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Abstract Multiphase flows consisting of a continuous fluid phase and a dispersed
phase of macroscopic particles are present in many engineering applications. In
general, a main task in the study of the particle-laden fluid flow of an application
is to make predictions about the system’s nature for various boundary conditions,
since, depending on the volume fraction and mass concentration of the dispersed
phase a fluid-particle system shows quite different flow properties. Unfortunately,
often it is impossible to investigate such a system experimentally in detail or even at
all. An option to capture and to predict its properties is performing a direct numerical
simulation of the particulate fluid. For this purpose, a model approach based on a
fictitious domain method is proposed in this contribution. Here, the fluid and the
particle phase are treated, respectively, within the framework of the finite element
method and the discrete element method. The coupling scheme, which accounts for
the phase interaction, is realized at the particle scale. For the computation of the forces
that the fluid exerts on a particle an approach is used in which they are determined
directly from the flow field in the vicinity of its surface.

1 Introduction

Particulate flows are of great importance in very different industrial branches, e.g.,
in medical, process and chemical industries and also in geotechnical engineering
and bioengineering. Examples include fluidized beds, sedimentation, fluvial erosion,
sand production in oil wells, dust collection devices and aerosol transport in human
respiratory airways. The characteristics involving particulate flows are up to now
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neither well-investigated nor well-understood, particularly with regard to flows with
a dispersed phase composed of macroscopic particles. From the side of industry and
applied sciences there exists an intense interest in understanding the processes taking
place in these flows in order to predict their behavior, because a profound knowledge
of the fluid-particle interaction would allow easily to improve the performance of
an existing system or to design more efficient systems in the future; but the conduc-
tion of experiments on particulate flow systems—unless they can be carried out at
all—is expensive and time-consuming. Performing virtual experiments on models
via numerical simulations is of course an alternative way to gain some insight into the
flow properties of a multiphase system. However, due to existing crucial limitations
regarding the hardware technology and the scalability of algorithms, simulations can-
not often totally replace real laboratory experiments. Thus, they are still required, but
even so the knowledge extracted from representative small-scale virtual experiments
can contribute in minimizing the sequence of real experiments. Consequently, the
improvement of existing as well as the development of new frameworks for simula-
tion of particulate flows is significant and demands more effort, as the simulation of
problems with large number of particles is still a great challenging task.

In particle-laden multiphase flows the strength of the phase coupling is predom-
inantly determined both by the local volume fraction of the dispersed phase and by
its mass concentration (see, e.g., Crowe [11]). That means that in case of dense or
locally highly concentrated flows the presence of particles in the fluid field can be
a determining factor for the main characteristics inherent to an engineering system.
To capture the mutual interaction of the phases in such flows, it is crucial to analyze
the respective problem at the particle scale. This necessity implies a fully resolved
model where the particles are described as having a body volume, and not just as
point-particles, because in dense flows neighboring particles can interact not only via
close range effects—like contact forces, adhesion or agglomeration—, but also via
long range effects due to particle induced wakes, eddies and other local disturbances.
Those effects can only be captured in the framework of a full 3D direct numerical
simulation (DNS). However, a full 3D DNS approach requires very powerful tech-
niques and is nontrivial, even when considering systems with only one immersed
particle settling in a fluid, let alone systems with some thousands of dispersed parti-
cles in the fluid. This is due to the fact that besides the handling of the evolution of
the time varying fluid domain, the motion of the fluid-particle boundaries needs to be
continuously tracked during the flow process in order to account for the momentum
exchanges taking place at the phase interfaces.

In the last two decades, great progress has been made in the development and
improvement of DNS methods for particulate flow simulations. Basically, the pro-
posed approaches may be classified into two groups: (i) adaptive grid methods and
(ii) fixed grid methods. The first DNS approaches published in the literature are
assigned to the category (i). Here, the fluid field is described using a body-fitted
moving mesh whose elements follow locally the boundaries of the particles being
in motion. Of course, depending on the particles’ motion this can lead to large ele-
ment distortions in a mesh, so that the grid needs to be re-meshed from time to time.
Such a procedure is computationally very intensive, and one requires, in fact, very
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efficient and sophisticated mesh motion and re-meshing algorithms. The first 3D
DNS computations of particulate flows belonging to this category were presented in
Johnson and Tezduyar [23], which can be considered as a pioneeringwork in this area
(see also Johnson and Tezduyar [24–26]). In these articles, the authors propose the
deformable-spatial-domain/stabilized space–time (DSD/SST) finite element method
(FEM) setting for the treatment of the fluid field. Further milestone contributions
related to group (i) were published by Hu et al. [19–21]. These authors employ in
their work theArbitrary-Lagrangian-Eulerianmethod framework in order to describe
the particulate fluid field. In terms of the approaches assigned to the fixed-grid cate-
gory (ii), one can find in the literature a number of techniques suggested for the DNS
analysis of fluid-particle interactions (see the review paper of Haeri and Shrimpton
[17] and the references cited therein for an overview). Taken together the proposed
approaches are known under the generic term fictitious domain (FD) method. The
most widely-used ones are the immersed boundary method, the distributed Lagrange
multiplier/fictitious domain method and the fictitious boundary method. They all
have in common that the fluid flow is treated in the framework of an Eulerian set-
ting, where a fixed mesh is employed. Here, a fluid mesh covers, compared to the
approaches in group (i), the whole computational domain, also including the space
of the particles—that means the solid domain is filled as well with fluid. The main
idea on which the FD methods are based is to uncouple the particles from the mesh
and to consider them as fictitious objects having the property to traverse through the
grid without causing any element deformation. The crucial point is here to enforce
the fluid enclosed by an embedded particle to adopt its solid body motion. In general,
this is realized through imposing additional implicit constraints to the flow field.

A prominentmethod to simulate granularmaterials is thewell-established discrete
element method (DEM) approach, which was proposed originally by Cundall and
Strack [12]. The application of a DEM solver to predict the behavior of the dispersed
phase in a particulate flow can be found, e.g., in Wachs [41] and Avci and Wriggers
[3]. In a DEM setting, usually a soft sphere approach based on repulsive forcemodels
is applied in order to describe the contact among particles, which are at the same
time assumed being quasi-rigid.

In this work, a DNS approach is developed in the framework of a FD strategy for
the numerical simulation of 3D particle-laden flows. The fluid-particle interactions
are computed at the particle scale, with a fully resolved flow around the particles.
As numerical solvers regarding the simulation of the fluid part and particle part, the
FEM and DEM are used, respectively. Here, both methods are appropriately coupled
by a staggered solution procedure to handle particulate flows.

2 Governing Equations

Amultiphase domain�∈R
3 is considered to describe a particulate fluid that consists

of a flow field� f (t) and N particles. Therein, each particlePi occupies the domain
�i

p(t). Hence, for � it follows: � = � f (t) ∪ {�i
p(t)}i=1,N .
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Theflowof thefluidfield ismodeled by the non-stationary incompressibleNavier–
Stokes equations:

ρ f

(
∂u f

∂t
+ u f · ∇u f

)
− ∇ · σ = 0, ∇ · u f = 0, ∀ x ∈ � f . (1)

Herein, u f is the fluid velocity, ρ f the fluid density and σ describes the Cauchy
stress tensor. In the numerical studies the constitutive equation for a Newtonian flow
is used:

σ = −pI + 2με with ε = 1

2

(
∇u f + (∇u f )

T
)
, (2)

where p is the pressure, I the identity tensor,μ the dynamic viscosity and ε the strain
rate tensor.

The motion of a quasi rigid particle P can be deduced from the Newton–Euler
equations. Consequently, its translational and angular velocities, U = Ẋ and ω, have
to satisfy:

M
d2X
dt2

= (ρ − ρ f )V b + F + F f (3)

θ
dω

dt
+ ω × (θω) = T + T f . (4)

Therein, M is the mass, X the position vector to the center of mass M , ρ the mass
density, b the gravity and V denotes the volume of P . The tensor of inertia is
represented by θ . Furthermore, the sum of the contact forces is stated as F and the
fluid force that acts upon the particle surface ∂�p is considered by F f . The torques
that are caused by F and F f with respect toM are associated to the quantities T and
T f , respectively. Hence, the fluid forces can be obtained by:

F f =
∫

∂�p

t dA and T f =
∫

∂�p

r × t dA. (5)

The traction vector t on ∂�p is defined as t = σn f , where n f is the unit outward
normal vector and r is the position vector of a point at ∂�p with respect toM .

3 Constitutive Modeling of the Particle Phase

The particles, which are immersed in the fluid, are modeled as quasi rigid spheres.
To describe their collision behavior, a force-displacement based approach relying on
repulsive models is used, which allows to determine the inter-particle forces. In the
sections below, the relevant concepts of the contact models are stated briefly.
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3.1 Normal Contact Model

The normal contact forces acting between colliding particles and between particles
and system boundaries are described by a constitutive viscoelastic model. For adhe-
sive particles being in contact, the JKR theory, introduced by Johnson et al. [27],
is used to determine the resultant attractive van der Waals force Fn

a in the contact
area (see also Maugis [35] for a detailed description of this model). As shown by
Loskofsky et al. [31], the JKR theory yields even in the case of underwater adhe-
sion satisfying results. For the purpose of governing the elastic contact force Fn

e , the
Hertzian law [18] constitutes a well-established model. If the particles to be treated
have also viscous material properties, for this, a consistent phenomenological model
was presented in Brilliantov et al. [5, 6], where the effect of viscosity is consid-
ered via an added dissipative force Fn

d . Thus, one obtains for the forces acting on a
particle:

Fn = Fn
e − Fn

a + Fn
d . (6)

The elastic repulsive force based on the Hertzian contact law is determined by:

Fn
e = 4

3
E

√
R δ3/2, (7)

where δ = δi + δ j is the total particle compression, R and E are the effective radius
and the effective Young’s modulus of the contact pairPi andP j , respectively (see
Hertz [18]). As a result of the mutual compression of the particles, a circular area is
formed in the contact zone. In the Hertz model, the radius a of this area, which is
often called contact radius, is related to the total deformation δ via a2 = Rδ.

According to the JKR model, it is implied that the adhesive force acts only within
the contact area. Here, the work of adhesion to separate a unit contact area of Pi

andP j in a liquid medium (l) is defined as W = γil + γ jl − γi j , where γ describes
the respective interfacial energy (see, e.g., Loskofsky et al. [31]). Since the adhesive
force Fn

a is opposed to the elastic force Fn
e , it reduces the elastic deformation δe, and

one obtains for the total deformation:

δ := δe − δa = a2

R
−

√
2π Wa

E
, (8)

where the second term δa is due to adhesion (see, e.g., Maugis [35] for details). Based
on this model the difference between the elastic and the adhesive force is given by:

Fn
ea := Fn

e − Fn
a = 4Ea3

3R
− 2πa2

√
2W E

πa
. (9)

A special case here is the situation when external forces are absent. If so, an equi-
librium contact area with radius a0 is formed in the contact zone due to the mutual
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compression δ0 of the particles caused just by their adhesive attraction. These both
quantities are defined as:

a0 =
(
9π W R2

2E

)1/3

and δ0 =
(
3R

4

(
π W

E

)2)1/3

. (10)

To separate the particles, one has to apply a traction force under which they suffer
minute stretching deformations forming a connecting neck around the contact zone.
Once the pulling force has reached a critical level, i.e., Fn = −Fn

c , the contact
breaks. Here, the critical force is obtained by Fn

c = 3π W R/2 and the corresponding
critical deformation of the particle pair is δc = a2

0/(48
1/3R). That means, the pulling

distance regarding their detachment is defined as δ = −δc. By incorporating these
critical quantities, one yields for the displacement δ in (8) and the force Fn

ea in (9)
the following dimensionless relationships (see Chokshi et al. [9]):

δ

δc
= 61/3

[
2

(
a

a0

)2

− 4

3

(
a

a0

)1/2]
(11)

Fn
ea

Fc
= 4

(
a

a0

)3

− 4

(
a

a0

)3/2

. (12)

To consider the properties of material viscosity, a dissipative force is adopted accord-
ing to Brilliantov et al. [5]. In that work, the definition of the force is given as
Fn

d = Aȧ ∂ Fn
ea/∂a. From this definition, the viscous force can be written as follows:

Fn
d = Aȧ

(
4Ea2

R
− 3

2

√
8π W Ea

)
, (13)

where the dissipative factor A is related to a constant function of material viscosity,
which can also be used as a fitting parameter.

In the present contribution, the force laws on which Fn in (6) is based are algo-
rithmically treated as displacement driven (see, e.g., Wriggers [43]). Introducing the
penetration measure gn = (Ri + R j ) − ||Xi − X j || > 0 and equating gn ≡ δ as
the mutual compression of Pi and P j , the individual parts of the force Fn can be
computed straightforward after having determined the contact radius a. To evaluate
this quantity, one has to solve the nonlinear expression in (11) for the currently cal-
culated penetration δ of the examined pair of particles. The direction of the contact
force Fn = Fnn of the respective particle is opposed to the direction of its displace-
ment, where n = (Xi − X j )/||Xi − X j || is the normal unit vector pointing fromM j

towards Mi .
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3.2 Tangential Contact Model

The constitutive relation of Coulomb’s law couples the tangential force Ft via the
coefficient of friction to the normal force Fn such that the relation Ft = μd Fn

holds for sliding and Ft ≤ μs Fn for sticking. Therein, the dynamic and the static
friction coefficients are denoted by μd and μs , respectively, where μd ≤ μs . For a
constitutive treatment of Ft , a classical tangential (linear) spring-dashpot element
with an incorporated slider is used in this work in order to model the tangential
friction problem. For an overview and a discussion of different tangential contact
models proposed in the literature in the context of the DEM see Kruggel-Emden
et al. [28]. Here, a return mapping scheme is adopted for the computation of the
tangential force (see Luding [32], Wriggers [43]). This projection method needs a
tangential trail traction that takes the form:

Ft
o = −(ct gt + dt vt ). (14)

Therein,gt is the elongation of the tangential spring, ct anddt are the tangential spring
stiffness and the tangential dissipation parameter, respectively. The tangential relative
velocity at the contact point C is given by vt = vs − (vs · n) n with vs = vCi − vCj
as the relative velocity at C , where the corresponding local velocities are defined by
vCi = Ui +ωi × ri and vCj = U j +ω j × r j . The vectors pointing fromMi andM j

to C are associated with ri = Ri (−n) and r j = R j n, respectively. By introducing
a trial function f tr , the following relation can be stated for the tangential contact:

f tr := ||Ft
o|| − μs ||Fn|| ⇒

{≤ 0 : stick
> 0 : slip.

(15)

If f tr ≤ 0, the contact point C is in the stick region, and if f tr > 0, it is in
the slip region. In the latter case, sliding occurs in the contact area. Note that if
Ft

o < μd Fn becomes valid during a sliding process, then the stick case comes into
effect. If the contact point sticks within the current time step, the actual tangential
spring gt is incremented for the succeeding time step by the relation �gt = vt�tD.
Consequently, the new spring length is defined by gt = gt +�gt . Here,�tD denotes
the time step size of the DEM. But if the contact point slides within the time step,
then the tangential spring is adjusted by means of:

gt = − 1

ct
(μd Fnt + dt vt ) (16)

in order to fulfill the Coulomb’s slip condition. Therein, t = Ft
o/||Ft

o|| is the direction
of the trial traction. In two subsequent time steps, the contact area might be slightly
rotated. To take this into account, one can—as proposed in Luding [32]—project
the tangential spring onto the current rotated contact area at the beginning of each
new time step via gt = gt − (gt · n)n. Finally, in the context of the return mapping
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scheme, the tangential contact force is Ft = ||Ft
o|| if f tr ≤ 0 holds and Ft = μd Fn

if f tr > 0. By computing Ft , one obtains Ft = Ft t and Tt = r ×Ft that contributes
to F and T in (3) and (4), respectively.

3.3 Rolling Resistance Model

During a rolling motion of two particles the leading part of the contact area is contin-
uously compressed and the trailing part is decompressed with respect to the rolling
direction. In case of an attractive van derWaals force in the contact area, the particles
suffer an opposing torque that generates rolling resistance. Here, a model consisting
of a rolling spring-dashpot-slider element is adopted (see Iwashita and Oda [22]). At
this, the opposing torque is given by:

Mr
o = −(cφφ + dφφ̇). (17)

Therein, cφ is the rolling stiffness, dφ the rolling viscosity coefficient, φ the relative
particle rotation and φ̇ denotes the corresponding relative rotational velocity. By
introducing a trial force Fr

o that induces an equivalent torque to Mr
o, the problem of

rolling resistance can be treated algorithmically like the model of tangential friction
(see Luding [33]). In this regard, the equivalent formulation can be stated as follows:

Mr
o = R n × Fr

o, (18)

withFr
o = −(cξ gr +dξ vr ), cξ = cφ/R2 and dξ = dφ/R2. Here, gr is the elongation

of the spring and vr denotes the rolling velocity that can be computed according to
Kuhn and Bagi [29] using:

vr = −R
[
(ωi − ω j ) × n − 1

2

( 1

R j
− 1

Ri

)
vt

]
. (19)

Assuming that the slider can sustain a certain critical rolling resistance torque Mr
c ,

one can write analog to (15):

f trr := ||Fr
o|| − Mr

c

R
⇒

{≤ 0 : stick ⇒ Fr = ||Fr
o||

> 0 : slip ⇒ Fr = Mr
c /R.

(20)

With regard to the numerical handling of the spring in this context, the respective
relationships can be expressed in a summarized form as:

f trr :=
⎧⎨
⎩

< 0 ⇒ gr = gr + �gr , �gr = vr�t

> 0 ⇒ gr = − 1

cξ

[
Fr

c tr + dξ vr
]
, tr = Fr

o

||Fr
o||

, Fr
c = Mr

c

R
.

(21)
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Fig. 1 a Distribution of the Lebedev quadrature points for the case of NL = 302 points. b Steplike
discretization of a particle for the evaluation of fluid forces. c A detail of the domain � showing
the classification of computational elements

In this model, the projection direction of the spring relies on the common rolling
direction of the pair of particles being in contact. Thus, the projection condition is
defined asgr = (gr ·t̃) t̃,where t̃ = vr/||vr ||. By computing Fr , one yields the pseudo
force Fr = Fr tr and respectively the rolling resistance torque Mr = Rn × Fr .
Finally, the torques for the examined pair of particles {Pi ,P j } can be written as
follows: Mr

i = −Mr
j =: Mr .

4 Phase Coupling

In the fixed grid approach, the mesh of the flow field does not coincide with the
boundaries of the particles. Hence, information between the Eulerian and Lagrangian
description has to be transferred. A further challenging issue concerning the coupling
of the phases is the computation of the fluid forces acting on the particle surfaces.

4.1 Evaluation of the Fluid Forces

A crucial point regarding the study of fluid-particle interactions in a fully resolved
3D DNS framework is the computation of the fluid forces to which the immersed
particles are subjected. To carry out this task, two different strategies, as shown in
Fig. 1a, b, have been considered in thiswork. In the following, the approach illustrated
in (a) should be abbreviated as AP1 and the one in (b) as AP2.

Approach AP1 For the integration of the fluid forces acting on the surface of a
particle a quadrature rule can be used that was developed in Lebedev and Laikov
[30]. In Fig. 1a, the distribution of the Lebedev integration points, which can also be
seen as Lagrangian force points, is displayed for the case of NL = 302 points. This
numerical integration applied to particle Pi yields:
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F i
f =

∫

∂�i
p

t dA =
NL∑

k=1

(dF)k = J
NL∑

k=1

wktk (22)

T i
f =

∫

∂�i
p

r × t dA =
NL∑

k=1

rk × (dF)k = J
NL∑

k=1

rk × wktk . (23)

Therein, tk = (〈σ 〉n)k is the traction vector at the kth Lebedev point, wk the corre-
sponding integration weight and 〈σ 〉 = (1/V )

∫
σ dV specifies the averaged fluid

stress tensor of the finite element with volume V in which the point k is located. The
mapping from a unit sphere to Pi is performed via the relation J = 4π R2

i , where
Ri is the particle radius.

Approach AP2 In this approach to the evaluation of the fluid forces exerting on
Pi , the shape of the particle surface is reproduced on the basis of the computational
grid, see Fig. 1b. Here, the calculation of F i

f and T i
f is carried out using the steplike

reconstructed surface contour of Pi . To determine these forces from this surface,
one has to compute the averaged tractions on the respective element faces � j { j =
1, . . . , N�}, and subsequently the corresponding forces can simply be summed up
yielding:

F i
f =

∫

∂�i
p

t d� =
N�∑
j=1

(dF) j =
N�∑
j=1

t j� j (24)

T i
f =

∫

∂�i
p

r × t d� =
N�∑
j=1

r� j × (dF) j =
N�∑
j=1

r� j × t j� j , (25)

where r� j is the position vector of the center of the element surface � j with respect
toMi .
Remark To characterize the motion of the DEM particles sliding through the mesh,
the mesh elements are labeled as depicted in Fig. 1c. By using the position of the
element center point E as an assignment criteria, the elements that coincide with
a particle domain �i

p are marked at each time step by the particle number of Pi .
Here, the interior and boundary elements are defined by ‘ i ’ and ‘−i ’, respectively.
Furthermore, fluid elements are denoted by ‘ 0 ’.

4.2 Coupling Constraints

For the coupling process, the rigid body motion of the particles is imposed on the
flow field. The rigidity constraints due to Pi that are applied to the Navier–Stokes
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equations can be regarded as additional Dirichlet no-slip boundary conditions (see,
e.g., Wan and Turek [42]). The constraint for an interior velocity node V ∈ �i

p of
an boundary element ‘−i ’ is given by:

u f = Ui + ωi × rp, (26)

where rp is the vector pointing from Mi to the considered velocity node. However,
for a velocity node V ∈ �i

p that adjoins the fluid phase, the velocity constraint is
defined as:

u f = (1 − φA)u f + φA(Ui + ωi × rp), (27)

where φA is the element face area fraction situated within �i
p. Hence, φA acts as

a weighting factor for V .1 But if V /∈ �i
p, then a nonlinear weighted strategy is

applied according to Luo et al. [34], which reads:

u f = (1 − φR)u f + φR(Ui + ωi × rp), (28)

where the interpolation factor φR = e−Rep |α| is a nonlinear function of the relative
Reynolds number Rep = ρ f ||Ui −u f ||Di/μ f andof the relative distanceα = h/Di .
Here, Di and h denote the particle diameter and the distance from V to the surface
of Pi , respectively.

5 Solution Algorithms

5.1 FEM Solver for the Fluid Problem

A spatial and temporal discretization of (1) yields a set of nonlinear algebraic equa-
tions for the fluid velocity u f and the pressure p. The resulting coupled equation
system, which has to be solved at each time step, can be written as follows:

[
M + θ1�tN(un+1

f ) θ2�tG
GT 0

] [
un+1

f
pn+1

]
=

[
(M − θ3�tN(un

f )) un
f

0

]
. (29)

Therein, M is the mass matrix, N the matrix including the diffusive, convective and
stabilization terms, G the gradient matrix, GT the divergence matrix, �t the current
time-step size and θ1−3 are parameters of the fractional step θ -scheme, see Turek

1 In the present work, the nonconforming rotated trilinear Q̃1/Q0 element pair is used where a
nodal value at V is the mean value of the velocity vector over the respective element face area, see
Turek [38] for details. The velocity nodes of this element are located at the midpoints of the element
faces.



116 B. Avci and P. Wriggers

[38] for details. To solve (29), the multigrid FEM solver FeatFlow [39] is applied
in this contribution.

5.2 DEM Solver for the Particle Problem

The movement of the particles is governed by the equations of motions given in
(3) and (4). With regard to the numerical integration of these equations in time, the
finite difference based Gear predictor–corrector scheme of third and fourth order is
applied. The Gear integration scheme is subdivided into three steps: (1) prediction
of all the kinematic variables, (2) evaluation of the forces according to Sect. 3 by
using the predicted variables and, subsequently, computation of the corresponding
accelerations and, finally, (3) correction of the predicted kinematic variables based
on the new accelerations. For the algorithmic details of the Gear scheme see Allen
and Tildesley [1].
Remark An aspect that has also to be considered in the framework of develop-
ing a FEM-DEM coupling scheme is the widely differing computational time scale
between the both numerical methods. Since, due to the displacement driven charac-
ter of the DEM concerning the force computation, one usually has �tD � �t . To
handle this problem of unequal time scales, a sub cycling strategy can be used as
suggested by Feng et al. [13].

5.3 Search Algorithms

The computation of the contact forces is themost CPU time consuming part of aDEM
simulation. Here, the evaluation of the contact detection has to be minimized to the
neighbors of a particle, since they are its only relevant potential contact partners. For
this purpose, the Verlet-List and the Linked-Cell is combined in order to yield a fast
contact search algorithm (see, e.g., Allen and Tildesley [1], Pöschel and Schwager
[36]).

In the Verlet-List procedure a list of neighboring particle indices is maintained for
each particle in the system. By defining a Verlet distance threshold value vd , a pair
of particles can be considered as neighbor if vd > |gn| holds. Once the Verlet-List
is built, the contact detection needs only to be evaluated for the neighboring pairs.
As a result, this task scales with respect to the corresponding computational effort
with O(N ). Certainly, the list has to be updated at some intervals. In this regard, a
possible rebuild criteria can be defined by�smax ≥ 0.6vd , where�smax is the largest
displacement of a particle since the last list update (see Pöschel and Schwager [36]).
But the construction of the list in a straightforward manner scales with O(N 2), thus,
one has to speed up this task in order to obtain a search algorithm that scales in toto
with O(N ). For this purpose, the computational domain is divided into cubic cells
of uniform edge lengths where the cells are slightly larger than the largest particle in
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the system. After assigning all particles to the cells relative to their center of mass,
the relevant particles for the construction of the neighbor list of Pi are those who
are referenced to the group of 27 cells consisting of the owner cell of Pi and of its
direct 26 surrounding cells.

For a fast assignment of the element flags and, furthermore, in order to localize
efficiently the elements containing the integration points for the computation of the
fluid forces on the particles, the approach of the Linked-Cell method is used analo-
gously. The Linked-Cell algorithm generates in this case an element list referring to
the same cell structure as for the particles. Here, an element is referenced to a cell
with respect to the position of the elements center point E . Consequently, for the
application of the velocity constraints related to particlePi and for the computation
of its fluid forces, only the elements are significant that are binned into the group of
those 27 cells which are relevant for Pi . In order to reduce the trial computations,
some elements can also be excluded in advance from detailed considerations if the
distance between E and ∂�i

p is larger than a threshold value that can be chosen
according to the largest element size in the computational domain.

6 Numerical Simulations

The numerical results of three computed test problems obtained by the presented
approach are discussed next. The first test problem is the sedimentation of one particle
in a box. In the second simulation example, the sedimentation of two particles in a
row is considered in order to mimic their drafting-kissing-tumbling effect, and the
last example deals with a particle-laden flow through a tube with changing cross
section.

6.1 Sedimentation of a Single Particle in a Box

In this example, the sedimentation of a single particle in a box filled with fluid is
examined. The considered system is shown in Fig. 2. This system corresponds to the
setup that was experimentally investigated in ten Cate et al. [37] where the authors
measured the settling velocity of the immersed particle under the action of gravity
in four test cases, each with a different fluid. In the following, the obtained simula-
tion results for the cases with minimum and maximum terminal particle Reynolds
numbers, Rep = 1.5 and Rep = 31.9, are presented. Previously, the sedimentation
problem of ten Cate et al. [37] was computed by, among others, Veeramani et al. [40]
and Feng and Michaelides [14].

To discretize the box in Fig. 2, a uniform mesh consisting of 819,200 Q̃1/Q0
elements (80 × 80 × 128 elements) is used. All the simulations were carried out
by imposing no-slip velocity conditions at the box boundaries. The diagrams in
Fig. 3 show the computed temporal evolutions of the settling velocity of the particle
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e1

e2e3

b

Box dimension: 10×10×16cm
Particle position: (5/5/12.75)cm
Particle radius: R= 0.75cm
Particle density: ρP = 1.12g/cm3

Gravity: b= 980cm/s2

Fluid:
Case

C1
C2

ρ f [g/cm3]

0.970
0.960

ν f [cm2/s]

3.8454
0.6042

ReP =U∞D/ν f

1.5
31.9

Fig. 2 Sedimentation of a single particle in a box. Geometry and material data
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Fig. 3 Evolution of the settling velocity of the particle for a case C1 and b case C2

center in the direction of gravity for the considered two cases. As it can be seen,
each case was simulated both by means of approach AP1 and AP2. Every diagram
also includes the predicted terminal velocity of the particle based on the correlation
equations2 suggested in Clift et al. [10], Brown and Lawler [7] and Cheng [8], and
furthermore, the numerical results of Veeramani et al. [40] and those of Feng and
Michaelides [14]. At the beginning of the experiment, the particle is at rest, and it
accelerates due to the action of gravity. It is observed that when the gravitational
and the drag forces reach a state of equilibrium, the particle will sediment with a
uniform velocity, which is called terminal velocity. The simulation results show that
the presented model, both based on AP1 and AP2, is capable to predict the evolution
of the particle’s settling velocity. The maximum discrepancy of the predictions with

2 In general, correlations for drag and terminal settling velocity are valid for a particle in an infinite
domain, but they still provide reasonable results for a relatively large distance between a particle
and system boundaries.
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Time: t = 0.4s t = 1.3s t = 1.9s t = 2.6s t = 3.7s

Time: t = 0.2s t = 0.5s t = 0.7s t = 0.9s t = 1.2s

Fig. 4 Contour plots of the normalized velocitymagnitude in the symmetry plane at different points
in time. The plots of the upper row belong to case C1 and those of the lower row to case C2

respect to the experimental data is less than 8%. In addition, the obtained results are
in a very good agreement with those of Veeramani et al. [40], but there is a small
mismatch compared with the results of Feng and Michaelides [14]. Figure 4 shows
the computed contour plots of the normalized velocity magnitude ||u f ||/U∞ in the
symmetry plane. Accordingly, the depicted contours range between 0 and 1. Here,
an equal spacing of 0.1 is chosen. It shows that these plots agree well with those
of ten Cate et al. [37], and that the presented model is well suited to mimic their
sedimentation experiments. There is also a good agreement with the computed plots
given in Apte et al. [2].

6.2 Sedimentation of Two Particles in a Box

This benchmark simulation is carried out to reproduce the drafting-kissing-tumbling
effect of two particles sedimenting in a row, as it can be observed in laboratory
experiments (see, e.g., the experiment reported in Fortes et al. [15]). Figure 5 shows
the systemwith the particles being studied in this benchmark test. The depicted setup
has been already numerically investigated by Glowinski et al. [16], Apte et al. [2]
and Breugem [4]. For the discretization of the computational domain a uniformmesh
of 1,048,576 Q̃1/Q0 elements (64 × 64 × 256 elements) is used. It is assumed that
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Fluid:

Particle:

e1

e2e3

Box dimension: 1×1×4cm
Particle position: (≈ 0.5/ ≈ 0.5/3.5) cm

(0.5/0.5/3.167) cm

b

Radius: R1 = R2 = 1/12cm
Density: ρP1 = ρP2 = 1.14g/cm3

Density: ρ f = 1.00g/cm3
Viscosity: ν f = 0.01cm2/s

Gravity: b = 980cm/s2

Young modulus: E = 106 N/cm2

Poisson ratio: ν = 0.25
Friction coeff.: μs/μd = 0.35/0.32
Damping coeff.: A = 5 ·10−5 s

Fig. 5 Sedimentation of two particles in a box. Geometry and material data
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Fig. 6 Evolution of the settling velocities of the particles for the drafting-kissing-tumbling problem:
a results of the present work and b comparison of the results with the literature

the box is fully filled with fluid. Concerning the boundary conditions of the fluid
domain, no-slip velocity conditions are applied at the box walls. In order to provoke
that the particles tumble when they kiss each other, a slight initial horizontal offset
in the position of P1 is introduced such that (0.5075/0.5075/3.5) cm. This offset
is here necessary, because the numerical results of previous test computations based
on different uniform symmetric meshes showed that the implemented algorithm
maintains nearly the complete symmetric properties of the system. Thus, the flow
field features too weak lateral disturbances in order to trigger the tumbling case (as
if, for instance, a free or just an anisotropic mesh is used).

In order to verify that the numerical model is able to predict the terminal settling
velocity of an almost undisturbed sedimenting single particle within the frame of
this benchmark setup, the sedimentation of P2 was computed in advance without
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Fig. 7 Numerical results of the drafting-kissing-tumbling simulation at eight points in time

the presence ofP1. Figure 6a shows the obtained time history of the falling velocity
by using AP2, and one can see that the predicted terminal velocity matches those
obtained with correlations. This diagram contains also the computed evolutions of
the particle velocities by employing the approaches AP1 on the one hand and AP2
on the other hand for the drafting-kissing-tumbling case. It can be observed that
the results obtained for both simulations agree quite well. With regard to a further
verification of the presented algorithm and of its implementation, the predictions of
AP2 are compared to other numerical predictions that can be found in the literature
for the same setup, see Fig. 6b. The comparison is generally found to be good where
the presented results are particularly consistent with the simulation results of Apte
et al. [2] and Breugem [4]. At this point, one has to underline that all predicted
evolutions in Fig. 6b rely on different FD method concepts.

In Fig. 7, the process of drafting-kissing-tumbling is displayed at eight different
points in time. One observes that once the trailing particle is located within the grad-
ually growing wake region of the leading particle, it experiences a lower drag force.
Consequently, this results in a higher fall velocity for the trailing particle compared to
the leading particle (drafting). With increasing time, the gap between both particles
decreases due to their velocity difference, and thus the particles get—after a while—
into contact (kissing). Clearly, this configuration is unstable. The particles tumble
as a consequence and start to separate (tumbling). The flow phenomena observed
in the experiment of Fortes et al. [15] are definitely reproduced by the presented
computational approach.

6.3 Particle-Laden Flow Through a Tube

In this test case, a particle-laden flow through a tube with different cross sections is
considered. It is assumed that the particles are allowed to adhere to each other and as
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Fig. 8 Particle-laden flow through a tube. Geometry and material data

Fig. 9 Numerical results of the flow through the tube showing the velocity field at t = 6.5 [s]

well at the tube wall. Figure 8 shows the geometry of the tube including the model
data, where the parameters WPP and WPW are the work of adhesion among particles
and between particles and the tube wall, respectively. Gravitational effects are not
considered. The suspended particles are randomly inserted at the inflow boundary
with an initial velocitywhich is conform to the inflowvelocity of thefluid. To compute
the flow in the tube, a mesh consisting of 2,304,000 Q̃1/Q0 elements is used. This
yields a discretized system with 2,304,000 pressure nodes and 6,953,280 velocity
nodes. The time step sizes for the FEM and DEM solver are selected as �t = 10−4 s
and �tD = 10−6 s, respectively.

The presence of van der Waals forces leads with the chosen parameters to a
deposition of suspended particles onto the tube wall. The deposition grows with
an increasing simulation time, in particular at the end of the smaller cross section
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Fig. 10 Numerical results of the flow through the tube showing the pressure field at t = 6.5 [s]

Fig. 11 Numerical results of theflow through the tube showing:a–c the streamlines and the particles
at different points in time and d the particle velocity vectors at t = 2.5 s. The colors represent in
all cases the velocity magnitudes

part. With more particles adhering to the wall, the velocity increases locally, and the
particles experience higher drag forces. A situation like this is depicted in Fig. 9.
Therein, one can see the influence of the developed agglomerates on the velocity
field when they stick to the tube wall or slide along the wall. Due to the fully coupled
description of the particulate flow, the strong mutual phase interactions, as in the
situation shown in Fig. 9, can be captured by the developed DNS fluid-particle
solver. The strong local impact of the dispersed phase on the fluid phase is here
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Fig. 12 Numerical results of the flow through the tube showing the fluid and particle velocities at
six points in time
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obvious. In Fig. 10, one can observe the corresponding effects regarding the pressure
field (see the pressure difference when comparing the luv and the lee side of the large
agglomerate). For the casewhen the traction forces exceed the adhesive forces, single
particles and agglomerates break off and are subsequently transported away by the
flow field. The complexity of the evolution of the multiphase flow situation at the
outflow of the smaller cross section part is reflected in Fig. 11. There, the image (a),
which shows the flow at time t = 1.0 s, illustrates a fully developed axisymmetric
fluid flowwith a certain eddy zone evolved in this region. Having a look at the images
(b) and (c), t = 2.5 s and t = 10.0 s, one can see that this axial symmetry is totally lost
and that a large number of particles has deposited on the wall. The image (d) shows
the same flow situation as in (b), but in this case including particle velocity vectors
and without streamlines. Here, the influence of the eddy on the trajectories of the
passing particles can be clearly seen. In fact, the particles which are fully caught by
the eddy change the flow direction so that they are subsequently transported against
the main flow in the tube. The different phases of the flow process are shown for the
whole system in Fig. 12.

7 Conclusion

In this work, a computational approach for the full 3D DNS of particulate flows is
presented. The approach is based on the FD method. The developed solver treats the
coupled fluid-particle problem in a staggered way by solving the phases explicitly in
succession. Themutual phase interactions are computed on the other hand implicitly.
As numerical solvers, the FEM and DEM are applied, respectively, to simulate the
fluid and particle part. In the framework of theDEM, the particle collision is described
using an adhesive viscoelastic model, and additionally, friction and rolling resistance
are considered. To verify the reliability of the algorithm and its implementation,
various test computations were performed. In this contribution, the simulation results
of two sedimentationproblemswere presented anddiscussed. Furthermore, the solver
was applied to simulate an aggregation dynamics problem of a particulate flowwhere
the formation of agglomerates is considered. The chosen system for this task was
a tube with different cross sections. The obtained numerical results show that the
developed solver is appropriate to deal with fluid-particle interaction problems.
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