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Abstract In this chapter we present some Reduced-Order Modelling methods we
have developed for the stabilized incompressible Navier-Stokes equations. In the
first part of the chapter, we depart from the stabilized finite element approximation
of incompressible flow equations and we build an explicit proper-orthogonal decom-
position based reduced-order model. To do this, we treat the pressure and all the
non-linear terms in an explicit way in the time integration scheme. This is possible
due to the fact that the reduced model snapshots and basis functions do already fulfill
an incompressibility constraint weakly. This allows a hyper-reduction approach in
which only the right-hand-side vector needs to be reconstructed. In the second part of
the chapter we present a domain decomposition approach for reduced-order models.
The method consists in restricting the reduced-order basis functions to the nodes
belonging to each of the subdomains. The method is extended to the particular case
in which one of the subdomains is solved by using the high-fidelity, full-order model,
while the other ones are solved by using the low-cost, reduced-order equations.

1 Introduction

Reduced-order models (ROM) are nowadays receiving a lot of interest from the
computational mechanics community. Their most attractive feature is the capability
of reproducing the response of complex physical phenomena through the solution of
systems of equations which involve only very few degrees of freedom.
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Amongst the various families of reduced-order models, Proper Orthogonal
Decomposition [14, 23, 26] based ROMs consist in the training of the model by tak-
ing snapshots from a high-fidelity simulation and using them to build an orthogonal
basis which is capable of accurately representing the solution through the combina-
tion of few of this basis functions. Particularly, we are interested in the application
of POD models to the incompressible Navier-Stokes equations, which we originally
approximate by using finite elements and a stabilized formulation. The problem of
applying POD models to the incompressible flow equations has been approached by
several authors [12, 19, 20, 25, 29, 39, 40] in a range of applications like shape
optimization [1, 9, 27, 34] or flow control [3, 21, 32].

The major concerns when making use of a reduced-order model are, on the one
hand, computational cost, and on the other, accuracy. Obviously we are looking for
a cheap reduced-order model which is as accurate as possible. Unfortunately, this is
not always possible. In this chapter we present some approaches we have developed
for PODmodels for the incompressible Navier-Stokes equations which help enhance
the computational cost and accuracy of the reduced-order models.

One of the a priori drawbacks of traditional POD is that a straightforward appli-
cation of a POD strategy to a non-linear problem does not turn out in a drastic
reduction of the required computational cost. This is so because in order to solve the
reduced-order equations, the full-order, non-linear, system of equations needs to be
built first and then projected onto the reduced-order space. Recently, the so-called
hyper-reduction [4, 8, 15, 22, 31, 35–38] has appeared as a means to circumvent
this problem. The main idea is to compute the non-linear system entries only at some
few nodes of the computational mesh, and then approximate the whole system by
extrapolating it from the values of the system at these entries.

In the first part of this chapter, we describe a reduced-order model which is
particularly suitable for hyper-reduction [7]. The basic idea is to build a reduced-order
model based on a proper orthogonal decomposition and a Galerkin projection and
treat all the terms in an explicit way in the time integration scheme. This results in a
reduced-order model where only the right-hand side of the system needs to be rebuilt
at each time step. This is possible because the reduced model snapshots do already
fulfill the stabilized continuity equation and the pressure field can be automatically
recovered at the end of each time step from the reduced order basis and solution
coefficients. We also present a method for choosing the sampling entries from which
the complete system is going to be extrapolated. The method consists of choosing
the sampling points such that the distance between the right-hand-side snapshots
and the recovered snapshots is minimized, with the restriction that the coordinates
of sampling points must coincide with the coordinates of the finite element mesh
nodes.

Another issue which needs to be dealt with when using reduced-order models is
the lack of robustness with respect to changes in the parameters which characterize
the numerical simulation. This lack of robustness causes the reduced model to be
valid only in a small parameter region close to the parameter values for which the
reducedmodel was built [3], requiring the snapshot collection and the reducedmodel
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to be updated when an optimization process leads to a parameter configuration which
becomes too separated from the starting parameter set.

In the second part of this chapter we present a domain decomposition method
for reduced-order models [6] which we apply to the finite element approximation
of the incompressible Navier-Stokes equations. Domain decomposition methods for
reduced-order models have been used for different simulation problems [2, 10, 28,
30, 33, 41]. In these partitioned approaches reduced-order models are formulated
independently and then glued together in either a monolithic or an iterative way.
Contrary to this approach, the domain decomposition method we propose is obtained
simply by restricting the reduced model basis functions to be non-null only in the
nodes of the computational mesh belonging to the considered subdomain. This def-
inition of the partitioned problem directly ensures the continuity of the recovered
reduced-order solution at the interfaces. Also, there is no need to use the classi-
cal domain-decomposition iteration by subdomain schemes, because the Domain
Decomposition Reduced-Order Model (DD-ROM) is written in terms of the parti-
tioned reduced bases in a monolithic way. One of the advantages of the proposed
method is the ease for generating a hybrid full-order/reduced-order model, as a par-
ticular case of the general DD-ROMmethod. The proposed hybrid DD-ROMmodel
can be easily used together with hyper-reduced models, as we demonstrate in the
numerical examples section.

The chapter is organized as follows. In Sect. 2 we present an explicit ROM for the
finite element approximation of the incompressible Navier-Stokes equations, and a
numerical example illustrates the behavior of the model for low Reynolds flow cases.
In Sect. 3 we describe the hyper-reduction strategy we apply to the explicit ROM,
and we also present the Discrete Best Points Interpolation Method for the selection
of sampling indices for the gappy-POD reconstruction process. Finally, the domain-
decomposition reduced-order model is presented in Sect. 4, where we also explain
the hybrid full-order/reduced-order domain decomposition approach and present a
numerical example. Some conclusions close the chapter in Sect. 5.

2 An Explicit Reduced-Order Model for the Incompressible
Navier-Stokes Equations

When solving a non-linear problem bymeans of a PODbased ROM, it is necessary to
project the full-order system of equations to the reduced-order space at each iteration
of the non-linear problem. For non-linear problems, this is troublesome because the
expected orders of magnitude reduction in the computational cost of solving the
reduced-order system is not observed in practice: the computational time of the
reduced-order model is governed by the need of rebuilding the full-order system at
each iteration, and then projecting it to the reduced-order subspace.

This issue has motivated a lot of research recently, leading to several strategies
which reduce the cost of computing projected reduced-order system of equations
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[4, 8, 15, 22, 31, 35–38]. These approaches are known as hyper-reduced models. In
thesemethods, the non-linear and parameter-dependent terms are recovered bymeans
of a least-squares procedure from a series of sampling points where the function
to be approximated is computed. This allows to effectively reduce the amount of
computations required to build the reduced order system, and results in a reduced-
order model whose computational cost is directly proportional to its number of
degrees of freedom.

Wehave beenworking in a hyper-reduced approach for the incompressibleNavier-
Stokes equations. The particularity of the strategy we propose is that the equations
for the reduced-order model are treated in an explicit way. This allows to send all the
non-linear terms to the right hand-side of the reduced-order system, leaving in the left-
hand side only the mass matrix due to the temporal derivatives. The main advantage
is, of course, that the mass matrix is linear, and the hyper-reduced approaches need
only to be applied to right-hand side vector. This effectively reduces the overall cost
of the reduced-order model.

Let us start by introducing some notation for the POD approximation of a general
problem. Let U ∈ R

M be the global unknown vector associated to a non-linear
variational problem. Suppose that after linearizing and fully discretizing in time and
space the given problem, the followingmatrix form is obtainedwhich allows to obtain
the vector of nodal unknowns U at a given iteration of the non-linear procedure, for
a certain time step:

AU = F, (1)

where A ∈ R
M×M is the matrix of the system whose solution is U , and F ∈ R

M the
RHSvector. The PODapproximation of the previous system is obtained by projecting
it onto a low dimensional subspace U ⊂ R

N . Vectors U are now approximated by:

U ≈ �α, (2)

where � ∈ R
M×N is the basis for U and N is the dimension of the reduced order

model, with N < M . α ∈ R
N are the components in U expressed in the reference

system defined by �. The reduced-order basis � is obtained by means of the POD
method [14, 23, 26], that is by doing the singular value decomposition of a set
of solution snapshots, which in our case are taken from the results of a full-order
simulation. After projecting the full-order system to this reduced-order subspace and
applying a least squares approach, the final reduced-order system is:

�T A�α = �T F. (3)
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2.1 Stabilized Finite Element Approximation of the Incompressible
Navier-Stokes Equations

In this section we summarize the finite element stabilized formulation for the
incompressible Navier-Stokes equations used in the rest of the chapter. Let us con-
sider the transient incompressible Navier-Stokes equations, which consist of finding
u : � × (0, T ) −→ R

d and p : � × (0, T ) −→ R such that:

∂t u − ν�u + u · ∇u + ∇ p = f in �,

∇ · u = 0 in �,

u = ū on �D,

−pn + νn · ∇u = 0 on �N .

for t > 0, where ∂t u is the local time derivative of the velocity field. � ⊂ R
d is

a bounded domain, with d = 2, 3, ν is the viscosity, and f the given source term.
Appropriate initial conditions have to be appended to this problem.

Let now V = H1(�)d , and V0 = {v ∈ V |v = 0 on�D}. Let also Q = L2(�) and
D′(0, T ; Q) be the distributions in time with values in Q. The variational problem
consists of finding [u, p] ∈ L2(0, T ; V ) × D′(0, T ; Q) such that:

(v, ∂t u) + B([v, q], [u, p]) = 〈v, f 〉 ∀[v, q] ∈ V × Q, (4)

with

u = ū on �D,

where

B([v, q], [u, p]) := 〈v, u · ∇u〉 + ν(∇v,∇u) − (p,∇ · v) + (q,∇ · u).

Here, (·, ·) stands for the L2(�) inner product and 〈·, ·〉 for the integral of the
product of two functions, not necessarily in L2(�). Let {K } be a finite element
partition of �, from which we construct the finite element spaces Vh ⊂ V, Vn0 ⊂
V0, Qh ⊂ Q. The semilinear form B suffers from the well-known stability issues
due to the convective nature of the flow, but also requires a compatibility between
the velocity and pressure approximation spaces due to the classical LBB inf-sup
condition. In order to dealwith these stability issues,we use a stabilized finite element
formulation [16], which is as follows: for each t , find uh(t) ∈ Vh, ph(t) ∈ Qh

such that:

(vh, ∂t uh) + B([vh, qh], [uh, ph]) +
∑

K

τK (uh · ∇vh + ν�vh

+ ∇qh, r([uh, ph]))K = 〈vh, f 〉, (5)
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for all vh ∈ Vh,0, qh ∈ Qh . Initial conditions need to be appended to this problem.
In (5):

r([uh, ph]) = ∂t uh − ν�uh + uh · ∇uh + ∇ ph − f , (6)

is the residual of the momentum equation, (·, ·)K is used to denote the L2 product in
element K and τK is the stabilization parameter:

τK =
(

c1
ν

h2 + c2
|uh |K

h

)−1

,

where |uh |K is the mean velocity modulus in element K , h is the element size and
c1 and c2 are stabilization constants.

Regarding the discretization in time, we consider implicit integration schemes.
For the full-order system, only implicit time integration schemes can be used, because
no time derivatives of the pressure appear in the equations. Taking this into account,
we can do the following: supposing that the velocity and pressure at time step n
[un

h, pn
h ] are known, we may solve (5) for example with ∂t uh being discretized using

a backward differences in time scheme:

∂t uh ≈ δt u
n+1
h ,

δt u
n+1
h :=

{ 1
δt (un+1

h − un
h) 1st order scheme

1
δt (

3
2un+1

h − 2un
h + 1

2un−1
h ) 2nd order scheme

(7)

where δt is the time step size.

2.2 Explicit Reduced-Order Model

As explained in the previous sections, it is convenient to treat the reduced-order
model by using an explicit time integration scheme, because this leads to important
computational gains when using hyper-reduced order reconstruction methods. How-
ever, we have also explained the need of using an implicit time integration scheme
for the full-order model of the incompressible Navier-Stokes equations, due to the
presence of the pressure field. Here we summarize the strategy we use for building an
explicit reduced-order model which is suitable for the incompressible Navier-Stokes
equations [7].

Let us start by introducing the velocity and pressure reduced-order subspaces.
Q̂ ⊂ Qh is the pressure subspace defined by the pressure part of the POD basis
functions �, p̂ ∈ Q̂ is the reduced-order pressure field. V̂ ⊂ Vh is the velocity
subspace defined by the velocity part of the POD basis functions �. For each time t ,
û(t) ∈ V̂ is the reduced-order velocity. In order to develop the explicit reduced-order
model where the pressure is treated in an explicit way, we take into account that:
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• All reduced basis functions do already fulfill the stabilized continuity equation.
Since the reduced-order basis is built from weakly incompressible solution snap-
shots and the incompressibility constraint is linear, the reduced basis functions
(and their linear combinations) do also fulfill it.

• If basis functions are taken to be joint velocity-pressure basis functions (that is �

contains the coefficients of functions in V̂ × Q̂), then the pressure at time step
n + 1 is automatically recovered from coefficients αn+1 and the reduced order
basis � even if all the terms involving the pressure are treated in an explicit way
in the reduced order formulation.

The variational formulation for the first order in time reduced-order model that we
propose is:

(v̂, δt û
n+1

) + (v̂, ûn∗ · ∇ ûn∗
) + ν(∇v̂,∇ ûn∗

) − ( p̂n∗,∇ · v̂)

+
∑

K

τK (ûn · ∇v̂ + ν�v̂, δt û
n − ν�ûn + ûn · ∇ ûn + ∇ p̂n − f n)K = 〈

v̂, f n 〉.

(8)

where the terms ûn∗ and p̂n∗ are a second order approximation of the state at n + 1
(the velocity and the pressure at n + 1) given by:

ûn∗ = 2ûn − ûn−1
,

p̂n∗ = 2 p̂n − p̂n−1. (9)

In the case of the second order in time reduced-order model, we use the same varia-
tional formulation (8), but the terms ûn∗ and p̂n∗ are now a third order approximation
of the state at n + 1 given by:

ûn∗ = 12

5
ûn − 9

5
ûn−1 + 2

5
ûn−2

,

p̂n∗ = 12

5
p̂n − 9

5
p̂n−1 + 2

5
p̂n−2. (10)

Note that for the first order explicit scheme we propose to use the second order
extrapolation (9), and for the second order scheme the third order extrapolation (10).

The key point of this formulation is that only the temporal derivative terms involve
values of the reduced-order velocity or pressures at the new time step. This ensures
that the resulting reduced-order matrix is linear. However, the reduced-order right-
hand-side still needs to be approximated. After solving the reduced-order system, the
velocity and pressure fields at n+1 can be recovered bymultiplying the reduced-order
basis � by the obtained reduced-order components αn+1.
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Fig. 1 Comparison of the FOM (left) and ROM (right) velocities (top) and pressures (bottom) after
400 time steps of simulation

2.3 Numerical Example. Bidimensional Flow Past Two Cylinders

The first numerical example consists in the bidimensional flow past two cylinders.
The computational domain is a 16 × 8 rectangle. The cylinders are centered at
coordinates (3, 3) and (6, 5), and both of them are of diameter 1. The inflow velocity
is 1, which together with the density ρ = 1 and the viscosity μ = 0.01 results in a
Reynolds number Re = 100. The time step is set to δt = 0.1. The mesh is composed
of 7310 linear triangular elements. After running the full-order simulation and taking
the corresponding snapshots, the explicit reduced-order model is run. The number
of degrees of freedom for the ROM is only 10.

Figure 1 shows a comparison of the velocity and pressure fields for the full-order
and the explicit reduced-order model after 400 time steps of simulation. The high-
fidelity and the reduced-order fields are very similar. In Fig. 2 we compare the time
history and Fourier transform of the vertical velocity and the pressure at coordinates
(8.5, 4). We observe that the time history and Fourier transform of both vertical
velocity and pressure are accurate for the reduced-order model. The cpu-time for
running the full-order model is 53.24 s, the time for running the explicit reduced-
order model is 19.78 s, a 63 % reduction in computational time.

3 Hyper-Reduction Approach

At this point, we already have an explicit reduced-order model in which all the non-
linear terms are in the right-hand-side vector and the reduced system matrix is linear
and does not change between time steps. However, computing the right-hand-side
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Fig. 2 Comparison of the FOM and ROM velocity and pressure time history at the point (8.5, 4)
(left) and their Fourier transform (right)

vector at each time step is still expensive (number of operations of O(M)), because
we need to recompute Fn+1 and then project it to the reduced-order subspace by
calculating �T Fn+1. The approach we follow for reducing this computational cost
is to reconstruct the non-linear vector Fn+1by sampling only some of the entries of
this vector and applying a lest-squares minimization strategy . Themethod we follow
was first presented in [18], and a similar approach has been recently used in [13]
applied to an implicit reduced-order method for the incompressible Navier-Stokes
equations.

Let us consider a reduced order basis for the right-hand-side vectors F, �F ,
obtained by means of a proper orthogonal decomposition of a set of snapshots for
F. �F defines a low-dimensional subspace F ⊂ R

M , so that any right-hand-side
vector F can be approximated as:

F � �F F�,

where now F� ∈ R
N are the reduced-order coefficients for the reconstruction. Let us

also consider that we only know the nodal values for F at some sampling components
Fi(k), 1 ≤ k ≤ ns , where ns is the number of sampling components of the vector,
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i(k) denotes the kth sampling component. We nowwant to recover the reduced order
basis coefficients F� of the reduced order basis �F for vector F.

In order to recover F� we can solve the least-squares minimization problem:

F� = arg min
a∈RN

ns∑

k=1

N∑

j=1

(�F,i(k) j a j − Fi(k))
2, (11)

where �F,i(k) j denotes the basis vector j evaluated at the kth sampling component,
i(k).

The previous procedure provides the tools required to extrapolate the right-hand-
side vector arising from the finite element problem. The main advantage is that in
order to do so, only the nodal values at certain few sampling components are needed.
If ns isO(N ), then the computational cost of rebuilding Fn+1 for solving each time
step is reduced to O(N ), and the overall cost of the reduced-order model is O(N ).

3.1 A Discrete Version of the Best Points Interpolation Method
(DBPM)

When using hyper-reduced order models the quality of the recovered right-hand-
side vector highly depends on the selected sampling components. Several strategies
have been developed for choosing these sampling components [5, 8, 17]. Amongst
the most extensively used are the Discrete Empirical Interpolation Method (DEIM)
[15], where the sampling components are selected iteratively by imposing that the
error growth at each iteration is limited and the Best Points Interpolation Method
(BPIM) approach presented in [31], where the sampling points are chosen so that the
distance between the projection of the right-hand-side snapshots onto the reduced
basis subspace and the recovered right-hand-side is minimized.

The strategy we use, presented in [7], is a hybrid between the BPIM and the
DEIM.We call it aDiscrete version of the Best Point Interpolation Method (DBPIM).
Similarly to the BPIM, the method consists of minimizing the error between the
recovered right-hand-side vector snapshots and the actual snapshots. However, in
the strategy we use we force the sampling coordinates to coincide with nodal points
of the finite element mesh. Plus, once a component associated to a node of the finite
element mesh is selected, all the degrees of freedom associated to that node are
included in the sampling selection. Moreover, due to the lack of smoothness of the
vectors which are being approximated we do not use a Marquardt related strategy in
order to advance to the optimal set of sampling nodes. Instead, we use an algorithm
which advances from one set of sampling nodes to the next one by evaluating the
error of the recovered snapshots at the neighbour points in the finite element mesh
and replaces a sampling node with its neighbour if the error diminishes. The DBPIM
algorithm is detailed in Algorithm 1 for a scalar unknown (where each sampling
node is associated to a single sampling component).
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The first step of the DBPIM algorithm consists of finding the projection �F of
the snapshots onto the reduced order subspace defined by the reduced order basis,
F . For each snapshot, this yields the coefficients Fα

�. In the second step we choose
an initial set of sampling nodes, which can be done by using the DEIM method.
If the DEIM method is used, it will give us a set of sampling components. For a
scalar problem, each component corresponds to a node of the finite element mesh.
If the unknown is a vector field, then the nodes associated to the DEIM sampling
components are selected as initial sampling nodes, and the number of sampling nodes
is equal to the number of reduced basis functions. Otherwise, we always choose the
number of sampling nodes to be equal to the number of basis functions times an
(usually low) integer. After defining the initial set of sampling nodes, the degree(s)
of freedom associated to these sampling nodes become sampling components. For
this initial set of sampling nodes, we recover the approximated coefficients Fα,aprox

�

by means of the previously described least-squares strategy. The error associated
to a set of sampling components i ∈ N

ns , whose k-th component is indicated as
i(k) ∈ 1, ..., M , is obtained by computing the difference between the exact and the
approximated Fα

� coefficients:

e(i) =
Nsnapshots∑

α=1

||Fα,aprox
� (i) − Fα

�|| (12)

Algorithm 1 Discrete best points interpolation method
Compute the optimal basis coefficients for the snapshot set:
�F Fα

� = �F (Fα),α = 1, Nsnapshots
Choose an initial set of sampling components i ∈ N

ns | 1 ≤ i(k) ≤ M, k = 1, ...ns .
Solve: Fα,aprox

� (i) = argmina∈RN
∑ns

k=1

∑N
j=1 (�F,i(k) j a j − Fα

i(k))
2,α = 1, Nsnapshots

e(i) = ∑Nsnapshots
j=1 ||Fα,aprox

� (i) − Fα
�||2

while set of sampling points has changed do
for m = 1 : ns do

for l = 1 : Nneigh(i(m)) do
if the lth neighbour of i(m) has not been previously tested then
Temporarily replace sampling node i(m) by its lth neighbour
Solve: Fα,aprox

� (i) = argmina∈RN
∑ns

k=1

∑N
j=1 (�F,i(k) j a j − Fα

i(k))
2,α = 1, Nsnapshots

etemp(i) = ∑Nsnapshots
α=1 ||Fα,aprox

� (i) − Fα
�||

if etemp < e then
e = etemp
Permanently replace sampling node i(m) by its lth neighbour
Restart l loop

end if
end if

end for
end for

end while
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where

Fα,aprox
� (i) = arg min

a∈RN

ns∑

k=1

N∑

j=1

(�F,i(k) j a j − Fα
i(k))

2,α = 1, Nsnapshots (13)

For this definition of the error, we can define the optimal set of sampling compo-
nents as:

b = arg min
i∈Nns | 1≤i(k)≤M, k=1,...ns

e(i) (14)

where e(i) is given in (12).
In order to obtain the set of sampling points to be used in the reduced order

simulation we proceed as follows: for each sampling node of the finite element
mesh, we loop over its neighbours in the computational mesh and we temporarily
replace the sampling node by each of them. If the error of the new set is lower than
the original error, the sampling node is permanently replaced by its neighbour. This
procedure is repeated while the set of sampling points changes due to the algorithm
(while loop in Algorithm 1).

3.2 Numerical Example. Two-dimensional Low Reynolds Flow
Past a NACA Airfoil

In this section we simulate the incompressible flow around a NACA 0012 airfoil
profile [24]. The computational domain is a 32× 16 rectangle, with the trailing edge
of the 8 unit long airfoil placed at (16, 8). The horizontal inflow velocity is set to 1
at x = 0, and slip boundary conditions are applied at the upper and lower walls of
the computational domain. Velocity is prescribed to 0 at the airfoil surface.

The viscosity has been set to ν = 0.001, which yields a Reynolds number Re
= 1000 based on the height of the airfoil. The time step has been set to δt = 0.2.
In this numerical example, the C F L number associated to the finite element mesh
was C F L ∼ 62. A 29945 linear element mesh has been used. The mesh is refined
around the airfoil surface in order to be able to better capture the solution in the region
surrounding the boundary layer. The angle of attack has been set to α = 0.2, and a
second order backward differences scheme has been used for the time integration.

100 velocity-pressure snapshots have been taken and the 10 first reduced basis
functions have been kept for the reduced-order model. For the hyper-reduced order
model, 100 additional snapshots for the right-hand-side have been taken and the cor-
responding 12 first reduced basis functions have been kept. The number of sampling
nodes is 36.
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Fig. 3 Velocity (top) and pressure (bottom) contours at Re = 1000, α = 0.2 after 200 time steps.
Full-order (left) and Hyper-Reduced Order Model (right)
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Fig. 4 Velocity (left) and pressure (right) time history at a control point at the wake of the airfoil,
Re = 1000, α = 0.2, second order time integration

Figure 3 compares the velocity and pressure fields after 200 time steps for the
full-order and the hyper-reduced model. The reduced-order model almost exactly
matches the results from the full order model.

Regarding the computational cost, the full order model takes 148.9 s to run, the
reduced-order model takes 49.6 s (33 %). Finally, reduced-order model 2, in which
the computational cost depends only on the size of the reduced-order model, takes
only 0.71s (0.45 %) to run.

Figures 4 and 5 show the time history and spectra for the velocity and pressure at
(8, 0.5). Despite the complex flow and the high number of oscillation modes present
in the solution, the reduced-ordermodelsmanage to correctly capture themainmodes
amplitudes and frequencies.
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Fig. 5 Velocity (left) and pressure (right) spectra at a control point at thewake of airfoil, Re = 1000,
α = 0.2, second order time integration

4 A Domain Decomposition Approach for POD Reduced-Order
Models

Despite the important reduction in computational cost provided by reduced-order
models, one of theirmajor drawbacks is the lack of robustnesswith respect to changes
in the parameters which characterize the numerical simulation. This lack of robust-
ness causes the reducedmodel to be valid only in a small parameter region close to the
parameter values for which the reduced model was built [3], requiring the snapshot
collection and the reduced model to be updated when, for instance, an optimization
process leads to a parameter configuration which becomes too separated from the
starting parameter set.

In this section we present a strategy which allows to improve the behavior of
non-linear reduced models (where hyper-reduction is used for the reconstruction of
the reduced-order equations) in parameter configurations which are not present in
the snapshot set from which the reduced model is built [6]. It is based on introducing
a domain decomposition approach to the model reduction, partitioning the computa-
tional domain into several regions, each of which is dealt with localized POD bases.
This gives us the possibility of treating each of the subdomainswith a different degree
of approximation, or even, as we will see, solving the full-order equations in some
of the subdomains.

4.1 Domain Decomposition POD Model

Let us consider the splitting of the computational domain � into two subdomains
�k , k = 1, 2, and the associated local unknowns Uk ∈ R

Mk , M = M1 + M2. If
the domain decomposition is applied to the equations arising from a finite element
problem, the partition into subdomains is done by assigning each of the nodes (and
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nodal unknowns) of the finite element mesh to a subdomain. This means that there
are no interface nodes, instead we define interface elements as those elements who
own nodes from different subdomains. Let us define a local reduced order basis φk

consisting of the reduced basis functions φk
i ∈ R

Mk , i = 1, ..., Nk , to approximate
Uk in each subdomain. Note that the number of basis functions in each subdomain
is not necessarily the same, although we have considered it to be equal from now
on for simplicity. The possible ways to construct this basis are discussed later. This
local basis can be extended to the global domain by defining �k

i ∈ R
M :

�1
i :=

[
φ1

i
0

]
, �2

i :=
[

0
φ2

i

]
, (15)

where the null terms correspond to components of the global systemwhich lie outside
�k . Taking this into account, the unknown U is approximated as:

U ≈
N∑

i=1

(�1
i α

1
i + �2

i α
2
i ) = (�1α1 + �2α2), �k ∈ R

M×N , αk ∈ R
N k = 1, 2,

(16)

where αk are the solution coefficients for subdomain k.
Let A ∈ R

M×M be the matrix of the system whose solution is U ∈ R
M , and

F ∈ R
M the RHS vector. They can be partitioned into the components associated to

each subdomain �k , k = 1, 2, so that

A =
[

A|11 A|12
A|21 A|22

]
, A|kl ∈ R

Mk×Ml , F =
[

F|1
F|2

]
, F|k ∈ R

Mk .

The monolithic approach for the domain decomposition ROM is obtained by
introducing the union of the extensions of the local bases to the global domain as the
global reduced order basis:

(�1)T A(�1α1 + �2α2) = (�1)T F

(�2)T A(�1α1 + �2α2) = (�2)T F. (17)

Defining akl = (�k)T A�l ∈ R
N×N and f k = (�k)T F ∈ R

N , we may write
this system as

a11α1 + a12α2 = f 1, (18)

a21α1 + a22α2 = f 2. (19)

If we also consider the decomposition of A and F the final reduced order system
can be written in terms of the local bases φk :
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Fig. 6 Local basis functions
for the domain decomposition
approach. The green
function is the sum of the
local basis function of the
left subdomain (blue) and the
local basis function of the
right subdomain (red)

(φ1)T (A|11φ1α1 + A|12φ2α2) = (φ1)T F|1
(φ2)T (A|21φ1α1 + A|22φ2α2) = (φ2)T F|2.

The off diagonal block matrices correspond to the coupling terms and are null
except for the contribution of the unknowns ubicated at the domain interfaces. It
can be observed that the cost of computing the ROM system is not larger than in
the monolithic approach. However, the size of the reduced system is larger (dimen-
sion 2N ).

An important point is that each algebraic local basis function �k
i arises from a

function defined in space. This spatial function is a linear combination of the finite
element shape functions of the nodes of subdomain �k . As a consequence, each
of the components in �k

i corresponds to a nodal value of the spatial field to be
represented on the finite element mesh. This is illustrated in Fig. 6, where examples
of local basis functions for a one-dimensional problem and linear finite elements
are shown. Let us also emphasize that, if the original finite element shape functions
are continuous, any local (and global) basis function will also be continuous, as a
consequence of the definition of the extension of the basis functions to the global
domain (15). This will also hold for the combination of local basis functions, even
if these belong to different subdomains. In Fig. 6 the blue basis function belongs to
the left subdomain, the red basis function belongs to the right subdomain. The green
line represents the addition of the blue and the red basis functions. Since both of the
original functions are continuous, the green function is also continuous. Note also
that there is an overlapping region where both the left and right basis functions are
non-zero.
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4.2 Local POD (L-POD)

The strategy for building the local POD basis consists in performing a POD for the
part of the snapshots corresponding to each of the subdomains. The snapshots are
first partitioned according to the domain decomposition strategy and the local basis
φk is obtained from these partitioned snapshots. The global basis is again defined
as � = [

�1,�2
]
. Note that the number of local basis functions in each subdomain

does not necessarily coincide, N1 �= N2, N = N1 + N2.
The main features of these domain-decomposition local POD bases are the fol-

lowing:

• Each local basis can be ensured to be orthonormal at the algebraic level. By con-
struction, each of the basis functions which conform the local POD has unitary
norm and is orthogonal to all the basis functions in its subdomain at the algebraic
level. Moreover, due to the domain decomposition approach, the projection of a
local basis of a given subdomain onto the space conformed by the basis functions
of any other subdomain is also zero. This ensures that if we consider the POD
decomposition globally, the union of the local bases is also an orthonormal basis.

• The computation of the singular value decomposition of the local snapshots for
each subdomain requires less memory than the computation of the singular value
decomposition of the global snapshots.

In the case we are using hyper reduced models which require additional POD bases
for reconstructing the systemmatrix and right-hand side, we can proceed in the same
way.

Once the localized reduced order bases have been defined, the monolithic domain
decomposition reduced order model is obtained by using as reduced basis the union
of the local reduced bases. The fact that the basis functions are local makes the com-
putational cost diminish with respect to the global approach with the same number
of basis functions, because the operations can be done at the local level. However,
the number of functions is usually larger in the domain decomposition approach,
because a sufficient number of components needs to be assigned to the reduced basis
of each subdomain in order to properly represent the solution in that subdomain.

4.3 Stabilization Through Overlapping and Penalty Terms

The previous domain decomposition strategy for reduced-order models, despite its
simplicity, suffers from unstable behavior when it is used in a straightforwardmanner
in the explicit reduced-order model for the stabilized finite element approximation
of the incompressible Navier-Stokes equations described in the previous sections.
These instabilites can be easily explained taking into account that an explicit time
marching scheme is equivalent in this case to an explicit iteration-by-subdomain
strategy, which is known to have convergence and stability issues. This is the reason



206 J. Baiges et al.

why we propose a domain interface stabilization term, which is obtained by allowing
some overlapping between subdomains and enforcing the equality of the unknown
values at this overlapping region.

As in classical iteration by subdomain strategies, the overlapping region �∩ is
the part of � which belongs to both �1 and �2. In our approach, in which the
partitioning is obtained by assigning the nodes of the finite element mesh to �1 and
�2, overlapping is achieved by allowing some nodes close to the interface to belong
to both �1 and �2. The local reduced bases are computed by performing the POD
of the restriction of the snapshots to �k , but the obtained basis functions need to be
corrected. Suppose that the original overlapping local POD bases�01 ∈ R

M×N1 and
�02 ∈ R

M×N2 are:

�01 =
⎡

⎣
φ1

φ1∩
0

⎤

⎦ , �02 =
⎡

⎣
0

φ2∩
φ2

⎤

⎦ , (20)

where now

φk ∈ R
Mk×Nk , (21)

is the restriction of the local basis functions in �k to the part of the subdomain
without overlapping (Mk components), and

φk∩ ∈ R
Mk∩×Nk , (22)

corresponds to the restriction of �0k to the overlapping domain �∩ (Mk∩ compo-
nents). Note that M∩ := M1∩ = M2∩, and now M = M1 + M2 + M∩.

In this case the corrected bases are:

�1 =
⎡

⎣
φ1

βφ1∩
0

⎤

⎦ , �2 =
⎡

⎣
0

(1 − β)φ2∩
φ2

⎤

⎦ , (23)

where β ∈ [0, 1] is a weighting parameter. Note that the limits β = 0 and β = 1
correspond to the non overlapping case. If several subdomains overlap in a certain
region, then each subdomain is assigned a weighting parameter βk and we must
ensure that

∑
βk = 1. The motivation for this correction is the requirement that

the resulting global reduced basis (obtained as the union of the local bases for each
subdomain) is capable of representing the global snapshot set if N is equal to the
number of snapshots. This is shown in Fig. 7, where some illustrative basis functions
for a one-dimensional problem are depicted.

Supposing that the problem defined in (1) allows us to do so, the stabiliza-
tion penalty term imposes that the solution at the overlapping region recovered
from φ1∩ (prior to the introduction of the weighting parameter β) is equal to
the solution recovered from φ2∩:
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Fig. 7 Overlapping local
basis functions. β = 0.5.
The overlapping nodes are
depicted in gray. In this
particular case the value of
the basis functions at the
overlapping nodes coincides,
which is not necessarily the
case for L-POD

φ1∩α1 = U1∩ = U2∩ = φ2∩α2 ∈ R
M∩, (24)

where now we take αk ∈ R
Nk the ROM degrees of freedom for each subdomain.

This condition can be equivalently written as:

(�1∩)T �1∩α1 − (�1∩)T �2∩α2 = 0,

(�2∩)T �1∩α1 − (�2∩)T �2∩α2 = 0, (25)

where

�k∩ =
⎡

⎣
0

φk∩
0

⎤

⎦ . (26)

Introducing (25) as a penalized constraint in the ROM system we get:

a11α1 + a12α2 + 1

ε
(M11α

1 − M12α
2) = f 1, (27)

a21α1 + a22α2 + 1

ε
(M21α

1 − M22α
2) = f 2, (28)

where
Mkl = (�k∩)T �l∩ ∈ R

Nk×Nl . (29)

and the definition of �k for building the a matrices is taken as in (23).
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An important property of the block diagonal penalty matrices Mkk is that they
can only be guaranteed be full-rank matrices if �∩ = �. However, this stabiliza-
tion strategy shows good results in the numerical examples even if �∩ �= �. The
introduction of the M matrices to the reduced order formulation allows one to obtain
a stable solution in the practical cases. The stabilization parameter ε is chosen so
that, on the one hand, the penalty terms are sufficiently large to provide the desired
stabilization effects, and on the other, the norm of 1

ε M is proportional to the norm of
A. In this way we ensure that the resulting system does not become ill-conditioned.

4.4 Full-Order / Reduced-Order Domain Decomposition
(FOM-ROM)

Another possibility is the use of a hybrid Full-Order / Reduced-Order (FOM-ROM)
approach. This is convenient if a high fidelity model is required in a certain region
of the domain, or if the conditions in a certain region strongly depart from the
conditions at which the snapshots for building the POD bases were taken. In this
cases one can choose to solve the FOM problem in one of the subdomains, while
keeping the cheaper ROM approach in the less critical subdomains. Extending the
described partitioned ROM strategy to a hybrid FOM-ROM domain decomposition
method is straightforward: the FOM-ROM is obtained by taking as local basis for
the FOM subdomain �F the nodal shape functions of the finite element space for
the unknown. In the ROM subdomain �R a local reduced basis needs to be built.
The hybrid FOM-ROM system without overlapping is:

[
A|F F A|F RφR

(φR)T A|RF (φR)T A|R RφR

] [
U F

αR

]
=

[
F|F

(φR)T F|R

]
. (30)

Let us remark that the time stepping strategies need not to be the same for the
full order and the reduced order equations. For instance, if the explicit reduced order
model described in the previous sections is used for the incompressibleNavier-Stokes
equations, the A matrix and the F RHS vector for the reduced order equations are
taken from the explicit model, while the equations arising from the implicit time
stepping are kept for the full order equations:

[
A|F F A|F RφR

(φR)T Aexp|RF (φR)T Aexp|R RφR

] [
U F

αR

]
=

[
F|F

(φR)T Fexp|R

]
. (31)

If a Petrov-Galerkin projection is used, this can also be introduced in the ROM
equations. For instance, the FOM-ROM system for the Petrov-Galerkin projection
described in [11, 13] would result in the following system:
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[
A|F F A|F RφR

APG
RF APG

R R φR

] [
U F

αR

]
=

[
F|F

F PG
R

]
, (32)

where

APG
RF = (φR)T

(
A|TF R A|F F + A|TR R A|RF

)
,

APG
R R = (φR)T

(
A|TF R A|F R + A|TR R A|R R

)
,

F PG
R = (φR)T A|TF R F|F + (φR)T A|TR R F|R .

Also, any hyper-reduction technique for efficiently reconstructing the ROM equa-
tions can be used. The described overlapping strategies and the use weighting coef-
ficients need to be introduced in the previous formulation. This can be done in a
straightforward manner, including the use of different weighting parameters β or ε
for the FOM and the ROM equations.

4.5 Particularities of the Application to the Incompressible
Navier-Stokes Equations

The use of the domain decomposition ROM strategy to the particular problem of
the incompressible Navier-Stokes equations is straightforward if a ROM approach
is used in all the subdomains. On the other hand, some care needs to be taken when
a FOM approximation is used in one of the subdomains while a ROM approxima-
tion is used in its neighbour subdomains. As in the original domain decomposition
strategy, a penalization term through overlapping is convenient in this FOM-ROM
approach. However, it is necessary to distinguish between the velocity and the pres-
sure unknowns of the incompressible Navier-Stokes equations in this case: only the
equality between the FOM and the ROM velocities in the overlapping region is
imposed, and no condition is required on the FOM pressure field. This is so because
the pressure field can be understood as the Lagrange multiplier enforcing the incom-
pressibility constraint, and as such it is not possible to enforce the pressure value
over the overlapping domain.

4.6 Numerical Example. Flow Injection in a Rectangular Cylinder

In this numerical example we show the capability of the proposed FOM-ROM strat-
egy to adapt to flow configurations which were not present in the original snapshot
set. The initial problem set is the incompressible flow past a rectangular cylinder at
Re = 100. The computational domain consists of a 24× 12 rectangle with a square
cylinder with a side of size 1. The square cylinder is centered at coordinates (8, 6).
The horizontal inflow velocity is set to 1. Slip boundary conditions which allow the
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Fig. 8 Comparison of the FOM and ROM velocities at (5,4) for the initial configuration

flow to move in the direction parallel to the walls are set at y = 0 and y = 12, and
velocity is set to 0 on the cylinder surface in the direction normal to the surface.
A tangential force (computed by using a wall-law approach) is used to model the
velocity in the tangential direction. The viscosity has been set to ν = 0.01, which
yields a Reynolds number Re = 100 based on the dimension of the cylinder and the
inflow velocity. A second order backward difference scheme has been used for the
time integration with time step δt = 0.1 . In this example, a relatively fine 67224
linear element mesh has been used to solve the problem.

An initial run of the full-order model is performed for the snapshot collection and
no domain decomposition strategy is applied in the initial run. The FOMmodel takes
849.36s to run.After the snapshot collection procedure, the ROM is capable of repro-
ducing the FOM solutionwith a good accuracy for the velocity field (2.1% of relative
error in the L2-norm for the last oscillation period) , the pressure amplitude being
underpredicted (but only with 0.8 % of relative error in the last oscillation period),
and a very low computational cost (3.07 s, 0.37 % of the original computational
cost), as illustrated in Fig. 8. For the ROM run, 10 basis functions are used, which
are obtained from the POD decomposition of the original 50 snapshot collection.

As illustrated in Fig. 8, the reduced-order model is capable of reproducing the
solution of the full-order model for the configuration in which the snapshots were
taken. However, let us now consider the flow injection in the downstream side of the
cylinder illustrated in Fig. 9, which is introduced in order to modify the flow. The
velocity in the injection region (whose length is 0.2) is 0.1 in the direction normal
to the cylinder surface. Figure 10 illustrates the behavior of the reduced order model
when the injection is considered. Despite its very low computational cost compared
to the FOMmodel, it is clear that the ROM is incapable of reproducing the new flow
configuration; the reason for this is that the snapshot set from which the ROM basis
was built does not contain the solution with the flow injection.

Let us now consider the FOM-ROM strategy described in the previous sections.
We will decompose the physical domain into two subdomains, based on our a priori
knowledge of the boundary conditions of the problem: the first subdomain corre-
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Fig. 9 Flow injection configuration. The red dotted line denotes the FOM domain for the FOM-
ROM model
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Fig. 10 Comparison of the vertical velocity (left) and pressure (right) at (5,4) for the FOM, FOM-
ROM and ROM models for the injection case

sponds to the region surrounding the square cylinder of the rectangle (7, 10)×(5, 7).
In this subdomain a FOM approach is going to be taken, and the Navier-Stokes equa-
tions are going to be solved with full accuracy. The second subdomain covers the
rest of the computational domain. Since this region does not involve the critical area
where the vortexes are formed, it is going to be solved by means of the less accurate
ROM strategy. The ROM basis are obtained from a set of 100 snapshots, from which
a L-POD basis of 10 basis functions is obtained. As it will be shown, the combination
of both strategies (FOM and ROM) allows us to recover a solution which is close to
the full FOM solution, but at a much lower computational cost.

Figure 10 shows a comparison of the vertical velocity and pressure at a point
at the wake of the cylinder with coordinates (5, 4), for the FOM, the ROM and
the FOM-ROM models. It is interesting to note that the ROM model is not able to
capture the physics of the problem; this is natural since the ROM basis does not
contain the solution of the injection case. The FOM-ROMmodel, on the other hand,
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Fig. 11 Comparison of the velocity (top) and pressure (bottom) fields after 400 steps. Left FOM.
Right FOM-ROM

is capable of a quite accurate solution of the system evolution in the short term
in the FOM domain (13.3 % relative error for the velocity time history in the last
oscillation period and 4.6 % error in the pressure). Figure 11 compares the velocity
and pressure fields of the FOM and the FOM-ROM models. We can observe that in
the region surrounding the cylinder (FOM region) the velocity and pressure fields
are very similar, in the ROM region the velocity fields slightly differ, with more
intense vortexes or bulbs in the FOM simulation. This is due to the difficulties for
the ROM model for representing the injected velocity and pressure fields (the used
snapshots are bad for the injection case). Despite this evident lack of optimality of the
snapshot set, the FOM-ROM model is capable of properly representing the solution
in the FOM region. Figure 12 shows a comparison between the FOM simulation and
FOM-ROM model for several injection velocities. The accuracy of the FOM-ROM
model decreases as the absolute value of the injection velocity increases. This is due
to the fact that the larger the injection velocity, the more different the flow becomes
from the original FOM simulation without injection. Regarding the computational
cost, the FOM-ROMapproach takes 55.56 s to run, which is only 6.7%of the original
FOM computational cost.

5 Conclusions

In this chapterwe have discussed several strategies for dealingwith the reduced-order
approximation of the incompressible Navier-Stokes equations. We have departed
from a stabilized finite element full-order approximation and we have approached
the order reduction by using a Proper Orthogonal Decomposition (POD) method.
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Fig. 12 Comparison of the vertical velocity (left) and pressure (right) at (5,4) for the FOM, FOM-
ROM and ROMmodels for the injection case. Injection velocities, from top to bottom 0.2, 0.5, -0.2

In the first part of the chapter, we have focused in the construction of an explicit
reduced-order model for the incompressible Navier-Stokes equations, and the appli-
cation of hyper-reduction techniques to it. The basic idea is to treat all the terms
except the mass matrix in the temporal derivative in an explicit way. This includes
the non-linear convective term, but also the stabilization terms which can be highly
non-linear through the stabilization parameter τ . In order to do so, we take advan-
tage of the fact that the snapshots used for building the reduced-order basis through a
singular value decomposition in the POD procedure do already fulfill the stabilized
continuity equation. Secondly, we also acknowledge the fact that, if the velocity and
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pressure are treated jointly, then the pressure can be recovered from the reduced-order
basis and the solution coefficients at the end of each time step.

The proposed explicit reduced-order model performs well in practical cases, as
illustrated in the numerical examples section. Despite the time-stepping scheme
being explicit, the Courant-Friedrichs-Levy condition can be violated, which can be
explained because the reduced basis functions expand over the whole computational
domain. On the other hand, the reduced model is sensitive to the inclusion of noisy
basis functions, which can cause unstable solutions to appear. The sensitivity of the
explicit reduced-order model to this issue can be improved by reducing the time step
and refining the finite element mesh.

A hyper-reduction strategy for the explicit reduced-order model has also been
presented, which is based on the reconstruction of the right-hand-side vector through
a gappy-pod procedure. For the selection of the indices of the gappy reconstruction,
we use a discrete version of the Best Points Interpolation Method (DBPIM), which
uses only values at the nodes of the finite element mesh, with the advantage that the
selected points can be guaranteed to be at least locally optimal.

In the second part of the chapter, we have presented a domain decomposition strat-
egy for non-linear hyper-reduced-order models. The method consists of restricting
the reduced-order basis functions to the nodes of each subdomain. This definition
of the partitioned problem directly ensures the continuity of the recovered solution.
The local POD bases are obtained by computing a local POD decomposition for
the partitioned snapshots. When applied to the explicit reduced-order model for the
incompressible Navier-Stokes equations a stabilizing penalization term is required.
This penalty term is defined so that it weakly enforces the equality of the unknown
between subdomains in an overlapping region.

The domain decomposition reduced-order model can be extended to a particular
case, in which one of the subdomains is solved by using the full-order finite ele-
ment equations while the other ones are solved using the reduced-order model. This
diminishes the computational cost in the low-resolution subdomains, while keeping
the high fidelity solution in the domain regions which are subject to more complex
physical phenomena.

Numerical examples illustrate the accuracy of the proposed methods for the solu-
tion of incompressible flow problems at a low computational cost: the reduced order-
model allows us to save up to 65 % of the computational cost, while in the case of
the hyper-reduced order models the computational saving is larger than 99 % the
original computational cost.
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