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Abstract Computing blood flows in a closed vascular system by isolating one
section for simulation creates instabilities due to the time-periodic structure of the
flow and possible non-physical back flow in the simplified geometry. We propose
some solutions in the context of a simplified fluid structure interaction on a fixed
geometry but with pressure dependent normal velocities at the compliant walls.The
present analysis is based on the Surface Pressure model for the fluid-structure inter-
actions.
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1 Introduction

Mastering the simulation of blood flow is the key to proper design of by-passes,
stents and heart valves (see Thiriet [17] for instance).

The problem was addressed by Charles Peskin in the nineties and his team have
made impressive simulations since, using fictitious domains and immersed boundary
techniques [1, 12, 13, 18].

Another approach, taken byQuarteroni et al. [5] and the REO project at INRIA [3,
4, 19] is to discretize the full fluid-structure coupled problem with solvers working
in moving domains.

In a seminal paper [11], Nobile and Vergana showed that the problem is well
posed and conserves energy. Nevertheless the numerical simulations are expensive
[2] and there is room for simplifications.
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In the special case of aortic flow the geometry does not change much. Typically
the aorta has a radius of 1cm and a computational geometry deals with a section of
length of 5–10 cm; the thickness of the aortic wall is around 0.1cm; the heart pulse
is about 1Hz and the pressure drop roughly 6KPa.

In principle arteries are deformable solids subject to large displacements and
nonlinear elasticity (e.g. [7, 8, 10]). But when small displacement occurs only and
linear elasticity applies, shell models like Koiter’s can be used. It was shown in [11]
that if lateral displacements are neglected, Koiter’smodel reduces to a scalar equation
for the normal displacement η

ρsh∂t tη − ∇ · (T∇η) − ∇ · (C∇∂tη) + a∂tη + bη = f s, η, ∂tη given at t = 0

(1)

on the mean position � of the vessel’s wall; here h denotes the average thickness of
the vessel and ρs its volumic mass; T is the pre-stress tensor (needed because at rest
the vessel is blown up by the blood ); C is a damping term, a, b are viscoelastic terms
and f s the external normal force, i.e. −σ s

nn the normal component of the normal
stress at the surface of the solid.

Notice however that the other components of the normal stress tensor cannot be
matched with the fluid when the displacement is assumed normal.

Finally assume that [h, T, C, a] << b; then the Surface Pressure Model is
obtained:

−σ s
nn = bη, with b = Ehπ

A(1 − ξ2)
(2)

where A is the vessel’s cross section, E theYoungmodulus, ξ the Poisson coefficient.
Some typical values (MKSA):

E = 3M Pa, ξ = 0.3, A = π R2, R = 0.01, h = 0.001, ⇒ b = 3.3107ms−2

(3)

2 Boundary Conditions

With simple toroidal coordinates (r, θ, φ) → (x = R cosφ, y = R sin φ, z =
r sin θ) where R = R0 + r cos θ ,

∇ · u = hr hθ hφ

(
∂r

ur

hθ hφ

+ ∂θ

uθ

hφhr
+ ∂φ

uφ

hr hθ

)
(4)

with hr = 1, hθ = 1
r , hφ = 1

R because, by definition
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1

h2
k

= (∂k x)2 + (∂k y)2 + (∂k z)2, k = r, θ, φ (5)

So ∇ · u = 0 and u × n = 0 imply

∇ · u = ∂r ur + ur
R0 + 2r cos θ

r(R0 + r cos θ)
= 0 ⇒ ∂r ur |∂� = −ur

r

R0 + 2r cos θ

R0 + r cos θ
(6)

Similarly

∇u =
∑

i

ei hi ⊗ ∂k

(∑
k

ekuk

)
, i, k ∈ (r, θ, φ) (7)

with

er = (cos θ cosφ, cos θ sin φ, sin θ)T ,

eθ = (− sin θ cosφ,−sinθ sin φ, cos θ)T , eφ = (− sin φ, cosφ, 0)T (8)

Thus

nT (∇u)n = ∂r ur + ur

r

(
1 + r

R
cos2 θ

)
⇒ σ

f
nn = p + 2

(
1 + r

R
cos2 θ

) μ

r
u · n.

(9)

Hence the matching conditions at the fluid-structure interface on a torus of small
radius r and big radius R are

∂tη = u · n, p = 2
(
1 + r

R
cos2 θ

) μ

r
∂tη + bη (10)

Notice that (10) implies

∂t p = 2
(
1 + r

R
cos2 θ

) μ

r
∂t u · n + bu · n (11)

3 Moving Fluid Domains Versus Fixed Domains

3.1 Energy Considerations

Assuming the fluid Newtonian and incompressible, the pressure p and the velocity
u are given by the Navier-Stokes equations

ρ f
(

∂u

∂t
+ u · ∇u

)
− ∇ · σ f = 0, ∇ · u = 0, (12)
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where ρ f is the volumic mass of the fluid, μ the viscosity and σ f = −pI +μ(∇u +
∇uT ) is the stress tensor.

To check the energy budget one multiplies (12) by u and integrates by parts:

∫
�

[
ρ f

2
∂t |u|2 + μ

2
(∇u + ∇uT ) : (∇u + ∇uT )

]

+
∫

∂�

ρ f

2
|u|2u · n =

∫
∂�

σ s · u · n (13)

The fluid velocity on ∂� is equal to the wall velocity, so (see [5])

∫
�(t)

1

2
∂t |u|2 +

∫
∂�

1

2
|u|2u · n = ∂t

∫
�(t)

1

2
|u|2 (14)

This leads to the following energy identity

∫
�(T )

ρ f

2
|u|2(T ) +

∫
�×(0,T )

μ

2
|∇u + ∇uT |2 =

∫
�(0)

ρ f

2
|u|2(0)

+
∫

∂�×(0,T )

σ s · u · n (15)

3.2 The Problem in Strong Form

Now if we consider (12) on a fixed domain with zero tangential velocities but non-
zero normal velocities on the walls then to conserve energy we need to change u ·∇u
into u · ∇u − 1

2∇|u|2 which happens to be −u × ∇ × u due to the identity

u · ∇u = 1

2
∇|u|2 − u × ∇ × u. (16)

Let us recall another identity:

− �u = ∇ × ∇ × u + ∇∇ · u (17)

Therefore the modified Navier-Stokes system suited to flows in fixed domains with
zero tangential components on the walls (u × n = 0) is

ρ f
(

∂u

∂t
− u × ∇ × u

)
+ μ∇ × ∇ × u + ∇ p = 0, ∇ · u = 0, (18)

In a domain � with u · n = 0 and p related by (11) on ∂�, as shown below.
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3.3 The Problem in Variational Form

Its variational formulation of is: find u, p such that ∀û, p̂ with û × n|∂� = 0,

∫
�

[
ρ f

(
∂u

∂t
− u × ∇ × u

)
· û + μ∇ × u · ∇ × û − p∇ · û − p̂∇ · u

]

+
∫

∂�

pû · n = 0. (19)

with p related to u · n by (11).

Problem 1 Find u, p, η such that ∀û, p̂, η̂ with û × n|∂� = 0, u and η given at
t = 0,

∫
�

[ρ f
(

∂u

∂t
− u × ∇ × u

)
· û + μ∇ × u · ∇ × û − p∇ · û − p̂∇ · u]

+
∫

∂�

[(α∂tη + bη)û · n + bη̂(∂tη − u · n)] = 0.

(20)

with α = 2
μ

r

(
1 + r

R
cos2 θ

)
. As (20) implies (10-a),

energy estimates derive by choosing û = u, p̂ = p, η̂ = η

∫
�

ρ f |u|2(T ) +
∫

∂�

bη2(T ) +
∫

�×(0,T )

2μ|∇ × u|2 + 2
∫

∂�×(0,T )

α(∂tη)2

=
∫

�

ρ f |u|2(0) +
∫

∂�

bη2(0) (21)

3.4 Approximation with the Nedelec Edge Element

Boundary conditions like u×n are hard to enforce. Furthermore boundary conditions
involving the pressure have their own difficulties (see [15, 16]). In [6] it is argued
that finite element approximations of (24) requires edge elements. An error analysis
is given with Pk − Pk−1 discontinuous elements with degrees of freedom being edge
fluxes of degree k plus face fluxes of degree k − 1 and volume fluxes of degree k − 2
for the velocities.

Although the proof of convergence is done for k ≥ 2, we tested the same idea with
P1 Raviart-Thomas elements (called RT 0) for the velocity and P0 discontinuous
elements for the pressure. In theory η should be P0-discontinuous like the pressure;
first we took it P1-continuous to simplify the implementation because then we can
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add to the formulation a small regularization −ε�η everywhere in � so as to avoid
having degrees of freedom for η only on the boundary.

Then we tested also η approximated with the P1 Raviart-Thomas element and
formulated the laplacian of η in mixed form; this augments considerably the number
of degree of freedom: 3 ∗ (nv + ne) + 2 ∗ nv for the P2 − P1 − P1 element (tested
in [14], see also below), 3 ∗ ne + nt + 2 ∗ nv for the RT 0 − P1 − P1 element and
6∗ne +2∗nt +2∗nv for the RT 0− P0− RT 0+ P0 element, where nv is the number
of vertices, ne the number of edges, nt the number of elements. We tested these 3 sets
of element on a simple geometry: a quarter of a torus with a pressure drop imposed
from the top horizontal cross section to the right vertical one. The cross section of
the torus is a circle of radius 1cm. This circle is extruded on a greater circle of radius
4cm. The pressure drop is 6 cos(π t), b = 200 and ν = 0.001.

The time step is 0.05. The mesh has nv = 1395, nt = 6120, ne = 1336. The
computation is stopped at t = 0.75.

The results are shown on Fig. 4. On a core i7@2.3MHz it takes 17s with the
Nedelec-P1 − P1 element to compute 16 time steps with the characteristic-Galerkin
method for the non-linear terms (see [14]) and 22s with the Nedelec/Raviart-Thomas
element (see Fig. 1).

4 A Formulation Where the Displacement is Eliminated

Notice that η can be eliminated from (10), giving a formulation which contains
u × n = 0 and

n∂t p = α∂t u + bu (22)

4.1 A Time Discretisation

Consider now (19) discretized in time :

∫
�

[
ρ f

(
um+1 − um

δt
− um+ 1

2 × ∇ × um
)

· û + μ∇ × um+ 1
2 · ∇ × û − pm+1∇ · û

− p̂∇ · um+ 1
2

]
+

∫
∂�

pm+1û · n = 0. (23)

We use (22) discretized in time to compute pm+1|∂� and so we consider

Problem 2 Find u, p such that ∀û, p̂ with u and ∂t p given at t = 0,
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Fig. 1 Left Surfaces of constant pressure for a flow with ν = 10−3, b = 200 in a quarter of a
torus with R = 4, r = 2 discretized on a fixed geometry with the Nedelec edge element for the
velocity, peacewise constant pressures and linear continuous deformation. Right same as left but
with a mixte Raviart-Thomas element for the displacement

∫
�

[
ρ f

(
um+1 − um

δt
− um+ 1

2 × ∇ × um
)

· û + μ∇ × um+ 1
2 · ∇ × û − pm+1∇ · û

− p̂∇ · um+ 1
2

]
+

∫
∂�

[δtbum+ 1
2 + α(um+1 − um) + pmn] · û = 0. (24)

Formulation (19) is valid only if û × n = 0. This condition has been removed from
(24) to make it symmetric and easy to implement but the consequence is that by
working the integrations by parts backward, it is found that this formulation implies
(18) and on ∂�:

[δtbum+ 1
2 + α(um+1 − um)] · n − (pm+1 − pm), ∇ × um+ 1

2 × n = 0 (25)

The first condition no longer implies that u × n = 0 and the second condition is
like saying that the tangential stress is zero, which means that we match not only the
normal components of the fluid and solid normal stress but all the components.

In summary Problem 2 is different from Problem 1; both of them have physically
sound background but we need to test them numerically to see how different they
are.
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4.2 Discretization with a Finite Element Method

Let Th be a triangulation with K tetraedra {Tk}K
1 with the usual conformity hypothe-

ses; let � := ∪k Tk ⊂ R
3.

Consider the P2 − P1 element built from

Vh = {v ∈ C0(�)3 : vi |Tk ∈ P2, i = 1, 2, 3}
Qh = {q ∈ C0(�) : q|Tk ∈ P1} (26)

We assume that the boundary is made of two part,� which is the compliant wall and
the input and output sections � on which p is given and u × n = 0.

4.3 Discretization of Problem 1

For simplicity we assume that r << R, i.e. α = 1. The momentum equation is also
divided by ρ f and ν = μ/ρ f and b is changed into b/ρ f .

A feasible discretization of (24) is to find [um+1, pm+1, ηm+1] ∈ Vh × Qh × Qh

with um+1 × n|� = 0, ηm+1|� = 0 and such that

∫
�

[
û ·

(
um+1 − um

δt
− um+ 1

2 × ∇ × um
)

− pm+1∇ · û − p̂∇ · um+ 1
2

]

+
∫

�

ν∇ × um+ 1
2 · ∇ × û + ε∇ηm+ 1

2 · ∇η̂]

+
∫

�

b

[
ηm+ 1

2 ûn − η̂

(
u

m+ 1
2

n − 1

δt
(ηm+1 − ηm)

)
+ 1

ε
(um+ 1

2 × n) · (û × n)

]

= −
∫

�

p� ûn, ∀ [û, p̂, η̂] ∈ Vh × Qh × Qh with û × n|� = 0, η̂|� = 0.

(27)

where ε is any small positive parameter.
When � is kept fixed, an energy consevation identity is found by choosing û =

um+ 1
2 , p̂ = −pm+1, η̂ = ηm+ 1

2 :

∫
�

[
um+12 − um2

δt
+ ν|∇ × um+ 1

2 |2 + ε|∇ηm+ 1
2 |2

]

+
∫

�

ηm+12 − ηm2

δt
+ 1

ε

∫
�

|um+ 1
2 × n|2 = −

∫
�

p� û
m+ 1

2
n (28)

As for the Navier-Stokes equations, when δt is small enough the problem has
a unique solution because of the energy estimate and because of a general inf-sup
condition is satisfied with p replaced by [p, η].
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4.4 Discretization of Problem 2

A feasible discretization of (24) is to find um+1 ∈ Vh, pm+1 ∈ Qh such that

∫
�

[
û ·

(
um+1 − um

δt
− um+ 1

2 × ∇ × um
)

− pm+1∇ · û − p̂∇ · um+ 1
2

]

+
∫

�

ν∇ × um+ 1
2 · ∇ × û

+
∫

�

(um+ 1
2 bδt + pmn) · û = −

∫
�

p� ûn

∀û ∈ Vh, p̂ ∈ Qh with û × n|� = 0 (29)

Notice that um+1 × n|� = 0 is implied by the formulation. When � is flat that
condition amounts to some component of the velocity being zero which is easy to
implement.

Notice that the energy equality implies stability only so long a p remains bounded
on �, which could possibly be derived from (29), but not so obviously:

∫
�

[
um+12 − um2

δt
+ ν|∇ × um+ 1

2 |2
]

+
∫

�

b|um+ 1
2 |2δt

= −
∫

�

pmu
m+ 1

2
n −

∫
�

p� û
m+ 1

2
n (30)

5 Numerical Tests

5.1 Moving the Geometry for Graphic Visualization

The full model requires that � be moved at every time step along its normal of a
quantity δtum · n. To preserve the triangulation we follow the literature [2] and solve
an additional problem

−�dm+1 = 0 in �, dm+1|� = dm + nδtum
n , dm+1|� = 0 (31)

and then move every vertex q j of the triangulation q j → q j + κd. In theory κ = 1
but for graphic enhancement it can be adjusted. Note however that (31) is expensive.
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5.2 Comparison of the Two Methods

On the problem described earlier both methods give very similar results as shown
on Fig. 2. The geometry is updated for visualisation purpose with a multiplicative
factor 100.

The geometry is a section of the aorta obtained from a MRI scan. It has 4991 ver-
tices, giving19964degrees of freedomfor each linear systems for [um+1

1 , um+1
2 , um+1

3 ,

pm+1]. The pressure drop from inflow section on the right to outflow section on the
left is p�R = 6 cos2(π t) and the results are shown at t = 0.8. On the smaller cross
sections a pressure drop equal to p�R /2 is imposed. Problem 1 and Problem 2 are
solved for comparison with δt = 0.05/π, ν = 0.001, b = 200. Results are shown
on Fig. 3.

For Problem 1, the computation took 198′′ on a macbook pro 15′′, 2012, 2.3MHz
core i7. For Problem 2 it took 180′′. The results are very similar with some difference
on the pressure but very little on the velocities.

6 Inflow/Outflow Conditions by PML

We end this article with an idea to address the problem of loss of stability due to the
creation of reverse flow in unwanted regions because of the boundary conditions on
the artificial inflow and out flow sections.

We borrow the idea from the PML literature (see for example [9]) and add to the
artery geometry a viscous buffer after �out where ν = ν1 >> νblood (and similarly
before �in but we present the theory applied to the outflow section only).

Consider a geometry � where the exit section is �o = {0} × [0, h] in 2D where
pressure is set to p0 while pressure is set to p1 on entry. Assume that we impose a
parabolic flow u = K y(h − y) at the exit of a viscous buffer L = [−L , 0) × [0, h],
i.e. on {−L} × [0, h]. Now we solve the Navier-Stokes equations on � ∪ L. The
problem is to choose K so that the pressure on the inital outflow boundary �o is
unchanged in the mean, namely p̄0 := h−1

∫
p0dy.

Because at every time step the system to solve is linear we shall adjust K by
superposition so that the mean pressure is p̄0 on �out . Since, p|�out ≈ p̄1 + ( p̄2 −
p̄1)

K−K1
K2−K1

where p̄1 is computed with K = K1 and p̄2 the mean pressure when
K = K2, then

K = K1 + (K2 − K1)
p̄0 − p̄1
p̄2 − p̄1

(32)

This requires to solve the linear Stokes-like system at each time step 3 times. We
can also add K to the unknowns of the Stokes-like linear system and add

∫
�out

p =
|�out |p0 to the equations; we used this second solution in the numerical tests because
it is much less computer intensive.
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Fig. 2 Left surface of equal pressure at t = 0.75 computed by solving Problem 1with P2−P1−P1

elements and a penalization of the condition u × n = 0. Right same as left but with Problem 2 and
a P2 − P1 element

The idea is tested numerically on a quarter of a 2D-torus with radii 0.6 and 1 with
ν = 0.002 and a pressure drop equal to cos(t) + cos(3t), t ∈ (0, 25). The PML
viscosity is ν1 = 0.2. A PML region is added to both ends of the tube. Results are
shown on Fig. 4.
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Fig. 3 Computation of [u, p] for Problems 1 & 2 for a portion of an oarta (shown upside down).
Top with Problem 1. the pressure is shown at t = 0.8 on the left on a geometry which has changed
by η. On the right the third component of the velocity w is shown on the fixed geometry. Bottom
same for Problem 2

The results look very different and that is because both computations do not have
the same inflow and outflow conditions on the original inflow/outflow boundaries.
In one case the pressure is imposed pointwise with u × n = 0, in the PML case
the mean pressure is imposed and no conditions are imposed on the velocity but
parabolic velocity is imposed on the inflow/outflow of the PML boundaries.

The method will be tested in 3D and reported in a future publication.
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Fig. 4 Left Geometry for the flow with two PML regions added. Center the velocity vectors
computed without the PML; notice the back flow in the yellow region. Right the same flow (velocity
vectors) computed with the two PML regions. The pressure drop from the two inner boundaries
(corresponding to the top and left boundaries of the geometry on the center figure) are the same as
in the center figure

7 Conclusion

In this article we have presented problems and solutions encountered with fluid-
structure interactions when a middle solution is seeked: neither the full problem
with moving geometries because it is too expensive, nor rigid walls because it is not
precise enough and it doesn’t give the geometrical deformation.

The solution adopted here is to delay the geometrical deformations to the graphic
diplay only. But in doing so we have to work with the Navier-Stokes equations with
unusual boundary conditons which require unusual finite element discretizations.

For these intermediary problems we have shown that it is important to preserve
energy. Furthermore we can choose either to match exactly the normal component of
the solid and fluid normal stress tensor or to match approximately the 3 componenets
of the normal stresses by relaxing slightly the no slip condition.

In all cases the problem of back flows in the pulsating cases remains. We have
suggested a possible solution and made some preliminary tests.
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