac) = sm in

fock sm 0 = vac ∧ fock sm (SUC n) =
get qst inprod (creat of sm sm (fock sm n)))

As shown, it is recursively defined with vac state as the base case. Recall that we
have proved before that vac is the eigenvector of the photon number operator
with zero photons. Then, we can get any higher fock state by applying the
creation operator. The function get qst returns the normalized version of a
vector, i.e., by dividing by the norm of the vector itself. This is to ensure that
the norm of the resulting quantum state is equal to one. Here is the theorem
that shows that a fock state is normalized:

Theorem 14.
∀s inprod cs H omega vac.

let sm = ((s, inprod), cs, H), omega, vac in

is sm sm ⇒ ∀n. fock sm n ∈ s ∧ inprod (fock sm n) (fock sm n) = 1

Now, we provide the semantic of the fock definition by proving that it is an
eigenvector of the photon number with n photons as an eigenvalue:

Theorem 15.
∀n sm.

is sm sm ∧ ((creat of sm sm (fock sm n)) = cfun zero)
⇒ is eigen pair(n of sm sm) (fock sm n, n)

We also provide the effect of creation and annihilation operators on fock states.
The following two theorems correspond to Equations (4) and (5) (See Section 2):

On the Quantum Formalization of Coherent Light in HOL 139

Theorem 16.
∀n sm.
is sm sm ∧ ((creat of sm sm (fock sm n)) = cfun zero)
⇒ (anhh of sm sm) (fock sm (SUC n)) =

√
SUC n % fock sm n

Since that the state number in the left hand side is SUC n, then the theorem is
valid for all fock states except at zero, i.e., the vac state. Recall that we have
proved that the left hand side is equal to zero cfun for the vac state. However,
the following theorem is valid for any state including the vac state:

Theorem 17.
∀n sm.

is sm sm ∧ ((creata of sm sm (fock sm n)) = cfun zero)
⇒ (creat of sm sm) (fock sm n) =

√
SUC n % fock sm (SUC n)

The above theorems are recurrence relations, if we are able to solve any of
them, we can then get a non-recursive definition. The following provides the
solution of the recurrence relation of Theorem 17:

Theorem 18.
∀s inprod cs H omega vac.

let sm = ((s, inprod), cs, H), omega, vac in

is sm sm ∧ (∀n. (creat of sm sm) (fock sm n) = cfun zero)
⇒ ∀m. fock sm m = 1√

m!
% (creat of sm sm pow m) vac

This concludes the fock states formalization. In the next section, we will see
how to formalize coherent states using the previously presented theorems and
definitions.

4.3 Coherent States

Based on the fock states definition and infinite summation, a coherent state is
defined as follows:

Definition 13.
coherent sm α =
let sm = ((s, inprod), cs, H), omega, vac in

exp(− |α|
2)

2
))% cfun infsum (s, inprod) (from 0) (λn. αn

√
n!
%(focksmn))

where α is the state parameter. Recall that, the number of photons in a coherent
stream is Poisson distributed with expectation |α|2. Note that Definition 13
corresponds to Equation (3).

Next, we need to make sure that the above definition is convergent. As illus-
trated in Section 3, we have handled a similar situation by defining the summable
predicate:

Definition 14.
coherent summable sm α ⇔

let (((s, inprod), cs, H), omega, vac) = sm in

cfun summable (s, inprod) (from 0) (λn. αn
√
n!
%(fock sm n))

140 M.Y. Mahmoud and S. Tahar

Theorem 16 plays a crucial role in proving the relation between coherent states
and the annihilation operator. However, it has a problem since it is only valid for
fock states greater than zero (i.e., vac state). Consequently, we have to rewrite
the coherent definition in a way that allows the application of Theorem 16:

Theorem 19.
∀s inprod cs H omega vac α.
let sm = ((s, inprod), cs, H), omega, vac in

coherent summable sm α⇒
coherent sm a = exp(− |α|

2)
2

)) %(vac+

cfun infsum (s, inprod) (from 0) (λn. α(SUC n)√
(SUC n)!

%(fock sm (SUC n))))

It is important to mention here that vac is a coherent state with α = 0. Although
it is not covered by Definition 13, we can still prove this based on Theorem 13, by
showing that the vac state is an eigenvector of the annihilator. We can appreciate
the importance of the vac state since it acts as a coherent and a fock state at
the same time. Fortunately, this allows us to use the properties of both notions
which is very helpful.

Now, we can prove that coherent states are eigenvectors of the annihilation
operator, with eigenvalue α based on Theorems 13, 16 and 19:

Theorem 20.
∀sm α.

is sm sm ∧ ((creat of sm sm (fock sm n)) = cfun zero)
∧ coherent summable sm α ∧ is bounded (s, inprod) (anhh of sm sm)
∧ (coherent sm a = cfun zero)⇒

is eigen pair(a of sm sm) (coherent sm α, α)

This concludes our HOL formalization of coherent light and the underlying
mathematical and physical aspects which costs 1500 lines of HOL code. In the
following section, we briefly present a potential application of our formalization
in quantum computers as a future work.

5 Conclusion and Future Work

Quantum optics explores new and extremely useful phenomena and properties of
light as a stream of photons. However, the analysis of quantum optical systems
is complex. In particular, the traditional analysis techniques – simulation in
optical laboratories, paper-and-pencil, numerical methods, and computer algebra
systems – suffer from a number of problems: 1) Safety, 2) Cost, 3) Expressiveness
and 4) Human Error. We believe that the proposed formalization of quantum
optics can alleviate the limitations listed above.

Coherent light (or states) is an essential notion in quantum optics since it
eases the analysis of many quantum systems. We have addressed the formal
definition of coherent states, then we provided a theorem which proves that

On the Quantum Formalization of Coherent Light in HOL 141

coherent states are eigenvectors of the creator operator. This development is
handled in three major steps: 1) we started by formally defining fock states
which represent the basis of quantum optics states space, then proved how the
creation and annihilation operators affect the fock states, and finally derived
a non-recursive definition for them. We also have proved that fock states are
eigenvectors of the photon number operator; 2) since coherent states are formed
by infinite summation of fock states, we have developed infinte/finite summation
over quantum states in addition to the notion of limit; and 3) we were able
to provide a formal definition of coherent light and show its relation with the
annihilation operator.

One of the most interesting applications of coherent light is quantum com-
puters, where coherent states are proposed to model quantum bits. Quantum
computers firstly proposed in 1985 by Deutsch [1], after Feyman [4] had proved
that quantum physics phenomena cannot be simulated over ordinary machines.
They have the potential of solving certain problems exponentially faster than
ordinary machines. Quantum bits and quantum gates are pillars of a quantum
machine, as digital bits and gates for computers. |0〉 and |1〉 are the pure states of
quantum computers. And hence, a quantum bit is equal to : |Qbit〉 = δ|0〉+β|1〉.

Coherent states are proposed to model quantum bits [16], where |α〉 and
|−α〉 correspond to |0〉 and |1〉, respectively. Many quantum gates where imple-
mented based on this model. For example, the quantum flip gate, which converts
δ|0〉 + β|1〉 into β|0〉 + δ|1〉. Implementing such a gate requires to correlate co-
herent states with the so-called displacement operator, which can be physically
implemented as a beam splitter and then cascade a phase conjugating mirror
along with a beam splitter to form a quantum flip gate. In order to tackle such a
gate in the future, it requires us to define a mirror and a displacement operator
(or a beam splitter). The formalization of these devices can be handled using
the foundations presented in this paper along with some additional mathemat-
ical concepts, such as summation over quantum operators and exponentiation
of quantum operators. Thereby, the formalization and analysis of quantum flip
gates is one of our essential future work.

References

1. Deutsch, D.: Quantum theory, the church-turing principle and the universal quan-
tum computer. Proceedings of the Royal Society 400(1818), 97–117 (1985)

2. Duck, I., Sudarshan, E.C.G.: 100 Years of Planck’s Quantum. World Scientific
(2000)

3. Feagin, J.M.: Quantum Methods with Mathematica. Springer (2002)

4. Feynman, R.: Simulating physics with computers. International Journal of Theo-
retical Physics 21, 467–488 (1982), doi:10.1007/BF02650179

5. Institute for Quantum Science and Technology at the University of Calgary. Intro-
duction to an Optical lab (2014), http://old.rqc.ru/quantech/memo.php

6. Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A.
(eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

7. Harrison, J.: The HOL Light Theory of Euclidean Space. Journal of Automated
Reasoning 50(2), 173–190 (2013)

http://old.rqc.ru/quantech/memo.php

142 M.Y. Mahmoud and S. Tahar

8. Jennewein, T., Barbieri, M., White, A.G.: Single-photon device requirements for op-
erating linear optics quantum computing outside the post-selection basis. Journal of
Modern Optics 58(3-4), 276–287 (2011)

9. Li, Y., Browne, D.E., Ch, L.: Kwek, R. Raussendorf, and T. Wei. Thermal states as
universal resources for quantum computation with always-on interactions. Physical
Review Letter 107, 060501 (2011)

10. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension lin-
ear spaces with application to quantum theory. In: Brat, G., Rungta, N., Venet, A.
(eds.) NFM 2013. LNCS, vol. 7871, pp. 413–427. Springer, Heidelberg (2013)

11. Mahmoud, M.Y.: On the Quantum Formalization of Coherent Light in HOL - HOL
Light script, http://hvg.ece.concordia.ca/projects/qoptics/coh-light.php

12. Mandel, L.,Wolf, E.:Optical Coherence andQuantumOptics. CambridgeUniversity
Press (1995)

13. Milonni, P., Nieto, M.M.: Coherent states. In: Compendium of Quantum Physics,
pp. 106–108. Springer (2009)

14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2010)

15. Institute of Quantum Optics at Leibniz University of Hannover. General directives
for safety in the institute of quantum optics (2014),
http://www.iqo.uni-hannover.de/fileadmin/institut/pdf/

job%20security/3. Sicherheitmerkblatt06012014 engl.pdf

16. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum com-
putation with optical coherent states. Physical Review A 68, 042319 (2003)

17. Santori, C., Fattal, D., Yamamoto, Y.: Single-photon Devices and Applications.
Physics textbook. John Wiley & Sons (2010)

18. Tan, S.M.: A computational toolbox for quantum and atomic optics. Journal of
Optics B: Quantum and Semiclassical Optics 1(4), 424 (1999)

19. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer (2008)

http://hvg.ece.concordia.ca/projects/qoptics/coh-light.php
http://www.iqo.uni-hannover.de/fileadmin/institut/pdf/job%20security/3._Sicherheitmerkblatt06012014_engl.pdf
http://www.iqo.uni-hannover.de/fileadmin/institut/pdf/job%20security/3._Sicherheitmerkblatt06012014_engl.pdf

Refinement Types for TLA+

Stephan Merz1 and Hernán Vanzetto1,2

1 INRIA, Villers-lès-Nancy, France & LORIA
2 Microsoft Research-INRIA Joint Centre, Saclay, France

Abstract. TLA+ is a specification language, mainly intended for concurrent and
distributed systems. Its non-temporal fragment is based on a variant of (untyped)
ZF set theory. Motivated by the integration of the TLA+ Proof System with SMT

solvers or similar tools based on multi-sorted first-order logic, we define a type
system for TLA+ and we prove its soundness. The system includes refinement
types, which fit naturally in set theory. Combined with dependent function types,
we obtain type annotations on top of an untyped specification language, getting
the best of both the typed and untyped approaches. After implementing the type
inference algorithm, we show that the resulting typing discipline improves the
verification capabilities of the proof system.

1 Introduction

The specification language TLA+ [11] combines a variant of Zermelo-Fraenkel (ZF)
set theory for the description of the data manipulated by algorithms and linear-time
temporal logic for the specification of their behavior. The TLA+ Proof System (TLAPS)
integrates different backends for automatic proving to provide proof support for TLA+.
The work reported here is motivated by the development of an SMT backend through
which users of TLAPS interact with standard SMT (satisfiability modulo theories) solvers
for non-temporal reasoning in the set theory of TLA+.

In line with the foundations of classical mathematics, TLA+ is an untyped formal-
ism [12]. On the other hand, it is generally accepted that strong type systems such
as Martin-Löf type theory or HOL (Church’s simple type theory) and its variants help
provide semi-automatic proof support for highly expressive modeling languages. Auto-
matic first-order theorem provers, including SMT solvers, are generally based on multi-
sorted first-order logic that have interpreted operators over distinguished sorts, such as
arithmetic operators over integers. Similarly, specification languages such as Z [19] or
B [1] use typed variants of set theory that correspond naturally to multi-sorted first-order
logic [5].

A sound way of encoding TLA+ in SMT-LIB [4], the de-facto standard input language
for SMT solvers, described in our previous work [14], is to introduce a distinguished sort
U corresponding to TLA+ values, with injections from existing sorts, such as int2u :
Int → U for integer values. To represent an operator such as addition, we declare a
function plus that takes arguments and returns results in U, but we relate it to the built-
in addition operator +, over the image of int2u , by the axiom

∀m, n : Int. plus(int2u(m), int2u(n)) = int2u(m + n).

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 143–157, 2014.
c© Springer International Publishing Switzerland 2014

144 S. Merz and H. Vanzetto

1 declare int2u : (Int) U
2 declare plus : (U U) U
3 assert ∀m,n : Int. int2u(m) = int2u(n)⇒ m = n
4 assert ∀m,n : Int. plus(int2u(m), int2u(n)) = int2u(m + n)
5 assert ¬(∀x : U. (∃n : Int. x = int2u(n))⇒ plus(x , int2u(0)) = x)

Fig. 1. Encoding of the proof obligation ∀x . x ∈ Int ⇒ x + 0 = x in SMT-LIB

With this representation, the SMT backend will be unable to prove the TLA+ formula
∀x .x+0 = x because the value of the bound variable x is not known to be in the image
of int2u . Indeed, this formula is not a theorem of TLA+; for example, the expression
{}+ 0 is syntactically correct, but its value is unspecified. However, the TLA+ formula
∀x . x ∈ Int ⇒ x + 0 = x can be proved, based on the (pretty-printed) SMT-LIB

encoding shown in Fig. 1. As can be seen from this example, this style of encoding
requires a substantial number of quantified formulas that degrade the performance of
SMT solvers. In particular, the hypothesis x ∈ Int in the TLA+ formula gives rise to the
subformula ∃n : Int. x = int2u(n). If we could detect appropriate type information
from the original TLA+ formula, we could simply translate it to ∀x : Int. x + 0 = x .

The above example motivates the definition of a type system and an associated type
inference algorithm for TLA+. Our previous work [14] contained a preliminary pro-
posal in this direction. By necessity, type systems impose restrictions on the admissible
formulas, and one can therefore not expect type inference to succeed for all TLA+ proof
obligations. If no meaningful types can be inferred, the translation can fall back to the
“untyped” encoding described above. The question is then how expressive the type sys-
tem should be in order to successfully handle a large class of TLA+ formulas. The type
system of [14] was fairly restricted and could in certain cases not express adequate type
information. In particular, handling function applications in TLA+ often requires pre-
cise type information, where it must be proved that the argument is in the domain of the
function. For example, consider the TLA+ formula1

∀f ∈ [{1, 2, 3} → Int]. f [0] < f [0] + 1

This formula should not be provable: since 0 is not in the domain of f , we should not
infer that f [0] is an integer. In our previous work, we over-approximated the type of f
as a function from Int to Int, then generated a side condition that attempted to prove
0 ∈ dom f . However, computing the domain of a function is not always as easy as in
this example, leading to failed proof attempts. The design of an appropriate type sys-
tem is further complicated by the fact that some formulas, such as f [x] ∪ {} = f [x],
are actually valid irrespectively of whether x ∈ dom f holds or not. This observation
motivates the use of a more expressive type system. Using refinement types [7,20], the
type of dom f is {x : Int | x = 1 ∨ x = 2 ∨ x = 3}. During type inference, the sys-
tem will try to prove that x = 0 ⇒ x ∈ dom f , and this will fail, hence the translation

1 In TLA+, [S → T] denotes the set of functions with domain S and co-domain T , and the
application of function f to argument e is written f [e].

Refinement Types for TLA+ 145

will fall back to the untyped encoding (which will in turn fail to prove the formula, as
it should). In many practical examples, the domain condition can be established during
type inference, leading to shorter and simpler SMT proof obligations.

The main contribution of this paper is thus a novel use of refinement types for TLA+

formulas. Since TLA+ is very close to untyped Zermelo-Fraenkel set theory, we be-
lieve that our approach is more widely applicable for theorem proving in set-theoretic
languages. A type system with refinement types is very expressive and actually quite
close to set theory; it gives rise to proof obligations that are undecidable. Specifically,
subtyping between two refinement types {x : τ | φ1} and {x : τ | φ2} reduces to
prove φ1 ⇒ φ2. This is comparable to the use of predicate types in the PVS theorem
prover [18] where type checking conditions may be generated that have to be discharged
interactively. In our case, we divide the problem of type inference into constraint gener-
ation and constraint solving. Constraint generation rules are derived directly from type
checking rules, and always succeed. For constraint solving, we again use SMT solvers,
which may succeed or not. In case constraint solving fails, we fall back to the untyped
encoding (restricted to the corresponding part of the proof obligation), which is compa-
rable to dynamic type checking.

Paper outline. In Section 2 we present a formal definition of a fragment of TLA+. Sec-
tion 3 contains the definition of the type system, including the key concepts of typing
hypothesis and safe types, the typing rules and finally the proof of soundness of the sys-
tem. The typing rules give raise to the inference algorithm in Section 4. Next, we show
some experimental results of a prototype implementation of the system in Section 5 and
Section 6 concludes.

2 A Fragment of TLA+

We now introduce a fragment of TLA+, called L , that represents the essential concepts
of TLA+. The main simplifications are: we restrict the discussion to unary operators and
do not handle TLA+’s CHOOSE operator, tuples, strings, records, or sequences. In order
to adhere to a more standard presentation of ZF set theory, we also assume a distinc-
tion between terms (non-Boolean expressions) and formulas, whereas TLA+ does not.
However, in the “liberal interpretation” of TLA+ [11] that underlies TLAPS, the results
of Boolean connectives are always Boolean. Using a pre-processing step of “Boolifi-
cation” that replaces all possibly non-Boolean arguments e of Boolean operators by
e = true, the distinction between terms and formulas can be recovered.

Syntax. We assume given non-empty, infinite, and disjoint sets V of variables and O
of (unary) operator symbols, the latter subdivided into Boolean operators wb and non-
Boolean operators w .2 The set-theoretic kernel of L is given by the following grammar
where for clarity we distinguish between different syntactic categories of expressions.

2 TLA+ operator symbols correspond to the standard function and predicate symbols of first-
order logic but we reserve the term “function” for functional values in TLA+.

146 S. Merz and H. Vanzetto

Language L grammar

(terms) t ::= v | w(e)
(sets) s ::= t | {} | {e, e} | Ps | ∪ s | {v ∈ s : φ}
(expressions) e ::= s
(formulas) φ ::= wb(e) | false | φ⇒ φ | ∀v . φ | e = e | e ∈ s

A term is either a variable symbol v in V or results from the application of an opera-
tor symbol w in O to an expression. Since TLA+ is a set-theoretic language, every term
denotes a set. The language also contains explicit set constructors corresponding to the
empty set, pairs, the powerset, the generalized union, and set comprehension. Initially,
expressions are just sets. Formulas are built from the application of a Boolean operator
symbol wb to an expression, from false, implication and universal quantification (from
which the remaining first-order connectives can be defined), and from the binary oper-
ators = and ∈. This language, plus an object of infinity (the set of integer numbers Int
that we will add later), corresponds to MacLane set theory, which is a suitable fragment
to formalize large parts of mathematics.

As a first extension of this purely set-theoretic language, we now introduce (total)
functions. In standard set theory, functions are defined as binary relations (i.e., sets of
pairs) restricted so that each element of the domain is mapped to a unique element in
the range of the relation. TLA+ instead introduces functions axiomatically using three
primitive constructs. The expression f [e] denotes the result of applying the function f
to the expression e, and dom f denotes the domain of f . The expression λx ∈ S . e
denotes the function f with domain S such that f [x] = e, for any x ∈ S . For x /∈ S ,
the value of f [x] is unspecified. The expression [S → T] denotes the set of functions
with domain S and co-domain T . The characteristic predicate for a TLA+ value being
a function is defined as IsAFcn(f) � f = λx ∈ dom f . f [x].

Furthermore, L also contains arithmetic expressions. Natural numbers are primitive
symbols, Int denotes the set of integer numbers, and the operators +, −, and < de-
note the usual operations when applied to integers. For further reading, a more detailed
presentation of the formal definition of TLA+ appears in [11, Sec. 16].

Extension with functions

(terms) t ::= ... | f [e]
(sets) s ::= ... | dom f

| [s → s]
(functions) f ::= t | λv ∈ s . e
(expressions) e ::= ... | f

Extension with arithmetic

(sets) s ::= ... | Int
(numbers) n ::= t | 0 | 1 | 2 | · · ·

| n + n | n − n
(expressions) e ::= ... | n
(formulas) φ ::= ... | n < n

A many-sorted version of L , written Lτ , is obtained by decorating variables with
sorts, and by assigning a type 〈τ1, τ2〉 to every operator where τ1 and τ2 denote the type
of the argument and of the result. Our type system will be introduced in Section 3. In
particular, we will write ∀v : τ. φ for a quantified formula where the bound variable has
sort τ .

Refinement Types for TLA+ 147

The definitions of free variables and substitution are the usual ones for first-order
logic over the set of variables V . We write fv(φ) for the set of free variables of φ, and
e[y ← z] for the expression or formula e where all occurrences of the free variable y
are substituted by z .

Semantics. A single-sorted model M is composed of a non-empty set D called the
domain, a valuation function ϕ : V → D that assigns to each variable an element in
the domain, and an interpretation function I that, in particular, assigns to each operator
symbol w a function I(w) : D → D. The definition of the interpretation continues
in the standard way. In particular, models respect the extensionality and foundations
axioms of ZF, functions are governed by the axiom

f = λx ∈ s . e ⇔ ∧ IsAFcn(f)
∧ dom f = s
∧ ∀y ∈ s . f [y] = e[x ← y]

and arithmetic expressions are interpreted in the standard way when arguments are in-
tegers. The semantics of the multi-sorted languageLτ is analogous with the usual mod-
ifications corresponding to the presence of sorts [13].

A formula φ is valid (noted φ) iff it holds in every model.

3 A Type System with Refinements

Types are given by the following grammar.

τ ::= t1 | t2 | . . . | Bool | Int | α | Set τ | (v : τ) → τ | τ # τ | {x : τ | φ}

The basic types consist of a denumerable set of atomic types t1, t2, . . ., as well as of
types Bool for formulas and Int for integers. Further type constructors are directly cor-
related to set objects. For instance, the Set constructor determines the level of set strata
for P and ∪. Type variables α are interpreted over the resulting Herbrand universe of
types. A ground assignment σ is a total function σ of type variables to atomic types.

A refinement type {x : τ | φ} is intended for representing set comprehension objects.
It describes the set of values of type τ that satisfy the refinement predicate φ, where x is
free in φ. Refinement types have the property (3.1) that the refinement of a refinement
type is also a refinement type. From this property, we know also that any type τ can be
written as the (trivial) refinement type {x : τ | true}.

{x : {y : τ | φ1} | φ2} = {x : τ | φ1[y ← x] ∧ φ2} (3.1)

The type of the empty set is defined as the type ∅τ � Set {x : τ | false}, for any
type τ . A pair {a, b} has the type τa # τb , the logical union of the types of a and b. The
union type constructor # is an operation on refinements and sets and it is defined by:

{x : τ | φ1} # {x : τ | φ2} = {x : τ | φ1 ∨ φ2} (3.2)

(Set τ1) # (Set τ2) = Set (τ1 # τ2) (3.3)

148 S. Merz and H. Vanzetto

A function f has the dependent type (x : τ1) → τ2 [2], where τ1 represents the
domain of f and the term x may occur in the range type τ2. The variable x of type τ1 is
bound in type τ2. If x does not occur in τ2, we can omit it from the syntax to obtain the
standard function type τ1 → τ2.

3.1 Typing Propositions and Typing Hypotheses

When encoding a multi-sorted language into a single-sorted one, the traditional method
[6] is straightforward. For every sort τ , it defines a characteristic proposition Pτ that
represents the set of values having sort τ . For instance, the proposition associated to
Set τ is derived from the axiom of power set. Then, it relativizes the quantifiers, that is,
it replaces the sort annotations x : τ by new hypotheses Pτ (x). This method is applied
to formulas without type variables, therefore all types should be grounded. For each
atomic type ti , we introduce a new unary predicate symbol ti and an axiom stating that
these predicates partition the universe of ground types in disjoint sets.

Definition 1 (Typing propositions). Given a type assignment x : τ , an encoding of it
can be constructed into the formula Pτ (x), defined as follows:

Pti (x) � ti(x) PBool(x) � x ∈ {true, false} PInt(x) � x ∈ Int

PSet τ (x) � ∀z ∈ x . Pτ (z) Pτ1�τ2(x) � Pτ1(x) ∨ Pτ2(x)

P{y:τ | φ}(x) � Pτ (x) ∧ φ[y ← x]

P(x :τ1)→τ2(f) � ∧ f = λx ∈ dom f . f [x]
∧ ∀z . z ∈ dom f ⇔ Pτ1(z)
∧ ∀z . Pτ1(z) ⇒ (∀x .Pτ1(x)⇒ Pτ2(f [z]))

For example, PSet {x :Int | p(x)}(s) = ∀z ∈ s . z ∈ Int ∧ p(z).

Definition 2 (Relativization). A typed formula is relativized by recursively replacing
the type annotations x : τ by a new hypothesis corresponding to the typing proposition
Pτ (x). The relevant transformation is ∀x : τ. φ � ∀x . Pτ (x)⇒ φ.

Lemma 1 (Relativization is sound). ∀x : τ. φ implies ∀x . Pτ (x)⇒ φ.

Proof. The proof follows [13] with the addition of the Set and refinement types. $%

Now suppose we want to annotate the formula ∀x , y. ∪ {x , y} = ∪{y, x}. We can
safely say that the type of x and y should be Set t, for some atomic type t. Semantically
speaking, all values in the untyped universe D denote sets. And the stratification of sets
using the Set constructor supports the key idea that a set must have a different type from
its elements.

Definition 3 (Safe types). A type is said to be safe if it is an atomic type ti , for some i ,
or if it is Set τsafe, where τsafe is safe.

Since all values are sets and typing predicates are uninterpreted, safe types cannot in-
troduce any unsoundness to a typed formula.

Lemma 2. The relativization of the formula ∀x : τsafe. φ is equisatisfiable with ∀x . φ.

Refinement Types for TLA+ 149

Proof. By the definitions of relativization and typing proposition of Set and atomic
types. $%

In this paper we are going in the opposite direction, that is, from an unsorted to
a many-sorted universe. We will obtain the type information from propositions that
appear in the unsorted language in the form of typing hypotheses.3

Definition 4 (Typing hypothesis). A typing hypothesis H(x) for variable the x is a
premise of the form x ∈ e or x = e, for any expression e where x is not free in e.

The type information that can be obtained from an untyped formula is almost directly
taken from their typing hypotheses and can be captured with precision by refinement
types. Suppose we want to annotate the invalid formula ∀x . x + 0 = x . It is incorrect
to say that x is an integer: that would make the formula valid. However, the formula
∀x . x ∈ Nat ⇒ x + 0 = x contains a hypothesis from which we can soundly infer the
type {y : Int | 0 ≤ y} for x . With this in mind, we define the typing rules.

3.2 Typing Rules

We start by declaring some conventional auxiliary definitions. A typing context Γ :
V ∪ O → τ is a finite partial function from variable and operator symbols to types.
Its grammar is Γ ::= x : τ | Γ, x : τ . A triple Γ φ : τ is a pre-judgement. It is a
(valid) judgement if it can be derived from the typing rules. A pair (Γ, τ) is a typing of
φ iff fv(φ) ⊆ dom(Γ) and Γ φ : τ is valid. Likewise, the typing of a formula is just
Γ . A formula φ is typable iff it admits a typing. Given an untyped formula φ � ∀x . ϕ
such that Γ ϕ : Bool is a judgment and fv(ϕ) ⊆ dom(Γ), then the corresponding
annotated (sorted) formula is φ′ � ∀x : Γ (x). ϕ.

The definition of the typing rules is similar to the standard rules for simple typed λ-
calculus. The typing rules introduce many fresh type variables noted α, α1, α2, ..., etc.
during a type derivation. In contrast to type inference in programming languages where
type variables are unified throughout the whole derivation to obtain a most general type,
here we just want to unify variables when deriving the typing hypotheses. In the rest of
the formula, we just check that types are well-formed. The core of the typing rules lies
in the definition of four binary relations on types. Equality≡ and subtyping <: are used
to unify type variables. They have their corresponding non-unifiable versions: equality
checking ≈ and subtype checking ≺:. Unless explicitly noted, they are all interpreted
in a context Γ , for example, as Γ τ1 ≡ τ2, to bind the free variables the refinement
predicates may have.

The equality condition τ1 ≡ τ2 tries to unify both types when one of them is a
type variable. The subtyping relation <: is a pre-order on types (i.e., it is reflexive
and transitive). For any ground types τ1 and τ2, τ1 <: τ2 iff ∀x . Pτ1(x) ⇒ Pτ2(x);
when at least one of τ1 and τ2 is a type variable, the types are unified, as explained

3 TLA+ was designed with the philosophy that the user should not think in terms of types when
she writes the specifications and proofs. In practice, it is customary that the first thing the
user does after declaring the variables in a TLA+ module is to write a type invariant for every
declared variable. Once proved, this invariant is used as a hypothesis in the other theorems.

150 S. Merz and H. Vanzetto

Typing rules for first-order formulas and set objects

[T-FALSE]

Γ � false : Bool

[T-IMPLIES]
Γ �φ1 : Bool Γ �φ2 : Bool

Γ �φ1 ⇒ φ2 : Bool

[T-QUANT]
Γ, x : α�φ : Bool

Γ �∀x . φ : Bool

[T-CHECK]
Γ, x : τ �φ : Bool

Γ �∀x : τ. φ : Bool

[T-VAR]
Γ (x) ≡ α

Γ � x : α

[T-OP]
Γ (w) ≡ α1 → α2 Γ � e : α1

Γ �w(e) : α2

[T-SETCOMP]
Γ � s : Setα Γ, x : α�φ : Bool x /∈ fv(s)

Γ �{x ∈ s : φ} : Set {x : α | φ}
[T-EMPTY]

Γ � {} : Set∅α

[T-PAIR]
Γ � e1 : α1 Γ � e2 : α2

Γ � {e1, e2} : Set (α1 � α2)

[T-POWER]
Γ � s : Setα

Γ �Ps : Set Setα

[T-UNION]
Γ � s : Set Setα

Γ � ∪ s : Setα

Γ � e1 : α1

Γ � e2 : α2

Γ �α1 ≺: α3

Γ �α2 ≺: α3

Γ � e1 = e2 : Bool
[T-EQ]

Γ � e1 : α1

Γ � e2 : Setα2
Γ �α1 ≺: α2

Γ � e1 ∈ e2 : Bool
[T-MEM]

[TH-EQ]
Γ � e : α Γ, x : α�φ : Bool x /∈ fv(e)

Γ �∀x . x = e ⇒ φ : Bool

[TH-MEM]
Γ � e : Setα Γ, x : α�φ : Bool x /∈ fv(e)

Γ �∀x . x ∈ e ⇒ φ : Bool

Typing rules for function and arithmetic expressions

Γ � f : α1

Γ � e : α2

Γ �α1 ≈ (x : α3)→ α4

Γ �α2 ≺: α3

Γ � f [e] : [x �→ e] · α4
[T-APP]

Γ � f : α1

Γ �α1 ≈ (x : α2)→ α3

Γ � dom f : Setα2
[T-DOM]

Γ � s : Setα1 Γ, x : α1 � e : α2

Γ �λx ∈ s. e : (x : α1)→ α2
[T-FUN]

Γ � s : Setα1 Γ � t : Setα2

Γ � [s → t] : Set (α1 → α2)
[T-FUNSET]

Γ � Int : Set Int [T-INT]
Γ � ei : αi Γ �αi ≺: Int i ∈ {1, 2}
Γ � e1 + e2 : {x : Int | x = e1 + e2}

[T-PLUS]

n ∈ {0, 1, 2, ...}
Γ � n : {x : Int | x = n} [T-NUM]

Γ � ei : αi Γ �αi ≺: Int i ∈ {1, 2}
Γ � e1 < e2 : Bool

[T-LESS]

Rules for <≺: (that is, <: or ≺:) and ≈
Γ � e : τ1 Γ � τ1 <≺: τ2

Γ � e : τ2
[T-SUB]

Γ �α1 ≡ τ1 Γ �α2 ≡ τ2

Γ � (x : τ1)→ τ2 ≈ (x : α1)→ α2
[MATCH-ARROW]

[EQ-REF]
Γ, x : τ �φ1 ⇔ φ2

Γ � {x : τ | φ1} ≡ {x : τ | φ2}

[EQ-ARROW]
Γ � τ1 ≡ τ ′

1 Γ � τ2 ≡ τ ′
2

Γ � (x : τ1)→ τ2 ≡ (x : τ ′
1)→ τ ′

2

[EQ-SET]
Γ � τ1 ≡ τ2

Γ � Set τ1 ≡ Set τ2

[SUB-REF]
Γ, x : τ �φ1 ⇒ φ2

Γ � {x : τ | φ1} <≺: {x : τ | φ2}

[SUB-ARROW]
Γ � τ ′

1 <≺: τ1 Γ, x : τ ′
1 � τ2 <≺: τ ′

2

Γ � (x : τ1)→ τ2 <≺: (x : τ ′
1)→ τ ′

2

[SUB-SET]
Γ � τ1 <≺: τ2

Γ � Set τ1 <≺: Set τ2

Fig. 2. Typing and subtyping rules

Refinement Types for TLA+ 151

later by the rules of constraint solving. The condition τ1 ≺: τ2 is valid iff both types
are ground types and τ1 <: τ2. That is, it checks that τ1 is a subtype of τ2, without
unifying type variables. We use the symbol <≺: as a shorthand for <: and ≺:. The rules
EQ-REF and SUB-REF yield type verification conditions on first-order formulas that
have to be proved correct to satisfy the type property. Therefore, the verification of
these conditions is an undecidable problem [17]. Well-formedness conditions on types
reduce basically to check the type conditions.

The typing rules are given in Figure 2. As expected, once a formula has been Boo-
lified (cf. Section 2), the rules for false and ⇒ are trivial. Rule T-QUANT evaluates
the body of ∀x . φ by adding x to the context with a fresh type variable α. We ob-
tain the typing hypotheses by decomposing the assumptions present in a formula by
elementary heuristics. The rules TH-EQ and TH-MEM, which are applied with higher
priority than rule T-QUANT, encapsulate this requirement in a simplified way. However,
the information provided by the typing hypotheses may not be completely captured by
merely syntactic analysis. For example, the typing proposition PSet Int(s) is equal to
∀z ∈ s . z ∈ Int , but the typing hypothesis may appear, for instance, as the equivalent
formula s ∈ PInt . The sub-expressions x ∈ s in the rules T-SETCOMP and T-FUN are
typing hypotheses and are therefore treated as such.

The precise type information of refinement types imposes a weak form of type equal-
ity (rule T-EQ). If we require the types of the arguments to be exactly equal, we would
be ruling out many typable expressions. Instead, the rule requires them to a have com-
mon super-type. Suppose we want to type the expression 3 = 4. It is false, but still
typable because the types {x : Int | x = 3} and {x : Int | x = 4}, which have the same
base type Int, are both subtypes of {x : Int | x = 3 ∨ x = 4}.

Functions are contravariant on their arguments while they are covariant on their result
(rule SUB-ARROW). This has the effect of shrinking their domain while expanding their
codomain. To extract the domain from a function type, as needed by rules T-APP and
T-DOM, we use the condition τ1 ≈ τ2 as a kind of pattern-matching for functions
(MATCH-ARROW). When τ is a function type and α1 and α2 fresh variables, τ ≈ (x :
α1) → α2 obtains the domain of τ in α1 and the codomain in α2. Function applications
(T-APP) have type [x �→ e] · α4: it is the type α4 of the function’s codomain, to which
it is applied a substitution of the variable x by expression e. The substitution has to be
delayed until it is applied to a refinement type, when we can simplify it as:

[x �→ e] · {x ′ : τ | φ} −→ {x ′ : τ | φ[x ← e]}

Literal integers and the set of integers have a constant type (T-NUM and T-INT).
Rules T-PLUS and T-LESS require that their arguments to be integers with the condition
ei ≺: Int. The rule for x − y is similar to the rule T-PLUS.

Finally, to type check an annotated formula, we use the same type system, except that
the typing rules TH-MEM, TH-EQ and T-QUANT for quantifiers are no longer needed;
they are replaced by the rule T-CHECK. This means that during type checking there are
no derivations from typing hypotheses, and type annotations in quantifiers are passed
directly to the body’s context.

152 S. Merz and H. Vanzetto

3.3 Soundness

Type annotations, as well as the typing hypotheses, restrict the domain of evaluation
of the quantified variables. Suppose the formula φ is not valid. Then there exists some
valuation in the universe D which makes the formula false. Still, there may exist some
other valuation in D that makes φ true. Let us call A the set of all valuations that make
φ true. We want to show that the type system does not generate annotations for φ,
resulting in φ′, such that those annotations restrict or confine the domain of evaluation
of the variables to the set A which would make φ′ valid.

For example, consider ∀x . x < x +1 which is false in some valuations of x , namely
when x /∈ Int . However, if we annotate x incorrectly as an integer, ∀x : Int. x < x + 1
would become valid, because x would be evaluated precisely in those values that make
x < x + 1 true. In essence, we need to prove that type assignments only follow from
typing hypotheses.

Theorem 1 (Soundness). If x : τ is a typing of φ, then ∀x . φ iff ∀x : τ. φ.

Proof. ⇒) If φ is true in all models of the untyped universe, then in a sorted universe
that restricts the domain of interpretation, φ will also be trivially true.
⇐) Assuming ∀x : τ. φ (named A1) we want to prove ∀x . φ.
PROOF. We know that:
〈1〉1. x : τ φ : Bool is valid (i.e. there is a type derivation), by hypothesis.
〈1〉2. ∀x . Pτ (x)⇒ φ (named A2), by assumption A1 and Lemma 1.
We need to show that Pτ (x), derived from x : τ , does not constraint the domain of
evaluation of x in φ.
〈1〉3. Suffices to prove that from A2 we can prove ∀x . φ, by step 〈1〉2.
We proceed by a case analysis on the shape of φ.
〈1〉4. CASE 1. If there is no typing hypothesis for the variable x in φ, then ∀x . φ.

PROOF.
〈2〉1. The type derivation on φ yields the judgment x : αx φ : Bool, by step 〈1〉1.
Type variable αx is fresh and after unification will be equal to τ . The first applied
rule is T-QUANT, the only possible one, since there are no typing hypotheses.
〈2〉2. The type αx can only be promoted to a safe type τ .

PROOF. The TH (typing hypothesis) rules, where unification of type variables
happens, do not apply, meaning that αx cannot be unified with any non-safe type
such as Bool, Int or functions. The only applicable rules that may promoteαx are
the rules T-MEM, T-SETCOMP, T-PAIR, T-POWER or T-UNION, but these result
in a safe Set type. For example, rule T-PLUS requires establishing αx ≺: Int,
which is impossible.

〈2〉3. Finally, since τ is safe, it does not compromise the validity of A2 when x : τ
it is relativized to Pτ (x), by Lemma 2.

〈1〉5. CASE 2. If φ is of the form H(x)⇒ φ1, then ∀x .H(x)⇒ φ1.
PROOF.
〈2〉1. Suffices to prove that H(x)⇒ Pτ (x).

Refinement Types for TLA+ 153

〈2〉2. Suppose that H(x) is of the form x ∈ s . The first rule applied in the type
derivation is necessarily TH-MEM, yielding

 s : Setαx (1) and x : αx φ1 : Bool (2)

Here, we see that the fresh type variable αx is the same in both sides of the deriva-
tion, which results in the unification of the types of x and s . The TH rules are the
only ones that share type variables in their different premises.
We apply induction on fv(H(x)). For simplicity, we consider that H(x) does not
include quantified formulas.
〈3〉1. (Base case) There are no free variables, meaning that the type of x does
not depend on the type of any other variable. Therefore, it is trivially a constant
type or an atomic type t. For instance, if s is Int , the goal is to show that x ∈
Int ⇒ Pαx (x). So αx is unified with Int and PInt(x) = x ∈ Int = H(x).
〈3〉2. (Inductive step) We proceed by a case analysis on the shape of s , which
has to be necessarily a set, otherwise it would not match with Setαx in (1).
〈4〉1. CASE s � Pt . The goal is to show that x ∈ Pt ⇒ Pαx (x). Given that
t : αt , then αx is unified with Setαt . Then PSetαt (x) = ∀z ∈ x . Pαt (z), by
the inductive hypothesis z ∈ t ⇒ Pαt (z).
〈4〉2. The other cases are proved in a similar way.

〈2〉3. The case where H(x) is of the form x = e is similar to the step 〈2〉2.
〈2〉4. QED , by 〈2〉1, 〈2〉2 and 〈2〉3.

〈1〉6. QED , by steps 〈1〉3, 〈1〉4 and 〈1〉5. $%

4 Type Inference Algorithm

The type inference algorithm takes a formula φ and returns a type assignment σ, that is,
a function from type variables to types. The algorithm consists of a constraint generation
phase followed by constraint solving.

Since the constraint-based algorithm is independent of the chosen type system we
can adapt one originally introduced for a variant of ML by Knowles and Flanagan [10].
The main difference is in the constraint language, where we use two additional kinds of
type checking conditions instead of only two for equality and subtyping. The constraint
language grammar is defined following the notation of [16].

c ::= τ ≡ τ | τ <: τ | τ ≈ τ | τ ≺: τ |) | ⊥ | c ∧ c | ∃�α. c | [x �→ e] · c

In addition to the type constraints, there are the true and false constraints. Conjunc-
tion of constraints and existential quantification of type variables permit to replicate
the structure of a type derivation in a single constraint formula. Delayed substitutions
[x �→ e] · c replace variable x by expression e in constraint c.

A constraint c is satisfiable, noted σ c, iff there exists a ground assignment σ
that satisfies c. Constraint judgements can be interpreted by the following rules, where
σ, α �→ t is function σ updated with a new assignement for α and t is fresh atomic type:

σ)
στ1 � στ2

σ τ1 � τ2
(� ∈ {≡,+, <:,≺:})

σc1 σc2

σ c1 ∧ c2

σ, α �→ t c

σ ∃α. c

154 S. Merz and H. Vanzetto

4.1 Constraint Generation

To a pre-judgement Γ e : τ , where fv(e) ⊆ dom(Γ), we associate a constraint
〈〈Γ e : τ〉〉. Constraint generation (CG) rules are essentially derived from their corre-
sponding typing rules, with subsumption (rule T-SUB) distributed all through to make
the rules syntax-directed. CG rules take as arguments an environment Γ , an expression
e and a type variable τ . They are recursively defined on e. The resulting constraint has
a linear size with respect to the size of the original formula. As an example, we show
the CG rule obtained from the rule T-SETCOMP:

〈〈Γ {x ∈ s : φ} : αr 〉〉 � ∃α1α2. ∧ 〈〈Γ s : Setα1〉〉
∧ 〈〈Γ, x : α2 φ : Bool〉〉
∧ Γ α2 ≺: α1

∧ Γ αr ≡ Set {x : α1 | φ}

Note that: (i) every free type variable that appears in the typing rule are existentially
bounded by fresh type variables α1 and α2, (ii) the expected type for the expression in
the second argument is unified to the type variable αr passed as the third argument, and
(iii) the subsumption rule is implicitly applied to the sub-formula x ∈ s .

The following theorem asserts that the soundness and completeness of the generated
constraints, grounded by a type assignment σ.

Theorem 2 (CG soundness and completeness). σ 〈〈Γ φ : τ〉〉 iff σΓ φ : στ .

Proof (idea). By induction on φ, using the typing rules, the CG definitions and the
interpretation of constraints. For details, see [17]. $%

4.2 Constraint Solving

Constraint-based type inference for systems with subtyping is an extensive research
topic. Pottier [16] and Odersky et al. [15] have developed Hindley-Milner systems pa-
rameterized by a subtyping constraint system. Broadly speaking, we specify a constraint
solving algorithm following [9] as a non-deterministic system of constraint rewriting
rules and first-order unification rules for subtyping constraints. The algorithm proceeds
in one main step, that is repeated once, consisting of solving equality and subtyping
constraints. Once the first execution is finished, the final typing we were searching for
is Γ , but there are still some residual subtype checking constraints of the form τ1 ≺: τ2
to prove. The second step is to check that these constraints are satisfied, by converting
them to the form τ1 <: τ2 and solving them by executing the main step again. If the
remaining constraint is), the algorithm finishes successfully.

To solve the equality and subtyping constraints we proceed as follows. Given a con-
text Γ and a constraint c, we apply the rules 3.1, 3.2, 3.3 and MATCH-ARROW plus the
following rules to eliminate the type variables introduced during constraint generation.
Note that rule 4.2 has to be carefully applied to avoid recursive substitutions.

(∃α. c1) ∧ c2 −→ ∃α. (c1 ∧ c2) if α /∈ fv(C2) (4.1)

∃α. (Γ α ≡ τ ∧ c) −→ c[τ ← α] if α does not occur in τ (4.2)

Refinement Types for TLA+ 155

Subtype constraints Γ τ1 <: τ2 are solved by non-deterministically applying simpli-
fication rules SUB-REF, SUB-ARROW, and SUB-SET, or the unification rules:

Γ Set τ <: σ · α � {α �⇒ Set τ}
Γ (x : τ1) → τ2 <: σ · α � {α �⇒ (x : α1)→ α2} (α1, α2 fresh variables)

Γ {x : τ | φ} <: σ · α � {α �⇒ {x : τ | γ}} (γ fresh placeholder)
Γ {x : τ | φ1} <: {x ′ : α | φ2} � {α �⇒ {x : τ | φ1}}

These four unification rules have their symmetric counterparts. They return a substitu-
tion {α �⇒ τ} of a variableα by another type τ , which are immediately applied to Γ and
c. Any other pair combination of set, function or refinement types will make the algo-
rithm abort with a type error. The algorithm terminates when no rule can be applied. At
this point, only subtype constraints α1 <: α2 between type variables remain in c. The
type variables α1 and α2 can be set to a concrete ground type t, making the constraint
valid by reflexivity. Placeholder symbols are introduced to defer the reconstruction of
refinement predicates.

Solving placeholders. The final step in type inference algorithm is to find formulas to
replace the placeholders while satisfying the typing conditions. The placeholders appear
in conditions of the form Γ γ ⇒ φ, Γ γ1 ⇒ γ2 or Γ φ ⇒ γ. Our algorithm
to calculate concrete refinement predicates is almost entirely based on a similar one
developed in [10], which, in turn, is based on the intuition that implications can be
analyzed as dataflow graphs.

5 Experimental Results

We have implemented a prototype of the type inference algorithm in TLAPS. In par-
ticular, the following table shows results for two case studies. They correspond to the
invariant proofs of the N -process Peterson and Bakery algorithms for mutual exclusion,
whose data structures are represented by functions ranging over the processes and they
contain some basic arithmetic.

For each benchmark, we record the size of the proof, i.e. the number of non-trivial
proof obligations generated by the proof manager, and the time in seconds required to
verify those proofs on a standard laptop. The proof size corresponds to the number of
proof obligations that are passed to the backend prover, which is proportional to the
number of interactive steps and therefore represents the user effort for making TLAPS

check the proof. We compare these figures for the SMT backend using the previous
elementary type inference algorithm described in [14], and then for the SMT backend
equipped with the new type system with refinement types. The results for the new type
system includes three extra columns corresponding to the number of derived type ver-
ification conditions (non-trivial vs. total), total time in seconds to perform the type
inference (including proving the type conditions), and number of initially generated
constraints. The total time for the second system is the sum of the times required to do
type inference and the time to actually prove the SMT encoding of the proof obligation.
In all cases, the SMT solver used was CVC4 [3].

156 S. Merz and H. Vanzetto

Simple Types Refinement Types
size time size time tvc type-inf const

Peterson 3 0.40 3 0.30 0/474 0.33 937
Bakery 15 9.52 3 1.51 6/1622 4.15 3317

The second case study, which is a significantly bigger specification than the first one,
takes slightly less time than the previous backend, whereas the overall time taken is
slightly longer for the Peterson case study. The size of the proof, i.e. the number of
human interactions, is considerably reduced for the second case. The current prototypi-
cal implementation of the constraint solving algorithm may benefit from optimizations
(see [16]) in order to speed up type inference.

In both examples, all non-trivial verification conditions were discharged almost in-
stantly by the SMT solver. Consequently, no dynamic domain checkings were needed in
the SMT-LIB encoding.

6 Conclusions

Beyond the recurring debates about using typed versus untyped languages for formaliz-
ing mathematics or software systems [12], we can observe that types, regarded just as a
classification of the elements of a language, arise quite naturally in untyped set theory.
In this paper, motivated by the use of powerful automatic provers for multi-sorted first-
order logic, we have defined a sophisticated type system for a fragment of the TLA+

specification language that captures with precision the values and semantics of sets and
functions using refinement and dependent types. When type inference succeeds, we ob-
tain type annotations on top of an untyped specification language, getting the best of
both the typed and untyped approaches.

Inevitably, the resulting type system constrains the set of accepted TLA+ expressions.
Occasionally useful expressions that are not typable by the type system are, for exam-
ple, enumerated sets whose elements are of different types. As we mentioned in the
introduction, formulas for which type inference fails will still be translated according
to the “untyped” encoding, and may thus be proved by the SMT solver. One advantage
of doing type inference with constraints is that we can know exactly what part of the
formula cannot be typed and can therefore restrict the use of the untyped encoding to
these parts and produce useful type checking warnings and error messages [8].

Our experience so far with the implementation of this approach in TLAPS has been
quite positive: types are successfully inferred for the vast majority of proof obligations
that we have seen in practice. Since the new type system is a refinement of the pre-
vious one, it never fails when the old one succeeded, and it has been able to increase
the number of proof obligations that the SMT backend can handle without human in-
teraction. The improvements are particularly noticeable in specifications that contain a
significant number of function applications, which are used quite frequently in TLA+

specifications.
The type system is easily extended to accommodate TLA+ constructs that we have

not considered in this paper, such as tuples and records. Support for the CHOOSE oper-
ator (Hilbert’s choice) is more challenging. It would be interesting to study the applica-
bility of our type system to proofs of mathematical theorems in ZF set theory.

Refinement Types for TLA+ 157

References

1. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge University
Press (2010)

2. Aspinall, D., Compagnoni, A.B.: Subtyping dependent types. Theor. Comput. Sci. 266(1-2),
273–309 (2001)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: Cvc4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 171–177. Springer, Heidelberg (2011)

4. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library, SMT-LIB
(2010), www.SMT-LIB.org

5. Déharbe, D.: Integration of SMT-solvers in B and Event-B development environments. Sci.
Comput. Program. 78(3), 310–326 (2013)

6. Dowek, G.: Collections, sets and types. Mathematical. Structures in Comp. Sci. 9(1), 109–123
(1999)

7. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Implementation, PLDI 1991,
pp. 268–277. ACM, New York (1991)

8. Heeren, B., Hage, J., Swierstra, D.: Generalizing Hindley-Milner type inference algorithms.
Technical report (2002)

9. Jouannaud, J.-P., Kirchner, C.: Solving equations in abstract algebras: A rule-based survey
of unification. In: Computational Logic - Essays in Honor of Alan Robinson, pp. 257–321
(1991)

10. Knowles, K., Flanagan, C.: Type reconstruction for general refinement types. In: De Nicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 505–519. Springer, Heidelberg (2007)

11. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley, Boston, Mass (2002)

12. Lamport, L., Paulson, L.C.: Should your specification language be typed? ACM Trans. Pro-
gram. Lang. Syst. 21(3), 502–526 (1999)

13. Manzano, M.: Extensions of First-Order Logic, 2nd edn. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (2005)

14. Merz, S., Vanzetto, H.: Harnessing SMT Solvers for TLA + Proofs. ECEASST, 53 (2012)
15. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types. In: Fourth

International Workshop on Foundations of Object-Oriented Programming, FOOL (1997)
16. Pottier, F.: Simplifying subtyping constraints. In: Proceedings of the 1996 ACM SIGPLAN

International Conference on Functional Programming, pp. 122–133. ACM Press (1996)
17. Pottier, F., Rémy, D.: The essence of ML type inference. In: Pierce, B.C. (ed.) Advanced

Topics in Types and Programming Languages, ch. 10, pp. 389–489. MIT Press (2005)
18. Rushby, J., Owre, S., Shankar, N.: Subtypes for Specifications: Predicate Subtyping in PVS.

IEEE Transactions on Software Engineering 24(9), 709–720 (1998)
19. Spivey, M.: The Z Notation: A Reference Manual. Prentice Hall (1992)
20. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Appel, A.W., Aiken, A.

(eds.) POPL, pp. 214–227. ACM (1999)

www.SMT-LIB.org

Using Lightweight Theorem Proving

in an Asynchronous Systems Context�

Matthew Danish and Hongwei Xi

Boston University Computer Science
111 Cummington Mall
Boston, MA 02215

Abstract. As part of the development of a new real-time operating
system, an asynchronous communication mechanism, for use between
applications, has been implemented in a programming language with
an advanced static type system. This mechanism is designed to provide
desired properties of asynchronicity, coherency and freshness. We used
the features of the type system, including linear and dependent types,
to represent and partially prove that the implementation safely upheld
coherency and freshness. We believe that the resulting program code
forms a good example of how easily linear and dependent types can
be applied in practice to prove useful properties of low-level concurrent
systems programming, while leaving no traces of runtime overhead.

1 Introduction

The Terrier [7] project focuses on doing low-level, OS-level systems programming
while taking advantage of a dependently typed programming language named
ATS [25]. The purpose of this project is to identify effective, practical means to
create safer, more reliable systems through use of advanced type system features
in programming languages. We are also interested in the implications of having
powerful programming language tools available, and the effects on plausible sys-
tem design. For example, Terrier moves much of the responsibility for program
safety back out onto the programs themselves, rather than relying strictly on
run-time checks or hardware protection mechanisms. For another, the Terrier
program model is one in which asynchronous events play a central role in pro-
gram design. These two shifts in thinking put more burden on the programmer—
a burden that we expect to lighten through language-level assistance—but they
also open up more flexibility in potential program design that we hope will en-
able higher performance and more naturally-written code in difficult problem
domains.

ATS is a language with the goal of bringing together formal specification and
practical programming. The core of ATS is an ML-like functional programming
language which is compiled into C. The type system of ATS combines dependent
and linear types to permit sophisticated reasoning about program behavior and

	 This research is supported partly by NSF grant CCF-1018601.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 158–172, 2014.
c© Springer International Publishing Switzerland 2014

Using Lightweight Theorem Proving 159

the safety of resource usage. The design of ATS provides close coupling of type-
safe functional code and low-level C code, allowing the programmer to decide
the balance between specification and speed. The ATS compiler can generate
code which does not require garbage collection nor any other special run-time
support, making it suitable for bare metal programming.

Using ATS, we have generated C code which links into our kernel to provide
several critical components. We also encourage the use of ATS to help ensure the
safety and correctness of programs that run under the OS. For example, programs
that wish to communicate with one another are provided with libraries written
in ATS which implement protocols that have been statically checked for safety
and correctness.

One of those protocols that we implemented is Simpson’s “four slot fully asyn-
chronous communication mechanism” [20]. It is a shared memory communication
protocol which was cleverly designed by its author to pack some desirable prop-
erties into just a few lines of code. It allows one-way, pool-based transmission of
data without any synchronization delays between reader and writer. The commu-
nication medium is the normal shared memory that is found in most computer
systems. The mechanism offers the properties of freshness and coherency, but not
history. For example, you could imagine a bulletin board on which one person
posts flyers while the other person reads, as shown in figure 1. This mechanism
ensures that the reader only sees the latest, complete, coherent postings on the
board.

The ATS implementation of the four slot mechanism is compact, efficient
and shows how strongly specified types can provide useful assurances at a low-
level without intruding into run-time performance of critical code or requiring
voluminous quantities of proof-writing.

reader writer

latest
coherent

data

Fig. 1. Abstract depiction of four slot mechanism

160 M. Danish and H. Xi

1.1 The Four Slot Mechanism

The scenario for the four slot mechanism starts by assuming that there is a
writer program which wishes to convey some information to a reader program.
Furthermore, the information is able to be encoded into an arbitrary, fixed num-
ber of bytes, and there is a shared memory space large enough for at least four
copies of the data to be stored, plus a few more bytes for state variables.

The four slot mechanism works by opening up space in memory for these four
“slots” of data, usually in the form of an array. Coherency is ensured through
program logic which keeps the reader and the writer apart: each has their own
slot to operate upon, and further analysis will show that the mechanism prevents
them from touching the same slot at the same time.

To achieve this property, the original four slot mechanism relies on several
pieces of shared state, and it assumes that individual bits may be manipulated
atomically. That is, all simultaneously accesses to a single bit will appear to have
a definite ordering, either way [16]. In practice, atomic operations are offered at
machine word sizes [2], not at the individual bit level, but the logic remains the
same.

The shared state variables are used for coordination, by both reader and writer
programs:

– The atomic bit variable named “reading” or R is intended to roughly indicate
which side of the mechanism the reader program is currently using.

– The atomic bit variable named “latest” or L is intended to indicate which
side of the mechanism was updated most recently.

– The bit array named “slot” further drills down on the specific slot of the array
to be used. You could also choose to split this into two variables “slot0” and
“slot1” for analysis purposes.

– Two bits are then used to index into the shared four-member array of data
slots.

There are also private state variables which may only be accessed from within
each program. Since they are symmetrical, we use a consistent naming scheme
for them:

– A bit variable named “pair” which in the writer is named wp and in the
reader is named rp.

– A bit variable named “index” which in the writer is named wi and in the
reader is named ri.

Together, these private variables are used to index into the shared array, and
that usage is denoted as write data (wp, wi, item) or item← read data (rp, ri).

The diagram in figure 2 shows how the data flows in this protocol. A program
obtains its “pair” from either the “reading” or “latest” atomic variable. It then
uses the “pair” to pick an “index” from the “slot” array. It then uses the “pair”
and “index” to select one of the four slots to work on.

In example diagram you can see that the reader has selected 0, 1 and the writer
has selected 1, 1. Visually, you can see that they are able to independently read
and write without conflict.

Using Lightweight Theorem Proving 161

'pair'

'index' reader

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
0101111000110110110
1011110001101111100

writer

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
1100010110001100110
10111100011011111000000
1111000000110011000111001100

array[0,0]

array[1,0]

array[0,1]

array[1,1]

1 0slot[]:

'reading'
'latest'

Fig. 2. Four Slot Mechanism

On the other hand, the diagram in figure 3 shows a case where the reader and
writer are trampling over each other, likely causing data corruption. A properly
working four slot mechanism will never allow this to occur.

The pseudocode for the four slot mechanism is shown in figure 4 and it is
simple enough for a quick walk-through. For the first step of the writer, WS1,
it reads the value of R, negates it, and stores it into the private variable wp.
For the second step, the writer reads a bit from the slot [] array, indexed by wp,
negates it, and then uses that as the value of wi. With both wp and wi, the
writer is now ready to perform the actual write. Finally, the writer updates the
shared state by writing its values of wi, wp into slot [] and L respectively.

The reader also takes 5 steps which are aimed at obtaining values of rp, ri
from shared state. However, the reader gets its value of rp from the L variable,
and it “stakes a claim” to that pair by writing it into the R variable. Then it
finds out which slot is most up-to-date, reads the data, and returns it.

2 Coherency

A cursory inspection of the pseudocode should reveal that it easily transmits a
piece of data if the two programs run back-to-back with no overlap. But that
is not very interesting. The real difficulty comes when you accept that the two
programs may arbitrarily interleave with one another. Figure 5 is an annotated
example of one possible interleaving, where writer and reader steps shown on
the same line are happening in parallel:

162 M. Danish and H. Xi

'pair'

'index'

reader

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
0101111000110110110
1011110001101111100

writer

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
001011110001100110000
0011101110111011110
1100010110001100110
10111100011011111000000
1111000000110011000111001100

array[0,0]

array[1,0]

array[0,1]

array[1,1]

1 0slot[]:

'reading'
'latest'

incoherent!

Fig. 3. Should not happen

WS1 wp ← ¬R
WS2 wi ← ¬slot [wp]
WS3 write data (wp, wi, item)
WS4 slot [wp]← wi

WS5 L← wp

RS1 rp ← L
RS2 R← rp
RS3 ri ← slot [rp]
RS4 item← read data (rp, ri)
RS5 return item

Fig. 4. Four slot mechanism pseudocode

– Suppose L = 1 and R = 0
WS1 wp ← ¬R RS1 rp ← L

– Now wp = rp
WS2 wi ← ¬slot [wp] RS2 R← rp

RS3 ri ← slot [rp]
– And wi �= ri

WS3 write data (wp, wi, item) RS4 item← read data (rp, ri)
– . . .

Fig. 5. Example of interleaving

You can see that when both programs reach their step 2, it is the case that
wp = rp. But the design of the protocol, at this point, ensures that the writer
picks the opposite index from the reader, so that wi �= ri. Therefore the writer
and the reader do not access the same data slot at the same time. This is just one

Using Lightweight Theorem Proving 163

case, and we needed to show that the mechanism always respects a coherency
property. More specifically, we looked at the “dangerous” steps WS3 and RS4,
where the real data transfers take place, and needed to show that those two
steps would never conflict.

Theorem 1 (Coherency). The writer and the reader do not access the same
data slot at the same time. More precisely, this assertion must be satisfied at
potentially conflicting program points WS3 and RS4:

wp �= rp ∨ wi �= ri

or, the program points must be shown to be non-conflicting.

Problem is, wp and rp (as well as wi and ri) are private variables in separate
programs. Therefore, dynamic or run-time checking was out of the question. So
we turned to static checking encoded using dependent types. To find relevant
properties, we looked at various “points of interaction” where the two programs
might affect each other through atomic shared variables.

Recall that overlapping atomic operations will appear to occur in a definite
ordering. Therefore, points of interaction involving atomic variables R,L, slot []
can tell us facts about unseen state. Consider the orderings shown in figure 6.

RS2 R← rp

WS1 wp ← ¬R

}
wp �= rp at WS1

WS1 wp ← ¬R
RS2 R← rp

}
wp

?
= rp at WS1

Fig. 6. Two alternative orderings of WS1 and RS2

We do not know ahead of time whether WS1 or RS2 will occur first. But we
do know the consequences of each ordering. In the first case, we can see that the
writer will harmlessly pick the opposite value of “pair” from the reader. But in
the second case, we have no idea what the values of wp, rp are. That tells us an
important property:

Property 1. If wp = rp at WS1 then WS1 precedes RS2.

Further, by transitivity,

Property 2. If WS1 precedes RS2 then it also precedes RS3.

Recall that RS3 is the step where the reader obtains its value of ri by reading
slot [rp]. And as the data dependency graph of figure 7 shows, it is the writer
which is in control of the value of slot [rp]. Therefore, intuitively, the writer has
enough knowledge of the value of ri to be able to pick a wi of the opposite value.

164 M. Danish and H. Xi

Fig. 7. Data dependencies

Fig. 8. Interaction between RS3 and WS4

This can be seen more precisely by examining the point of interaction between
RS3 and WS4 via the slot [] array, as shown in figure 8, where the wp = rp case
is assumed. In this case, the only way that wi = ri is if WS4 precedes RS3. By
itself, it may seem to violate the coherency assertion but, in fact, the potentially
conflicting program points WS3 and RS4 are non-conflicting because they are
separated by an atomic operation with definite ordering. This is indicated on
the diagram by the solid arrow.

3 Encoding the Proof

3.1 Write

Each step in the program is encoded into an ATS function prototype along with
its types. The ATS code will be explained as we go.

WS1.
wp ← ¬R

Using Lightweight Theorem Proving 165

absview ws1_read_v (R: bit, rstep: int, rp: bit)

fun get_reading_state ():
[rstep: nat]

[R, rp: bit | R == rp || (R <> rp ==> rstep < 2)]

(ws1_read_v (R, rstep, rp) | bit R)

For WS1 we have a kind of datatype definition as well as a function prototype.
The datatype is abstract which means it does not have a real form in the output.
That works because it is intended to be just a property which is erased by
compilation. In ATS, properties which are linear are called “views” [26] and
that just means that the property, after being introduced, must be consumed
once and exactly once. They behave like a “resource” [24].

In this case, the ws1 read v is an abstract view intended to represent the
concept that we have observed the value of R at this particular moment, and
this point of interaction tells us a certain fact about the reader, that is true until
consumed.

The function simply reads the value of R and returns it, but it also gives us
some properties about R which exist in the so-called “static” world [6] as opposed
to the “dynamic” world. In ATS, there is a syntactic division between the static
world and the dynamic world, represented by the vertical bar in concrete syntax.
The static world can be more abstract, where you may encode relations that
you do not want to appear in the final output, while the dynamic world is the
practical side which will eventually be formed into the C output of the compiler.

The two are connected through use of indexed types. Here we see various
type indices: rstep, R, rp. The index R represents the shared state variable R,
rp represents the hidden private state variable rp, and rstep represents the
program counter of the reader program in an abstract form.

ATS allows some specifications about the values of these indices to be made
in a convenient, set-like notation. In this case, we have made the following static
assertion: that R is equal to rp, or, if R is not equal to rp, then rstep is less
than 2.

Then we have returned the linear property indexed by these three, and on the
dynamic side we have returned the actual bit value which is linked to the index
R.

WS2.
wi ← ¬slot [wp]

absview ws2_slot_v (s: bit, rp: bit, ri: bit)

fun get_write_slot_index {R, wp, rp: bit} {rstep: nat} (

pfr: !ws1_read_v (R, rstep, rp) | wp: bit wp

): [s, ri: bit | (rstep < 3 && wp == rp) ==> s == ri)]

(ws2_slot_v (s, rp, ri) | bit s)

Again, we need a linear property—which here represents the value found in
the slot array as well as some facts learned from that point of interaction. In this

166 M. Danish and H. Xi

case, s represents the slot value in memory s, rp is a stand-in for rp, and ri

for ri.
In order to call this function for step 2, we need evidence that the reading

state has been examined, and that evidence is provided by the ws1 read v view.
By default, a linear property like this is consumed and not usable again, but we
want this particular property to be reproduced for later use, because we will want
to make some statements about R in later steps. Now, one way to reproduce the
property would be to explicitly return it again, but ATS provides the ! operator
as a bit of syntactic sugar to help make that common case convenient.

On the dynamic side, we need to pass the value of wp because that is used as
an index into the slot array.

The return value is a view of the value of the slot that we received, as well
as the actual value itself, combined with another fact about the relationship
between the variables: if rstep was less than 3 and wp was equal to rp, then we
know that s will be equal to ri.

The assertion wp == rp ==> s == ri is a simple statement about array ac-
cess. The reader program performs ri ← slot [rp], and if wp = rp then the writer
program will see the slot value s which is the same as ri.

The reason why we have to check if rstep was less than 3 is because it might
be possible for the reader to get to step 3 and then block for a long time. If
the reader is blocking for a long time, it could have a stale value of ri sitting
around, a potentially conflicting value. By guarding against that, we know that
the reader has yet to pick a value of ri, and so when it does, it will be equal to
the value of s.

WS3.
write data (wp, wi, item)

fun{a: t@ype} write_data

{R, s, wp, wi, rp, ri: bit | wp <> rp || wi <> ri} {rstep: nat} (

pfr: !ws1_read_v (R, rstep, rp),

pfs: !ws2_slot_v (s, rp, ri) |

wp: bit wp, wi: bit wi, item: a

): void

Armed with the facts that we have learned about wp, wi, rp, ri from the points
of interaction, we are ready to use the function which does the actual work of
writing data into memory. This function has theorem 1 (Coherency) encoded
into its type: wp <> rp || wi <> ri, and therefore can only be called if this
assertion can be statically proven, or else it results in a type error.

The ATS typechecker uses the Z3 SMT solver [8] on the facts that it has
learned about these variables, and can discharge this assertion without further
work by the programmer.

WS4.
slot [wp]← wi

Using Lightweight Theorem Proving 167

absview ws4_fresh_v (p: bit)

fun save_write_slot_index {s, wp, wi, rp, ri: bit | wi <> s} (

pfs: ws2_slot_v (s, rp, ri) | wp: bit wp, wi: bit wi

): (ws4_fresh_v wp | void)

After the write is complete, we need to update the shared state variables
so that subsequent reads will obtain the new value. This is a somewhat more
minor concern than coherency, but still encoded enough to be sure that it is
done properly. This step consumes the ws2 slot v resource which is no longer
valid or needed. It returns a new view which I have labeled ws4 fresh v, which
acts as an obligation to update the remaining shared state.

WS5.

L ← wp

fun save_latest_state

{R, rp, wp: bit | wp <> R} {rstep: nat} (

pfr: ws1_read_v (R, rstep, rp),

pff: ws4_fresh_v wp |

wp: bit wp

): void

The final step cleans up, consuming both remaining views, as they will both
become invalid after this step. A final check is added to ensure that the new
value of L will not be equal to the old value of R.

Putting it Together. The code for the write operation, alongside the pseu-
docode, is shown in figure 9. The real code is largely similar to the pseudocode,
and each line is implemented through ATS’s close integration with a small
amount of C code which performs the low-level atomic operations and mem-
ory copying.

val (pfr | R) = get_reading_state ()
val wp = not R

val (pfs | s) = get_write_slot_index (pfr | wp)
val wi = not s

val _ = write_data (pfr, pfs | wp, wi, item)

val (pff | _) = save_write_slot_index (pfs | wp, wi)

val _ = save_latest_state (pfr, pff | wp)

WS1 wp ← ¬R

WS2 wi ← ¬slot [wp]

WS3 write data (wp, wi, item)

WS4 slot [wp]← wi

WS5 L← wp

Fig. 9. write

168 M. Danish and H. Xi

3.2 Read

Again, each step in the program is encoded along with a type.

RS1.
rp ← L

absview rs1_latest_v (L: bit)

fun get_latest_state (): [L: bool] (rs1_latest_v L | bit L)

The value of L is returned along with a linear proposition stating that it was
seen.

RS2.
R ← rp

absview rs2_read_v (R: bit)

fun save_reading_state {L, rp: bit | L == rp} (

pf: rs1_latest_v L | rp: bit rp

): [R: bit | R == rp] (rs2_read_v R | void)

With the proposition in hand, we show that we are saving the correct value in
the R shared variable. In return, we learn the fact that rp = R now.

RS3.
ri ← slot [rp]

absview rs3_slot_v (s: bit, wp: bit, wi: bit)

fun get_read_slot_index {R, rp: bit} (

pf: rs2_read_v R | rp: bit rp

): [s, wp, wi: bool | wp == rp ==> s == ~wi]

(rs3_slot_v (s, wp, wi) | bit s)

The rs2 read v is consumed to prove that we are using the pair corresponding
to R. In return, we gain a property with a constraint based on simple facts about
arrays as well as the behavior of the write program. It stipulates that if both
reader and writer access slot [rp] when rp = wp, then the writer’s wi will be the
opposite of whatever value is found in slot [rp].

RS4.
item← read data (rp, ri)

fun{a: t@ype} read_data {rp, ri, wp, wi: bool | wp <> rp || ri <> wi} (

pf: rs3_slot_v (ri, wp, wi) | p: bit rp, i: bit ri

): a

Finally, the last interesting step of read is the one that requires the coherency
theorem to be satisfied, wp <> rp || ri <> wi.

Using Lightweight Theorem Proving 169

Putting it Together. Figure 10 shows the code and much like before, it is close
to the pseudocode, and yet compiles down into efficient C. The ATS typechecker
is powerful enough to automatically solve the constraints.

val (pfl | rp) = get_latest_state ()

val (pfr | _) = save_reading_state (pfl | rp)

val (pfs | ri) = get_read_slot_index (pfr | rp)

val item = read_data (pfs | rp, ri)

RS1 rp ← L

RS2 R← rp

RS3 ri ← slot [rp]

RS4 item← read data (rp, ri)

Fig. 10. read

4 Related Work

4.1 The Four Slot Mechanism

Simpson developed a technique called “role model analysis” [21] and then applied
it to his four slot mechanism [22] to verify properties of coherency and freshness.
Henderson and Paynter [12] created a formal model of the four slot mechanism
in PVS and used it to show that it was atomic under certain assumptions about
interleaving. Rushby [19] used model checking to verify coherency and freshness
in the four slot mechanism but also found the latter can only be shown if the
control registers are assumed to be atomic. Our approach has been to encode
pieces of the desired theorems into the type system, apply it to working code,
and then allow the typechecker to verify consistency. If a mistake is made, it will
be caught prior to compilation. Or, if the typechecker is satisfied, then the end
result is efficient C code that may be compiled and linked and used directly by
applications.

4.2 Operating System Verification

The seL4 project is based on a family of microkernels known as L4 [15]. In that
work, a refinement proof was completed that demonstrates the adherence of
a high-performance C implementation to a generated executable specification,
created from a prototype written in Haskell, and checked in the Isabelle [17]
theorem proving system. The prototype itself is checked against a high-level
design. One difference with our work is that we seek to eliminate the phase of
manual translation from high to low level language. Another difference is that,
while the seL4 approach can certainly bring many benefits, we feel that the cost
associated with it is too high for ordinary use. For example, it may turn out to
be intractably difficult to apply this technique to a multiprocessor kernel. That
is currently an open problem [9].

170 M. Danish and H. Xi

Singularity [14] is a microkernel OS written in a high-level and type-safe
language that employs language properties and software isolation to guarantee
memory safety and eliminate the need for hardware protection domains in many
cases. In particular, it makes use of a form of linear types in optimizing com-
munication channels. Singularity was an inspiration for Terrier, although several
goals are different. For instance, Terrier seeks to avoid, as much as possible, the
overhead associated with high-level languages. Terrier’s design is more explicitly
geared towards embedded devices responding to real-time events. And inter-
program communication in Terrier is left open enough to accommodate multiple
approaches, tailored to the particular application domain.

House [11] is an operating system project written primarily in the Haskell func-
tional programming language. It takes advantage of a rewrite of the GHC [18]
run-time environment that eliminates the need for OS support, and instead op-
erates directly on top of PS/2-compatible hardware. Then a foreign function
interface is used to create a kernel written in Haskell. There is glue code written
in C that glosses over some of the trickiness. For example, interrupts are han-
dled by C code which sets flags that the Haskell code can poll at safe points.
This avoids potentially corrupting the Haskell heap due to interruptions of the
Haskell garbage collector while it is an inconsistent state. The Hello Operating
System [10] is an earlier than and similar project to House which features a ker-
nel written and compiled using Standard ML of New Jersey [4], bootstrapped
off of Linux [23]. SPIN [3] is a pioneering effort along these lines which used
the Modula-3 language [5] to provide a protection model and extensibility. In
general, these types of systems do not tackle the problem of high-level language
overhead, generally do not handle multiprocessing well if at all, and only offer
guarantees as good as their type system can handle.

Both VFiasco [13] and Verisoft [1] take a different approach to system verifi-
cation. Verisoft relies upon a custom hardware architecture that has itself been
formally verified, and a verified compiler to that instruction set. VFiasco claims
that it is better to write the kernel in an unsafe language such as C++ and then
mechanically generate theorems from that source code, to be discharged by an
external proof engine.

5 Conclusion

Our challenge was to take the four slot mechanism and encode at least some
of reasoning behind it into dependent types that would compose into a safety
theorem. We found this to be feasible, as well as an illuminating example of
using a lightweight approach with a dependently typed language to prove useful
properties in a non-traditional, concurrent systems programming environment.
The code shown in this paper is not a toy example. It is adapted from the
actual implementation which is used for inter-program communication in Terrier.
The only difference between this and the actual ATS code is the omission of a
“handle” parameter which threads state through the functions, and would only
complicate the explanation of the proof without adding any strength to it.

Using Lightweight Theorem Proving 171

To be utterly clear, we are not claiming a full verification of the safety or
freshness of the four slot mechanism here. Instead, this approach is a hybrid,
based on an advancement in type system power, allowing the programmer to
decide what constitutes a sufficient level of assurance. In this case, the types are
strong enough that they are able to catch most slight variations. Errors that
common type systems would not catch are caught by the ATS typechecker; for
example, failing to negate a bit value appropriately, or swapping the order of two
seemingly interchangeable statements. These are changes that would break the
four slot mechanism but cannot be protected against by a type system without
the help of dependent and linear types.

This style of development, intertwining program and proof, with an incremen-
tal approach, is the basis of the Terrier project. The four slot mechanism is one
example of a component which applies those principles to achieve reliability and
efficiency. More complex mechanisms are layered on top of this library, with the
confidence that the type system enforces the correct usage of the interface, while
the ATS compiler strips away the overhead in the end.

Acknowledgment. We thank Richard West for his guidance on the topics
related to operating systems.

References

1. Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.: The
Verisoft Approach to Systems Verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008)

2. ARM Limited. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R
edition (2011)

3. Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski, M., Becker, D.,
Eggers, S., Chambers, C.: Extensibility, Safety and Performance in the SPIN Op-
erating System. In: Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, pp. 267–284 (1995)

4. Blume, M., et al.: Standard ML of New Jersey (2009), http://www.smlnj.org/
5. Cardelli, L., et al.: Modula-3 report (revised). Technical report, Digital Equipment

Corp. (now HP Inc.) (November 1989),
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-52.html

6. Chen, C., Xi, H.: Combining Programming with Theorem Proving. In: ICFP 2005:
Proceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming, pp. 66–77. ACM Press (2005)

7. Danish, M.: Terrier OS, http://www.github.com/mrd/terrier
8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Elphinstone, K., Heiser, G.: From L3 to seL4 What Have We Learnt in 20 Years
of L4 Microkernels? In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP 2013, pp. 133–150. ACM, New York (2013)

10. Fu, G.: Design and Implementation of an Operating System in Standard ML.
Master’s thesis, University of Hawaii (August 1999),
http://www2.hawaii.edu/~esb/prof/proj/hello/

http://www.smlnj.org/
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-52.html
http://www.github.com/mrd/terrier
http://www2.hawaii.edu/~esb/prof/proj/hello/

172 M. Danish and H. Xi

11. Hallgren, T., Jones, M.P., Leslie, R., Tolmach, A.: A principled approach to oper-
ating system construction in Haskell. SIGPLAN Not. 40(9), 116–128 (2005)

12. Henderson, N., Paynter, S.E.: The formal classification and verification of Simp-
son’s 4-slot asynchronous communication mechanism. Springer, Heidelberg (2002)

13. Hohmuth, M., Tews, H.: The VFiasco approach for a verified operating system.
In: Proceedings of the 2nd ECOOP Workshop on Programming Languages and
Operating Systems (2005),
http://www.cs.ru.nl/H.Tews/Plos-2005/ecoop-plos-05-letter.pdf

14. Hunt, G.C., Laru, J.R.: Singularity: Rethinking the Software Stack. In: ACM
SIGOPS Operating System Review, vol. 41, pp. 37–49. Association for Computing
Machinery (April 2007)

15. Klein, G., Elphinstone, K., Heiser, G., et al.: seL4: Formal verification of an OS
kernel. In: Proceedings of the 22nd ACM Symposium on Operating Systems Prin-
ciples, Big Sky, MT, USA (October 2009)

16. Lamport, L.: On interprocess communication. Distributed Computing 1-2, 77–101
(1986)

17. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
18. Peyton-Jones, S., Marlow, S., et al.: The Glasgow Haskell Compiler,

http://www.haskell.org/ghc/

19. Rushby, J.: Model checking Simpson’s four-slot fully asynchronous communication
mechanism. Computer Science Laboratory–SRI International, Tech. Rep. Issued
(2002)

20. Simpson, H.R.: Four-slot fully asynchronous communication mechanism. In: IEE
Proceedings, vol. 137, Pt. E, No. 1. IEE (January 1990)

21. Simpson, H.R.: Correctness analysis for class of asynchronous communication
mechanisms. IEE Proceedings E (Computers and Digital Techniques) 139, 35–49
(1992)

22. Simpson, H.R.: Role model analysis of an asynchronous communication mechanism.
In: Computers and Digital Techniques, IEE Proceedings, vol. 144, pp. 232–240. IET
(1997)

23. Torvalds, L., et al.: Linux, http://www.linuxfoundation.org/
24. Wadler, P.: A taste of linear logic. In: Borzyszkowski, A.M., Sokolowski, S.

(eds.) MFCS 1993. LNCS, vol. 711, pp. 185–210. Springer, Heidelberg (1993),
http://dx.doi.org/10.1007/3-540-57182-5_12

25. Xi, H., et al.: The ATS language, http://www.ats-lang.org/
26. Zhu, D., Xi, H.: Safe Programming with Pointers through Stateful Views. In:

Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 83–97.
Springer, Heidelberg (2005)

http://www.cs.ru.nl/H.Tews/Plos-2005/ecoop-plos-05-letter.pdf
http://www.haskell.org/ghc/
http://www.linuxfoundation.org/
http://dx.doi.org/10.1007/3-540-57182-5_12
http://www.ats-lang.org/

JKelloy: A Proof Assistant for Relational

Specifications of Java Programs�

Aboubakr Achraf El Ghazi, Mattias Ulbrich, Christoph Gladisch,
Shmuel Tyszberowicz, and Mana Taghdiri

Karlsruhe Institute of Technology, Germany
{elghazi,ulbrich,christoph.gladisch,tyshbe,mana.taghdiri}@kit.edu

Abstract. Alloy is a relational specification language with a built-in
transitive closure operator which makes it particularly suitable for writ-
ing concise specifications of linked data structures. Several tools support
Alloy specifications for Java programs. However, they can only check the
validity of those specifications with respect to a bounded domain, and
thus, in general, cannot provide correctness proofs. This paper presents
JKelloy, a tool for deductive verification of Java programs with Alloy
specifications. It includes automatically-generated coupling axioms that
bridge between specifications and Java states, and two sets of calcu-
lus rules that (1) generate verification conditions in relational logic and
(2) simplify reasoning about them. All rules have been proved correct.
To increase automation capabilities, proof strategies are introduced that
control the application of those rules. Our experiments on linked lists
and binary graphs show the feasibility of the approach.

Keywords: first-order relational logic, relational specification, Alloy,
Java, theorem proving, KeY.

1 Introduction

The efficiency of specifying and verifying a linked data structure depends to
a large extent on both the level of abstraction of that data structure and the
conciseness of expressing a property over its reachable elements. A suitable for-
malism for expressing such properties that can also be utilized in the context
of theorem proving is relational logic with a transitive closure operator. In this
logic, the links of the data structures can be modeled as binary relations, and
thus reachability can be expressed using transitive closure. Furthermore, rela-
tional specifications allow the user to easily abstract away from the exact order
and connection of elements in a data structure by viewing it as a set. This re-
duction of precision, when applicable, pays off in simplification of proofs as well
as in better readability of the specifications and the intermediate verification
conditions, which is important for user interaction.

In this paper we describe JKelloy, our extension of the deductive Java verifica-
tion tool KeY [3], to support specifications written in the relational specification

	 This work has been partially supported by GIF (grant No. 1131-9.6/2011).

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 173–187, 2014.
© Springer International Publishing Switzerland 2014

174 A.A. El Ghazi et al.

language Alloy [10]—a first-order relational logic with built-in operators for tran-
sitive closure, set cardinality, integer arithmetic, and set comprehension. To the
best of our knowledge, this work is the first attempt in this direction; other re-
lated approaches either restrict the analysis to bounded domains (e.g. [1,7,19,21])
or focus only on the Alloy models of systems without considering their imple-
mentations (e.g. [2,15,18]). In our previous work [18] we formalized a translation
from Alloy specifications into the KeY first-order logic, with the aim of full (i.e.,
unbounded) verification of declarative models of systems that are specified in Al-
loy. This, however, is not sufficient for handling Alloy as a specification language
for Java programs since it has no explicit model of program state change.

JKelloy assumes a relational view of the Java heap: classes are modeled as
Alloy signatures and fields as binary relations. To evaluate Alloy expressions
in different program states, e.g. pre- and post-state of a method, we translate
Alloy relations into functions which take the heap (representing the program
state) as an argument. We define the relationship between Alloy relations and
Java program states using pre-defined coupling axioms. This eliminates the need
for the user to provide coupling invariants manually. Changes to program states
are aggregated as heap expressions. We introduce an automatic transformation
of those heap expressions to relational expressions using a set of heap resolu-
tion rules that normalize all intermediate heap expressions. The transformation
allows us to reason about verification conditions in the relational logic. To sim-
plify the reasoning process, we further introduce a set of override simplification
rules that exploit the specific shape of the resulting conditions. To increase the
degree of automation, we have developed two proof strategies that control the
application of our rules. We have proved the correctness of all rules using KeY.

Given a Java program, JKelloy can also generate an Alloy context that maps
the class hierarchy of the program to a semantically equivalent Alloy type hier-
archy. This allows the user to check the consistency of the specifications using
the automatic, lightweight Alloy Analyzer before starting the full, possibly in-
teractive verification process. Building on top of KeY enables the user to take
advantage of the supported SMT solvers to prove simpler subgoals. It also lets
the user provide additional lemmas. Complex lemmas, e.g. those that contain
transitive closure over update expressions, can be proved by using induction in
side-proofs, and then be reused to automatically prove non-trivial verification
conditions without requiring induction.

2 Overall Framework

Our verification tool JKelloy extends KeY [3], a deductive verification engine that
supports both automatic and interactive verification of Java programs. Figure 1
presents the general structure of JKelloy as well as the user’s workflow. The input
of the tool is a Java program together with its specification written in Alloy [10].
JKelloy follows the design-by-contract [14] paradigm in which every method is
specified individually with pre- and post-conditions. Verification is performed
method by method, in a modular way. For simpler programs and properties, the

JKelloy 175

Fig. 1. Overall Framework. Contributions highlighted in a boldface font

verification may run through automatically. In other cases, some user interaction
may be required, in which the user guides the steps taken by the prover.

JKelloy extends KeY with a translation front-end that converts Alloy spec-
ifications of Java methods to Java Dynamic Logic (JavaDL), the input logic
of KeY. Our previous work, Kelloy [18], embedded general Alloy expressions
into JavaDL (thus called relational JavaDL) and provided a basic relational
calculus. JKelloy augments Kelloy with heap-dependent relations for modeling
Java classes and fields. Furthermore, JKelloy introduces a set of calculus rules
that facilitates verification of relational specifications. Some of these rules are
program-dependent, and are generated for each program during the translation
by instantiating pre-defined templates. The verification process for a method
contract typically proceeds as follows:

1. The Alloy pre- and post-conditions are translated to relational JavaDL. The
relations in the conditions become relational symbols depending on a heap-
state. Their evaluation in a heap state is defined by coupling axioms.

2. The code of the Java method is symbolically executed, computing the post-
heap-state in relation to the pre-heap.

3. Heap resolution rules are applied to normalize the resulting heap-dependent
expressions so that all heap arguments become constant.

4. The resulting proof obligation is relational and can be discharged using the
relational calculus. Override simplification rules simplify this process by pro-
viding additional lemmas in relational logic.

3 Alloy Specifications for Java Programs

Alloy is a first-order relational logic, which is well-suited for concisely specifying
properties of linked data structures. Properties of object-oriented programs can
be specified in Alloy using the relational view of the heap. Given a Java program,
JKelloy automatically generates an Alloy context [6] which encodes the type
hierarchy of that program, and declares all the relations accessible to the user for
writing the specifications. The user can then add the specifications to this context

176 A.A. El Ghazi et al.

1 class List {
2 Entry head;
3

4 /*@ requires true;
5 @ ensures self.head’.*next’.data’
6 @ = self.head.*next.data + d;
7 @*/
8 void prepend(Data d) {
9 Entry oldHead = head;

10 head = new Entry();
11 head.next = oldHead;
12 head.data = d;
13 }
14 }
15

16 class Entry {
17 Data data;
18 Entry next;
19 }
20

21 interface Data {..}
22 class ID implements Data {..}
23 class Name implements Data {..}

1 one sig Null {}
2 sig Object’ {}
3 sig Object in Object’ {}
4 sig List’ extends Object’ {
5 head’: one (Entry’ + Null) }
6 sig List in Object {
7 head: one (Entry + Null) }
8 sig Entry’ extends Object’ {
9 data’: one (Data’ + Null),

10 next’: one (Entry’ + Null) }
11 sig Entry in Object {
12 data: one (Data + Null),
13 next’: one (Entry + Null) }
14 sig ID’ extends Object’ {� �}
15 sig ID in Object {� �}
16 sig Name’ extends Object’ {� �}
17 sig Name in Object {� �}
18 sig Data’ in Object’ {� �}
19 sig Data in Object {� �}
20 fact { List = List’ & Object
21 Entry = Entry’ & Object
22 ID = ID’ & Object
23 Name = Name’ & Object
24 Data’ = Name’ + ID’
25 Data = Name + ID }
26 pred pre[self: one List, d: one (Data + Null)] {}
27 pred post[self: one List, d: one (Data + Null)] {
28 self�head’�∗next’�data’ = self�head�∗next�data + d}

(a) (b)

Fig. 2. (a) Sample code (b) Alloy context along with pre- and post-conditions

in order to check their consistency using the Alloy Analyzer before starting the
verification process using JKelloy. Although the Alloy Analyzer checks Alloy
models only for bounded domains, it helps users detect flaws automatically.

Figure 2(a) provides a sample Java program and its Alloy specification. It im-
plements a singly linked list that stores Data objects. The method prepend adds
a Data object to the beginning of the list. Figure 2(b) presents the corresponding
Alloy context. A signature declaration sig A{} declares A as a top-level type (set
of atoms); sig B in A{} declares B as a subtype (subset) of A. The extends

keyword has the same effect as the keyword in with the additional constraint
that extensions of a type are mutually disjoint. An attribute f of type B declared
in signature A represents a relation f ⊆ A × B. The multiplicity keyword one,
when followed by a set, constrains that set to be a singleton, and when used as
a type qualifier of a relation, constrains that relation to be a total function.

The generated Alloy context always contains a singleton Null (Fig. 2(b)
Line 1) which represents the Java null element. Every Java class C is repre-
sented by two signatures, C and C’, that give the set of atoms corresponding to
the allocated objects of type C in the pre- and post-state, respectively. Object
is constrained to be a subset1 of Object’ (Line 3)2 and any other signature C

is constrained to be the intersection of C’ and Object (e.g. Lines 20–23). If a
Java class B extends a class A (immediate parent), the signature B’ will be an
extension of A’, and B a subset of A3. A Java field f of type T declared in a

1 Object creation is possbile, but deallocation (garbage collection) is not considered.
2 The top-level class Object is always included.
3 It is easy to show that subclasses of a class are disjoint in the pre-state, too.

JKelloy 177

class C is represented by two functional relations f: C → (T ∪ Null) for the
pre-state, and f’: C’ → (T’ ∪ Null) for the post-state (e.g. Lines 5, 7).

Specifications must be legal Alloy formulas. Basic formulas are constructed
using subset (in) and equality (=) operators over Alloy expressions, and are
combined using the usual logical connectives as well as universal (all) and exis-
tential (some) quantifiers. Alloy expressions evaluate to relations. Sets are unary
relations and scalars are singleton unary relations. The operators +, -, and &

denote union, difference, and intersection, respectively. For relations r and s,
relational join (forward composition), Cartesian product, and transpose are de-
noted by r.s, r -> s, and ~r, respectively. The relational override r++s contains
all tuples in s, and any tuples of r whose first element is not the first element of a
tuple in s. The transitive closure ^r denotes the smallest transitive relation that
contains r, and *r denotes the reflexive transitive closure of r. The expressions
s<:r and r:>s give domain and range restriction of r to s, respectively.

Figure 2(a) gives the pre- and post-condition of prepend using the requires

and ensures clauses, respectively (Lines 4-7). Specifications can access receiver
object (self) and method arguments (Lines 26-28 of Fig. 2(b)). Post-conditions
can also access the method’s return value (ret) if any exists. The post-condition
of prepend specifies that the set of Data objects stored in the receiver list in the
post-state augments that of the pre-state with the prepended data4.

4 Relational Java Dynamic Logic

4.1 Background

JavaDL, the verification logic of KeY, extends typed first-order logic with dy-
namic logic [9] operators over Java program fragments. Besides propositional
connectives and first-order quantifiers, it introduces modal operators. The for-
mula {p := t}ϕ in which p is a constant symbol, t is a term whose type is
compatible with that of p, and ϕ is a JavaDL formula, is true iff ϕ is true after
the assignment of t to p. The modal operator {p := t} is called an update. The
formula [π]ϕ in which π is a sequence of Java statements and ϕ is a formula, is
true iff ϕ is true in the post-state (if any exists) of the program π. The formula
〈π〉ϕ additionally requires π to terminate.5

JavaDL is based on an explicit heap model [20]: a dedicated program variable
heap of type Heap stores the current heap state. A read access o.f in Java is
encoded as select(heap, o, f), abbreviated as heap[o.f]. Heap modifications are
modeled using heap constructors, as defined in Fig. 3. The store function is used
to encode changes to a field other than 〈created〉. The boolean field 〈created〉
is implicitly added to the class Object to distinguish between created and uncre-
ated objects. A Java assignment of a variable v to a field f of a non-null object o
can be interpreted as an update:

[o.f = v;]ϕ ↔ {heap := store(heap, o, f, v)}ϕ (1)

4 As shown by this example, the specifications can be arbitrarily partial.
5 [π]ϕ and 〈π〉ϕ correspond to wlp(π, ϕ) and wp(π,ϕ) in the wp-calculus [4].

178 A.A. El Ghazi et al.

store(h, p, g, v)[o.f] = (if o = p ∧ f = g ∧ g �= 〈created〉 then v else h[o.f])

create(h, p)[o.f] = (if o = p ∧ f = 〈created〉 then true else h[o.f])

anon(h1, l, h2)[o.f] = (if (o, f)∈l ∧ f �=〈created〉 ∨ o∈free(h1) then h2[o.f] else h1[o.f])

Fig. 3. Definitions of heap constructors

The create function is used to set the 〈created〉 field of an object to true.
The anonymizing function anon modifies a set of locations rather than a single
location. The heap denoted by the term anon(h1, l, h2) coincides with h2 (the
anonymous heap) in all fresh locations and those in the location set l, and
coincides with h1 (the base heap) on the remaining ones.

JavaDL’s type system includes the hierarchy of Java reference types, with
the root type Object which denotes an infinite set of objects (including the
null object), whether or not created. The expression free(h) = {o : Object |
¬h[o.〈created〉] ∧ o �= null} gives the set of all uncreated objects of h. The
types Boolean and Integer have their usual meanings, the type Field consists of
all Java fields declared in the verified program, and LocSet consists of sets of
locations, which are binary relations between Object and Field . For a type T ,
the type predicate x �− T evaluates to true iff x is of type T .

KeY performs symbolic execution [11] of the given Java code. The effects of
this execution on the program state are recorded as JavaDL updates. The equiv-
alence (1), for instance, is used to encode the effect of the Java assignment o.f=v.
Similar equivalences are used for other Java statements. Branching statements
cause the proof obligation to split into cases; corresponding path conditions are
assumed in each case. Consequently, symbolic execution resolves the original
proof obligation pre → [p]post of a program p into a conjunction of formulas of
the form pre ∧ path → {U}post , in which path stands for the accumulated path
condition, and U for the accumulated state updates in an execution path.

In [18] we presented an embedding of Alloy into JavaDL (thus called rela-
tional JavaDL). This included new JavaDL types, namely Atom for elements of
relations, and a Reln type for all n-ary relations (for each n). New function sym-
bols for Alloy operators were introduced and defined using axioms. The integers
in JavaDL were used to axiomatize transitive closure as it is not axiomatizable
in pure first-order logic. We use ∪, \, ⊕, ×, �, �, ∗, + (ascending precedence
order) to denote the symbols in relational JavaDL that correspond to the Alloy
operators +, -, ++, ->, <:, ., *, ^, respectively.

4.2 Coupling Axioms

The embedding of Alloy into relational JavaDL is not sufficient for verifying Java
programs as it lacks a model of program state. To encode a relational view of the
heap, we translate relations for Java classes and fields as heap-dependent function
symbols. A Java class C is translated to a function symbol Crel : Heap → Rel1
such that the expression Crel(h) gives the set of all created objects of type C in
the heap h, as given by the first coupling axiom:

Crel(h) := {o | h[o.〈created〉] ∧ o �− C ∧ o �= null} (2)

JKelloy 179

requires true

ensures self.head’.*next’.data’ = self.head.*next.data + d

pre := true

post :=
{self} � headrel(postheap) � (nextrel(postheap))∗ � datarel(postheap)

= {self} � headrel(preheap) � (nextrel(preheap))∗ � datarel(preheap) ∪ {d}

pre → {preheap := heap}[self.prepend(d);]{postheap := heap}post

pre ∧ path → {U}post

Embedding into relational JavaDL

Building the proof obligation

symbolic execution (one per path)

(a)

(b)

(c)

(d)

Fig. 4. The verification process for the method List.prepend as running example

It should be noted that, without loss of generality, we make Atom a supertype of
Object to let Java objects be elements of relations as in Axiom 2. A Java field f of
type R declared in a class C is translated to a function symbol frel : Heap → Rel2
where frel(h) gives the set of all pairs (o1, o2) such that, in heap h, the created
object o1 points to the object o2 via f, as given by the second coupling axiom:

frel(h) := {(o1, o2) | o1 ∈ Crel(h)∧(o2 = null∨o2 ∈ Rrel(h))∧o2 = h[o1.f]} (3)

Following the design-by-contract paradigm, Alloy specifications can access only
the pre- and post-state. Thus we provide two sets of relations (unprimed for pre-
and primed for post-state) instead of introducing an explicit notion of state.
Heap arguments are introduced when Alloy specifications are translated into
JavaDL: references to C and f are translated to Crel(preheap) and frel(preheap),
respectively, referring to the heap in the pre-state; references to C’ and f’ are
translated to Crel(postheap) and frel(postheap), referring to the heap in the post-
state. Null signature is translated as Null rel(h) := {null} for every heap h.

Figure 4 shows how JKelloy processes the example of Fig. 2. Figure 4(a) is the
original Alloy specification, Fig. 4(b) gives its translation into relational JavaDL,
and Fig. 4(c) the relational JavaDL proof obligation for List.prepend. In ad-
dition to the program modality [self.prepend(d);], two updates {preheap :=
heap} and {postheap := heap} are used to store the respective current heap.
Symbolic execution then resolves the code of the method. Several formulas of
the form shown in Fig. 4(d) are produced for various execution paths of the code.
The example is continued in Section 5.

The above coupling axioms are defined such that they preserve the meaning
of the Alloy relations used in the specifications. For instance, relation head’ in
the example of Fig. 2 is a total binary relation containing the references from all
created List objects to Entry objects (or null) after the method call. Axiom (3)
ensures that headrel(postheap) contains precisely those elements.

180 A.A. El Ghazi et al.

5 Calculus

The coupling axioms (2) and (3) fix the semantics of the relation function sym-
bols. Together with the relational calculus previously developed in Kelloy, they
suffice to conduct proofs for relational JavaDL formulas. In practice, however,
this axiomatization is inefficient since it requires to always expand the defini-
tions of the relations. In order to both lift proofs to the higher abstraction level
of relations and to automate them, we introduce two sets of rules described in
the following subsections.

5.1 Heap Resolution Rules

Figure 5 lists the rules for resolving heap constructor occurrences as argument
of field relations (R1–R3) and class relations (R4–R6). All rules reduce relational
expressions over composed heaps to expressions over their heap argument. They
are applied to the verification conditions after symbolic execution and eliminate
all heap constructors from arguments of relational function symbols. Rules R1,
R2 and R5, for instance, make case distinctions between the cases when the
relation needs to be updated and when it remains untouched. R3 is special since
it updates a set of elements and not only one element in the relation. See [6] for
an extensive explanation of the rules. All rules were proved correct with respect
to the coupling axioms.

We explain the idea of heap resolution using the example in Fig. 4. The
update U in Fig. 4(d) encodes the successive heap modifications performed by
the program. After some simplifications, the heap modification of the method
body is encoded as

postheap :=

h5
↓

store (

h4
↓

store (

h3
↓

store (

h2
↓

create (

h1
↓

preheap , e),
self , head, e),

e, next, preheap[self .head]),
e, data, d)

where h1, . . . , h5 are abbreviations for the intermediate heap expressions and e
is a reference to the freshly created Entry object. In Fig. 4(b), some of the field
relations take postheap as argument (like headrel(postheap)) in which, under the
influence of U , postheap is replaced by the nested term h5. Heap modifications
in h5 affect the value of headrel(h5) only if they are related to the field head.
Rule R1, which is responsible for the resolution of this term, translates the store
expression into an if-then-else term resulting either in an overridden relation
(frel(h)⊕{o1}×{o2}) or in the original relation frel(h). The relations headrel(h5),
headrel(h4) and headrel(h3), for instance, are equivalent as the modified Java
fields data and next are different from head. But the store expression of h3

modifies the field head; hence, the relation headrel must be updated for the
arguments of store and we obtain

headrel(h3) = headrel(store(h2, self , head, e)) = headrel(h2)⊕ {self}×{e} . (4)

JKelloy 181

R1: frel(store(h, o1, g, o2)) � if g = f ∧ h[o1.created] ∧ o1 �− C ∧ o1 �= null

then frel(h)⊕ {o1}×{o2} else frel(h)

assuming wellformed(store(h, o1, g, o2))

R2: frel(create(h, o)) � if o �= null ∧ o �− C then frel(h)⊕ {o}×{h[o.f]} else frel(h)

R3: frel(anon(h1, l, h2)) � frel(h1)⊕ (((l � {f}) ∪ free(h1)) � frel(h2))

R4: Crel(store(h, o1, g, o2)) � Crel(h)

R5: Crel(create(h, o)) � if o �= null ∧ o �− C then Crel(h) ∪ {o} else Crel(h)

R6: Crel(anon(h1, ls, h2)) � Crel(h1) ∪ Crel(h2)

Fig. 5. Heap Resolution Calculus. The term rewrite relation “�” represents an equiv-
alence transformation. In R1 and R2 the field f is defined in class C.

Relation headrel(h2) is finally simplified to headrel(h1) by rule R2 since the cre-
ation of the Entry element e does not affect the relation headrel for the field head

declared in class List. Equation (4) shows the main idea of the heap resolution
calculus: the heap state changes are transformed into relational operations. In
particular, an assignment o1.f=o2 in Java resolves into a relational override of
the form frel(heap)⊕ {o1}×{o2}.

Applying these rules exhaustively leads to a normal form where all heap ar-
guments are constants. JKelloy extends KeY with a proving strategy that always
achieves this task automatically. The final result of applying the heap resolution
rules to the post-condition of the running example (Fig. 4(b)) is the following
relational verification condition:

{self} � (headrel(h1)⊕ {self}×{e})
� (nextrel(h1)⊕ {e}×{self} � headrel(h1))

∗ � (datarel(h1)⊕ {e}×{d})
= {self} � headrel(h1) � nextrel(h1)

∗ � datarel(h1) ∪ {d} (5)

After all heap terms have been resolved, further reasoning can proceed on the
relational level.

5.2 Override Simplification Rules

The normalized proof obligations that result from applying heap resolution rules
can be proved on the relational level using our previous Kelloy tool. However,
Kelloy only provides definition axioms for relational operators and a set of lem-
mas for general relational expressions. To make proofs easier and to increase
the automation level, we introduce a set of lemma rules which exploit the shape
of the relational expressions that result from verifying Java programs. These
lemmas do not increase the power of the calculus but ease the verification by
reducing the need for expanding the definitions of relational operators. That is
particularly costly for the transitive closure as it leads to quantified integer for-
mulas that generally require user interaction in form of manual induction. Out

182 A.A. El Ghazi et al.

R7: {a} � (R ⊕ {a} × {b}) � {b}
R8: S1 � (R ⊕ S2 × S3) � if S2 = ∅ then S1 �R else S1 � (S2 × S3) ∪ (S1 \ S2) �R

R9: S1 � (R ⊕ {a} × S2)+ � if S2 = ∅ ∨ a /∈ S1 then S1 � R
else S2 ∪ ((S2 \ {a}) �R+) ∪ (S1 �R+)

assuming R � {a} = ∅
R10: {a} � (R ⊕ {b} × {c})+ � if b ∈ {c}�R+ ∨ b = c then ({a} �R+ ∪ {c} ∪ {c} �R+) \ {b} �R+

else ({a} � R+ \ {b} �R+) ∪ {c} ∪ {c} �R+

assuming parFun(R), acyc(R) and b ∈ a �R+

R11: S1 � frel(h) � (R1 ⊕ S2 � R2) � S1 � frel(h) �R1 assuming S2 ⊆ free(h)

R12: S1 � frel(h) � (grel(h)⊕ S2 � R)+ � S1 � frel(h) � grel(h)+ assuming S2 ⊆ free(h)

R13: (frel(h)⊕ S2 � R)+ � frel(h)
+ ⊕ S2 � R assuming S2 ⊆ free(h)

Fig. 6. A sampling of our override driven calculus rules

of more than 220 new lemmas we have introduced, we present the subset that is
most relevant to the examples of Fig. 2 and Section 6; not all of them are used
in the presented examples. All lemmas have been proved correct using KeY.

Equation (5) is typical for our approach: its right-hand side (RHS) refers to
the base relations of the pre-state, whereas its left-hand side (LHS) refers to the
post-state and thus includes override-updates on the field relations. To prove
such formulas, we bring the LHS closer to the shape of the RHS by resolving
or pulling out the override operations that occur below other operators such as
join and transitive closure.

Figure 6 lists a number of lemmas dealing with this override resolution to give
an idea of the process. The most simple case is R7 which says that retrieving
a value a from a relation which has been overridden at the very same a results
precisely in the updated value b. In other, more composed cases, the resolution
is not as simple. Rules R9 and R10, e.g., allow us to resolve the override beneath
a transitive-closure operation under certain conditions at the cost of larger re-
placement expressions without override. Rules R11–R13 resolve override opera-
tions which only modify objects not yet created in the base heap (S2 ⊆ free(h)).
For a more detailed account on the presented rules, see the extended version [6].

In the example, the subexpression {self} � (headrel(h1)⊕{self}×{e}) in (5) can
be simplified to {e} using R7 as the left argument {self} of the join equals the
domain of the overriding relation {self}×{e}. After this simplification, the LHS
contains the subexpression

{e} � (nextrel(h1)⊕ {e}×{self} � headrel(h1))
∗ .

To resolve the override operation in this expression, we first transform reflexive
transitive closure to transitive closure using the equality S.R∗ = S ∪ S.R+, and
then apply rule R9. Further simplifications result in:

{e} ∪ {self} � headrel(h1) ∪ {self} � headrel(h1) � nextrel(h1)
+

JKelloy 183

R14: � parFun(frel(h))
R15: � parFun(R)→ parFun(R⊕ {a} × {b})
R16: � parFun(R1) ∧ parFun(R2)→ parFun(R1 ⊕R2)

R17: � acyc(R) ∧R � {a} = ∅ ∧ a �= b→ acyc(R⊕ {a} × {b})
R18: � acyc(R) ∧ {b} �R = ∅ ∧ a �= b→ acyc(R ⊕ {a} × {b})
R19: � acyc(R) ∧ a /∈ {b} �R+ ∧ a �= b→ acyc(R⊕ {a} × {b})

R20: S2 ∈ S1 �R+ � false assuming S1 �R = ∅
R21: {a} ∈ R � {b} � true assuming {a} �R = {b}
R22: {a} ∈ R � {b} � false assuming parFun(R) and {a} �R �= {b}

Fig. 7. A selection of auxiliary rules for the override simplification

The underlined subexpression is equivalent to {self} � headrel(h1) � nextrel(h1)
∗

which also appears on the RHS of (5). We have thus reached our goal of resolving
the override and bringing the LHS closer to the RHS.

The simplification rules focus on resolving override operations, yet further rules
are required to reason about expressions that occur in the rules’ assumptions, if-
conditions, and results. Fig. 7 shows such rules divided into three categories. The
first involves partial functionality of relations: every relation corresponding to a
field is a partial function by construction (R14); R15 and R16 allow the propagation
of this property over the override operator. Similarly, the second propagates the
acyclicity of relations over the override operator. The last category lists some rules
for handling reachability between objects effectively.

6 Evaluation

Proofs in KeY are conducted by applying calculus rules either manually or auto-
matically, using KeY’s proof search strategy. We extend the existing strategy by
incorporating two new strategies that assign priorities to heap resolution rules and
override simplification rules, and apply them consecutively. The List.prepend

example6 verifies fully automatically within 5.4 seconds7 using 1546 rule applica-
tions although its post-condition involves transitive closure.

We have also verified a slightly different example (List.append) where the
Data argument is added to the end of the list. The proof contains a total of 2850
rule applications out of which 28 are interactive. These include 6 applications of
proof-branching rules, and 6 rule applications to establish the assumptions for
rule R10. Automatic rule applications take 20.3 seconds. The append method is
more complex than prepend as it contains a loop that traverses the list to the
end, thus requires handling loop invariants. The proof requires the more complex
transitive closure rule R10 since the code updates already-created objects.

6 All examples and proofs can be found at http://i12www.ira.uka.de/~elghazi/jkelloy/
7 On an Intel Core2Quad, 2.8GHz with 8GB memory.

 http://i12www.ira.uka.de/~elghazi/jkelloy/

184 A.A. El Ghazi et al.

1 public class Graph {
2 NodeList nodes;
3 /*@ requires acyc(next);
4 @ requires not n = null;
5 @ ensures self.nodes’.first’.*next’ = self.nodes.first.*next - n;
6 @ ensures Object <: left’ = left ++ ((left.n & self.nodes.first.*next) -> null);
7 @ ensures Object <: right’ = right ++ ((right.n & self.nodes.first.*next) -> null); @*/
8 void remove(Node n) {
9 if (nodes != null) {

10 Node curr = nodes.first;
11 /*@ loop_invariant
12 @ curr in self.nodes.first.*next and
13 @ Object<:left’ = left ++ ((left.n & (self.nodes.first.*next - curr.*next)) -> null) and
14 @ Object<:right’ = right ++ ((right.n & (self.nodes.first.*next - curr.*next)) -> null)
15 @ assignable
16 @ (self.nodes.first.*next -> left) + (self.nodes.first.*next -> right); @*/
17 while (curr != null) {
18 if (curr.left == n) { curr.left = null; }
19 if (curr.right == n) { curr.right = null; }
20 curr = curr.next;
21 }
22 nodes.remove(n);
23 } } }
24 class NodeList { Node first; void remove(Node n) { ... } }
25 class Node { Node next, left, right; }

Fig. 8. Specification and implementation of the graph remove example

We illustrate that JKelloy can be used to verify programs which manipulate
rich heap data structures using the example of Fig. 8. This example also il-
lustrates that structurally complex specifications can be concisely expressed by
exploiting combinations of relational operators in Alloy. The Graph class imple-
ments a binary graph8 where each node stores its two (possibly null) successors
(left and right, Line 25). The graph keeps a linked list of its nodes (Line 2)
using the next field (Line 25). The method Graph.remove removes a node n

from the receiver graph by removing all of its incoming edges (Lines 17–21), and
then removing n (and thus its outgoing edges) from the node list (Line 22).

The method requires the node list to be acyclic (Line 3) and the argument
node n to be non-null (Line 4). It ensures that n is removed from the graph’s
node list (Line 5), and that the left and right fields of all nodes in this list
that used to point to n, point to null at the end of the method (Lines 6 and 7).
This example also illustrates that structurally complex specifications can be
concisely expressed by exploiting combinations of relational operators in Alloy.
In particular, sets of nodes with a particular property can be easily expressed
using Alloy operators. For example, using the join operator from the right side of
a field relation, the expression left.n concisely gives the set of all nodes whose
left field points to n. The domain restriction to Object restricts the relation in
the post-state to those objects already existing in the pre-state. The relational
override operator denotes exactly what locations are modified and how, thus also
implicitly specifies which locations do not change.

The example requires additional intermediate specifications which are not part
of the contract. This includes a loop specification (Lines 11–16) describing the
state after the execution up to the current loop iteration. Primed relations in

8 A directed graph with an outgoing degree of at most two for every node.

JKelloy 185

the loop invariant refer to the state of the heap after the current loop iteration,
whereas unprimed relations refer to the pre-state of the method. The assignable
clause specifies the set of heap locations which may be modified by the loop.
Graph.remove calls NodeList.remove which removes n from the linked list; the
call is abstracted by the callee’s contract which is omitted here for space reasons.

Though the specification in the example is concise, it extensively combines
relational operators including, in particular, transitive closure. In the code, the
nested method call and the loop result in complex composed heap expressions
after symbolic execution. Brought together, these two technical points make this
example difficult to verify. The proof required 6973 rule applications distributed
over 157 subgoals, where 1201 of the rule applications were interactive. Amongst
them, 309 apply override simplification rules and 224 general relational rules.
Our rules for handling transitive closure proved to be very effective; they were
applied 43 times, and allowed us to conduct the proof without any explicit induc-
tion. Induction was needed only to prove the soundness of the rules themselves.
Relational operations were never expanded to their definitions. Thus the proof
was completely conducted in the abstraction level of relations. The rules intro-
duced with JKelloy made up 37% of all rule applications; the rest were default
KeY rules. The whole proof, including specification adjustments, was conducted
by an Alloy and KeY expert in one week; the total time spent by the automatic
rule applications was 6.3 minutes. Other comparable examples in KeY (using the
JML specification language) require 50k to 100k proof steps (see e.g. [8]).

7 Related Work

Several approaches (e.g. [5,17,19]) support Alloy as a specification language for
Java programs. To check the specifications, however, they bound the analysis
domain by unrolling loops and limiting the number of elements of each type. Thus
although they find non-spurious counterexamples automatically, they cannot, in
general, provide correctness proofs. JForge specification language [21] is another
lightweight language for specifying object-oriented programs. It is a behavioral
interface specification language with a relational view of the heap, that allows
some Alloy operators. So far it has been used only for bounded program checking.

Galeotti [7] introduced a bounded, automatic technique for the SAT-based
analysis of JML-annotated Java sequential programs dealing with linked data
structures. It incorporates (i) DynAlloy [1], an extension of Alloy to better de-
scribe dynamic properties of systems using actions, in the style of dynamic logic;
(ii) DynJML, an intermediate object-oriented specification language; and (iii)
TACO, a prototype tool which implements the entire tool-chain.

A few approaches [2, 15, 18] support full verification of Alloy models. Since
they do not model program states, they cannot be readily applied for verifying
code with Alloy specifications. DYNAMITE [15], for example, extends PVS to prove
Alloy assertions, and incorporates Alloy Analyzer for checking hypotheses.

Other approaches (e.g. [8,16,22]) also verify properties of linked data structure
implementations. In contrast to ours, in [22], for example, specifications are writ-
ten in classical higher-order logic (including set comprehension, λ-expressions,

186 A.A. El Ghazi et al.

transitive closure, set cardinality) and are verified using Jahob which integrates
several provers. A decision procedure based on inference rules for a quantifier-free
specification language with transitive closure is presented in [16]. In [8] the focus
is to write specifications in JML so that they can be used for both deductive
program verification and runtime checking.

Similar to our approach, [12,13] handle reachability of linked data structures
using a first-order axiomatization of transitive closure. Their general idea, how-
ever, is to use a specialized induction schema for transitive closure, to provide
useful lemmas for common situations. [12] focuses on establishing a relatively
complete axiomatization of reachability, whereas [13] focuses on introducing as
complete schema lemmas as possible and adding their instantiations to the orig-
inal formula. The main difficulty of schema rules is to find the right instantiation
(analogous to induction hypothesis).

8 Conclusions

We have presented an approach for verifying Java programs annotated with
Alloy specifications. Alloy operators (e.g. relational join, transitive closure, set
comprehension, and set cardinality) let users specify properties of linked data
structures concisely. Our tool, JKelloy, translates Alloy specifications into rela-
tional Java Dynamic Logic and proves them using KeY. It introduces coupling
axioms to bridge between specifications and Java states, and two sets of cal-
culus rules and strategies that facilitate interactive and automatic reasoning in
relational logic. Verification is done on the level of abstraction of the relational
specifications. JKelloy lets relational lemmas be proved beforehand, and reused
to gain more automation. Our calculus rules are proved lemmas that exploit the
shape of the relational expressions that occur in proof obligations.

Although our automatic proof strategies can still be improved, our examples
show the advantages of the approach. They illustrate how the liberal combina-
tions of transitive closure and relational operators in Alloy can be exploited for
concise specifications of linked data structures. The sizes of proofs are an order
of magnitude smaller compared to other similar proofs using standard KeY.

KeY supports JML, a behavioral specification language for Java. A combina-
tion of the specification concepts of JML and Alloy has the potential to bring
together the best of both paradigms. Furthermore, the symbolic execution en-
gine of KeY along with our calculus rules can produce relational summaries of
Java methods which can be checked for bugs using the Alloy Analyzer before
starting a proof attempt. Investigating these ideas is left for future work.

References

1. Aguirre, N.M., Frias, M.F., Ponzio, P., Cardiff, B.J., Galeotti, J.P., Regis, G.: To-
wards abstraction for DynAlloy specifications. In: Liu, S., Araki, K. (eds.) ICFEM
2008. LNCS, vol. 5256, pp. 207–225. Springer, Heidelberg (2008)

2. Arkoudas,K.,Khurshid, S.,Marinov,D.,Rinard,M.: Integratingmodel checking and
theorem proving for relational reasoning. In: Berghammer, R., Möller, B., Struth, G.
(eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 21–33. Springer, Heidelberg (2004)

JKelloy 187

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. Springer (2007)

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

5. Dolby, J., Vaziri, M., Tip, F.: Finding bugs efficiently with a SAT solver. In: FSE,
pp. 195–204 (2007)

6. El Ghazi, A.A., Ulbrich, M., Gladisch, C., Tyszberowicz, S., Taghdiri, M.: On
verifying relational specifications of Java programs with JKelloy. Technical Report
2014-03, KIT, Department of Informatics (2014)

7. Galeotti, J.P.: Software Verification using Alloy. PhD thesis, Universidad de Buenos
Aires (2010)

8. Gladisch, C., Tyszberowicz, S.: Specifying a linked data structure in JML for formal
verification and runtime checking. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013.
LNCS, vol. 8195, pp. 99–114. Springer, Heidelberg (2013)

9. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press (2000)
10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press

(2012)
11. King, J.C.: Symbolic execution and program testing. Communications of the

ACM 19(7), 385–394 (1976)
12. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: Pro-

ceedings of POPL, pp. 115–126. ACM (2006)
13. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.:

Simulating reachability using first-order logic with applications to verification of
linked data structures. Logical Methods in Computer Science 5(2) (2009)

14. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992)
15. Moscato, M.M., López Pombo, C.G., Frias, M.F.: Dynamite 2.0: New features

based on UnSAT-core extraction to improve verification of software requirements.
In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010.
LNCS, vol. 6255, pp. 275–289. Springer, Heidelberg (2010)

16. Rakamarić, Z., Bingham, J.D., Hu, A.J.: An inference-rule-based decision proce-
dure for verification of heap-manipulating programs with mutable data and cyclic
data structures. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,
pp. 106–121. Springer, Heidelberg (2007)

17. Taghdiri, M.: Automating Modular Program Verification by Refining Specifica-
tions. PhD thesis. MIT (2008)

18. Ulbrich, M., Geilmann, U., El Ghazi, A.A., Taghdiri, M.: A proof assistant for Alloy
specifications. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 422–436. Springer, Heidelberg (2012)

19. Vaziri, M.: Finding Bugs in Software with Constraint Solver. PhD thesis. MIT
(2004)

20. Weiß, B.: Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis. KIT (2010)

21. Yessenov, K.T.: A Lightweight Specification Language for Bounded Program Ver-
ification. Master’s thesis. MIT (2009)

22. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: PLDI, pp. 349–361 (2008)

Verifying Hybrid Systems

Involving Transcendental Functions

Paul Jackson1, Andrew Sogokon1, James Bridge2, and Lawrence Paulson2

1 School of Informatics, University of Edinburgh, UK
pbj@inf.ed.ac.uk, a.sogokon@sms.ed.ac.uk

2 Computer Laboratory, University of Cambridge, UK
{jpb65,lp15}@cam.ac.uk

Abstract. We explore uses of a link we have constructed between the
KeYmaera hybrid systems theorem prover and the MetiTarski proof en-
gine for problems involving special functions such as sin, cos, exp, etc.
Transcendental functions arise in the specification of hybrid systems and
often occur in the solutions of the differential equations that govern how
the states of hybrid systems evolve over time. To date, formulas ex-
changed between KeYmaera and external tools have involved polynomi-
als over the reals, but not transcendental functions, chiefly because of
the lack of tools capable of proving such goals.

1 Introduction

KeYmaera is an interactive prover which makes use of external tools such as com-
puter algebra systems for simplification, solving differential equations and prov-
ing quantified formulas involving real arithmetic. MetiTarski is a prover specifi-
cally tailored for reasoning with transcendental functions. It eliminates transcen-
dental functions from inequalities by applying polynomial and continued-fraction
bounds and employs external provers to discharge goals involving these approx-
imations. In this section we will give an overview of the context which motivates
the integration of these two systems.

1.1 Hybrid Systems

Hybrid systems generalise both transition systems and continuous dynamical
systems. The state of a hybrid system has both discrete- and continuous-valued
components. Together, the values of the discrete components specify the mode of
the system. Within each mode the evolution of the state is governed by differen-
tial equations. Transitions between between modes usually have guards describ-
ing when they are enabled and specify how the continuous components might
jump in value when the transitions are taken. Figure 1 shows an example hybrid
system, described using the hybrid automaton formalism.

Hybrid systems are very useful for creating models of cyber-physical systems,
systems which involve computers or some kind of discrete control logic interact-
ing with a physical environment [7]. Cyber-physical systems are found in many

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 188–202, 2014.
c© Springer International Publishing Switzerland 2014

Verifying Hybrid Systems 189

x

y

Fig. 1. Switched damped oscillator (left) and a possible phase portrait (right)

industrial sectors, including transport, energy and health-care automation. They
are frequently safety-critical, so there is much interest in improved verification
techniques for them.

1.2 Formal Verification of Hybrid Systems

In the past two decades a variety of techniques have been explored for the for-
mal verification of hybrid systems. Many have involved a bounded approach
where one computes an over-approximation of the state space reachable after
some number of interleaved time evolutions within modes and jumps between
modes [8,5,15,6]. The primary verification goal has been to show that no un-
safe states are reached. Depending on the hybrid system considered, the chosen
bound and the approximation methods, the state space exploration might reach
a fixed-point, in which case verification of safety is sound. Otherwise, there’s
the possibility that there is an unsafe reachable state which has not yet been
explored.

Since the early work there has been much improvement in the methods for
representing and computing the over-approximations of the reachable state sets.
Often these approaches have placed restrictions on the form of the differen-
tial constraints in modes and the jumps, requiring them to be linear or to be
bounded by constants, for example. In these cases, systems with more general
non-linear differential equations, perhaps involving transcendental functions, can
be approximated with piecewise linear equations.

With KeYmaera [13] a different approach is investigated.

1.3 KeYmaera

KeYmaera mechanises a deductive calculus for reasoning about hybrid systems.
The base calculus is differential dynamic logic (dL) [12]. It extends first-order
logic with modalities [α]φ and 〈α〉φ, where α is a hybrid program and φ is a dL
formula. Hybrid programs are described in a simple compositional language that
includes conditional statements, loops, discrete state updates, and continuous

190 P. Jackson et al.

state updates in which states evolve over a period of time according to differential
equations. The modality [α]φ asserts that φ holds after every run of α, the
modality 〈α〉φ asserts that φ holds after some run of α. The calculus augments
the first-order logic rules with rules for handling the modalities and decomposing
the structure of hybrid programs within the modalities.

The most common kinds of statements proved concern invariants of the sys-
tems. Proofs of such statements usually involve creation of inductive invariants
and differential invariants. A differential invariant is a property of the system
that can be established to hold over some interval of time by considering the
truth of a certain auxiliary property at each point in time in the interval. Differ-
ential invariants are related to the concept of Lyapunov functions, generalised
energy functions whose decrease in value over a state space region of interest is
used to argue for stability in the theory of dynamical systems. Previous work in
safety verification of hybrid systems introduced barrier certificates [14] which im-
pose Lyapunov-like conditions on the time derivative of differentiable functions
in order to prove safety properties. Differential invariants in turn generalise bar-
rier certificates to formulas with boolean connectives [12] and thus allow one to
work with a much larger class of invariants.

Proofs in KeYmaera can be guided interactively or can be automated us-
ing tableau-based strategies. KeYmaera includes heuristics for guessing simpler
forms of inductive and differential invariants. The KeYmaera logic implements
directly very little reasoning concerning expressions of real arithmetic and con-
straints on the derivatives of the real-valued state components. Instead, use is
made of procedures in external tools such as the Mathematica computer alge-
bra system and QEPCAD-B [2] for simplification of real expressions, solution of
differential equations and proving goals involving real arithmetic.

To date the interface to these external tools has limited the expression lan-
guage to real-valued polynomials, and has not permitted the use of transcen-
dental functions such as sine, cosine, logarithm and exponentiation. This was
primarily because there had been no effective techniques for proving goals that
involved inequalities over expressions including transcendental functions. Such
goals can arise in several ways. For example, transcendental functions can be
used in the descriptions of hybrid systems. They are also commonly found in the
solutions of linear differential equations. And there are examples of Lyapunov
functions in the dynamical systems literature where transcendental functions are
required.

The deductive approach taken in KeYmaera is harder to apply than the
bounded automated approaches described in Section 1.2, as interaction and
human-directed creative steps are needed. Its advantages include the possibility
of proving richer properties, the lack of a restriction of analyses to some bound,
and often better capabilities for exploring parameterised systems.

1.4 MetiTarski and Goals of Work

For several years, Paulson and others have been developing MetiTarski, an au-
tomatic proof engine specifically tailored for proving goals involving inequalities

Verifying Hybrid Systems 191

over transcendental functions [11,10]. In the work reported here we are interested
in exploring how MetiTarski could support reasoning about hybrid systems in
KeYmaera. We are also hoping that transcendental problems generated from the
hybrid systems domain can help steer the future development of MetiTarski.

Previously MetiTarski has been used for the verification of analog circuits,
modeled as dynamical systems or hybrid systems [4]. The computer algebra sys-
tem Maple was used to analyse continuous behaviours of the systems, to solve
linearisations of the differential equations describing their time evolution, for ex-
ample. A systematic partly-manual process was then used to set up the relevant
goals for MetiTarski to solve. In the work reported here, KeYmaera provides a
significantly richer, more automated framework for the top-level reasoning about
hybrid systems and the coordination of external reasoning services.

The core of MetiTarski is a first-order resolution theorem prover Metis and
a database of axioms specifying polynomial and rational function bounds on
transcendental functions. Weights that guide the resolution are tailored so as to
employ the axioms to reduce problems involving inequalities over transcendental
functions to problems involving inequalities over real polynomial expressions.
MetiTarski augments the resolution calculus with extra rules for handling real
polynomial expressions. These rules make use of external tools for proving goals
involving polynomial expressions, for example the Z3 SMT solver [9], QEPCAD-
B [2], and the quantifier-elimination procedure provided by the Mathematica
computer algebra system.

2 KeYmaera-MetiTarski Interface

KeYmaera implements a plugin architecture (shown in Figure 2) in which the
user may choose a backend tool to perform particular tasks, such as solving dif-
ferential equations, simplifying arithmetic expressions and performing quantifier
elimination.

The primary purpose of quantifier elimination is to prove goals involving quan-
tified arithmetic expressions by reducing them to “true”. In KeYmaera, it is
sometimes also useful to have quantifier elimination produce quantifier-free ex-
pressions involving variables that are free in the goals, as these quantifier-free
expressions can suggest missing assumptions.

In our work we have added MetiTarski as a new quantifier elimination back-
end tool, handling the common case of when quantifier-elimination is expected
to return “true”. The link is implemented in Scala and Java and uses a file-level
interface in which first-order goals from KeYmaera are translated into Meti-
Tarski’s input format (a variation on the TPTP format that allows infix nota-
tion) and stored in temporary files. These files are passed as arguments to the
MetiTarski binary along with command-line options which the KeYmaera user
selects in KeYmaera’s GUI. This link from KeYmaera to MetiTarski is now part
of standard KeYmaera releases.

The diagram in Figure 2 labels with ∀ the interfaces where KeYmaera goals are
universally closed and the quantifier-elimination procedure is only ever expected

192 P. Jackson et al.

Fig. 2. KeYmaera plugin architecture

to return “true” when it succeeds. Label p is used for interfaces that handle
purely polynomial problems, problems without special functions.

MetiTarski itself relies on decision procedures for real arithmetic and is able to
call QEPCAD-B, Z3 and Mathematica to access this functionality. KeYmaera
users may select the appropriate tool for MetiTarski by setting the pertinent
option in KeYmaera. The problems sent to these external tools are purely poly-
nomial, as shown in Figure 2.

In Figure 2, Mathematica is shown to provide more functionality than any of
the other tools. In particular, it is able solve systems of differential equations.
The user has to trust these solutions, but in certain cases this may introduce
unsoundness.

The simplifier offered by Mathematica is very powerful and it may often be
necessary to simplify complicated expressions before any further progress can be
made on a problem using either Mathematica itself or MetiTarski. Once more,
one needs to be aware of the potential soundness issues in performing this step.

While MetiTarski may use Mathematica’s decision procedure for real closed
fields (RCF), which it trusts to be sound, it will not make use of other potentially
unsound computer algebra functionality, such as the simplifier.

3 Examples of How Transcendental Functions Arise

We review here three ways in which transcendental functions can arise during
formal verification of continuous and hybrid systems.

3.1 Systems with Closed Form Solutions

Some systems admit closed-form solutions to the initial value problem; how-
ever, these tend to be much more complicated than the differential equations
themselves and will often involve special functions.

Verifying Hybrid Systems 193

KeYmaera offers inference rules which allow reasoning about safety and live-
ness properties by considering closed form solutions when they exist. Using this
facility tends to generate first-order goals involving transcendental functions,
which are delegated to an external solver.

We consider here a safety verification scenario where the solution is available
in closed form and the safety property is ensuring boundedness of oscillation.
The motion of a damped oscillator, such as that shown in Figure 3, can be

Fig. 3. Damped oscillator

described by the linear second-order differential equation

ẍ+ 2dωẋ+ ω2x = 0,

where ω =
√

k
m is the frequency, d = c

2
√
km

is the damping factor and x is the

displacement from the point of equilibrium. We can convert this into a state
space model by setting x1 = ẋ and x2 = x. For a concrete example, let us choose
ω = 2 and d = 3

5 .

ẋ1 = −3

5
· 2 · 2 · x1 − 22 · x2,

ẋ2 = x1

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

x2

Fig. 4. x2-component of solutions with x2(0) = {1, 1
2
, 1
5
}, x1(0) = 0

194 P. Jackson et al.

It is intuitively obvious that a damped oscillator will lose energy and even-
tually come to a halt, assuming there is no input. Consider proving that an
initial displacement x2 will never result in that displacement subsequently being
exceeded. We could phrase this property using differential dynamic logic as

t ≥ 0, x1 = 0, x2 ≤ b, x2 ≥ a [ẋ = f(x)] x2 ≤ b.

Here the box modality [] expresses the property that x2 ≤ b is necessarily
true after the system evolves according to the system of differential equations
ẋ = f(x) whenever it is initialised in a state satisfying the antecedent.

Consider the case where initial velocity is zero and the initial displacement is
in the interval [0, 1]. A formalisation of this problem in KeYmaera is shown in
Figure 5.

\programVariables{
R x1;
R x2;

}

\problem {
(x2 <=1 & x2 >=0 & x1=0) ->

\[{x1’ = -((3/5)*2*2*x1 + 2^2*x2), x2’ = x1 } \]
(x2 <=1)

}

Fig. 5. Proving boundedness of displacement of a damped oscillator using KeYmaera

Computing the solution, this amounts to proving

t ≥ 0, x2 ≤ 1, x2 ≥ 0 1

4
e−

6
5 tx2

(
4 cos(

8

5
t) + 3 sin(

8

5
t)

)
≤ 1.

This goal is difficult to prove, with Mathematica being unable to handle it in
reasonable time; MetiTarski can solve this in under a second.

3.2 Transcendental Functions in System Description

In the previous example, we proved a property of a system by proving a property
of the closed form solution to the differential equations governing evolution. It
is not uncommon to encounter systems in which transcendental functions are
used in the description of how system state continuously evolves. Transcenden-
tal functions can occur too in the description of the guards and state updates
associated with mode switches in hybrid systems. Sometimes the descriptions of
such systems can be transformed so as to eliminate the transcendental functions
and have descriptions purely involving polynomial functions. In general though
it is desirable to work directly with the transcendental functions.

It is rare that closed form solutions can be found for the continuous state
evolution of systems described using transcendental functions. Indeed, it is also

Verifying Hybrid Systems 195

not possible to find closed form solutions for most systems described using non-
linear polynomials. To address these cases, a number of related methods have
been developed that allow the proof of properties of interest by referring directly
to the differential equations governing state evolution and not requiring solution
of the equations. These methods use such concepts as Lyapunov function, barrier
certificate and differential invariant (we refer the reader to the Appendix).

We give an example here of a simple dynamical system which involves tran-
scendental functions in its description and sketch how an invariance property
can be proven using differential invariants.

Fig. 6. Whirling pendulum

Consider a whirling pendulum (i.e. one which is itself suspended from a rod of
radius la, moving with an angular velocity ω). Its equations of motion are given
by the following non-polynomial system:

ẋ1 = x2,

ẋ2 = − kf
mb

x2 + ω2 sin(x1) cos(x1)−
g

lp
sin(x1),

where the state x1 is the pendulum’s angle with the vertical and x2 is the
rate of change of this angle, kf is the friction coefficient, lp is the length of the
rigid arm, and mb is its mass (see [3] for a detailed description of the model). A
possible Lyapunov function for this system suggested by Chesi [3] is

V (x) = x2
1 + x1x2 + 4x2

2.

In KeYmaera we might formulate the property of time-evolution being con-
fined to sub-level sets for a in the range 0 . . . b for some constant b using the
sequent

0 ≤ a, a ≤ b, V (x) ≤ a [ẋ = f(x)] V (x) ≤ a .

196 P. Jackson et al.

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

x1

x 2

Fig. 7. Estimate to the domain of attraction V (x) ≤ 0.69 (dark shaded area) and
states where ∇V · f(x) < 0 (light shaded area)

\programVariables { R x1, x2, kf , mb, omega , g, lp, a; }

\problem {
kf = 0.2 & /* FRICTION */
mb = 1 & /* MASS OF RIGID ARM */
omega = 0.9 & /* ROTATING ANGULAR VELOCITY */
g = 10 & /* GRAVITY ACCELERATION */
lp = 10 & /* LENGTH OF RIGID ARM */

(x1^2 +x1*x2 +4*(x2^2)) <= a & a>=0 /* LYAPUNOV FUNCTION */ ->

\[{ x1’ = x2,
x2’ = -(kf/mb)*x2 + (omega ^2)*Sin(x1)*Cos(x1) - (g/lp)*Sin(x1) &
(x1^2 +x1*x2 +4*(x2^2)) <= 0.69929971

}
\] (x1^2 +x1*x2 +4*(x2^2)) <= a

}

Fig. 8. Lyapunov function V (x) = x2
1+x1x2+4x2

2 is non-increasing within the domain
of attraction V (x) ≤ 0.69929971

This is most easily proved in KeYmaera by first rephrasing it as

0 ≤ a, V (x) ≤ a [ẋ = f(x) ∧ V (x) ≤ b] V (x) ≤ a .

Taking kf = 0.2,mb = 1, ω = 0.9, lp = 10, gravity g = 10 and b = 0.69929971,
we can formalise this property in KeYmaera as shown in Figure 8.

The number 0.69929971 defines the bound on the sub-level set of V (x), which
is used as a conservative estimate to the domain of attraction of the whirling
pendulum.

Verifying Hybrid Systems 197

Explicitly the subgoal we get in KeYmaera in applying the differential induc-
tion rule is

kf = 0.2, mb = 1, ω = 0.9, g = 10, lp = 10, x2
1 + x1x2 + 4x2

2 ≤ a, a ≥ 0
∀x21, x11 ∈ R. x2

11 + x11x21 + 4x2
21 ≤ 0.69929971 =⇒

2x11x21 + x2
21

+ x11

(
− kf

mb
x21 −

g

lp
sin(x11) + ω2 cos(x11) sin(x11)

)
+ 8x21

(
− kf

mb
x21 −

g

lp
sin(x11) + ω2 cos(x11) sin(x11)

)
≤ 0.

MetiTarski solves this problem in under 10 minutes.

3.3 Non-polynomial Invariant Candidates

A further use case for the link between the two systems concerns the handling
of invariant candidates which are non-polynomial.

Unlike in the previous example, where transcendental functions were used
to define the dynamics of the system and the invariant candidate was polyno-
mial, one may instead have a polynomial vector field and an invariant candidate
featuring transcendental functions. An simple example is shown in Figure 9.

�4 �2 0 2 4

�4

�2

0

2

4

x

y

Fig. 9. Invariant sub-level sets of a non-polynomial Lyapunov function
V (x, y) = ln(1 + x2) + y2 [1]

Recently it has been shown that even for purely polynomial vector fields
that are globally asymptotically stable it may be impossible to find a Lypaunov
function which is of polynomial form [1].

Generally, allowing special functions in the description of invariant candidates
enlarges the class of invariant assertions amenable to verification (given the right
tools).

198 P. Jackson et al.

4 Performance and Discussion

At present, MetiTarski and Mathematica are the only tools that are able to
handle problems involving special functions which appear in KeYmaera proofs.
Table 1 compares them on some of the problems featuring transcendental func-
tions which arose during proof attempts in KeYmaera. The table shows the
run-time in milliseconds of several tool configurations on the problems. Time
here is wall-clock time on an Intel i5-2520M CPU @ 2.50GHz. A ‘-’ character
indicates that no result was obtained after running for 10 minutes. There are
three columns for the MetiTarski results, each using a different external tool for
proving polynomial problems. The name of the external tool is shown in paren-
theses in each case. The right-hand column shows how Mathematica performs
when we pass it directly the problems with special functions.

Table 1. Problems involving transcendental functions in KeYmaera proofs

Problem Functions MetiTarski Mathematica
(Z3) (QEPCAD-B) (Mathematica)

Damped oscillator exp, sin, cos 430 850 2,403 -
Whirling pendulum sin, cos 419,340 3,849 14,182 -

Domain of attraction exp, cos - 2,161 3,899 -
Drill string sin, cos 17,441 30,270 48,944 -

Local Lyapunov exp - - - -
Diffcut 1 exp 45 154 956 33
Diffcut 2 exp - - - 59

Heater Simple exp 144 376 1,427 68
Tunnel diode 1 exp - - - 84,171
Tunnel diode 2 exp 227 370 1,587 18,444

MetiTarski handles well the first three problems featuring inequalities over
trigonometric functions or a combination of trigonometric and exponential func-
tions, whereas Mathematica times out on all these. The goal for the first problem,
shown also earlier in Section 3.1, is

t ≥ 0 ∧ x2 ≤ 1 ∧ x2 ≥ 0 1

4
e−

6
5 tx2

(
4 cos(

8

5
t) + 3 sin(

8

5
t)

)
≤ 1.

MetiTarski proves this by using the bounding properties

0 ≤ x ⇒ sin(x) ≤ x

cos(x) ≤ 1− x2

2 + x4

24

x ≤ 0 ⇒ ex ≤ 2304
(−x3+6x2−24x+48)2 .

MetiTarski’s performance on the problems involving just the exponential func-
tion is more mixed. Consider the diffcut 2 goal:

x > 15, t ≥ 0 25et + et/2(x− 40) > 0.

Verifying Hybrid Systems 199

MetiTarski’s strategy of substituting polynomial or rational function bounds
for exponential function occurrences is not so appropriate here, as the goal’s
validity depends on the relationship between et and et/2 for all t ≥ 0. In general,
polynomial or rational function bounds are accurate and best used for special
function with bounded arguments, although we happened to have success with
them in the damped oscillator example above where t is also unbounded. For
diffcut 2, a simple solution strategy involves replacing et/2 with a new variable,
and we are considering introducing such substitutions if we observe a significant
number of further examples where they would useful.

The tunnel diode 1 and tunnel diode 2 goals are

t ≥ 0 −a1e
−k1t + a2e

−k2t − a3e
k3t ≤ 0,

t ≥ 0 −a1e
−k1t + a2e

−k2t + a4e
k3t ≥ 0

respectively, where a1, a2, a3, a4, k1, k2 and k3 are all positive constants. The
constants a3 and a4 are both significantly larger than a1 and a2, and so the
inequalities can be seen as obviously true from just basic bounding properties
of the exponential function. MetiTarski has problems with the tunnel diode 1
because the constants are not just rationals, but constant expressions involving
square roots. For example a1 is 1104311− 34469

√
254841. MetiTarski currently

works with such constants by breaking them down and using bounding lemmas
for the square root. MetiTarski has an interval constraint solver that can work
with bounded interval approximations for constants, and it would easily handle
such constants as above if we were to extend this facility to handle square roots.

The differences in MetiTarski’s performance with different real polynomial
arithmetic proof procedures appears primarily due to the differences in the pro-
cedures themselves and the interfaces to them. With virtually all the problems
considered, the proof found by MetiTarski does not vary with the proof proce-
dure selected. The lower performance of MetiTarski with Mathematica as the
proof procedure for real arithmetic is due in part to the performance overhead
incurred from contacting the Mathematica license server. KeYmaera keeps an
open TCP connection with Mathematica, whereas MetiTarski needs to establish
a new connection for each problem.

5 Conclusion

We have presented here some preliminary experiments with an interface between
the KeYmaera and MetiTarski tools. The results are encouraging and we are
now seeking more complex examples that bear a closer relationship to practical
hybrid systems verification problems and that produce interesting problems for
MetiTarski.

One issue is that often readily available examples have been reformulated or
simplified so as to allow working only with polynomials. To this end we are
finding we are having to develop expertise in how problems are first represented
in KeYmaera and how KeYmaera is then guided to solving verification problems

200 P. Jackson et al.

of interest. We are also trying to build closer ties with current users of KeYmaera.
For example, we know of at least two groups applying KeYmaera to autonomous
car problems that involve transcendental functions and we are hoping for fruitful
collaboration with these groups.

Acknowledgements. This research was supported by EPSRC grants
EP/I011005/1, EP/I010335/1. We would like to thank the anonymous reviewers
for their feedback and helpful suggestions. We extend special thanks to Grant
Passmore at the LFCS, University of Edinburgh, for offering his expert advice.

References

1. Ahmadi, A.A., Krstic, M., Parrilo, P.A.: A globally asymptotically stable polynomial
vector field with no polynomial Lyapunov function. In: CDC-ECE, pp. 7579–7580
(2011)

2. Brown, C.W.: Qepcad b: a program for computing with semi-algebraic sets using
cads. SIGSAM Bull. 37(4), 97–108 (2003),
http://doi.acm.org/10.1145/968708.968710

3. Chesi, G.: Estimating the domain of attraction for non-polynomial systems via
LMI optimizations. Automatica 45(6), 1536–1541 (2009)

4. Denman, W., Akbarpour, B., Tahar, S., Zaki, M., Paulson, L.: Formal verification
of analog designs using metitarski. In: Formal Methods in Computer-Aided Design,
FMCAD 2009, pp. 93–100 (2009)

5. Fränzle, M., Herde, C.: Hysat: An efficient proof engine for bounded model checking
of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)

6. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

7. Heemels, W., Lehmann, D., Lunze, J., De Schutter, B.: Introduction to hybrid
systems. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Sys-
tems Control – Theory, Tools, Applications, ch. 1, pp. 3–30. Cambridge University
Press, Cambridge (2009)

8. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. STTT 1(1-2), 110–122 (1997)

9. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Paulson, L.C.: MetiTarski: Past and Future. In: Beringer, L., Felty, A. (eds.) ITP
2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

11. Paulson, L.C.: University of Cambridge (2013),
http://www.cl.cam.ac.uk/~lp15/papers/Arith/

12. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

13. Platzer, A.: Carnegie Mellon Uniersity (2013),
http://symbolaris.com/info/KeYmaera.html

http://doi.acm.org/10.1145/968708.968710
http://www.cl.cam.ac.uk/~lp15/papers/Arith/
http://symbolaris.com/info/KeYmaera.html

Verifying Hybrid Systems 201

14. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004)

15. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embedded Comput.
Syst. 6(1) (2007)

Appendix: Direct Methods and Safety Verification

Historically, Lyapunov was perhaps one of the first to observe that in the study
of stability, closed form solutions are rarely revealing and that it is possible to
work with the differential equation directly to prove properties of interest. This
observation led to what has become known as Lyapunov’s direct method, which
introduced the concept of Lyapunov functions.

Informally, a Lyapunov function V is a continuously-differentiable positive-
definite function of the system state, whose time-derivative along the vector
field is never greater than zero. More precisely, given a system ẋ = f(x) which
is defined on some state space X ⊆ Rn, if one can find a V : X → R such that

V (x) > 0 ∀x ∈ X \ 0,
∇V · f(x) ≤ 0 ∀x ∈ X,

then one can conclude that the origin is stable.
A set {x | V (x) ≤ a} is known as an a sub-level set of V and if V is a Lyapunov

function, then each sub-level set of V is a system invariant (in forward time);
that is, once a solution enters the set, it cannot escape.

The method of barrier certificates [14] uses Lyapunov-like conditions to argue
for safety, rather than stability. Given a system ẋ = f(x) as before, a set of
initial states Xi ⊆ X and a set of unsafe states Xu ⊆ X , if one can find a
continuously-differentiable function B : X → R such that

B(x) > 0 ∀x ∈ Xu,

B(x) ≤ 0 ∀x ∈ Xi,

∇B · f(x) ≤ 0 ∀x ∈ X,

then the system is guaranteed to be safe.
The problem of safety verification with barrier certificates is essentially that

of finding a B which satisfies the above conditions.
The dL calculus used by KeYmaera provides a proof rule called differential

induction (henceforth called DI; see Platzer [12] for a thorough exposition),
which allows one to reason about invariance of sets defined by quantifier-free
formulas,

DI
X → Ḟ

F → [ẋ = f(x) ∧X]F
.

202 P. Jackson et al.

In DI, F is a quantifier-free first-order formula in the theory of real arithmetic,
X is the evolution domain constraint and the differential formula Ḟ is defined
using the derivation operator D [12] which is given as follows:

D(r) = 0 for real numbers,

D(x) = ẋ for real variables,

D(a+ b) = D(a) +D(b),

D(a · b) = D(a) · b+ a ·D(b),

D(F ∧G) ≡ D(F) ∧D(G),

D(F ∨G) ≡ D(F) ∧D(G), (∧ here is important for soundness)

D(a ≤ b) ≡ D(a) ≤ D(b), accordingly for ≥, >,<,= .

The differential formula Ḟ is shorthand for D(F)
f(x)
ẋ , where each ẋ in D(F)

is replaced with the corresponding right hand side in the differential equation.
Formulas F provable using DI are called differential invariants.

Safety verification with differential invariants is similar to the method of bar-
rier certificates, i.e., given a formula Fi which is satisfied by the initial states and
a formula Fu satisfied by the unsafe states, one requires a differential invariant
F such that

Fi → F,

F → [ẋ = f(x) ∧X]F,

F → ¬Fu.

Indeed, if one succeeds in finding a F ≡ B(x) ≤ 0, then this is equivalent
to a proof of safety using barrier certificates. Differential invariants thus include
barrier certificates as a special case [12].

Verifying Nonpolynomial Hybrid Systems

by Qualitative Abstraction and Automated
Theorem Proving

William Denman

Computer Laboratory, University of Cambridge, UK
william.denman@cl.cam.ac.uk

Abstract. Few methods can automatically verify nonlinear hybrid sys-
tems that are modelled by nonpolynomial functions. Qualitative
abstraction is a potential alternative to numerical reachability meth-
ods for formally verifying these systems. The QUANTUM abstracter is
shown to be competitive at verifying several benchmark nonpolynomial
hybrid systems.

1 Introduction

Examples of hybrid systems include self-driving cars and autonomous drones.
As these complex systems are becoming prevalent, fast and efficient methods for
safety verification are now more important than ever. The formal verification
of hybrid systems is inherently computationally intractable. This is due to the
interplay of continuous variables, which vary over the infinite field R, and discrete
variables, which introduce nondeterminism. Consequently, determining whether
the system can reach an unsafe state is extremely difficult.

Since hybrid systems lie at the interface of the physical world, transcenden-
tal and special functions naturally arise in modelling their behaviour. Angular
measurements might involve sine, cosine, tangent and related transcendental
functions. Several types of friction or drag can involve the exponential function.
However, there is no clear choice as to which method is best suited for formally
verifying such nonpolynomial hybrid systems.

One approach is to iteratively compute over-approximations of reachable states
[1], while another is to abstract the state space [2] or transition relation [3]. Though
significant advancements have been made, most tools, even state-of-the-art ones,
have difficulty dealing with hybrid systems that contain transcendental functions
in the definition of the vector field (system of differential equations) or in the tran-
sition guards. Moreover, the tools that do support transcendental functions are
restricted to techniques such as interval differential equation solving [4], bounded
model checking [3] or linearization [5].

This short paper describes an enhanced qualitative abstraction method, which
uses the automated theorem prover MetiTarski [6] to discretize nonpolynomial
hybrid systems, while performing an on-the-fly reachability analysis. Preliminary
results indicate that this verification method is competitive on several nonlinear

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 203–208, 2014.
c© Springer International Publishing Switzerland 2014

204 W. Denman

nonpolynomial hybrid system problems and demonstrates that MetiTarski is
powerful enough to discharge theorems arising from the abstraction process.

The initial work on using qualitative abstraction to verify hybrid systems was
done by Tiwari [7] and implemented in the original HybridSAL tool. However,
the problems analysable by HybridSAL were restricted to linear and nonlin-
ear polynomial differential equations. The QUANTUM abstracter1 that is used
in this paper implements a modified algorithm for performing qualitative ab-
straction. Firstly, MetiTarski is used to remove infeasible abstract states and
to validate abstract transitions through analysis of the nonpolynomial vector
field. Secondly, QUANTUM performs a lazy abstraction that will immediately
terminate if a predefined safety property is invalidated (by transitioning into an
unsafe state). An important improvement over the original version of QUAN-
TUM is distributing the calls to MetiTarski across several processes. This has
significantly decreased the abstraction times in case studies from those previ-
ously reported [8].

2 Modelling Hybrid Systems

The input to the QUANTUM abstracter is a hybrid automaton, which is one of
the more common formalisms used to model hybrid systems. It has been well
studied, its limitations are well understood and it is the standard input to several
verification tools.

Definition 1 (Hybrid Automata [2]). A hybrid system (HS) is defined by
the tuple (Q, X, Init, Inv, t, G, U, f). Q is the finite set of discrete modes
and Q is the finite set of all valuations of Q. X is the set of continuous real
variables and X = (X → R) is the set of all valuations of X . The state of
the hybrid system is (q, x) ∈ Q ×X. Init ⊆ Q ×X is the set of initial states.
Inv is the set of invariants that restrict the range of the real variables X in each
state. A transition relation, t ⊂ (Q×X)× (Q×X) defines potential transitions
between states. The transitions between states of the hybrid system are controlled
by guards g ∈ G. A transition will occur from state (q, x) to (q, x)′ if g evaluates
to True. During a transition, the continuous variables X can be updated from
values in U (if it is non-empty). f is the set of differential equations governing
the flow of the continuous variables for each discrete state q ∈ Q.

Example 1 (Bouncing Ball on a Sine Curve, adapted from Ishii et al. [9]). The
hybrid automaton in Fig. 1a models a ball bouncing on a sine shaped curve.
Fig. 1b is a single simulated trajectory of the system. Q = Q = {falling}, X
= {px, py, vx, vy, t}. px and py are the position of the ball, vx and vy are the
respective velocities. Inv = {py > −1}. G = {sin(px) − py = 0}. The guard
evaluates to True when the ball hits the curve. The values of vx and vy are
updated according to the equations defined by the ‘:=’ operator. The assignments
make up the set U.

1 Available for download at http://www-dyn.cl.cam.ac.uk/~{}wd239/quantum

http://www-dyn.cl.cam.ac.uk/~{}wd239/quantum

Verifying Nonpolynomial Hybrid Systems 205

(a) Hybrid Automaton

1 2 3 4 5 6 7

�1.0

�0.5

0.5

1.0

1.5

2.0

(b) Simulation trace

Fig. 1. Bouncing Ball Example

3 Qualitative Abstraction of Hybrid Systems

The abstraction algorithm implemented in QUANTUM is based on that of Hy-
bridSAL [7]. For brevity, this paper focuses on abstracting only the continuous
part of the hybrid system. The basic idea is to use a finite set F = {f1, f2, ..., fk}
of k smooth functions fi : Rn → R, to discretize the infinite state space into qual-
itatively distinct regions. There are several automatic and manual methods that
can be used to choose the functions to include in F. One strategy is to start with
the guards, invariants and vector field as a source of functions.

Taking Sign = {zero, pos, neg}, the abstract state space is Signk. The ab-
straction function is defined as α : Rn → Signk where α(x) = (s1, ..., sk) for
i = 1..k where si = pos if fi(x) > 0, si = zero if fi(x) = 0, si = neg if
fi(x) < 0. Each abstract state s can be associated with the predicate Ps(x) =∧

i=1..k fi(x) ∼si 0, where ∼pos is >, ∼zero is = and ∼neg is <.
The first step of the abstraction algorithm is to delete all infeasible states.

That is we need to prove for each abstract state the first order formula ∃x :
Ps(x) evaluates to True, indicating that the abstract state s is indeed feasible.
The second step of the abstraction algorithm is to determine all potential next
abstract states. For continuous transitions this is done by analysing the sign of
the Lie derivative of abstraction functions with respect to the vector field.

Definition 2. The Lie derivative of f along the vector field v is

Lvf =
n∑

j=1

∂f

∂xj
vj (1)

The sign of the Lie derivative constrains the possible signs of the discretizing
functions fi in the next abstract state s′ according the following rules. There is
a transition from state s to s′ iff for all i = 1..k

– If si = pos
• If Lvfi ≥ 0 then s′i = pos
• Otherwise s′i ∈ {pos, zero}

– If si = neg
• If Lvfi ≤ 0 then s′i = neg
• Otherwise s′i ∈ {neg, zero}

206 W. Denman

– If si = zero
• If Lvfi > 0 then s′i = pos
• If Lvfi < 0 then s′i = neg
• If Lvfi = 0 then s′i = zero
• Otherwise s′i ∈ {neg, pos, zero}

If there are no updates in the set U for the specific mode, then the abstract
discrete transition is automatically taken as long as the next state s′ is feasible.
If there are updates to the continuous variables, determining the set of possible
next states for discrete transitions is performed similarly to that above. The sign
of the Lie derivative of the system is checked with respect to the vector field with
the sign of the updated continuous variables.

Once the signs of the abstraction functions in the next state are determined,
the process repeats. Each newly reachable state is checked to determine if it
is feasible and the next states from that new state are also computed. This
continues until no new states are found.

Example 2 (Abstracting the Bouncing Ball). One simple safety property of this
system is that if the ball is dropped from rest inside a trough, then it will remain
there for all time. The set of abstraction functions F is chosen to include the
continuous variables, the guards, the invariants, the functions that describe the
initial state of the system and the unsafe states.

F =
{
vx, vy, py − sin(px), py + 1, py − 1, px− π

2
, px− (2π +

π

2
)
}

QUANTUM generates the proper input format to MetiTarski to check feasi-
bility of abstract states. To prove that a particular abstract state is infeasible,
that is �x : Ps(x) is True, the equivalent universally quantified logical sentence
∀x : ¬Ps(x) is sent to MetiTarski. Below is a sample input for feasibility checking
of an abstract state of the bouncing ball problem. MetiTarski uses the TPTP
syntax format, where fof indicates a first order formula, ! is equivalent to ∀ and
˜ is equivalent to ¬. Variables must be uppercase.

fof(checkFeasibility, conjecture, (![PY,VY,VX,PX] :

(~(PY - 1<0 & VY=0 & VX=0 & PY + 1=0 & PY>0 & PX<0 &

PX - pi/2<0 & PX - (2*pi+pi/2)=0 & -PY + sin(PX)<0)))).

To determine abstract transitions, QUANTUM will symbolically calculate the
Lie derivative of each fi in turn and generate and send the problems to Meti-
Tarski. Below, the equation to the right of the implication is the Lie derivative
of fi = −PY + sin(PX).

fof(checkTransition, conjecture, (![PY,VY,VX,PX] :

(PY - 1<0 & VY=0 & VX=0 & PY + 1>0 & PY=0 & PX<0 &

PX - (2*pi+pi/2)=0 & -PY + sin(PX)<0

=> (VX*cos(PX) - VY >= 0))))

Verifying Nonpolynomial Hybrid Systems 207

Theorem 1 (Tiwari [2]). The discrete state abstraction of a hybrid automaton
obtained by qualitative reasoning based on analysis of the Lie derivative is sound.

Theorem 1 guarantees that any state not reachable in an abstraction created
by QUANTUM is not reachable in the original hybrid automaton. The abstrac-
tion process provides a guaranteed over-approximation of the reachable states
of the system.

4 Experimental Results

The qualitative abstracter QUANTUM has been tested on several nonpolyno-
mial hybrid systems including the bouncing ball on sine curve, two tanks and
steering car. The three examples are taken from the hydlogic [9] and iSat-ODE
[4] tool-sets, that use bounded model checking for verification. Bounded model
checking only guarantees a bounded safety result by unrolling the transition
relation a limited number of times.

The bouncing ball (bounce-ball-sin)2 is an interesting case study because there
are nonpolynomial functions in the transition guards. To verify that the bounc-
ing ball does not exit a trough of the sine curve, QUANTUM constructs the
abstraction and searches the abstract state space for a violation of the safety
property G¬(PY > 1).

The two tanks system (twotanks-1) [4] is defined by a system of differential
equations that contain the square root function. The model is of two cascaded
vessels, one placed above the other. The top vessel fills with water from an
inlet, and subsequently empties into the second vessel below, which empties at
a different rate. The property to be verified is whether the system reaches an
unsafe elliptical instability region that leads to either vessel overflowing.

The steering problem (steering-2) [9] consists of a 6 state hybrid automaton
modelling the control of an autonomous vehicle. The property to be verified is
whether a car performing a curved turn on a road, will avoid falling into the
adjacent river. The system of differential equations in this case contain the sine
function.

Keeping in mind that hydlogic and iSat-ODE only perform bounded verifica-
tion, the run-times in Table 1 are reported to highlight that qualitative abstrac-
tion is a competitive alternative. QUANTUM distinguishes itself by verifying
unbounded safety properties. QUANTUM and hydlogic run-times are from a
2.4 GHz Intel Core 2 Duo processor. iSat-ODE results are from a slightly faster,
yet same processor generation, 2.6 GHz AMD Opteron processor. All use 4 GB of
RAM. The number in parenthesis is the corresponding number of transition re-
lation unwindings for bounded model checking. An unknown result indicates that
the model checker could not verify the safety property to the specified number
of unwindings.

2 The labels in parenthesis are the experiment file-names located in the examples
directory of the QUANTUM distribution.

208 W. Denman

Table 1. Experimental run-times in seconds

experiment hydlogic iSat-ODE quantum

bounce-ball-sin 29.15 (10) unknown (10) 42.82
twotanks-1 20.5 (40) 33.49 (40) 40.80
steering-2 198.30 (3) 200.1 (11) 197.10

5 Conclusion
A direct comparison between the verification times by QUANTUM and the tools
mentioned above to support a claim that one is superior to the other would be
unreasonable. However, the results do indicate that QUANTUM is at least com-
petitive at verifying benchmark nonpolynomial hybrid system problems. This
result is promising.

Qualitative reasoning has generally not been considered powerful enough to
reason about complex dynamical systems. The combination of qualitative rea-
soning and the automated theorem prover MetiTarski has the potential to prove
this notion wrong.

Acknowledgments. This research was supported by the Engineering and Phys-
ical Sciences Research Council [grant numbers EP/I011005/1, EP/I010335/1].
Further support was provided by the Natural Sciences and Engineering Research
Council of Canada.

References
1. Frehse, G., et al.: SpaceEx: Scalable verification of hybrid systems. In:

Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

2. Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–83
(2008)

3. Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A. (eds.)
CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)

4. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE
for hybrid systems analysis by combining different enclosure methods. In: Barthe,
G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187.
Springer, Heidelberg (2011)

5. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In:
Hybrid Systems: Computation and Control, pp. 11–20. ACM (2010)

6. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning 44, 175–205 (2010)

7. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin,
C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer,
Heidelberg (2002)

8. Denman, W.: QUANTUM: Qualitative abstractions of non-polynomial models. In:
Qualitative Reasoning (August 2013)

9. Ishii, D., Ueda, K., Hosobe, H.: An interval-based SAT modulo ODE solver for model
checkingnonlinear hybrid systems. Int. J. Softw. Tools Technol. Transf. 13(5), 449–461
(2011)

Combining PVSio with Stateflow�

Paolo Masci1,��, Yi Zhang2, Paul Jones2, Patrick Oladimeji3, Enrico D’Urso4,
Cinzia Bernardeschi4, Paul Curzon1, and Harold Thimbleby3

1 School of Electronic Engineering and Computer Science
Queen Mary University of London, United Kingdom

{p.m.masci,p.curzon}@qmul.ac.uk
2 Center for Devices and Radiological Health

U.S. Food and Drug Administration, Silver Spring, Maryland, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

3 Future Interaction Technology Lab (FITLab)
Swansea University, United Kingdom

{p.oladimeji,h.thimbleby}@swansea.ac.uk
4 Dipartimento di Ingegneria dell’Informazione

Universitá di Pisa, Italy
e.durso@studenti.unipi.it, c.bernardeschi@unipi.it

Abstract. An approach to integrating PVS executable specifications
and Stateflow models is presented that uses web services to enable a
seamless exchange of simulation events and data between PVS and State-
flow. Thus, it allows the wide range of applications developed in Stateflow
to benefit from the rigor of PVS verification. The effectiveness of the ap-
proach is demonstrated on a medical device prototype, which consists of
a user interface developed in PVS and a software controller implemented
in Stateflow. Simulation on the prototype shows that simulation data
produced is exchanged smoothly between in PVSio and Stateflow.

Keywords: Simulation, PVSio, Stateflow.

1 Introduction

Model based engineering is being increasingly adopted to develop complex con-
trol systems that demand high assurance of safety and quality. Designing a
complex system often requires a combination of modeling and verification tools,
such as PVS and Simulink. Reasons include: (i) different modeling tools have
their own strengths and limitations, making them suitable for different tasks;
(ii) one modeling tool might have been used to develop legacy models that are
reused in a new project that depends on another tool; (iii) different development
teams may prefer different tools, based on their expertise.

PVS [9] and MathWorks Simulink [2] are two modeling frameworks widely
used in both industry and academia, each of which has a native simulation envi-
ronment for model animation. PVSio [7] is the simulation environment of PVS.

	 The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

		 Corresponding Author.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 209–214, 2014.
c© US Government (outside the US) 2014

210 P. Masci et al.

Simulink enables the simulation of system models with mixed discrete and con-
tinuous control logic; its Stateflow component [3] models the discrete control of
these systems.

The integration of PVS and Simulink environments can benefit system design-
ers, allowing them to model part of the system in PVS and the rest in Simulink.
However, in reality, PVSio and Simulink (and Stateflow in particular) are not
interoperable. That is, PVS specifications and Stateflow models that correspond
to different parts of a system cannot be simulated together. As a result, designers
have to sacrifice freedom and flexibility, and model the discrete control of the
entire system in either PVS higher-order logic or Stateflow.

Contributions. We present a new, flexible approach for integrating PVSio with
Stateflow. Specifically, our approach establishes web services to create a commu-
nication infrastructure between these two frameworks. An illustrative example
is presented that applies the approach to a non-trivial medical device prototype,
with a user interface specified in PVS and a software controller developed in
Stateflow. Simulation of the prototype demonstrates that the PVSio and State-
flow components can interoperate effectively. The tools and example models are
available at http://www.pvsioweb.org .

Related Work. Research on integration of Stateflow with other modeling tools
is generally based on the idea of performing a translation between Stateflow
models and another formal specification. For example, in [5], a formal seman-
tics of Stateflow is developed to enable the translation of Stateflow models into
SAL (Symbolic Analysis Laboratory) specifications. Similarly, in [12], a tool is
presented that translates Stateflow models into Lustre specifications. In [11],
Stateflow models are generated from formal specifications based on Event-B se-
mantics. A good overview of similar approaches can be found in [4, 10]. Such
approaches have the advantage of allowing formal verification of whole systems.

2 The Approach for Integrating PVSio with Stateflow

The most significant challenge in integrating PVS with Stateflow is the lack of
a publicly available formal semantics for Stateflow. As argued in [5], a formal
operational semantics can be defined only for a subset of Stateflow. It is therefore
not possible to faithfully translate Stateflow models that use constructs outside of
the formalized subset. Similarly, Stateflow models translated from other models
can use only the formalized subset of its semantics. In contrast, our approach
alleviates this issue by enabling communication between PVSio and Stateflow
models, rather than performing model translation. This offers designers more
freedom and reliability, since no restricted translation is involved.

Our approach establishes two web services, PVSio-web [8] and Stateflow-web,
to create a communication protocol between PVSio and Stateflow (see figure 1).
Each model runs in parallel, sending data and events (when they occur) the other
needs to continue the simulation. The protocol is “tool-neutral” in the sense that
it enables seamless exchange of events and data between PVSio and Stateflow

http://www.pvsioweb.org

Combining PVSio with Stateflow 211

Fig. 1. The developed approach for integrated simulation

during simulation, without changing either of these environments. Thus, it pre-
serves the underlying semantics of PVSio and Stateflow environments.

PVSio-web, our web-server for PVSio, comprises a tool-specific communica-
tion interface to connect to the PVS environment, and a tool-neutral communi-
cation interface to exchange simulation events with Stateflow-web. The former
is tailored to the PVSio environment, while the latter utilizes the Websocket
standard (a low-latency communication protocol) and encodes simulation events
in the widely-used open-standard format JSON (JavaScript Object Notation).
Handlers defined within PVSio-web programmatically intercept and inject sim-
ulation events, thus enabling interaction with the Stateflow environment.

Handlers in PVSio-web are implemented as JavaScript functions, which inter-
act with PVSio by submitting PVS higher-order logic expressions to the PVSio
command prompt and then reading PVSio responses. The handlers also convert
PVS expressions into simulation events that can be exchanged with and under-
stood by Stateflow-web. To ease the conversion, PVS expressions are specified as
transition functions over a PVS record type state. Each field of state speci-
fies data or commands that need to be exchanged with the Stateflow model. The
original PVS theory is kept unchanged.

Stateflow-web has a similar design to PVSio-web. Its handlers are specified
as either Statechart diagrams (i.e., state machines) or C++ classes. Statechart
diagram handlers are used to trigger transitions in the Stateflow model based on
the commands received from PVSio-web, and to update simulation data in the
Stateflow model accordingly. These handlers also intercept simulation events and
data produced by Stateflow and translate them into the format that PVSio-web
understands. C++ handlers are responsible for exchanging simulation events
with PVSio-web based on a Websocket communication library.

3 Example: A Patient Controlled Analgesia (PCA)
Device

The effectiveness of the approach is illustrated using a medical device prototype:
the Generic Patient Controlled Analgesia (PCA) pump [1]. PCA infusion pumps
are widely used for delivering pain-relief drugs to patients. PCA pumps offer a
patient-controlled feature (“bolus”) to briefly boost drug delivery on demand.

212 P. Masci et al.

Fig. 2. The visual appearance of the GPCA user interface

Bolus features are controlled, so a patient cannot voluntarily give themselves too
high a dose.

The aim of the Generic PCA (GPCA) pump is to capture functionalities
shared by existing commercial PCA pumps and provide a common basis for
healthcare stakeholders to discuss and assess their safety.

3.1 The Generic Patient Controlled Analgesia (GPCA) Model

The two primary software components of the GPCA pump are the user interface
and software controller. While the user interface manages the interaction with
the users (nurse or patient), the software controller regulates the drug infusion
process and handles alarms and warnings. These two components exchange in-
formation (events and data) during model execution to simulate typical infusion
scenarios. The information exchanged can be divided into four categories: in-
fusion parameters, including the infusion volume and rate programmed by the
user through the user interface; user actions, which are commands (such as start
or stop infusion) that the user issues through the user interface; current state,
the current operational status of the software controller; and infusion status, the
status of currently active infusion, including bolus dosage, infusion rate, and the
volumes of drug delivered and to be infused.

A model of the GPCA was previously developed in Stateflow, in which a näıve
user interface was implemented for demonstration purposes. For this paper, we
replaced this näıve user interface with a more sophisticated one [6], which was
implemented as a PVS executable specification. This sophisticated user interface
has been verified in PVS for basic safety properties (see [6] for details).

The objective of this study, then, is to use the presented approach to connect
the PVS-based user interface with the Stateflow-based software controller, and
perform a simulation over the entire GPCA pump model.

3.2 Simulation of GPCA Model

We were able to run simulations over the integrated GPCA model using our
approach. During the simulation, users interact with the PVS-based user inter-
face by pressing buttons and reading display elements of the graphical front-end
shown in figure 2. Each user interaction is captured by PVSio-web handlers,
which in turn send PVS expressions to PVSio for model animation. PVSio-web

Combining PVSio with Stateflow 213

(a) PVSio simulation of the user interface (b) Stateflow simulation of the controller

Fig. 3. Close-up view of the simulator’s output during an execution of the GPCA

links with Stateflow-web to exchange simulation events generated by the soft-
ware controller simulated in parallel within Stateflow. For example, figures 3(a)
and 3(b) respectively demonstrate the simulation state in PVSio and Stateflow
for the scenario where a pump successfully passes the power-on self test.

To allow the GPCA to be simulated, dedicated handlers were implemented
in PVSio and in Stateflow to enable communication of events and data. On the
PVSio-web side, three Javascript functions were defined:

– Create a connection: gipConnect establishes a Websocket connection with
Stateflow-web on a given port. It calls functions provided by Node.js1.

– Messages from Stateflow-web: gipReceive is invoked every time a mes-
sage is received over the Websocket connection. It receives tool-neutral sim-
ulation events and data from Stateflow-web. These events and data specify
the current state of the software controller and the infusion status. They are
converted into PVS expressions that can be evaluated in PVSio.

– Messages to Stateflow-web: gipSend parses predefined fields of the state
returned by PVSio after it has evaluated a PVS expression. The values of
these fields are used to generate tool-neutral messages containing simulation
events and data to be sent to the software controller.

On the Stateflow-web side, two Stateflow blocks were defined:

– Communicating with PVSio-web: Websocket communication bridge is
a System Function block implemented in C++. A standard communication
library is used to send and receive messages over Websocket connections.
Two input buses are used to intercept the state variables of the software
controller and thus generate tool-neutral simulation events and data for the
user interface. Three output buses are used to inject simulation events and
data received from the user interface software.

– Driving Stateflow model: UI Commands dispatcher is a Statechart block
that forwards simulation events and data to appropriate blocks in the State-
flow model. This Statechart has one input line that receives commands orig-
inated from the user interface; 21 output lines for redirecting received com-
mands to the appropriate components in the GPCA Stateflow model. The
number of output lines would of course vary for different Stateflow models.

1 Node.js, a popular scalable network framework, is the Javascript runtime environ-
ment used to implement PVSio-web.

214 P. Masci et al.

4 Conclusions

The approach presented in this paper for integrating PVS and Simulink uses
standard web services to connect PVSio (the simulator of the theorem proving
system PVS) and Stateflow (the discrete modeling component of Simulink). The
approach thus provides a seamless and effective way to integrate these two main-
stream modeling and verification tools. In this way, the hazards of translating
design models composed in different tools are avoided, and fast and realistic
prototyping becomes possible for designs modeled with multiple tools.

In the case study, a model written in Stateflow was connected to a formally
verified user interface implemented in PVS. The success of this case study sug-
gests an alternative way to verify Stateflow models: for example, the correctness
of Stateflow models can be evaluated through PVS using methods like black-box
testing (guided by PVSio) and assume-guarantee reasoning (supported by PVS).

Acknowledgments. This work is part of CHI+MED (EPSRC grant
EP/G059063/1).

References

1. GPCA project, http://rtg.cis.upenn.edu/medical/gpca/gpca.html
2. Mathworks Simulink, http://www.mathworks.com/products/simulink
3. Mathworks Stateflow, http://www.mathworks.com/products/stateflow
4. Chen, C., Dong, J.S., Sun, J.: A formal framework for modeling and validating

Simulink diagrams. Formal Aspects of Computing 21(5), 451–483 (2009)
5. Hamon, G., Rushby, J.: An operational semantics for Stateflow. In: Wermelinger,

M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 229–243. Springer,
Heidelberg (2004)

6. Masci, P., Ayoub, A., Curzon, P., Lee, I., Sokolsky, O., Thimbleby, H.: Model-Based
Development of the Generic PCA Infusion Pump User Interface Prototype in PVS.
In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153,
pp. 228–240. Springer, Heidelberg (2013)

7. Muñoz, C.: Rapid prototyping in PVS. Technical Report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace (2003)

8. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: A tool for rapid
prototyping device user interfaces in PVS. In: 5th International Workshop on For-
mal Methods for Interactive Systems, FMIS 2013 (2013), Tool and application
examples available at http://www.pvsioweb.org

9. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

10. Roy, P., Shankar, N.: SimCheck: a contract type system for Simulink. Innovations
in Systems and Software Engineering 7(2), 73–83 (2011)

11. Satpathy, M., Ramesh, S., Snook, C., Singh, N.K., Butler, M.: A mixed approach
to rigorous development of control designs. In: IEEE Multi-Conference on Systems
and Control (MSC 2013) (August 2013)

12. Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maraninchi, F.: Defining and trans-
lating a safe subset of Simulink/Stateflow into Lustre. In: 4th ACM International
Conference on Embedded Software. ACM (2004)

http://rtg.cis.upenn.edu/medical/gpca/gpca.html
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/stateflow
http://www.pvsioweb.org

Qed. Computing What Remains to Be Proved

Loïc Correnson

CEA, LIST, Software Safety Laboratory
PC 174, 91191 Gif-sur-Yvette France

firstname.lastname@cea.fr

Abstract. We propose a framework for manipulating in a efficient way
terms and formulæ in classical logic modulo theories. Qed was initially
designed for the generation of proof obligations of a weakest-precondition
engine for C programs inside the Frama-C framework, but it has been im-
plemented as an independent library. Key features of Qed include on-the-
fly strong normalization with various theories and maximal sharing of
terms in memory. Qed is also equipped with an extensible simplification
engine. We illustrate the power of our framework by the implementation
of non-trivial simplifications inside theWp plug-in of Frama-C. These opti-
mizations have been used to prove industrial, critical embedded softwares.

1 Introduction

In the context of formal verification of critical softwares, the recent fantastic im-
provement of automated theorem provers and SMT solvers[1] opens new routes.
Inside the Frama-C [2] platform, we have developed the Wp plug-in to implement
an efficient weakest precondition calculus to formally prove a C program against
its specification. The specification is written in terms of the “ANSI-C Specifi-
cation Language” (ACSL) [3], which is a first-order logic system with dedicated
constructs to express C properties such as pointer validity and floating point
operations.

The Wp plug-in actually compile C and ACSL constructs into an internal logic
representation that is finally exported to SMT solvers and other theorem provers.
Thus, we need an internal system to represent and manipulate first-order logical
formulæ. This is exactly what Qed has been designed for.

Designing such a library is not difficult in itself. Some datatype is needed
for expressing terms and properties, combined with pretty-printing facilities to
export them into several languages. This is what we implemented in our early
prototypes.

However, experimental results shown that a formula can not be naively build
then translated and finally sent to an external back-end prover. We actually
observed limitations of such a naive approach on real life examples from critical
embedded software:

– SMT solvers are quite efficient, but they are sensitive to the amount of hy-
potheses they receive. Having a proof for A → B does not mean you will
have a proof for A ∧ A′ → B.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 215–229, 2014.
c© Springer International Publishing Switzerland 2014

216 L. Correnson

– The generated formulæ are huge and deep. Without extra precautions, you
often face an exponential blow-up when dumping them to disk.

– On the contrary, few transformations of the generated formulæ reduce their
size and complexity in a dramatic way.

These reasons drive us in the direction of designing a dedicated system for
representing and simplifying formulæ in an efficient way. We use classical tech-
niques inspired by preprocessing optimizations found in various SMT solvers.
However, in practice, it is not possible to rely on external preprocessors. One
reason is that not all SMT solvers are equipped with such techniques. But most
importantly, without on-the-fly preprocessing, the generation of proof obligations
simply doesn’t terminate in practice.

Moreover, applying these preprocessing facilities on-the-fly allows for non-
trivial optimizations during the weakest precondition calculus [4], by pruning
out useless branches for instance. Moreover, it allows for domain specific pre-
processing: we designed Qed to be equipped with an extensible simplification
engine, and we made it available to the end-user of Wp [5, §2.3.10].

This paper is first (§ 2) a tour and a formal presentation of the Qed framework,
as a pure first-order logic system equipped with built-in theories for equality,
arithmetic, arrays, records and unspecified functions. Second (§ 3), we illustrate
how Qed improves in a very significant way the results of Wp plug-in inside
Frama-C. We finally conclude with future research directions.

2 The Qed Engine

Our logical framework allows for defining and manipulating formulæ in first-
order classical logic modulo theories. The key concept that drives the design
of Qed is to implement only fast and non-local simplifications. This is of course
incomplete, but more complex resolution techniques are left for back-end solvers.

The framework actually consists in three parts: a formally defined algebra of
term normal forms, a collection of smart constructors to build terms, and an
extensible simplification engine. The three components are tiedly coupled with
each others.

The framework is implemented as an OCaml library, with additional features
for exporting Qed formulæ to foreign systems, like Coq [6], Alt-Ergo [7] and Why-
3 [8]. The efficiency of the framework relies (although not only) on a compact
representation of terms into memory. Especially, hash-consing [9] is used to
maximize memory sharing of equal terms. Hence, we benefit from constant-
time equality and hashing over terms. Moreover, hash-consing allows for the
identification of each term by an unique integer. This can be used to implement
sets and maps of terms based on Patricia-trees [10], which provides the end-user
of Qed with O(n) unions, intersections and merges instead of the usual O(n log n)
ones.

Qed. Computing What Remains to Be Proved 217

We do not present the implementation details in this article. The code is freely
available under open source license together with the Frama-C distribution.1

In this paper, we present formally the three coupled components of the Qed
framework and how they work with each others. We first introduce the internal
representation of formulæ, the term algebra. Then, we define the smart construc-
tors for building terms, with the associated normalization algorithms. Finally,
we present the extensible simplification engine.

2.1 Terms Algebra

The internal representation of terms consists in an inductive datatype quotiented
by normalization invariants. The Qed smart constructors are then especially
designed to enforce those invariants.

The datatype of terms (a ∈ L) is presented in Figure 1. It is parametrized
by datatypes for the symbols identifying variable names (x ∈ X), record’s field
names (f ∈ Fd) and user-defined or unspecified functions (f ∈ F). The notation
a stands for finite lists of terms, that is, a = a1, . . . , an for some n ≥ 0.

a∈L ::=

Equality Quantifiers Functions
| a = a | a �= a | x | ∀x.a | ∃x.a | f(a)

Logic

| true | false Booleans
| ∧a | ∨ a Conjunction, Disjunction
| ∧a→ a Implication
| ¬a Negation
| a ? a : a If-then-else

Arithmetic

| k ∈ Z | q ∈ Q Constants
| a ≤ a | a < a Inequalities
| k.a | Σ a | Π a Factors, Sums & Products

Arrays & Records

| a[a] Access
| a[a �→ a] Updates
| a.f Field Access
| {f �→ a ; . . .} Records

Fig. 1. Qed Terms Algebra

1 From http://frama-c.com/download/frama-c-Fluorine-20130601.tar.gz, Qed
sources are provided in the self-contained sub-directory src/wp/qed.

http://frama-c.com/download/frama-c-Fluorine-20130601.tar.gz

218 L. Correnson

In the flow of the text, we would write Qed formulæ within quotes, like « a ≤
b », to distinguish the terms from their semantics. For instance, we must read
0 < x as the usual math property that x is positive, and « 0 < x» as a term in
L where variable «x» is compared to zero. Conversely, we denote by [[a]] the
semantics in usual mathematics of formulæ « a ».

We assume all symbols to be equipped with total orders such that there is an
induced total order a - b. The constant-time structural equality a ≡ b on terms
is provided by hash-consing. To summarize our notations:

« a » Term in L [[a]] Semantics of a ∈ L
a - b Total order a ≡ b Structural (and physical) equality

The strict order a ≺ b defined by (a - b∧a �≡ b) is also used. For maintaining
the normalization invariants of terms, we introduce ac(a) and ac∗(a) to denote
non-empty sorted lists with or without repetitions:

ac(a1 . . . an) ⇔ 0 < n ∧ ∀i, j ∈ 1..n, i < j ⇒ ai ≺ aj
ac∗(a1 . . . an) ⇔ 0 < n ∧ ∀i, j ∈ 1..n, i < j ⇒ ai - aj

We now investigate the various normal forms of a ∈ L and the associated
invariants.

Equality. Terms « a = b » and « a �= b » are quotiented by a ≺ b and [[a]] �= [[b]]
when the built-in theories of Qed applies. For instance, « 1 = 2 » is not a Qed
normal term.

Quantifiers. Terms « ∀x.a » and « ∃x.a » can only be formed if x appears free
in a. Structural equality (≡) in L is not quotiented by α-conversion. This is a
choice we made because in practice such equalities are rare and α-conversion can
be costly [11]. For instance, using De-Bruijn indices requires lambda liftings [12]
which are not local transformations.

Logic. Boolean connectives are n-ary operators quotiented with ac∗ arguments.
Moreover, there are never two-arguments a and b of logical connectives such that
we can decide [[a]]⇔ ¬[[b]] with Qed. Moreover, there is no duplication of boolean
term operators and logical connectives for properties as usual in first-order logic.
Rather, we use a two-sorted typing system to recover this distinction when it is
required, for instance, to send a Qed formula to a SMT-solver.

Arithmetic. We choose n-ary sums and products operators quotiented by ac
arguments. Linear forms are maximally flattened and factorized. For instance, it
is not possible to have formula « 1− x ≤ x− y », but we would have « y < 2.x»
instead (provided x and y are integers). These operators apply to both integer
and real values, which case can be disambiguated by typing when necessary.

Arrays. The theory of functional arrays [13] is built-in in Qed. Access-updates
are reduced whenever equality can be decided with Qed. Hence, «m[a �→ v][b] »
is reduced into «m[b] » or « v » whenever [[a = b]] can be decided.

Qed. Computing What Remains to Be Proved 219

Records. The theory of records is built-in in Qed. We do not choose to represent
field-update terms, since they can always be represented by extensive recon-
struction of the record. This choice makes the computation of normal forms for
records more local.

Unspecified Functions. We decided to never inline a definition of a function sym-
bol f ∈ F . Although, this can be done using the extensible simplification engine.
However, function symbols f ∈ F can be attributed with algebraic properties,
such as injectivity, commutativity, associativity, neutral elements and such. This
leads to many normalizations and simplifications that will be discussed with the
associated smart constructors.

2.2 Smart Constructors and Normalizations

To build formulæ with the Qed framework, one must use the provided smart
constructors listed in Figure 2. Thus, it is not possible to forge arbitrary terms
a ∈ L that would violate the expected invariants. Moreover, since all the sim-
plifications in the framework are local, we always obtain fully normalized terms
on-the-fly.

Equality

eq : a, a→ a
neq : a, a→ a

Variables

var : x→ a
forall : x, a→ a
exists : x, a→ a

Functions

call : f, a→ a

Arithmetic

int : Z→ a
real : Q→ a
add : a, a→ a
sub : a, a→ a

times : Z, a→ a
mul : a, a→ a
leq : a, a→ a
lt : a, a→ a

Arrays

get : a, a→ a
set : a, a, a→ a

Logic

true : a
false : a
not : a→ a
and : a, a→ a
or : a, a→ a

imply : a, a→ a
equiv : a, a→ a

ite : a, a, a→ a

Records

field : a, f→ a
record : (fi, ai)i → a

Fig. 2. Qed Smart Constructors (API)

In this section, we investigate the normalizations computed by the smart
constructors of Qed framework. We first discuss boolean normalizations and
arithmetic ones. Then, functions, arrays and records will be discussed in turn.
Each theory T will define smart constructors eqT and neqT for equalities, which
will be finally merged together into the smart constructor for equality on the
entire algebra L.

220 L. Correnson

Logic. The normalization of logical connectives is based on list of literals packed
with their negation, like (a,¬a). Equipped with a suitable order, such a rep-
resentation allows for fast detection of a and ¬a among arguments of logical
connectives. This leads to frequent calls to the smart constructor not(a) and, in
the OCaml implementation, we use a cache to amortize this cost.

We use recursive definitions to extract list of literals from terms. But thanks
to invariants in the term algebra, it is always limited at 2-depth recursive calls.
We also use an exception (denoted by ⊥Absorbing) to handle absorbing elements.
This leads to the following flattening accumulative functions (in Haskell flavor):

lit∨ « ∨ a » l = fold lit∨ a l
lit∨ « true » l = ⊥Absorbing

lit∨ « false » l = l
lit∨ a l = (a, not a) : l

lit∧ « ∧ a » l = fold lit∧ a l
lit∧ « false» l = ⊥Absorbing

lit∧ « true » l = l
lit∧ a l = (a, not a) : l

For instance, given the formula a = and(b, not c), we obtain the list of and-
literals lit∧ a [] = [b, not b ; not c, not(not c)]. Remark here that the double
negation will be simplified on-the-fly by the not smart-constructor.

These lists of literals are then sorted in order for a and (¬a) to appear side by
side. For this purpose, we use a tricky relation (Rid) based on the hash-consed
unique identifiers of terms computed during hash-consing:

(a, a′) Rid (b, b
′) ⇔ min(aid, a

′
id) ≤ min(bid, b

′
id)

The relation Rid is clearly a total order on pairs of terms. Thus we can sort
list of literals with it. Moreover, we have (a, b) Rid (b, a) for all terms a and b,
such that pairs (a,¬a) and (¬a, a) are equal modulo Rid. Thus, opposite literals
will be placed side-by-side in the sorted list.

Reducing lists of literals is surprisingly the same algorithm for conjunctions
and disjunctions. The normalizations are based on the fact that, for any boolean
property ϕ, both (ϕ ∨ ¬ϕ) and (ϕ ∧ ¬ϕ) simplify to their associated absorbing
elements, respectively true and false. The dual normalization uses the simplifica-
tion of both (ϕ∨ϕ) and (ϕ∧ϕ) into ϕ. For this purpose, we define weak versions
of (a ⇔ b) and (a ⇔ ¬b), respectively defined as follows:

eqvlit (a, a
′) (b, b′) = (a ≡ b)

neqlit (a, a
′) (b, b′) = (a ≡ b′) ∨ (a′ ≡ b)

Then, provided [[a′]] = ¬[[a]] and [[b′]] = ¬[[b]] (which is the case for literals),
the two following properties hold:

eqvlit (a, a
′) (b, b′) ⇒ [[a]]⇔ [[b]]

neqlit (a, a
′) (b, b′) ⇒ [[a]]⇔ ¬[[b]]

The reduction of both conjunction and disjunction of literals is then implemented
by one single function group, as follows:

group ϕ : ψ : l | eqvlit ϕ ψ = group (ψ : l)
group ϕ : ψ : l | neqlit ϕ ψ = ⊥Absorbant

group ϕ : l = ϕ : group l
group [] = []

Qed. Computing What Remains to Be Proved 221

Putting every ingredient together, we define the smart constructors and and
or in terms of a generic function connective⊗,1,0 for connective ⊗ with neutral 1
and absorbing element 0:

and = connective∧,true,false or = connective∨,false,true

The generic function connective⊗,1,0 is in turn defined by flattening, sorting and
grouping the ⊗-literals as follows:

connective⊗,1,0(a, b) =
try let p = group ◦ sort Rid (lit⊗ a (lit⊗ b [])) in

if p = [] then 1 else
let a = sort (-) ◦map fst p in «⊗ a »

with ⊥Absorbing → 0

The smart constructor for implication is more direct. Recall that the normal
form of implication is « ∧a → a ». We only need to filter out the list of hypothe-
ses on the left of (→) against the conclusion and its negation. Below are two
examples of the reduction rules implemented for the imply smart constructor:

imply « ∧ a » b | (∃i, ai ≡ b) = « true »
imply « ∧ a » b = « ∧ [aj |aj �≡ not b]→ b »

Equivalence is the same than equality in the boolean theory. The contribution
of boolean theory to equality smart constructors is defined below:

eqB « true » a = a eqB « false » a = nota
eqB a b | (a ≡ not b) = « false »

Finally, we define the smart constructor for negation recursively with all the
other connectives. We do not present all the rules here by lack of place. Let us
just mention the transformation of not (a �= b) into (a = b), not (a ≤ b) into
(b < a), among many other similar or dual patterns.

Arithmetic. The normalization of arithmetic terms relies on computing with
linear forms of terms:

linear(a) = c+

n∑
i=1

ki.ai with c, ki ∈ Z

Maximal linear forms of terms are easy to compute in an efficient way with
lists of monoms (k, a), in the same spirit than for logical connectives. For linear
complexity, we use an accumulative variant of linear, denoted by lin, such that:

lin k a L = k. linear(a) + L

Conversely, it is easy to inject linear forms into well-formed terms as follows:

injΣ

(
c+

n∑
i=1

ki.ai

)
= «Σ s » where

{
s0 = « c »
si = «k.ai », i ∈ 1..n

222 L. Correnson

With list implementation, injΣ relies on sorting and compacting the list of
monoms to obtain a normalized linear form. Smart constructors for arithmetic
are then straightforward definitions:

add(a, b) = injΣ(lin 1 a (lin 1 b []))
sub(a, b) = injΣ(lin 1 a (lin -1 b []))

times(k, a) = injΣ(lin k a)

Comparisons, including equalities and inequalities, are also performed with
linear forms using a generic comparison function cmpR for relation R:

leq = cmp≤ lt = cmp< eqA = cmp= neqA = cmp �=

For the definition of this generic comparison function, we first introduce a dis-
patching function that takes a linear form L and separate positive from negative
factors:

dispatch

(
c+

n∑
i=1

ki.ai

)
=

(
c⊕ +

n∑
i=1

k⊕i .ai , c
 +

n∑
i=1

k i .ai

)

where c⊕ = max(c, 0) and c = max(−c, 0). Then, we lift any arithmetic com-
parison R to linear forms with:

liftR(L
⊕, L) = «L⊕ R L » where typically L⊕, L = dispatch(L)

When linear forms are reduced to constants c and c′, we compute the boolean
result of (cRc′) and turn it into « true » or « false ». We also introduce few ad-
ditional simplifications when both L⊕ and L are in Z (rather than in R) in
order to catch off-by-one comparisons ; typically 1 + a < b reduces to a ≤ b.

Finally, the generic comparison operator cmpR is defined by:

cmpR(a, b) = liftR ◦ dispatch ◦ injΣ(lin 1 a (lin -1 b []))

Product are conducted in a similar, although simpler way. The simplification
is here based on generalized products rather than linear forms:

product(a) = k.

n∏
i=1

ai and, conversely: injΠ

(
k.

n∏
i=1

ai

)
= « k.Π a»

Their implementation with lists are straightforward. We introduce an accumu-
lative variant of product, named prod such that:

prod a (k, l) = k. product(a)× l

Finally, the smart constructor for multiplication is:

mul(a, b) = injΠ ◦ sort (-) (prod a (prod b []))

Qed. Computing What Remains to Be Proved 223

Arrays and Records. The theories for arrays and records are similar and we
present them together. For arrays, we need to decide whether two indices a and
b are equal. Qed is not able to decide equality in all case, so we rely on a weak
decision instead, ie. a sound but incomplete approximation of [[a = b]]. Let us
define:

a =true b ⇔ eq(a, b) ≡ « true»
a =false b ⇔ eq(a, b) ≡ « false»

The simplifications rules used by the smart constructors for arrays are then:

get « a[b �→ c] » b′ | (b =true b
′) = c

get « a[b �→ c] » b′ | (b =false b
′) = get a b′

set « a[b �→ c] » b′ c′ | (b =true b
′) = « a[b �→ c′] »

Records are more complete since we can always decide for field equality. But
there is no mystery in them. We omit here the details of the normalization
algorithms.

There is no special equalities for arrays. For records, we rely on the fact that
two records are equal if and only they have equal field entries. More precisely,
given r = (fi, ai)i∈1..n and r′ = (f′j , a

′
j)j∈1..m, we introduce:

eqFd « {r} » « {r′} »
= « false » when n �= m ∨ ∃k, fk �= f′k
= and(e) otherwise, where ∀k, ek = eq(ai, a

′
i)

Function Properties. We enrich the standard theory of unspecified functions
by attributing function symbols f ∈ F with algebraic properties. The structural
equality (≡) over terms a ∈ L implements directly the general equality for
unspecified functions. We enrich it with additional equalities when f is injective
and when it is a constructor of an abstract datatype.

Sometimes, the function f is just the n-ary notation for some unspecified
operator (0), that is, f(x) = x10 . . .0xn. In this case, f can be attributed with
groupoid properties like associativity and such.

The available properties, for operators, injections and constructors, are listed
in Figure 3. Each function can be attributed with zero, one or several properties,
although you can not mix operator properties with non-operator ones.

Smart constructors for functions take into account those properties in two
ways. Groupoid properties are used to flatten the list of arguments (associativ-
ity), to sort them with respect to (-) (commutativity) and to filter out absorbing
and neutral elements, whenever each case applies. The other properties are used
to simplify equalities between terms « f(a)» and « f ′(a′)». Implementation is
based on list manipulations similar to linear forms and logical connectives.

Equalities. The built-in theories of Qed define specific smart constructors for
equality, that we need to merge into a single one. Moreover, equality as an
equivalence relation also requires general normalizations to be applied. This is

224 L. Correnson

Properties for unspecified function f :
injective: f(x) = f(y) ⇔ ∀i, xi = yi
constructor: f(x) = g(y) ⇔ f = g ∧ ∀i, xi = yi

Properties for unspecified operator f(x) = x1 � . . .� xn:
commutative: x� y = y � x
associative: x� (y � z) = (x� y)� z
neutral(e): e� x = x� e = x
absorbant(e): e� x = x� e = e
inversible: x� y = x� z ⇔ y = z ⇔ y � x = z � x

Fig. 3. Properties for unspecified functions

performed by smart constructor eqE which simplifies equal terms modulo (≡)
and ensures that in « a = b », we get (a ≺ b).

Combining equalities from all theories is achieved by applying each specific
smart constructors in a staged way. Starting with the smart constructor of theory
T , if eqT (a, b) = « a′ = b′ », we pass the residual equality through the next theory
eqT ′(a′, b′), and so on.

In this process, several optimizations are performed to avoid unnecessary calls
to dedicated smart constructors. The global stack is: first, use pure equality eE ;
then, solve arithmetic with eqA or solve boolean equalities with eqB; finally,
depending on which theory applies, use eqFd for records or eqF for functions.

2.3 Extensible Simplifier

One of the non-common features of Qed framework is its ability to be extended
with user-supplied simplification routines. We have designed three possible entry
points for additional normalizations, based on unspecified functions f ∈ F :

– when applying a function « f(a)» ;
– for simplifying equalities « a = f(a)» and « f(a) = a » ;
– or inequalities « a ≤ f(a)» and « f(a) ≤ a ».

Restricting these entry points to terms with a function symbol f at head is a
design choice. It reduces the cost of finding routine, try to run them, and fallback
to default implementation. In a similar way, we allow only one simplification
routine per function symbol f and entry point. If several routines are desired,
packing them with priorities and other features is left to the end-user of the
framework, while keeping Qed simple and robust.

Regarding the implementation, calls to user-supplied simplification routines
are staged after the default normalization routines and before hash-consing
is performed. Although user-supplied simplification routines can be arbitrary
OCaml code, there are some design rules to consider. We investigate them in
turn.

Qed. Computing What Remains to Be Proved 225

Result. Simplification routines build terms using only the Qed smart construc-
tors. A partial simplification routine may raise an exception ⊥Default to interrupt
the simplification and makes Qed fallback to the default smart-constructor.

Recursion. To avoid infinite loops, Qed enforces a fallback to default smart con-
structors after a given depth of recursion with the same routine (2 in practice).
This is consistent with the local complexity of all normalizers in the framework.

Decisions. Whenever a simplification needs to decide between several cases, it
is recommended to build a Qed term instead, and decide upon its normalized
form. For instance, to decide whether a sub-term a is positive, simply build the
term leq « 0 »a and compare its normal form « true » and « false ». This allows
for several simplification routines to cooperate with each others.

Example. For instance, assume the symbol fabs is specified to compute the ab-
solute value of real and integral numbers. One may implement the following
routine for simplifying fabs expressions:

callabs a = match (leq « 0 »a) with
| « true » → a
| « false» → times« - 1 » a
| _ → ⊥Default

To simplify notations, let us introduce abs(a) = call(fabs, [a]). This makes
abs(« - 1 ») to simplify into « 1 » as expected. If we now add a routine for sim-
plifying comparisons with symbols fabs:

leqabs « 0 » « fabs(a)» = true
leqabs « fabs(a)» « 0 » = eq a « 0 »
leqabs a b = ⊥Default

Then we get the simplification of abs(abs(a)) into abs(a) for free by mutual
interaction of the two simplification routines.

3 Experimental Results

In this section, we illustrate how Qed has been used to successfully empower the
efficiency of the Wp plug-in of Frama-C. Recall from the introduction that Wp
computes weakest preconditions on C programs annotated by ACSL contracts.
The primary outcome of Wp is proof obligations, that are first-order logic for-
mulæ. If one succeed in proving all those formulæ, then weakest precondition
calculus entails that the C program is correct with respect to its specification.

The introduction of Qed as the internal implementation for building and man-
aging the proof obligations has leverage the efficiency of Wp in many ways. First,
it allows up to implement effectively a linear [14] weakest precondition calculus
with on-the-fly maximal memory sharing. On programs with a lot of paths in the

226 L. Correnson

A
B
C
D

Goals Alt-Ergo Coq
13 13 -
35 14 17
54 24 30

Memory out

Goals Qed Alt-Ergo
11 11 -
22 18 3
25 25 -
172 116 56

Case Study Without Qed After Qed

Fig. 4. Impact of Qed on Wp

control flow graph, like successive conditionals, this is absolutely necessary to
avoid an exponential growth of proof obligations. Second, surprisingly, normal-
izations makes “not-so-few” proof obligations to simplifies into « true ». Hence,
Qed became our primary back-end solver in practice.

An experiment conducted before and after the introduction of Qed is depicted
in Figure 4. It depicts four simple case studies, that are small C routines from
industrial embedded systems, and our attempts to discharge the generated proof
obligations (goals). The figures show that introduction of Qed actually avoid
exponential growth and demonstrate its capability to discharge proofs. Without
Qed, hardly 50% of the goals must be discharged by hand with the Coq proof
assistant. For case-study named ‘D’, Wp is not even capable of generating the
proof obligations. Introducing Qed solves most of these issues, however one proof
obligation is still not discharged in the ‘B’ case study.

We then conducted a much larger experiment on a full bench of real industrial
codes from avionics and energy industries. These case studies can not be disclosed
here because of industrial agreements. The bench consists of 15 case studies,
cumulating 60,000 lines of code and specifications which generates up to 10,000
proof obligations to be discharged. Of course, on such a large-scale experiment,
we encountered non-generated goals and non-discharged ones. This can be the
consequence of bugs, inefficiencies and over-complicated goals.

The results of the experiment on different variants of Wp and Qed are depicted
in Figure 5. The graphics shows the number of proof obligations actually gener-
ated, and those discharged by Qed and Alt-Ergo. The graphics also provides the
number of goals where Alt-Ergo has been interrupted, and those where it returns
without deciding the validity of the proof obligation.

The various versions we experimented with this bench illustrate the benefit
from non-trivial optimizations implemented in Wp thanks to the Qed framework:

wp. The base version of Wp with Qed (beginning of the experiment).
var. Transformation of equalities introduced by Wp into substitutions.
cst. Addition of simplification routines for machine-integer computations.
let. Correction of an inefficiency issue with in-memory sharing.
lit. Propagation of literals by substitutions.
cut. Pruning proof obligations by eliminating irrelevant chunks of code.

Qed. Computing What Remains to Be Proved 227

7400

7950

8500

9050

9600

WP VAR CST LET LIT CUT

227

235
237

237

225
853

8801

8565
8448

8228

8049

7531

Qed Alt-Ergo Timeout Unknown

Fig. 5. Impact of Wp optimizations based on Qed

As illustrated by the results over the bench, each version improves the re-
sults in several ways. The number of generated proof obligations is lower when
different control-flow paths can be merged thanks to simplifications during the
weakest precondition calculus. On the other hand, inefficiency bugs may prevent
Wp from generating proof obligations, leaving part of the specifications unproved.
More goals are discharged by Qed after each optimization we introduced. And
sometimes, residual goals are more efficiently discharged by Alt-Ergo, meaning
that Qed has simplified them.

We now investigate in more details the experimented optimizations, and how
they take benefit from the Qed framework.

Turning Equalities into Substitutions. (var) During linear weakest precondition
calculus, the side effects of the program are transformed into a kind of static
single assignment form. This generates a huge number of intermediate variables,
each receiving a small expression. This leads to many (x = e) hypotheses in
the formulæ to prove. But, formula ∀x, x = e → ϕ can be transformed into
ϕ[x := e] by substitution (provided x does not appear free in e). This is a well
known transformation named variable elimination. But from the Qed point of
view, this introduces many opportunities to perform aggressive normalization.
For instance, ∀x, x = 4 → 0 ≤ x does not simplifies locally in Qed, but simplifies
into true after substitution.

Simplification Routines. (cst) To model the semantics of C machine integers,
the Wp introduces unspecified symbols with suitable properties in order for SMT
solvers to reason with. However, in many cases, these symbols are fed with
constant integer values. Hence, we can compute on-the-fly the resulting values.
For instance, when converting constants from one integer type into another.
Together with variable elimination, this makes significant improvements.

228 L. Correnson

Exploiting Memory Sharing. (let) When exporting a formula to an external
solver, Qed takes benefit from the maximal sharing of equal sub-terms into mem-
ory. For instance, term « f(a, a)» where a is a shared sub-term, is rendered by
introducing a let-binding: « let x = a in f(x, x)». In early versions of Qed, there
was an inefficiency bug in finding good candidates for let-binding introduction.
This bug was responsible for combinatorial explosions during the export of proof
obligations. This is an illustration of how maximal sharing is important in prac-
tice.

Propagation of Literals. (lit) Generalizing variable elimination, formula (e =
c) → ϕ may sometimes be transformed into ϕ[e := c]. This is of particular
interest when c is much simpler than e, say, a constant. Of course, recognizing a
sub-expression e in ϕ can be costly. But with maximal in-memory sharing and
hash-consing, this becomes feasible in reasonable time.

A special instance is the propagation of hypotheses: in formula l → ϕ, we
substitute l by true and not(l) by false in ϕ.

Moreover, we also propagate consequences inequalities: a < b also propagates
a ≤ b and a �= b. Finally, we also detect both a ≤ b and b ≤ a and turn them
into a = b. This combines well with the normalization of inequalities performed
by Qed, since this makes variants of the same literal to be equal and substituted.
For instance, it is often the case that at the end of a loop, the loop counter will
be replaced with its final value, which introduces more opportunities for further
variable eliminations.

However, in ψ → l → ϕ, we only propagate l from left-to-right, in ϕ only,
because propagation in both directions is exponential.

Pruning Contradictory Branches. (cut) A typical program has many condition-
als statements to detect error cases that shortcuts normal computations. When
proving a property of such a program, we generally have a specification such
as “unless an error condition is raised, some property ϕ holds.” This leads to
formulæ with the following form:

(d ? ψ+ : ψ−) → (e → ϕ)

There are two opportunities for simplifications in this formula. First, we can
put e in head of the goal, such that forward propagation of literals described
above has a chance to filter out non relevant cases. Then, we may investigate
whether (e ∧ d ∧ ψ+) or (e ∧ ¬d ∧ ψ−) leads to a contradiction by simplification
with Qed. Whenever it is the case, the corresponding branch can be removed.

This is effective in practice, as shown by our experiments. However, it must
be pointed out that this only occurs because Qed performs many normalizations
in the background.

4 Conclusion

Our primary objective was to statically prove program properties with SMT
solvers. For this purpose, we generate first-order logic formulæ relying on several

Qed. Computing What Remains to Be Proved 229

domain specific theories. Naive approaches lead to generating huge formulæ that
are tremendously difficult for SMT solvers to discharge. We have tackled this
problem by introducing the Qed framework, an efficient library for managing
formulæ modulo built-in and domain specific theories. This provides us with
a mean of simplifying on-the-fly the generation of the formulæ to prove. Our
rationale is that simplifications that are fast and local should be done in the
early stage of the process, while only the difficult residual goals are sent to
state-of-the art SMT solvers for deep exploration. Future research includes the
simplification of terms by abstract interpretation and the usage of Qed in other
tool chains.

References

1. Barrett, C.W., de Moura, L., Stump, A.: Smt-comp: Satisfiability modulo theories
competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 20–23. Springer, Heidelberg (2005)

2. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-c: A software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidel-
berg (2012)

3. Baudin, P., Filliâtre, J.C., Hubert, T., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL Specification Language (2013), http://frama-c.com/acsl.html

4. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. SIG-
SOFT Softw. Eng. Notes 31(1), 82–87 (2005)

5. Baudin, P., Correnson, L., Dargaye, Z.: WP User Manual, v0.7 (2013),
http://frama-c.com/download/frama-c-wp-manual.pdf

6. Coq Development Team: The Coq Proof Assistant (2011), http://coq.inria.fr
7. Conchon, S., et al.: The Alt-Ergo Automated Theorem Prover,

http://alt-ergo.lri.fr
8. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The Why3

platform 0.81
9. Filliâtre, J.C., Conchon, S.: Type-safe modular hash-consing. In: Proceedings of

the 2006 Workshop on ML 2006, pp. 12–19. ACM, New York (2006)
10. Okasaki, C., Gill, A.: Fast mergeable integer maps. In: Workshop on ML (1998)
11. Gordon, A., Melham, T.: Five axioms of alpha-conversion. In: von Wright, J., Har-

rison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–190. Springer,
Heidelberg (1996)

12. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) Functional Programming Languages and Computer Archi-
tecture. LNCS, vol. 201, pp. 190–203. Springer, Heidelberg (1985)

13. de Moura, L.M., Bjorner, N.: Generalized, efficient array decision procedures. In:
IEEE FMCAD, pp. 45–52 (2009)

14. Leino, K.R.M.: Efficient weakest preconditions (2003) (unpublished manuscrit),
http://research.microsoft.com/en-us/um/people/
leino/papers/krml114a.pdf

http://frama-c.com/acsl.html
http://frama-c.com/download/frama-c-wp-manual.pdf
http://coq.inria.fr
http://alt-ergo.lri.fr
http://research.microsoft.com/en-us/um/people/leino/papers/krml114a.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml114a.pdf

Warps and Atomics: Beyond Barrier Synchronization
in the Verification of GPU Kernels�

Ethel Bardsley and Alastair F. Donaldson

Imperial College London
{emb2009,afd}@imperial.ac.uk

Abstract. We describe the design and implementation of methods to support rea-
soning about data races in GPU kernels where constructs other than the standard
barrier primitive are used for synchronization. At one extreme we consider ker-
nels that exploit implicit, coarse-grained synchronization between threads in the
same warp, a feature provided by many architectures. At the other extreme we
consider kernels that reduce or avoid barrier synchronization through the use of
atomic operations. We discuss design decisions associated with providing sup-
port for warps and atomics in GPUVerify, a formal verification tool for OpenCL
and CUDA kernels. We evaluate the practical impact of these design decisions
using a large set of benchmarks, showing that warps can be supported in a scal-
able manner, that a coarse abstraction suffices for efficient reasoning about most
practical uses of atomic operations, and that a novel, refined abstraction captures
an important design pattern where atomic operations are used to compute unique
array indices. Our evaluation revealed two previously unknown bugs in publicly
available benchmark suites.

1 Introduction

The rise of the use of graphics processing units (GPUs) for general purpose program-
ming allows for high-throughput massively parallel problems to be accelerated on rel-
atively cheap commodity hardware. This throughput is achieved on GPUs by running
thousands of threads in parallel. GPUs are thus suited to a variety of parallel tasks
ranging from graphics and imaging to simulation, medical imaging, and computational
finance.

The massively parallel nature of graphics cards gives rise to concurrency bugs, such
as data races and deadlocks. Data races lead to non-determinism, incorrect computation
and undefined behavior. There has been recent interest in the program analysis commu-
nity on methods for formal or semi-formal analysis of GPU kernels, leading to methods
for finding bugs in [14,5] or proving correctness properties of [13,3,8,12] GPU kernels,
principally focused on data races.

The main GPU programming models, OpenCL [10] and CUDA [16] organize threads
into multiple, independent work groups, and provide a barrier operation for synchro-
nizing threads within the same work group. When a thread reaches a barrier it must wait
for every thread in its work group to arrive at the barrier. The barrier ensures that all

	 This work was supported by the EU FP7 STREP project CARP (project number 287767), and
EPSRC project EP/K011499/1, and the Imperial College London UROP scheme.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 230–245, 2014.
c© Springer International Publishing Switzerland 2014

Warps and Atomics in GPU Kernel Verification 231

memory accesses issued before the barrier have completed on barrier exit. The threads
in the work group then continue execution beyond the barrier. From the perspective
of race analysis tools, barriers allow analysis to be restricted to separate barrier in-
tervals [14], and each barrier interval can be checked for data races with respect to a
single thread schedule [13,14,3,5]. However, the runtime overhead of barrier synchro-
nization is high [16, §5.4.3] and there are instances where ensuring race-freedom us-
ing barriers is cumbersome or impossible without destroying parallelism. Two features
of modern GPU designs allow these problems to be reduced to some extent: warps,
where implicit synchronization is guaranteed due to lock-step execution of threads, and
atomic read-modify-write operations, which enable memory locations to be updated
asynchronously and lock-free synchronization to be implemented. Because concurrent
atomic operations on a memory location are not considered racy, atomics allow accept-
able non-determinism to arise from the order of thread interleavings within a barrier
interval, thus it is no longer sound to consider a single thread schedule during race
analysis.

In this paper, we discuss design decisions associated with providing support for
warps and atomics in GPUVerify, an existing verification technique and tool for OpenCL
and CUDA kernels [3]. For warps we present a two-pass approach where intra- and
inter-warp analyses are performed separately, and a re-sync approach where intra-warp
synchronization at the instruction level is accounted for in a general analysis. In con-
trast to a recent method for bug-finding in the presence of atomics which heuristically
explores thread interleavings [4], we employ abstraction to enable verification of data
race-freedom. For kernels that use atomics merely for asynchronous shared state up-
dates we show that a coarse abstraction, where shared memory reads yield arbitrary
values, suffices for analysis. This coarse abstraction yields false positives when atomics
are used to ensure non-interference between threads. We have identified an important
use case where threads atomically increment a counter to compute a successive series
of unique indices, and present a novel refined abstraction to efficiently capture this use
case.

We evaluate the precision and performance of our methods using a set of 199 CUDA
and 190 OpenCL kernels. Warp-aware analysis allows verification of 7 kernels whose
race-freedom depends on inter-warp synchronization; GPUVerify previously reported
false positives for these examples. Atomics are used by 22 kernels, making verification
tools inapplicable to these examples prior to this work. We discovered two previously
unknown bugs in these kernels, in the ParBoil [18] and CUDA 5.0 SDK [16] suites, one
directly related to use of atomics, which we have reported to the developers concerned.
After fixing these bugs, we were able to verify 15 of the kernels that used atomics.

In summary, our main contributions are:

– Two methods for supporting warps when reasoning about races in GPU kernels;
– A coarse abstraction for accommodating atomic operations and a novel refined ab-

straction to capture an important atomic-based synchronization pattern;
– An implementation of our methods in the open source GPUVerify tool, and an

experimental evaluation over a large set of publicly available kernels.

232 E. Bardsley and A.F. Donaldson

2 Background

We briefly review important aspects of the GPU kernel programming model (Section 2.1),
discuss warps and atomics in more detail (Section 2.2), and summarize the GPUVerify
verification method on which we build (Section 2.3).

2.1 GPU Kernel Programming Model

A conventional modern GPU (e.g. a design from NVIDIA or AMD) consists of many
processing elements (PEs) organized into compute units. Each PE is equipped with a
portion of private memory, each compute unit includes a portion of shared memory ac-
cessible to the PEs of the compute unit, and there is a global memory available to all PEs
on the GPU. The OpenCL [10] and CUDA [16] programming models roughly mirror
this structure; we discuss the OpenCL case. On OpenCL, a kernel is executed in paral-
lel by a number of work groups, each of which runs on a compute unit. A work group
consists of a number of work items (often, and in this paper, referred to as threads), each
of which executes on a PE. Thread-private variables are stored in PE private memory,
and threads in a work group share data stored in the memory space of the compute unit.
Data in GPU global memory is shared among all threads executing a kernel.

Behavior of the kernel is specified by a single kernel function, a template describing
the behavior of each thread. A thread has access to a thread id which it can use to
behave in an individual manner. Threads in the same work group synchronize via the
barrier primitive. When a thread reaches a barrier the thread stalls until all threads in
its work group have reached the same barrier. The barrier enforces memory ordering,
guaranteeing that memory accesses issued before the barrier will have completed before
threads commence execution beyond the barrier. Barriers allow synchronization only
between threads in the same work group.

The GPU kernel programmer must carefully place barriers to avoid data races:

Definition 2.1 (Warp- and atomic-oblivious data race). An execution of a GPU ker-
nel has a data race if two distinct threads access a common memory location, at least
one of the accesses modifies the location, and no barrier synchronization between the
threads separates these accesses.

The behavior of a kernel with a data race is undefined according to the OpenCL
specification. In practice data races lead to non-determinism, and expose re-orderings
of loads and stores due to relaxed underlying memory models.

Figure 1a shows a simple OpenCL kernel1 that exhibits data races between adjacent
threads. There is a race, for example, between threads 0 and 1 because thread 0 reads
from A[1] (via A[(tid + 1)% N]), thread 1 writes to A[1] (via A[tid]) and there
is no guarantee on the order in which these accesses will occur. Figure 1b shows how a
barrier can be used to eliminate this race: all threads must reach the barrier until any can
proceed past the barrier, thus the conflicting accesses allowed by the kernel of Figure 1a
cannot be simultaneous in the kernel of Figure 1b.

1 OpenCL supports multi-dimensional arrangements of work groups and threads. For ease of
presentation all our example kernels are one-dimensional, and we use tid and N to abbreviate
the OpenCL syntax for the id of a thread and the total number of threads, respectively.

Warps and Atomics in GPU Kernel Verification 233

kernel void add(local float *A)
{
A[tid] = A[tid] +

A[(tid + 1)%N];
}

(a) OpenCL kernel with data race

kernel void add(local float *A)
{ float temp = A[(tid + 1)%N];
barrier();
A[tid] = A[tid] + temp;

}

(b) Data race eliminated via barrier

Fig. 1. OpenCL kernels illustrating data races and the use of barriers

2.2 Warps and Atomics

Warps and Implicit Synchronization. GPU architectures from NVIDIA and AMD pro-
vide a degree of implicit synchronization between threads. On NVIDIA hardware,
threads are divided into power-of-two-sized subgroups of at least size 32, known as
warps [16, §4.1]. AMD designs provide a similar notion of a wavefront [1] of threads.
We use the term warp to denote this feature in general. Threads in the same warp ex-
ecute in lock-step, sharing a program counter. Threads in the warp cannot simultane-
ously execute distinct instructions (predicated execution [16, §5.4.2] is used to handle
non-uniform execution of conditional code by a warp), thus the scope for data races
and non-determinism within a warp is reduced. This mode of execution is termed SIMT
(Single Instruction, Multiple Thread) by NVIDIA, and is analogous to SIMD (Single
Instruction Multiple Data).

Warp-level synchronization guarantees can allow expensive barrier synchronizations
to be omitted. If the kernel of Figure 1a is executed by 32 threads on an NVIDIA GPU,
these threads will be scheduled as a single warp. Every thread will read from A[(tid
+ 1)%N] before any thread writes to A[tid], making a data race impossible. Intra-
warp races can only occur when two threads in a warp attempt to simultaneously update
the same location, for example via a statement such as A[0] = tid.

Exploitation of warps is recommended in the CUDA programming guide [16], and ef-
ficient algorithms have been developed that depend on this feature: Sengupta et al show
the number of barrier synchronization operations required during a parallel scan can be
reduced from log2(N) to log32(N), where N is the number of threads, by first scanning
within warps, using implicit synchronization, and then aggregating across warps [17].
The OpenCL programming model aims to be general purpose and thus does not ac-
knowledge the existence of warps, so relying on platform-specific warp behavior leads
to non-portable code. However, the new OpenCL 2.0 extension specification [9, §9.17,
p133] contains an optional extension for subgroups, which allow the behavior of warps
to be captured. Furthermore, since many OpenCL kernels are ported from CUDA ver-
sions, a warp-sensitive analysis for OpenCL can aid in distinguishing between data
races preserved by the porting process, and data races introduced by porting due to
assumptions about warps which are not valid in OpenCL.

Atomic Operations. OpenCL and CUDA are equipped with a set of atomic read-modify-
write intrinsics. Concurrent atomic operations on the same memory location are not
considered racy, thus atomics allow a memory location to be updated asynchronously

234 E. Bardsley and A.F. Donaldson

kernel void histo(local int* A,
local int* B) {

int t = A[tid];
atomic_inc(&B[t]);

}

(a) Efficient histogram implementation using
an atomic operation

kernel void histo(local int* A,
local int* B) {

int t = A[tid];
for (int j = 0; j < N; j++) {
if (tid == j)
B[t]++;

barrier();
} }

(b) Without atomics, a race-free histogram is
not efficient

Fig. 2. An illustration of the advantages brought by atomic operations

by multiple threads in a manner that is considered race-free. Such updates can lead to
non-determinism due to the order in which threads are scheduled. The example kernel
of Figure 2a uses the OpenCL atomic inc intrinsic to implement a histogram: A is an
array of data values, and B is an array of buckets; on finding that valuet is present in A, a
thread increments the bucket at offset t from B. Using an atomic operation ensures that
buckets are incremented consistently, and because increment operations are commuta-
tive, the order in which threads interleave is not important. If atomic inc(&B[t])
in Figure 2a was changed to a non-atomic increment, B[t]++, there could be data
races on buckets, leading to an insufficient number of increments at best, and memory
corruption at worst. It is not feasible to safely implement this kind of kernel without
atomics; the kernel of Figure 2b shows how barrier synchronization can be used to se-
rialize bucket updates, but this destroys parallelism by effectively serializing the kernel
as a whole. Atomics can also be used for communication between threads in distinct
work groups, to ensure race-freedom. In Section 4.2 we show how atomics can be used
to compute disjoint array indices across multiple work groups.

Data Races in the Presence of Warps and Atomics. We refine Definition 2.1 to take
account of warps and atomics. If two threads are in the same warp then a warp synchro-
nization occurs between the threads on execution of every instruction. The new parts of
the definition are emphasized:

Definition 2.2 (Warp- and atomic-aware data race). An execution of a GPU kernel
has a data race if two distinct threads access a common memory location, at least one
of the accesses modifies the location, at least one of the accesses is non-atomic, and
no barrier or warp synchronization between the threads separates these accesses.

2.3 Race Analysis Using GPUVerify

The GPUVerify tool [3] takes as input an OpenCL or CUDA kernel, optionally an-
notated with loop invariants and procedure specifications. GPUVerify uses the Clang/L-
LVM framework to process the kernel, translating it into a sequential program expressed
in the Boogie verification language [11]. This transformation encodes race checks using

Warps and Atomics in GPU Kernel Verification 235

assertions such that if the sequential program can be proven correct2 (i.e. free from as-
sertion failures) then the kernel is guaranteed to be free from data races. The sequential
program is checked using the Boogie verifier [2].

GPUVerify scales to large thread counts by encoding in the sequential program the
execution of the kernel by an arbitrary distinct pair of threads [3]. This pair of threads
are considered to execute in lock-step, so that they execute exactly the same sequence
of instructions. Uniform execution of conditionals and loops is enforced in the sequen-
tial program via predicated execution [3]. This fixed schedule eliminates thread inter-
leavings. However, data race analysis with respect to arbitrary thread interleavings is
possible by maintaining read and write sets for shared arrays. Let (s, t) denote the pair
of threads under consideration, and associate with each array A a set RA of read offsets
and WA of written offsets. Execution of a write instruction where s and t write to A at
offsets os and ot, respectively, is modelled by adding os to WA and then checking that
ot does not belong to RA ∪WA. Read operations are handled similarly, with the check
relaxed to allow read sharing. At a barrier, RA and WA are set to be empty for every
array A. This transformation is valid in the context of race checking, as a correct kernel
is deterministic for a given input, and threads cannot communicate aside from barriers,
between which there is no guaranteed schedule. The effects of the other threads are thus
abstracted.

Consider again the example of Figure 1a. GPUVerify reasons that this kernel is racy
by selecting an arbitrary pair of threads s and t, and introducing read and write sets,
RA and WA, for the array A, which are initially empty. The reads from A[tid] and
A[(tid + 1)%N] are first checked by adding s and (s+1)%N to RA and checking
that t and (t+1)%N do not belong toWA; this holds trivially becauseWA is empty. The
write to A[tid] is then checked by adding s to WA and checking that t /∈ RA ∪WA.
This logging and checking is encoded using a set of constraints, and races between
specific threads are detected by solving for s and t. In the case t = (s+1)%N , we have
t ∈ RA ∪WA, so a race is reported.

For the two-thread reduction used by GPUVerify to be sound it is necessary to over-
approximate the effects of additional threads. The simplest solution is to make no as-
sumptions about the behavior of additional threads, assuming that these threads may
update the shared state arbitrarily. This can be achieved in two ways [3]:

– Adversarial abstraction: shared arrays are removed altogether, and every read
from a shared array instead returns a non-deterministic value

– Equality abstraction: shared arrays are updated non-deterministically (havocked)
each time a barrier is reached

Adversarial abstraction is sufficient for checking race-freedom of many kernels and
avoids the need to reason about arrays. Equality abstraction (so called because both
threads have an equal but arbitrary view of the shared state) is more refined, and is
necessary when race-freedom of a kernel requires agreement between threads on the
contents of a shared memory location, such as a flag.

The soundness of the two-thread abstraction is argued in [3], and of race analysis via
a single schedule in [14,19].

2 We use correct to mean partially correct; GPUVerify does not perform termination analysis.

236 E. Bardsley and A.F. Donaldson

3 Warp-Aware Race Analysis

We considered two approaches to supporting intra-warp synchronization during race
analysis, which we call the re-sync method and the two-pass method.

3.1 Re-sync Method

In the re-sync method (so called because threads synchronize at barriers, and analo-
gously threads in the same warp re-synchronize after each instruction), intra- and inter-
warp races are checked simultaneously. Race analysis works as described in Section 2.3,
but after each uniform read and write instruction with associated array A, the sets RA

and WA are set to be empty if the threads under consideration belong to the same warp.
Consider the example of Figure 1a with 64 threads, i.e. N = 64, and suppose that

these threads are organized into two warps, each of size 32. No races will be detected be-
tween threads s and t in the same warp, i.e. if s, t ∈ {0, . . . , 31} or s, t ∈ {32, . . . , 63}:
the read set RA is cleared immediately before the write to A[tid] is analyzed. On the
other hand, races will be detected for the cases s = 31, t = 32 and s = 63, t = 0; we
explain the s = 31, t = 32 case. After the read operations we have RA = {s, s+ 1} =
{31, 32}; because s and t are in different warpsRA is not made empty; the write is then
analyzed by adding s, i.e. 31, to WA and checking whether t, i.e. 32, belongs to RA.
This is the case, so a data race is reported.

This is sufficient to maintain soundness in the uniform case, where the threads fol-
low the same path, as for some racy code A[o] = . . ., os will still be in WA when
ot �∈ WA is checked, and thus the assertion failure will still be reported. For the diver-
gent case (referred to by [14] as a “porting race”), this reset is predicated, such that,
for threads s, t, with enabled predicates ps, pt, the reset is predicated by ps ∧ pt. For
example, in the racy code if (tid < 16) {A[o] = 1} else {A[o] = 2},
if s follows the then branch and t takes the else, the reset won’t occur until the threads
re-converge, and so the case os = ot will report assertion failure as per the regular
GPUVerify method.

3.2 Two-Pass Method

The two-pass method involves two independent analyses that can run in parallel, one
checking exclusively for inter-warp data races, the other exclusively for intra-warp
data races. Inter-warp data race analysis proceeds according to the method outlined in
Section 2.3, except that the arbitrary threads s and t are constrained to reside in different
warps. For intra-warp race analysis, s and t are constrained to reside in the same warp,
and for each write instruction we check that the offsets os and ot being written to are
different; there is no need to maintain read and write sets or analyze read instructions.

With respect to the running example of Figure 1a, with 64 threads organized as two
warps of size 32, the intra-warp case of the two-pass method determines that the write
A[tid] leads to disjoint accesses for any distinct threads s, t, thus there are no intra-
warp races. The inter-warp case detects the races between threads 31 and 32 and threads

Warps and Atomics in GPU Kernel Verification 237

0 and 63 in the manner described for the re-sync method, except that there is no need to
consider setting the read/write sets for A to be empty between instructions.

This is implemented as, when thread paths are uniform, altering the log mechanism
such that, for writes, WA := {os} instead of WA := WA ∪ {os}, and making it the
empty set otherwise. This maintains soundness, as the write set will contain the cur-
rent instruction’s offset for the unified case, and in the non-unified case the technique
behaves as without this modification.

It is clear that the re-sync and two-pass methods achieve the same goal. Our hypoth-
esis was that the two-pass method might lead to faster verification by decomposing
analysis into two simpler cases that can be checked in parallel. Our experiments in
Section 5 validate this hypothesis with respect to a 215 example kernels: the two-pass
method outperforms the re-sync method in many cases.

3.3 Inter-warp Synchronization and Shared State Abstraction

Recall from Section 2.3 that the two-thread reduction used by GPUVerify depends on
an accompanying abstraction of the shared state. Adversarial abstraction provides no
guarantees about the contents of the shared state and thus combines directly with our ap-
proaches to warp-based synchronization. Combining warp-level synchronization with
equality abstraction requires some care. With equality abstraction, shared arrays are
havocked at every barrier. Consider the following code snippet, which is incorrect when
executed by a single warp of at least three threads:

if(tid == 0) {
A[0] = 1; A[1] = 1; A[2] = 1;

}
// At this point, A = { 1, 1, 1, ... }
A[tid] = 0;
// Now A = { 0, 0, 0, ... }
if(tid == 0) {

// The assertion should thus fail
assert(A[0] == 1 || A[1] == 1 || A[2] == 1);

}

Suppose we analyze this example using the two-thread reduction with straightfor-
ward equality abstraction. Consider the pair of threads 0, 1. After execution of the first
conditional there are no data races and the threads’ view of A is {1, 1, 1, 1, . . .}. The as-
signment A[tid] = 0 by threads 0 and 1 leads to a state where A = {0, 0, 1, 1, . . .}.
This is incomplete: it does not take into account the actions of additional threads. Hence
the pair 0, 1 erroneously conclude, at the assertion, that at least one of A[0], A[1] and
A[2] is equal to 1, namely A[2].

To rectify equality abstraction in the presence of warps it is necessary to perform
additional havocking: after a write instruction to array A, the array A must be havocked
to reflect the fact that other unmodelled threads in the warp have also modified A. With
respect to the above example this means that the threads’ view of A is arbitrary after
each instruction, leading (as desired) to states in which the assertion fails.

238 E. Bardsley and A.F. Donaldson

4 Race Analysis and Abstraction for Atomic Operations

As discussed in Section 2.2, atomic operations relax the definition of what constitutes
a data race, reflected in Definition 2.2. This allows designated memory locations to be
updated concurrently in manner that is considered non-racy. Such concurrent updates
are a valid source of non-determinism, violating the assumption on which race analysis
in GPUVerify and other methods rests: that a race-free kernel behaves deterministically.
As a result, it is not sound in general to restrict analysis to a single thread schedule in
the presence of atomic operations.

For a precise analysis geared towards bug-finding this is problematic: to accurately
find bugs arising from atomic manipulation it is necessary to resort to exploring thread
interleavings. This has been investigated in the context of the GKLEE bug-finding tool
for CUDA [4], where delay bounding [7] is used to limit schedule explosion.

We have observed that in practice most GPU kernels that use atomics do so for
simple purposes, such as updating shared data asynchronously or computing unique
array indices. We focus here on using abstraction to prove race-freedom for these sorts
of kernels, without resorting to exploration of thread interleavings.

4.1 Over-Approximating Atomics with Adversarial Abstraction

Suppose we wish to analyze a kernel that updates elements of an array A atomically.3

If we handle A using adversarial abstraction, so that every read from A yields a non-
deterministic result, then there is no need to explicitly consider thread interleavings
arising from non-determinism introduced by atomic updates to A: adversarial abstrac-
tion encodes at least the non-determinism that could arise from such updates.

Under adversarial abstraction we can adapt the race analysis procedure described in
Section 2.3 as follows. For a shared array A, in addition to read and write sets RA and
WA we introduce an atomic set AA recording offsets from A that have been accessed
atomically. Suppose the threads under consideration are s and t, and that an instruction
ι causes s and t to access offsets os and ot of a shared array A, respectively. We log the
access made by s by adding os to RA, WA, or AA depending on whether ι is a read,
write or atomic operation. We then check the access made by t, reporting a data race if:

– ot ∈ WA ∪ AA in the case where ι is a non-atomic read
– ot ∈ RA ∪WA ∪ AA in the case where ι is a non-atomic write
– ot ∈ RA ∪WA in the case where ι is an atomic operation

This extension of our method is sufficient for analysis of kernels where the return
values of atomic operations do not influence whether or not data races occur. An exam-
ple is the histogram kernel of Figure 2a: array B is updated atomically, thus B must be
adversarially abstracted. However, because no data is subsequently read from B, this
coarse abstraction of B cannot lead to false positive data race reports. Our approach
thus allows for sound race analysis of this simple example. In Section 5 we report on
a data race we detected in one of the ParBoil benchmarks [18], where both atomic and

3 In practice atomics are often used to update single memory locations, such as counters; we can
regard these as single-element arrays.

Warps and Atomics in GPU Kernel Verification 239

private int i = atomic_inc(c);
while(i < MAX) {
out[i] = compute(in, i);
i = atomic_inc(&c);

}

Fig. 3. Using atomic increment to compute disjoint array indices

non-atomic operations are used to manipulate the same array without adequate synchro-
nization.

It is not sound in general to use equality abstraction for an array that is atomically
updated: atomics allow non-determinism between barriers, so multiple reads from an
atomically-manipulated memory may yield different results.

4.2 A Refined Abstraction for Repetition-Free Atomic Operations

The example of Figure 3 demonstrates how atomic operations can be used to compute
disjoint indices for array accesses. In the figure, in and out are distinct shared arrays
of length MAX, and c is a pointer to a shared counter, initialized to zero. The unspecified
compute procedure performs some computation on the i-th element of in, returning a
value. The atomic inc operation atomically increments the shared memory location
pointed to by its argument and returns the previous value of this location.

This design pattern is useful in parallel processing of data where the computation
time per data element may vary in an unpredictable manner. Such variance means that
it is not possible to achieve high performance by statically allocating a fixed chunk
of data elements to each thread. A classic example of this is fractal image computation,
where time to convergence for a pixel varies dramatically across the image, and we have
seen the above design pattern used (in a more sophisticated form) for lock-free division
of work in optimized Mandelbrot fractal kernels that ship with the CUDA SDK.

The basic atomic support described in Section 4.1 would report a false positive data
race for the above example. This is due to adversarial abstraction of the counter, which
allows two distinct threads to see common values returned by atomic inc, leading to
write-write data races on A. The example is in fact race-free when executed by multiple
threads. This is because, although the sequence of values a thread obtains by calling
atomic inc is dependent on the thread schedule, the sequences of values obtained by
two distinct threads must be disjoint—the counter only ever increases and thus (assum-
ing the counter does not overflow) it will never contain the same value twice.

If we can identify that a location l is accessed exclusively via atomic inc opera-
tions then we can refine adversarial abstraction to take advantage of the “repetition-free”
nature of this operation. Suppose we have a set used(l) recording all the values that have
been read from l so far during the program. Initially used(l) is empty. We can model an
application of atomic inc to location l by returning a non-deterministically chosen
value that does not belong to used(l), and then adding this value to used(l) so that it
is not returned again in future. This refined abstraction thus knows nothing about the

240 E. Bardsley and A.F. Donaldson

location l except that its current value is different from any other value previously re-
turned by atomic inc. This additional knowledge is sufficient to capture the case
where atomic inc is used to derive a unique array index.

More generally, we can compute this refined abstraction for a location l if we can
determine that l is manipulated exclusively using a single, repetition-free function.

Definition 4.1 (Repetition-free function). Let S be a set and f : S → S a function,
with fk : S → S denoting f applied k times. We say that f is repetition-free if for every
x ∈ S and m,n ≥ 0 with m �= n, fm(x) �= fn(x). That is, f has no periodic points.

The atomic inc operation can be viewed as updating a location storing value v
to store f(v), where f is the repetition-free function defined by f(x) = x + 1. We
can consider the atomic add operation, which takes a location and a non-negative
integer argument n, similarly in the case where n is positive: applying atomic add
to a location holding value v updates the location to store fn(v), where f(x) = x + 1.
The operations atomic dec and atomic sub can be treated analogously using the
repetition-free function g defined by g(x) = x− 1.

This abstraction is technically unsound because it does not take into account the pos-
sibility of overflow, which may cause a location to yield the same value twice if an
operation such as increment is called an extremely large number of times. Our aim in
this work is to provide pragmatic support for reasoning about kernels that use atomics,
thus we use the abstraction without regard for overflow. If overflow is a concern then
soundness can be restored through the addition of overflow checks (with a correspond-
ing increase in verification burden).

4.3 Implementation Issues for Atomics

Supporting atomic operations using adversarial abstraction (Section 4.1) is straightfor-
ward: we adapted GPUVerify to determine statically those arrays that may be manipu-
lated atomically and force adversarial abstraction of these arrays. We used the existing
encoding of read and write sets, described in [3], to add sets recording atomic accesses,
and implemented atomic-aware race checks as described in Section 4.1.

To support the refined atomic abstraction of Section 4.2 we made GPUVerify aware
of the repetition-free atomic operations atomic inc and atomic dec, and imple-
mented an analysis that determines whether an array is only ever accessed using a sin-
gle repetition-free atomic operation; we say that such an array is repetition-free. A call
to atomic add or atomic sub with a positive numeric argument is regarded as
consisting of a series of increments or decrements respectively.

For each repetition-free array A we introduce in the Boogie program generated by
GPUVerify a map usedA : Int × Int → Bool. If usedA(x, v) holds, this indicates that
offset x of A has previously yielded the value v, and thus will not yield v when ac-
cessed again using the repetition-free operation. When translating an atomic operation
on repetition-free array A in the context of threads s and t, suppose that the threads ac-
cess array offsets os and ot and store the operation results into private variables zs and
zt, respectively. We generate the following sequence of Boogie statements (presented
here using mathematical syntax) to model the atomic operation:

Warps and Atomics in GPU Kernel Verification 241

AA := AA ∪ {os}; Log the atomic access made by thread s
assert ot /∈ RA ∪WA; Ensure the atomic access made by thread t does not race
havoc zs, zt; The threads receive values that are arbitrary, except:
assume ¬usedA(os, zs); neither value has been used
assume ¬usedA(ot, zt); previously at this offset, and
assume zs �= zt the threads receive different values
usedA(os, zs) := true; The values are now marked as used up
usedA(ot, zt) := true;

Thus, os and ot are guaranteed unique, and subsequent use of them to index into
some array will be correctly found race-free.

In Section 5 we evaluate the overhead in terms of verification time of using this
refined abstraction over regular adversarial abstraction.

5 Experimental Evaluation

To evaluate our implementation of warp and atomic support in the GPUVerify tool [3]
we considered the following benchmark suites:

– CUDA 5.0 SDK benchmarks (171 CUDA kernels)
– CUDA 2.0 SDK benchmarks (8 CUDA kernels do not appear in the 5.0 SDK)
– C++ AMP samples, translated into CUDA, from [3] (20 CUDA kernels)
– AMD APP SDK (78 OpenCL kernels)
– ParBoil benchmarks (25 OpenCL kernels)
– SHOC benchmarks (87 OpenCL kernels)

Of the 199 CUDA and 190 OpenCL kernels, 6 and 16 use atomic operations, re-
spectively. The benchmarks and our tool chain, with instructions on how to re-run our
experiments, are available online.4

Experiments were performed on a PC with a 3.4GHz Intel i7-2600 and 16GB RAM
running Ubuntu 13.04, using GPUVerify revision 988 (2013-11-25), and Z3 4.3.1. A
time limit of 900 seconds (15 minutes) per kernel was used for analysis.

Impact of Warp-Level Synchronization. We ran GPUVerify with warp-level synchro-
nization enabled (warp size 32) across the 199 CUDA kernels. We found 7 cases where
verification succeeded with warp-level synchronization enabled but failed without. GPU-
Verify is thus able to provide precise results for these kernels where before it would
report false positives. We were surprised to find one case (dwtHaar1D) where verifi-
cation succeeded with the two-pass method but failed with re-sync. In this case re-sync
requires a loop invariant that makes reference to whether the threads under considera-
tion are in the same warp, which GPUVerify does not infer. With the two-pass method
the intra-warp case is trivial to verify, and a simpler loop invariant which is inferred
suffices for the inter-warp case.

Figure 4 compares verification times across the CUDA benchmarks with respect to
the re-sync and two-pass methods. A point at coordinates (x, y) represents a benchmark

4 http://multicore.doc.ic.ac.uk/tools/GPUVerify/NFM2014

http://multicore.doc.ic.ac.uk/tools/GPUVerify/NFM2014

242 E. Bardsley and A.F. Donaldson

101 102 103

Verification time (seconds): re-sync method

100

101

102

103

V
er

if
ic

at
io

n
 t

im
e

(s
ec

o
n

d
s)

:
tw

o
-p

as
s

m
et

h
o

d

Fig. 4. Verification times for two-pass vs. re-sync methods over 199 CUDA kernels

for which analysis (successful verification, or the report of a failed proof attempt) took
x seconds using the re-sync method and y seconds using the two-pass method. The
figure shows that the two-pass method is faster in many cases, sometimes dramatically.
We attribute this to the fact that the two-pass method involves solving two simpler
verification problems which are solved in parallel. We also compared verification time
using the re-sync method to verification time without warp-level synchronization, for
the CUDA kernels where the verification result was not affected by warp-awareness.
We observed some fluctuation in verification times between examples, but overall the
performance difference was negligible: verification using the re-sync method was 1.043
times slower than with verification without support for warps. Thus warp-awareness
does not compromise verification speed.

Impact of Support for Atomic Operations. Prior to this work, GPUVerify (nor any other
verification tool for GPU kernels) was applicable to the 22 kernels in our suite that use
atomic operations. Using GPUVerify we found two bugs in these kernels.

In a CUDA 5.0 SDK Mandelbrot kernel, where atomic operations are used for work
distribution in a manner similar to the example of Figure 3, we found a read-write data
race arising due to a missing barrier. The race was not due to misuse of atomics, but
the kernel was not amenable to analysis prior atomic support. We reported this race to
engineers at NVIDIA who confirmed and subsequently fixed the issue.

We discovered an atomic/non-atomic race in a sophisticated histogram implementa-
tion kernel in the ParBoil suite (tpacf/gen hists). In this example, work groups
share histogram buckets in group-shared memory. Threads first initialize this memory
to zero, then repeatedly update histogram buckets atomically. No barrier was issued
between bucket initialization and bucket update, leading to races between these phases.
This race was confirmed by the maintainers of the Parboil suite.

Warps and Atomics in GPU Kernel Verification 243

These bugs cannot be found directly using GKLEE, a bug-finding tool for CUDA ker-
nels [14] that has been extended with support for atomics [4]. This is because the kernels
manipulate floating point data which GKLEE does not support. Floating point operators
are approximated by GPUVerify through the use of uninterpreted functions [3].

We also found what is strictly a read/atomic race in the histo/histo main Par-
Boil example. A non-atomic read is used to retrieve the value of a histogram bucket
before an atomic update is applied. We do not regard this as a programmer error: we
believe the intention is that the read should be an atomic read operation, which OpenCL
1.2 does not directly provide. However, atomic read is provided by the recently an-
nounced OpenCL 2.0, so the kernel should be re-written accordingly in due course.

After fixing these bugs, we were able to verify race-freedom for 15 of the 22 ker-
nel that use atomics. In 13 cases verification was fully automatic: GPUVerify was able
to automatically generate loop invariants required to prove race-freedom. In 2 cases it
was necessary to provide loop invariant annotations for verification to succeed. These
invariants were unrelated to the use of atomics – they were necessary to capture dis-
jointness of the data access patterns associated with non-atomic arrays. The invariants
are available in our online set of benchmarks.

Of the 7 kernels for which verification failed, 4 were kernels used in the implemen-
tation of breadth-first-search graph algorithms in the ParBoil and SHOC suites. These
kernels are only correct with respect to non-trivial, quantified preconditions on input
arrays, beyond the limited support for precondition annotations currently provided by
GPUVerify, thus the tool reports a write-atomic race for each of these kernels.

Two of the CUDA 5.0 Mandelbrot kernels use an atomic counter to compute disjoint
indices into shared arrays as discussed in Section 4.2. However, in each thread block
only the “master” thread, thread 0, is responsible for updating the global index counter,
obtaining a base index used by all threads in the block. In this setting the two-thread
reduction does not allow a proof of race-freedom for a pair of non-master threads s and
t in different thread blocks. Even with our refined atomic abstraction, in the absence
of concrete knowledge about master thread behavior, s and t cannot deduce that their
base indices are distinct. In future work we plan to solve this issue by extending the
two-thread reduction to allow specific threads, such as master threads, to be concretely
represented. To evaluate our refined atomic abstraction we created a simplified Mandel-
brot fractal generator, capturing all the behavior of the more complex of the two Man-
delbrot examples, but simplified so that each thread directly computes its array indices
from a global counter, eliminating the role of a master thread. After this simplification,
we were able to verify the example using the refined abstraction of Section 4.2.

The final kernel using atomics that we could not verify is the histo/histo main
kernel discussed above: after we fixed the read/atomic race, GPUVerify reported possi-
ble races on other, non-atomic arrays; we have yet to find strong enough loop invariants
to eliminate these false positives.

6 Related Work

Several recent works have focused on GPU kernel verification using SMT solving [13,3],
combined static and dynamic analysis [12] and separation logic with permissions [8].

244 E. Bardsley and A.F. Donaldson

The closest work to GPUVerify is the PUG technique and tool [13], and the methods
have been compared qualitatively and experimentally [3]. To our knowledge, ours is the
first work to present support for either warps or atomics in a verification technique.

Dynamic symbolic execution is used by the GKLEE [14] and KLEE-CL [5] tools
to find bugs in CUDA and OpenCL kernels, respectively. The GKLEE tool accurately
models warp-based execution and thus can find bugs in CUDA kernels precisely, with-
out reporting false positive data races that are impossible due to warp scheduling con-
straints. An extension to the GKLEE tool considers analysis of CUDA kernels that use
atomic operations [4]. On discovering a potential conflict involving atomic accesses,
thread schedules are enumerated to try to find a concrete counterexample to correct-
ness. Delay bounding [7] is used to limit schedule explosion. This method has proven
effective in finding bugs, but cannot be used to verify absence of defects. As noted in
Section 5, application of GKLEE is limited due to lack of support for floating point op-
erations. A proposal for extending the KLEE-CL method with support for atomics, via
a symbolic encoding of schedules, is proposed as future work in [6], but has not been
implemented.

The two-thread reduction employed by GPUVerify is also used in other methods for
GPU kernel analysis [13,15], and that several methods exploit the fact that race analysis
can be performed with respect to a single thread schedule [13,14,5].

7 Conclusions and Future Work

We have presented methods for extending a GPU kernel verification technique with
support for two additional inter-thread communication mechanisms: warps and atomics.
Our experimental evaluation shows that these extensions, implemented in the GPUVer-
ify tool, allow a larger set of kernels to be successfully analyzed.

Our main direction for future work will be the investigation of more sophisticated
abstractions for reasoning about atomic operations: extending the two-thread reduction
so that manipulation of atomic variables by master threads can be precisely handled,
as discussed in Section 5, and designing custom abstractions to capture further design
patterns associated with the use of atomics. We also plan to investigate the use of ver-
ification methods for kernel optimization. For example, warp divergence [14], where
threads in the same warp simulate different control flow paths through predicated ex-
ecution, is often regarded as a performance bug. By combining support for reasoning
about warps with prior work on barrier divergence [3], we can investigate the use of
verification to prove absence of warp divergence in complex kernels.

References

1. AMD, Inc.: AMD graphics cores next (GCN) architecture, white paper (2012)
2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular

reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

3. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a verifier for
GPU kernels. In: OOPSLA (2012)

Warps and Atomics in GPU Kernel Verification 245

4. Chiang, W.-F., Gopalakrishnan, G., Li, G., Rakamarić, Z.: Formal analysis of GPU programs
with atomics via conflict-directed delay-bounding. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 213–228. Springer, Heidelberg (2013)

5. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In: Eder,
K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 203–218. Springer,
Heidelberg (2012)

6. Collingbourne, P.C.: Symbolic Crosschecking of Data-Parallel Floating Point Code. Ph.D.
thesis, Imperial College London (2012)

7. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: POPL (2011)
8. Huisman, M., Mihelčić, M.: Specification and verification of GPGPU programs using

permission-based separation logic. In: BYTECODE (2013)
9. Khronos Group: The OpenCL extension specification, version 2.0 (2013)

10. Khronos Group: The OpenCL specification, version 2.0 (2013)
11. Leino, K., Rustan, M.: This is Boogie 2 (2008), manuscript KRML 178 (2008)
12. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU kernels

by test amplification. In: PLDI (2012)
13. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:

FSE (2010)
14. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE: concolic

verification and test generation for GPUs. In: PPoPP. ACM (2012)
15. Li, P., Li, G., Gopalakrishnan, G.: Parametric flows: automated behavior equivalencing for

symbolic analysis of races in CUDA programs. In: SC (2012)
16. NVIDIA Corporation: CUDA C programming guide, version 5.5 (2013)
17. Sengupta, S., Harris, M., Garland, M.: Efficient parallel scan algorithms for GPUs. Tech. Rep.

NVR-2008-003, NVIDIA (2008)
18. Stratton, J.A., et al.: Parboil: A revised benchmark suite for scientific and commercial

throughput computing. Tech. Rep. IMPACT-12-01, UIUC (2012)
19. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-step seman-

tics for analysis and verification of GPU kernels. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 270–289. Springer, Heidelberg (2013)

Testing-Based Compiler Validation
for Synchronous Languages�

Pierre-Loïc Garoche1, Falk Howar2, Temesghen Kahsai2,
and Xavier Thirioux3

1 ONERA
2 NASA Ames / CMU

3 IRIT

Abstract. In this paper we present a novel lightweight approach to vali-
date compilers for synchronous languages. Instead of verifying a compiler
for all input programs or providing a fixed suite of regression tests, we
extend the compiler to generate a test-suite with high behavioral cover-
age and geared towards discovery of faults for every compiled artifact.
We have implemented and evaluated our approach using a compiler from
Lustre to C.

1 Introduction

In the safety critical domain it is common to verify (safety) properties of systems.
Usually proofs for these properties are established at the level of source code or
formal models. Source code and/or models are compiled to executables for some
target platform. This compilation may invalidate already established verification
results. It is thus of utmost importance to have a trustworthy compilation pro-
cess. Existing approaches to trusted compilation fall into two categories. Either
they aim at verifying the compiler itself (e.g., [7]), or they aim at validating
the compiled output using a verified validator (e.g., [8]). Both exist in weaker
variants, where verification is replaced by testing. There exists a body of work
on generating test suites for verifying the correctness of a compiler (c.f., [3]).
Testing the correctness of a compiled artifact is usually done by some form of
specification-based testing (e.g., [9]).

The more rigorous approaches come at a high cost. Establishing the correct-
ness of a compiler takes a lot of effort. Developing and verifying a validator is
not less of an effort. Also, to be successful, a shared semantic basis is needed
between the source and the target language. Testing the correctness of a com-
piler is difficult because the set of potential input programs to a compiler is
potentially infinite and hard to sample in an automated fashion. Specification-
based testing, on the other hand, is well understood and cheap (compared to
the other approaches). It will, however, in many cases not uncover errors in a
compiler: test-suites are geared towards finding violations of a specification and
not towards uncovering faults in the translation of a program.
	 Acknowledgement for the projects ANR INS CAFEIN and NSF Craves.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 246–251, 2014.
c© Springer International Publishing Switzerland 2014

Testing-Based Compiler Validation for Synchronous Languages 247

Fig. 1. Schematic view of a testing-based validating compiler from Lustre to C

In this paper, we present a lightweight approach to compiler validation. We
build our validating compiler upon specification-based testing, which we aug-
ment with a method for generating test cases targeting potential bugs in a com-
piler. Fig. 1 illustrates an overview of the developed framework. The lightweight
validating compiler from Lustre to C consists of five main components: A mod-
ular compiler from Lustre to C, a test suite generator for Lustre programs, a
grammar-based mutant generator for Lustre programs, a test suite enhancer –
extends test suites with test cases for killing mutants – and a validator, which
will execute the test suite on the compiled C program. The validator will use
the input Lustre program as a test oracle. Test results are provided as output
along with the compiled C program.

The central idea of this approach is twofold. On one hand, we verify that the
compiler did not introduce any difference between the source program (Lustre)
and the compiled version (C). We do this by generating automatically test suites
from the source program (Lustre) based on MC/DC coverage criterion. On the
other hand, we use mutations of the source program to simulate bugs in the com-
piler, and that test cases that differentiate mutations from the original program
are likely to uncover errors in the translation of this program. We have imple-
mented a prototypical version of such a lightweight validating compiler from
Lustre to C. In this paper, we discuss the different components of our approach
and present some results from a preliminary evaluation of our technique.
Outline. The paper is structured as follows: The next section, introduces the
synchronous language Lustre and outlines our coverage-based test synthesis us-
ing bounded model checking (BMC). Section 3 presents how we reinforce test
suites using mutants. Finally, Section 4 presents our preliminary experimental
evaluations.

2 MC/DC Test Suites for Lustre Programs

Synchronous languages are a class of languages proposed for the design of “reac-
tive systems” – systems that maintain a permanent interaction with a physical
environment. Such languages are based on the theory of synchronous time, in
which the system and its environment are considered to both view time with

248 P.-L. Garoche et al.

some “abstract” universal clock. In order to simplify reasoning about such sys-
tems, outputs are usually considered to be calculated instantly [1]. In this paper,
we will concentrate on Lustre [4]. Lustre combines each data stream with an as-
sociated clock as a means to discretize time. The overall system is considered to
have a universal clock that represents the smallest time span the system is able
to distinguish, with additional, coarser-grained, user-defined clocks. Lustre pro-
grams and subprograms are expressed in terms of nodes. Nodes directly model
subsystems in a modular fashion, with an externally visible set of inputs and
outputs. A node can be seen as a mapping of a finite set of input streams (in the
form of a tuple) to a finite set of output streams (also expressed as a tuple). At
each instant t, the node takes in the values of its input streams and returns the
values of its output streams. Operationally, a node has a cyclic behavior: at each
cycle t, it takes as input the value of each input stream at position or instant
t, and returns the value of each output stream at instant t. Lustre nodes have
a limited form of memory in that, when computing the output values they can
also look at input and output values from previous instants, up to a finite limit
statically determined by the program itself. Figure 2 describes a simple Lustre
program: a node that every four computation steps activates its output signal,
starting at the third step. The reset input reinitializes this counter.

node c oun t e r (r e s e t : boo l) r e t u r n s (a c t i v e : boo l) ;
var a , b : boo l ;
l e t

a = f a l s e −> (not r e s e t and not (pre b)) ;
b = f a l s e −> (not r e s e t and pre a) ;
a c t i v e = a and b ;

t e l

Fig. 2. A simple Lustre program

Lustre programs can be compiled to main stream languages such as C or Java.
Whereas initial compilation schemes of Lustre were computing a global automa-
ton of the system [4], the approach of [2] relies on an object-like compilation of
the program: each Lustre node call is seen as an instance of the generic declara-
tion of the node. Our compiler from Lustre to C follows the latter approach.

A traditional technique to verify safety properties of synchronous languages
is to use SMT-based model checking [6]. Such technique requires a predicate
M[s̃, ĩn, s̃′, ˜out]1 describing the relationship between input flows ĩn, output flows
˜out as well as internal states s̃ for the model M it represents. It also requires

a predicate over initial states Minit[s̃] as well as a condition C[s̃, ĩn, ˜out] we are
trying to meet at some time. A valid finite trace of length n for M would satisfy
the following expression:

Minit[s̃0] ∧
n−1∧
i=0

M[s̃i, ĩni, s̃i+1, ˜outi] ∧ C[s̃n, ĩnn, ˜outn]

1 We refer to the traditional definition of transition system in model checking tech-
niques. A detailed description of a transition system for Lustre programs can be
found in [5].

Testing-Based Compiler Validation for Synchronous Languages 249

A satisfiability check using an SMT solver over this expression for a given n
will produce a set of values for ĩni, s̃i and ˜outi for i ∈ [0..n]. In practice, tools
unroll the transition relation one step at a time trying to meet the specific C
condition. This can be done efficiently with an SMT solver by reusing previously
computed states. We denote by bmc(Minit,M,C) such a typical BMC algorithm.

We generate test suites using Modified Condition/Decision Coverage (MC/DC)
coverage criterion. The latter has been used as a test adequacy metrics for decades
specially when testing critical software. We express MC/DC criteria as a pred-
icates C[s̃, ĩn, ˜out] and use BMC to find test cases that satisfy these predicates.
From a decision P (c1, . . . , cn) where the ci’s are a set of atomic conditions over
the variables s̃, ĩn and ˜out, we have to exert the value of each condition ci with re-
spect to the global truth value ofP , the other conditions cj �=i being left untouched.
Precisely, we have to find two test cases for which, in the last element of the trace,
ci is respectively assigned to False and True.
Remark: Bounded model checking may not be able to find a test case for some
condition within an acceptable time limit2. In such cases, we conclude that the
generated test suite does not reach the MC/DC coverage.

3 Reinforcing Test Suites via Mutation Testing

In the following, we denote by a mutant a mutated model or implementation
where a single mutation has been introduced. The considered mutation, which
is grammar based, does not change the control flow graph or the structure of
the semantics but could either: (i) perform arithmetic, relational or boolean
operator replacement; or (ii) introduce additional delay (pre operator in Lustre)3,
or (iii) negate boolean variables or expressions; or (iv) replace constants. Such
generation of mutants has been implemented as an extension of our Lustre to
C compiler. Once mutants are generated and the coverage-based test suite is
computed, we can evaluate the number of mutants killed by the test suite. This
evaluation is performed at the binary level, once the C code has been obtained
from the compilation of the mutant. In this setting, the original Lustre model acts
as an oracle, i.e., a reference implementation. Any test that shows a difference
between a run of the original model compiled and a mutation of it, allows to kill
this mutant.

In the literature, mutants are mainly used to evaluate the quality of a test
suite. In our case, the motivation is different, we aim at providing the user with
a test suite related to its input model. This test suite covers the model behavior
in order to show that the compiler doesn’t introduce bugs. We conjecture that a
test suite achieving a good coverage of the code but unable to kill many mutants
would not certify that the compiler did a good job. We thus introduce new tests
to kill the un-killed (or resistant) mutants by the initial MC/DC-based test suite.

2 In our experiments the timeout for BMC was set to 100 secs.
3 Note that, introducing additional delay could produce a program with initialization

issues.

250 P.-L. Garoche et al.

(1) proc genNewTest(Minit,M,M ′
init,M

′) ≡
(2) M ′′ := gen_mcdc_conds(Minit,M);
(3) test := bmc(Minit[x̃ ∧M ′

init[ỹ],

(4) M [˜xk−1, ˜ink−1, x̃k, ˜outk−1] ∧M ′[˜yk−1, ˜ink−1, ỹk, ˜out′k−1],
(5) ¬(out = out′))
(6) print test

Fig. 3. A procedure to introduce new test cases in order to kill previously un-killed
mutants

Figure 3 illustrates the procedure to generate new test cases that allow to kill
previously un-killed mutants. If the call to BMC (Line 3) does not terminate
within the timeout (100 sec in our experiments), we don’t introduce a new test
case.

4 Experimental Evaluation

We have implemented a prototypical version of the lightweight validating com-
piler from Lustre to C using the PKind model checker [6] and have performed
a preliminary evaluation4. We ran the lightweight validating compiler on a set
of 330 Lustre benchmarks. For every benchmark, we use MC/DC conditions to
generate basic test suites. We then automatically generate a set of mutants (160
on average) for each benchmark.

Test suite generated via BMC guided by MC/DC conditions were able to
achieve 100% MC/DC coverage on 10% of the overall benchmark. On the remain-
ing 90% benchmarks, 87% of the MC/DC conditions could be satisfied, while
13% could not be satisfied. On average, test cases generated using BMC guided
by the MC/DC conditions were able to kill 25.12% of the generated mutants
(with a standard derivation of 0.26). Test cases generated using the procedure
highlighted in Figure 3 increased the performance of these basic test suites by
56% (std. dev. of 1.06). In absolute terms, the combined test suites killed 34% of
the mutants (std. dev. of 0.31). Figure 4 shows a view on this results. For every
experiment we show the percentages of mutants killed by MC/DC generated test
cases and additional mutants killed by test cases generated using genNewTest.
The data set was sorted by the overall number of killed mutants.

Considering these results, the number of mutants that could not be killed
is strikingly high. We believe that this is due to many behaviorally equivalent
mutants being generated. This is supported by the relatively high number of
cases for which we could not satisfy MC/DC conditions, indicating the existence
of dead code in the examples. This will have to be substantiated in a future
investigation.

4 The prototypical implementation, benchmarks and results can be found at
https://bitbucket.org/lememta/nfm-14

https://bitbucket.org/lememta/nfm-14

Testing-Based Compiler Validation for Synchronous Languages 251

Fig. 4. Killed mutants per Benchmark. Ordered by percentage of mutants killed

5 Future Work

As a next step we plan to assess the fault finding capabilities of the generated
test suites and compare these to other methods for generating test suites (e.g.,
random testing). A more recent work by Whalen et. al extended MC/DC with
a notion of observability (OMC/DC) [9]. Our approach is orthogonal to such, in
principle any coverage criterion can be used to generate the initial test case. We
plan to integrate the OMC/DC technique in our validating compiler. Moreover,
we plan to perform experiments with seeded bugs in the Lustre to C compiler to
confirm that the mutations that we selected on Lustre programs mimic the effects
of potential bugs in a compiler. We also plan to investigate how the validation
results can be quantified and provide an estimate for the trustworthiness of the
compiler. Finally, we plan to extend this work to object oriented languages.

References

1. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time sys-
tems. In: Proceedings of the IEEE, pp. 1270–1282 (1991)

2. Biernacki, D., Colaço, J.L., Hamon, G., Pouzet, M.: Clock-directed modular code
generation for synchronous data-flow languages. In: Flautner, K., Regehr, J. (eds.)
LCTES, pp. 121–130. ACM (2008)

3. Boujarwah, A., Saleh, K.: Compiler test case generation methods: a survey and
assessment. Information and Software Technology 39(9), 617–625 (1997)

4. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for
programming synchronous systems. In: POPL 1987, pp. 178–188. ACM Press (1987)

5. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with
SMT-based techniques. In: FMCAD 2008, pp. 109–117. IEEE (2008)

6. Kahsai, T., Tinelli, C.: PKind: a parallel k-induction based model checker. In:
PDMC. EPTCS, vol. 72, pp. 55–62 (2011)

7. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

8. Necula, G.C.: Translation validation for an optimizing compiler. SIGPLAN
Not. 35(5), 83–94 (2000)

9. Whalen, M., Gay, G., You, D., Heimdahl, M.P.E., Staats, M.: Observable modified
condition/decision coverage. In: ICSE 2013, pp. 102–111. IEEE Press (2013)

Automated Testcase Generation for Numerical

Support Functions in Embedded Systems

Johann Schumann1 and Stefan-Alexander Schneider2

1 SGT, Inc./ NASA Ames, Moffett Field, CA 94035
Johann.M.Schumann@nasa.gov

2 Schneider System Consulting, München, Germany
sahschneider@gmx.de

Abstract. We present a tool for the automatic generation of test stimuli
for small numerical support functions, e.g., code for trigonometric func-
tions, quaternions, filters, or table lookup. Our tool is based on Klee to
produce a set of test stimuli for full path coverage. We use a method of
iterative deepening over abstractions to deal with floating-point values.
During actual testing the stimuli exercise the code against a reference
implementation. We illustrate our approach with results of experiments
with low-level trigonometric functions, interpolation routines, and math-
ematical support functions from an open source UAS autopilot.

1 Introduction

Modern aircraft, spacecraft, or cars contain a large amount of software that is
required to function properly for safe system operation and to accomplish the
mission. It is estimated that a modern mid-size car is running more than 100
millions lines of code [1] on potentially more than 100 individual processing units.
With the increase of software size and complexity, model-based approaches have
found their way into safety-relevant applications in the aerospace and automotive
domain. Although extensive analyses can be performed on the model level, a
large percentage of the overall development cost for safety-critical software is
spent on Verification and Validation (V&V) of the actual code and has become
a huge challenge for system integrators and subsystem vendors.

Several prominent standards have been developed that require testing with a
specific coverage metric depending on the safety-criticality of the code. For exam-
ple, ISO 26262 Road Vehicles [2] requires testing according to MC/DC (Modified
Condition Decision Coverage) for code belonging to Automotive Safety Integrity
Level (ASIL) D. For levels A and B, only statement coverage is “highly recom-
mended”. Similarly, DO 178-C [3] defines levels A–E, where level A concerns the
most critical software that has to be tested to 100% MC/DC coverage.

The application software, in particular, when generated using a model-based
tool, requires a large number of low level support routines, which typically
include advanced floating point operations (like trigonometric functions, matri-
ces, vectors, or quaternions) as well as support functions for the auto-generated
code (e.g., table look-up, interpolation, filters, or integrators). Many embedded

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 252–257, 2014.
c© Springer International Publishing Switzerland 2014

Automated Testcase Generation for Numerical Support Functions 253

system use the Netlib1 mathematical library, or parts thereof like FDLIBM.2

Also, John Hauser’s SoftFloat3 is being widely used. Most underlying algorithms,
approximations, and tables are based on well-known algorithms [4]. Often such
routines are part of the compiler or operating system package. Therefore, they
are assumed to be given and correct and their proper testing tends to be ignored.

Because testing of such routines is essential, but manual test case generation
is cumbersome and time consuming, we have developed a tool for the automatic
generation of test stimuli for small numerical subroutines. In the following, we
will first give a description of testcase generation using symbolic execution with
Klee. We then describe our tool architecture and discuss iterative deepening
of abstractions. To illustrate advantages and limitations of our tool, we present
results of experiments on trigonometric subroutines, table lookup, and a set of
low-level mathematical support functions for an open source autopilot.

2 Automatic Testcase Generation

The input to our tool is a support function o = f(x1, . . . , xm) implemented4 in C
or C++. The tool generates test stimuli, i.e., a set of vectors with concrete values
〈xi

1, . . . , x
i
m〉 that, when given as parameters to f , will fully cover the code of f .

For testing, we use the test stimuli to exercise f , compare the calculated result
o against a reference implementation and measure the code coverage according
to the required coverage metric using an external tool.

Since we test against a reference implementation and do not use the output
of our tool as an oracle, soundness of stimulus generation tool is not required.
Tool unsoundness, however, can lead to an increased number of unnecessary test
stimuli, decreasing testing performance.

Due to the requirement of handling floating-point values, the testcase gener-
ation has to be incomplete in general. Our tool architecture uses iterative deep-
ening over abstractions to accomplish a reasonably complete set of test stimuli.
We obtain the actual coverage by using an external trusted tool.

For the testcase generation, we use Klee,5 which is a symbolic execution
engine based upon the LLVM framework.6 It exhaustively explores all paths of
the code; variables of interest (in our case, xi) are treated as symbolic values, and
each path is represented by a path constraint. For example, the code fragment
if (x<0 || x>10) A; else B; produces three distinct path constraints: 〈[x < 0] :
A〉 means that A can be reached by making the first condition true; similarly for
〈[x > 10] : A〉, the second condition must be true. Finally, the path constraint
〈[¬(x < 0) ∧ ¬(x > 10)] : B〉 reaches B. Solving each path constraint leads to a
set of test stimuli, for example, {−1, 11, 5}. Here, 3 test cases are needed for full

1 http://netlib.org
2 http://www.netlib.org/fdlibm
3 http://jhauser.us/arithmetic/SoftFloat.html
4 This code can also include calls to initialize objects or data structures.
5 klee.llvm.org or [5]
6 http://www.llvm.org

http://netlib.org
http://www.netlib.org/fdlibm
http://jhauser.us/arithmetic/SoftFloat.html
klee.llvm.org
http://www.llvm.org

254 J. Schumann and S.-A. Schneider

path coverage; statement coverage only requires two stimuli, e.g., {−1, 5}. Klee
uses the powerful STP7 solver to find solutions for the path constraints. However,
Klee only provides very little support for floating point numbers; in most cases,
Klee silently instantiates the variable with a random value. KLEE-FP [6] has
been designed to reason about equivalence of floating point numbers and is not
suitable for this task. Yet, we chose to use Klee, because it can handle the full
C/C++ syntax and provides support for bitwise operations, which is essential
for our purposes.

Our tool architecture and process is depicted in Figure 1. Starting with code
under test P , which implements the function o = f(·) in one or more syntactic
procedures, and an initial set of parameters d = 0, a parameterized abstraction
is generated and applied to P . In this abstraction, all variables of type float or
double are converted to integers. Each floating point constant c is represented as
sign(c)1min(maxint, |c| × 10d)2. We chose a base of 10 because then the abstrac-
tion can be done on the source code by simply moving decimal points. Embedded
function calls to other low-level routines (e.g., sqrt, sin) are abstracted by sim-
ple Taylor series or table lookup. Since most of the results of floating point
operations in P do not show up in equality comparisons in conditional state-
ments, our abstraction is often successful by using this fixed-point abstraction
with d decimal places. Additional abstraction parameters define, how often P
is invoked during each test—an important step for testing reentrant functions
like filters. The abstracted code PA is processed by Klee, which returns a set of
(abstracted) test stimuli TA. They might cover all paths in PA or only a subset
if Klee timed out. We translate TA into actual test stimuli and use them to
exercise P ; coverage is measured on the original code P . If we are not satisfied
with the results, the parameters controlling the abstraction are incremented and
the iterative deepening loop starts again.

d=0 P

Deabstract

KLEEab
st

ra
ct

io
n(

d)

100%?

d=d+1

Abstract

PA TSA

P

Cov. test

Stop

Start

P

Fig. 1. Tool architecture

7 http://people.csail.mit.edu/vganesh/STP_files/stp.html

http://people.csail.mit.edu/vganesh/STP_files/stp.html

Automated Testcase Generation for Numerical Support Functions 255

3 Experiments

In this section, we describe selected experiments with this tool and discuss find-
ings, advantages, and limitations of our approach.
Trigonometric Functions. Functions to calculate trigonometric functions are
often considered part of the operating system or compiler. However, for small
embedded systems, such functions must be provided externally and must be
tested accordingly. As an example, consider a standard implementation (e.g.,
[8]) of the trigonometric function double sin(double x). In a first step,8 the
input x is broken down into its components (exponent, mantissa, and sign)
according to IEEE 754 [7] using a C union and bit-fields. After handling cases
for infinity, NaN, and very small argument values, x is normalized to [0 . . . π/2],
and the quadrant is determined. Finally, the function value is approximated by
a 7th order polynomial. A complex algorithm for multiplication without loss
of accuracy is used (see [8], [9]). Multiple macro definitions are used to handle
machine-dependent issues. Although there are no loops in this code, there is a
substantially complex control flow with 10 nested if-then-elses and one switch
statement with 4 cases and an empty default label. Such a code structure makes
a manual development of test cases hard.

With our tool, we generated a total of 44 test stimuli in less than 10s CPU
time on an Intel Macbook Pro. This set of stimuli also contain NaN and Inf,
which are encoded according to IEEE 754 by specific settings of mantissa and
exponent bits. Several iterations of abstractions resulted in d = 7. Due to tech-
nical restrictions of KLEE, it also was necessary to pass two 32bit integer values
instead of one 64bit double to the function.

When executing the generated test stimuli, two interesting observations could
be made: (1) a comparison of the calculated values against the standard Mac
OSX implementation revealed that, while the error between this code and the
reference was in general between 10−11 and 10−18, two test stimuli caused errors
that were larger than 3 × 10−6, which might give raise to some concern. (2) a
detailed analysis of the results with the industry-standard testing and coverage
tool LDRA9 revealed that this piece of code, which is actually a part of a com-
mercial distribution, contains dead code. The empty default label in the switch
statement can never be reached due to the range of the argument. Thus no test
set can produce 100% MC/DC coverage, a fact which makes one wonder if that
routine was ever tested according to that metric.
Interpolation Table. One of the most common block types in model-based
systems like Simulink is the table lookup or 1-D interpolation block. Given an
input u, it calculates an approximation of f(u), whereby values of f(x) for mono-
tonically increasing values of x are given statically as a table (see Figure 2A for a
code sketch). We have analyzed a generic version of an 1-D table lookup, which
is somewhat similar to Mathworks’ rt look.c.10 After checking for boundary
cases, a binary search is used to find the appropriate indices into the table.

8 See suppl. material ti.arc.nasa.gov/profiles/schumann/publications/nfm2014
9 http://ldra.com

10 rtw demos/rt look.c is found in Mathworks’ distribution of RealTime Workshop.

ti.arc.nasa.gov/profiles/schumann/publications/nfm2014
http://ldra.com

256 J. Schumann and S.-A. Schneider

We used our tool to generate test stimuli for two relevant scenarios: (1) given
a concrete lookup table 〈x, f(x)〉1..len, find values for u such that all paths are
covered. E.g., for x = 〈−2, 0, 3, 5, 8〉, and f the identity function, the following six
test cases for u are generated in less than 0.1s: u ∈ {−2147483648,−1, 0, 2, 4, 6, 8}.
Here, d = 1 was sufficient to obtain full coverage. In general, the necessary value
of d depends on the minimal difference Δ = xi+1−xi. In the abstracted program
Δ must be at least 2 in order to trigger the divide-and-conquer algorithm. This
requires that d ≥ log103mini(xi+1−xi)4. In scenario (2), given the desired length
len of the interpolation table, triples (〈x, f(x)〉, u) with length(x) = len are gen-
erated such that the code is fully covered. Note that the values of x must be
increasing monotonically. Therefore, the additional constraint x1 < x2 . . . must
be specified in the test driver. Figure 2B shows, for different values of len, the
number C0 of all generated stimuli and the number C of stimuli that obey our
constraint and can be used as proper test stimuli.

double lookup (double ∗x , double ∗ f , int l en , double u){
i f (u <= x [0]) return f [0] ; // o u t s i d e t h e t a b l e (l e f t)
e lse i f (u >= x [len −1]) return f [len −1] ; // o u t s i d e (r i g h t)
e lse

for (; ;) { // do b i n a r y s e a r c h
a s s e r t ((x [bot] < u) && (u < x [top])) ;

ind = (bot + top)/ 2 ; // f i n d m i d d l e
i f (. . .)

top = . . . ; bot = . . .
e lse

return f [ind] ;
} }

len C0 C t[s]

5 15 11 0.3
10 32 9 1.2
20 66 19 4.6
30 96 29 10.2

100 330 231 130

Fig. 2. A: code sketch of interpolation routine, B: number of generated test stimuli

All results have been obtained with the assertion assert (Fig. 2A) turned off.
When activated, it is textually replaced by a conditional statement that aborts
the execution if the condition is not met. Interestingly, Klee could still find a
full coverage test set. This indicates that there exist stimuli u, which, for a given
table x, cause the abortion of the execution. In an embedded system, such a
behavior could have disastrous consequences. A closer look at the code reveals
that the actual binary search loop is correct, but the assertion in rt look.c is
wrong (R2014a and earlier).

ArduPilot. ArduPilot11 is an open source project aiming to provide high qual-
ity code for a simple autopilot for small fixed wing or rotorcraft UAVs, RC cars,
or model boats. Ardupilot is implemented in C++ and runs on the Arduino
platform.12 Its mathematical libraries contain numerous functions dealing with
trigonometric functions (via table lookup), vectors, matrices, quaternions, and
filters. We used our tool to generate test stimuli for a number of those functions,
leveraging the fact that Klee can work on C++ code with templates. Although
the code for each function is short and usually does not contain any loops, the
presence of (nested) conditional statements makes our tool convenient for the
task of testcase generation. In our experiments, we generated between 2 and

11 http://code.google.com/ardupilot-mega
12 http://arduino.cc

http://code.google.com/ardupilot-mega
http://arduino.cc

Automated Testcase Generation for Numerical Support Functions 257

more than a hundred test stimuli (e.g., 116 for a function, which determines if a
point is inside or outside a closed polygon with 7 edges).

4 Conclusions and Future Work

We have presented a tool for the automatic generation of test stimuli for small
numeric support functions. Based upon Klee, it uses iterative deepening over
abstractions to deal with floating point operations. Because in practically all
examples we analyzed so far, the results of floating point operations in P do not
show up in equality comparisons, our abstraction is often successful in producing
a sufficient set of test stimuli. Although our tool has been able to conveniently
and automatically generate test stimuli for a number of small, but often “tricky”
numerical support routines, our approach still has several shortcomings. For
example, configuration parameters and #define macros or template parameters
(e.g., length of a filter buffer) currently cannot be treated symbolically and thus
cannot be varied by our tool. Furthermore, preparation and abstraction of the
code has not been fully automated yet, and support for writing test drivers and
test scripts with symbolic variables is still very primitive. Obviously, scalability
is an issue with larger programs, or programs, which contain nested loops (e.g.,
matrix operations). There, the restriction to MC/DC coverage to substantially
reduce number of explored paths and generated stimuli and an abstraction for
loops or the ability to modify Klee’s behavior on generating path conditions
should be investigated.

References

1. Charette, R.: This car runs on code (2009),
http://spectrum.ieee.org/green-tech/advanced-cars/

this-car-runs-on-code
2. Intl. standard ISO 26262 Road Vehicles – functional safety 1st edn. (2011)
3. RTCA: DO-178C: Software considerations in airborne systems and equipment

certification (2011)
4. Hart, J.F., Cheney, E.W., Lawson, C.L., Maehly, H.J., Mesztenyi, C.K., Rice, J.R.,

Thacher, J.H.G., Witzgall, C.: Computer Approximations. SIAM Series in Applied
Mathematics. John Wiley and Sons (1968)

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Symp. on
Operating Systems Design and Implementation, OSDI, pp. 209–224 (2008)

6. Collingbourne, P., Cadar, D., Kelly, P.: Symbolic Crosschecking of Floating-Point
and SIMD Code. In: EuroSys (2011)

7. IEEE standard 754 for floating-point arithmetic (2008)
8. Overton, M.L.: Numerical computing with IEEE floating point arithmetic - includ-

ing one theorem, one rule of thumb, and 101 exercises. SIAM (2001)
9. Huckle, T., Schneider, S.A.: Numerische Methoden: Eine Einführung für Infor-

matiker, Naturwissenschaftler, Ingenieure und Mathematiker. Springer (2006)
10. Giannakopoulou, D., Bushnell, D.H., Schumann, J., Erzberger, H., Heere, K.: Formal

testing for separation assurance.Annals ofMathematics andArtificial Intelligence 63,
5–30 (2011)

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

REFINER: Towards Formal Verification
of Model Transformations

Anton Wijs and Luc Engelen

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
{A.J.Wijs,L.J.P.Engelen}@tue.nl

Abstract. We present the Refiner tool, which offers techniques to de-
fine behavioural transformations applicable on formal models of concur-
rent systems, reason about semantics preservation and the preservation of
safety and liveness properties of such transformations, and apply them
on models. Behavioural transformations allow to change the potential
behaviour of systems. This is useful for model-driven development ap-
proaches, where systems are designed and created by first developing
an abstract model, and iteratively refining this model until it is con-
crete enough to automatically generate source code from it. Properties
that hold on the initial model and should remain valid throughout the
development in later models can be maintained, by which the effort of
verifying those properties over and over again is avoided. The tool in-
tegrates with the existing model checking toolsets mCRL2 and Cadp,
resulting in a complete model checking approach for model-driven system
development.

1 Introduction

Refiner1 is a tool to verify so-called behavioural transformations of formal mod-
els of concurrent systems. Such transformations allow to manipulate the potential
behaviour of the processes in a model. The ability to verify them opens up the
possibility to step-wise develop complex concurrent systems, while preserving
important system properties. Step-wise system development allows a developer
to start the design phase with an abstract model, and making it more and more
concrete through small, manageable transformations, until a model has been
obtained with sufficient information to generate source code from it.

With Refiner, a developer can construct behavioural transformations, which
the tool can efficiently analyse to determine if it preserves the semantics of models
it is applied on, and if it preserves given safety or liveness properties. To the best of
our knowledge, this is the first tool that can automatically check property preser-
vation of user-defined model transformations, independent of source models. The
topic is related to refinement checking. However, tools such as Rodin [1], FDR2,2

1 Available at http://www.win.tue.nl/~awijs/refiner
2 http://www.fsel.com/documentation/fdr2/html

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 258–263, 2014.
c© Springer International Publishing Switzerland 2014

http://www.win.tue.nl/~awijs/refiner
http://www.fsel.com/documentation/fdr2/html

REFINER: Towards Formal Verification of Model Transformations 259

Csp-Casl-Prover [2] can establish refinements between given models, but not
verify transformation rules. Atelier B3 uses a notion comparable to transforma-
tion rules, but verifies resulting models instead of the rules themselves.

Semantics and property preservation checking is done by a single analysis tech-
nique. The first case is useful for refactoring and restructuring of models, while
the second one allows for behaviour refinements. The technique is independent
of the input and output models; it does not involve the state space of either of
them, hence it usually works many orders of magnitude faster than repeated ver-
ification of the models through standard model checking, and it allows to build a
repository of verified transformations. The tool integrates with the action-based,
explicit-state model checking toolsets Cadp [3] and mCRL2 [4]. These tools can
be used to model concurrent systems in process algebras and automata, and to
verify that the models satisfy functional properties. The semantics of the pro-
cesses in such models can be represented by Labelled Transition Systems (LTSs),
and the process LTSs can be combined using synchronisation composition. In
Refiner, transformations are formalised as LTS transformations, defining which
patterns in the LTSs need to be transformed into particular new patterns.

The theoretical basis has been published as [5–7]. Since then, a prototype
implementation has been further developed to a complete tool, with a graphical
user interface and multi-core computation capability.

2 Models and Model Transformations

Refiner uses a compositional action-based formalisation of system behaviour,
i.e. LTSs are used to define the potential behaviour of individual processes and of
systems as a whole. Its techniques are therefore applicable on any model with an
LTS semantics, e.g. expressed in a process algebra. An LTS is a quadruple G =
〈SG ,AG , TG , sG〉, with sG the initial state, SG the (finite) set of states reachable
from sG , AG a set of actions used to identify events, τ �∈ AG being a special action
representing internal events, and TG : SG ×AG ∪ {τ} × SG a relation expressing
which actions can be performed in which states, and what the resulting state is.
With s

a−→G s′, we express that 〈s, a, s′〉 ∈ TG .
Process LTSs can be combined into a system. This is formalised as a network

of LTSs [8]. In the following, given an integer n > 0, 1..n is the set of integers
ranging from 1 to n. A vector v of size n contains n elements indexed by 1..n.
For i ∈ 1..n, v[i] denotes element i in v.

Definition 1 (Network of LTSs). A network of LTSs M of size n is a
pair 〈Π,V〉, where
– Π is a vector of n (process) LTSs. For each i ∈ 1..n, we write Π [i] =
〈Si,Ai, Ti, Ii〉, and s1

b−→i s2 is shorthand for s1
b−→Π[i] s2;

– V is a finite set of synchronisation laws. A synchronisation law is a tuple
〈t, a〉, where a is an action label, and t is a vector of size n called a synchro-
nisation vector, in which for all i ∈ 1..n, t[i] ∈ Ai ∪{•}, where • is a special
symbol denoting that Π [i] performs no action.

3 http://www.atelierb.eu

http://www.atelierb.eu

260 A. Wijs and L. Engelen

M0

req

get(p)

show(p)

M1

(〈isreq, irreq〉, req),
(〈irget, isget〉, iget), . . .

isreq

irget(p)

show(p)

irreq

ereq get(p)

isget(p)

M2

isreq

irget(p)

show(p)

irreq

check

isget(p)

check

ereq

get(p)

store

isget(p)

Fig. 1. Three versions of a network modelling an agent fetching pages

0

2

1

req

get(p)

r0

0

2

1

isreq

irget(p)

p0

0

1 2

3

irreq

ereq get(p)

isget(p)

isreq irreq �→ req, isget irget �→ iget

0

1 2

3

irreq

ereq get(p)

isget(p)

r1
0

1

2 3

4

5

6
irreq

check

isget(p)

check

ereq

get(p)

store

isget(p)

Fig. 2. Rules r0, p0 of rule system R0, and r1 of rule system R1

The synchronous composition LTS(M) defined by a network M represents
the state space of M, and is an LTS with s = 〈s1, . . . , sn〉, A = {a | 〈t, a〉 ∈ V},
S = S1 × . . .× Sn, and T is the smallest relation satisfying:

〈t, a〉 ∈ V ∧ (∀i ∈ 1..n)

(
(t[i] = • ∧ s′[i] = s[i])

∨ (t[i] �= • ∧ s[i]
t[i]−−→i s

′[i])

)
=⇒ s

a−→ s′.

We formalise behavioural model-to-model transformations from networks of
LTSs to new networks of LTSs as rule systems, containing a finite number of LTS
transformation rules. Such a rule consists of a pair of LTSs L → R. The used
transformation mechanism is the double-pushout method from graph transforma-
tion [9]: L defines a pattern, to be found and replaced in a given LTS G (for this,
a match, i.e. an injective homomorphism, m : L → G must be established), and
R defines the pattern that should replace all occurrences of L in G. Apart from
some conditions that need to hold in order to have a valid match of L on an LTS
G,4 a subset of so-called glue-states S ⊆ SL ∩SR is defined, which indicates how
L relates to R. When applying transformation on a match m : L → G, resulting
in a new LTS T (G), first, all states matched on SL \S and all related transitions
are removed, and second, each state in SR \ S (and related transitions) leads to
a new state in ST (G) (and new related transitions in TT (G)).

Rules are applied on process LTSs of a network to transform it, but rule sys-
tems also include left and right synchronisation laws, expressing how behaviour
in the left and right rule patterns, respectively, should synchronise with each
other and the outside world. In order for a rule system R to be applicable on a
network M, the left laws of R must be compatible with those of M, and if so,
then the right laws of R are introduced when transforming.

4 The interested reader is referred to [6,9].

REFINER: Towards Formal Verification of Model Transformations 261

Figs. 1 and 2 show a small, but illustrative example of the approach. In Fig. 1,
network M0 is an abstract specification of an agent, for instance a web browser,
which can request a page (req), receive a page p (get(p)), and display it (show(p)).
Initial states of LTSs are marked with an incoming arrowhead. Actually, M0 is
still very abstract, and we wish to specify that the communication with the out-
side world is handled by an additional component. This is added in M1, and we
have two new laws expressing the need for synchronisation between the two com-
ponents over actions internal to the system (these actions are prefixed by ‘i ’). We
can obtain M1 from M0 by transforming the latter using a rule system R0 defined
in Fig. 2. There, black states are glue-states, and square black states are glue-states
with the added condition that states matched on them do not have outgoing tran-
sitions that are not covered by the left pattern. Rule r0 rewrites the component
we already had in M0, and p0 is a special kind of rule called a process adding rule,
which adds a new component. It can be interpreted as a rule with an empty left
pattern. Finally, it introduces two new laws, expressed without using vectors, since
the rules have no fixed order. When transforming, these are matched on the input
network to derive concrete new laws for the new network.

Likewise, M1 can be transformed to M2 with the motivation that the com-
munication component should have a local buffer, and check for each request
whether that page is already in the buffer before attempting communication
with the outside world. Rule r1 of Fig. 2 can be applied on M1 to obtain M2.

In this example, the networks are not much larger than the rule systems, but
in practice, they usually are, and rules are often applicable in multiple places.

Verification of Transformations. Refiner can check whether a rule system R is
confluent, i.e. leads to a unique target model, and verify whether it is semantics
preserving and/or correctness preserving, i.e. that it preserves a desired system
property. In both cases, it identifies, based on the left and right laws of R, which
transformation rules are dependent on each other. Two rules r = Lr → Rr,
r′ = Lr′ → Rr′ are dependent iff in Lr (or Rr), there is at least one transition
that needs to synchronise with a transition in Lr′ (orRr′). This partitions the set
of rules in R into sets of dependent rules. For each set D of dependent rules,5 the
left patterns and the right patterns of all the elements are combined into two new
networks DL and DR. For semantics preservation, it is checked if LTS(DL) and
LTS(DR) are (strongly) bisimilar, i.e. whether they can be considered equivalent.

A more general approach is required to check the preservation of particular
properties. In order to allow the semantics to be altered, DL and DR should be
compared w.r.t. a given property, instead of the entire semantics. For this, we
move the LTS(DL) and LTS(DR) to an appropriate level of abstraction before
the analysis, using the maximal hiding technique [10]. For any property ϕ written
in the μ-calculus fragment Ldsbr

μ [10], maximal hiding hides all actions in an LTS,
i.e. renames them to τ , that are not crucial for the truth-value of ϕ. Furthermore,
it is shown in [10] that if ϕ is satisfied by an LTS G1, and G1 is divergence-sensitive

5 In addition to each D, also all their subsets are involved in the analysis, the latter
representing situations with unsuccessful synchronisation. For the details, see [6].

262 A. Wijs and L. Engelen

Fig. 3. The graphical user interface of Refiner

branching bisimilar [11] (DSBB)6 to an LTS G2, then also G2 satisfies ϕ. This
allows comparing LTSs w.r.t. ϕ. We apply maximal hiding w.r.t. a given ϕ to
the LTS(DL) and LTS(DR), before checking that they are DSBB. If the checks
pass for all DL and DR, then R preserves ϕ. Semantics preservation checking is
actually the special case in which maximal hiding has no effect.

Consider again the example rule systems of Fig. 2, and the Ldsbr
μ property

ϕ = [true∗][τ∗.req]([(¬get(p))∗]¬deadlock ∧ [¬get(p)] 5), where ‘deadlock’ is a
formula expressing the presence of a deadlock. This property expresses that after
every req, eventually a get(p) will occur (for the semantics of Ldsbr

μ , see [10]).
Based on this, maximal hiding will hide all transition labels, except for req and
get(p). Combining the left- and right-patterns of r0 and p0, constructing the
synchronous compositions, and applying this hiding, leads to DSBB LTSs. This
is also the case for r1 in isolation. Hence, both rule systems preserve ϕ.

3 Implementation
Refiner has been implemented in Python 3, and consists of about 5,000 lines
of code. It is platform-independent, and has a graphical user interface (Fig. 3),
implemented using the TkInter module, but it can also be run from the com-
mand line. It provides the functionality to create and edit rule systems, load
and save them, apply them on models, and verify them in various ways. The
tool does not focus on creating and verifying models; instead, this can be done
using the model checker toolsets Cadp and mCRL2. With these tools, Refiner
shares file formats for LTSs, networks of LTSs, and Ldsbr

μ properties.
For verification, Refiner allows to check semantics preservation of rule sys-

tems, model-independent preservation of properties, and property preservation
6 DSBB is, like weak and branching bisimilarity [11], sensitive to τ -transitions, but

also to divergences, i.e. the ability to perform infinite sequences of τ -transitions [11].
As such, it preserves safety and liveness properties.

REFINER: Towards Formal Verification of Model Transformations 263

w.r.t. particular models. Besides this, there are the fine-tuning options ‘fairness’,
by which divergences in a rule system will be ignored (useful for safety prop-
erties), and ‘divergency’, by which the divergences already present in an input
network will be taken into account, allowing for a more relaxed check.

Finally, Refiner has multi-core computation capability. Verifying a rule sys-
tem may involve many DSBB checks. Since these can be done independently,
parallelisation is straight-forward. Experiments have shown that this scales lin-
early [7]. As demonstrated in [6], Refiner can, through model transformation
verification, determine in mere seconds that transformed networks with state
spaces of multiple billions of states satisfy a particular property. Model check-
ing those networks would take many orders of magnitude more time. For future
work, we plan to support timing [12], and directed search techniques [13].

References
1. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin: An

OpenToolset forModelling andReasoning inEvent-B. STTT12(6), 447–466 (2010)
2. Kahsai, T., Roggenbach, M.: Property Preserving Refinement for Csp-Casl. In:

Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 206–220.
Springer, Heidelberg (2009)

3. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the Con-
struction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

4. Cranen, S., Groote, J., Keiren, J., Stappers, F., de Vink, E., Wesselink, W.,
Willemse, T.: An Overview of the mCRL2 Toolset and Its Recent Advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013)

5. Engelen, L., Wijs, A.: Incremental Formal Verification for Model Refining. In:
MoDeVVa 2012, pp. 29–34. ACM (2012)

6. Wijs, A., Engelen, L.: Efficient Property Preservation Checking of Model Re-
finements. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 565–579. Springer, Heidelberg (2013)

7. Wijs, A.: Define, Verify, Refine: Correct Composition and Transformation of Con-
current System Semantics. In: Xue, J., Fiadeiro, J.L., Liu, Z. (eds.) FACS 2013.
LNCS, Springer (2013) (to appear)

8. Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-the-Fly Verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

9. Heckel, R.: Graph Transformation in a Nutshell. In: FoVMT 2004. ENTCS, vol. 148,
pp. 187–198. Elsevier (2006)

10. Mateescu, R., Wijs, A.: Property-Dependent Reductions for the Modal Mu-
Calculus. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823,
pp. 2–19. Springer, Heidelberg (2011)

11. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3), 555–600 (1996)

12. Fokkink, W., Pang, J., Wijs, A.: Is Timed Branching Bisimilarity an Equiva-
lence Indeed? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 258–272. Springer, Heidelberg (2005)

13. Wijs, A.: What To Do Next?: Analysing and Optimising System Behaviour in Time.
PhD thesis, VU University Amsterdam (2007)

Designing a Deadlock-Free Train Scheduler:

A Model Checking Approach�

Franco Mazzanti, Giorgio Oronzo Spagnolo, and Alessio Ferrari

Istituto di Scienza e Tecnologie dell’Informazione “A.Faedo”,
Consiglio Nazionale delle Ricerche, ISTI-CNR, Pisa, Italy

Abstract. In this paper we present the approach used in the design of
the scheduling kernel of an Automatic Train Supervision (ATS) system.
A formal model of the railway layout and of the expected service has been
used to identify all the possible critical sections of the railway layout in
which a deadlock might occur. For each critical section, the prevention of
the occurrence of deadlocks is achieved by constraining the set of trains
allowed to occupy these sections at the same time. The identification of
the critical sections and the verification of the correctness of the logic
used by the ATS is carried out by exploiting a model checking verification
framework locally developed at ISTI-CNR and based on the tool UMC.

1 Introduction

The current trend in the design of metropolitan railway systems is to provide
fully automated platforms, where trains move in driverless mode, and are moni-
tored by a centralized component, normally called Automatic Train Supervision
system (ATS). The main role of an ATS system is to automatically coordinate
the progress of the trains. In absence of delays, an ATS ensures a perfect ad-
herence to the planned time table. In presence of delays, the ATS system must
perform the correct train scheduling choices in order to guarantee that every
train will still reach its destination. In particular, this means that the ATS
should necessarily avoid the occurrence of deadlock situations, i.e., situations
where a group of trains block each other, preventing in this way the completion
of their missions.

The Italian project “Train Control Enhancement via Information Technol-
ogy” (TRACE-IT) is a project funded by the Tuscany Region which sees the
cooperation of an industrial partner active in the field of railway signaling and
academic partners among which the ISTI institute of the CNR. One of the goals
of the TRACE-IT project is the design, development and experimentation of a
Communications Based Train Control system (CBTC) [1]. ISTI is involved in
the specification and development of the ATS component of the CBTC system,
and this task includes the development of a demonstrative prototype of an ATS
system for a simple but not trivial railway yard layout and a simple but not
trivial service plan.

	 This work was partially supported by the PAR FAS 2007-2013 (TRACE-IT) project.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 264–269, 2014.
c© Springer International Publishing Switzerland 2014

Designing a Deadlock-Free Train Scheduler: A Model Checking Approach 265

Our approach starts with the construction of a formal model of the railway
layout and of the expected service. By performing exhaustive model checking of
the system, we identify all the possible critical sections of the railway layout in
which the given set of running trains might lead to the generation of deadlocks.
For each critical section, the prevention of deadlocks is achieved in a simple but
efficient way, by constraining the set of trains allowed to occupy the section at
the same time. The scheduling kernel of the ATS is designed to take into account
this information while performing its scheduling choices. The overall correctness
of the behavior of the ATS in presence of delays is finally verified by proving that
the adopted design guarantees that the supervised traffic is deadlock-free. The
formal verification of the full railway yard is performed by decomposing it into
several regions, which are analyzed separately, and by proving that the adopted
decomposition allows to extend the results to the full layout. The modeling and
verification of the system has been carried out using the UML model checker
UMC (accessible at http://fmt.isti.cnr.it/umc/ together with the examples
of the paper) developed at ISTI. UMC is an abstract, on-the-fly, state-event
based, verification environment working on UML-like state machines [2].

2 The Initial Model of the System

In UMC a system is described as a set of communicating UML-like state ma-
chines. In our particular case, the kernel of the ATS system is modeled by a
unique state machine. The state machine has a local status describing the cur-
rent progress of the trains in the railway yard. Moreover, it makes the appropriate
scheduling choices among the trains according to the structure of their missions.
At our level of analysis the basic elements which are the subject of the schedul-
ing are the request for itineraries. An itinerary consists of a sequence of track
circuits (i.e., independent line segments) which must be traversed for arriving
to a station platform from an external entry point, or for leaving from a station
platform towards an external exit point.

BCA01
Piazza Università

I

II

BCA02
3 4

5

6

(a) Itinerary level view (b) Track circuit level view

Fig. 1. The itinerary and track circuit level view of a station

In Figure 1 we show the two levels of abstraction of the train movement,
namely the itinerary level view and the track circuit level view. Notice that, at
the interlocking management level, we would be interested in the more detailed
track circuit level view, because we have to deal with the setting of signals
and commutation of switches for the preparation of the requested itineraries.
These elements are not visible at the itinerary level view, which is our level of
observation of the system for the deadlock-freedom problem.

http://fmt.isti.cnr.it/umc/

266 F. Mazzanti, G.O. Spagnolo, and A. Ferrari

Vicolo Corto

Via Accademia
BCA01I

II

Piazza Università
I

II

BCA02
Via Verdi

I

II

BCA03
Piazza Dante

I

II

III
BCA05

BCA04

I

II

I I

II

Vicolo Stretto

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III
I

II

III

IVViale Monterosa

3

2

4

5

6 7

8

9 10

11

12

13

15

16

1718

20

22

23

24

25

26

2728

29

3031

32

1

Fig. 2. The yard layout and the missions for the trains of the green and red line

In our case, the overall map of the railway yard which describes the various
interconnected station platforms and station exit/entry points (itinerary end-
points) is shown in Figure 2. Given our map, the mission of a train can be seen
as a sequence of itinerary endpoints. In our case, the service consists of eight
trains which start their missions at the extreme points of the layout and traverse
the whole layout in one direction. For example, the missions of the four trains
providing the green-line and red-line service shown in Figure 2, are represented
by the following data:

Green1: [1,3,4,6,7,9,10,13,15,20,23] Green2: [23,22,17,18,11,9,5,8,6,5,3,1]

Red1: [2,3,4,6,7,8,10,13,15,20,24] Red2: [24,22,17,18,11,9,5,8,6,5,3,2]

Initially, in order to discover all the possible basic deadlock situations, trains
are allowed to move from one point to the next only if the destination point is
not occupied. Given the set of train missions, and given their current point of
progress, UMC can deduce which trains can advance and compute all the possible
successive states of the system. In particular, we verify a logic formula that
specifies that every system evolution leads to the completion of all the missions.
In UMC, we verify the CTL-like formula AF completed , where completed is a
predicate that is true when all trains are in their final destination. The UMC
analysis of the model, even with just the four trains shown above, reveals that
deadlocks (i.e., violations of the formula) occur in four sections of the layout:

a) In the linear section [1-3] when occupied by Green1 and Green2.
b) In the linear section [2-3] when occupied by Red1 and Red2.
c) In the circular section [3-4-6-5] when occupied by all the four trains.
d) In the circular section [6-7-9-8] when occupied by all the four trains.

3 Introducing Critical Sections

For each case of deadlock identified at the previous step, we can build a coun-
termeasure to avoid it by associating a “critical section” to the set of points on
which it the deadlock occurred, and by constraining the set of trains allowed to
occupy the section at the same time. For example, with respect to the four cases
of deadlocks shown before, we can set up the following set of critical sections
and corresponding constraints:

a) Section A=[1-3] : at most 1 train among Green1 and Green2.
b) Section B=[2-3] : at most 1 train among Red1 and Red2.
c) Section C=[3-4-6-5] : at most 3 among all the four trains.
d) Section D=[6-7-9-8] : at most 3 among all the four trains.

Designing a Deadlock-Free Train Scheduler: A Model Checking Approach 267

1 4

5

63

2

A

B

C
1 4

5

63

2

A

B

C

Fig. 3. Deadlock situations over the composition of basic critical sections

A second version of the model of our system can now be built by taking into
consideration the discovered set of critical sections and by enriching the mission
definitions with information of which critical sections we are entering/exiting
when we move from one point to the next one. In this way our ATS model,
before allowing the train to advance, can first check whether the movement of
the train would violate the constraints of some critical section. With respect to
our four trains on the layout shown on Figure 2, the ATS strategy is described
by the following sections constraints and mission enriched data:

Sections: [A max 1,B max 1,C max 3,D max 3]

Green1: [1,(enter C),3,(exit A),4,(enter D),6,(exit C),7,9,(exit D),10,13,15,20,23]

Green2: [23,22,17,18,11,(enter D),9,5,8,(enter C),6,(exit D),5,(enter A),3,(exit C),1]

Red1: [2,(enter C),3,(exit B),4,(enter D),6,(exit C),7,9,(exit D),10,13,15,20,24]

Red2: [24,22,17,18,11,(enter D),9,5,8,(enter C),6,(exit D),5,(enter B),3,(exit C),2]

4 From Simple to Composite Critical Sections

Whenever we have critical sections that partially overlap (sharing some common
points of the layout), the introduction of the rules for entering a section may re-
veal less evident cases of deadlocks. Therefore additional rounds of model check-
ing are needed to complete the analysis of the system. In the case of four trains
in the layout of Figure 2, the model checking reveals the new deadlock situations
that are illustrated in Figure 3. Notice that, in the left case, train Green2 cannot
exit from critical section C because it is not allowed to enter critical section A.
Moreover, train Green1 is not allowed to leave critical section A because it is not
allowed to enter critical section C. To solve these situations, we can introduce
an additional composite critical section E over points [1-2-3-4-6-5], which is
allowed to contain at most three of the trains Green1, Green2, Red1, Red2.
At the end of these further rounds of model checking the situation has become
as shown below:

Sections: [A max 1,B max 1,C max 3,D max 3,E max 3]

Green1:[1,(enter C),3,(exit A),4,(enter D),6,(exit C,E),7,9,(exit D),10,13,15,20,23]

Green2:[23,22,17,18,11,(enter D),9,5,8,(enter C,E),6,(exit D),5,(enter A),3,(exit C),1]

Red1:[2,(enter C),3,(exit B),4,(enter D),6,(exit C,E),7,9,(exit D),10,13,15,20,24]

Red2:[24,22,17,18,11,(enter D),9,5,8,(enter C,E),6,(exit D),5,(enter B),3,(exit C),2]

A final verification of the model with four trains confirms that the traffic
is now deadlock free and therefore that these section definitions and extended
mission data can be safely used by the ATS for its train scheduling.

268 F. Mazzanti, G.O. Spagnolo, and A. Ferrari

Fig. 4. The three regions partitioning the full layout

5 Partitioning the Full Model

Sometimes the scheduling problem might be too complex to be handled by the
model checker. In these cases, it is useful to split the overall layout into subregions
to be analyzed separately. In particular, in the system actually employed in our
project, we have four other trains moving along the yellow-line and blue-line
service, with eight trains possibly occupying the right side of the layout at the
same time. Our model checker is not able to perform an exhaustive analysis of
the full network (32M states need to be generated, and this leads to verification
time problems), therefore we have to split the overall layout. For example, we
can partition the system as shown in Figure 4. The analysis of region 1 has been
performed following the approach outlined in the previous sections, and has led
to the introduction of five critical sections.

The analysis of region 3 is similar to the previous one, and leads to the intro-
duction of further four critical sections. The analysis of region 2 is more complex,
being bigger and with eight trains inside it. The analysis reveals two other cir-
cular sections in which a deadlock might occur (shown in Figure 5). After the
introduction of the appropriate critical sections and corresponding constraints,
also region 2 can be proved to be deadlock free.

In general, it is not true that the separate analysis of the single regions in
which a layout is partitioned actually reveals all the possible deadlocks of the
full system. For this being true it is necessary that the adopted partitioning does
not cut (hiding it from the analysis) any critical section that overlaps two regions.
In our case, this property of the partitioning is guaranteed by two facts. First,
the set of borderline points in common between each region and its “external
world” consists of a single point. This guarantees that the partitioning does not
cut any circular critical section, because that would have created at least two
points in the border. Secondly, the (unique) borderline point does not belong to
a critical section in each side of the border. In fact, should this have happened,
it might have led to an undiscovered composite critical section composed by the
union of the two confining critical sections of the two regions.

Designing a Deadlock-Free Train Scheduler: A Model Checking Approach 269

BCA03 Piazza Dante
I

II

III
BCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

10

11

12

15

16

1718

20

22

23

24

25

26

27

9 13

Fig. 5. Two critical sections in region 2

6 Conclusions

The development of solutions to the problem of deadlock avoidance in train
scheduling is a complex and still open task [3]. Many studies have been carried
out on the subject since the early ’80s, but most of them are related to normal
railway traffic, and not to the special case of driverless metropolitan systems.
Automatic metro systems indeed may express some original properties, e.g., the
difficulty of changing the station platform on which a train should stop, or the
fact that all trains keep moving continuously, which makes the problem rather
different from the classical railway case. Formal methods have been widely and
successfully used in the railway context [4], but usually they are applied only to
their safety critical components. The ATS, despite its functional relevance, is not
considered a safety critical component and we are not aware of other experiences
in formally designing it.

The project under which this study has been carried out is still in progress,
and the actual ATS prototype in under development. There are many directions
in which this work might proceed. For example, it would be interesting to see if
the model checking phase for the detection of critical regions could be included as
part of the ATS behavior instead of being done at a previous pre-configuration
phase. This would allow to perform automatically and in a safe way also the
dynamic change of the itinerary of the trains. Currently the data discovered by
the model checker must be manually analyzed, and the ATS configuration data
must be manually created. This task might be a source of errors; we are currently
working on approaches to automatically generate the ATS configuration data
from the results of the system model checking.

References

1. IEEE: Standard for CBTC Performance and Functional Requirements. IEEE Std
1474.1 (2004)

2. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification of
service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA Project.
LNCS, vol. 6582, pp. 390–407. Springer, Heidelberg (2011)

3. Törnquist, J.: Computer-based decision support for railway traffic scheduling and
dispatching: A review of models and algorithms. In: Proc. of ATMOS 2005 (2006)

4. Fantechi, A., Fokkink,W., Morzenti, A.: Some trends in formal methods applications
to railway signaling. In: Formal Methods for Industrial Critical Systems: A Survey
of Applications, pp. 61–84. John Wiley & Sons (2013)

A Synthesized Algorithm for Interactive Consistency

Adrià Gascón and Ashish Tiwari

SRI International, Menlo Park, CA 94025

Abstract. We revisit the interactive consistency problem introduced by Pease,
Shostak and Lamport. We first show that their algorithm does not achieve inter-
active consistency if faults are transient, even if faults are non-malicious. We then
present an algorithm that achieves interactive consistency in the presence of non-
malicious, asymmetric and transient faults, but only under an additional guaran-
teed delayed ack assumption. We discovered our algorithm using an automated
synthesis technique that is based on bounded model checking and QBF solving.
Our synthesis technique is general and simple, and it is a promising approach for
synthesizing distributed algorithms.

1 Introduction

Distributed consensus is a fundamental problem in Computer Science. The goal is to
reach agreement in a distributed system in the presence of faults. Depending on the
formulation of the problem, it has been called the distributed agreement, distributed
consensus, or interactive agreement.

Consider a distributed system composed of n processes that can communicate with
each other only by means of two-party messages. Each process has a local Boolean
value that it wishes to share with all other processes. Eventually we want all the pro-
cesses to know each other’s local value. Achieving this desired final configuration is
complicated by the presence of faults.

We will assume a synchronous timinig model; that is, there are known bounds on the
time required for executing one step of a process and on the time required for a message
to reach its destination. Formally, we will assume that execution times are negligible.
So, the distributed agreement protocol can work in rounds: in each round, every process
receives the messages its neighbors had sent in the previous round and it sends out a
new message to each of its neighbors.

A key challenge in achieving agreement is to do so in the presence of faults. In our
presentation, we assume that processes can be faulty, but the communication channel
is reliable. As it will become clear to the reader later, we can also formulate our results
in a way that makes the processes reliable and the channels faulty. Moreover, every
pair of processes communicate through a dedicated channel and hence the receiver of a
message always knows which process has sent that message.

So, what do we assume about the nature of a fault? First, let us define some attributes
of faults. A fault is transient if the identity of the faulty process is not fixed; that is, a
process that is faulty in the current step can become non-faulty in the next step and
vice versa. In contrast, a fault is permanent if the same set of processes remain faulty at
every synchronous step.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 270–284, 2014.
c© Springer International Publishing Switzerland 2014

A Synthesized Algorithm for Interactive Consistency 271

A fault is benign or non-malicious or fail-silent if every faulty process either behaves
exactly as a non-faulty process or sends just nil messages to other processes. Note that
this kind of fault is equivalent to a fault where “messages are dropped by the communi-
cation channel” or where “a process does not send or forward a message it was supposed
to send or forward” because, due to the synchronous nature of the timing model, a re-
ceiver can identify unsent or dropped messages. In contrast, a fault is malicious if the
faulty process can send any message to its neighbors, including false messages. A fault
is asymmetric if a faulty process is not forced to send the same information to each of
its neighbors. In contrast, in a symmetric fault, a faulty process sends the same (possibly
wrong) message to all neighbors. In other words, faulty processes lie consistenly to all
other processes.

As mentioned above, we assume that processes can only communicate by means of
two-party messages, that is, we assume a fully connected topology for the processes. In
other words, the neighbor set of a process contains all other n− 1 processes.

One key assumption we make about the behavior of faulty process is that a faulty
process always updates its local state correctly (just like a non-faulty process). The
faulty behavior of a process is manifest only through the possibly faulty messages it
sends to its neighbors. There are many different ways to motivate this assumption. One
way is to view the processes as non-faulty and the communication channels (specifi-
cally, all outgoing channels from a faulty process) to be faulty. A second way is to note
that this assumption makes no difference in case of permanent faults. It is relevant only
for transient faults, and in a transient fault, a faulty process could become non-faulty
and hence it could update its internal state correctly.

Rather than working with an arbitrary number n of processes out of which some f
are faulty, we will work with concrete instances in this paper. Specifically, we will focus
on n = 4 or n = 3 processes out of which f = 1 will be faulty.

Finally, in our faulty distributed system setting, we have to appropriately redefine
our desired “agreeement state”. Note that, in the scenario where a certain process is
always faulty and never shares its correct local value, the other processes can not ever
know the correct value of such faulty process and hence never reach agreement on the
correct internal values of all processes. The notion of “interactive consistency” was,
therefore, introduced to describe a final agreement configuration where all nonfaulty
processes know the correct internal value of all (other) nonfaulty processes, and agree
on the same (maybe wrong) value for the faulty processes. When faults are transient,
the identity of the faulty process keeps changing. Therefore, we adapt the definition of
interactive consistency so that it does not mention faulty and non-faulty processes and
instead just talks about the number of processes that are in agreement (Definition 1).

Our main result is an algorithm for achieving interactive consistency in the presence
of non-malicious, transient, and asymmetric faults. Our algorithm achieves interactive
consistency in three rounds, and then preserves it forever thereafter, and allows one
(possibly different) process to be faulty in each round. If our algorithm is run for f ≥ 3
rounds, we tolerate a total of f faults in f rounds. We overcome the impossibility result
(which says that f + 1 rounds are needed for tolerating f faults) by introducing a
guaranteed delayed ack assumption. Our algorithm was synthesized automatically. We

272 A. Gascón and A. Tiwari

also describe our synthesis approach in this paper, which is a generic approach for
synthesis, and is particularly promising for synthesizing distributed algorithms.

1.1 Formalization and Notation

We assume there are n processes. Formally, a process is just an element of the set
n = {1, . . . , n}. Each process i has a private Boolean value. Each process (say, Process
i) is assumed to maintain a local consistency vector cv(i) := (v1, . . . , vn) where vj
is Process i’s estimate of Process j’s private value and belongs to the set Vals :=
{true, false, nil}. For every i, the component vi of the consistency vector of Process
i is the private Boolean value for Process i. Processes do not change their own private
value in their consistency vector, but do update their estimate of the private value of
other processes in their local consistency vector.

A message is a tuple (s, v), where s is a finite string over the alphabet n; that is,
s ∈ n∗, where A∗ = ∪iA

i, and v ∈ Vals is a value. The length of the string s is at least
2. The tuple (12, true) denotes the message sent by Process 2 to Process 1 informing
Process 1 that Process 2’s private value is true. If the length of s is greater-than 2, then
the meaning of the message (s, v) is defined inductively. The tuple (12s, v) denotes the
message that is forwarded by Process 2 to Process 1 informing Process 1 that Process
2 had received the message (2s, v) in the previous round. For example, (123, true) is
the message forwarded by Process 2 to Process 1 which Process 2 had received from
Process 3 in the previous round (containing the value true). Note that if Process 1
receives (123, true), then Process 1 receives the string 123 as well as the value true.

We remark here about the implicit assumption being made above. We are assuming
that nodes have an “identity” and processes know which process sent what message
to it. So, for example, the scenario “Process 1 receives the messages (12, true) and
(13, false)” is different from the scenario “Process 1 receives the messages (12, false)
and (13, true)”. If Process 1 could not distinguish between the different senders, then
the two scenarios would look identical to Process 1: in both cases, Process 1 receives
one true and one false message.

We assume that processes are deterministic. In each round, Process i receives mes-
sages (sent to it by the other processes in the previous round), and updates its local
consistency vector using some deterministic function of its old consistency vector and
the received messages. Furthermore, Process i also generates, and then sends, messages
to other processes. As we will later see, on most occassions, these messages are just for-
warded messages.

Definition 1 (Interactive Consistency). A set of n processes, out of which at most f
can be faulty in any given round, are said to have achieved interactive consistency if
the local consistency vector of some n− f processes are identical.

The definition of interactive consistency given above is a generalization of the definition
given by Pease, Shostak and Lamport [14] to the case when faults can be transient.
Their definition used the identity of the faulty process, and makes sense when faults are
permanent.

Interactive consistency is the agreement requirement. Distributed consensus
algorithms additionally are required to satisfy validity and termination requirements.

A Synthesized Algorithm for Interactive Consistency 273

Table 1. Formal characterization of the fault attributes used in this paper

Fault attribute Characterization

Permanent ∀r : fault(r) = fault(1)
Transient Does not satisfy constraint for permanent fault
Benign ∀msg(ij, v) : v = nil ∨ v = cv(j)[j]
Malicious ∀msg(ij, v) : v ∈ Vals

Symmetric ∀msg(ij, v1), (kj, v2) : v1 = v2
Asymmetric Faulty node j need not satisfy above constraint

Validity is implicitly present in our formulation via the assumption that (a) processes
are not allowed to change their private value, combined with the assumption that (b)
Process i’s consistency vector stores its private value at vector’s i-th component.

Fault Attributes. Let r ∈ {1, 2, . . .} denote the round number and let fault(r) denote
the set of processes that are faulty in Round r. Table 1 contains the formal characteri-
zation of the different fault attributes used in this paper.

Problem Statement. We wish to find an algorithm for achieving interactive consistency
in presence of transient, non-malicious, and asymmetric faults. By achieving we mean
(a) the system should reach an interactive consistent state after a finite number of rounds
(termination property), and
(b) the interactive consistency property is preserved ad infinitum thereafter.

Part (b) of the requirement above is usually not included in classic distributed con-
sensus. For permanent faults, it is irrelevant, but for transient faults, it is an important
requirement. In linear temporal logic, the two parts together define an eventually-always
(FG) property, but with the difference that the F operator is a “bounded-F ” operator.

2 Non-transient, Malicious and Asymmetric Faults

Pease, Shostak, and Lamport presented in [14] an algorithm to achieve interactive con-
sistency among n processes with a synchronous timing model and a permanent, ma-
licious, and asymmetric fault model. Their algorithm is based on rounds of message
exchanges and can withstand f faulty processes, as long as n ≥ 3f + 1 holds. In this
section we informally present Pease, Shostak, and Lamport’s algorithm for the particu-
lar case when n = 4 and f = 1, and show that it does not work if we allow faults to be
transient, even if we restrict them to be non-malicious.

In the particular case where n = 4 and f = 1, Pease, Shostak, and Lamport’s
algorithm achieves interactive consistency after two rounds of information exchange.
In the first round, each non-faulty process sends its private value to every other process
and, in the second round, the processes exchange the information obtained in the first
round. Hence, for instance, process 1 receives messages (12, v2), (13, v3), (14, v4) in
the first round, and messages (123, v23), (124, v24), (132, v32), (134, v34), (142, v42),
(143, v43) in the second round. Then, each process i updates the jth component of its
consistency vector, with j �= i, according to the three received messages that report

274 A. Gascón and A. Tiwari

about j’s value: if two of the values in these three messages coincide then i updates
cv(1)[2] to that common value. Otherwise, i sets cv(i)[j] to nil. For example, process
1, would determine the value of cv(1)[2] using the values v2, v42, v32 of the received
messages shown above.

To informally argue about the correctness of the algorithm, let us represent graphi-
cally, as a directed acyclic graph, the exchanges of messages that are relevant for Pro-
cess 1 (left) and Process 3 (right) to determine the private value of 2.

1

2

4

13

v2

v42

v32

3

2

4

31

u2

u42

u12

The paths starting from a root node of the DAG represent messages. The path 231 in
the left DAG represents the message (132, v32) where Process 3 says to Process 1 in
Round 2 that it received value v32 from Process 2 in Round 1. The path 211 in the left
DAG denotes that, after Round 2, Process 1 has access to the value v2 that Process 2
had sent to Process 1 in Round 1.

Assume that 1 and 3 are not faulty and let us first consider the case where 2 is faulty.
Note that, in that case, v42 = u42, v2 = u12, and v32 = u2 hold, and hence 1 and
3 update cv(1)[2] and cv(3)[2] to the same value. Now consider the case where 2 is
not faulty and thus 4 is the faulty node. In this case we have that v2 = u12 = v32 =
u2 = cv(2)[2] holds, and both 1 and 3 update cv(1)[2] and cv(3)[2] to 2’s private value.
Note that, although we argued about processes 1 and 3 for clarity, we actually showed
that every pair of non-faulty processes agree on a value for a faulty one and correcly
infer the private value of a non-faulty one and hence the algorithm achieves interactive
consistency.

We now show that Pease, Shostak, and Lamport’s algorithm fails to achieve interac-
tive consistency if faults are transient, even if the fault model is non-malicious. We give
a counterexample using the same dag representation that we used above. However, in
the transient case we must specify which process i ∈ {1, 2, 3, 4} is faulty at each round.
We denote such faulty process as i. In our counterexample 2 is faulty in the first round
and 1 is faulty in the second round. Note that, since the fault model is non-malicious,
the private value of 2 must be true and, after the first two rounds, 3 and 4 will agree on
the value of 2 to be nil, while 2 and 1 will agree on it to be true, which violates the
interactive consistency property.

1

2

4

13

truetrue

nil

true

nil

true

4

2

3

41

nilnil

true

true

true

nil

3

2

4

31

truetrue

nil

true

nil

nil

A Synthesized Algorithm for Interactive Consistency 275

The reader might wonder: if 2 is non-faulty in Round 2, then if we start a new in-
stance of the Pease, Shostak and Lamport’s algorithm in Round 2 (so that the new
instance’s Round 1 will happen along with Round 2 of the first instance in Step 2), then
in Step 3 we would likely reach agreement. This is true, but in this case, there is an-
other scenario in which agreement is not guaranteed after any fixed number of rounds.
Consider the case when Process 2 is faulty in the first k steps, and in the k + 1-th step,
Process 1 becomes faulty (as shown above). In this case, the interactive consistency
property holds in steps 2, 3, . . . , k, but is violated in Step k + 1. Since k can be arbi-
trary, at no step can the processes know that they have achieved interactive consistency
from hereon.

The above observation is not surprising: our formulation of the problem under the
transient fault model can be viewed as there being f faults in f rounds (for n = 4
processes). It is known that tolerating f faults requires at least f + 1 rounds (so that
existence of at least one fault-free round is guaranteed); see Theorem 6.33 in [11]. Our
goal is to tolerate f faults in f rounds, but under an additional assumption. Note that
Pease, Shostak and Lamport’s algorithm tolerates 2 faults in 2 rounds, but it assumes
that the same process is faulty in both rounds.

Our assumption, which we call the guaranteed delayed ack assumption, is as follows:
whenever Process i sends a value (or a message) to Process j in Round r, then, in
Round r+2, it knows the value (or message) Process j received from it in Round r+1.
Intuitively, after 2 rounds, the sender gets a confirmation about whether its message
was delivered or dropped. Formally, for every i, we define a function confi that given a
message path iji returns value v if (ji, v) was a message that was seen in the previous
round:

confi(iji) = v if (ji, v) was a message sent in previous round

We assume that Process i has access to function confi in Round 3 of our protocol.1

3 Algorithm for Interactive Consistency under Non-malicious,
Asymmetric, and Transient Faults

In this section we present an algorithm for interactive consistency in presence of tran-
sient, non-malicious, and asymmetric faults for the case where n = 4 and f = 1. The
algorithm was synthesized with the help of automated synthesis techniques described in
the next section. In this section, we just describe the algorithm and present an informal
proof for its correctness.

Similar to Pease, Shostak, and Lamport’s algorithm, our algorithm is based on rounds
of message exchanges. However, we use three rounds instead of two to reach a state that
satisfies the interactive consistency property. We present our procedure as a nontermi-
nating procedure that preserves interactive consistency in every step after the first three

1 Note that the Pease, Shostak and Lamport’s algorithm is not designed to benefit from such an
assumption. Even if the assumption is made stronger and we let a faulty process know in the
next round (that it was faulty in the previous round), the Pease, Shostak and Lamport algorithm
can not use this fact since the faulty process does not participate in the message exchanges that
are used to decide on it’s local value.

276 A. Gascón and A. Tiwari

steps. Note that the preservation property is not trivial: since the fault model is transient,
different processes can become faulty in different rounds and can potentially cause vi-
olation of interactive consistency.

Our algorithm is presented in Figure 1. Our algorithm exchanges the same messages
as the Pease, Shostak and Lamport algorithm in the first two rounds. The third round
is introduced to add a redundant channel of communication thanks to the guaranteed
delayed ack assumption introduced in the previous section.

Recall the notation about messages: the message (ji, v) represents that Process j
receives value v from Process i in this round, and the messages (jjji, v) and (jji, v)
represent that Process j receives the value v from Process i two and one rounds back, re-
spectively. Note that (ji, v) involves a message exchange, but (jji, v) does not involve
any message exchanges and is just a convenient notation for describing information
from one round back.

In the algorithm in Figure 1, at each step, every process first receives messages (con-
taining information from up to three rounds back), then updates its consistency vector,
and then sends messages. Every process sends information refering to one, two, and
three steps back; that is, messages of the form (s, v), with s of lengths 2, 3, and 4.

The rule that Process i uses for updating its consistency vector is as follows: cv(i)[i]
is left unchanged; and for all j �= i, cv(i)[j] is set to a non-nil value v if either
(1) Process i receives a message (iiij, v), or
(2) Process i receives a message (ixxj, v) for some x different from i and j, or
(3) Process i receives a message (ijxj, v) for some x different from i and j.

Apart from the messages of the form (ijxj, v), all other messages have the usual
meaning. This becomes clear from the code in Figure 1 that constructs the messages
to be sent. Specifically, the value v in the message (ijxj, v) is not equal to the value
of the message path jxj, but it is equal to confj(jxj). The notation ṽ in Figure 1
denotes v if the process sending (or forwarding) value v is non-faulty, and it denotes a
non-deterministically picked element from the set {v, nil} if the process is faulty.

Example 1. Let us consider an example where Processes 1, 3, 4 are trying to learn the
local value l2 of Process 2. First assume no process in faulty in any of the rounds. In this
case, Process 2 sends l2 to all three processes in Round 1; that is, in Round 0, we have

∀i : (i2, l2) ∈ S1, S2 = S3 = Sconf = Ø

After Round 1 (focusing only on value sent by Process 2), we have

∀i, j : (ji2, l2) ∈ S2, S3 = Sconf = Ø

After Round 2 (focusing only on value sent by Process 2), we have

∀i, k : ∀j �= 2 : (kji2, l2) ∈ S3, ∀i, k : (k2i2, l2) ∈ Sconf

So, in Round 3, every Process i updates its consistency vector to have value l2 in cv(i)[2]
– since, for example, (iii2, l2) is received by every Process i.

As a more interesting example, consider the scenario where Process 2 is faulty in
Round 0 and sends its local value l2 to only Process 3 (and nil’s to others); and more-
over, Process 3 becomes faulty in Round 1 and does not forward the correct message

A Synthesized Algorithm for Interactive Consistency 277

Inputs: local value li for each i ∈ n

Global: consistency vector cv(i); Initialized such that ∀i: cv(i)[i] = li ∧ ∀j �= i : cv(i)[j] = nil

Output: consistency vector cv(i) that always satisfies the invariant
∃i ∈ n s.t. cv(j)’s are identical for all j �= i.

IC4,1: // Describing a round for Process i
R = receiveMessages()
For j ∈ n, j �= i Do

D := {v | (iiij, v) ∈ R} ∪ {v | ∃x �= i, x �= j : (ixxj, v) ∈ R ∨ (ijxj, v) ∈ R}
If ∃v ∈ D : v = true Then cv(i)[j] = true

ElseIf ∃v ∈ D : v = false Then cv(i)[j] = false

Else cv(i)[j] = nil

S1 := {(ji, l̃i) | j ∈ n}
S2 := {(jix, ṽ) | (ix, v) ∈ R ∧ i, x ∈ n}
S3 := {(jixy, ṽ) | (ixy, v) ∈ R ∧ y �= i ∧ x, y, j ∈ n}
Sconf = {(jixi, ṽ) | confi(ixi) = v ∧ x, y, j ∈ n}
sendMessages(S1 ∪ S2 ∪ S3 ∪ Sconf)
where ṽ = v if i is not faulty and ṽ ∈ {v, nil} if i is faulty

Fig. 1. Algorithm for interactive consistency (n=4, f=1)

it received from Process 2 to others. In Round 2, if Process 2 is non-faulty, then it will
send the message (i232, l2) to all processes i (these messages will belong to the set
Sconf is Round 2). Consequently, in Round 3, all processes i will update cv(i)[2] to l2.
But, what if Process 2 becomes faulty in Round 2? In that case, Process 3 is not faulty,
and hence it forwards correctly; that is, (i332, l2) is in the set S3 of sent messages in
Round 2. Consequently, in Round 3, all processes i will again update cv(i)[2] to l2.

We will argue informally about the correctness of the algorithm of Figure 1 using
again the DAG representation introduced in the previous section. It is easy to see that
if all processes execute the algorithm of Figure 1 and a faulty process, say 2, does not
reveal its local value to any other process for the first k > 0 steps, i.e. sends messages
(j2, nil) to every process j �= 2, then cv(j)[2] = nil holds in steps k, k+1, and k+2,
for every process j �= 2. Hence, note that it suffices to get convinced that, if in step k+1
Process 2 sends its local value to some process, say Process 3, then cv(j)[2] = l2 will
hold in step k + 4, for every process j. Consider the following two DAGs representing
the exchanges of messages that are relevant for processes 3 and 1 to decide about the
value of Process 2 and assume that 2 sends (32, l2).

1

2

3

1

2

3

1

Step k + 1

l2

v1

v2

3

2

1

3

2

1

3

Step k + 1

l2

l2 l2

278 A. Gascón and A. Tiwari

Note that, due to the guaranteed delayed ack assumption, either v1 = l2 or 2 is
faulty in round k+3 and v2 = l2. In any case, Process 1 updates cv(1)[2] to l2 in round
k + 4. Moreover, note that Process 4 also updates cv(4)[2] to l2 in the same round by a
symmetric argument. Finally, Process 3 updates cv(3)[2] to l2 in round k+4 because it
receives the message (3332, l2).

4 A General Synthesis Approach for FG Properties

In this section, we will outline the synthesis approach we used to arrive at the (variants
of the) algorithms presented in the previous section.

All modern synthesis tools work by enumerating the space of possible solutions and
checking if one of these solutions satisfies the requirement. Checking if a synthesized
solution satisfies a requirement is a formal verification problem. Broadly speaking, syn-
thesis is performed as a loop over the formal verification tool. Our approach to synthesis
is simpler and can be viewed as a generalization of the idea of bounded model check-
ing to synthesis. Just as bounded model checking turns a verification problem into a
existential contraint that encodes a weaker version of the verification problem, we turn
synthesis into a forall-exists constraint that encodes a weaker version of the synthesis
problem.

The key step that makes automated synthesis effective is the step that defines the
weaker version. A simpler version of the synthesis problem is obtained by
(a) restricting the universe of possible algorithms that will be searched and
(b) replacing the verification step by an approximate step.

In particular, we make the search space of possible solutions finite. In the context
of synthesis of distributed consensus, this is achieved by first fixing the number of
processes (to a small number such as 4). Then, we fix the type of messages that are
exchanged in different rounds: in our case, we fix the component s of the messages
(s, v) that are exchanged in a round and we even fix the computation of the value v of
the message in most cases. We then just need to synthesize the deterministic function
that is used to update the local consistency vector and generate the value v for the
messages (if they are not already fixed) for the next round. The domain and range of the
function is finite. Hence, there are only finitely many, but a huge number nonetheless,
of such functions.

We also make the verification problem simple – instead of performing full verifica-
tion, we just perform bounded model checking (checking up to some fixed bound). In
the context of synthesis of distributed consensus, we fix the number of rounds (say, to 3)
and then search for algorithms that achieve agreement in exactly 3 rounds. A bounded
model checker is used for this purpose. Thus, we synthesize for agreement and termina-
tion requirements, while validity is built-in in the formulation of the synthesis problem.
We ignore stability requirement while performing synthesis.

We now present a more formal description of the synthesis approach described above.
Let x denote all the state variables of the distributed system. In our case, x contains the
consistency vector of all processes. Let y denote the variables representing the values

A Synthesized Algorithm for Interactive Consistency 279

of the messages that are exchanged in any round. Let φ(x) be the formula that encodes
the property that x is the desired final state (that is, x is an interactive-consistent state.)
The following verification constraint, generated by a bounded model checker, says that
there is a sequence of 4 states of the system that follows the consensus algorithm, but
does not end in an agreement state (it is the negation of the what we want to prove):

∃x0, x1, x2, x3, y0, y1, y2 :

I(x0) ∧ T (x0, y0, x1) ∧ T (x1, y1, x2) ∧ T (x2, y2, x3) ∧ ¬φ(x3) (1)

Here I(x) is a predicate that is true if x is a valid initial state and T (x, y, x′) is a predi-
cate that is true if y are the messages that are generated in state x and x′ is the next state
generated from current state x and these messages.

For a given deterministic consensus algorithm, the predicate T (x, y, x′) is a function
from (x, y) to x′, but it is not a function from x to (y, x′) since different manifestation
of the faults can cause different messages to be generated from the same state x. So, the
verification constraint says that consensus algorithm does not achieve agreement in 3
steps for some choice of initial state and fault behavior.

When we synthesize the consensus algorithm, the predicate T is not fully known.
It is, in fact, parameterized by some additional synthesis variables z such that the new
relation T (x, y, z, x′) is a function from (x, y, z) to x′. So, the bounded synthesis con-
straint is defined as

∀z : ∃x0, x1, x2, x3, y0, y1, y2 :

I(x0) ∧ T (x0, y0, z, x1) ∧ T (x1, y1, z, x2) ∧ T (x2, y2, z, x3) ∧ ¬φ(x3) (2)

The synthesis constraint says that forall choices of the synthesis variables z, the result-
ing consensus algorithm does not achieve agreement in 3 steps (for some initial state
and fault behavior). If we do not want to fix a priori the function that determines what
message values y are generated in a state x (for a fixed choice of faulty nodes), then we
can also synthesize that function by including additional parameters in z that are used
to define that function.

In our case, the domain of all variables in Formula 2 have finite cardinality. Hence,
the formula can be written as a quantified (∀∃) Boolean formula (2-QBF). Bounded
model checkers (such as the SAL bounded model checker we used) already generate a
Boolean satisfiability (SAT) formula for the verification constraint (Formula 1).

Our synthesis approach implementation consists of a script that glues together dif-
ferent tools as follows:

1. We model the consensus algorithm in SAL [15,2]. The model includes synthesis
variables z to define the transition relation.

2. We use the SAL bounded model checker to generate the SAT formula for the veri-
fication constraint (Formula 1). The SAT formula implicitly existentially quantifies
all variables, including the synthesis variables z.

3. We modify the SAT formula and convert it into a QBF formula by universally
quantifying the synthesis variables. (This step uses the mapping from the original
SAL variables to the Boolean SAT variables.)

280 A. Gascón and A. Tiwari

4. We use off-the-shelf QBF solvers (and QBF preprocessors) to check satisfiability
of the ∀∃ formula.

5. If the QBF solver returns Unsat, then the synthesis is declared successful, and if
the QBF solver returns Sat, then the synthesis process is unsuccessful.

6. If synthesis is successful, the QBF solver outputs a valuation for the synthesis vari-
ables z, which is used to obtain a concrete consensus algorithm.

7. The synthesized algorithm is formally verified: the property that “after 3 steps, the
property φ is always true” is verified using k-induction.

In many cases when synthesis was successful, the valuation for the synthesis variables
z returned by the QBF solver was not easy to describe; that is, the resulting update
function did not have a concise description. This happens because QBF solver would
instantiate “don’t care” variables arbitrarily. These algorithms were not suitable for de-
scribing in this paper. Hence, in such cases, we used our intuition to modify the syn-
thesized function so that it had a concise description, and then formally verified the
resulting algorithm and presented it here. Let us remark that, in our approach, once we
instantiate the synthesis variables in the SAL model, we immediately get a SAL model
that is ready for formal verification using SAL tools.

5 Synthesis Problem Formulation and Experimental Results

As mentioned in the previous section, we restricted the space of possible algorithms
to be searched by the synthesis tool to a finite set. The major restriction, apart from
fixing n to be 4, is only considering algorithms based on rounds of message exchanges.
Distributed algorithms that are based on other schemas, such as, where a fixed process
acts as the leader, are not included in our synthesis search space.

Hence, while the dynamics of the messages exchanges are fixed, the task of the syn-
thesis tool is to decide how to update the consistency vector depending on the messages
received at each step. Note that this corresponds to the For-Do loop of Figure 1. More
specifically, the goal of our tool was to synthetize a deterministic function fk

i,j , which
corresponds to the algorithm executed by Process i to update cv(i)[j] given the mes-
sages received in the last k rounds reporting about the value of j. Hence, each function
fk
i,j in this family of functions parameterized by k has the following signature:

fk
i,j : {i, j, k, l}k−1 ×Σ �→ Σ

where Σ = {true, false, nil} and k is the number of rounds of message exchanges
to be considered by the synthesized interactive consensus algorithm. The synthesis of
fk
i,j is subject to the constraint that the resulting algorithm achieves interactive con-

sistency. Such constraint, as well as the fault model were very naturally encoded as
an LTL property and part of a SAL model, as explained in the previous section. For
example, assuming k = 2, as in the Pease, Shostak and Lamport’s algorithm, our syn-
thesis problem consists on deciding how Process i must update cv(i)[j] given mes-
sages (iij, v1), (ijj, v2), (ikj, v3), (ilj, v4), for every possible value of v1, v2, v3, v4 ∈
{true, false, nil} and assuming that i, j, k, l are pairwise disjoint. Using this

A Synthesized Algorithm for Interactive Consistency 281

approach we could easily synthesize Pease, Shostak and Lamport’s algorithm for n =
4. Similarly, we could prove that there is no interactive consistency algorithm for the
non-malicious, asymmetric, and transient case that uses just two rounds of message
exchanges, even if we assume guaranteed delayed ack.

Note that the domain of fk
i,j , although finite, has exponential size with respect to k.

In fact, in the case where k = 3, it has size 48, which corresponds to a synthesis search
space of size 348. However, to speed up the synthesis process, we reduced the size of
the image of f3

i,j by
(a) not considering combinations of messages that are not possible due to the character-
istics of the fault model (note that Process i cannot receive messages reporting j’s local
value to be both true and false since faults are non-malicious), and
(b) not considering some messages that intuitively seemed to be unnecesary for the
algorithm (for example, the message (ijij, v), is clearly useless in our setting).

In fact, although the version of the algorithm presented in Section 3 uses only the
five messages corresponding to the paths iiij, ikkj, illj, ijkj, ijlj, our first synthetized
version used also iikj and iilj, which intuitively correspond to Processes k and l, re-
spectively, telling Process i in the second round the value that they got from j in the
first round. Later on we realized that these messages were indeed unnecesary, and we
could synthetize a solution that ignores them.

With respect to impossibility results, we could use our tool to prove some particular
cases of Theorem 6.33 in [11] that arise from fixing a particular message exchange
dynamics, such as variants on the idea of running two overlapping instances of Pease,
Shostak and Lamport’s algorithm as commented in Section 2.

In all our experiments we used the QBF solver DepQbf [10] and the QBF prepro-
cessor Bloqqer [1] and obtained the results in the order of minutes. Moreover, all our
synthetized algorithms were verifiable using k-induction, which was proven much more
effective than symbolic model checking. The sal model used to obtain our main result,
as well as the corresponding QBF formula are available online [4].

6 Discussion

Distributed algorithms are difficult to design because of the enourmous number of sce-
narios generated due to the faults. We found our synthesis tool to be extremely useful
in the process of identifying existence of algorithms of a certain form that achieve a
certain goal.

We were able to synthesize the original Pease, Shostak and Lamport’s algorithm for
n = 4 processes and f = 1 fault, where the fault was permanent (across the two rounds)
and asymmetric – irrespective of whether the fault was malicious or not. The synthesis
tool declared “synthesis unsuccessful” when we changed the fault model to transient
– both when the fault was malicious and when it was not malicious. We also tried to
perform synthesis under slightly different fault models. For instance, when Process 1
receives a message (123, nil), then we allowed Process 1 to know if 2 was faulty in the
previous round, or if 3 was faulty in the round before (akin to manifest faults). However,
synthesis failed in most of such minor variants on the fault model.

282 A. Gascón and A. Tiwari

Generalizing to n > 4. Our synthesized algorithm, presented in Section3, is easy
to generalize for larger values of n, but keeping the assumption that in each round
at most one process is faulty. In fact, for any value of n larger than one, exactly the
same algorithm generalizes and three rounds suffice to reach interactive consistency.
The case when more than one process is faulty in every round is not yet known to us.
The synthesized algorithm does not naturally generalize to a working algorithm for this
case.

Message Complexity. In our description of the algorithm, we assumed that arbitrary
messages of the form (ijkl, v) are exchanged. However, Process i uses only five mes-
sages in the end to decide on a value for Process j: the values corresponding to the mes-
sage paths iiij, ikkj, illj, ijkj, ijlj: these involve only a total of 1+2+2+3+3= 11
messages (across all three rounds) for each pair i, j of nodes. We are counting every use
of the confj function as a message exchange.

Tolerating Malicious Faults with Authentication. The algorithm that works for non-
malicious faults can also work for malicious faults, if we assume the processes authen-
ticate their communications using digital signatures. Even though a faulty process is
now allowed to send arbitrary messages, the receiver can check if a non-nil value was
really sent by the originator and discard it (treat it as a nil value) if the check fails. This
forces the faulty process to only possibly behave like a non-malicious faulty process.

Extensions. The results described in this paper are just a first step in application of syn-
thesis technology for discovering fault-tolerant distributed algorithms. There are plenty
of avenues to explore for future work. First, there are asymmetric architectures that
can provide same level of fault tolerance with less hardware resource. For example,
the Draper Laboratory’s Fault Tolerant Processor (FTP) [7,9] is an asymmetrical design
that uses interstages to relay messages from a process to it’s neighbors. Second, one
can also consider hybrid fault models [9] in distributed consensus. Finally, one can also
consider problems in distributed algorithms for automated synthesis that have require-
ments other than the consensus property. An interesting possibility is to capture all such
possible extensions in a common framework, such as the one presented in [13].

Synthesis for Fault-Tolerance. Automated synthesis was first considered in the con-
text of synthesizing from LTL specification [12]. Later, Kulkarni et al. [6] started with
a fault-intolerant distributed algorithm and showed how to automatically transform it
into a fault-tolerant program. The technique was based on refining the given program
by removing states and transitions that lead to violation of agreement in presence of
faults. Our formulation of the synthesis problem is inspired by recent work on Sketch-
ing [16,17,5] where the starting point is an incomplete sketch that is filled in by au-
tomated tools; in particular, by solvers for ∃∀ formulas [5]. The use of sophisticated
constraint solvers (SMT solvers, SAT and QBF solvers) allows our approach to dis-
cover completely unexpected algorithms from a huge search space.

A Synthesized Algorithm for Interactive Consistency 283

7 Conclusion

We used automated synthesis to discover an algorithm for achieving interactive consis-
tency in the presence of transient, non-malicious and asymmetric faults. Our algorithm
can be seen as filling a known gap in the literature. One the one hand, it is known
that there is no f round algorithm that achieves agreement in the presence of f non-
malicious, asymmetric and transient faults. On the other hand, it is known that there is
one such algorithm that achieves agreement in f + 1 rounds. Our algorithm achieves
agreement in f rounds, but uses an extra assumption that we have called the guaranteed
delayed ack assumption. The assumption allows a sender to know the value the receiver
received from it, but only after an extra intermediate round of message exchanges.

Our synthesis approach for discovering distributed algorithms is based on bounded
model checking and quantified boolean formula (QBF) solving, and has been an indis-
pensable tool in our effort to obtain the above positive result, and also for showing the
non-existence of a consensus algorithm for various other cases.

Acknowledgments. We are greatly thankful to Patrick Lincoln (SRI International),
John Rushby (SRI International) and Paul Miner (NASA) for providing useful guidance
through various stages in this work. We also thank the reviewers for their comments and
suggestions.

This work was partly supported by the NASA contract NNL10AB32T and NSF grant
SHF:CSR-1017483. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views
of the funding agencies.

References

1. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

2. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg
(2004)

3. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. JACM 32(2), 374–382 (1985)

4. Gascon, A., Tiwari, A.: Webpage: Synthesis of fault-tolerant distributed algorithms (2013),
http://www.csl.sri.com/users/tiwari/softwares/
synth distributed/

5. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: Proc.
PLDI (2011)

6. Kulkarni, S.S., Arora, A., Chippada, A.: Polynomial time synthesis of byzantine agreement.
In: 20th Symp. on Reliable Distributed Systems, SRDS (2001)

7. Lala, J.H.: A Byzantine resilient fault tolerant computer for nuclear power applications. In:
Fault Tolerant Computing Symposium, pp. 338–343 (1986)

8. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst. 4(3), 382–401 (1982)

http://www.csl.sri.com/users/tiwari/softwares/synth_distributed/
http://www.csl.sri.com/users/tiwari/softwares/synth_distributed/

284 A. Gascón and A. Tiwari

9. Lincoln, P., Rushby, J.: Formal verification of an interactive consistency algorithm for the
Draper FTP architecture under a hybrid fault model. In: Proc. 9th Conf. on Computer Assur-
ance, COMPASS (1994)

10. Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBF Solver. JSAT 7(2-3), 71–76
(2010)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
12. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifica-

tions. ACM Trans. on Programming Languages and Systems 6, 68–93 (1984)
13. Miner, P., Geser, A., Pike, L., Maddalon, J.: A Unified Fault-Tolerance Protocol. In:

Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 167–182.
Springer, Heidelberg (2004)

14. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
JACM 27(2), 228–234 (1980)

15. The SAL intermediate language. Computer Science Laboratory, SRI International, Menlo
Park, CA (2003), http://sal.csl.sri.com/

16. Solar-Lezama, A., Rabbah, R., Bodı́k, R., Ebcioglu, K.: Programming by sketching for bit-
streaming programs. In: PLDI (2005)

17. Solar-Lezama, A., Tancau, L., Bodı́k, R., Saraswat, V., Seshia, S.: Combinatorial Sketching
for Finite Programs. In: ASPLOS (2006)

http://sal.csl.sri.com/

Energy-Utility Quantiles

Christel Baier, Marcus Daum, Clemens Dubslaff,
Joachim Klein, and Sascha Klüppelholz�

Institute for Theoretical Computer Science
Technische Universität Dresden, Germany

Abstract. The concept of quantiles is well-known in statistics, but its
benefits for the formal quantitative analysis of probabilistic systems have
been noticed only recently. To compute quantiles in Markov decision pro-
cesses where the objective is a probability constraint for an until (i.e.,
constrained reachability) property with an upper reward bound, an iter-
ative linear-programming (LP) approach has been proposed in a recent
paper. We consider here a more general class of quantiles with proba-
bility or expectation objectives, allowing to reason about the trade-off
between costs in terms of energy and some utility measure. We show how
the iterative LP approach can be adapted for these types of quantiles and
propose another iterative approach that decomposes the LP to be solved
into smaller ones. This algorithm has been implemented and evaluated in
case studies for quantiles where the objective is a probability constraint
for until properties with upper reward bounds.

1 Introduction

The concept of quantiles is well-known in statistics (see, e.g., [21]) and used there
to reason about the cumulative distribution function of a random variable R.
Quantiles are defined as maximal values r such that the probability for the event
R > r is beyond a given threshold. Although quantiles can provide very useful
insights in the interplay of various cost functions and other system properties,
they have barely obtained attention in the context of formal algorithmic system
analysis. Quantiles for probabilistic operational models, such as Markov chains or
Markov decision processes, can be defined using parameterized state properties
Φ[r] or Ψ [r], where r is a parameter for some cost or reward function and Φ[r] is
increasing in r, whereas Ψ [r] is decreasing in r. The notion “increasing” means
that s |= Φ[r] implies s |= Φ[i] for all i > r (“decreasing” has an analogous
meaning). Quantiles for objectives Φ[r] and Ψ [r] in state s of the given model are
defined as min

{
r : s |= Φ[r]

}
resp. max

{
r : s |= Ψ [r]

}
. We formalize Φ[r] and

Ψ [r] by PRCTL-like constraints that assert lower or upper bounds either for the
probabilities for reward-bounded path formulas or for the expected accumulated
	 This work was partly funded by the DFG through the CRC 912 HAEC, the cluster

of excellence cfAED, the project QuaOS, and the DFG/NWO-project ROCKS and
partially by Deutsche Telekom Stiftung, the ESF young researcher groups IMData
100098198 and SREX 100111037, and the EU-FP-7 grant 295261 (MEALS).

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 285–299, 2014.
c© Springer International Publishing Switzerland 2014

286 C. Baier et al.

rewards until reaching a certain target. Typical examples are formulas of the
form Φu[e] for fixed u and Ψe[u] for fixed e asserting that the probability for

λe,u = ♦
(
(energy 	 e) ∧ (utility
 u)

)
is, e.g., at least 0.8. (We use LTL notations where the temporal operator ♦ stands
for “eventually”.) The quantile emin = min{e ∈ N : s |= Φu[e]} is the minimal
initial energy budget required to achieve the utility value u with probability at
least 0.8, while umax = max{u ∈ N : s |= Ψe[u]} is the maximal utility that can
be achieved with probability at least 0.8, when the energy budget is e. The curve
for λe,u on the left of the figure below illustrates how the probability increases
when the utility value u is fixed and the energy budget e tends to ∞. The curve
on the right shows how the probability for λe,u decreases when the energy budget
e is fixed and the demanded degree of utility tends to ∞.

p
ro

b
a
b
il
it
y 80%

emin

energy budget

p
ro

b
a
b
il
it
y 80%

umax

gained utility

State properties Φ[r] or Ψ [r] can also impose a constraint on the expected value
of a random variable. For example, one might ask for the minimal initial energy
budget e that is needed to ensure that the expected degree of utility is at least
some predefined utility threshold u. Vice versa, an expectation quantile might
specify the maximal degree of utility that can be achieved when the expected
energy consumption is required to be less or equal some fixed value e.

In probabilistic models with nondeterminism (e.g., for modeling concurrency
by interleaving) such as Markov decision processes (MDPs), quantiles can be
defined either in an existential or in a universal version, depending on whether
the quantile is used in a worst-case analysis (where all possible resolutions of the
nondeterminism are taken into account) or whether the task is to synthesize a
control mechanism that schedules actions in an optimal way.

As the above examples suggest, quantiles can be seen as a concept to reason
about the trade-off between different quantitative aspects, such as energy and
utility. Thus, they yield an alternative to multi-objective reasoning for MDPs by
means of Pareto optimal schedulers for multiple objectives given as Boolean com-
binations of constraints on the probabilities for certain events and/or expected
accumulated costs [11,12]. The demand for algorithms to compute quantiles in
Markovian models occurred to us during case studies with resource management
protocols [3]. However, in various case studies with probabilistic model checkers
carried out by other researchers, quantiles have been used implicitly in diagrams
illustrating the evaluation results of the experimental studies.

Model-checking algorithms for various types of properties with fixed reward
bounds have been proposed for discrete Markovian models and implemented in
tools, see, e.g., [1,18,15]. The task to compute quantiles is, however, more chal-
lenging since it requires to compute an optimal reward bound for parameter-
ized objectives. Our recent paper [4] briefly considers quantiles for discrete and

Energy-Utility Quantiles 287

continuous-time Markov chains, as an example for nonstandard multi-objective
reasoning. To the best of our knowledge, [22] is the only paper where the
computation of quantiles has been addressed for MDPs. It considers quantiles
in MDPs with a nonnegative reward function for the states where the objec-
tive is a probability constraint for a reachability property with an upper re-
ward bound r, formalized using the temporal reward-bounded until operator
U�r. The above mentioned quantile min{e : s |= Φu[e]} appears as a special
case since Φu[e] can be seen as a probability constraint for the path property
λe,u = ♦�e(utility
 u) = trueU�e(utility
 u). In [22], polynomial-time algo-
rithms for qualitative constraints where the probability bounds are 0 or 1 and
an iterative linear-programming (LP) approach for probability bounds p with
0 < p < 1 has been presented. The minimal or maximal probabilities for a path
property AU�r B for r = 0, 1, 2, . . . is calculated until the probability bound p
is reached, where the extrema are taken over all resolutions of nondeterminism.
This approach appears to be naïve, but the computation of quantiles is known
to be computationally hard (at least NP-hard already for Markov chains by the
results of [19]). This is reflected in the exponential upper bound in [22] for the
number of iterations and the size of the LPs to be solved.

Contribution. First, we generalize the approach of [22] by introducing general
notions of quantiles in MDPs where the objective can either be a probability con-
straint or a constraint on an expectation (Sec. 3). Second, we revisit the iterative
LP approach suggested by [22] and discuss refinements that make the approach
feasible in practice. The core idea is an iterative method that propagates interme-
diate results as much as possible and follows the dynamic-programming scheme
with embedded LPs to deal with zero-reward cycles (Sec. 4.2). We implemented
this approach into Prism [14] and study its performance by means of an energy-
aware job-scheduling system (Sec. 6). Third, we present new algorithms for the
computation of quantiles in MDPs where the objective is (a) either a probability
constraint for reachability conditions with lower reward bounds (Sec. 4.3), or
(b) a constraint on the expected accumulated reward (Sec. 5). These algorithms
also rely on an iterative LP approach and the propagation principle is applica-
ble as well (Sec. 4). Although we are not aware that expectation quantiles in
MDPs have been addressed before, the presented algorithm for (b) shares some
similarities with algorithms that have been proposed for stochastic shortest path
problems [6] and to maximize/minimize the expected cost to reach a target [10].

2 Preliminaries

We provide a brief summary of the relevant concepts of MDPs and specifications
given as formulas in probabilistic computation tree logic with reward-bounded
modalities (PRCTL). Further details can be found, e.g., in [20,9,5].

Markov Decision Processes (MDPs). An MDP is a tuple M = (S,Act , P),
where S is a finite set of states, Act a finite set of actions, P : S×Act×S → [0, 1]
such that

∑
s′∈S P (s, α, s′) ∈ {0, 1} for all states s ∈ S and actions α ∈ Act. The

tuples (s, α, s′) ∈ S×Act×S with P (s, α, s′) > 0 are called steps and we then say

288 C. Baier et al.

that state s′ is an α-successor of s. We write Act(s) for the set of actions α that
have an α-successor from state s ∈ S and require that Act(s) �= ∅ for all states
s. Intuitively, if the current state of M is s, then first there is a nondeterministic
choice to select one of the enabled actions α. Then, M behaves probabilistically
and moves with probability P (s, α, s′) to some state s′. Markov chains are purely
probabilistic instances of MDPs, i.e., where the action set is a singleton.

Paths in an MDP M can be seen as sample runs with resolved nondetermin-
ism. Formally, paths are finite or infinite sequences π = s0 α0 s1 α1 s2 α2 . . . ∈
(S×Act)∗S ∪ (S×Act)ω that are built by consecutive steps, i.e., αi ∈ Act(si) and
P (si, αi, si+1) > 0 for all i. π[k] denotes the (k+1)-st state in π and pref (π, k)
the prefix of π consisting of the first k steps, ending in state π[k] = sk. We write
FPaths(s) for the set of finite paths and IPaths(s) for the set of infinite paths
starting in s.

Reward Structure. A reward structure R for M consists of finitely many
reward functions rew : S × Act → N. If π = s0 α0 s1 α1 . . . αn−1 sn is a finite
path, then the accumulated reward rew(π) is the sum of the rewards for the
state-action pairs, i.e., rew(π) =

∑
0�i<n rew(si, αi).

Schedulers and Induced Probability Space. Reasoning about probabilities
for path properties in MDPs requires the selection of an initial state and the
resolution of the nondeterministic choices between the possible transitions. The
latter is formalized via schedulers, often also called policies or adversaries, which
take as input a finite path and select an action to be executed. A (deterministic)
scheduler is a function S : FPaths → Act such that S(π) ∈ Act

(
sn

)
for all

finite paths π = s0 α0 . . . αn−1 sn. An S-path is any path that arises when the
nondeterministic choices in M are resolved using S, i.e., S

(
pref (π, k)

)
= αk for

all 0 	 k < n. Infinite S-paths are defined accordingly. Given some scheduler S
and state s (viewed as the initial state), the behavior of M under S is purely
probabilistic and can be formalized by a tree-like (infinite-state) Markov chain
MS

s . One can think of the states in MS
s as finite S-paths π = s0α0 . . . αn−1sn

starting in state s, where the probability to move from π to π α s′ is simply
P (sn, α, s

′). Using standard concepts of measure and probability theory, a sigma-
algebra and a probability measure PrSs for measurable sets of the infinite paths
in the Markov chain MS

s , also called (path) events or path properties, is defined
and can be transferred to maximal S-paths in M starting in s. For further
details, we refer to standard text books such as [13,16,20].

For a worst-case analysis of a system modeled by an MDP M, one ranges
over all initial states and all schedulers (i.e., all possible resolutions of the non-
determinism) and considers the minimal or maximal probabilities for ϕ. If ϕ
represents a desired path property, then Prmin

s (ϕ) = infS PrSs (ϕ) is the proba-
bility for M satisfying ϕ that can be guaranteed even for worst-case scenarios,
i.e., when ranging over all schedulers. Similarly, if ϕ stands for a bad (undesired)
path property, then Prmax

s (ϕ) = supS PrSs (ϕ) is the least upper bound that can
be guaranteed for the bad behaviors.
State and Path Properties. Let s be a state, p ∈ [0, 1] a probability bound,
� ∈ {<,	,
, >} and ϕ a path property. We write s |= ∃P��p(ϕ) if there exists

Energy-Utility Quantiles 289

a scheduler S with PrSs (ϕ) � p. Similarly, s |= ∀P��p(ϕ) if PrSs (ϕ) � p for all
schedulers S. Given a reward structure R with reward function rew , sets A,
B ⊆ S, and r ∈ N, then AU((rew � r)∧B) stands for the set of infinite paths π̃
such that there is some k ∈ N with rew(pref (π̃, k)) � r and π̃[k] ∈ B, π̃[i] ∈ A
for 0 	 i < k. If rew is clear from the context (e.g., if the reward structure R is
a singleton), we briefly write AU��r B rather than AU

(
(rew � r)∧B

)
. We often

use the notation π |= AU��r B instead of π ∈ AU��r B. As usual, we derive
the release operator R by AR��r B = ¬(¬AU��r ¬B), where ¬B denotes the
complement of B. The temporal modalities ♦ (eventually) and � (always) with
or without reward-bounds are derived as usual, e.g., ♦��rB = trueU��r B and
���rB = ¬♦��r¬B, where true stands for the full state space.

Reward-bounded path properties such as ϕ[r] = AU�r B are called increasing
as π̃ |= ϕ[r] implies π̃ |= ϕ[r+1]. The dual path properties ψ[r] = ¬ϕ[r] are called
decreasing as π̃ |= ψ[r+1] implies π̃ |= ψ[r]. Analogously, a state property Φ[r] is
called increasing if s |= Φ[r] implies s |= Φ[r+1]. Examples for increasing state
properties are ∃P>p(ϕ[r]), ∀P>p(ϕ[r]), ∃P<p(ψ[r]) and ∀P<p(ψ[r]). Decreasing
state properties are defined accordingly.

Sub-MDPs, End Components. We use the notion sub-MDP of M for any
pair (T,A) where T ⊆ S and A : T → 2Act such that for all t ∈ T : (1) A(t) ⊆
Act(t) and (2) if α ∈ A(t) and P (t, α, t′) > 0 then t′ ∈ T . An end component
of M is a sub-MDP (T,A) of M where A(t) is nonempty for all t ∈ T and
the underlying directed graph with node set T and the edge relation t → t′ iff
P (t, α, t′) > 0 for some α ∈ A(t) is strongly connected. An end component is
said to be maximal if it is not contained in any other end component.

3 Quantiles

As stated in the introduction, quantiles in MDPs can be defined for arbitrary
objectives given by increasing or decreasing parameterized state properties. We
now provide general definitions for quantiles in MDPs where the state proper-
ties impose either a probability or an expectation constraint, and identify the
instances for which we present algorithms in the next two sections.

Quantiles for Probability Objectives. Let M = (S,Act , P) be an MDP as
in Sec. 2 and rew : S × Act → N a distinguished reward function in its reward
structure. Given an increasing path property ϕ[r] where parameter r ∈ N stands
for some bound on the accumulated reward, we define the following types of
existential quantiles, where ψ[r] = ¬ϕ[r], � ∈ {
, >} and p ∈ [0, 1] ∩Q:

Qus
(
∃P�p(ϕ[?])

)
= min

{
r ∈ N : s |= ∃P�p

(
ϕ[r]

) }
= min

{
r ∈ N : Prmax

s

(
ϕ[r]

)
� p

}
Qus

(
∃P�p(ψ[?])

)
= max

{
r ∈ N : s |= ∃P�p

(
ψ[r]

) }
= max

{
r ∈ N : Prmax

s

(
ψ[r]

)
� p

}

290 C. Baier et al.

Similarly, we can define the corresponding types of universal quantiles :

Qus
(
∀P�p(ϕ[?])

)
= min

{
r ∈ N : Prmin

s

(
ϕ[r]

)
� p

}
Qus

(
∀P�p(ψ[?])

)
= max

{
r ∈ N : Prmin

s

(
ψ[r]

)
� p

}
From each of these quantiles we can derive three more quantiles by applying
duality arguments, e.g., Prmax

s (ϕ[r]) = 1−Prmin
s (ψ[r]), and the fact that min{r ∈

N : s |= Φ[r]} equals max{r ∈ N : s �|= Φ[r−1]} when Φ[r] is an increasing state
property. For example:

min
{
r ∈ N : Prmax

s

(
ϕ[r]

)
> p

}
= min

{
r ∈ N : Prmin

s

(
ψ[r]

)
< 1−p

}
= max

{
r ∈ N : Prmin

s

(
ψ[r−1]

)

 1−p

}
= max

{
r ∈ N : Prmax

s

(
ϕ[r−1]

)
	 p

}
This observation yields groups of four quantiles that are derivable from each
other. See [2] for the list of quantile dualities. For the above example we have:

Qus
(
∃P>p(ϕ[?])

)
= Qus

(
∀P<1−p(ψ[?])

)
= Qus

(
∀P�1−p(ψ[?])

)
+ 1 = Qus

(
∃P�p(ϕ[?])

)
+ 1

The quantiles studied in [22] are obtained by considering ϕ[r] = AU�r B and
ψ[r] = (¬A)R�r(¬B). Additionally, we address until-properties with lower re-
ward bounds, i.e., ϕ[r] = AU�r B and ψ[r] = (¬A)R�r(¬B). To investigate the
interplay of two reward functions (such as one for energy and one for utility) we
also address path formulas where instead of the sets A and B, constraints for
some other reward function are imposed. For instance:

λe,u = ♦
(
(energy 	 e) ∧ (utility
 u)

)
,

where e, u ∈ N and energy and utility stand for the accumulated reward along
finite paths of reward functions erew : S ×Act → N (for the energy) and urew :
S × Act → N (for the utility). For an infinite path π̃, we have π̃ |= λe,u iff π̃
has a finite prefix π with erew(π) 	 e and urew(π)
 u. Likewise, λe,u can
be interpreted as an instance of an until-property with an upper or a lower
reward bound. For fixed utility threshold u, the path property ϕ[e] = λe,u =
♦�e(utility
 u) is increasing, while ψ[u] = λe,u = ♦�u(energy 	 e) is decreasing
for fixed energy budget e. The task to compute the existential quantiles

Qus
(
∃P>p(λ?,u)

)
= min

{
e ∈ N : Prmax

s (λe,u) > p
}

Qus
(
∃P>p(λe,?)

)
= max

{
u ∈ N : Prmax

s (λe,u) > p
}

corresponds to the problem of constructing a scheduler that minimizes the en-
ergy ensuring that the achieved utility is at least u with probability > p or to
maximize the achieved degree of utility for a given energy budget e. Analogously,
universal quantiles provide the corresponding information on the energy-utility
characteristics in worst-case scenarios.

Quantiles for Expectation Objectives. We also consider quantiles where
the objective is the minimal or maximal expected value of a random variable

Energy-Utility Quantiles 291

f [r] : IPaths → N ∪ {∞}. For instance, if f [r] is increasing in r and θ some
rational threshold, then an expectation quantile can be defined as the least r ∈ N
such that the expected value of f [r] is larger than θ for all or some scheduler(s).
As an example for quantiles with expectation objectives, we consider a Boolean
condition cond for finite paths and the random variable f [e] = utility|cond :
IPaths → N ∪ {∞} that returns the utility value that is earned along finite
paths where cond holds. Formally:

utility|cond(π̃) = sup
{
urew

(
pref (π̃, k)

)
: k ∈ N, pref (π̃, k) |= cond

}
That is, if π̃ is an infinite path with π̃ |= ♦cond (i.e., pref (π̃, k) |= cond for
some k ∈ N) then utility|cond (π̃) = urew(π), where π is the longest prefix of
π̃ with π |= cond . If π̃ |= �cond (i.e., pref (π̃, k) |= cond for all k ∈ N) then
utility|cond (π̃) can be finite or infinite, depending on whether there are infinitely
many positions i with urew(si, αi) > 0. Given a scheduler S and a state s in
M, the expected utility for condition cond is the expected value of the random
variable utility |cond under the probability measure induced by S and s:

ExpUtilSs
(
cond

)
=

∑
r∈N

r · PrSs
{
π̃ ∈ IPaths : utility |cond(π̃) = r

}
Note that ExpUtilSs

(
cond

)
= ∞ is possible if PrSs

(
♦�(cond)

)
> 0. We define

ExpUtilmax
s

(
cond

)
= sup

S
ExpUtilSs

(
cond

)
.

ExpUtilmin
s (cond) is defined accordingly, taking the infimum over all schedulers

rather than the supremum. Expectation energy-utility quantiles can be formal-
ized by dealing with conditions cond [e] that are parameterized by some energy
value e ∈ N. Examples are the following quantiles that fix a lower bound u for
the extremal expected degree of utility and ask to minimize the required energy:

Qus
(
∃ExpU>u(energy 	?)

)
= min

{
e ∈ N : ExpUtilmax

s

(
energy 	 e

)
> u

}
Qus

(
∀ExpU>u(energy 	?)

)
= min

{
e ∈ N : ExpUtilmin

s

(
energy 	 e

)
> u

}
where π |= (energy 	 e) iff erew(π) 	 e. Analogous definitions can be provided
for quantiles that ask to maximize the achieved utility if an upper bound e for
the expected consumed energy is given.

4 Computing Probability Quantiles

We now present algorithms for the computation of the quantitative quantiles
introduced in Sec. 3. We start in this section with quantiles where the objective
is a constraint on the extremal probability for a reward-bounded until formula.
As stated before, quantiles that refer to reward-bounded release formulas are
dual and can be computed using the same techniques.

Recently, a linear-programming (LP) approach for computing quantiles for
(constrained) reachability properties with upper reward bounds (briefly called

292 C. Baier et al.

minimize
∑

(s,i)∈S[r]

xs,i where S[r] = S × {0, 1, . . . , r}, subject to

xs,i = 0 if s �|= ∃(AUB) and 0 	 i 	 r

xs,i = 1 if s ∈ B and 0 	 i 	 r

xs,i

∑
t∈S

P (s, α, t) · xt,i−rew(s,α) if s /∈ B, s |= ∃(AUB) and α ∈ Act(s)
such that rew(s, α) 	 i 	 r

Fig. 1. Linear program LPr with the unique solution ps,i = Prmax
s

(
AU�i B

)
U�?-quantiles) in MDPs with state rewards has been suggested [22]. We first
recall this approach for quantitative U�?-quantiles (Sec. 4.1) and then provide
an efficient computation scheme that relies on an iterative back-propagation
procedure including several heuristics (Sec. 4.2). In Sec. 4.3, we briefly show how
to adapt these methods for reachability properties with lower reward bounds.

4.1 Iterative Linear-Programming Based Approach

We recall the approach of [22], focusing on existential U�?-quantiles with strict
probability bounds. Other U�?-quantiles can be treated similarly (see [22]).

The idea for computing Qus(∃P>p(AU�? B)) is to first apply standard meth-
ods for computing the maximum probability ps = Prmax

s (AUB) for the un-
bounded until formula AUB. If ps does not meet the probability bound p, i.e.,
ps 	 p, the quantile is infinite for state s. For ps > p, the idea of [22] is to
compute the maximal probabilities ps,r = Prmax

s (AU�r B) for increasing reward
bound r, until ps,r > p. For this purpose, [22] provides an LP with variables
xs,i for (s, i) ∈ S[r] = S × {0, 1, . . . , r} and the unique solution (ps,i)(s,i)∈S[r],
where ps,i = Prmax

s (AU�i B). Fig. 1 shows the LP of [22], adapted for the case
of state-action rewards (rather than state rewards). This LP-based computation
scheme can be solved in exponential time, as shown in [22] by establishing an
upper bound rmax for the smallest (finite) quantile. A naïve approach thus could
first compute rmax, generate the LP with variables xs,i for (s, i) ∈ S[rmax] and
then use general-purpose linear- or dynamic-programming techniques to solve
the constructed LP (e.g., the Simplex algorithm, ellipsoid methods or value or
policy iteration). However, since the upper bound rmax is exponential in the size
of M and depends on the number of states in M, the transition probabilities
and rewards in M and the probability bound p, this approach turns out to be
intractable when M or the reward values are large.

4.2 Back-Propagation Approach

The main bottleneck of the LP approach for computing quantitative quantiles
is the possibly exponential size of the LP. We propose an iterative approach
that computes the values ps,i = Prmax

s (AU�i B) successively for i = 0, 1, 2, . . .
by decomposing the LP in Fig. 1 into smaller ones and propagating already
computed values as much as possible. Due to the reuse of already computed
values, we call this approach back-propagation (BP) approach.

Energy-Utility Quantiles 293

Given that the solution (ps,j)0�j<i for LPi−1 is known when considering LPi,
the constraints for variable xs,i in the third case of Fig. 1 (i.e., if s /∈ B, s |=
∃(AUB) and α ∈ Act(s)) can be rewritten as follows:

xs,i
 cs,i
def
= max

{ ∑
t∈S

P (s, α, t) · pt,i−rew(s,α) : α ∈ Act(s), rew(s, α) > 0
}

xs,i

∑

t∈S P (s, α, t) · xt,i if rew(s, α) = 0

We can now use standard methods to solve LP′i with variables (xs,i)s∈S con-
sisting of the above linear constraints together with the terminal cases xs,i = 0
if s �|= ∃(AUB) and xs,i = 1 if s ∈ B, where the objective is to “minimize∑

s∈S xs,i”. LP′i has indeed a unique solution which agrees with the (unique)
solution (ps,i)s∈S of LPi for the variables xs,i.

Suppose the task is to compute qs = Qus(∃P>p(AU�? B)) for all states s.
Let n = |S|, m =

∑
s∈S |Act(s)| and z be the number of state-action pairs (s, α)

for which s ∈ S, α ∈ Act(s) and rew(s, α) = 0. Then, with the proposed back-
propagation approach, (qs)s∈S is obtained by first computing Prmax

s (AUB) for
all states s (which can be done in time polynomial in the size of M [7,5] and
serves to identify the states s ∈ S where qs = ∞) and then solving the LPs
LP′0,LP

′
1, . . . ,LP

′
r (where r ∈ max{qs : Prmax

s (AUB) > p}) with n variables
and z + |S| linear constraints each.

Reward Window. To reduce the memory requirements, we can use the obser-
vation that the constants cs,i in LP′i are obtained from the values pt,i−rew(s,α)

where α ∈ Act(s) and rew(s, α) > 0. As a consequence, the solution
(
pt,i

)
t∈S for

LP′i can be discarded as soon as LP′i+w has been solved for the maximal reward
value w = max

{
rew(s, α) : s ∈ S, α ∈ Act(s)

}
in M. A further improvement

considers the maximum reward of all incoming transitions per state. That is, the
value of pt,i is not needed any more as soon as LP′i+w has been solved where w
equals the maximal reward of the state-action pairs (s, α) with P (s, α, t) > 0.

Linear Programs for Zero-Reward Sub-MDP. The back-propagation ap-
proach can yield a major speed-up compared to the naïve approach with a single
LP. However, if the number of state-action pairs with zero reward is large com-
pared to the full set of actions in S, LP′i needs still to be solved for several i. The
idea then is to decompose LP′i and treat the sub-LPs in a specific order. Let G
be the directed graph with node set S and the edge relation →⊆ S×S given by
s → t iff P (s, α, t) > 0 for some action α ∈ Act(s) with rew(s, α) = 0. Applying
standard graph algorithms, we compute the strongly connected components in G
and a topological sorting C1, . . . , Ck for them. Then the SCCs C1, . . . , Ck are the
finest partition of S such that: if s ∈ Ch, t ∈ Cj , P (s, α, t) > 0 and rew(s, α) = 0,
then h 	 j. Thus, we can decompose LP′i into LPs LP′i,1, . . . ,LP

′
i,k, where LP′i,h

consists of the linear constraints xs,i
 cs,i and

xs,i

∑

t∈Ch

P (s, α, t) · xt,i +
∑

u∈C>h

P (s, α, u) · pu,i

for s ∈ Ch, α ∈ Act(s), rew(s, α) = 0. Here, C>h = Ch+1 ∪ . . . ∪ Ck and
(pu,i)u∈Cj denotes the solutions of LP′i,j . The objective of LP′i,h is to minimize
the sum

∑
s∈Ch

xs,i.

294 C. Baier et al.

Assuming that the sub-MDP M|rew=0 of M resulting by removing all actions
α from Act(s) with rew(s, α) > 0 is acyclic, no LP has to be solved within our
approach. In this case, the sets C1, . . . , Ck are singletons, say Ch = {sh}, and
the solution

(
ps,i

)
s∈S is obtained directly when processing the states in reversed

topological order sk, sk−1, . . . , s1.

Other Improvements. Several other heuristics can be integrated to speed up
the computation time or to decrease the memory requirements. For instance,
zero-reward self-loops can be removed by a quantile-preserving transformation
M �M′. The MDP M′ has the same state space S as M and the same rewards
for all state-action pairs. The transition probability function P ′ of M′ is given by
P ′(s, α, t) = P (s, α, t)/(1−P (s, α, s)) if rew(s, α) = 0, t �= s and 0<P (s, α, s)<1
and P ′(s, α, t) = P (s, α, t) in all other cases (see [2]). Another heuristic, which
is however not yet realized in our implementation, is the aggregation method
proposed in [8]. This approach permits to collapse all states belonging to the
same maximal end components in the sub-MDP M|rew=0 into a single state.

4.3 Lower Reward Bounds

The approach for computing U�?-quantiles can be adapted to compute quantiles
for (constrained) reachability formulas with lower reward bounds, i.e., AU�? B.
For simplicity, we sketch only the treatment of reachability (♦�?B) with a lower
reward bound. More details and proofs can be found in [2]. We start with the
universal quantile:

Qus
(
∀P<p(♦�?B)

)
= min

{
r ∈ N : Prmax

s

(
♦�rB

)
< p

}
Clearly, if Prmax

s (♦B) < p then the quantile for state s is 0. Furthermore:

Qus
(
∀P<p(♦�?B)

)
=∞ iff Prmax

s

(
♦(C ∧ ♦B)

)

 p,

where C consists of all states t that are contained in a maximal end component
(T,A) with rew(t′, α) > 0 for some state t′ ∈ T and an action α ∈ A(t′).
Intuitively, when entering C one can stay in C until the accumulated reward is
greater or equal than r, before entering B. Otherwise, we apply the same idea
as before and compute the values ps,r = Prmax

s (♦�rB) for increasing r until
ps,r < p. The values ps,r are obtained as the unique solution of the following LP
with variables xs,i for (s, i) ∈ S[r] and the following constraints for s ∈ S and
1 	 i 	 r:

xs,0 = Prmax
s

(
♦B

)
xs,i
 0

xs,i

∑
t∈S

P (s, α, t) · xt,� if α ∈ Act(s) and � = max{0, i− rew(s, α)}

The objective is to minimize
∑

(s,i)∈S[r] xs,i. To speed up the computation, one
can add the following constraints: xs,i = 1 if Prmax

s

(
♦(C ∧ ♦B)

)
= 1 for s ∈ S.

Energy-Utility Quantiles 295

The existential quantile

Qus
(
∃P<p(♦�?B)

)
= min

{
r ∈ N : Prmin

s

(
♦�rB

)
< p

}
can then be computed by an analogous approach, using the fact that the values
ps,r = Prmin

s

(
♦�rB

)
are the greatest solutions in [0, 1] of the linear constraints

xs,0 = Prmin
s

(
♦B

)
xs,i = 0 if Prmin

s (♦B) = 0 and i
 1

xs,i 	
∑
t∈S

P (s, α, t) · xt,� if Prmin
s (♦B) > 0, i
 1, α ∈ Act(s)

and � = max{0, i− rew(s, α)}.

Then, Qus
(
∃P<p(♦�?B)

)
= ∞ iff Prmin

s

(
�♦B ∧ �♦posR

)

 p, where posR ⊆

S × Act is the set of state-action pairs (s, α) with rew(s, α) > 0. Again, one
could add the following constraints: xs,i = 1 if Prmin

s (�♦B ∧ �♦posR) = 1 for
s ∈ S. Obviously, the back-propagation approach (cf. Sec. 4.2) is applicable for
the existential and universal quantiles with lower bounds as well.

4.4 Energy-Utility Quantiles

The energy-utility quantile Qus
(
∃P>p(λ?,u)

)
as introduced in Sec. 3 can be

computed using the same techniques as explained for quantiles of the form
Qus

(
∃P>p(♦�?B)

)
. For this purpose, we might use an automaton Uu with states

q0, q1, . . . , qu−1, qu representing the accumulated utility value. The goal state qu
represents that the achieved utility is at least u. The transitions of Uu are given
by qi → qj for j
 i. We put M and Uu in parallel to obtain an MDP M⊗Uu with
a single reward function for the energy and synchronous transitions that capture
the meaning of Uu’s states. Formally, M⊗Uu = (S×{q0, . . . , qu},Act, P ′) where

P ′(〈s, qi〉, α, 〈t, qj〉) = P (s, α, t) if j = min{u, i+ urew(s, α)}

and P ′(·) = 0 in all other cases. The reward structure of M⊗ Uu consists of
the energy reward function erew lifted to the product. That is, we deal with the
reward function erew ′ for M⊗Uu given by erew ′(〈s, qi〉, α) = erew(s, α) for all
s ∈ S, 0 	 i 	 u and α ∈ Act . With B = S × {qu}, we then have

Prmax
M,s

(
♦((energy 	 e) ∧ (utility
 u))

)
= Prmax

M⊗Uu,〈s,q0〉
(
♦�eB

)
and therefore QuMs (∃P>p(λ?,u)) = QuM⊗Uu

〈s,q0〉 (∃P>p(♦�?B)).

The quantile Qus(∃P>p(λe,?)) is computable by an analogous automata-based
approach, but now using the LP approach suggested for lower reward bounds
(Sec. 4.3). Various other energy-utility quantiles can be computed using reduc-
tions to the case of reward-bounded until formulas or derived path properties. It
is obvious that an analogous automata-based approach is applicable for quantiles
where the objective is a probability constraint on path properties of the form
♦((rew � r) ∧ κ), where κ is a Boolean combination of constraints of the form
rew i � i ri for multiple reward functions rew1, . . . , rewk (other than rew).

296 C. Baier et al.

5 Computing Expectation Quantiles

We now discuss how to compute the expectation quantiles in MDPs with two
reward functions erew and urew for modeling the energy requirements and the
achieved utility (see Sec. 3). Let us exemplify the approach computing

E∃s = Qus
(
∃ExpU>u(energy 	?)

)
and E∀s = Qus

(
∀ExpU>u(energy 	?)

)
.

Using known results for standard MDPs, we obtain that ExpUtilmax
s (energy 	 e)

is finite, provided that Prmin
s (♦(energy > e)) = 1. If, however, M contains

end components where all the state-action pairs have zero energy reward then
Prmin

s (♦(energy > e)) < 1 and ExpUtilmax
s (energy 	 e) =∞ is possible.

Let us first make the simplifying assumption that all end components are both
energy- and utility-divergent, i.e., whenever (T,A) is an end component of M
then there exist state-action pairs (t, α) and (v, β) with t, v ∈ T and α ∈ A(t),
β ∈ A(v) such that erew (t, α) and urew(v, β) are positive. This assumption
yields that Prmin

s (♦(energy > e)) = 1 and hence, ExpUtilmax
s (energy 	 e) and

ExpUtilmin
s (energy 	 e) are finite for all states s ∈ S and all energy bounds

e ∈ N. Moreover, lime→∞ ExpUtilSs (energy 	 e) = ∞ for each scheduler
S. This yields the finiteness of the expectation quantiles E∃s and E∀s . The
computation of E∃s and E∀s can be carried out using an iterative approach
as for probability quantiles. For E∃s , we compute iteratively the values us,e =

ExpUtilmin
s (energy 	 e) until us,e > u, in which case E∃s = e. It remains to

explain how to compute us,e. Again, we can use an LP-based approach and
characterize the vector (us,i)(s,i)∈S[e] as the unique solution of the LP with vari-
ables xs,i for (s, i) ∈ S[e] = S × {0, 1, . . . , e} and the objective to maximize the
sum of the xs,i’s subject to:

xs,i 	 urew(s, α) +
∑
t∈S

P (s, α, t) · xt,i−erew(s,α)

if α ∈ Act(s) and erew(s, α) 	 i 	 e. For computing E∀s , the values vs,e =
ExpUtilmax

s (energy 	 e) can be computed by a similar schema, using the fact that
the vector (vs,i)(s,i)∈S[e] is the least solution in [0, 1]S[e] of the linear constraints

xs,i
 urew(s, α) +
∑
t∈S

P (s, α, t) · xt,i−erew(s,α)

if α ∈ Act(s) and erew(s, α) 	 i 	 e. Obviously, the back-propagation approach
is applicable as well.

The computation of expectation quantiles for the general case, where no as-
sumptions on the end components are imposed, are detailed in [2]. Basically,
this computation relies on an analogous LP approach, but requires a preprocess-
ing step to identify the states where ExpUtilmax

s (energy 	 e) = ∞, respectively
ExpUtilmin

s (energy 	 e) = ∞ and computing those states where the quantile is
infinite. The main feature for this preprocessing is an analysis of end components,
similar as in [10,12].

Energy-Utility Quantiles 297

6 Implementation and Case Studies

In this section, we deal with our implementation of the algorithms for comput-
ing U�?-quantiles presented in Sec. 4.1 and 4.2 and demonstrate its usability
within case studies. Our implementation relies on the computation of extremal
probabilities for upper reward-bounded until properties on top of the explicit en-
gine of the prominent probabilistic model checker Prism version 4.1 [14], which
have not yet been supported within Prism so far. We compute quantiles either
by solving the LP of [22] (see Fig. 1) directly using the LP-solver lpsolve1 or
with our back-propagation approach (BP). Our first case study is taken from
Prism’s benchmark suite [17], showing the applicability of our implementation
on relatively small models and compare the performance of the LP and BP ap-
proach. Then, we turn to computing energy-utility quantiles for an energy-aware
job-scheduling protocol. All calculations were carried out on a computer with
two Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM. More detailed
information and further case studies can be found in [2].

Self-stabilization. The self-stabilizing protocol by Israeli and Jalfon is mod-
eled2 as an MDP for N equal processes organized in a ring, each having a token
at the beginning and aiming to randomly send and receive tokens until the ring
is in a stable state, i.e., only one process has a token. We used our quantile al-
gorithms to compute the minimal number of steps required for reaching a stable
state with probability of at least p for some schedulers (existential quantile) or
all schedulers (universal quantile). The latter problem also has been answered in

Table 1. Results for randomized self-stabilizing (existential and universal quantile)

model existential quantile universal quantile
N p states build result LP BP result LP BP
10 0.1 1,023 0.24s 18 118.38s 0.03s 26 403.36s 0.16s

0.5 " " 38 1,066.64s 0.05s 43 1,388.15s 0.09s
0.99 " " 117 11,552.55s 0.14s 130 19,794.61s 0.15s

15 0.1 32,767 1.56s 42 timeout 1.85s 61 timeout 3.78s
0.5 " " 89 timeout 3.85s 100 timeout 4.10s

0.99 " " 270 timeout 11.42s 305 timeout 12.18s

the referred Prism case study, but by iteratively increasing the step bound until
the probability bound p was met. Our approach is more elegant by implicitly
computing the probability values and answering only one (quantile) query. Table
1 shows our results for the LP and BP approach, with a timeout of 12 hours.
The time for BP covers the entire computation of the quantile value r. For LP,
we report the time for solving the linear program LPr. As it can be seen, the LP
approach turns out to be infeasible already for relatively small models, whereas
the BP implementation performs well. Table 1 also reveals that especially within
1 http://lpsolve.sourceforge.net, we used version 5.5.2, presolving deactivated.
2 http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij

http://lpsolve.sourceforge.net
http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij

298 C. Baier et al.

Table 2. Results for energy-aware job scheduling (quantiles emin and umax)

model quantile emin

N p states build result time
4 0.1 368,521 14.67s 179 37.43s

0.5 " " 198 37.02s
0.99 " " 225 42.69s

5 0.1 6,079,533 377.95s 242 1,058.48s
0.5 " " 266 1,135.65s

0.99 " " 301 1,261.89s

model quantile umax

N p states build result time
4 0.1 872,410 14.47s 7 173.71s

0.5 " " 7 173.22s
0.99 " " 7 155.66s

5 0.1 3,049,471 65.69s 9 812.19s
0.5 " " 9 812.93s

0.99 " " 9 736.93s

the LP approach the time spent for evaluating the quantile increases significantly
when the probability bound p is high (and hence, also the quantile value is high).

Energy-Aware Job Scheduling. We now turn to an energy-aware job-schedul-
ing protocol modeled as an MDP, for which we compute energy-utility quantiles.
Assume a system of N processes which need to enter a critical section in order
to perform tasks, each within a given deadline. Access to the critical section
is exclusively granted by a scheduler, which selects processes only if they have
requested to enter. When a process states such a request, a deadline counter is
set and decreased over time even if the process did not enter the critical section
yet. Since computing a task also requires a certain amount of time in the critical
section, deadlines can be exceeded. Utility is hence provided in terms of tasks
finished without exceeding their deadline. Each process consumes energy, espe-
cially if it is in the critical section, and the global energy consumption equals
the sum of energy consumed by all processes. Additional dependencies between
utility and energy arise as the scheduler can activate a turbo mode for the crit-
ical section, doubling the computation speed but tripling energy consumption.
As motivated in the introduction, we are now interested in the following energy-
utility quantiles, both illustrating the trade-off between energy and utility w.r.t.
several probability bounds p. We consider the quantile for the minimal energy
emin required to guarantee u successfully finished tasks, and the quantile for
the maximal number umax of tasks successfully finished by one process requir-
ing not more than e energy. Our experiments solving these quantiles used the
BP implementation with parameters u=N , e=50·N . The results shown in Table
2 illustrate that even for large model sizes with millions of states, our imple-
mentation of the BP algorithm is feasible. As expected, none of the quantile
computations for emin and umax finished within 12 hours when we used the LP
approach instead of our BP implementation.

7 Conclusion

We introduced a general notion of (energy-utility) quantiles for MDPs and ex-
tended the LP schema from [22] to compute quantitative quantiles with lower
and upper reward bounds, where the objective can be a probability constraint or
a constraint on an expectation. We implemented a BP approach for quantitative
quantiles with upper reward bounds, which can significantly speed up quantile
computations, and demonstrated its performance by means of case studies.

Energy-Utility Quantiles 299

References
1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.

In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

2. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-Utility Quan-
tiles. Technical report, TU Dresden (2014), http://wwwtcs.inf.tu-dresden.de/
ALGI/PUB/NFM14/

3. Baier, C., et al.: Waiting for locks: How long does it usually take? In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 47–62. Springer, Heidelberg
(2012)

4. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic
Model Checking for Energy-Utility Analysis. Festschrift (to appear 2014)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
6. Bertsekas, D., Tsitsiklis, J.: An analysis of stochastic shortest path problems. Math-

ematics of Operations Research 16(3), 580–595 (1991)
7. Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-deterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

8. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model
checking Markov decision processes. In: QEST 2008, pp. 45–54. IEEE (2008)

9. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science (1997)

10. de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999)

11. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Logical Methods in Computer Science 4(4)
(2008)

12. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

13. Haverkort, B.: Performance of Computer Communication Systems: A Model-Based
Approach. Wiley (1998)

14. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

15. Katoen, J.-P., Zapreev, I., Hahn, E., Hermanns, H., Jansen, D.: The ins and outs
of the probabilistic model checker MRMC. Perform. Eval. 68(2) (2011)

16. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall (1995)
17. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST

2012. IEEE Computer Society (2012)
18. Kwon, Y., Agha, G.: A Markov reward model for software reliability. In: IPDPS

2007, pp. 1–6. IEEE (2007)
19. Laroussinie, F., Sproston, J.: Model checking durational probabilistic systems.

In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer,
Heidelberg (2005)

20. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley (1994)

21. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley (1980)
22. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfenning,

F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg (2013)

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/NFM14/
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/NFM14/

Incremental Verification of Compiler
Optimizations�

Grigory Fedyukovich1, Arie Gurfinkel2, and Natasha Sharygina1

1 University of Lugano, Switzerland
{grigory.fedyukovich,natasha.sharygina}@usi.ch

2 SEI/CMU, USA
arie@cmu.com

Abstract. Optimizations are widely used along the lifecycle of software.
However, proving the equivalence between original and optimized ver-
sions is difficult. In this paper, we propose a technique to incrementally
verify different versions of a program with respect to a fixed property. We
exploit a safety proof of a program given by a safe inductive invariant.
For each optimization, such invariants are adapted to be a valid safety
proof of the optimized program (if possible). The cost of the adapta-
tion depends on the impact of the optimization and is often less than
an entire re-verification of the optimized program. We have developed a
preliminary implementation of our technique in the context of Software
Model Checking. Our evaluation of the technique on different classes of
industrial programs and standard LLVM optimizations confirms that the
optimized programs can be re-verified efficiently.

1 Introduction

Program verification is necessary for building reliable software intensive systems.
One challenge in using verification is deciding on the right level of abstraction.
On one hand, verifying the source code (or a high-level compiler representa-
tion) before optimizations gives meaningful verification results to the user. On
the other, verifying the binary (or a low-level compiler representation) after op-
timizations takes compiler out of the trusted computing base. Our experience
with the UFO [1] indicates that verification results at both levels are desired.

There are two common techniques for adapting verification results from an
original program P to an optimized program Q: (1) complete re-verification of Q;
(2) establish property preserving equivalence (typically a form of a simulation)
between P and Q. Re-verification is computationally expensive. Establishing
a simulation between P and Q often requires manual instrumentation of the
� This material is based upon work funded and supported by the Department of De-

fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research and
development center. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Department of Defense. This material has been approved
for public release and unlimited distribution. DM-0000784

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 300–306, 2014.
c© Springer International Publishing Switzerland 2014

Incremental Verification of Compiler Optimizations 301

compiler which is hard to do and maintain [6]. In this paper, we propose an
alternative solution that combines the advantages of the two approaches.

We assume that the original program P comes with a property G, and that P
satisfies G (i.e., P |= G). Instead of showing an equivalence between P and Q,
we show that Q satisfies G. First, by adapting the proof of P |= G, given by
an inductive invariant, to Q, and then strengthening it by re-verification as
needed. Our technique can be seen as a property-specific equivalence: P and Q
are equivalent iff they both satisfy G.

We evaluate our approach on the instcombine optimization of LLVM that
does local optimizations (such as turning x = 1 + 1 into x = 2). Our exper-
iments show that the approach is very effective. In many cases, the complete
safety proof can be transferred between the original and the optimized programs.
Whenever re-verification was required, it was insignificant.

2 From Optimization to Evolution

In this section, we formally define the problem of incremental property-directed
verification of optimizations. We begin with formal definitions of programs,
safety proofs, and admissible optimizations. A “large-block” representation of
a program is a tuple P = (V, en, err , E, τP), where V is a set of cutpoints (i.e.,
locations which represent heads of some loops); en, err ∈ V are designated entry
and error locations, respectively; E ⊆ V × V is the control-flow relation (rep-
resent a loop-free program fragments), τP : E → Stmt∗ maps control edges to
loop-free program fragments. An example of a program is shown in Fig. 1a. We
call the graph (V, E) the Cut-Point Graph (CPG) which collapses the more fine
grained Control-Flow Graph (CFG).

We write � X to mean that X is valid. Let Expr be a set of expressions over
program variables, pre, post ∈ Expr and S a loop-free program fragment. We
write � {pre} S {post} to mean that pre and post are pre- and post-conditions
of S, i.e., whenever S starts in a state satisfying pre, if S terminates, it ends in a
state satisfying post. A safety proof of P is a mapping ψ : V → Expr such that

∀(u, v) ∈ E · � {ψ(u)} τP (u, v) {ψ(v)} ψ(err) → ⊥ (1)

{x > 0∧
y > 0}

{x > 0∧
y > 0}

x ≤ 0

x := 1
y := 1

x++

y++

{)}

{⊥}
err

en

v1 v2

(a) Program P and
safety proof ψ.

{x > 0∧
y > 0}

{x > 0∧
y > 0}

x ≤ 0

x := 1
y := 1y := 1

x++

y++
y > 0}

y++
skip

{)}

{⊥}
err

en

v1 v2

(b) Program Q.

x ≤ 0

x := 1

x++

skip

{x > 0} {x > 0}

{)}

{⊥}
err

en

v1 v2

(c) Program Q and
safety proof ϕ.

Fig. 1. A simple program and an optimization

302 G. Fedyukovich, A. Gurfinkel, and N. Sharygina

Algorithm 1: optVerify(P, ψ, Q)
Input: Original program P , safety proof ψ of P , new program Q
Output: A pair 〈res, ϕ〉 s.t. res → ϕ is safety proof of Q

1 σ ← guessMap(P, Q) � Guess a map between variables of P and Q
2 π ← mkInd(ψσ, Q, P) � Weaken candidate ψσ until it is inductive for Q
3 res, ϕ ← Verify(Q, π) � Strengthen ϕ until it is SAFE for Q
4 return 〈res, ϕ〉

An optimization of P is a program Q = (V, en, err , E, τQ), that differs from
P only in the labeling of the edges of the CPG. Note that this definition limits
optimizations to changes that do not affect the loop-structure of P (i.e., loops
cannot be added or removed). However, since we deal with “large-blocks”, loop
unrolling is admissible. At the same time, we do not put any other restrictions
on Q. In particular, we do not require for Q to simulate P . An example of
optimization Q of P is shown at the Fig. 1b in which the variable y was removed

The problem of incremental property-directed verification is: Given a program
P , a safety proof ψ of P , and an optimization Q of P , adapt a safety proof ψ to
a safety proof ϕ of Q, or show that Q does not admit a safety proof (i.e., has a
counterexample).

Thus, we view the problem as a variant of upgrade checking (as opposed to
verification). The key concept in upgrade checking is adapting verification results
from one program to another. We extend this concept to safety proofs. Let P ,
ψ, and Q be as above. An adaptation π of ϕ to Q is a weakening of ψ such that

∀w ∈ V · ψ(w) → π(w) (2)
∀(u, v) ∈ E· � {π(u)} τQ(u, v) {π(v)} (3)

Intuitively, (2) says that π is a weakening of ψ, and (3) says that π is inductive.
Note that if π(err) = ⊥, then π is a safety proof of Q. Otherwise, π is simply
an inductive invariant.

3 Our Solution

optVerify is shown in Alg. 1. The input is an original program P = (V, en, err , E,
τP), a safety proof ψ : V → Expr of P and a new program Q = (V, en, err , E, τQ).
The output is a safety proof ϕ of Q or a counter-example. We require that P and
Q share the CPG (i.e., same loop-heads), and differ only in the labeling of edges.

OptVerify consists of three steps: (1) a mapping σ between the variables of
P and Q (line 1) is guessed and is used to syntactically transfer the safety proof
ψ to a candidate proof ψσ of Q. (2) ψσ is weakened to π using mkInd until π is
an inductive invariant (line 2). At this point, π is inductive, but not safe. (3) π
is strengthened if necessary (and possible) to ϕ by a standalone verifier (line 3).

In our implementation, σ is guessed by syntactically matching variable names:
a variable v of P is mapped to a variable v of Q if v exists in Q, and to a

Incremental Verification of Compiler Optimizations 303

Algorithm 2: mkInd(ψ, Q, P)
Input: Candidate invariant ψ, new program Q, original program P
Output: Inductive invariant π : V → Expr of Q

1 π ← ψ; W ← {(u, v) ∈ E | τP (e) �= τQ(e)};
2 while W �= ∅ do
3 (u, v) ← getWtoSmallestEdge(W); // according to the WTO
4 pre ← π(u) ; post ← π(v);
5 if ({pre} τQ(u, v) {post}) then W ← W \ {(u, v)}; // use SMT-solver
6 else
7 π(v) ← weakPost(pre, τQ(u, v), post); // see Alg 3
8 W ← (W \ {(u, v)}) ∪ {(v, x) ∈ E | x ∈ V }
9 return π

fresh symbol otherwise. To implement Verify, we use UFO [1] that iteratively
strengthens the given inductive invariant. In particular, if π is already safe, UFO

returns immediately and ϕ ≡ π. A verifier that cannot work by strengthening a
given invariant would be useless as it would amount to verifying Q from scratch.
Our key contribution is an algorithm mkInd for weakening a candidate invariant.
We describe it in details in the rest of this section.

mkInd is shown in Alg. 2. The input is a candidate invariant ψ, a new program
Q and an original program P . The output is an inductive weakening π of ψ
(i.e., π satisfies (2) and (3)) for Q. mkInd maintains a work-list W ⊆ E that
is initialized with all the edges (u, v) ∈ E on which P and Q disagree (i.e.,
τP (u, v) �= τQ(u, v)). In each iteration of the main loop, first, an edge (u, v) ∈ W
that is least in the Weak Topological Ordering (WTO) [2] (in which inner loops
are traversed before outer loops) is picked. Second, an SMT-solver is used to
check whether the current values of π(u) and π(v) form a valid Hoare-triple for
the corresponding loop-free code fragment τQ(u, v). If this is not the case, the
post-condition π(v) is weakened until the triple becomes valid and all outgoing
edges of v are added to W . Soundness of mkInd is immediate – the work-list
is empty only if every edge is annotated with a valid pre- and post-condition
pair. Termination follows from the fact that at each iteration either the work-
list is reduced, or a post-condition is weakened, and, our implementation of
weakPost allows only for finitely many weakening steps.

weakPost is shown in Alg. 3. The input is a pre-condition pre, a post-condition
post and a loop-free program fragment S. The output is a weakening post′ of post
such that {pre} S {post′} is valid. We assume that the post-condition post is given
as a conjunction of lemmas, i.e., post =

∧
i �i. The algorithm computes the (pos-

sibly empty) subset of {�i} that forms a valid post-condition.
The naive implementation of weakPost iteratively checks whether each �i

is a post-condition. Instead, we use an incremental SMT solver to do this enu-
meration efficiently. We assume that in addition to the SmtSolve API, an SMT
solver has the method SmtAssert to add constraints to the current context.
First, we compute an SMT-formula that encodes the verification condition (VC)
of S. We use helper method mkVc that implements VC-generation from [5].

304 G. Fedyukovich, A. Gurfinkel, and N. Sharygina

Algorithm 3: weakPost(pre, S, post)
Input: pre, post ∈ Expr ; post =

∧n

i=0 �i; S ∈ Stmt∗

Output: post ′ ∈ Expr , such that 	 {pre} S {post ′} is valid
1 let {xi | 0 ≤ i ≤ n} be fresh Boolean variables; U ← {0, . . . , n};
2 vc ← pre ∧ mkVC(S) ∧ ¬(

∧n

i=0(xi → �i));
3 SmtAssert(vc);
4 while SmtSolve() = SAT do
5 M ← SmtModel();
6 foreach {0 ≤ i ≤ n | M |= xi} do SmtAssert(¬xi); U ← U \ {i};
7 post′ ← ∧{�i | i ∈ U};
8 return post′

Second, we construct vc that determines the validity of pre- and post-condition
by conjoining the pre-condition and negation of the post-condition (line 2) to
the VC. Note that the post-condition is asserted under assumptions, encoded by
Boolean variables xi such that lemma �i is active iff xi is true. We then itera-
tively check the validity of vc. In each iteration, if vc is satisfiable, we assert ¬xi

to disable the corresponding lemma(s). This terminates eventually since there
are finitely many lemmas and at least one is disabled at every iteration. The
conjunction of all active lemmas is returned as post ′.

To summarize we illustrate mkInd on an example from Figs. 1a-1b. Given P ,
its safety proof ψ and Q, mkInd first checks the validity of the edge en → v1, i.e.,
{�} x:=1 {x > 0∧y > 0}. It is clearly invalid, thus weakPost is used to weaken
π(v1) to x > 0. Next, the validity of the triple for the edge v1 → v2 is checked,
i.e., {x > 0} x++ {x > 0 ∧ y > 0}. Note that the post-condition constructed in
the previous step is now used as the pre-condition. Again, the triple is invalid
and the post-condition is weakened to x > 0. Finally, the edges v2 → v1 and
v1 → err are checked, and mkInd terminates. The final inductive invariant π of
Q is shown in Fig. 1c. In this case, π is also a safety proof (π(err) → ⊥, and,
therefore, ϕ ≡ π), so no further strengthening is required.

4 Evaluation

We have implementedoptVerify in theUFO framework, and evaluated it on the
Software Verification Competition (SVCOMP’13) benchmarks and instcombine
optimization of LLVM. For each benchmark (300 - 5000 lines of source code), we
measured the verification time oV, time of optVerify (mkInd + Verify), and
time to re-verify from scratch (uV). Out of 397 safe benchmarks, we chose 108 that
had non-trivial original verification time (oV > 1s). Due to lack of space, results
are available at http://www.inf.usi.ch/phd/fedyukovich/optVerify.pdf .

In all but 6 cases, re-verification (Verify) was insignificant (< 1s). Further-
more, in 67 cases the candidate invariant was already safe and no strengthen-
ing was needed. In 52 cases, optVerify was at least an order of magnitude
faster than re-verification (uV). This highlights the benefit of the approach. In

http://www.inf.usi.ch/phd/fedyukovich/optVerify.pdf

Incremental Verification of Compiler Optimizations 305

34 cases, instcombine dramatically reduced verification time (from minutes to
< 1s). This shows that sometimes it is better to verify the optimized program
first and then adapt the results to the original one. While this can be done using
optVerify, we have not done so yet.

5 Related Work

There is a large body of related work on incremental verification, verifying com-
pilers, and translation validation. Here, we only survey some of the most relevant
techniques. Our algorithm is inspired by recent advancements in upgrade check-
ing [3] and witnessing compiler transformations [6].

The goal of upgrade checking is to adapt a verification result from an original
program P to an upgraded program Q, where Q is obtained from P by changing
some of its functions. Current techniques [3] apply to bounded programs with
functions, and work by adapting function summaries (i.e., relationship between
function’s inputs and outputs) from P to Q. In contrast, we work on unbounded
programs without functions and adapt safety proofs (i.e., safe inductive invari-
ants). Extending our approach to deal with functions is an interesting direction
for future work.

The goal of witnessing compiler transformations is to formally establish equiv-
alence (namely, stuttering simulation) between an original program P and its
optimization Q. Current technique [6] works by instrumenting every optimiza-
tion pass to output a witness relating its input and output. In contrast, we are
interested in an automated solution. In that, our work is more similar to transla-
tion validation [7]. However, we only require equivalence with respect to a given
property. At the technical level, our use of CPGs makes the approach less sensi-
tive to many restructuring optimizations such as loop unrolling. We expect that
in practice the two approaches can be combined, extending our algorithm, for
example, to handle optimizations changing CPG structure.

At its core, our solution is similar to Houdini [4] inference algorithm that
constructs inductive invariant out of a set of candidate formulas. However, there
are many technical differences. One being our use of incremental SMT solver
to speed up the search. More importantly, we need to adapt candidates from
one program to another. Since based on discarding some candidate lemmas, our
current adaptation strategy is rather rough and might be replaced by a more
accurate one which weakens formulas on logical level and guided by results on
analysis of concrete optimizations. This remains a challenge for future work.

References

1. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: UFO: A Framework for
Abstraction- and Interpolation-Based Software Verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 672–678. Springer, Heidelberg
(2012)

306 G. Fedyukovich, A. Gurfinkel, and N. Sharygina

2. Bourdoncle, F.A.: Efficient Chaotic Iteration Strategies with Widenings. In:
Pottosin, I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp.
128–141. Springer, Heidelberg (1993)

3. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental Upgrade Checker
for C. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
292–307. Springer, Heidelberg (2013)

4. Flanagan, C., Leino, K.R.M.: Houdini: An Annotation Assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

5. Gurfinkel, A., Chaki, S., Sapra, S.: Efficient Predicate Abstraction of Program Sum-
maries. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 131–145. Springer, Heidelberg (2011)

6. Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 304–323. Springer, Heidelberg
(2013)

7. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI (2000)

Memory Efficient Data Structures

for Explicit Verification of Timed Systems

Peter Gjøl Jensen, Kim Guldstrand Larsen, Jǐŕı Srba,
Mathias Grund Sørensen, and Jakob Haar Taankvist

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Abstract. Timed analysis of real-time systems can be performed us-
ing continuous (symbolic) or discrete (explicit) techniques. The explicit
state-space exploration can be considerably faster for models with mod-
erately small constants, however, at the expense of high memory con-
sumption. In the setting of timed-arc Petri nets, we explore new data
structures for lowering the used memory: PTries for efficient storing of
configurations and time darts for semi-symbolic description of the state-
space. Both methods are implemented as a part of the tool TAPAAL and
the experiments document at least one order of magnitude of memory
savings while preserving comparable verification times.

1 Introduction

Semantics of real-time systems can be defined via real-valued time delays (con-
tinuous semantics) or integral time delays (discrete semantics). It is a folklore
knowledge (see e.g. [2]) that both semantics coincide up to reachability as long
as the formal model uses only closed (non-strict) clock guards. Continuous state-
spaces are usually explored via zone-based abstractions (using the DBM data
structure [8]), giving us a finite approximation of the model behaviour. Alterna-
tively, we can explore the discrete state-space in an explicit manner, assuming a
suitable extrapolation operator that guarantees termination of the search.

Explicit model checking is less studied even though it can successfully com-
pete with zone-based methods on models without too large constants [3,12,10,1].
One of the main criticisms of explicit model checking is a high memory usage.
We shall study possible solutions for saving memory in explicit model checking
using BDDs [4], time darts data structure [10] and a new data-structure PTrie.
We provide a realistic comparison of their performance on several case-studies
from the literature. We base our study on the formal model of timed-arc Petri
nets (TAPN) and the associated model checker TAPAAL [7] where the above
mentioned techniques were implemented and made publicly available.

An example of a timed-arc Petri net, describing a researcher submitting papers
for peer-reviewed conferences, is given in Figure 1. The net consists of places
(circles), transitions (rectangles) and arcs (arrows). Places contain tokens, each
with a real-time age, forming a marking of the net. In our example the initial

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 307–312, 2014.
c© Springer International Publishing Switzerland 2014

308 P.G. Jensen et al.

researching

inv: ≤ 3 0

decision

inv: ≤ 1

writing

inv: ≤ 4

peer review

inv: ≤ 3

idea ready deadline missed

continue research

submit

accept reject

write paper

[1, 3]

[0,∞)

[2, 4]

[0,∞) [0,∞)

[4, 4]

[1,∞)

Fig. 1. A timed-arc Petri net describing a publication process

marking contains just one token of age 0 in the place researching. The place
researching contains the age invariant ≤ 3, meaning that the token in this place
cannot be older than 3. The net can so delay up to 3 time units (months) and
once the age of the token is at least 1, the transition idea ready gets enabled as
the token’s age fits into the interval [1,3]. The transition can now fire, consuming
the token from the place researching and adding a new token of age 0 to the place
decision. Now a decision whether to continue the research or write a paper must
be taken within one month. If the researcher decides to write a paper, the token
of age 1 is moved from the place decision to the place writing while preserving
its age 1 due to the use of transport arcs (with diamond-shaped arrow-tips).
Hence the time of the decision counts into the total number of months used for
writing the paper. After writing for at least 1 month, the researcher can submit
the paper while producing two new tokens of age 0 into the places researching
and peer review. By repeating the process, it is possible to have two publications
under peer-review at the same time, though the timing constraints imply that
having submitted three publications concurrently is impossible. As the net is
bounded, this can be verified using the model checker TAPAAL [7] that supports
also other primitives like weights, inhibitor arcs, urgent transitions, constants
and components with interfaces.

2 PTries and Time Darts

The basic reachability algorithm based on explicit state-space search is given in
Figure 2 where ϕ is a propositional formula over the number of tokens in the

places of the net, and M
t→ M ′ and M

1→ M ′ represent transition firing resp.
a delay of one time unit. The function cut is an extrapolation of token ages
that exceed their maximum relevant bounds, yielding a canonical representative
for each marking. This guarantees finiteness of the state-space for bounded nets
(see [1]). A fragment of the state-space for our running example is shown in
Figure 2; here e.g. (r, 0) stands for a token of age 0 in place researching.

The algorithm utilizes two data structures, the passed and waiting sets that
store the discovered state-space. The size of these sets (in particular the passed

Memory Efficient Data Structures for Explicit Verification of Timed Systems 309

Input: A closed TAPN N with initial marking M0, proposition ϕ and a bound k.
Output: True if M0 →∗ M via k-bounded markings and M |= ϕ, False otherwise.

Passed := ∅; Waiting := ∅;
AddToPW(M0);
while Waiting �= ∅ do

Remove M from Waiting;
Passed := Passed ∪ {M};
foreach M

t→M ′ or M
1→M ′

do AddToPW(cut(M ′))
return False;

AddToPW(M): begin
if M /∈ Passed ∪Waiting ∧
size(M) ≤ k then

if M |= ϕ then
return True and exit;

Waiting := Waiting ∪ {M};

{(r,0)}
100000000

{(r,1)}
100001000

{(r,2)}
100000100

{(r,3)}
100001100

{(d,0)}
100100000

{(d,1)}
100101000

{(w,1)}
100011000

{(w,2)}
100010100

{(w,3)}
100011100

{(w,4)}
100010010

{(r,0), (p,0)}
100000000100110000

{(r,1), (p,1)}
100001000100111000

{(r,2), (p,2)}
100000100100110100

{(r,3), (p,3)}
100001100100111100

. . .

. . .

. . .

x0

BDD representation

x1 x2 x3 x4

x4

x5 x6

x6 x7

x7 x8 tt

ε

PTrie representation

1 0 0

1 {00000, 01000}

0

1 {1000, 0100, 1100, 0010}

0 {1000, 0100, 1100, 0000}

Fig. 2. Explicit reachability algorithm and the initial fragment of the state-space for
the net from Figure 1. Places are abbreviated by their first letters and the full state-
space contains 29 markings. The markings include their binary encodings and the first
three columns of the state-space are stored using BDD and PTrie.

one) can be large and we need an efficient way to store them. For this purpose,
we represent each marking as a binary string (in an arbitrary but fixed manner)
as shown in Figure 2. An obvious way to store the binary encodings of markings
is using BDDs. However, the repeated additions to the sets make this approach
inefficient as BDDs are normalized after each insertion. We suggest instead a new
data structure Partial Trie or PTrie (based on Trie [9]) that stores the binary
values in the path through the decision tree rather than in the nodes. As the cost
of storing a single node in the PTrie exceeds one bit, using a fully unfolded tree
may not necessarily preserve any memory. For this purpose we introduce buckets
at different levels of the tree that contain suffixes of the binary encodings after the
initial prefix that is encoded in the path leading to the bucket, as demonstrated

310 P.G. Jensen et al.

({(r,0)}, 0, 4) ({(d,0)}, 0, 2) ({(w,0)}, 1, 5) ({(r,0), (p,0)}, 0, 4)

({(d,0), (p,1)}, 0, 2)({(w,0), (p,1)}, 1, 3)({(r,0), (p,0), (p,3)}, 0, 1)

({(r,0), (p,3)}, 0, 1) ({(r,0), (p,1)}, 0, 3) ({(d,0), (p,2)}, 0, 2)

({(r,0), (p,2)}, 0, 2)({(d,0), (p,3)}, 0, 1)({(w,0), (p,2)}, 1, 2)

Fig. 3. The state-space of the net from Figure 1 represented with time darts

in Figure 2. As soon as the number of strings with the same most-significant bit
in a bucket exceeds a predefined constant (3 in our example), the node splits.

In the explicit state-space in Figure 2 we can notice that the markings in each
column are simply delays of the top most marking. The time dart data structure,
first suggested in [10] for timed automata, exploits this fact by representing all
such markings in a single dart. A base marking contains at least one token of

age 0. For any marking M ′ there is a unique base marking M s.t. M
d→ M ′ for

some d ≥ 0. A time dart is a triple (M,w, p) where M is a base marking, w ∈ N0

is a waiting distance and p ∈ N∞0 is a passed distance such that w ≤ p. The dart

simultaneously represents the set of waiting markings M ′ such that M
d→ M ′

where w ≤ d < p, and the set of passed markings M ′ such that M
d→M ′ where

d ≥ p. Figure 3 depicts the full state-space of time darts for our running example.
It contains only 13 darts compared to 29 markings in the explicit state-space.

3 Experiments

We report on four case studies of Alternating Bit Protocol [13] (ABP), Business
Activity with Participant Completion [11] (BAwPC), Patient Monitoring Sys-
tem [6] (PMS) and MPEG-2 video encoder [14]. The reachability queries for all
models require a complete state-space search. All TAPAAL models are available
at http://www.tapaal.net and the experimental data can be reproduced by
using TAPAAL 2.4.1. The experiments (run on a Macbook Pro 2.7GHz Intel
Core i7) were terminated once the memory usage exceeded 6GB (OOM) or the
verification took longer than one hour (�); for the BDD-based engine we allowed
a two-hour timeout. The TAPAAL column refers to the verification performed
by the DBM-based continuous engine of TAPAAL, while the UPPAAL column
reports on the best automatic translation [5] from TAPAAL to UPPAAL timed
automata. The remaining columns deal with explicit state-space exploration us-
ing BDDs, combination of time-darts with PTries, time darts and PTries sepa-
rately, and no memory optimization (Basic); all efficiently implemented in C++.

The aim of this paper is not to compare the zone-based vs. explicit methods
as this largely depends on the concrete models (see e.g. [2,3,12])—we see that
while the explicit methods are faster on the first three models, the zone-based

http://www.tapaal.net

Memory Efficient Data Structures for Explicit Verification of Timed Systems 311

Zone-based Explicit

Scale TAPAAL UPPAAL BDD Darts+PTries Darts PTries Basic

Alternating Bit Protocol (ABP), scaled by the number of messages

15
116.8 s
278 MB

4.0 s
32 MB

2701.2 s
8 MB

3.1 s
6 MB

2.4 s
23 MB

7.6 s
12 MB

5.4 s
77 MB

16
328.4 s
501 MB

5.6 s
34 MB

4057.7 s
9 MB

3.9 s
7 MB

3.1 s
34 MB

9.7 s
15 MB

7.1 s
105 MB

17
1233.7 s
979 MB

7.6 s
41 MB

5929.2 s
10 MB

5.0 s
8 MB

3.9 s
34 MB

12.4 s
18 MB

9.0 s
132 MB

30 � 182.2 s
288 MB

� 46.3 s
53 MB

38.8 s
377 MB

120.2 s
139 MB

91.0 s
1107 MB

40 � 1063.0 s
920 MB

� 151.2 s
155 MB

120.8 s
1088 MB

390.3 s
410 MB

288.6 s
3465 MB

50 � � � 378.2 s
362 MB

298.3 s
2593 MB

1018.4 s
962 MB

OOM

Business Activity Protocol (BAwPC), scaled by the number of messages

2
2.9 s

30 MB
7.8 s
9 MB

635.0 s
23 MB

4.4 s
35 MB

6.8 s
50 MB

8.3 s
10 MB

7.5 s
66 MB

3
14.3 s

114 MB
19.6 s
55 MB

4529.6 s
57 MB

25.0 s
23 MB

22.2 s
162 MB

26.2 s
25 MB

24.1 s
197 MB

4
60.4 s

392 MB
84.0 s
116 MB

� 66.7 s
52 MB

62.9 s
415 MB

71.5 s
55 MB

67.5 s
502 MB

8 OOM � � 861.9 s
501 MB

770.8 s
4934 MB

918.3 s
490 MB

846.5 s
5198 MB

Patient Monitoring System (PMS), scaled by the sampling frequency

18
22.2 s
52 MB

� 158.0 s
5 MB

0.9 s
3 MB

0.6 s
18 MB

0.8 s
4 MB

0.4 s
19 MB

12
399.6 s
215 MB

� 578.5 s
9 MB

3.0 s
8 MB

2.0 s
51 MB

2.5 s
7 MB

1.4 s
54 MB

10
2315.3 s
635 MB

� 1537.8 s
17 MB

7.4 s
15 MB

5.0 s
122 MB

6.4 s
16 MB

3.6 s
112 MB

6 � � � 94.4 s
149 MB

68.0 s
1482 MB

82.5 s
154 MB

51.6 s
1665 MB

5 � � � 671.9 s
826 MB

OOM
575.6 s
815 MB

OOM

MPEG2 Encoder (MPEG2), scaled by the number of B frames

3
0.1 s
2 MB

0.1 s
10 MB

� 0.6 s
4 MB

0.3 s
13 MB

19.9 s
117 MB

19.7 s
665 MB

4
0.1 s
2 MB

0.2 s
14 MB

� 5.2 s
22 MB

3.7 s
95 MB

156.7 s
880 MB

165.3 s
4811 MB

5
0.1 s
3 MB

0.2 s
18 MB

� 46.7 s
147 MB

40.4 s
870 MB

1104.8 s
5162 MB

OOM

methods will eventually outperform any explicit search on models with large
enough constants as demonstrated on MPEG2 (the constants here are in thou-
sands of nanoseconds). We instead aim at comparing the memory performance
of the different data structures. The first observation is that the BDD encoding,
while memory efficient, has an unacceptable runtime performance. On the other
hand PTries cause only 20-30% slowdown compared to the basic algorithm and
still provide similar memory savings as BDDs. The time dart method usually
provides both time and memory improvements; this is most visible on models
with large constants like in MPEG2. The combination of PTries and time darts
gives the largest memory savings with a very acceptable performance.

312 P.G. Jensen et al.

4 Conclusion

The general data structure PTrie provides significant memory savings at marginal
runtime overhead and can be directly employed by any explicit model checker.
The semi-symbolic method of time darts requires a more substantial adapta-
tion but it gives in general both time and memory improvements, especially
for models with larger constants. Both data structures have been implemented
within an open source, publicly available tool TAPAAL, and show promissing
experimential results.

References

1. Andersen, M., Gatten Larsen, H., Srba, J., Grund Sørensen, M., Haahr Taankvist,
J.: Verification of liveness properties on closed timed-arc Petri nets. In: Kučera, A.,
Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS,
vol. 7721, pp. 69–81. Springer, Heidelberg (2013)

2. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS,
vol. 1466, pp. 470–484. Springer, Heidelberg (1998)

3. Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using
dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

5. Byg, J., Jacobsen, M., Jacobsen, L., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TCTL-preserving translations from timed-arc Petri nets to networks of timed au-
tomata. In: TCS (2013), http://dx.doi.org/10.1016/j.tcs.2013.07.011

6. Cicirelli, F., Furfaro, A., Nigro, L.: Model checking time-dependent system spec-
ifications using time stream Petri nets and UPPAAL. Applied Mathematics and
Computation 218(16), 8160–8186 (2012)

7. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012)

8. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

9. Fredkin, E.: Trie memory. Communications of the ACM 3(9), 490–499 (1960)
10. Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: A data structure for verifica-

tion of closed timed automata. In: SSV 2012. EPTCS, vol. 102, pp. 141–155. Open
Publishing Association (2012)

11. Marques Jr., A.P., Ravn, A.P., Srba, J., Vighio, S.: Model-checking web services
business activity protocols. International Journal on Software Tools for Technology
Transfer (STTT) 15(2), 125–147 (2013)

12. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

13. Lynch, W.C.: Computer systems: Reliable full-duplex file transmission over half-
duplex telephone line. Communications of the ACM 11, 407–410 (1968)

14. Pelayo, F.L., Cuartero, F., Valero, V., Macia, H., Pelayo, M.L.: Applying timed-
arc Petri nets to improve the performance of the MPEG-2 encoding algorithm. In:
MMM 2004, pp. 49–56. IEEE Computer Society (2004)

http://dx.doi.org/10.1016/j.tcs.2013.07.011

The Gradual Verifier

Stephan Arlt1,�, Cindy Rubio-González2, Philipp Rümmer3,��, Martin Schäf4,
and Natarajan Shankar4,� � �

1 Université du Luxembourg
2 University of California, Berkeley

3 Uppsala University
4 SRI International

Abstract. Static verification traditionally produces yes/no answers. It
either provides a proof that a piece of code meets a property, or a
counterexample showing that the property can be violated. Hence, the
progress of static verification is hard to measure. Unlike in testing, where
coverage metrics can be used to track progress, static verification does
not provide any intermediate result until the proof of correctness can
be computed. This is in particular problematic because of the inevitable
incompleteness of static verifiers.

To overcome this, we propose a gradual verification approach, GraVy.
For a given piece of Java code, GraVy partitions the statements into
those that are unreachable, or from which exceptional termination is
impossible, inevitable, or possible. Further analysis can then focus on the
latter case. That is, even though some statements still may terminate
exceptionally, GraVy still computes a partial result. This allows us to
measure the progress of static verification. We present an implementation
of GraVy and evaluate it on several open source projects.

1 Introduction

Static verification is a powerful technique to increase our confidence in the quality
of software. If a static verifier, such as VCC [6] provides us a proof that a piece
of code is correct, we can be sure beyond doubt that this code will not fail for
any specified input. If the static verifier fails to compute a proof, we end up with
one counterexample. This counterexample may reveal a bug or may be spurious
in which case we have to provide annotations to help the verifier. This process
is repeated until no new counterexample can be found.

	 Supported by the Fonds National de la Recherche, Luxembourg (FNR/P10/03).
		 Supported by the Swedish Research Council.

	 	 	 This work was supported by NSF Grant CNS-0917375, NASA Cooperative Agree-
ment NNA10DE73C, and by United States Air Force and the Defense Advanced
Research Projects Agency under Contract No. FA8750-12-C-0225. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of NSF, NASA, US Air Force, DARPA, or the U.S. Government.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 313–327, 2014.
c© Springer International Publishing Switzerland 2014

314 S. Arlt et al.

Unfortunately, the process of eliminating counterexamples one by one is not
suitable for assessing software quality. Certainly, eliminating one bug improves
the quality of software, but the static verification does not provide us with any
information on how much we have verified already or how many bugs might still
be in there.

Ultimately, static verification is incomplete and thus the proof we are looking
for might not exist. In this case we end up with nothing. Static verification
does only provide yes/no answers, but to obtain partial results manual effort is
needed.

Testing, on the other hand, only delivers such partial results in the form of
coverage data. Each test case increases the confidence in the application under
test. Progress can be measured using different kinds of coverage metrics. That is,
from an economic point of view, testing is more predictable. The more time we
invest in testing the more we can observe the coverage (and thus our confidence)
increase.

In this paper we present a gradual verification approach,GraVy. Gradual veri-
fication is an extension to existing static verification techniques such as VCC [6]
or Smack [16] that helps us quantify the progress of the verification. Instead
of computing just one counterexample, gradual verification computes an over-
approximation of all counterexamples to identify the subset of statements that
provably cannot terminate exceptionally anymore. That is, beyond the coun-
terexample indicating that the program is not yet verified, gradual verification
gives a percentage of statements that are already guaranteed to be safe.

Gradual verification results can be integrated into existing testing workflows.
Each time gradual verification is executed on an application under test, it returns
the subset of statements for which it can already prove that exceptional termina-
tion is impossible. This provides a metric of progress of the verification process
and allows the verification engineer to focus on the remaining statements.

Gradual verification is not a new static verification technique. It is an exten-
sion that can be applied to any existing static verification techniques to provide
additional information to the verification engineer. Thus, issues, such as han-
dling of loops or aliasing are not addressed in this paper. These are problems
related to sound verification, but gradual verification is about how to make the
use of such verification more traceable and quantifiable.

In gradual verification, we consider programs as graphs, where nodes corre-
spond to a control location in the program and edges represent transition re-
lations between these control locations. Further, we assume that sink nodes in
this graph either are exceptional sink nodes where the execution of the program
ends exceptionally, or normal sink nodes where executions terminate normally.

A statement in a programming language such as Java may be represented by
more than one edge if, for example, the statement throws an exception when
executed on certain inputs. In order to verify that a statement never terminates
exceptionally, we need to show that none of the edges representing this statement
goes into an exceptional sink. That is, either the statement is not represented by

The Gradual Verifier 315

edge going into an exceptional sink node, or this edge has no feasible execution
in the program.

On this graph, we perform a two-phase algorithm: in phase one, we identify
all edges that may occur on a feasible execution terminating in a normal sink.
For the remaining edges we have a guarantee that they are either unreachable
or only occur on feasible executions into exception sinks.

In the second phase we check which of these remaining edges occur on any
feasible execution. That is, we identify edges that are unreachable and edges
that must flow into an exceptional sink. This allows us to categorize program
statements depending on the edges that they are represented by: a statement is
unreachable if it is represented by no feasible edge, safe if it is represented only
by feasible edges terminating in normal sinks (and reachable), strictly unsafe if
it is represented only by feasible edges terminating in exceptional sinks (and not
unreachable), and possibly unsafe otherwise.

That is, a program is safe, if all its statements are safe. However, if we cannot
show that all statements are safe, our algorithm still can provide a subset of
statements that are guaranteed to be safe, helping the programmer to focus
on those parts of the program that still need work. gradual verification can be
applied to full programs as well as to isolated procedures. It can be applied in a
modular way and also incorporate assertions generated by other tools.

We evaluate an implementation of our gradual verification technique, GraVy,
on several large open source projects. Our experimental results show that even
using a coarse abstraction of the input program, GraVy can still prove that a
large percentage of statements can never throw exceptions.

Related Work. GraVy is based on modular static verification as known from
VCC [6], Smack [16], or ESC/Java [12]. These tools translate an application
under test “procedure by procedure” into SMT formulas that are valid if this
procedure is safe w.r.t. a desired property. A counterexample to this formula
can be mapped back to an execution of the (abstract) procedure that violates
the property. The problem of these approaches is that they only produce one
counterexample at a time which makes it hard to estimate the progress of the
verification. To overcome this, GraVy uses techniques that detect contradictions
in programs [5,10,19] to identify the subset of statements that never (or always)
occur on a counterexample.

Gradual verification can also be compared with symbolic execution techniques
as found in program analysis tools like Frama-C [9], Java Pathfinder [14], or
Pex [18]. These techniques compute an over-approximation of the set of states
from which a program statement can be executed. A program statement is con-
sidered safe if this set of states does not contain any state from which the ex-
ecution of the statement is not defined. Gradual verification can be seen as a
lightweight alternative to these approaches: like static verification, it can be ap-
plied locally even on isolated code fragments, but it still can identify individual
statements that will never terminate exceptionally. Hence, gradual verification
does not provide the precision of other symbolic execution techniques, but it is
still sufficient to visualize the progress of verification to its user.

316 S. Arlt et al.

Recently, approaches have been presented that generate information during
the verification process that go beyond simple yes/no answers. Clousot [8, 11],
for example, infers a precondition for each procedure that is sufficient to guar-
antee the safe execution of this procedure. Compositional may-must analysis,
such as [13], can be used to distinguish between possibly and strictly unsafe
statements. GraVy can be seen as a lightweight mix of both approaches. It de-
tects a subset of statements that cannot throw exceptions (but does not provide
preconditions), and categorizes statements that may, or must throw exceptions
(but does not provide the precision of a may-must analysis.)

2 Example

We illustrate our approach with the toy example shown in Figure 1. The Java
procedure toyexample takes a variable x of type Obj as input and first sets x.a to
1 and then sets x.b to 2. An execution of the first statement x.a = 1 terminates
with a NullPointerException if toyexample is called with x==null. Otherwise
it terminates normally. Note that the second statement x.b = 2 can never throw
a NullPointerException, because the first statement already ensures that x

cannot be null at this point.

1 void toyexample (Obj x) {

2 x.a = 1;

3 x.b = 2;

4 }

Fig. 1. Java source code of a toy example

2

X

2 3

X

3 4

x==null

x!=null x.a=1

x==null

x!=null x.b=2

Fig. 2. Program graph of the procedure toyexample. Edges are labeled with transition
relations, and nodes are labeled with line numbers, where the label X refers to the
point in the program that is reached when an exception is thrown.

Suppose that we are interested in verifying that, for any input, the procedure
does not terminate with an exception. First, we create a graph representation
of our program as shown in Figure 2. In this graph, nodes are labeled with line
numbers, where the label X refers to the point in the program that is reached

The Gradual Verifier 317

when an exception is thrown. This labeling is simplified for demonstration. Two
different nodes might still share the same line number. Each statement of our
original program from Figure 1 is associated with one or more edges in this graph,
starting in the nodes labeled with the respective line number. For example, the
statement x.a in Figure 1 is represented by the three edges in Figure 2 starting in
nodes labeled with 2: (2, x==null , X), stating that, if x is null, the execution

terminates exceptionally; (2, x!=null , 2), stating that execution moves on if x

is initialized; and (2, x.a=1 , 3) which is the actual assignment if x is initialized.
Now it is time to check if our procedure does not terminate exception-

ally. Existing techniques would easily come up with a counterexample to this
property that shows that for the input x==null the procedure will throw a
NullPointerException. However, this is a very pessimistic answer, and, given
that we do not know in which context toyexample will be called, it may even
be a useless answer if there is no calling context such that x==null. Hence, we
propose to give a different, optimistic, answer when checking if our procedure
does not terminate exceptionally:

x.b = 2 never throws an exception.

There are a few things to notice: First, our answer gives proofs instead of a
simple counterexample. Second, our answer holds in any context (but might be
too weak), whereas the counterexample may turn out to be infeasible. Third, in
our answer, our verifier verifies; existing techniques just complain.

To get to this answer, we start a two-phase algorithm. In phase one we try
to cover all edges that occur on any feasible path of the program that terminate
normally. That is, in our example, we try to find feasible complete paths ending
in the sink labeled with 4. One such path exists:

(2, x!=null , 2)(2, x.a=1 , 3)(3, x!=null , 3)(3, x.b=2 , 4)

That is, the only two edges that cannot be covered during that process are
(2, x==null , X) and (3, x==null , X). For these edges we know that either
they are unreachable, or their execution leads to an exceptional termination.
Note that in this example, both edges happen to be immediately connected
to the error location X . However, in general, there might be other edges, not
directly connected to a sink, that can only be executed if normal termination is
not possible.

For the uncovered edges we start the second phase of our algorithm, where we
try to find any feasible complete path. From the first phase, we know that no
path through the remaining edges exists that terminates in 4, hence we are only
interested in paths terminating in X . For our example, this reveals one more
feasible path:

(2, x==null , X)

That is, the other edge, (3, x==null , X), provably does not have any fea-
sible execution. Now, we have a proof that x.b=2 in line 3 never throws a

318 S. Arlt et al.

NullPointerException in toyexample. We can further report that x.a=1 in
line 2 may throw a NullPointerException if x is null.

From here, the verification engineer knows that she has to focus on x.a=1, and
either guard the code with a conditional choice or strengthen the precondition
under which toyexample can be called. Then, gradual verification can be re-run
for the modified code. This is repeated until all statements are safe or a desired
percentage of statements is safe.

3 Statement Safety and Gradual Verification

In this section we give a precise definition of our gradual verification methodol-
ogy. We assume a piece P of sequential program code (in case of Java, the body
of a method), containing the set Stmt of statements. The control-flow of P can
be represented as a finite directed graph CFGP = (L, �0,Lexit,Lexc, δ, stmt),
where L represents control locations, �0 ∈ L is the unique entry point, Lexit ⊆ L
is a set of exit locations representing regular termination, and Lexc ⊆ L is a set
of error locations representing termination due to a runtime exception. Further,
we assume that Lexit ∩ Lexc is empty. An edge (�,Tr , �′) ∈ δ is labeled with
a transition formula Tr(v̄, v̄′) over unprimed and primed variables describing
program state.

A statement in our sequential program P is represented by possibly multiple
transitions, some of which may lead into error locations Lexc. The latter case
models runtime exceptions. For instance, a Java statement a.x = 1 could be
translated into two edges: one that assumes that a is allocated and a.x is assigned
to 1, and one where a is not allocated and control passes to an appropriate error
location. Throughout the paper, we use the partial function stmt : δ ⇀ Stmt
mapping edges to statements in the program code P . Conditional choice of the
form if (c) A else B is represented by at least two transitions, one assuming
c and one assuming ¬c, and all other transitions that are necessary to represent
c. The transitions representing the blocks A and B are not considered as part of
the conditional choice.

A complete path in a program is a finite sequence of control locations and tran-
sition formulas π = �0Tr0�1Tr1�2Tr2 . . .Trn−1�n, where �0 is the entry point,
�n ∈ Lexit ∪ Lexc is an exit location, and for each i ∈ {0, . . . , n − 1} it is
the case that (�i,Tr i, �i+1) ∈ δ. A complete path π is called a regular path if
�n ∈ Lexit, and an error path if �n ∈ Lexc. A path is feasible if the composi-
tion Tr0 ◦Tr1 ◦ · · · ◦Trn−1 is satisfiable. An edge (�,Tr , �′) ∈ δ is called feasible
if it occurs on a complete feasible path.

We use δreg ⊆ δ to denote the subset of edges that occur on regular paths
(i.e., on paths that end in a location in Lexit). Further we use δbad = δ \ δreg
to denote all edges that inevitably lead into an error location. With the help of
δreg and δbad, Figure 3 defines safety categories for a statement s ∈ Stmt in P
considered in gradual verification, which correspond to the four possible combi-
nations of regular or error transitions being feasible. For instance, a statement s
is considered safe if all transitions representing s are in δreg.

The Gradual Verifier 319

∃ feasible e ∈ δreg with s = stmt(e)

Yes No
∃
fe
a
si
b
le

e
∈
δ b

a
d

w
it
h
s
=

st
m
t(
e)

Yes s is possibly unsafe s is strictly unsafe

No s is safe s is unreachable

Fig. 3. Safety categories of statements

4 The Analysis Procedure

Algorithm 1. Gradual verification algorithm.

Input: CFGP = (L, �0,Lexit,Lexc, δ, stmt) : control-flow graph
Output: δbad: set of edges that never occur on feasible regular paths;

δinf : set of edges that do not occur on any feasible path
begin

S ← δ ;
for regular path π in CFGP do

if isFeasible(π) then
for (�,Tr , �′) in π do

S ← S \ {(�,Tr , �′)} ;
end for

end if

end for
δbad ← S ;
for error path π in CFGP do

if isFeasible(π) then
for (�,Tr , �′) in π do

S ← S \ {(�,Tr , �′)} ;
end for

end if

end for
δinf ← S ;

end

To check whether a statement is safe, strictly unsafe, unreachable, or possibly
unsafe, we determine for each edge in the control-flow graph whether it can be
part of a feasible regular path, and if a statement is represented by a feasible
transition into an error location. We introduce Algorithm 1 to this end. The
algorithm takes a control-flow graph CFGP = (L, �0,Lexit,Lexc, δ, stmt) as input
and returns two sets δbad and δinf . δbad contains all edges of the control-flow

320 S. Arlt et al.

graph that do not occur on any feasible regular path. δinf ⊆ δbad is the set of
edges that do not occur on any feasible path (regular, or error paths).

The algorithm uses a local variable S to track the edges in δ that have not
been covered yet. In a first loop, Algorithm 1 covers edges that occur on feasible
regular paths. That is, all edges that remain in S after the loop terminates can
either only be executed on error paths or are unreachable. This set is stored in
δbad. In the second loop, our algorithms checks which of the remaining edges
can be covered with feasible error paths and removes them from S. That is, any
edge covered in the second loop has a feasible path into an error location. All
uncovered edges are stored in δinf because they have no feasible execution at
all.

With the resulting sets δbad and δinf , we can check the above properties as
follows: given a statement st and the set of edges δst = {(�,Tr , �′)|(�,Tr , �′) ∈
δ ∧ stmt((�,Tr , �′)) = st}. The statement st is unreachable if δst \ δinf is empty
and δinf is not empty. It is safe if δst ∩ (δbad \ δinf) is empty and δst \ δinf is not
empty. In other words, st is safe if it is not represented by any feasible edge into
an error location and has at least one feasible edge. We say, st is strictly unsafe
if δst \ δbad is empty and δbad \ δinf is not empty. In any other case, we say st is
possibly unsafe.

Algorithm 1 terminates only if the control-flow graph CFGP has a finite num-
ber of paths (i.e., is loop-free). For programs with looping control-flow, abstrac-
tion is necessary. We will discuss one possible abstraction in Section 5 together
with other implementation details.

We say an abstraction of a control-flow graph CFGP is sound, if for any
feasible (regular and error) path CFGP , there exists a corresponding path in
the abstraction. That is, an abstraction is sound if it over-approximates the set
of feasible control-flow paths.

Given a program CFGP and an abstraction of it, and, given a statement st
that exists in the program and its abstraction (but may be represented by a
different set of edges in the control-flow graph), the following properties hold if
the abstraction is sound:

– If st is safe in the abstraction then it is safe or unreachable in CFGP .
– If st is strictly unsafe in the abstraction then it is strictly unsafe or unreach-

able in CFGP .
– If st is unreachable in the abstraction then it is unreachable in CFGP .
– If st is possibly unsafe in the abstraction then it is safe, strictly unsafe,

unreachable, or possibly unsafe in CFGP .

That is, for any sound abstraction, our algorithm guarantees that any state-
ment that may transition into an error location will be declared as either possibly
unsafe or strictly unsafe. Hence, if all statements in our program are either safe
or unreachable, we have a proof that the program will never terminate excep-
tionally.

To be useful in practice, an implementation of our algorithm has to make
sure that it does not report overly many possibly unsafe in the abstraction, as we

The Gradual Verifier 321

cannot say much about them in the original program. Further, it would be useful
if unreachable statements in the original program are not reported as strictly
unsafe in the abstraction. Even though we are of the opinion that unreachable
code should be avoided at all cost, a user may be alienated if unreachable code
is reported as error. In the following we evaluate our approach.

5 Implementation

We have implemented our technique in a static verifier for Java bytecode called
GraVy. Our analysis automatically checks for the following types of exceptions:
NullPointerException, ClassCastException, IndexOutOfBoundsException,
and ArithmeticException. Other exceptions and arbitrary safety properties
can be encoded using RunTimeExceptions.

An error location in GraVy is an exceptional return of a procedure with one of
the above exceptions, unless this exception is explicitly mentioned in the throws-
clause of this procedure. Hence, if GraVy proves a statement to be safe, it only
means that none of the above exceptions may be thrown.

GraVy analyzes programs using the bytecode analysis toolkit Soot [20]. It
translates the bytecode into the intermediate verification language Boogie [4]
as described in [2]. In this step we add guards for possible runtime exceptions:
for each statement that may throw a runtime exception, we add a conditional
choice with an explicit throw statement before the actual statement. Further, we
add a local helper variable ex return to each procedure which is false initially.
For any of the exceptions that we are looking for which is not in the throws

clause and not caught, we add a statement that assigns this variable to true.
This variable is used later on by the prover to distinguish between normal and
exceptional termination of a procedure.

Abstraction. Our algorithm from Section 4 requires a loop-free program as input.
Hence, we first need to compute loop-free abstractions of programs. To this end
we use a simple loop elimination as discussed in [1]: for each loop, we compute
a conservative approximation of the variables that may be modified within the
loop body. Then, we add statements that assign non-deterministic values to these
variables at the beginning and at the end of the loop body. Finally, we redirect
all looping control-flow edges of the loop body to the loop exit.

This way, we simulate an arbitrary number of loop iterations: the non-
deterministic assignments allow the loop body to be executed from any pos-
sible initial state and allow the variables modified within the loop to have any
possible value after the loop. This is a very coarse abstraction which also loses
all information about possible non-termination. However, if a statement can be
proved safe in this approximation, it will be safe in the original program, as the
abstraction over-approximates the program’s executions.

GraVy does not perform any inter-procedural analysis. Like in the case of
loops, we first compute an over-approximation of the set of variables that may
be modified by the called procedure and then replace the call statement by a

322 S. Arlt et al.

non-deterministic assignment to these variables. In our translation into Boogie,
exceptions are treated as return values of a procedure and are thus included in
this abstraction. Again, this is an over-approximation of the program’s execu-
tions, and thus, any statement that can be proved safe in this abstraction will
be safe in the original program.

All these abstractions can be refined to increase the precision of GraVy.

Gradual Verification. On the loop-free program without procedure calls, we
can apply our algorithm from Section 4 to each procedure in a straightforward
manner (e.g., [1]) by translating the loop-free program into a SMT formula
that is satisfiable only by models that can be mapped to a feasible path in the
program. In the first pass of our analysis, GraVy adds an assertion to the SMT
formula such that the helper variable ex return is false, in order to only allow
paths that do not terminate with unwanted exceptions. We use the theorem
prover Princess [17] to check for the satisfiability of this formula. For each model
returned by Princess, we extract an enabling clause to ensure that another path
must be picked in the next query. This process is repeated until the formula
becomes unsatisfiable. Then, GraVy pops the assertion that ex return must be
false and continues until the formula becomes unsatisfiable again.

Using the information obtained during this process, GraVy prints a report
for each procedure that pigeonholes its bytecode instructions into the categories
unreachable, safe, strictly unsafe, and possibly unsafe as described in Section 3.

Soundness. GraVy is neither sound nor complete. Here, soundness means
that if a statement is reported to be safe, it is always safe. Completeness means
that any statement that is safe will be reported to be safe. GraVy has several
sources of unsoundness: e.g., Java integers are modeled as natural numbers (i.e.,
over- and under-flows are ignored). Furthermore, we ignore the use of reflection
(i.e., InvokeDynamic), and we do not consider parallel executions.

However, note that the unsoundness is specific to our prototype implementa-
tion. Gradual verification is always as sound as its underlying static verification
algorithm. Thus, there is much room for improvement by combining GraVy with
more advanced static verifiers.

6 Evaluation

The motivation of gradual verification is to make static verification predictable
by providing a progress metric. That is, to be of practical use, GraVy must
identify a reasonable percentage of statements to be safe, so that the verification
engineer can focus on the remaining code. Further, it must be fast enough to
be applicable in an incremental verification process. That is, it must not be
significantly slower than existing static verifiers such as VCC. This leads us to
the following two research questions:

The Gradual Verifier 323

Q1. Is GraVy precise enough to show that a reasonable percentage of statements
are safe in well-tested applications?

Q2. Is GraVy fast enough to be applied to real-world software?

Experimental Setup. To answer these questions we evaluate GraVy on several
open source programs. For each application under test (AUT), we analyzed the
JAR files of the latest stable (and thus hopefully tested) release from the of-
ficial websites. All experiments were carried out on a standard notebook with
an i7 CPU and 8 GB RAM (the Java VM was started with initially 4 GB).
GraVy tried to analyze each procedure of the AUTs for at most 10 seconds. If
no result is reached after 10 seconds, the procedure is skipped and a timeout
is reported. We ran the analysis two times for each AUT: once with gradual
verification, and once with a weakest-precondition-based static verifier [15]. For
the weakest-precondition-based static verifier we implemented a simple verifier
inside GraVy that reused large parts of the GraVy infrastructure. Instead of
repeatedly querying the theorem prover, the static verifier only sends one query.
The result to this query is either a proof that no statement in the procedure
may throw an exception of the previously mentioned types, or a counterexample
that represents an execution of the abstract procedure that leads to exceptional
termination.

In addition to the results returned by GraVy about which statements are
unreachable, safe, strictly unsafe, or possibly unsafe, we collected the following
information: the total time for analyzing a procedure including the time for
printing the report, and the total number of procedures for which GraVy returns
a timeout.

To compare the gradual static verification with the weakest-precondition-
based static verification, we also stopped the time that both approaches spent
inside the SMT solver. We compared the time inside the prover rather than ac-
tual computation time, because the overhead for both approaches is the same,
and thus, the time spent in the prover is the only relevant time difference.

Discussion. Table 1 shows the report computed by GraVy for each AUT. By
comparing the columns # stmts and safe, GraVy is able to prove more than
80% of the analyzed statements to be safe for all AUTs. For Args4j and Log4j,
GraVy can even prove over 86% percent of the statements to be safe. If we only

Table 1. Results of applying GraVy to several AUTs. # stmts is the number of an-
alyzed statements per AUT. # throwing stmts is the number of statements that is
represented by at least one edge into an error location.

AUT # stmts safe # throwing stmts
possibly
unsafe

strictly
unsafe

unreachable

Args4j 2,322 2,011 820 311 0 0
GraVy 20,372 16,522 15,516 3,844 0 6
Hadoop 209,683 177,373 109,758 32,249 7 54
Log4j 25,128 22,381 11,007 2,746 0 1

324 S. Arlt et al.

consider the statements that are represented by edges into an error location (i.e.,
by comparing the columns # throwing stmts and possibly unsafe), GraVy proves
62% of the statements to be safe in Args4j, and 75% in Log4j.

For Hadoop, which is also widely used and well-tested, we only achieve 84% to
be safe (and 70% of statements represented by edges into error locations). This
is because Hadoop makes heavy use of multithreading which is not handled by
GraVy. The use of multithreading is also the cause of the reported unreachable
and strictly unsafe statements. None of these statements is actually unreachable
or strictly unsafe, they rather exhibit situations where a thread is waiting for
another thread to initialize an object.

GraVy applied to itself can only prove 81% to be safe (and 75% of the state-
ments represented by edges into error locations). This supports the idea that the
percentage of safe statements relates to the maturity of the code: GraVy is cur-
rently under development and represents a rather prototypical implementation.

Hence, we can give a positive answer to our research question Q1. GraVy can,
even on a coarse abstraction, prove a large percentage of statements safe. Further,
experiments indicate that the percentage of safe statements may correlate with
code quality.

What remains open is what useful thresholds for the percentage of safe state-
ments are. Many statements in Java bytecode can never throw any of the consid-
ered exceptions and thus are always safe. Therefore it is hard to define a lower
bound for the percentage of safe statements. Our experiments cannot say any-
thing about an upper bound either, because we did not try to improve the AUTs
and rerun GraVy as this would exceed the scope of this paper. For the future of
GraVy we plan a case study on how to apply gradual static verification, e.g., by
using specification languages such as JML [7].

Table 2 shows the performance results of our experiments. For all AUTs the
average time needed per method is significantly below one second (< 0.4s). The
number of procedures that reach a timeout is below 2.1% for all AUTs. Experi-
menting with timeouts larger than 10 seconds did not significantly improve this
number. Most procedures that timeout contain large amounts of initialization
code (e.g., constructors), or GUI related code.

Before running gradual verification we run a constant propagation to eliminate
all possible exceptions that can be ruled out trivially. We are able to eliminate

Table 2. Performance and number of timeouts of GraVy on the different AUTs. The
column # timeouts states the number of procedures that could not be analyzed within
the time limit. The last column states the percentage of exceptions that could be
removed using constant propagation.

AUT # procedures time (s) time per procedure (s) # timeouts removed exceptions

Args4j 361 57 0.16 2 6.7%
GraVy 2,044 668 0.33 33 8.3%
Hadoop 18,728 6,459 0.34 391 8.4%
Log4j 3,172 704 0.22 40 13.0%

The Gradual Verifier 325

Table 3. Theorem proving time for gradual static verification (GSV) and weakest-
precondition-based static verification (SV) for the AUTs. Only the time spent in the
theorem prover is measured as the overhead for transformation, etc. is identical for
both approaches. The last row states how many procedures can be proven safe by both
approaches (i.e., only contain safe statements).

Args4j GraVy Hadoop Log4j

GSV 45s 346s 4,425s 294s
SV 7s 33s 689s 41s

Safe 32.6% 40.8% 40.2% 40.3%

between 6.7% and 13.0% of the exceptions. That is, a significant percentage of
the statements proved safe by GraVy need non-trivial reasoning.

In summary, GraVy can produce meaningful results within a reasonable time
(less than 0.4s per procedure) and with few timeouts.

Table 3 compares the computation time of GraVy and a normal non-gradual
verifier. For this purpose we built our own weakest-precondition based static
verification following the idea from [15]. As both approaches require the same
program transformation, we only compare the time spent by the theorem prover.

The first row shows the theorem proving time for gradual verification (GSV),
the second row shows the theorem proving time for non-gradual verification (SV),
and the last row shows the percentage of the procedures that can be proven safe
by both approaches (i.e., procedures that only contain safe statements). For each
AUT, the extra time needed for gradual static verification is less than a factor of
10. Most procedures still can be analyzed within few seconds. We believe that,
by further improving the reuse of theorem prover results as suggested in [3], we
can reduce these extra costs even further.

Non-gradual verification alone is able to verify between 30% and 40% of the
procedures (excluding timeouts) for the desired property for all AUTs. Most
of these procedures are generated by the Java compiler, such as default con-
structors. For all remaining procedures, non-gradual verification only returns a
counterexample. Here, gradual static verification provides additional informa-
tion by ruling out those statements that are already safe within the remaining
procedures.

In conclusion, we can also give a positive answer to research question Q2:
GraVy takes less than a second per procedure for real-world software. Although
it is (naturally) slower than non-gradual verification, it is still fast enough to be
usable in practice.

Threats to Validity. The main and by far most important threat to validity is
our unsoundness. For example, in Hadoop, where we prove 177,373 statements
to be safe, it is not possible to manually inspect if they are subject to unsound-
ness or not. To get a sense of how our abstraction affects the precision of GraVy,
we investigated roughly a hundred statements from different AUTs and differ-
ent categories (i.e., safe, unreachable, etc.). We found several cases where code
was reported to be unreachable or strictly unsafe in the abstraction but safe in

326 S. Arlt et al.

the original program. We did not find statements that are reported safe in the
abstraction but unsafe in the original program.

Another threat to validity is the subset of exceptions that we consider in
our analysis. There are many more exceptions that can cause unexpected pro-
gram behavior. However, from manual data-flow inspection we can see that
NullPointerException is by far the most common exception that can be thrown.
Thus, we believe that adding more classes of exceptions to GraVy will certainly
increase the usefulness of our approach, but will only have a limited influence
on the results presented in this paper.

Finally, the used tools are a threat to validity. Using Java bytecode as input
allows us to use a much simpler memory model than, e.g., for C. It is not clear if
our approach can be applied to C programs equally well. For example, we allow
arbitrary aliasing between variables when analysing a procedure. This would,
most likely be too coarse for analyzing C programs and further analysis would
be required.

7 Conclusion

We have presented a technique for gradual static verification. Gradual verifi-
cation extends existing static verification which provides yes/no answers (i.e.,
either a proof or a counterexample) by a notion of the verification progress.
That is, even if a full correctness proof is impossible (e.g., because there are
some cubic formulas in the code), we can still report how many statements can
be “verified”.

Gradual verification blends nicely with existing best practices in testing, where
a test coverage metric is used to measure progress, and to decide when to stop
testing. Therefore, we believe that gradual verification can make the use of formal
methods in industrial software development more acceptable.

Our experiments show that GraVy is reasonably fast and that it can already
prove a convincingly high percentage of statements to be safe, even using a coarse
abstraction. Further, the experiments indicate that verification coverage may be
a good indicator for the maturity of code.

We are convinced that gradual static verification is a useful addition to ex-
isting static verification tools and a nice and cheap alternative to verifiers based
on symbolic execution such as Frama-C.

References

1. Arlt, S., Liu, Z., Schäf, M.: Reconstructing paths for reachable code. In: Groves,
L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 431–446. Springer, Heidelberg
(2013)

2. Arlt, S., Rümmer, P., Schäf, M.: Joogie: From java through jimple to boogie. In:
SOAP. ACM (2013)

3. Arlt, S., Rümmer, P., Schäf, M.: A theory for control-flow graph exploration.
In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 506–515.
Springer, Heidelberg (2013)

The Gradual Verifier 327

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

5. Bertolini, C., Schäf, M., Schweitzer, P.: Infeasible code detection. In: Joshi, R.,
Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 310–325.
Springer, Heidelberg (2012)

6. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

7. Cok, D.R.: OpenJML: JML for java 7 by extending openJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011)

8. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013)

9. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-c - a software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer,
Heidelberg (2012)

10. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
A general approach to inferring errors in systems code. In: SOSP (2001)

11. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

12. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. SIGPLAN Not., 234–245 (2002)

13. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional must program
analysis: Unleashing the power of alternation. In: POPL, pp. 43–56 (2010)

14. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

15. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett., 281–288 (2005)
16. Rakamarić, Z., Hu, A.J.: A scalable memory model for low-level code. In: Jones,

N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 290–304. Springer,
Heidelberg (2009)

17. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

18. Tillmann, N., Schulte, W.: Parameterized unit tests. In: ESEC/SIGSOFT FSE,
pp. 253–262 (2005)

19. Tomb, A., Flanagan, C.: Detecting inconsistencies via universal reachability anal-
ysis. In: ISSTA, pp. 287–297 (2012)

20. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
A Java Optimization Framework. In: CASCON 1999, pp. 125–135 (1999)

Synthesizing Predicates from Abstract Domain

Losses

Bogdan Mihaila and Axel Simon

Technical University of Munich, Garching b. München, Germany
{firstname.lastname}@in.tum.de

Abstract. Numeric abstract domains are key to many verification prob-
lems. Their ability to scale hinges on using convex approximations of the
possible variable valuations. In certain cases, this approximation is too
coarse to verify certain verification conditions, namely those that require
disjunctive invariants. A common approach to infer disjunctive invariants
is to track a set of states. However, this easily leads to scalability prob-
lems. In this work, we propose to augment a numeric analysis with an
abstract domain of predicates. Predicates are synthesized whenever an
abstract domain loses precision due to convexity. The predicate domain
is able to recover this loss at a later stage by re-applying the synthesized
predicates on the numeric abstract domain. This symbiosis combines
the ability of numeric domains to compactly summarize states with the
ability of predicate abstraction to express disjunctive invariants and non-
convex spaces. We further show how predicates can be used as a tool for
communication between several numeric domains.

1 Introduction

Verification by means of a reachability analysis is based on abstract domains
that over-approximate the possible concrete states that a program can reach. The
forte of abstract domains is their ability to synthesize new invariants that are not
present in the program. However, their inherent approximation may mean that
the invariant required to verify a program cannot be deduced. On the contrary,
the strength of predicate abstraction used in software model checking is that
predicates precisely partition the state space of a program. The challenge here
is to synthesize new predicates that eventually suffice to verify a program. This
work combines the benefits of both approaches: we synthesize new predicates by
observing the precision loss in numeric domains and refine the precision of the
numeric domains using the predicates. Our technique is particularly useful for
expressing non-convex invariants that are commonly lost when using off-the-shelf
numeric abstract domains that are based on convex approximations.

The importance of non-convex invariants is illustrated by the C code in Fig. 1.
Here, line 1 computes a flag f that is true if the divisor d of the expression in
line 5 is non-zero. Assuming that the initial value of d lies in [−2, 2], the possible
values when evaluating the conditional are shown in Fig. 1b). Abstracting this
set of discrete points using, say, the abstract domain of intervals yields the state

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 328–342, 2014.
© Springer International Publishing Switzerland 2014

Synthesizing Predicates from Abstract Domain Losses 329

a)
1 f = d!=0;

2 ...

3 �� (f) {

4 assert(d!=0);

5 y = x / d;

6 }

b)

−2 −1 0 1 2
0

1

d

f
c)

−2 −1 0 1 2
0

1

d

f

Fig. 1. Avoiding a division by zero

in Fig. 1c). This state space is too imprecise to deduce that d is non-zero if f
is one. As a consequence, testing that f is one in line 3 does not restrict the
abstract state sufficiently to show that the assertion holds.

Interestingly, analyzing the same example using predicate abstraction does not
suffer from this imprecision as non-convex spaces can naturally be represented
using disjuncts. In the example, a predicate pf ≡ d �= 0, which is equivalent to
the disjunction d ≤ −1∨ d ≥ 1, suffices to verify the assertion since testing f in
line 3 results in pf being true.

A common approach to enriching numeric abstract domains to allow express-
ing non-convex states is to use disjunctive completion [4], that is, a set of states.
In particular, several works have proposed to some variant of a binary decision-
diagram (BDD) where decision nodes are labeled with predicates and the leaves
are abstract domains [10,14]. A similar effect is obtained by duplicating the con-
trol flow graph (CFG) for each subset of satisfied predicates [6,15,17]. In both
settings, the number of numeric domains that are tracked may be exponential in
the number of predicates. Our work improves over this setup by combining clas-
sic predicate abstraction [1] with a single numeric domain, thereby avoiding this
exponential duplication of the numeric state. In particular, we present a generic
combinator domain that is parameterized over any numeric abstract domain and
allows any predicate expressible by the abstract domain. We thereby also gener-
alize over bespoke domains that explicitly track specific disjunctive information,
such as disequalities [16]. Overall, we make the following contributions:

– We propose an abstract domain that tracks implications between two predi-
cates. By combining this domain with a single numeric state, we retain the
performance and simplicity of the numeric state transformers.

– We present an effective reduction mechanism that refines a numeric state
based on the implications in the predicate domain.

– By observing precision losses in the numeric domain, relevant predicates are
synthesized that preempt a loss of precision during the computation of a join.
This novel mechanism addresses precision losses due to convexity without a
costly replication of the numeric state.

The remainder of this paper is organized as follows: after presenting the setup
of our domains and necessary notation, Sect. 3 defines the transfer functions of
the predicate domain and the reduction with numeric states. Section 4 details
the lattice operations and shows how new implications can be synthesized by the
numeric domain. Section 5 presents experiments, related work and conclusions.

330 B. Mihaila and A. Simon

Pred ::= Test
Test ::= Lin �� Lin
Assign ::= x = Expr
Expr ::= Lin | NonLin | Test

Lin ::= c1x1 + . . .+ cnxn

NonLin ::= Lin � Lin
�� ::= ≤|�|<|≮|=|�=
� ::= × | / | % | ˆ

Fig. 2. The grammar decorating a control flow graph (CFG)

2 Preliminaries

Our analysis operates on the control flow graph (CFG) of a program. The
CFG is represented by a set of vertices labeled v1, v2, . . . and a set of directed
edges representing the transfer functions. The transfer functions are either as-

signments vi
Assign−→ vj or assumptions vi

Pred−→ vj where Assign and Pred are
given by the grammar in Fig. 2. Additionally, we use assertions in programs, e.g.

assert(x == 0) that correspond to edges vi
x �=0−→ ve to a designated error node

ve. We associate each vertex vi with an abstract state di ∈ D where D is the uni-
verse of a lattice 〈D,�D,%D,$D,)D,⊥D〉. Initially the states are d0 =)D and
di = ⊥D for i �= 0. The solution to the program analysis problem is characterized
by a set of constraints dj 7D [[lji]]

D(di), each constraint corresponding to an edge

vi
lji−→ vj . It can be inferred using chaotic iteration which picks indices i, j for

which the constraint is not satisfied and, for the edge from vi to vj updates dj
to dj := dj %D [[lji]]

D(di). In general, the lattice D may have infinite ascending
chains. We therefore assume that each cycle in the CFG contains at least one
application of the widening operator ∇ in order to ensure termination [4].

2.1 The Predicate Abstract Domain

We present our predicate domain as a co-fibered domain [20], that is, as a do-
main that is parameterized by another domain. Due to an implementation [3] in
OCaml, such a domain is also called a functor domain. A co-fibered domain D is
parameterized by a child domain C that it controls. Their combination is written
as D C and a state as a tuple 〈d, c〉 ∈ D C. A transfer function on D C may
apply any number of transfer functions on its child c ∈ C before returning a re-
sult. Co-fibered domains may be nested. For instance, we combine the predicate
domain P with a co-fibered affine equality domain A [18] and a plain interval do-
main I, yielding a stack of domains P A I where a state 〈ῑ, 〈a, i〉〉 contains
the individual domain states ῑ ∈ P , a ∈ A and i ∈ I. The predicate domain is
given by the lattice 〈P � C,�P,%P ,$P〉 where the universe P : ℘(Pred × Pred)
is a finite set of implications p1 → p2 over predicates pi ∈ L(Pred) as defined in
Fig. 2. Predicates relate linear expressions over the program variables X using a
comparison operator � . Note that the set of operators is closed under negation
so that the universe of predicates is closed under negation. The choice of impli-
cations between only two predicates allows for a simple yet effective propagation
of information, as detailed in the next section.

Synthesizing Predicates from Abstract Domain Losses 331

[[x = a �� b]]P 〈ῑ, c〉 = 〈ῑ′, [[x = a �� b]]Cc〉
where ῑ′ = {p→ q ∈ ῑ | x /∈ vars(p) ∪ vars(q)}
∪{x = 1→ a �� b, x = 0→ a ��� b, a �� b→ x = 1, a ��� b→ x = 0}

[[x = NonLin]]P 〈ῑ, c〉 = 〈ῑ′, [[x = NonLin]]Cc〉
where ῑ′ = {p→ q ∈ ῑ | x /∈ vars(p) ∪ vars(q)}

[[x = Lin]]P 〈ῑ, c〉 = 〈ῑ′, [[x = Lin]]Cc〉
where ῑ′ = {p→ q ∈ ῑ | x /∈ vars(p) ∪ vars(q)}
∪{transform(p→ q) | p→ q ∈ ῑ} and σ = [x/Lin]

and transform(p→ q) =

{
σ−1(p)→ σ−1(q) if σ−1(p) ∧ σ−1(q) exists

true → true otherwise

[[a �� b]]P 〈ῑ, c〉 = 〈ῑ,fixapply({a �� b}, ∅, c)〉
where fixapply(p̄, ū, c′) = if p̄ ⊆ ū then c′ else
let t ∈ p̄ \ ū and n̄ = {t} ∪ consequencesC(t, c′)
and n̄′ = {q | p→ q ∈ ῑ ∧ n ∈ n̄ ∧ n � p} ∪ {¬p | p→ q ∈ ῑ ∧ n ∈ n̄ ∧ n � ¬q}
in fixapply(p̄ ∪ n̄′, ū ∪ {t}, [[t]]Cc′)

Fig. 3. Assignments and branch transfer functions for the predicates domain. The
comparison operator �� in a predicate is one of ≤,�, <,≮,=, �=.

3 Transfer Functions and Reductions

This section details the transfer functions and presents the flow of information
between the predicate domain and the numeric child domains.

3.1 Transfer Functions

The transfer functions of the combined domain state 〈ῑ, c〉 ∈ P C are given
in Fig. 3. In general, a transfer function [[l]]P〈ῑ, c〉 applies the corresponding
transfer function on the child domain c ∈ C, yielding 〈ῑ′, [[l]]Cc〉 where ῑ′ is the
new state of the predicate domain. We distinguish three forms of assignments.
The first, [[x = a � b]]P , assigns the result of a comparison to a variable x.
Here, the predicate domain removes any predicate that mentions x and adds
new predicates based on the comparison. We assume that x is set to one if test
a � b holds and to zero otherwise. Thus, the predicates x = 0 and x = 1 are
used to encode the value of x in the implications. Specifically, the two outcomes
x = 1 ↔ a � b and x = 0↔ a �� b are stored using four implications.

The transfer function [[x = NonLin]]P for non-linear assignment removes all
implications in the predicate domain containing x. An assignment [[x = Lin]]P

of a linear expression to x tries to transform implications containing x if Lin
contains x, e.g. x=x+1. For example, consider the predicates state ῑ = {f = 0 →
x ≤ 5, x � 10 → y = 10} and the assignment x=x+1 mentioned above. Given
the substitution σ = [x/x + 1] that describes the change of the state space, we
compute σ−1 = [x/x − 1] that describes how predicates can be transformed
so that they are valid in the new state. In the example, applying σ−1 to the
implications yields ῑ′ = {f = 0 → x ≤ 6, x � 11 → y = 10}. In all three
assignments, more predicates can be retained by testing if they are still valid
after the assignment.

332 B. Mihaila and A. Simon

We now consider the transfer function for an assumption [[a � b]]P . The
information from the test a � b is used by the predicate domain to gather further
facts about the state. The process of applying these facts to the child domain is
called reduction [4]. The reduction is performed as a fixpoint computation and
can be seen as an instance of Granger’s framework for reduction by local iteration
[8]. Specifically, the function fixapply gathers a set of deduced predicates p̄ and
a set of predicates ū that have already been used. In each iteration a predicate
t ∈ p̄\ ū is applied to the child state c′, yielding [[t]]Cc′. Furthermore, a set of new
predicates that are implied by t are computed in two steps. First, t is combined
with a set n̄ of semantic consequences which is computed by consequencesC as
detailed below. Second, a set of syntactically implied predicates n̄′ is computed
from n̄ by inspecting the implications in the predicate domain. We use modus
ponens resolution to deduce q from an implication p → q ∈ ῑ where t p and
deduce ¬p if t ¬q. Here, the syntactic entailment is defined as follows:

Definition 1 (Syntactic Predicate Entailment). A predicate q is entailed
by another predicate p, written as p q, if p ≡ q or if p describes a weaker condi-
tion that subsumes the condition of q. We use the following syntactic entailment
rules (analogous definitions for the negations of the comparison operators �,≮):

p x �= c if p ∈ {x = c′ | c′ �= c} ∪ {x ≤ c′ | c′ < c} ∪ {x < c′ | c′ ≤ c}
p x ≤ c if p ∈ {x = c′ | c′ ≤ c} ∪ {x ≤ c′ | c′ ≤ c} ∪ {x < c′ | c′ − 1 ≤ c}
p x < c if p ∈ {x = c′ | c′ < c} ∪ {x ≤ c′ | c′ < c} ∪ {x < c′ | c′ ≤ c}

The set of syntactically implied predicates n̄′ is added to p̄ and, hence, eventu-
ally applied to the child state. Since at most two predicates for each implication
in ῑ can be added to p̄, this iterative reduction terminates.

Although not strictly necessary, the consequencesC function allows informa-
tion to flow from the child domain to the predicate domain. The function synthe-
sizes new predicates that become valid after applying the test t. It is different for
each child domain. An implementation for the interval domain I is as follows:

consequencesI(t, c) = let c′ = [[t]]Ic in {x = l | c(x) �= c′(x) ∧ c′(x) ∈ [l, l]}

Here, c(x) is the interval of the variable x in the state c. The insight in
this definition is that the only additional information inferable by the interval
domain is that a variable x may have become constant due to a test such as
x ≤ c. Returning these equality predicates may allow additional deductions in
the predicate domain. Note that other child domains may deduce different facts.

3.2 Example for the Reduction after Executing Assumptions

We illustrate the reduction when applying an assumption [[a � b]]P using an
example. Consider applying the test f < 1 to the state s = 〈ῑ, c〉 that con-
sists of the predicates ῑ ∈ P and the intervals c ∈ I as child domain. Let
ῑ = {f = 0→ x ≤ 0} and c = {f ∈ [0, 1], x ∈ [−1, 1]}. The first step in the trans-
fer function is to infer the consequences of the test: n̄ = consequencesI(f < 1, c).
As the child state becomes c′ = {f ∈ [0, 0], x ∈ [−1, 1]}, the consequences are

Synthesizing Predicates from Abstract Domain Losses 333

n̄ = {f = 0}. The synthesized predicate in n̄ syntactically entails the left-hand
side of the implication f = 0 → x ≤ 0 that is tracked in the predicate domain.
Thus, fixapply calls itself recursively with the new predicate x ≤ 0 which results
in a call to consequencesI(x ≤ 0, c′) = ∅. Now, the set of implied predicates n̄′ is
empty and a fixpoint is reached since p̄ = ū = {f < 1, x ≤ 0}. Thus, the result of
the transfer function is [[f < 1]]Ps = 〈{f = 0 → x ≤ 0}, {f ∈ [0, 0], x ∈ [−1, 0]}〉.
This recursive reduction mechanism implements all required reductions between
the predicate and the child domain. The next section illustrates how this reduc-
tion mechanism is used to preempt the loss of precision due to convexity.

3.3 Application to Non-convex Spaces

Reconsider the example in Fig. 1 where a division by zero is prevented by a
guard. The problem here is that the state space for d is non-convex and cannot
be expressed with the intervals domain I. However, using the predicate domain
P we are able to prove the invariant at program point 4 even though the interval
value for d at that point is d ∈ [−2, 2]. We illustrate an analysis of the program
for an initial state where the interval domain tracks d with the value d ∈ [−2, 2].
By executing line 1, the four implications for the assignment of a comparison
are added to the predicate domain, yielding the state ῑ = {f = 1 → d �= 0, f =
0 → d = 0, d �= 0 → f = 1, d = 0 → f = 0}. On entering the then-branch, the
test f = 1 in line 3 restricts the variable f in the interval domain to f ∈ [1, 1].
The predicate domain uses the first implication to deduce d �= 0, which is also
applied to the child domain. However, the child domain I is not able to express
the disjunction d ∈ [−2,−1] ∨ [1, 2] thus the state after applying d �= 0 remains
d ∈ [−2, 2]. The assertion in line 4 translates to an edge to the dedicated error
node that is labelled with the test d = 0. Hence, the assertion fails if d = 0
is satisfiable. The predicate domain observes that the right-hand side d �= 0 of
the implication f = 1 → d �= 0 is false and thus adds the negated left-hand
side f �= 1 to n̄′. Once the predicate domain applies f �= 1 to the child state
c = {f ∈ [1, 1], d ∈ [−2, 2]}, the result is ⊥, the unreachable state. Thus, the
error node is not reachable in the program and the assertion is verified even
though the convex numeric domain is not precise enough to express d �= 0. The
reduction mechanism is able to exploit the information in the implications for
verifying assertions without requiring more complex (i.e. non-convex) numeric
domains.

In general, observing predicates from assignments is only a syntactic technique
that may fail for more complex disjunctive invariants. The next section there-
fore illustrates how the reduction mechanism implemented by fixapply naturally
combines with a more sophisticated way of inferring new implications.

4 Lattice Operations and Predicate Synthesis

We present entailment test, join and widening operations of the predicate domain.
Moreover, we introduce a novel synth function that synthesizes new implications
between predicates that counteract the loss of precision in numeric domains.

334 B. Mihaila and A. Simon

〈ῑ1, c1〉 P 〈ῑ2, c2〉 = c1 C c2 ∧ entailed(ῑ2, ῑ1, c1) = ῑ2
where entailed(ῑ′, ῑ, c) = {p′→q′∈ ῑ′ | (∃p→q∈ ῑ.p′� p ∧ q� q′) ∨ ([[p′]]Cc � q′)}

〈ῑ1, c1〉 !P 〈ῑ2, c2〉 = 〈join(ῑ1, ῑ2) ∪ synthC(c1, c2), c1 !C c2〉
where join(ῑ1, ῑ2) = entailed(ῑ1, ῑ2, c2) ∪ entailed(ῑ2, ῑ1, c1)

Fig. 4. Lattice operations for the predicate domain

4.1 Lattice Operations

We commence by detailing the entailment test 〈ῑ1, c1〉 �P 〈ῑ2, c2〉 in Fig. 4. It
performs the entailment test c1 �C c2 on the child domain and tests if all the
implications in the right argument ῑ2 are entailed by the left argument by calling
the function entailed(ῑ′, ῑ, c). The latter function returns an implication p′ → q′ ∈
ῑ′ if it is either syntactically entailed in ῑ or semantically entailed in the state c.
Semantic entailment � is defined as follows:

Definition 2 (Semantic Predicate Entailment �). A predicate q is entailed
in a state c, written c � q, if testing ¬q in c yields an empty state, i.e., [[¬q]]Cc = ⊥.

By this definition, the test [[p′]]Cc � q′ in entailed reduces to checking whether
[[¬q′]]C([[p′]]Cc) = ⊥. Thus, if the predicate p′ on the left-hand side of the implica-
tion p′ → q′ is false in c then [[¬q′]]C⊥ = ⊥ follows and the implication is entailed
in c. The two tests [[·]]C on the child domain c can be avoided if the implication
is syntactically entailed by an implication in ῑ. Here, the implication p → q ∈ ῑ
entails p′ → q′ if the premise p′ is stronger and the conclusion q′ is weaker which
is expressed by p′ p ∧ q q′. Note that neither the syntactic nor the semantic
entailment test subsumes the other as both approximate the test differently.

The join 〈ῑ1, c1〉 %P 〈ῑ2, c2〉 independently computes a join on the predicate
domain and on the child domain. In oder to join the implication sets ῑ1 and ῑ2,
we define a function join that keeps all implications that hold in the respective
other state using the entailed function described above. Note that the semantic
entailment test in entailed is particularly important for the join as one of the
predicate domain states may be empty so that the syntactic entailment would
discard all implications. The semantic join is able to retain newly inferred pred-
icates in, for example, loop bodies as illustrated later.

In addition to the predicates returned by the join function, new implications
are synthesized from the child domain states using the synthC function. The idea
is to synthesize implications that characterize the approximation that occurred as
part of the %C operation. Which synthesized implications are generated depends
on the numeric domain. If the predicate language is sufficiently expressive, a
domain could potentially characterize all precision losses that occur during a
join. The following synthI function for the interval domain is an example that
generates implications for all changing bounds. Moreover, by relating changes of
interval bounds between different variables, it generates relational information
that cannot be expressed within the interval domain itself. It is defined as follows:

Synthesizing Predicates from Abstract Domain Losses 335

synthI(c1, c2) = let c = c1 %I c2
and m̄ = {x ∈ vars(c1) ∩ vars(c2) | c1(x) �= c2(x)} and i ∈ {1, 2}
and ūi = {uxi | x ∈ m̄ ∧ ci(x) ∈ [lxi, uxi] ∧ c(x) ∈ [lx, ux] ∧ uxi < ux}
and l̄i = {lxi | x ∈ m̄ ∧ ci(x) ∈ [lxi, uxi] ∧ c(x) ∈ [lx, ux] ∧ lx < lxi}
in {ux1<x→ ly2≤y, uy1<y→ lx2≤x | x, y ∈ m̄ ∧ uxi, uyi ∈ ūi ∧ lxi, lyi∈ l̄i}

Let vars(c) return all the variables x̄ ⊆ X tracked in the state c and let c(x)
denote the interval of the variable x. The set of variables m̄ that are not equal
in both states are those whose joined value is an approximation of the input
intervals. For these variables we compute a set of changing lower and upper
bounds l̄i and ūi whose indices indicate the variable and origin of the bound.
For example, when joining c1(x) ∈ [0, 5] with c2(x) ∈ [10, 15], resulting in c(x) ∈
[0, 15], the upper bound ux1 = 5 of c1(x) and the lower bound lx2 = 10 of c2(x)
are lost whereas the other bounds are retained in c(x). These changing bounds
are used for generating implications. Specifically, each implication correlates a
lost upper bound uxi from ci with a lost lower bound ly(2−i) from c2−i where
i = 1, 2. For the example above x = y, thus the only generated implication is
ux1 < x → lx2 ≤ x, that is, 5 < x → 10 ≤ x. The implication allows that a test
such as 7 < x is refined to 10 ≤ x, thereby recovering the precision loss in the
join that is due to the convexity of the interval domain. In general, the bounds of
several variables can be related, thereby even generating relational information.

One drawback of the definition above is that implications are added for each
pair of variables from m̄, thus, the returned set of implications is quadratic
in |m̄|. This quadratic growth can be avoided by not generating a redundant
implication a → c if both a → b and b → c are already present. Specifically, by
sorting m̄ using some total ordering, we only emit implications over variables
that are adjacent in this ordering, as well as an implication relating the largest
variable with the smallest. As the predicate domain performs a transitive closure
on application of a test predicate (through fixapply), adding only implications
between adjacent variables is sufficient to recover all information expressed in a
chain of implications. Using this optimization, we are able to reduce the number
of synthesized implications to be linear in the number of changed variables |m̄|.

Before we consider further examples, we consider the widening operation, de-
fined by, say, 〈ῑ1, c1〉∇P 〈ῑ2, c2〉 = 〈join(ῑ1, ῑ2) ∪ synthC(c1, c2), c1∇C c2〉. This
definition is analogous to the join operation but applies widening on the child
states c1, c2. One caveat of this definition is that termination is not guaranteed.
Consider an implication p′ → q′ at a loop head and assume that a conditional
in the loop refines the child state by using the [[a � b]]P transformer in Fig. 3
which, in turn, may use the information in p′ → q′. Suppose that joining the
two branches of the conditional creates a new implication p → q by means of
the synthC function that is syntactically weaker than p′ → q′. If [[p′]]Cc1 �� q′

(the previous implication cannot be shown to hold in the new state) then the
loop is not stable. If furthermore [[p]]Cc2 � q (the new implication holds in the
previous state), the loop is analyzed with the new implication. Thus, one im-
plication may be replaced by another one, possibly indefinitely so. In order to
ensure termination, standard widening techniques can be used, such as eventually

336 B. Mihaila and A. Simon

c1 c2 synthI(c1, c2) c1 !I c2
x ∈ [0, 5] [10, 15] {5 < x→ 2 ≤ y, [0, 15]
y ∈ [−5,−1] [2, 3] −1 < y → 10 ≤ x} [−5, 3]

Fig. 5. The join of two states in the intervals domain I and the synthesized implications
correlating the bounds lost due to the convex approximation

disallowing new implications [15]. This can be implemented by using the defini-
tion 〈ῑ1, c1〉∇P 〈ῑ2, c2〉 = 〈entailed(ῑ1, ῑ2, c2), c1∇C c2〉 after k iterations. So far,
we were unable to find examples that exhibit this non-terminating behavior.

4.2 Recovering Precision Using Relational Information

One strength of our synthI function is that it creates relational information,
that is, it generates implications between different variables. This relational in-
formation enables fixapply to deduce, from a test of one variable, more precise
ranges for other variables. In particular, a test t that separates two states, i.e.
[[t]]Ic1 = c1 and [[t]]Ic2 = ⊥ is enriched by the relational implications so that all
losses due to convexity are recovered, that is, [[t]]P(〈ῑ1, c1〉 %P 〈ῑ2, c2〉) = 〈ῑ′1, c1〉.

We illustrate this ability using two states s1 = 〈∅, {x ∈ [0, 5], y ∈ [−5,−1]}〉
and s2 = 〈∅, {x ∈ [10, 15], y ∈ [2, 3]}〉. The joined state s = s1 %P s2 is given
by s = 〈{5 < x → 2 ≤ y,−1 < y → 10 ≤ x}, {x ∈ [0, 15], y ∈ [−5, 3]}〉. This
operation is illustrated in Fig. 5 where the bounds in bold are those that are lost
and the arrows indicate which bounds are related by the generated implications.
We now show how applying the test 0 < y on s recovers the numeric state
in s2 and, analogously, that applying y ≤ 0 recovers the numeric state of s1.
Specifically, when applying the test 0 < y on state s, the left-hand side of the
implication −1 < y → 10 ≤ x is syntactically entailed, so that 10 ≤ x is also
applied to the child state, yielding the precise value [10, 15] for x. The predicate
10 ≤ x syntactically entails the other implication 5 < x → 2 ≤ y. Thus, the
predicate 2 ≤ y is applied to the child state, yielding the precise value [2, 3]
for y. After that no new predicates are entailed and the recursive predicate
application in the function fixapply stops with the state s′2 = 〈{5 < x → 2 ≤ y,
−1 < y → 10 ≤ x}, {x ∈ [10, 15], y ∈ [2, 3]}〉. Observe that the interval domain
is identical to that of s2. Analogously, we get a state s′1 in which the interval for
x is [0, 5] and for y is [−5,−1] after applying the opposing condition y ≤ 0.

In summary, the predicate domain improves the precision of a child domain
tracking precision losses that are reported by the child. In particular, the domain-
specific synthC function can generate predicates that cannot be expressed in the
domain itself. This allows the predicate domain to maintain enough disjunctive
information to recover the state before the join whenever a test is able to separate
the two states. Note though that there exist cases when this is not completely
possible, namely when the value of x in one state overlaps the value in the other
state. Consider c1(x) ∈ [0, 4] and c2(x) ∈ [2, 8]. A test x < 3 does not separate
the two states. However, any test outside the overlapping range [2, 4] is able to
separate the two states which, in turn, leads to the refinement of other bounds.

Synthesizing Predicates from Abstract Domain Losses 337

4.3 Application to Path-Sensitive Invariants

This section illustrates how our domain can verify an example taken from [5].
The challenge of analyzing the code in Fig. 6a) is that the join of different paths
loses precision and the invariant that a file is only accessed if it was opened
before cannot be proved. For the sake of presentation, we use open to denote
the value of out->is_open. Note that the assertion in line 3 can be proved by
using the interval domain alone, as open is [1, 1] due to line 2. However, the
assertion in line 10 cannot be proved by using intervals alone: observe that open
is set to [0, 0] in line 4 and that the join of this value with the value [1, 1] from
line 7 yields the convex approximation of [0, 1] in line 10 of the assertion. As
a consequence, the assertion cannot be proved since the edge to the error state
with assumption open = 0 is satisfiable. Now consider analyzing the example
using the predicate domain with the interval domain as child. Then the join
of the then branch in line 7 and the state before line 6 creates an implication
0 < flag → 1 ≤ open . When applying the branch condition flag = 1 of line 9,
the implied predicate 1 ≤ open is used to reduce the state, yielding open ∈ [1, 1]
in the interval domain. Thus, the assertion can be proved since the edge to the
error state with assumption open = 0 is unreachable. The example illustrates
how numeric domains may lose precision when joining paths and, thus, may fail
to express a path-sensitive invariant which is crucial to prove assertions in the
branch of a conditional.

Fischer et al. [5] prove the assertion in line 10 by not joining the states after the
conditional in line 6, thus keeping the states where open = 0 and open = 1 sepa-
rate. They associate a predicate with a numeric state and join numeric states only
if they are associated with the same predicate. Thus, their abstract state before
the conditional in line 9 is {〈flag = 0, open ∈ [0, 0]〉, 〈flag = 1, open ∈ [1, 1]〉}
which reduces to {〈flag = 1, open ∈ [1, 1]〉} inside the conditional. Although
their approach is able to prove the assertion, it is more costly as it tracks sev-
eral numeric states. Although using sharing can reduce the resource overhead
of tracking multiple states [11] the cost of tracking several states is generally
higher [14]. Our approach retains the conciseness of a single convex numeric
state and merely adds the implications necessary to express certain disjunctive
information. In particular, we only infer disjunctive information for variables
that actually differ in the join of two numeric states rather than duplicating the
information on all variables.

4.4 Application to Separation of Loop Iterations

A particularly challenging example from the literature [12] requires that variable
values of certain loop iterations are distinguished. The example in Fig. 6b) is
prototypical for a loop that frees a memory region in its last iteration. The
assertion in line 4 expresses that the memory region pointed-to by p has not yet
been deallocated. In order to prove this assertion, an analysis needs to separate
the value of the pointer p in the last loop iteration from its value in all previous
iterations. In particular, the example is difficult to prove using convex numeric

338 B. Mihaila and A. Simon

a)
1 FILE *out;

2 out ->is_open = 1;

3 assert(out ->is_open == 1);

4 out ->is_open = 0;

5 ...

6 �� (flag)

7 out ->is_open = 1;

8 ...

9 �� (flag)

10 assert(out ->is_open == 1);

b)
1 p = &some_var ;

2 n = 5;

3 ����� (n >= 0) {

4 assert(p != 0);

5 // dereference p

6 ...

7 �� (n == 0)

8 p = 0;

9 n--;

10 }

Fig. 6. Two challenging examples from the literature: a) accessing a file only if it was
already opened and b) freeing a pointer in the last loop iteration

domains due to a precision loss that occurs when joining the point 〈p, n〉 =
〈0,−1〉 at line 10 of the last loop iteration with the earlier states where p �= 0
and n ≥ 0.

However, using the simple interval numeric domain and our predicate domain,
the example is proved using the fixpoint computation detailed in Fig. 7. In step 1
of the table, p is initialized to a non-zero address of a variable, which we illustrate
by using the value 99. After initializing the loop counter n in step 2, the loop is
entered as the loop condition n >= 0 is satisfied. In step 5, it is determined that
the then-branch in line 8 is not reachable. After decrementing n, the state is
propagated to the loop head via the back-edge in step 8. At this point, widening
is applied. Additional heuristics [15] ensure that the interval [−1, 5] is tried for n,
rather than widening n immediately to [−∞, 5]. By applying the loop condition
n >= 0, a new state for the loop body is obtained in step 9. In step 12, it is
observed that the then-branch in line 8 is reachable. In the next step in line
9 the states of both branches are joined and the interval domain approximates
p with [0, 99]. In the same step, the implications 0 < n → 99 ≤ p, 0 < p →
0 ≤ n are synthesized. In step 14 these predicates are transformed using σ−1 =
[n/n + 1]. This state is joined with the previous state at the loop header at
step 15. Our widening heuristic suppresses widening since a new branch in the
program has become live [15]. Since the resulting numeric state has changed
due to the new value of p, the fixpoint computation continues. Note that during
the join in step 15, both implications −1 < n → 99 ≤ p, 0 < p → −1 ≤ n
are semantically entailed in the current state at the loop head (as computed in
step 8’) and therefore kept in the joined state. Evaluating the loop condition in
step 16 enforces that n ≥ 0, that is, 0 ≤ n. The latter predicate syntactically
entails the predicate −1 < n. Thus, the fixapply function deduces that 99 ≤ p
holds, yielding p ∈ [99, 99]. The assertion holds since intersecting the state at
step 16 with p = 0 yields ⊥. Thus, at line 4, p cannot be 0 and the assertion
holds. Continuing the analysis of the loop observes a fixpoint in step 22. Note
that the assertion can also be shown when using standard widening that sets n
to [−∞, 0] in step 8’. However, for the sake of presentation, we illustrated the
example with the more precise states.

Synthesizing Predicates from Abstract Domain Losses 339

step line intervals implications
p n

1 2 [99, 99]
2 3 [99, 99] [5, 5]
3 4 [99, 99] [5, 5]
· · · · · · · · ·
5 7 [99, 99] [5, 5]
6 9 [99, 99] [5, 5]
7 10 [99, 99] [4, 4]
8 3 ! [99, 99] [4, 5]
8’ 3’ ∇ [99, 99] [−1, 5]
9 4 [99, 99] [0, 5]
· · · · · · · · ·
12 8 [99, 99] [0, 0]
13 9 ! [0, 99] [0, 5] {0 < n→ 99 ≤ p,0 < p→ 0 ≤ n}
14 10 [0, 99] [−1, 4] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
15 3 ! [0, 99] [−1, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
16 4 [99,99] [0, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
· · · · · · · · ·
22 3 # [0, 99] [−1, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}

Fig. 7. States during the analysis of the loop example in Fig. 6b)

benchmark suite programs lines lines avg. time avg. time avg. (P) time avg. (D)

literature 9 9–17 14 ms 38 ms 99 ms 381 ms
test 8 66–274 115 ms 393 ms 1658 ms -

Fig. 8. Evaluation of our implementation. Due to technical reasons, the “test” bench-
mark suite could not be analyzed using the disjunctive domain (D).

5 Related Work and Evaluation

The Predicate abstract domain was inspired by a weaker domain that tracked bi-
implications of the form f ↔ x ≤ c [18]. This domain is useful in the analysis of
machine code where conditional branches are encoded using two separate instruc-
tions. The first instruction is a comparison that stores the result of x ≤ c in a
processor flag f . The second instruction is a branch instruction that determined
the jump target based on f . By tracking an association between the comparison
result f and the predicate x ≤ 0, the edge of the jump with the assumption f = 1
can be made more precise by also assuming x ≤ 0 and analogously for f = 0.
However, the use of simple bi-implications only states additional invariants rather
than predicates that hold conditionally. Hence, disjunctive information cannot
be described by using only bi-implications.

We evaluated our combined predicate/numeric domain on several examples in
the literature, including the ones presented in this paper, shown as “literature”
in Fig. 8. We also evaluated larger examples shown as “test”. All examples from
the literature required the predicate domain to verify except for the example
in Fig. 1 that our weaker predicate domain [18] already handles. The times are
shown when running without and with the predicate domain “(P)”. The last
column shows the running time with a disjunctive domain “(D)” that tracks
different numeric states depending on the index ranges of a loop [6,15]. Due to
this, only one example in the “literature” benchmark suite could possibly profit.
A precision comparison of our disjunctive and the predicate domain can therefore
not be conclusive for the various disjunctive domains in the literature [11,14].

340 B. Mihaila and A. Simon

5.1 Related Work

The idea of abstracting a system relative to a set of predicates was first applied by
Graf and Säıdi to state graphs created during model checking [7]. This approach
has later been generalized to software model checking by Ball et al. [1]. Here, an
abstraction tool c2bp translates a C program to a program over Boolean vari-
ables. The value of a Boolean variable is true if the corresponding predicate holds
in the input C program. The universe of possible predicates is very large as the
semantics of each assignment and test is expressed by predicates. For scalability,
c2bp abstracts the input C program only with respect to a few predicates. The
idea of counter-example driven refinement is to increase this set of predicates
by deducing which additional predicates are needed to discharge a verification
condition. This deduction is performed on a path through the program on which
the current Boolean abstraction is insufficient to prove a verification condition.
There are two ways in which this refinement may fail: Firstly, the translation
of C statements and tests into predicates may be inaccurate or the logic of the
predicates may be insufficient to represent the C semantics precisely. Secondly,
a set of predicates that suffices to discharge the verification condition on the
chosen path may be insufficient when considering the whole program.

An abstract interpretation over domains that lose precision due to convexity is
naturally improved by avoiding the computation of joins. This approach is com-
monly known as disjunctive completion [4]. In practice, the disjunctions are qual-
ified by a set of predicates and are stored in a binary decision-diagram (BDD)
where decision nodes are labeled with predicates and the leaves are convex nu-
meric abstract domains [11,14]. The challenge in implementing these domains is
that evaluation of transfer functions in one leaf may lead to a result that has to be
propagated to many other leaves. A particular challenge is the widening operator
and the reduction between predicates and states [10,15]. One drawback of using a
BDD as state is that computing a fixpoint of a loop will perform all operations on
each leaf of the BDD, even those that are stable within, say, the current loop. This
can be avoided by lifting the fixpoint computation from tracking a map P → S to
P ×C → S where P are program points, S are states and C is a context. By using
the predicates on a path in the decision diagram as context, the whole decision
tree can be encoded by using one context per path. The advantage of this encod-
ing is that stable leaves in the original decision tree are no longer propagated since
they are each checked for stability by the fixpoint engine [17]. Using predicates as
context can be seen as an elegant way of duplicating the CFG which is a technique
often used to improve widening [6].

Beyer et al. combine abstract domains with predicates [2]. Their framework
associates a precision level Π with each domain that can be adjusted based on
observed values in the program. A value-set analysis, for instance, may specify
that only variables with less than five values are tracked while a predicate do-
main will store the set of possible predicates in Π . They propose to change this
precision level during the analysis, so that a precision loss in one domain can be
met with a precision increase in another. They instantiate their framework by an
analysis that switches from tracking value sets to tracking predicates once the

Synthesizing Predicates from Abstract Domain Losses 341

former becomes too expensive. Their states are tuples of the precision levels and
the domain states so that a different domain state is tracked for each precision
level. Their approach thereby resembles the disjunctive completion approaches
discussed earlier. Interestingly, they propose the use of a function abstract to
synthesize predicates from an abstract state. However, in their implementation
it only returns predicates occurring in the current program.

Further afield are techniques to refine abstract interpretations based on counter
examples [13,9]. The idea here is to re-run the abstract interpretation once a
verification condition cannot be discharged. An improved precision of the ab-
stract interpreter is obtained by improving the widening or the abstract state
based on the path of the counter example. Our work can be seen as dual to
counterexample-driven refinement as we employ predicates to avoid a precision
loss rather than to refine a state that is too coarse. An approach that uses
counterexample-driven refinement and which is seemingly close to ours is that
of Fischer et al. [5] who propose a domain containing a map from a predicate
to a numeric abstract domain. Like our setup, their construction is a reduced
cardinal power domain [4] or, more generally, a co-fibered domain [20]. However,
since they track one numeric abstract domain for each predicate, there is no
bound on the number of states that they infer. Future work should address if
their techniques can be incorporated into our abstract domain, that is, if new
predicates can be synthesized without duplicating the numeric state.

Interestingly, when state spaces are bounded, disjunctive invariants can be
encoded using integral polyhedra [19]. However, since even rational polyhedra
are expensive, storing disjunctive information explicitly seems to be preferable.

5.2 Conclusion

We presented a co-fibered domain that tracks implications between predicates.
This domain takes a single numeric abstract domain as child and thereby avoids
tracking several child domains which is the most prominent way to encode dis-
junctive information. We illustrated that our domain solves challenging verifica-
tion examples form the literature while using a simple deduction and reduction
mechanism in form of the two novel functions synth and fixapply , respectively.

Acknowledgements. This work was supported by DFG Emmy Noether pro-
gram SI 1579/1.

References

1. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic Predicate Ab-
straction of C Programs. In: Programming Languages, Design and Implementation,
pp. 203–213. ACM (2001)

2. Beyer, D., Henzinger, T., Théoduloz, G.: Program analysis with dynamic precision
adjustment. In: Automated Software Engineering (2008)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A Static Analyzer for Large Safety-Critical Software. In: Program-
ming Language Design and Implementation, San Diego, USA. ACM (June 2003)

342 B. Mihaila and A. Simon

4. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Principles of Programming Languages, San Antonio, Texas, USA, pp. 269–282.
ACM (1979)

5. Fischer, J., Jhala, R., Majumdar, R.: Joining Dataflow with Predicates. In:
Wermelinger, M., Gall, H. (eds.) European Software Engineering Conference,
vol. 30, pp. 227–236. ACM (September 2005)

6. Gopan, D., Reps, T.: Guided Static Analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

7. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

8. Granger, P.: Improving the Results of Static Analyses of Programs by Local De-
creasing Iterations. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652,
pp. 68–79. Springer, Heidelberg (1992)

9. Gulavani, B.S., Rajamani, S.K.: Counterexample Driven Refinement for Abstract
Interpretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 474–488. Springer, Heidelberg (2006)

10. Gurfinkel, A., Chaki, S.: Boxes: A Symbolic Abstract Domain of Boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010)

11. Gurfinkel, A., Chaki, S.: Combining Predicate and Numeric Abstraction for Soft-
ware Model Checking. Software Tools for Techn. Transfer 12(6), 409–427 (2010)

12. Heizmann, M., Hoenicke, J., Podelski, A.: Software Model Checking for People Who
Love Automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 36–52. Springer, Heidelberg (2013)

13. Leino, K.R.M., Logozzo, F.: Loop Invariants on Demand. In: Yi, K. (ed.) APLAS
2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)

14. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.
Springer, Heidelberg (2005)

15. Mihaila, B., Sepp, A., Simon, A.: Widening as Abstract Domain. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 170–184. Springer,
Heidelberg (2013)

16. Péron, M., Halbwachs, N.: An Abstract Domain Extending Difference-Bound Ma-
trices with Disequality Constraints. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 268–282. Springer, Heidelberg (2007)

17. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static Analysis in
Disjunctive Numerical Domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
3–17. Springer, Heidelberg (2006)

18. Sepp, A., Mihaila, B., Simon, A.: Precise Static Analysis of Binaries by Extracting
Relational Information. In: Pinzger, M., Poshyvanyk, D. (eds.) Working Conference
on Reverse Engineering, Limerick, Ireland. IEEE (October 2011)

19. Simon, A.: Splitting the Control Flow with Boolean Flags. In: Alpuente, M., Vidal,
G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 315–331. Springer, Heidelberg (2008)

20. Venet, A.: Abstract Cofibered Domains: Application to the Alias Analysis of Un-
typed Programs. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145,
pp. 366–382. Springer, Heidelberg (1996)

Formal Verification of kLIBC with the WP
Frama-C Plug-in

Nuno Carvalho1, Cristiano da Silva Sousa1,
Jorge Sousa Pinto1, and Aaron Tomb2

1 HASLab/INESC TEC & Universidade do Minho, Portugal
2 Galois, Inc., Portland, Oregon, USA

Abstract. This paper presents our results in the formal verification of
kLIBC, a minimalistic C library, using the Frama-C/WP tool. We report
how we were able to completely verify a significant number of func-
tions from <string.h> and <stdio.h>. We discuss difficulties encoun-
tered and describe in detail a problem in the implementation of common
<string.h> functions, for which we suggest alternative implementations.
Our work shows that it is presently already viable to verify low-level C
code, with heavy usage of pointers. Although the properties proved tend
to be shallower as the code becomes of a lower-level nature, it is our view
that this is an important direction towards real-world software verifica-
tion, which cannot be attained by focusing on deep properties of cleaner
code, written specifically to be verified.

1 Introduction

The state-of-the-art in program verification tools based on deduction has seen
great advances in recent years. This has been motivated in part by the popularity
of the Design-by-Contract [1] principles, according to which program units are
annotated with behavior specifications called contracts, that provide appropri-
ate interfaces for compositional verification. On the other hand, developments in
Satisfiability Modulo Theories (SMT) solvers have complemented these advances
with sophisticated tools for automated theorem proving, which have made pos-
sible the automatic verification of intricate algorithms that previously required
very demanding interactive proofs.

The Frama-C deductive verification plug-in WP is a tool for compositional
verification of C code based on contracts. It starts with C programs annotated
with behavior specifications written in a language called ACSL, and then gen-
erates a collection of verification conditions (VCs): proof obligations that must
be valid in order for each program unit to meet its specification. A variety of
back-end provers can then be used to attempt to discharge these VCs. If all
VCs are shown to be valid, then the program is correct (given that the contract
specified correctly covers the functional properties of the program).

An ACSL-annotated program is shown in the straightforward example of List-
ing 1: the swap C function is annotated with a precondition requiring the two

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 343–358, 2014.
c© Springer International Publishing Switzerland 2014

344 N. Carvalho et al.

/*@
requires \valid(a) && \valid(b);
ensures A: *a == \old(*b);
ensures B: *b == \old(*a);
assigns *a,*b;

@*/
void swap(int *a,int *b){
int tmp = *a;
*a = *b;
*b = tmp;
return;

}

Listing 1. Swap basic example

pointers to be valid (in the sense that it can be safely accessed), which is neces-
sary for the safe execution of the operations involving dereferencing. The post-
conditions on the other hand ensure the functional behavior expected of swap,
and the frame condition states which elements of the global state are assigned
during its execution.

With the development of tools such as Frama-C it is to be expected that
where one would previously resort to extensive testing of code, one will now
increasingly use tools to statically verify it. Initial applications have focused on
algorithmically complex examples that are rich in ‘deep’ properties, but there is
a clear absence in the literature of work on the verification of real-world code
(initial steps in this direction with WP are reported in [2]). One class of code
that could largely benefit from static verification is the code in the standard
libraries of various programming languages, since more and more people depend
on many widely used applications based on them.

In this paper we present our results in the formal verification of kLIBC, a
minimalistic C library, using the WP plug-in of Frama-C. With this kind of
verification we are treading new ground: the tools are very recent and under
continued development. As such, our results should be seen as a snapshot of the
state-of-the art in program verification and its applicability to real-world code.

Organization of the Paper. Section 2 describes the verification and proof tools
(including the underlying memory models) used in our experiments, as well as
the subset of kLIBC considered. Sections 3 and 4 are the core sections of the pa-
per, where the results obtained in the verification of functions from <string.h>
and <stdio.h> are respectively reported. The verification was done bottom-up,
starting with the leaf functions and then working our way up to the callers.
The human effort consisted essentially in finding appropriate annotations; after
that the VCs were automatically discharged. Where problems are detected, we
also provide suggested corrections to the implementation of the relevant library
functions. Section 5 summarizes our results and discusses the difficulties faced,
and Section 6 concludes the paper. A full list of the functions analyzed can be
found in Appendix A.

Formal Verification of kLIBC with the WP Frama-C Plug-in 345

2 Experimental Environment

ACSL. ANSI/ISO C Specification Language (ACSL) [3] is a Behavioral Interface
Specification Language (BISL) [4] for C programs, which adds a layer of first-
order logic constructs on top of the well-known C syntax. As with other BISLs,
such as JML [5], building on top of the programming language’s syntax for
boolean expressions makes it possible for programmers to easily start adding
specification annotations to their programs.

All annotations are written as comments, using one of the notations //@ ...
or /*@ ... @*/, for single- and multi-line annotations, respectively. The pre- and
postconditions of functions are written as \requires and \ensures clauses, re-
spectively. The memory locations that can be modified within a function call can
be specified with an \assigns annotation (usually known as frame condition).
Loop annotations include loop invariant, loop variant and loop assigns.
The return value of a function can be accessed (in particular in the function’s
postcondition) with the \result clause.

All of the above annotations are fairly standard in BISLs used for deductive
verification; ACSL also includes many other annotations that specifically target
aspects of the C programming language. A particularly important one is the
\valid predicate, which takes a memory location or region as argument. The
intended meaning is that the content of that memory regions has been properly
allocated and can thus be safely accessed. This predicate is crucial for verifying
(statically) the absence of runtime memory safety violations.

Finally, the \at operator can be used for accessing the value of an expression
at a given program state, identified by a label. As an example, the expression
\at(p, Pre) denotes the value of the variable p in the pre-state of the current
function. The special label Pre is predefined, and this expression can in fact be
written equivalently as \old(p). The operator can however be used with any C
program label present in the program.

Frama-C and WP. Frama-C [6] is a platform dedicated to the static analysis of
C source code. It has a collaborative and extensible approach that allows plug-
ins to interact with each other. The most common use of Frama-C is probably
as a bug-finding tool that alerts the user about dangerous code and highlights
locations where errors could occur during runtime. The kind of bug-finding im-
plemented by Frama-C aims at being correct: if there is a location in the code
where an error could be generated, it should be properly reported. Users pro-
vide functional specifications written in ACSL, and Frama-C then aids them in
proving that the source code is in accordance with these specifications.

Frama-C plug-ins include among others tools for calculating common source
code metrics; value analysis based on abstract interpretation; program slicing;
and of course deductive verification. In fact Frama-C has two plug-ins for deduc-
tive verification: Jessie [7] and WP [8,9]. Both plug-ins function in the same way:
they convert the annotated code to a set of VCs, which are then submitted to

346 N. Carvalho et al.

a choice of external tools, comprising both automatic and interactive theorem
provers.

In this paper we focus on the WP plug-in, since Jessie is clearly not targeted at
the verification of properties of low-level code such as the code found in library
functions. Moreover, WP is very actively maintained, with new versions being
regularly released (for the work reported in this paper several major versions of
Frama-C were used, including Oxygen and Fluorine 1, 2 and 3). We will see that
a feature that has been included in the latest releases (to cope with unsafe casts)
was crucial in the verification of <stdio.h> functions.

WP Memory Models. A memory model consists of a set of data types, op-
erations and properties that are used to construct an abstract representation of
the values stored in the heap during execution of a program. The WP plug-in
of Frama-C makes available to the user a number of different memory models,
the simplest of which, present in every release of the plug-in, is the Hoare model,
based on the core weakest precondition calculus. This is a very simple model
that does not support pointer operations, and is thus not suitable for our aim
in this paper. The Store model was available in the Oxygen release but is not
included in the more recent Fluorine releases. The heap values were stored as
logical values in a global array. Support for pointer operations was fairly lim-
ited, and therefore heterogeneous type casts were not supported. Integers, floats,
and pointers had to be ‘boxed’ into the global array and then ‘unboxed’ from it
in order to implement read and write operations. All this boxing-unboxing was
preventing automatic provers from making maximal usage of their native array
theories. The Runtime model was the most powerful model included in Oxygen;
it has equally been discontinued in the Fluorine release. This model was intended
to be used for low-level operations, representing the heap as a wide array of bits.
It was a very precise model but the price to pay for using it was high, since it
generated huge VCs.

In the Fluorine releases a new model, called Typed, was introduced to replace
both Store and Runtime. It makes better usage of the theories built into auto-
mated provers. The heap is represented by three memory variables, respectively
holding arrays of integers, floats and addresses. This data is now indexed directly
by addresses, which avoids all boxing-unboxing operations.

Very importantly, the “unsupported casts” feature of this model allows for the
usage of unsafe casts, as long as they are never used to store data through a
modification of the aliased memory data layout, as illustrated in Listing 2.

RTE Plug-in. The runtime error plug-in of Frama-C automatically generates
annotations that can later be discharged by more powerful plug-ins such as Jessie
or WP, even though it can also be used on its own to just guard against runtime
errors [10]. It is worth noting that the generated annotations may not be easily
discharged, even if they can be easily generated. RTE generates annotations for:

– common runtime errors, such as division by zero, signed integer overflow or
invalid memory accesses;

Formal Verification of kLIBC with the WP Frama-C Plug-in 347

int *p = ... ;
char *q1 = (char *)p;
char *q2 = (char *)p;
if(q1 == q2){ ... } // CORRECT
if(*q1 == *q2){ ... } // CORRECT
q1[2] = 0xFF; // STILL CORRECT BUT ...
if(*p == ...) // INCORRECT, because q1 is aliased to internal representation of p

Listing 2. Unsafe casts usage

– unsigned integer overflows, which are considered well-defined behaviors in
the C language but which complicate other proofs;

– function contracts at call sites (for functions with an ACSL specification).

RTE assumes that all signed integers have a two’s complement representation
since it is a common implementation choice. The annotations generated are
dependent on the machine where Frama-C is being executed.

Theorem Provers. The VCs generated by WP can be submitted to an inter-
active or automatic theorem prover. Frama-C natively supports two provers: the
Alt-Ergo automatic prover and the Coq proof assistant. Other provers are sup-
ported through the Why platform1. In the experiments reported in this paper
the following provers were used:

– Alt-ergo 0.95.1
– CVC3 2.4.1 (through the Why platform)
– Z3 4.3.1 (through the Why platform)

kLIBC kLIBC is intended to be a minimalist subset of libc, to be used with the
initramfs file system. It is mainly used during the Linux kernel startup because
at that point there is no access to the standard glibc library. It is designed for
small size, minimal confusion and portability. The experiments reported in this
paper focus on string-related functions from <string.h> and on the file API
present in <stdio.h>. The version of kLIBC used was 2.0.2, which was released
on October 5, 2012.

3 Verification of <string.h>

The <string.h> header file defines several functions to manipulate C strings
and arrays. It also includes various memory handling functions. Most of these
functions follow the same formula: they iterate on the string, using pointer arith-
metics or an integer variable, for n bytes or until ’\0’ is found, performing some
operation on each position.

For the functions that iterate until the end of the string is found, having
access to the actual length of the string at the logical level is useful. For this
1 http://why3.lri.fr

http://why3.lri.fr

348 N. Carvalho et al.

/*@
predicate Length_of_str_is{L}(char *s, integer n) =

n >= 0 && \valid(s+(0..n)) && s[n] == 0 &&
\forall integer k ; (0 <= k < n) ==> (s[k] != 0) ;

axiomatic Length{
logic integer Length{L}(char *s) reads s[..];

axiom string_length{L}:
\forall integer n, char *s ; Length_of_str_is(s, n) ==> Length(s) == n ;

}
@*/

Listing 3. Valid string predicate and length axiom

/*@
requires \exists integer i; Length_of_str_is(s,i);
assigns \nothing;
ensures \result == Length(s);

@*/
int strlen(const char *s) {

const char *ss = s;

/*@
loop invariant BASE: \base_addr(s) == \base_addr(ss);
loop invariant RANGE: s <= ss <= s+Length(s);
loop invariant ZERO:

\forall integer i; 0 <= i < (ss-s) ==> s[i] != 0;
loop assigns ss;
loop variant Length(s) - (ss-s);

@*/
while (*ss) ss++;

//@ assert END: Length_of_str_is(s,ss-s);
return ss - s;

}

Listing 4. strlen implementation and annotations

we define a predicate Length_of_str_is as shown in Listing 3. The formula
Length_of_str_is{L}(s,n) is true in the state identified by L, for nonnegative
n, when all memory positions from 0 to n are valid; the final character is the null
terminator ’\0’ (note that this character is present even when n is zero); and
no other character in the string is the null terminator. Observe that the formula
\exists integer i; Length_of_str_is{L}(s,i) holds exactly when s is a
valid string in state L. With this definition, we can quickly verify the function
that calculates the length of a string. Note that a logical function Length is also
introduced, as well as an axiom linking its result to the values of n that satisfy
the Length_of_str_is predicate for a given string (this enforces the existence
of a single such value).

strlen. kLIBC’s implementation of strlen and its annotations are shown in
Listing 4. The contract is quite straightforward. The precondition states that
only valid strings are expected by this function (this precondition is present in

Formal Verification of kLIBC with the WP Frama-C Plug-in 349

int memcmp(const void *s1, const void *s2, size_t n){
const unsigned char *c1 = s1, *c2 = s2;
int d = 0;

while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;

}
return d;

}

Listing 5. Original memcmp implementation

almost all functions from <string.h>). The postcondition guarantees that the
result of the function is equal to the length of the string.

The implementation is not the triviality one could expect. Instead, pointer
arithmetic is used for loop control, where ss-s is the number of iterations ex-
ecuted. Because of this we need to define the loop invariant RANGE in order to
guarantee that the pointer ss never goes out of bounds. Also, WP requires that
pointers that are used in a comparison have the same base pointer, which is
stated by the loop invariant BASE. Finally, The loop invariant ZERO is the one
that actually allows for the contract to be proved. It states that whenever the
loop condition holds, all memory positions of the array previously visited by the
loop must be different from the null terminator.

The loop assigns and variant clauses are straightforward. The final assertion
END is necessary in the Fluorine release of Frama-C: without it the contract could
not be proven. What this assertion states is that, after the loop, the length of
string s is the difference between the pointers ss and s. The resulting annotated
function is fully verified with both Alt-Ergo and CVC3.

memcmp. This function compares two byte strings with at least n bytes of
length. The implementation is shown in Listing 5 (the original implementation
includes in-line assembly, which is ignored here). Just verifying the run-time
execution guards uncovered an underflow in the variable n. This error is in fact
present in multiple functions from <string.h>; we will now explain in detail its
particular occurrence in memcmp.

The parameter variable n is declared as having type size_t, which is a
typedef for an unsigned long, meaning the value of n is always larger than
or equal to 0. However, in the loop’s final iteration, when n is zero, the condition
is evaluated to false but the variable is still decremented, causing an underflow.
Although this underflow does not affect execution of the function, it still causes
confusion, and prevents the assertion generated by WP -rte from being proven.

A proposed correction of the implementation, with the appropriate annota-
tions, is shown in listing 6. By moving the decrement operation inside the loop,
we avoid the underflow in the final iteration. The resulting annotated function
is fully verified with both Alt-Ergo and CVC3.

350 N. Carvalho et al.

/*@
requires n >= 0;
requires \valid(((char*)s1)+(0..n-1));
requires \valid(((char*)s2)+(0..n-1));
requires \separated(((char*)s1)+(0..n-1), ((char*)s2)+(0..n-1));

assigns \nothing;
behavior eq:

assumes n >= 0;
assumes \forall integer i;

0 <= i < n ==> ((unsigned char*)s1)[i] == ((unsigned char*)s2)[i];
ensures \result == 0;

behavior not_eq:
assumes n > 0;
assumes \exists integer i;

0 <= i < n && ((unsigned char*)s1)[i] != ((unsigned char*)s2)[i];
ensures \result != 0;

complete behaviors; // at least one behavior applies
disjoint behaviors; // at most one behavior applies

@*/
int memcmp(const void *s1, const void *s2, size_t n)
{

const unsigned char *c1 = s1, *c2 = s2;
int d = 0;
/*@

loop invariant N_RANGE: 0 <= n <= \at(n, Pre);
loop invariant C1_RANGE: c1 == (unsigned char*)s1+(\at(n,Pre) - n);
loop invariant C2_RANGE: c2 == (unsigned char*)s2+(\at(n,Pre) - n);
loop invariant COMPARE: \forall integer i;

0 <= i < (\at(n, Pre) - n) ==> ((unsigned char*)s1)[i] == ((unsigned
char*)s2)[i];

loop invariant D_ZERO: d == 0;
loop assigns n, d, c1, c2;
loop variant n;

@*/
while (n){

d = (int)*c1++ - (int)*c2++;
if (d) break;
n--; //inserted code

}
return d;

}

Listing 6. Corrected memcmp implementation and annotations

The specification of this function requires that the memory areas pointed by
s1 and s2 must not overlap, as otherwise the behavior would be undefined.
ACSL provides the \separated clause for this purpose, which is here included
in the precondition. Furthermore both memory areas must be valid (with length
n bytes). Observe that, depending on the contents of the two byte strings, the
result may or may not be zero. By encoding this as two different ACSL behaviors
we can cover both executions.

Similarly to strlen, the loop invariants N_RANGE, C1_RANGE and C2_RANGE
guarantee that the pointers never go out of bounds. The difference here is that
we can specifically assert the values of the pointers c1 and c2 by using n. The
loop invariants COMPARE and D_ZERO are the crucial ones for our contract, spec-
ifying that all previously iterated positions contain pairwise equal values. This

Formal Verification of kLIBC with the WP Frama-C Plug-in 351

struct _IO_file {
int _IO_fileno; /* Underlying file descriptor */
_Bool _IO_eof; /* End of file flag */
_Bool _IO_error; /* Error flag */

};
typedef struct _IO_file FILE;

/*@
predicate valid_FILE(FILE *f) = \valid(f) && f->_IO_fileno >= 0;

@*/

Listing 7. FILE structure definition

struct _IO_file_pvt {
struct _IO_file pub; /* Data exported to inlines */
struct _IO_file_pvt *prev, *next;
char *buf; /* Buffer */
char *data; /* Location of input data in buffer */
unsigned int ibytes; /* Input data bytes in buffer */
unsigned int obytes; /* Output data bytes in buffer */
unsigned int bufsiz; /* Total size of buffer */
enum _IO_bufmode bufmode; /* Type of buffering */

};

#define offsetof(t,m) ((size_t)&((t *)0)->m)
#define container_of(p, c, m) ((c *)((char *)(p) - offsetof(c,m)))
#define stdio_pvt(x) container_of(x, struct _IO_file_pvt, pub)

Listing 8. Encapsulating FILE structure and stdio_pvt macro

implicitly means that d==0 must always hold (otherwise the strings are not
equal).

4 Verification of <stdio.h>

The <stdio.h> header file provides many functions to handle I/O operations.
We aim here at verifying file functions such as fopen, fclose, and fgetc, i.e.
the file API. Almost all functions in this API resort to system calls, which act
like black boxes, and it is thus difficult or impossible to specify what the output
will be on a given input. Due to this fact, contracts tend to be quite weak. Note
that even though the properties that can be verified are shallower than those
considered in the previous section, they can still be extremely important – in
particular, we have been able to prove various memory safety properties.

Since we will be working with the file API, it makes sense to start by defining
a predicate that establishes the validity of a FILE structure. kLIBC’s definition
of this structure and the corresponding validity predicate are shown in Listing 7.
A FILE structure is considered valid when both the area pointed by the pointer
and the file descriptor are valid.

In reality a slightly more complex encapsulating FILE structure is used, see
Listing 8. The FILE structure is kept in the field pub of the _IO_file_pvt
structure. The set of all _IO_file_pvt structs is organized as a circular linked

352 N. Carvalho et al.

/*@
predicate valid_IO_file_pvt(struct _IO_file_pvt *f) =

\valid(f) && f->bufsiz == 16384 && 0 <= f->ibytes < f->bufsiz
&& 0 <= f->obytes < f->bufsiz
&& valid_FILE(&(f->pub))
&& stdio_pvt(&(f->pub)) == f
&& \separated(f, f->next, f->prev, f->buf+(0..(f->bufsiz+32-1)))
&& \valid(f->buf+(0..(f->bufsiz+32-1)))

&& f->buf <= f->data < f->buf + f->bufsiz + 32
&& \base_addr(f->data) == \base_addr(f->buf)

&& valid_IO_file_pvt_norec(f->next)
&& f->next->prev == f
&& valid_IO_file_pvt_norec(f->prev)
&& f->prev->next == f;

@*/

Listing 9. valid IO_file_pvt predicate

list. The buf pointer points to an area of fixed size, and data points to somewhere
in this area, representing the current input data location in the buffer. The
function fdopen allocates the memory necessary for this structure: memory for
the structure itself, the buffer, and some extra bytes for the input buffer, as in f
= zalloc(bufoffs + BUFSIZ + _IO_UNGET_SLOP) (kLIBC defines BUFSIZE as
16384 and _IO_UNGET_SLOP as 32).

The valid_IO_file_pvt predicate is defined in Listing 9. In addition to the
expected safety conditions, it is stated that the values of both ibytes and obytes
cannot exceed the actual buffer size. The separated clause guarantees that no
memory overlapping exists between the actual file structure and its fields. This
is essential to ensure that the buffer is separated from the field structure. Since
they are used in a comparison operation, data and buf must have the same
base address, to guarantee that the data pointer always points somewhere in
the allocated area, as mentioned in Section 3. In order to guarantee that the
circular linked list is correctly constructed, we can specify that “the next node of
the previous node”, and “the previous node of the next node” are both the node
itself. We could use the valid_IO_file_pvtpredicate to check the validity of the
neighboring nodes. This however, would recursively check each neighboring node
and WP does not support recursive predicates. Instead, we define an auxiliary
predicate, similar to valid_IO_file_pvt, but that does not check its neighboring
nodes. This way, whenever we check the validity of a _IO_file_pvt structure,
its immediate neighbors are also checked. This is sufficient because all functions
that require access to the linked list, only access the direct neighbors of a given
_IO_file_pvt structure.

Functions that receive a FILE structure, but need to access the encapsu-
lating _IO_file_pvt structure, may obtain it by resorting to the stdio_pvt
macro, also shown in Listing 8 (the -pp-annot flag instructs Frama-C to pro-
cess the define macros). This macro was the source of various problems when
using Frama-C releases prior to Fluorine. The cast from FILE* to char* was
not supported in those versions. However, the new unsafe casts option seems

Formal Verification of kLIBC with the WP Frama-C Plug-in 353

/*@
requires valid_IO_file_pvt(stdio_pvt(file));
requires -128 <= c <= 127;

behavior fail:
assumes stdio_pvt(file)->obytes || stdio_pvt(file)->data <= stdio_pvt(file)->buf;
assigns \nothing;
ensures \result == EOF;

behavior success:
assumes stdio_pvt(file)->obytes == 0 && !(stdio_pvt(file)->data <=

stdio_pvt(file)->buf);
assigns stdio_pvt(file)->ibytes, stdio_pvt(file)->data,

*(\at(stdio_pvt(file)->data, Pre)-1);
ensures stdio_pvt(file)->ibytes == \at(stdio_pvt(file)->ibytes, Pre) + 1;
ensures stdio_pvt(file)->data == \at(stdio_pvt(file)->data, Pre) -1;
ensures *(stdio_pvt(file)->data) == c == \result;

complete behaviors; disjoint behaviors;
@*/
int ungetc(int c, FILE *file) {

struct _IO_file_pvt *f = stdio_pvt(file);

if (f->obytes || f->data <= f->buf) return EOF;

*(--f->data) = c;
f->ibytes++;

return c;
}

Listing 10. ungetc implementation and specification

to handle this very well. This was crucial for the success of our efforts, since
in our verification of functions from <stdio.h>, the valid_IO_file_pvt predi-
cate was commonly used in ACSL annotations with the stdio_pvt macro, as in
valid_IO_file_pvt(stdio_pvt(file)), since almost every function in the file
API receives a FILE* pointer as argument, instead of the encapsulating struc-
ture, which is what is actually needed.

We will now consider in detail the verification of two functions from this API.

ungetc. This is a very simple function: it accesses some fields of the file struc-
ture, and then assigns a character back to the buffer, properly updating the
ibytes counter. A detailed contract can be specified, because the function does
not resort to system calls. The annotated function and its implementation are
shown in Listing 10. Since the output of the function depends on the outcome of
the conditional clause, it is adequate to define two behaviors fail and success.
This function is easily verifiable in the Fluorine release with Z3, but it requires
the unsafe casts option to be activated.

__fflush. Many functions in the file API rely on the __fflush function for
actually modifying (and then flushing) a file structure. Its annotated implemen-
tation is shown in Listing 11. The instruction inserted before the while loop was
necessary in order to be able to specify an interval for the variable rv in the

354 N. Carvalho et al.

/*@
requires valid_IO_file_pvt(f);
assigns f->ibytes, f->pub._IO_eof, f->pub._IO_error, f->obytes, errno;
ensures \result >= -1;

@*/
int __fflush(struct _IO_file_pvt *f){

ssize_t rv;
char *p;

if (__unlikely(f->ibytes)) return fseek(&f->pub, 0, SEEK_CUR);

p = f->buf;
rv = -1; // inserted code
/*@

loop invariant 0 <= f->obytes;
loop invariant \base_addr(p) == \base_addr(f->buf);
loop invariant -1 <= rv <= f->obytes;
loop invariant \base_addr(f->buf) == \base_addr(f->data) == \base_addr(p);
loop invariant f->buf <= p <= f->buf + f->bufsiz + 32;
loop invariant \valid(p+(0..f->obytes-1));
loop assigns f->obytes, p, f->pub._IO_eof, f->pub._IO_error, rv;
loop variant f->obytes;

@*/
while (f->obytes) {

rv = write(f->pub._IO_fileno, p, f->obytes);
if (rv == -1){

if (errno == EINTR || errno == EAGAIN) continue;
f->pub._IO_error = true;
return EOF;

} else if (rv == 0){
f->pub._IO_eof = true;
return EOF;

}

p += rv;
f->obytes -= rv;

}

return 0;
}

Listing 11. __fflush implementation and contract

loop invariant. From the point of view of verification this function is very prob-
lematic, because of its dependencies. If the input buffer contains some bytes the
function fseek is called, which in turn invokes either the system call lseek or
__fflush again. On the other hand, if the output buffer is not empty its contents
are written to disk with the write system call. Writing a deep contract for this
function is thus at this point not possible, because both cases will depend on the
outcome of system calls. Nevertheless we were able to specify some functional
and memory safety properties. Using Z3 we were able to discharge most (but
not all) of the VCs. This partial verification is due to reasons explained above
and not to the choice of prover.

5 Evaluation of Results and Difficulties

As a general remark, we note that a standard C library contains inherently low-
level code, which makes it hard to verify formally, due to the presence of system

Formal Verification of kLIBC with the WP Frama-C Plug-in 355

calls. Verification tools of the class employed here are only capable of verifying
source-level code, and of course the implementation of the system calls is in
machine language – there is no way to prove their correctness. It is possible
to write a basic contract for a system call, but the verification of the calling
functions will always be dependent on its assumed conformance to this contract.

The Fluorine release of the WP plug-in represents a major step as the verifica-
tion of properties of low-level code is concerned. In fact, in the previous Oxygen
release of WP only a few type casts were supported, such as unsigned char* to
char*. In order to avoid the problems raised by this limitation we were forced
to modify the code being verified, which is hardly a recommendable approach.
Also, in our attempt to approach the verification of the file API with the Oxy-
gen release we were forced to use the complex Runtime memory model, and we
were unable to verify even the simplest properties of functions from <stdio.h>.
These difficulties were eliminated in the Fluorine release, which made possible
the work reported in Section 4.

A recurring problem detected in various functions from <string.h> is an
underflow error present in the while loops (this is detected by all the WP releases
used in our experiments). Basically, the problem is that an unsigned variable is
decremented when its value is zero. Because of this, the RTE assertions cannot
be proved. We have produced modified versions of these functions to make sure
that no decrement is performed when the variable reaches zero.

In the verification of mutually recursive functions that share pointers between
them we noticed that it is necessary to include in both functions’ contracts the
assigns clauses corresponding to the side effects produced by the code of both
functions. This actually makes sense, but perhaps it would be more productive if
functions could inherit assigns clauses from called functions whenever a pointer is
shared (in the same way that some ‘continuous’ loop invariants are automatically
present, such as assertions regarding variables not assigned in the loop body).

A present limitation of the WP plug-in is the lack of support for dynamic
memory allocation. Even though ACSL defines clauses to deal with dynamic
allocation (such as fresh, allocable, or freeable) these are not yet supported
in the Fluorine release. According to the developers, support will be included in
the next major release of the tool.

We also noted that using some provers required a heavy consumption of re-
sources. For instance with CVC3 many threads are created but not killed in the
end. We do not know if this problem is created by the prover itself, by Frama-C,
or by the Why platform. Since CVC3 requires a large amount of memory very
rapidly, this bug often results in forced reboots.

6 Concluding Remarks

The main goal of our experiments was to see how far one could go with verifying
a low level library with Frama-C and WP. Due to the limitations described previ-
ously we ended up with partial verifications for some of the functions. Neverthe-
less, we were able to completely verify 14 functions out of 34 from <string.h>,

356 N. Carvalho et al.

and 13 out of 23 from the <stdio.h> file API. A full list of the approached func-
tions and the present verification status (including, in the unsuccessful cases, the
number of VCs left undischarged with each prover) can be found in Appendix A.
The corresponding library with all the annotations is publicly available.2

Regarding the performance of the different automated provers employed, Alt-
Ergo and CVC3 seemed to be better at handling string-related functions and
behaviors, while Z3 was much more powerful dealing with the unsupported casts
required to verify the file API. Within the string-related functions, Alt-Ergo was
able to discharge less VCs when compared to CVC3; however, for those that were
successfully discharged the computational cost was lower, and the huge amount
of memory consumed by CVC3 was avoided. Since Alt-Ergo is natively supported
by Frama-C, WP is able to take advantage of its built-in theories, making it a
competitive option as an SMT solver.

Regardless of the partial verification results obtained for some functions, we
believe we have shown without doubt that it is now viable to verify low level C
code. Whatever the gravity of the problems identified in practice may be, their
detection reinforces the interest of formally verifying code even when it has been
widely validated by large numbers of users, as is the case of library code.

During the experiments we have identified limitations and bugs in Frama-
C/WP that were properly reported to the developers. The Frama-C team is well
aware of its users’ needs, as evidenced by the release of the new memory model
and the optional feature to support unsafe casts. The forthcoming release includ-
ing support for dynamic memory allocation will very likely be another landmark
in the practical applicability of deductive program verification tools.

Acknowledgment. This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (operational programme
for competitiveness) and by National Funds through the FCT - Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020486.

References

1. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10) (1992)
2. Burghardt, J., Carben, A., Gerlach, J., Hartig, K., Pohl, H., Völlinger, K.: ACSL

By Example – Towards a Verified C Standard Library. DEVICE-SOFT project
publication. Fraunhofer FIRST Institute (2011)

3. Baudin, P., Cuoq, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language (June 2013)

4. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012)

5. Leavens, G., Cheon, Y.: Design by Contract with JML (2003)
6. Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti, A., Signoles, J.,

Yakobowski, B.: Frama-C User Manual (June 2013)

2 https://github.com/Beatgodes/klibc_framac_wp

https://github.com/Beatgodes/klibc_framac_wp

Formal Verification of kLIBC with the WP Frama-C Plug-in 357

7. Marché, C.: Jessie: An Intermediate Language for Java and C Verification. In:
Stump, A., Xi, H. (eds.) Proceedings of PLPV 2007. ACM (2007)

8. Baudin, P., Correnson, L., Dargaye, Z.: WP Plug-in Manual (June 2013)
9. Baudin, P., Correnson, L., Hermann, P.: WP Tutorial (September 2012)

10. Hermann, P., Signoles, J.: Frama-C’s annotation generator plug-in (June 2013)

A List of Functions

A.1 <string.h> Functions

Function Alt-Ergo CVC3 Z3 Combined Unsafe Depen- Obs
provers casts dencies

bzero ✓ ✓ ✓ ✗ memset
memccpy ✗(15/21) ✗(18/21) ✗(13/21) ✗(18/21) ✗ Problems with PosOfChar axiom

memchr ✗(16/18) ✗(16/18) ✗(14/18) ✗(16/18) ✗ Behavior not proved, see strchr

memcmp ✓ ✓ ✗(15/19) ✓
memcpy ✗(13/14) ✓ ✓ ✗

memmem ✗(37/42) ✗(37/42) ✗(36/42) ✗(37/42) ✓ memcmp Behavior not proved

memmove ✓ ✓ ✓ ✗

memrchr ✗(12/14) ✗(12/14) ✗(12/14) ✓ ✗
memset ✗(13/14) ✓ ✓ ✗

memswap ✗(17/19) ✓ ✓ ✗

strcasecmp Does not schedule all VCs due to Frama-C bugs
strcat Dependency strchr and strcpy not verified
strchr ✗(14/17) ✗(14/17) ✗(13/17) ✗(15/17) ✗ Behavior not proved, see memchr

strcmp ✓ ✓ ✗(14/22) ✗

strcpy ✗(16/23) ✗(16/23) ✗(15/23) ✗(16/23) ✗

strcspn ✓ ✓ ✗(4/5) ✗ strxspn
strdup Suffers from dynamic allocation problem
strlcat ✗(15/27) ✗(15/27) ✗(13/27) ✗(15/27) ✗ Has no post-conditions

strlcpy Does not schedule all VCs due to Frama-C bugs
strlen ✓ ✓ ✗(7/9) ✗

strncasecmp ✗(17/23) ✗(17/23) ✗(17/23) ✗(17/23) ✓ toUpper
strncat ✗(12/23) ✗(12/23) ✗(9/23) ✗(12/23) ✗ strchr
strncmp ✗(31/35) ✗(31/35) ✗(19/35) ✗(31/35) ✗ Behaviors not proved

strncpy ✗(12/16) ✗(13/16) ✗(13/16) ✗(13/16) ✗ Has no post-conditions

strndup Suffers from dynamic allocation problem
strnlen ✓ ✓ ✗(13/15) ✗

strpbrk ✓ ✓ ✗(7/14) ✗ strxspn
strrchr ✗(17/22) ✗(17/22) ✗(14/22) ✗(17/22) ✗ Behaviors not proved

strsep ✓ ✓ ✗(19/20) ✗ strpbrk
strspn ✓ ✓ ✗(4/5) ✗ strxspn
strstr Dependency memmem not proved
strtok Dependency strxspn not proved

strtok_r Dependency strxspn not proved
strxspn ✗(32/40) ✗(33/40) ✗(31/40) ✗(34/40) ✗ memset Proved under assumption

358 N. Carvalho et al.

A.2 <stdio.h> Functions

Function Z3 Unsafe casts Dependencies
clearerr ✓ ✗

fclose ✓ ✓ fflush
fdopen ✗(19/25) ✓

__init_stdio ✗(5/10) ✓ fdopen
feof ✓ ✗

ferror ✓ ✗
__fflush ✗(20/23) ✓ fseek
fflush ✓ ✓ __fflush
fgetc ✓ ✓
fgets n/a ✗ fgetc
fileno ✓ ✗

__parse_open_mode ✓ ✗

fopen ✓ __parse_open_mode, fdopen
fputc Dependency _fwrite not proved
fputs Dependency _fwrite not proved
_fread ✗(18/37) ✓ __fflush
fseek ✓ ✓ __fflush, lseek
ftell ✗(10/11) ✓ lseek

fwrite_noflush ✗(26/39) ✓ __fflush
_fwrite ✗(29/34) ✓

lseek ✓ ✗ __llseek
rewind ✓ ✓ fseek
ungetc ✓ ✓

Author Index

Antonino, Pedro R.G. 31
Arlt, Stephan 313

Baier, Christel 285
Bardsley, Ethel 230
Bartels, Björn 98
Bernardeschi, Cinzia 209
Bridge, James 188
Bryans, Jeremy W. 31

Carvalho, Nuno 343
Cofer, Darren 1
Correnson, Löıc 215
Curzon, Paul 209

Danish, Matthew 158
da Silva Sousa, Cristiano 343
Daum, Marcus 285
Denman, William 203
Donaldson, Alastair F. 230
Dubslaff, Clemens 285
D’Urso, Enrico 209

El Ghazi, Aboubakr Achraf 173
Engelen, Luc 258

Fedyukovich, Grigory 300
Ferrari, Alessio 264

Garoche, Pierre-Löıc 246
Gascón, Adrià 270
Gladisch, Christoph 173
Gurfinkel, Arie 300

Hierons, Robert M. 62
Hoffman, Dustin 92
Horsmanheimo, Seppo 77
Howar, Falk 246

Immler, Fabian 113

Jackson, Paul 188
Jähnig, Nils 98
Jensen, Peter Gjøl 307
Jones, Paul 209

Kahsai, Temesghen 246
Kamali, Maryam 77
Klein, Joachim 285
Klüppelholz, Sascha 285
Kolehmainen, Mikko 77
Kristensen, Klaus E. 31

Larsen, Kim Guldstrand 307

Masci, Paolo 209
Mazzanti, Franco 264
Mehlhorn, Kurt 46
Merz, Stephan 143
Mihaila, Bogdan 328
Miller, Steven 1

Neovius, Mats 77
Noschinski, Lars 46

Oladimeji, Patrick 209
Oliveira, Marcel Medeiros 31

Paulson, Lawrence 188
Pedro, André de Matos 16
Pereira, David 16
Petre, Luigia 77
Pinho, Lúıs Miguel 16
Pinto, Jorge Sousa 16, 343

Rizkallah, Christine 46
Rönkkö, Mauno 77
Rubio-González, Cindy 313
Rümmer, Philipp 313

Sampaio, Augusto C.A. 31
Sandvik, Petter 77
Schäf, Martin 313
Schneider, Stefan-Alexander 252
Schumann, Johann 252
Shankar, Natarajan 313
Sharygina, Natasha 300
Simon, Axel 328
Sørensen, Mathias Grund 307
Sogokon, Andrew 188
Spagnolo, Giorgio Oronzo 264
Srba, Jǐŕı 307

360 Author Index

Taankvist, Jakob Haar 307
Taghdiri, Mana 173
Tagore, Aditi 92
Tahar, Sofiène 128
Thimbleby, Harold 209
Thirioux, Xavier 246
Tiwari, Ashish 270
Tomb, Aaron 343
Türker, Uraz Cengiz 62
Tyszberowicz, Shmuel 173

Ulbrich, Mattias 173

Vanzetto, Hernán 143

Weide, Bruce W. 92
Wijs, Anton 258

Xi, Hongwei 158

Yousri Mahmoud, Mohamed 128

Zaccai, Diego 92
Zhang, Yi 209

	Preface
	Organization
	NASA Future Challenges in Formal Methods
	Theorem Proving and the Real Numbers:
	Overview and Challenges
	References

	Compositional Temporal Synthesis
	References

	Panel: Future Directions of Specifications forFormal Methods
	Table of Contents
	DO-333 Certification Case Studies
	1 Introduction
	2 Certification and DO-333
	3 Theorem Proving Case Study
	4 Model Checking Case Study
	5 Abstract Interpretation Case Study
	6 Conclusion
	References

	A Compositional Monitoring Frameworkfor Hard Real-Time Systems
	1 Introduction
	2 Related Work
	2.1 Monitor Based Approaches
	2.2 Schedulability Analysis and Predictable Monitoring

	3 Proposed Framework
	3.1 CMF Model and Architecture

	4 Metric Temporal Logic with Durations
	4.1 MTL-Axiomatization

	5 Evaluation of MTL-Formulas
	5.1 The Evaluation Algorithm
	5.2 The Time Complexity of Our Evaluation Algorithm
	5.3 Runtime Monitoring as the Evaluation of an MTL-Formula

	6 Guaranteeing Real-Time Constraints Using MTL-for CMF
	7 Performance Evaluation of our MTL-Approach
	8 Conclusion and Further Work
	References

	Leadership Election: An Industrial SoSApplication of Compositional DeadlockVerification
	1 Introduction
	2 CSP
	3 Networks of Processes
	4 Pattern Based Approach to Cyclic Network Verification
	5 Industrial Case Study: The Leadership Election at B&O
	6 A Local Strategy for Deadlock Analysis of the Leadership Election and Experimental Results
	7 Conclusion and Related Work
	References

	Verification of Certifying Computationsthrough AutoCorres and Simpl
	1 Introduction
	2 Preliminaries
	3 Verification of Checkers within Isabelle/HOL
	4 Abstraction
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Distinguishing Sequences for Partially SpecifiedFSMs
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Practical Implications of Our Results and Future Directions
	1.3 Summary of the Paper

	2 Preliminaries
	3 Preset Distinguishing Sequences
	4 Adaptive Distinguishing Sequences
	5 Experimental Results
	5.1 PSFSM Generation
	5.2 Results
	5.3 Benchmark Dataset

	6 Conclusions
	References

	On Proving Recoverabilityof Smart Electrical Grids
	1 Introduction
	2 SmartGrids
	3 Event-B
	4 Three Smart Grid Models:
	4.1 The Initial Model
	4.2 The Second Model
	4.3 The Third Model

	5 Verification of Models
	6 Related Work
	7 Conclusions
	References

	Providing Early Warningsof Specification Problems
	1 Introduction
	2 SpecificationModes
	3 Trivial-Update Defects
	3.1 Examples
	3.2 Identifying Trivial-Update Defects
	3.3 Examples Revisited

	4 SpecChec: A Specification Analysis Tool
	5 Conclusions
	References

	Mechanized, Compositional Verificationof Low-Level Code
	1 Introduction
	2 Syntax and State Definitions
	3 Small-Step Semantics
	4 Big Step Semantics
	5 Proof Calculus for Total Correctness
	6 Example
	7 Related Work
	8 Conclusions and Further Work
	References

	Formally Verified Computation of Enclosuresof Solutions of Ordinary Differential Equations
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Overview

	2 Background
	2.1 Real Numbers
	2.2 Euclidean Space
	2.3 Derivatives
	2.4 Notes on Taylor Series Expansion in Euclidean Space
	2.5 Ordinary Differential Equations

	3 Affine Arithmetic
	3.1 Reification of Expressions
	3.2 Approximation of Elementary Operations
	3.3 Approximation of Expressions
	3.4 Summarizing Noise Symbols

	4 Approximation of ODEs
	4.1 Euler Step
	4.2 Euler Series

	5 Experiments
	6 Conclusion
	References

	On the Quantum Formalization of CoherentLight in HOL
	1 Introduction
	2 Preliminaries
	2.1 Quantum Physics
	2.2 Quantum State Space Formalization

	3 Formalization of Quantum States Summation
	3.1 Finite Quantum State Summation
	3.2 Infinite Quantum State Summation

	4 Coherent Light Formalization
	4.1 Single Mode
	4.2 Fock States
	4.3 Coherent States

	5 Conclusion and Future Work
	References

	Refinement Types for TLA+
	1 Introduction
	2 A Fragment of TLA+
	3 A Type System with Refinements
	3.1 Typing Propositions and Typing Hypotheses
	3.2 Typing Rules
	3.3 Soundness

	4 Type Inference Algorithm
	4.1 Constraint Generation
	4.2 Constraint Solving

	5 Experimental Results
	6 Conclusions
	References

	Using Lightweight Theorem Provingin an Asynchronous Systems Context
	1 Introduction
	1.1 The Four Slot Mechanism

	2 Coherency
	3 Encoding the Proof
	3.1 Write
	3.2 Read

	4 Related Work
	4.1 The Four Slot Mechanism
	4.2 Operating System Verification

	5 Conclusion
	References

	JKelloy: A Proof Assistant for RelationalSpecifications of Java Programs
	1 Introduction
	2 OverallFramework
	3 Alloy Specifications for Java Programs
	4 Relational Java Dynamic Logic
	4.1 Background
	4.2 Coupling Axioms

	5 Calculus
	5.1 Heap Resolution Rules
	5.2 Override Simplification Rules

	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	Verifying Hybrid SystemsInvolving Transcendental Functions
	1 Introduction
	1.1 Hybrid Systems
	1.2 Formal Verification of Hybrid Systems
	1.3 KeYmaera
	1.4 MetiTarski and Goals of Work

	2 KeYmaera-MetiTarski Interface
	3 Examples of How Transcendental Functions Arise
	3.1 Systems with Closed Form Solutions
	3.2 Transcendental Functions in System Description
	3.3 Non-polynomial Invariant Candidates

	4 Performance and Discussion
	5 Conclusion
	References
	Appendix: Direct Methods and Safety Verification

	Verifying Nonpolynomial Hybrid Systemsby Qualitative Abstraction and AutomatedTheorem Proving
	1 Introduction
	2 Modelling Hybrid Systems
	3 Qualitative Abstraction of Hybrid Systems
	4 Experimental Results
	5 Conclusion
	References

	Combining PVSio with Stateflow
	1 Introduction
	2 The Approach for Integrating PVSio with Stateflow
	3 Example: A Patient Controlled Analgesia (PCA) Device
	3.1 The Generic Patient Controlled Analgesia (GPCA) Model
	3.2 Simulation of GPCA Model

	4 Conclusions
	References

	Qed. Computing What Remains to Be Proved
	1 Introduction
	2 The Qed Engine
	2.1 Terms Algebra
	2.2 Smart Constructors and Normalizations
	2.3 Extensible Simplifier

	3 Experimental Results
	4 Conclusion
	References

	Warps and Atomics: Beyond Barrier Synchronizationin the Verification of GPU Kernels
	1 Introduction
	2 Background
	2.1 GPU Kernel Programming Model
	2.2 Warps and Atomics
	2.3 Race Analysis Using GPUVerify

	3 Warp-Aware Race Analysis
	3.1 Re-sync Method
	3.2 Two-Pass Method
	3.3 Inter-warp Synchronization and Shared State Abstraction

	4 Race Analysis and Abstraction for Atomic Operations
	4.1 Over-Approximating Atomics with Adversarial Abstraction
	4.2 A Refined Abstraction for Repetition-Free Atomic Operations
	4.3 Implementation Issues for Atomics

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Testing-Based Compiler Validation for Synchronous Languages
	1 Introduction
	2 MC/DC Test Suites for Lustre Programs
	3 Reinforcing Test Suites via Mutation Testing
	4 Experimental Evaluation
	5 Future Work
	References

	Automated Testcase Generation for NumericalSupport Functions in Embedded Systems
	1 Introduction
	2 Automatic Testcase Generation
	3 Experiments
	4 Conclusions and Future Work
	References

	REFINER: Towards Formal Verification of Model Transformations
	1 Introduction
	2 Models and Model Transformations
	3 Implementation
	References

	Designing a Deadlock-Free Train Scheduler:A Model Checking Approach
	1 Introduction
	2 The Initial Model of the System
	3 Introducing Critical Sections
	4 From Simple to Composite Critical Sections
	5 Partitioning the Full Model
	6 Conclusions
	References

	A Synthesized Algorithm for Interactive Consistency
	1 Introduction
	1.1 Formalization and Notation

	2 Non-transient, Malicious and Asymmetric Faults
	3 Algorithm for Interactive Consistency under Non-malicious,Asymmetric, and Transient Faults
	4 A General Synthesis Approach for FG Properties
	5 Synthesis Problem Formulation and Experimental Results
	6 Discussion
	7 Conclusion
	References

	Energy-Utility Quantiles
	1 Introduction
	2 Preliminaries
	3 Quantiles
	4 Computing Probability Quantiles
	4.1 Iterative Linear-Programming Based Approach
	4.2 Back-Propagation Approach
	4.3 Lower Reward Bounds
	4.4 Energy-Utility Quantiles

	5 Computing Expectation Quantiles
	6 Implementation and Case Studies
	7 Conclusion
	References

	Incremental Verification of CompilerOptimizations
	1 Introduction
	2 From Optimization to Evolution
	3 Our Solution
	4 Evaluation
	5 Related Work
	References

	Memory Efficient Data Structuresfor Explicit Verification of Timed Systems
	1 Introduction
	2 PTriesandTimeDarts
	3 Experiments
	4 Conclusion
	References

	The Gradual Verifier
	1 Introduction
	2 Example
	3 Statement Safety and Gradual Verification
	4 The Analysis Procedure
	5 Implementation
	6 Evaluation
	7 Conclusion
	References

	Synthesizing Predicates from Abstract DomainLosses
	1 Introduction
	2 Preliminaries
	2.1 The Predicate Abstract Domain

	3 Transfer Functions and Reductions
	3.1 Transfer Functions
	3.2 Example for the Reduction after Executing Assumptions
	3.3 Application to Non-convex Spaces

	4 Lattice Operations and Predicate Synthesis
	4.1 Lattice Operations
	4.2 Recovering Precision Using Relational Information
	4.3 Application to Path-Sensitive Invariants
	4.4 Application to Separation of Loop Iterations

	5 Related Work and Evaluation
	5.1 Related Work
	5.2 Conclusion

	References

	Formal Verification of kLIBC with the WPFrama-C Plug-in
	1 Introduction
	2 Experimental Environment
	3 Verification of <string.h>
	4 Verification of <stdio.h>
	5 Evaluation of Results and Difficulties
	6 Concluding Remarks
	References

	Author Index

