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Abstract In this chapter Double Cup Extrusion Test (DCET) is modelled using the
finite element method with the help of the Arbitrary Lagrangian Eulerian (ALE)
formalism. DCET is a tribological test involving very large deformations which
are traditionally dealt with complicated and costly remeshing algorithms. Since the
topology of ALE meshes should remain constant throughout the simulation, two
very thin layers of auxiliary elements are added to the initial mesh of the billet where
the material is expected to flow. This numerical trick is combined with an original
and efficient node relocation procedure which allows the model to take into account
complex geometries of punches. The presented model is firstly validated for limited
punch strokes thanks to a purely Lagrangian simulation. It is then compared with
results from the literature. Eventually the general nature and the effectiveness of this
numerical strategy is demonstrated by a fully-coupled thermomechanical simulation
of thixoforming where the final shape of the billet is compared to experimental
measurements.

1 Introduction

The Double Cup Extrusion Test (DCET) is a tribological test dedicated to forging
operations. Before the conception of DCET, one of the easiest way to quantify
friction for this type of processes was the ring compression test (see Male and
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Fig. 1 Schematic description of the ring compression test which may be used to quantify friction
in forging operations [25] a low friction (good lubrication) b high friction (bad lubrication)

Cockcroft [17]), which consists in crushing a flat ring until a prescribed thickness
is obtained, as depicted on Fig. 1. If the contacts are well lubricated (Fig. 1a), the
material flows outwards and the inner radius of the ring increases. If the friction
becomes higher (Fig. 1b), this radial motion is slowed down. A smaller radius is then
obtained (r2 < r1). Consequently, the final inner radius can be used as an indirect
measure of friction. However, this simple tribological test reproduces rather badly
the real contact conditions and the very high deformations that can be observed at
the interfaces between the material and the tools of real forging operations. Indeed,
according to Bay [2], it is common to reach pressures close to 2.5 GPa, surface
temperatures higher than 600 ◦C and local surface elongation up to 3000 %. DCET
was conceived by Geiger [12] in order to measure friction and to test lubricants in
tribological conditions that are closer to these values.

Although DCET is much more elaborated than the ring compression test, the
measured friction can still be deduced from very simple geometrical quantities. The
experimental setup can be described as follows (see Fig. 2a): a cylindrical billet is
placed in a hollow container of same diameter between two punches. During the test,
the lower punch is not moving while the upper punch goes down and crunches the
specimen. Therefore the material is forced to flow along both punches in such a way
that two cups are gradually formed. If the contacts were perfectly lubricated, i.e. in the
frictionless case, the material would flow symmetrically upwards and downwards.
The H-shaped section of the forged billet would have two branches with the same
height (h1 = h2).

In practise, friction is unavoidable and induces a dissymmetry in the process.
The obtained final section looks like the one represented in Fig. 2b. The height of
the upper cup (h1) is always higher than the lower one (h2). The friction can then
be quantified by the cup height ratio h1/h2. The higher this ratio is, the higher the
friction was during the test.

A first direct application to this tribological test is the classification of lubricants
according to their respective efficiency in forging conditions. For example, Gariety
et al. Gariety et al. [11] have compared four lubricants thanks to DCET. They have
also studied the possibility of jamming by visualising the grooves on the free surfaces
of the billet after the test.

A second interesting application is the numerical estimation of a friction coeffi-
cient with the help of the finite element method. In the case of forging, the Tresca’s
law is usually chosen to model friction:
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Fig. 2 a Principle of the double cup extrusion test from [23]—b Picture of a deformed billet after
DCET (from Gariety et al. [11])

τ ≤ m τmax (1)

where τ is the friction shear stress at the contact interface, m is the friction coefficient
and τmax is the shear yield stress of the material. A series of numerical simulations
of DCET can be performed using a range of friction values m and the corresponding
curves of cup height ratios h1/h2 versus upper punch displacements can be plotted.
This set of calibration curves and the experimental measurement are then used to
identify a mean coefficient m for the process [7, 9, 26]. This friction value might be
used later, with much care, in more complex numerical simulations of forging which
would involve the same material and the same lubricant. The finite element models of
the previously cited authors were all using the commercial code DEFORM-2D [24]
which conveniently provides an automatic remeshing procedure for quadrangular
meshes.

It is important to notice that the relevance of DCET to evaluating friction in forging
may be somewhat questionable. In fact, the material flow is mostly influenced by
the friction between the billet and the wall of the container. The friction between the
punch and the material, which is more representative of a forging operation, plays
a less significant role on the dissymmetry of the final shape of the billet. Moreover,
some authors, such as Schrader et al. [23], think that the pressures exerted by the
billet on the container are not high enough to use a Tresca’s law in the finite element
models. A Coulomb’s law should be more appropriate. Nevertheless, despite these
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issues, modelling this tribological test is still very interesting from a numerical point
of view.

This chapter is organised in the following way: after a brief review of the ALE
formalism, a simplified extrusion model is presented in order to explain the numerical
trick that will be used to keep the topology of the ALE mesh constant. Then, this
technique is extended to the case of extrusion with curved punches. Next, the model
is validated for small punch strokes by comparison with a classical Lagrangian model
and a simplistic ALE model using mesh smoothing. For larger punch strokes, the
model is compared to results from the literature obtained with a complete remeshing
strategy. Finally, a fully-coupled thermomechanical problem of semi-solid forming
is described and the final predicted shape of the billet is compared to experimental
observations.

This work has been done with Metafor Ponthot [22], an in-house implicit finite
element code developed at the University of Liège in Belgium.

2 Overview of the ALE Formalism

In the ALE formalism, unlike in the Lagrangian case which is commonly used in Solid
Mechanics, the mesh no longer follows the material motion. Consequently, a new
grid coordinate system Rχ is defined and the conservation laws and the constitutive
equations are rewritten in terms of the new coordinates χ [3, 4, 8, 22]:
Mass:

∂ ρ

∂ t

∣
∣
∣
∣
χ

+ c · ∇ρ + ρ∇ · v = 0 (2)
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Material:
∂ σ

∂ t

∣
∣
∣
∣
χ

+ (c · ∇)σ = H : D + W σ − σ W (5)

where ρ is the mass density, σ is the Cauchy stress tensor, b and r are the specific
body forces and heat sources, u is the specific internal energy, D and W are the
symmetric and antisymmetric part of the velocity gradient tensor, q is the heat flux,
and H is a material tensor depending on the constitutive parameters, the stresses,
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and the loading history. The last two terms in Eq. (5) result from the particular choice
of the Jaumann’s objective time derivative.

The convective velocity c = v−v∗ is the difference between the material velocity
v and the mesh velocity v∗. In the case of nonlinear problems, such as metal forming
simulations, v∗ should ideally depend on the solution. It is thus an additional unknown
of the latter system of equations.

In order to simplify the solution procedure and remain competitive against
Lagrangian models, the set of ALE equations is usually solved using an operator-
split procedure. Each time increment, from time t to t + Δ t , is divided into two
successive steps. The first one is performed exactly in the same way as in the clas-
sical Lagrangian case. During this Lagrangian step the mesh follows the material
motion (v∗ = v, c = 0) until an equilibrated configuration is obtained. The sec-
ond step, also called the Eulerian step, is divided into two substeps: the definition
of an appropriate mesh velocity v∗ by relocating each node of the mesh to a more
suitable position Boman and Ponthot [5], followed by the data transfer from the old
mesh configuration to the new one Boman and Ponthot [6]. This transfer involves the
Gauss-point values (stress tensor components, history variables of the material such
as the equivalent plastic strain) as well as nodal values (velocities, accelerations and
temperature).

In the case of simulations of tribological tests such as DCET, the computation of
friction forces is obviously very important. Nevertheless this evaluation is not as easy
as in the Lagrangian case for which the position of each node of the mesh corresponds
to the same material particle during the whole simulation. The following strategy is
thus implemented: during the Lagrangian step, a classical penalty method is used to
compute the friction occurring at the nodes in contact with a tool. Then, after the
Eulerian step, the equilibrated internal forces are recomputed from the transferred
stress field on the new mesh. The friction forces are calculated by projection onto
the tools and the tangential gaps are recovered from these updated forces.

3 Basic ALE Model of Extrusion

The extrusion process, or more precisely wiredrawing, was first investigated using
the ALE formalism by Huétink et al. [15] in 1990. In that early work, the studied
problem was 2D axisymmetric, the mesh was purely Eulerian and the stationary
solution was sought. Later, Van Haaren et al. [27] and Geijselaers and Huétink [13]
built an extrusion model in order to analyse their respective novel ALE convection
schemes. Similarly the mesh was fixed in space and a transient computation was
performed until the stationary state was reached. In those chapters, the analysis of
the results is not exhaustive: the plastic strain is solely visualised in order to compare
the numerical diffusion of the newly developed advection schemes. In particular, the
friction modelling is not discussed at all.

Transient models of extrusion have been also proposed by Atzema and Huétink [1]
and by Ponthot [21]. The ALE formalism can be very useful in this context. In these
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8 mm

3 mm
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Fig. 3 Axisymmetric geometry of the extrusion model of [21]. A cylindrical specimen is con-
strained to flow into a narrow channel in order to produce a hollow cylinder. The specimen shapes
at the beginning and the end of the extrusion are completely different

kind of models, the mesh is not Eulerian anymore. Since the ALE formalism requires
a constant mesh topology and thus a constant number of finite elements throughout
the simulation, it is important to take advantage of the approximate knowledge of the
final shape of the extruded billet in order to build the initial mesh. As an illustration of
the particular mesh management procedure, Ponthot’s model is presented in Fig. 3.
The extrusion problem is axisymmetric. A cylindrical billet is pushed by a punch into
a narrower channel so that a hollow cylinder is formed. The material is elastoplastic
(E = 200 GPa, ν = 0.3, σY = 210 + 10 ε̄p MPa) and the friction on the boundaries
is modelled by a Coulomb’s law with a friction coefficient μ = 0.15.

The transient solution is made up of two quadrangular regions (see Fig. 5): the
first region corresponds to the part of the crushed cylindrical billet that still remains
between the punches and the second one contains the material which has been already
extruded and which lies between the fixed punch and the container wall. At time
t = 0, the second region should be ideally empty. In order to keep a unique mesh
from the beginning to the end of the simulation, Ponthot initially assigns a very small
thickness (h = 0.01 mm) to this second region and creates a mesh on it. This artificial
region is called auxiliary region in the remainder of this work. The resulting finite
elements of the auxiliary region are thus very flat, but they can inflate as a result of the
material flux coming from the first region. The node relocation strategy is relatively
simple (see Fig. 4). Most of the vertices of the mesh are Lagrangian (i.e. they follow
the material motion). Only two vertices are Eulerian (i.e. fixed in space). The line
defining the nose of the fixed punch and its neighbour separating both regions of
the mesh are also Eulerian. The nodes of the other lines are relocated by defining a
cubic spline through them. These splines are then remeshed so that the initial node
distribution and their respective curvilinear abscissa are preserved. As far as the inner
nodes are concerned, they are continuously relocated thanks to the same transfinite
mesher that was used to generate the meshes. These node-relocation methods are
fully described in a previous chapter Boman and Ponthot [5].
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Fig. 4 Node relocation procedure. Thanks to the simple geometry of the fixed punch, the definition
of the new mesh is made very easy. The nodes and the line in red are Eulerian. The other lines
which have at least one red vertex are remeshed using cubic splines

Figure 5 shows the progress of the simulation. Of course, the proposed mesh man-
agement technique entails some issues. First of all, it is mandatory to roughly know
the direction of the material flow when setting up the model. Moreover, seeing that
the number of finite elements is initially fixed in the auxiliary regions of the mesh,
these elements become larger and larger as the simulation progresses and, conse-
quently, the geometry of the extruded parts becomes crudely discretised. Finally, it
is not possible to extrude all of the material. The mesh of the billet must always be
made up of the same number of elements, but its thickness continuously decreases.
The crushed quadrangles, which lie either in the auxiliary region at the beginning of
the simulation or in the main region of the mesh at the end of the simulation, lead
to some convergence difficulties. On the one hand these finite elements are poorly
conditioned for the Lagrangian steps of the ALE algorithm and, on the other hand,
the stability criterion of the explicit data-transfer scheme of the Eulerian step is very
restrictive concerning the maximum allowable punch displacement during a single
time step. As a result, a very small time step has to be used at the beginning and at
the end of the simulation (Fig. 6). Figure 7 shows the calculated force on the moving
punch during the extrusion operation. The curve obtained by the current implemen-
tation is compared to the former results of Ponthot [21]. The trends of both curves are
very similar and the final values are identical. The discrepancy between the curves
may be explained by the differences in the ALE management of friction.

Despite these limitations, this particular mesh management technique is very
attractive for modelling extrusion or any other process for which the material flow is
predictable. For example, Gadala et al. [10] used the same ALE method to compute
the shape of a metallic chip of a cutting operation.
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D Htot = 0.95

H = 8 mm

t = 0 s

t = 1 s

t = 2 s

t = 3 s
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h = 0.01 mm
(10

)
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the thickness

Fig. 5 Results of the extrusion test of Ponthot [21] for a punch stroke up to 95 % of the initial
thickness of the cylinder (H )
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Fig. 6 Size of the time increment Δt along the simulation
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Fig. 7 Extrusion force as a function of the punch displacement and comparison with the results of
Ponthot [21]

4 ALE Model of DCET

4.1 Geometry and Parameters

The previous mesh management technique is now applied to a Double Cup Extrusion
Test. The chosen geometry was developed at the Engineering Research Center (ERC)
of the Ohio State University in order to assess the properties of various lubricants [7].
The exact punch geometry is described in Fig. 8 and the corresponding numerical
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Fig. 8 Punch geometry used
by Tan et al. [26] and Schrader
[23]

Ds

Df

Dp

R

hp

Table 1 Geometry of the
extrusion test studied by [23].
The parameters are related to
Fig. 8

Punch Billet
Dp D f Ds R h p ϕ β d0 h0

[mm] [mm] [mm] [mm] [mm] [o] [o] [mm] [mm]
15.88 9.53 15.72 1.17 1.57 10.0 5.0 31.75 31.75

values are listed in Table 1. They are related to the work of [23], which will be the
main reference in the remaining part of this chapter. The geometry of the punch is
far more complex than the one used by Ponthot. Even if Buschhausen et al. [7] claim
that the shape of the punch does not play a significant role on the results (its shape is
actually optimised to favour the radial flow of the lubricant, which is not modelled
here), this complex shape and all its geometrical details are retained in the model in
order to demonstrate the capabilities of our ALE node-relocation algorithm.

The initial diameter of the cylindrical billet d0 is equal to its height h0 and to the
internal diameter of the container. The extrusion ratio is defined as the ratio of the
surface of the punch nose and the upper surface of the billet (r = D2

p/d2
0 ). This value,

deduced from Table 1, is equal to r = 0.25. According to Schrader et al. [23], this
particular value of r is ideal to observe large variations in the results due to friction
conditions.

The material is an AISI 1018 steel with classical elastic properties: Young’s mod-
ulus E = 200 GPa and Poisson’s ratio ν = 0.3. The nonlinear hardening is modelled
by the following law:

σY = K (ε̄p)n (6)

where K = 735 MPa and n = 0.17. This law has been identified from a standard
tensile test the elastic part of which has been neglected. It is employed here in this
form, despite the fact that the initial yield stress is zero.
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A Tresca’s law models the frictional contact: Eq. (1) may be rewritten as τ ≤
m σY /

√
3. The extrusion test is supposed to provide the value of this friction coeffi-

cient m by identification of an experimental curve and a series of numerical curves
obtained with a range of m values. In the following simulations the default value
is m = 0.05. In practise, the yield stress σY appearing in the Tresca’s law is usu-
ally chosen as the initial yield stress (see for example the DCET simulations of Tan
et al. [26]). In the work of Schrader et al., this numerical value is zero. Consequently,
a first possibility is to use the updated local yield stress. However, this value is only
defined at the Gauss points of the neighbouring elements of the contact nodes, and
not directly at these nodes. The yield stress should thus be extrapolated from the
Gauss points to the contact nodes. As a consequence, the friction force evaluated at
a given node depends on all the positions of the nodes of the neighbouring elements
and a new and more complete stiffness matrix must be computed in order to keep a
quadratic convergence rate. The second possibility is to choose a mean value of the
yield stress of the material. The cold-drawn AISI 1018 steel is listed on matweb [18]
with an initial yield stress of 370 MPa. When this particular value is chosen, numer-
ical results close to the ones of Schrader et al. [23] are obtained. The first choice
leads to sensibly different results, which show that some uncertainties remain in the
numerical parameters used in the reference work.

The model is axisymmetric and integrated in time by a implicit quasi-static solver
(the speed of the punch is about 10 mm/s, which is largely insufficient to produce
some inertia phenomena). The mesh is made up of Selective Reduced Integration
(SRI) quadrangles. Both punches and the container are assumed rigid. The contact
is modelled by the penalty method. The normal and tangent penalty coefficients,
pN and pT respectively, are determined by trial and error: pN = 6 104 MPa/mm
and pT = 6 103 MPa/mm for the container wall, and pN = 2 104 MPa/mm and
pT = 2 103 MPa/mm for the punches. The billet is regularly meshed with elements
of 1 mm along the extrusion direction and 0.3 mm along the radial direction for a total
of 31 × 52 elements). As in Ponthot’s model presented in the Sect. 4.1, the material
flows are anticipated by adding two very thin auxiliary meshes close to both punches
(15 elements though the thickness ε = 0.2 mm—see Fig. 10a).

The data-transfer step of the ALE algorithm consists in updating the stresses
(pressure p, and deviatoric stress components srr , srz , szz) and the equivalent plastic
strain ε̄p. These five fields are processed by a first-order Godunov scheme [6].

4.2 ALE Mesh Motion

The mesh motion definition is obviously more complex than in the case of the former
example. The main difficulty is to define the motion of the red line highlighted in Fig. 9
which represents the surface of the billet under the punch nose and its extension up
to the container wall. Unlike its counterpart in Fig. 4, this curve may not be Eulerian
because the punch is not stationary anymore. Furthermore, given its slightly convex
geometry, the punch is not entirely in contact with the surface of the billet at the
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Fig. 9 Node relocation of the DCET model. Unlike the case of Fig. 4, the red line may not be
Eulerian anymore
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Fig. 10 a Zoom on the upper finely-meshed auxiliary region at the beginning of the simulation—b
Excessive distorsion of the elements of the auxiliary domain if the nodes of the red line follow the
real motion of the material boundary

beginning of the computation. A small gap, which is initially empty, should be filled
during the first moments of the process.

One could imagine to simply prevent the radial motion of node p1 of Fig. 9.
The position of node p2 would be such that both nodes would have continuously
the same Y-coordinate. The other vertices would be Lagrangian. Unfortunately, this
solution does not work because an unavoidable material flux is observed between
the two regions of the mesh and the thin auxiliary mesh becomes rapidly distorted
during the first steps of the simulation. Figures 10a and b explain this issue and the
proposed solution. Initially, the vertical line above p1 is very short and very finely
meshed. During the first steps, this line is deformed because the first element of the
auxiliary region receives some spurious fluxes related to the relocation of p1 on the
piecewise-linear boundary of the mesh. These fluxes are very small but, compared
to the very small area of the elements, they are large enough to highly deteriorate
the auxiliary mesh and to make the line impossible to remesh. Consequently this
line is remeshed as if it was a straight line until the contact of p1 with the punch is
established.
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The simulation is performed in two successive steps. The first one aims at filling
up the empty gap between the billet and the punch. At the end of this step, the
punch nose is entirely in contact with the billet and the situation becomes similar
to the simple extrusion problem of the previous section. During this first step, the
radial displacement of node p1 (Fig. 9) is set to zero and node p2 is Lagrangian.
The vertical line above p1 is remeshed as if it was straight in order to prevent any
distortion problem of the boundary. Doing so, a small inward spurious material flux
is tolerated through this boundary.

The second step begins when node p1 hits the punch surface. At this precise
moment, the vertical displacement of node p2, as well as those of all the nodes of
line (p1, p2), are equaled to the one of p1. This line follows thus the vertical motion
of the punch. Concerning the former problematic line, it is remeshed at that stage
using a cubic spline in order to precisely follow the boundary of the extruded material.

This two-step strategy is symmetrically applied to the lower part of the billet.
If some friction is modelled between the billet and the tools, the process is not
symmetrical and the transition from the first step to the second does not occur at the
same time for the upper and the lower part of the model. This is not a problem in
practise.

Finally and more classically, all the remaining curves defining the boundaries of
the billet are continuously remeshed using cubic splines. The internal nodes of the
main meshed region are relocated thanks to Giuliani’s smoothing method Giuliani
[14]. This method has been chosen among many others because it produces the
most regular mesh in this very case. This iterative smoothing requires five iterations
with a overrelaxation coefficient ω = 1.5. Eventually, both auxiliary meshes are
continuously remeshed by transfinite mapping.

4.3 Model Validation for Limited Punch Strokes

The ALE model of the previous section is compared with two other models: the
first one is a classical Lagrangian model and the second one is an alternative ALE
model which simply consists in smoothing the mesh of the billet without defining
any auxiliary region. This comparison enables us to validate the proposed ALE node
relocation technique.

The punch displacement s (also called punch stroke) is limited to 8 mm so that
the three models can converge and produce results. Figure 11a shows the Lagrangian
solution. The mesh is highly distorted close to the punch nose. Having a closer
look at this problematic spot (Fig. 11b), it can be noticed that the mesh boundary
highly penetrates the punch. The node-to-surface formulation of the contact with
the rigid tool yields erroneous results: the surface of the billet is subjected to very
large local elongations and the surface mesh stretches so widely that the curvature
of the punch radius is not well described anymore. Since the contact detection only
involves the nodes of the boundary, the edges are free to cross the punch analytical
surface producing a very large geometrical error.
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s = 8mm

nodes
in contact

0.0 3.0

Equivalent plastic
strain ( )p

(a)

(b)

Fig. 11 a Lagrangian solution for a 8-mm stroke. These results validate the ALE model for the
beginning of the process—b Zoom on the Lagrangian solution for which the contact is very badly
taken into account

s = 8mm s = 8mm

(a) (b)

Fig. 12 a ALE solution for a 8-mm stroke (simple model). A single region is meshed and a tricky
smoothing operator is used—b ALE solution for a 8-mm stroke (two-region model)

Figure 12a presents the results obtained by the simple ALE model of DCET
without adding any auxiliary meshed regions. The initial mesh is identical to the
Lagrangian one. All the boundary nodes are relocated using cubic splines in order
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Fig. 13 Comparison of the efficiency of the relocation methods. For each case, the red circle
indicates the most critical zone of the mesh where the elements are highly distorted

to avoid the excessive stretching of the element edges on the boundary, which was
previously discussed. The inner nodes are relocated, after many trials and errors,
by a very peculiar combination of two smoothing operators: 70 % of equipotential
smoothing and 30 % of weighted volume smoothing Boman and Ponthot [5]. The
equipotential part helps to keep the mesh lines almost perpendicular to each other.
The weighted-volume part tries to equalise the volumes of the neighbouring quadran-
gles. Used alone, each of these methods does not permit the computation to converge
so far. Figure 13 shows that it is possible to simulate a stoke of smax = 5.5 mm with
an equipotential smoother and a stoke of smax = 5.7 mm with a volume-weighted
smoother. An appropriate combination of both methods enables the simulation to
converge up to 9.8 mm. Nevertheless, these values are much smaller than the exper-
imental stroke value of 27 mm. Even if this stroke could be reached, it is important
to notice that the combination factors of the smoothing methods are case-dependant
(which means that they are related to a particular value of the friction coefficient
m) and very tricky to guess. This simple ALE model is thus useless except for the
validation of the two-region ALE model.

Figure 12b shows the results when using the more sophisticated ALE model
including the finely meshed auxiliary region for a punch displacement of 8 mm. This
time, the quality of the mesh is very good. The equivalent plastic strain distribution is
very similar to the one computed by the simple ALE model. Of course, the extruded
heights are slightly different because the two-region model starts at t = t0 with
nonzero heights (h1(t0) = h2(t0) = ε). In order to discard this error, the extruded
heights are measured without taking into account the initial small heights of the
auxiliary meshes (see Fig. 14).

It is possible to compare more precisely these three models. Figure 15 shows the
evolution of h1 and h2 as a function of the punch stroke. Both ALE models give very
close numerical results that follow the trend of the Lagrangian model at the beginning
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Fig. 14 Computation of the
extruded cup heights h1 and
h2 in the case of the ALE
model using the additional
auxiliary meshes. The initial
heights ε are subtracted
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Fig. 15 Comparison of the
cup heights h1 and h2 for the
three models
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of the computation. Beyond s = 5 mm, the Lagrangian model withdraws from the
ALE models because of the penetration of the mesh inside the punch surface (see
Fig.11b). Despite the correction on the computed cup heights, the sophisticated ALE
model generates slightly different results from the simple ALE model. This small
error (Δh1 = 0.14 mm and Δh2 = −0.08 mm for s = 9.8 mm) certainly comes
from the contact length of the billet on the container wall that is not the same in the
two cases. The 2-region model is thus subjected to slightly more friction than the
simple model. This fact directly affects the corresponding curve of Fig. 16. However,
the global trend is quite satisfactory.

In Fig. 17, the curves representing the vertical forces measured on the tools for
the three models are very similar at the beginning of the simulation. Starting from
s = 5 mm, the Lagrangian solution does not model the real process anymore because
of the excessive material penetration into the punch. Yet the simple ALE model
provides force levels that are very close to the more sophisticated ALE model until
it ceases to converge. Finally, as it was expected, the forces of the 3-region ALE
model are slightly higher than the ones obtained by the two other models (+1.3 %
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Fig. 16 Comparison of the cup height ratios h1/h2 during the process
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Fig. 17 Vertical forces computed on the upper punch Fup
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container wall Fwall
y for the three models

for the force on the container wall). This difference, which is barely visible in the
Figure, could be further reduced by decreasing the value of ε, at the cost of a slower
convergence rate and thus an increase of the total computational time.

This preliminary study proves that the implemented ALE treatment of friction is
correct because the same results are obtained independently of the chosen formalism.
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Fig. 18 Deformed billets which have been obtained for several friction values m

4.4 Study of the Whole Process

The whole process is now simulated by using the ALE model until the vertical
displacement of the punch reaches s = 29 mm, which corresponds to 91 % of the
initial height of the billet. When using m = 0.05, the problem is solved in 346 time
increments corresponding to 422 Newton iterations. The total CPU time is 5′45′′
(single-threaded run on an AMD Opteron 254, 8 Ghz). This time does not depend
much on the value of the friction coefficient m. Approximately half of this time
(52 %) is spent in the Lagrangian step of the ALE algorithm. The remaining time
splits into node relocation routines (7 %) and the data-transfer scheme (41 %).

The deformed shapes of the billet are presented in Fig. 18 for three values of the
friction coefficient m (m = 0, m = 0.05 et m = 0.1). As expected, the upper cup
height h1 becomes larger when the friction coefficient increases. Since the elastic
deformations are negligible and thanks to mass conservation, the opposite trend
is observed for the lower cup height h2. One must keep in mind that this volume
conservation is not automatically verified in ALE formalism. A closer look at the
volume variation of the mesh reveals that the total volume slightly increases during
the ALE computations. Table 2 shows several interesting values: the added volume
corresponding to the auxiliary meshes represents about 1 % of the exact initial volume
of the experimental billet. At the end of the simulation, an increase of about 0.5 %
of the total volume of the mesh is noticed instead of a slight loss of volume that
could be intuitively expected from the elastic response of the crushed material. This
variation mainly results from the spurious material fluxes that are generated during the
remeshing of the boundaries of the mesh. A smaller fraction of this error might also
come from the limited accuracy of the data-transfer scheme. Anyways, the observed
volume variation of the ALE mesh is always positive and it slightly increases as the
friction coefficient m increases.
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Table 2 Variation of the volume of the mesh in the ALE simulations of DCET after a punch stroke
of 29 mm (m = 0.05)

V V/V0

[mm3] ×100 [%]

Initial volume of the experimental billet V0 25137 100.00
Added volume (auxiliary meshes) 238 0.95
Initial volume of the model 25375 100.95
Final volume of the model (m = 0.00) 25492 101.41
Final volume of the model (m = 0.05) 25500 101.44
Final volume of the model (m = 0.10) 25525 101.54
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Fig. 19 Set of curves of cup height ratios numerically obtained for a range of friction coefficients
m. A value for m may be deduced from the experimental measurements

According to its creator, Geiger [12], the main purpose of DCET is to numerically
identify a friction coefficient which is directly related to the chosen lubricant. To reach
this goal, a series of simulations are performed by considering a range of friction
values m. As an example, Fig. 19 shows the resulting curves in the case of the
studied model. The experimental values from Schrader et al. [23]—three punctual
measurements—have been superimposed on the numerical curves. A friction value,
which is marginally greater than m = 0.05, can then be deduced visually from these
results.



48 R. Boman et al.
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Fig. 20 Two different ways for measuring the height h1 in the ALE model: either the largest height
hmax

1 (the measurement position r may vary during the simulation), or the height h1 measured on
the container wall (always at rmax). These simulations correspond to m = 0.05 and n = 0

4.5 Comparison of Results Obtained by ALE and Remeshing

This section is devoted to a comparison between the ALE model and the numerical
and experimental work of Schrader et al. [23]. These authors use DEFORM-2D, a
FE code which is dedicated to the simulation of forging and extrusion processes.
DEFORM-2D features a sophisticated automatic remeshing algorithm which is very
useful to avoid critical distortions of the quadrangular finite elements during the
computation. The numerical techniques, which are compared in this section, are thus
completely different.

In their work, Schrader et al. study the influence of the hardening coefficient n of
the material (see Eq. 6) on the cup height ratio and on the contact pressure when the
friction value is m = 0.05. The cup height ratio is plotted in Fig. 21 for n = 0.17
(the reference value) and n = 0.0 (perfectly plastic material). As far as the ALE
results are concerned, not one but two curves have been plotted for each hardening
coefficient n. The first curve is obtained when the value of h is measured on the
container wall (at r = rmax = d0/2). The second one is related to the largest value of
h which could be measured at a variable radial position r during the simulation. As
an example, Fig. 20 shows the final shape of the billet for a hardening coefficient of
n = 0. The position of the largest value of h1 is not located at the container wall. The
cup height ratio may vary a lot according to the particular shape of the upper free
surface of the material and to the measurement position of h1. This is particularly
the case when the punch stroke and h are small. For each value of n in Fig. 21, the
two ALE curves nicely surround the one obtained by Schrader using DEFORM-2D.
For a larger stroke, these three curves converge to an identical final value of the cup
height ratio.
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Fig. 21 Influence of the hardening coefficient n of the material on the cup height ratio (m = 0.05)
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Fig. 22 Pressure field measured on the container wall for a 8-mm stroke and two different values
of the hardening coefficient (m = 0.05)

The contact pressures on the container wall are plotted in Fig. 22 for a stroke
limited to 8 mm and two different materials (n = 0 and n = 0.17). There is a very
good agreement between the results of Schrader et al. and the ALE model. The
curves are less close to each other at the level of both punches. Nevertheless, the
global shapes of the pressure fields are quite similar.

Schrader et al. also studied the influence of the initial height h0 of the cylindrical
billet on the obtained results. The curves obtained for ratios h0/d0 of 0.75, 1.0
(reference value) and 1.25 are presented in Fig. 23. Once again, the ALE results are
very close to the published results of Schrader. The largest difference is observed
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Fig. 23 Influence of the initial
thickness h0 of the cylindrical
billet on the cup height ratio.
The friction is kept constant
(m = 0.05)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Punch displacement [mm]

h 1/h
2 h

0
/d

0
=1.0

h
0
/d

0
=1.25

h
0
/d

0
=0.75 this work h(r

max
)

this work h
max

Schrader
exp

for the ratio h0/d0 = 0.75. In this case, the cup height ratio h1/h2 that is computed
by the ALE model is a 5 % underestimate of the value computed by DEFORM-2D.
Since some assumptions have been made about the supposed treatment of friction
and the initial yield stress of the material, this difference may still be considered as
rather small. Consequently it can concluded that the results of the ALE model are
consistent with the ones obtained by a remeshing procedure.

5 Application to Thixoforming

In this section, the ALE model of the previous sections is used to simulate a semi-
solid forming operation, also known as thixoforming. This kind of process relies on a
specific behaviour, called thixotropy, of some alloys near their melting temperature.
They behaves as solids at rest (a billet can sustain its own weight) but they react as
liquids during shearing (for example, they can be cut easily).

A thermomechanical constitutive law which models a smooth transition between
these two behaviours has been implemented in Metafor [16]. The numerical vali-
dation of this law is performed using the ALE model of DCET and the results of a
campaign of experimental tests which was conducted at the University of Liège by
Pierret, Vaneetveld and Rassili [19, 20] in collaboration with the industrial engineer-
ing and mechanical production laboratory of ENSAM (Ecole Nationale Supérieure
d’Arts et Métiers, Metz, France).

The adapted numerical model exhibits several additional difficulties compared
to the one presented previously: all the material parameters are temperature depen-
dent and a coupled thermomechanical integration scheme is used. The heat transfer
between the material (a 100Cr6 steel alloy heated up to 1370 ◦C) and the rigid tools
(initially at 130 ◦C) is also taken into account. The upper punch velocity, which plays
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Fig. 24 Illustration of the mesh evolution during the extrusion test

14.7 mm14.2 mm

26.1 mm27.3 mm

Fig. 25 Comparison of the final shape obtained experimentally (left) and the final deformed section
resulting from the ALE simulation with a friction coefficient m = 0.35 (right)

a significant role on the process due to the variable viscosity of the thixotropic mater-
ial, is not constant. Finally, there is an initial gap between the billet and the container
wall at the beginning of the process (see Fig. 24). The filling of this gap requires the
definition of an supplementary stage in the time-integration sequence.

Figure 25 presents the final shape of the billet obtained experimentally and numer-
ically. Although the friction coefficient has been chosen to get almost the same cup
heights in both cases, it is interesting to see that the simulated upper and lower
boundaries of the cups are very similar to the experimental one. This simulation also
proves that the mesh management technique presented in this chapter is able to deal
with complex material flows.
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6 Conclusions

An original 2D model of double cup extrusion test (DCET) has been presented in
this chapter. This model efficiently uses the ALE formalism in order to avoid a series
of complex and costly remeshing steps during the simulation. Since the DCET is a
tribological test, the model is also very interesting to validate the contact treatment
on an ALE mesh. An error in the ALE computation of the local friction force would
be immediately reflected on the global final shape of the deformed billet.

In order to keep a constant mesh topology, which is a prerequisite condition to use
the ALE formalism, it is necessary to add two very thin auxiliary material regions
to the initial mesh of the billet. These regions are made up of flat elements which
can inflate during the simulation when the billet is crushed between the punches
and the material flows from one mesh to the other. Although this particular mesh
management technique has been already used by [10, 21], it is the first time that this
kind of method is applied to a geometrically-complex process. Indeed, the noses of
the punches have not been simplified in the DCET model. They are not planar and
their curvature adds a real difficulty to the definition of the mesh motion and the
time-integration sequence.

The presented ALE model has been validated by two different means. It has been
compared first with an equivalent Lagrangian model during the beginning of the
simulations. Secondly, the ALE results have been compared to the ones computed
by DEFORM-2D which makes use of an automatic remeshing procedure. A very
good agreement has been observed between these two numerical techniques although
they are radically different.

Finally, the ALE model of DCET has been used in the frame of a fully-coupled
thermomechanical simulation of a semi-solid forming process. Once again, very
good results have been obtained without any remeshing operations.
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